
Louisiana State University Louisiana State University

LSU Scholarly Repository LSU Scholarly Repository

LSU Master's Theses Graduate School

2005

Heuristics for memory access optimization in embedded Heuristics for memory access optimization in embedded

processors processors

Saravanan Subramanian
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://repository.lsu.edu/gradschool_theses

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Subramanian, Saravanan, "Heuristics for memory access optimization in embedded processors" (2005).
LSU Master's Theses. 2287.
https://repository.lsu.edu/gradschool_theses/2287

This Thesis is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It has
been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Scholarly
Repository. For more information, please contact gradetd@lsu.edu.

https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_theses
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_theses?utm_source=repository.lsu.edu%2Fgradschool_theses%2F2287&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=repository.lsu.edu%2Fgradschool_theses%2F2287&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_theses/2287?utm_source=repository.lsu.edu%2Fgradschool_theses%2F2287&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

HEURISTICS FOR MEMORY ACCESS OPTIMIZATION IN
EMBEDDED PROCESSORS

A Thesis
Submitted to the Graduate Faculty of the

Louisiana State University and
Agricultural and Mechanical College

in partial fulfillments of the
requirements for the degree of

Master of Science in Electrical Engineering

in

The Department of Electrical and Computer Engineering

By

Saravanan Subramanian
B.E., University of Madras, India, 2002

December, 2005

Acknowledgements

I would like to thank my major professor Dr. Ramanujam Jagannathan for his

support, patience, guidance, and his thought provoking suggestions provided throughout

the course of this research. His ability to express the complicated problems as simple

ones provided me with the motivation and direction.

I express my gratitude to the members of my committee: Dr. Vaidyanathan

Ramachandran and Dr. Seung-Jong Park for their valuable suggestions and advice. Also,

I would like to thank Dr. Jinpyo Hong for his inputs and ideas.

I dedicate this work to my family members for their prayers, encouragement and

financial support. I would like to thank all my friends at LSU for their assistance, wishes,

support and encouragement throughout my research, and also throughout the course of

my graduate study at LSU.

 ii

Table of Contents

Acknowledgements ... ii

List of Tables .. iv

List of Figures.. v

Abstract ………………………………………………………………………………….vi

1. Introduction…………………………………………………………………………... 1
 1.1 Objectives and Thesis Overview…………………………................................... 3

2. Variable Partitioning Problem .. 4
 2.1 The Improved Heuristic……………………………………….……………….…5
 2.1.1 Node p Is Initially in X………………………...……………………………6
 2.1.2 Node p Is Initially in Y…………………………...…………………………7

2.1.3 Variations……………………………………………………………………8
2.1.4 Heuristic……………………………………………………………………..9
2.1.5 Explanation……………………………………………….………………..10

 2.2 Examples...12
2.2.1 Example Showing Improvement in the Overall Gain due to the
Variation.1……………………………………………………………………….12
2.2.2 Example Showing Improvement in the Overall Gain due to the
Variation.2 .. 13

 2.3 Experimental Results……………………………………………..…….……….15
 2.4 Complexity Analysis…………………………………………………….…..…..18
 2.5 Chapter Summary………………………………………………………….……19

3. Horizontal Address Assignment .. 20

 3.1 ILP Formulation for Variable Partitioning into Multiple Groups…………....….21
 3.1.1 Illustration...22
 3.1.2 Experimental Results ..24
 3.2 Heuristic for Variable Partitioning into Multiple Groups.....................................26

 3.2.1 Explanation……………...…….……………………………………..…….27
 3.2.2 Illustration…….……….…..……………………………………………….28
 3.2.3 Experimental Results………………………………………..…..….………29
 3.3 Result Comparison ILP Vs Heuristic……………………………………………31
 3.4 Chapter Summary…….……………………….. …………………………….…32

4. Conclusion ... 33
 4.1 Future Work………..………………..…………………………………..………34

References…………………….. 35

Vita………………………………………………………. .. 37

 iii

List of Tables

Table 2. 1: Initial Gain Computation of all Nodes in Figure 2.2 12

Table 2. 2: Updated Gain Computation for Transferring Node ‘a’ 13

Table 2. 3: Max.Cumulative Gain value for each Iteration of the Heuristic on the
Interference Graph of Figure 2.3 .. 14

Table 2. 4: Overall Gain and the Final Partition for Various values of S of Figure 2.4 .. 15

Table 2. 5: Overall Gain and Final Partitions for Various values of S of Figure 2.5 16

Table 2. 6: Overall Gain and Final Partitions for Various values of S for the Interference
Graph of Figure 2.3... 17

Table 2. 7: Overall Gain and Final Partitions for Various Initial Partitions for the
Interference Graph of Figure 2.3 .. 17

Table 3. 1: Final Partition obtained by the ILP Solver for the Graph in Figure 3.1 24

Table 3. 2: Objective Function value for various S values for the Graph in Figure 3.1 with
P = 2 .. 25

Table 3. 3: Objective function value for various S value for the Graph in Figure 3.1 with
P = 3 .. 25

Table 3. 4: ILP Results for the Graph in Figure 3.2 with P = 2.. 26

Table 3. 5: ILP Results for the Graph in Figure 3.2 with P = 3.. 26

Table 3. 6: Illustration of the Heuristic with the example Graph in Figure 3.3................ 29

Table 3. 7: Heuristic Results for the Graph in Figure 3.2 with P = 3 30

Table 3. 8: Heuristic Results for the Graph in Figure 3.3 with P = 4 30

Table 3. 9: Heuristic Results for the Input Graph of the VAG in Figure 3.2 with P = 2.. 31

Table 3.10:Heuristic Results for the Input Graph of the VAG in Figure 3.2 with P=4.... 31

Table 3.11:Result Comparison for the Input Graph of Figure 3.2.................................... 32

 iv

List of Figures

Figure 2. 1: Heuristic for Variable Partitioning……………………….……………….…9

Figure 2. 2: Example Interference Graph to Show Improvement in the Overall Gain due
to the Variation.1…………………………………………………..….…………………12

Figure 2. 3: Example Data Flow Graph to Show Improvement in the Overall Gain due to
the Variation.2…………………………………………….…………….……………….14

Figure 2. 4: Example Interference Graph…………….………………………………….15

Figure 2. 5: Example Interference Graph………....………………………………..……16

Figure 3. 1: Example Variable Access Graph to Illustrate the ILP Formulation………..22

Figure 3. 2: Example Variable Access Graph on which the ILP Formulation was
Implemented……………………………………………………………………………..26

Figure 3. 3: Input Graph for the VAG in Figure 3.1…………………………………….29

 v

Abstract

Digital signal processors (DSPs) such as the Motorola 56k are equipped with two

memory banks that are accessible in parallel in order to offer high memory bandwidth,

which is required for high-performance applications. In order to make efficient use of the

memory bandwidth offered by two or more memory banks, compilers for such DSPs

should be capable of appropriately partitioning the program variables between the two

memory banks and scheduling accesses. If two variables can be accessed simultaneously,

then it is essential to have these two variables assigned to two different memory banks.

Also if these two variables are in different banks, then instead of using two separate

instructions for accessing the variables, both the accesses can be encoded into a single

instruction, thereby reducing the code size as well. An efficient heuristic for maximizing

the parallel accesses in DSPs with dual memory banks is proposed and evaluated. The

heuristic is shown to be very effective on several examples.

Architectures like the M3 DSP have a group memory for the single-instruction

multiple-data (SIMD) architecture, for which addressing an element of the group means

to access all the elements of that group in parallel, so there is no need for separately

addressing each element of the group. Given a variable access sequence for a particular

code, instead of separately accessing each one of the variables, if the variables are

grouped then the number of memory accesses can be reduced as per SIMD paradigm. An

efficient way of forming groups can significantly reduce the memory accesses. Two

solutions for this problem are presented in this thesis. First, a novel integer linear

programming formulation for forming the groups, thereby reducing the number of

memory accesses in DSPs with SIMD architecture is presented. Second, a heuristic based

 vi

on the solution for optimizing multiple memory bank accesses is presented and evaluated

for this problem. Results on several graphs show the effectiveness of the heuristic.

 vii

1. Introduction

Digital signal processors (DSPs) such as the Motorola 56k and the Analog

Devices ADSP- 210x series are equipped with two memory banks (frequently referred to

banks X and Y) that are accessible in parallel in order to offer high memory bandwidth,

which is required for high-performance applications. In order to make efficient use of the

memory bandwidth offered by two or more memory banks, compilers for such DSPs

should be capable of appropriately partitioning the program variables between the two

memory banks and scheduling accesses. For instance, consider the line of code

a = b + c;

From this line of code it is clear that variables b and c can be accessed in parallel.

If these two variables are assigned to the same memory bank, then the variables b and c

must be accessed one after the other (i.e., sequentially), thereby masking the parallelism

that exists. Therefore to exploit the parallelism that exists between these two variables, it

is essential to have these two variables assigned to two different memory banks. Also if

these two variables are in different banks, then instead of using two separate instructions

for accessing variables b and c, both the accesses can be encoded into a single instruction,

thereby reducing the code size as well.

Dual memory bank DSPs are poorly exploited by compilers due to lack of

suitable variable partitioning techniques. So, one objective of this research work is to

develop a suitable variable-partitioning technique for dual memory bank DSPs.

DSPs such as M3-DSP are Single-Instruction Multiple-Data (SIMD)

architectures. The SIMD paradigm refers to the concept of performing the same type of

 1

computation (instructions) simultaneously on different data. In the case of the M3-DSP,

there are 16 data path slices. In order to provide an effective use of all the data path slices

in parallel, the memory is organized as a group memory. Here addressing one 16-bit data

word means addressing an entire group of 16 such words.

The M3-DSP is organized as a very long instruction word (VLIW) architecture.

Here, two successive VLIWs can be reused and do not need to be stored as instructions in

memory. In order to provide an effective use of this method in loops the M3-DSP also

contains an instruction cache for up to four VLIW instructions. In order to achieve high

performance and code quality, it is essential that code generation makes use of these

special architectural features such as SIMD and VLIW. Lorenz et al. [14] discuss one

such technique that makes use of both these architectural features. The technique is

subdivided into two phases. In the first phase, referred to as horizontal address

assignment, the variables are partitioned into groups such that the same group is used as

much as possible before using an another group, thereby making use of M3-DSPs SIMD

group memory architecture. This reduces the number of memory accesses, and thereby

the code size is reduced and the performance is improved. This research work includes a

heuristic and an ILP formulation for addressing this optimization problem.

In the second phase the address generation instructions for addressing all the

groups are optimized for a given memory layout. A heuristic proposed in [14] is based on

the concept of maximizing the reuse of address generation instructions which reside in a

VLIW of the instruction cache, thereby making use of the M3-DSPs VLIW instruction

cache architecture. This optimizes the address generation instructions for a given memory

layout.

 2

1.1 Objectives and Thesis Overview

It has been mentioned in [12] that an efficient partitioning of the variables used in

a processor application into two memory banks, results in an increased memory

bandwidth utilization and high code quality. However the heuristic proposed in [9] to

address this problem, incorporated a rigid assumption that there is an even distribution of

variables in the two memory banks, which masks the possibility of computing a more

optimal solution if a certain degree of imbalance was tolerated. This possibility has been

investigated in [15]. However the heuristic proposed in [15], masks some other

possibilities, which could further benefit to the optimal solution. So, one of the objectives

of this research work is to investigate those possibilities, thereby computing an even more

optimal solution. It has been discussed in Chapter 2.

It has been discussed in [14] that horizontal address assignment problem is a

graph partitioning problem involving multiple banks rather than just two banks as in the

previous case and finding an efficient partitioning of the variables into multiple banks

will reduce the number of memory accesses. So the other research objective is to exploit

the benefit and more optimal solution that could be achieved by using the heuristic

discussed in previous Chapter 2, for solving this multiple bank partition problem. A

heuristic and an ILP formulation which addresses this problem has been discussed in

Chapter 3, Sections 3.1 and 3.2 respectively. Chapter 4 presents a summary of the results

and points to further possible research.

 3

2. Variable Partitioning Problem

Effective partitioning of the variables of a program is essential to the effective use

of high memory bandwidths available in digital signal processors (DSPs) with multiple

memory banks. It is well known that the problem of finding an optimal partition of a set

of nodes of a weighted graph into two sets X and Y such that the sum of the edges

between the sets X and Y is minimum (referred to as the graph bisection or the mincut

problem) is NP-complete [4,21]. The same is true for the problem of maximizing the sum

of the edges between X and Y.

A heuristic for this problem that uses swapping of nodes has been proposed by

Kernighan and Lin [9]. The Kernighan-Lin heuristic assumes that at any given point of

time during the execution of the heuristic, the number of nodes in the sets X and Y differ

by at most one; this assumption may prevent the possibility of computing a solution

perhaps closer to the optimal solution. Allowing a certain degree of imbalance between

the sets X and Y could lead to better solutions [4]. However, if the case in which any

amount of imbalance between sets X and Y is tolerable were to be valid, then the

possibility of a scenario wherein all nodes migrate to a particular set cannot be ruled out,

and safeguarding against that scenario needs some thought and consideration. A heuristic

that attempts to solve this problem by incorporating the concept of transferring nodes

from set X to set Y and vice-versa, rather than swapping nodes on the basis of a one-to-

one mapping between the two sets, has been discussed in [15]. This chapter considers and

presents several improvements to the heuristic in [15]. The reader is referred to [15] for

details of that heuristic.

 4

First, the heuristic in [15] does not consider the following possibility:

Transfer of some of the nodes that are marked without making any transfers, but

for violating the size constraint, could still add to the gain of the graph.

We have modified the heuristic in [15] to take care of this issue, by marking a node only

when there is a transfer of that node from one partition to an another one.

Secondly, the we have observed the following case:

Some node transfers could possibly still benefit to the overall gain, even though

 the maximum cumulative gain has become zero.

We have taken care of this, by continuing with the transfers, even though the maximum

cumulative gain becomes 0, till the nodes that are being transferred in the current

iteration are a subset of nodes that had already been transferred with the maximum

cumulative gain being 0.

Thirdly, [15] does not use a tie-breaking function in the case of multiple nodes

that are candidates at any point. We have introduced a tie-breaking function, to break a

tie, if there are two or more nodes with the same maximum gain among the set of nodes

that are ready to be transferred.

2.1 The Improved Heuristic

We use the following definitions. The total cost (Overall Gain) of the two sets X

and Y, denoted by T = cost(X, Y), is defined as the sum of the weights of the edges

whose end-points belong to distinct partitions. Thus T= ∑ {w(e) where e is an edge

between some node in X and some node in Y}. The internal cost of a node u (denoted

I(u)) is defined as the sum of weights of all edges incident at u whose other end-point is

in the same set as u. Let I(x) denote the internal cost of x in X; thus, I(x) = ∑ w(x, x’) for

 5

other x’ in the set X. The internal cost I(y) for nodes y in the set Y is defined similarly.

The external cost of a node u (denoted E(u)) is defined as the sum of weights of all edges

incident at u whose other end-point is not in the same set as u. Let E(x) denote the

external cost of x in X; thus, E(x) = ∑ w(x, y) for other y not in the set X; with just two

sets X and Y, this means that y belongs to the set Y. The external cost E(y) for nodes y in

the set Y is defined similarly. We define D(u) for every node u as I(u)-E(u).

With just two sets X and Y, T = ∑ E(x) for x belonging to X; also T = ∑ E(y) for

y belonging to Y. Now we consider the effect of transferring a node p from its current

partition to the other partition. We say node a is adjacent to node b if there is an edge

(a,b) in the graph. There are two cases to consider, which we discuss in detail.

2.1.1 Node p Is Initially in X

 In this case, node p is being transferred from X to Y. As a result of this transfer,

the cost of the partitions changes; let the resulting cost of the partitions (X - {p},Y + {p})

be referred to as newT. As a result of the transfer, the internal cost of p becomes its

external cost, and the external cost of p becomes its internal cost. Thus newT T + I(p) -

E(p).= T + D(p); one can view D(p) as the gain due to transferring p referred to as

gain(p).

The internal cost I(x) for nodes in X that are adjacent to p are updated as follows:

I(x) = I(x)-w(x,p) for all nodes x in the set X such that there is an edge (x,p) in the graph.

The external cost E(x) for nodes in X that are adjacent to p are updated as follows: E(x) =

E(x)+w(x,p) for all nodes x in the set X such that there is an edge (x,p) in the graph. Thus

D(x) for all nodes for all nodes x in the set X that are adjacent to p are updated as

D(x)=D(x)-2w(x,p). We can define the effects on nodes y in the set Y analogously. The

 6

internal cost I(y) for nodes in Y that are adjacent to p are updated as follows: I(y) =

I(y)+w(y,p) for all nodes y in the set Y such that there is an edge (y,p) in the graph. The

external cost E(y) for nodes in Y that are adjacent to p are updated as follows: E(y) =

E(y)-w(y,p) for all nodes y in the set Y such that there is an edge (y,p) in the graph. Thus

D(y) for all nodes for all nodes y in the set Y that are adjacent to p are updated as

D(y)=D(y)+2w(y,p).

2.1.2 Node p Is Initially in Y

In this case, node p is being transferred from Y to X. The analysis in this case is

similar to the previous case. As a result of this transfer, the cost of the partitions changes;

let the resulting cost of the partitions (X + {p},Y- {p}) be referred to as newT. As a result

of the transfer, the internal cost of p becomes its external cost, and the external cost of p

becomes its internal cost. Thus newT T + I(p) - E(p).= T + D(p); one can view D(p) as

the gain due to transferring p referred to as gain(p). The internal cost I(y) for nodes in Y

that are adjacent to p are updated as follows: I(y) = I(y)-w(y,p) for all nodes y in the set Y

such that there is an edge (y,p) in the graph.

The external cost E(y) for nodes in Y that are adjacent to p are updated as follows:

E(y) = E(y)+w(y,p) for all nodes y in the set Y such that there is an edge (y,p) in the

graph. Thus D(y) for all nodes for all nodes y in the set Y that are adjacent to p are

updated as D(y)=D(y)-2w(y,p). We can define the effects on nodes x in the set X

analogously.

The internal cost I(x) for nodes in X that are adjacent to p are updated as follows:

I(x) = I(x)+w(x,p) for all nodes x in the set X such that there is an edge (x,p) in the graph.

The external cost E(x) for nodes in X that are adjacent to p are updated as follows: E(x) =

 7

E(x)-w(x,p) for all nodes x in the set X such that there is an edge (x,p) in the graph. Thus

D(x) for all nodes for all nodes x in the set X that are adjacent to p are updated as

D(x)=D(x)+2w(x,p).

 2.1.3 Variations

1. If transferring a node ‘p’ from one partition to the other partition, say for example

from X to Y, exceeds the size limit in the Y partition, then as per the heuristic in

[15] all the nodes in the X partition are marked, thereby making them ineligible

from being transferred to the Y partition. Thus the nodes in X partition are

marked, even though they are not transferred to Y, but for violating the size

constraint in Y. This masks the possibility of nodes in X, increasing the Overall

Gain, by being transferred to the partition Y, without violating the size constraint.

We have modified the heuristic to take care of this possibility, by marking a node

only when there is a transfer of that node from one partition to an another one.

2. From the heuristic in [15], it is clear that the repeat until loop will execute as long

as the maximum cumulative gain is positive. The loop will terminate when the

maximum cumulative gain becomes Zero or negative. But we know that the

maximum cumulative gain of Zero will not harm the Overall Gain. So we have

considered the possibility of Zero Gain as a special case, by continuing with the

transfers even if the maximum cumulative gain is Zero, till the nodes that are

being transferred in the current iteration are a subset of nodes that had already

been transferred with the maximum cumulative gain = 0.

These two variations have been implemented and tested and we obtained significant

improvement in the Overall Gain. The heuristic with these two variations is given next.

 8

2.1.4 Heuristic

1. Compute the Cost for the Initial partition X and Y
2. terminateList =NULL, terminate = # of nodes;
3. repeat
 {
4. Unmark and unticket all the nodes u in XUY
5. Compute the gain D(u) for all nodes u in XUY
6. while(# of unmarked and unticketed nodes != 0)
 {
7. Find an unmarked and unticketed node pi in X U Y maximizing the

gain.
8. If (transferring pi from current partition to the other partition

exceeds size constraint in the other partition)
{

9. set ticket = 1 for all nodes in the current partition.
}

10. else
{

11. ticket = 0 for all nodes in the other partition.
12. Mark the node pi.
13. Update D(u) for all the unmarked nodes u as though pi had been

transferred, and save gain(pi) and pi.
}

14. }endwhile;

15. Pick ‘k’ for which Max.Cumulative.Gain = ∑gain(pt) for t =1 to k is maximum
where 0<=k<=i;

16. If (Max. Cumulative.Gain == 0)

{
17. terminate = k;
18. for (t =1 to k)

{
19. if (pt Є terminateList)

{
20. terminate = terminate -1 ;

}
21. else

{
22. terminateList = terminateList + pt

 }
23. }

}
 Figure 2.1 Heuristic for Variable Partitioning (fig. cont’d.)

 9

24. if (terminate != 0 and Max.Cumulative.Gain >= 0)
{

25. Update set X with new nodes.
26. Update set Y with new nodes.
27. T = T + Max.Cumulative.Gain;
28. }

29. } until (Max.Cumulative.Gain <0 or terminate == 0)

If two nodes A, B have the same gain, then the following Tie Breaking function is used:

TieBreaking function (A,B)
 {
30. if(gain > 0)
31 {
32 if ((E(A) > E(B))
33 return A;
34 else return B.
 }
35 else
 {
36 if ((E(A) > E(B))
37 return B;
38 else return A.
39 }
40 }

2.1.5 Explanation

For the initial partition, the Initial Cost is determined by adding the weights of the

edges whose end-points are in different partitions. In line 5, the node gains D(u) are

determined using the expression I(u) - E(u) and the node with the maximum gain value

D(u) (say p) is chosen. If transferring the node p from current partition to other partition

leads to exceeding the size limit in the other partition, then all the nodes in the current

partition are set with a flag named “ticket” (lines 8-9). This disables those nodes from

being transferred.

On the other hand, if there is no size limit violation on transferring the node p

from current partition to the other partition, then the ticket flag is reset (ticket = 0) for all

 10

the nodes in other partition (line 11). This makes the nodes in the other partition eligible

for being transferred. Then the node p is set with the marker flag (marker =1) (line 12).

In line 13, D values for those unmarked nodes are updated using the formula as

though p has been transferred. Gain of the node p and the node p are saved in line 13.The

whole process of finding the node with maximum gain, checking for size violation,

setting the ticket flag, marking the node, updating the D value are repeated till there exist

some node which is unmarked and the ticket flag is not set (lines 6-14).

When there are no more unmarked and unticketed nodes, find the set of nodes

whose transfer gives the maximum gain (Max.Cumulative.Gain) (line 15). If the

maximum cumulative gain is positive then the sets X and Y are updated with those set of

nodes and the new Overall Gain (T) value is obtained.

If the maximum cumulative gain is equal to zero, it is checked if the nodes that

must be transferred to get the maximum cumulative gain are already in the terminateList.

If so then a variable “terminate” is decremented, or else that node is added to the

terminateList. If all the nodes to be transferred (i.e pt’s) are in the list then the “terminate”

variable will have value Zero (lines 16- 23) and the while loop (line 3) terminates. This

means that the nodes that are already transferred for no improvement in the gain are to be

transferred again, and the subsequent passes will require the same nodes to be transferred

again, which marks the end of the execution and the while loop terminates.

If the “terminate” variable value is not zero, then there are some new nodes that

are to be transferred ,which might possibly increase the Overall Gain (T) value and the

partition sets X and Y are updated with the new nodes and the T value is also updated

(lines 24 – 28).

 11

If two nodes have the same gain and if the gain is positive, then the node with

higher external Cost is transferred, or else the node with lower external cost is transferred

(lines 30–40).

2.2 Examples

2.2.1 Example Showing Improvement in the Overall Gain due to the
Variation.1

Consider the Interference Graph given below in Figure.2.2. Let the partition Size

be 3 and initial partition be partition_1 = {a,b,c} and partition_2 = {d,e}.

Figure 2. 2: Example Interference Graph to Show Improvement in the Overall Gain

due to the Variation.1

Initial Cost for this partition is 3, as per the definition described before. For every

node initial gain value D(u) is computed and is shown below.

Table 2. 1: Initial Gain Computation of all Nodes in Figure 2.2

Node
‘u’

Internal Cost
I(u)

External Cost
E(u) D(u)

a 1 1 0
b 1 1 0
c 0 1 -1
d 1 3 -2
e 1 0 1

 12

The node with the maximum gain is ‘e’. Now, transferring node ‘e’ to the other

partition exceeds size constraint and so all the nodes in Y partition are set with ticket flag

(line 9). The next node with the maximum gain value is ‘a’ and it is marked (line 12).

Assuming that node ‘a’ has been transferred the remaining node gains are updated as per

the definition.

Table 2. 2: Updated Gain Computation for Transferring Node ‘a’

NewD(b) D(b) – 2*w(b,a) = 0 - 2*1 = -2
NewD(c) D(c) - 2 *w(c,a) = -1 – 2*0 = -1
NewD(d) D(d) + 2*w(d,a) = -2 + 2*1 = 0
NewD(e) D(e) + 2 *w(e,a) =1 +2*0 = 1

Now the next node with maximum gain is ‘e’. Once again, the gains of the

remaining nodes are updated and the whole process is repeated till there is some

unmarked and unticketed node. When this loop terminates, the nodes whose transfers

yield the maximum cumulative gain is determined and those nodes are transferred, and

the Overall Gain (T) is updated. This process continues till the maximum cumulative gain

becomes negative or when the same set of nodes is transferred in subsequent passes for

no improvement in the Overall Gain.

The Overall Gain for this graph computed by this heuristic is 4 and the optimal

partition obtained is bce in one partition and ad in the other. But the Overall Gain that

 is obtained without these variations in the heuristic is only 3.

2.2.2 Example Showing Improvement in the Overall Gain due to the
Variation.2

Now let us consider an example in Figure.2.3 for which the Variation.2 produces

significant results. In Figure 2.3 the outputs of the operators numbered

7,8,9,10,11,12,13,14,15,16,17 are represented by the variables A,B,C,D,E,F,G,H,I,J,K.

 13

From this data dependency graph, a folded interference graph is constructed which is not

shown here due to space constraints. The heuristic was implemented on this interference

graph and it has been observed that the maximum cumulative gain value increases, even

after taking a value zero.

Figure 2. 3: Example Data Flow Graph to Show Improvement in the Overall Gain
due to the Variation.2

Table 2.3 shows the maximum cumulative gain value and the nodes that are to be

transferred in each of the iteration. It has been observed that at iteration.4 maximum

cumulative gain value is 2, even after being 0 at iteration.2, making the Overall Gain to

Table 2. 3: Max.Cumulative Gain value for each Iteration of the Heuristic on the
Interference Graph of Figure 2.3

Iteration Max. Cumulative Gain Nodes to be transferred

1 14 dyCJHu
2 0 IdbB
3 0 k
4 2 uKkHd
5 0 E

 14

be 59. If the execution had stopped at iteration 2 because the maximum cumulative gain

being 0, then we would have ignored this possibility of improvement in the gain and

Overall Gain would have been just 57. After the 4th iteration, there is no improvement in

the gain and the same set of nodes are transferred again and again and thereby the

execution terminates at the iteration.6.

2.3 Experimental Results

Consider the Interference graph below with 5 nodes with initial partitions partition_1 =

{a,b,c} and partition_2 = {d,e}. The heuristic was implemented on this graph and the

results are tabulated as given below.

Figure 2. 4: Example Interference Graph

Table 2. 4:Overall Gain and the Final Partition for Various values of S of Figure 2.4

S.No S Overall Gain Final partition

1 3 3 eab, dc

2 4 4 abec,d

3 5 4 abec,d

 15

The table above shows the Overall Gain and the Final partition for various S. It can be

observed that once the Maximum possible Overall Gain is achieved, any further increase

in the S value will not have any effect on the Overall Gain.

Consider the Interference graph below with 10 nodes with initial partitions

partition_1={B,C,A,b,x} and partition_2 ={k,d,y,u,D}.Let the weights of all the edges be

1. The heuristic was implemented on this graph and the results are tabulated (Table 2.5).

Figure 2.5: Example Interference Graph

Table 2. 5: Overall Gain and Final Partitions for Various values of S of Figure 2.5

S.No S Overall Gain Final partition

1 6 13 AxydD
kuBCb

2 7 13 AxydD
kuBCb

3 8 13 AxydD
kuBCb

The table above shows the Overall Gain and the Final partition for various S. It can be

observed that after achieving a maximum possible Overall Gain of 13, any increase in S

still maintains the same Overall Gain. Also the final partition remains the same in this

 16

case, this is because once the max. Overall Gain of 13 is achieved, there is not any further

improvement in the Overall Gain and thereby the partitions are not updated.

Consider the graph in Figure.2.3 with 17 nodes which shows the node numbers. It

is assumed that the outputs of the operators numbered 7,8,9,10,11,12,13,14,15,16 and 17

are stored in temporary variables A,B,C,D,E,F,G,H,I,J and K. From this graph a folded

Interference graph is constructed and the heuristic was implemented with initial partitions

being partition_1 = {A,B,C,D,E,F,G,H,I} and partition_2 = {b,x,k,d,y,u,J,K}, and the

results are tabulated below. Table 2.6 shows the Overall Gain and the Final partition for

various S. In this case, the maximum possible Overall Gain as shown in the table is 59.

Table 2. 6: Overall Gain and Final Partitions for Various values of S for the
Interference Graph of Figure 2.3

S.No. S Overall Gain Final partition

1 9 59 BuJGdHKb
CxADkIEFy

2 10 59 ACDIkxBu
bdJKHGyFE

3 11 59 ACDIkxBu
bdJKHGyFE

4 12 59 ACDIkxBu
bdJKHGyFE

 13 59 ACDIkxBu
bdJKHGyFE

Table 2. 7: Overall Gain and Final Partitions for Various Initial Partitions for the

Interference Graph of Figure 2.3

S.No. Initial partition Final partition Overall Gain
1 ABCDEFGHI

bxkdyuJK
ACDIkxBu
bdJKHGyFE

59

2 BCEFGHI
AbxkdyuJKD

FGyJbKHd
AxDCIBukE

59

3 BCHIkdyu
AbxJKDEFG

BCIkuDAxE
bJKFGyHd

59

4 JKDEFBCu
AbxGHIkdy

DBCuxIAkE
byFKHJGd

59

 17

For the same graph in Figure 2.3, the table below shows the Final partition and Overall

Gain value for various Initial partitions. It can be observed from the Table 2.7, that there

are several final partitions yielding the same Overall Gain value of 59 depending on the

choice of the Initial partition.

2.4 Complexity Analysis

Let N be the number of nodes. In the calculation of the initial cost for each of the

node in one partition, all the nodes in the other partition are considered, which requires

O(N2) time. Each pass requires the following computations:

At the beginning of each pass, unmarking and unticketing each of the node requires O(N)

time.

1.Each D(u) computation for nodes in one partition requires consideration of all the

nodes in the same partition (for computing the internal cost) and also all the nodes

in the other partition (for computing the external cost). This requires O(N2) time.

2.Computing the # of unmarked and unticketed nodes requires considering all the

nodes and hence requires O(N) time.

3.Finding the node with the maximum gain requires O(N) time.

4.If the size constraint is violated then ticketing the nodes requires O(N) time.

5.Updating the D values for the unmarked nodes requires consideration of all the

unmarked nodes, which requires O(N) time.

6.Finding the maximum cumulative gain requires O(N) time.

7.If the maximum cumulative gain becomes equal to zero, then the for-loop requires

consideration of all the nodes in the worst case and this requires O(N) time.

8.Updating the sets X and Y require O(N) time. Updating T value requires O(1) time.

 18

If the total pass is ‘P’ then the total time required is P*(O(N) + O(N) + O(1)) = O(PN).

In practice, ‘P’ is observed to be independent of N.

2 2

2.5 Chapter Summary

In this chapter, we presented several improvements to a heuristic for partitioning the

variables of a graph. Results on several graphs demonstrate the effectiveness of our

improvements.

 19

3. Horizontal Address Assignment

Horizontal address assignment is the problem of assigning the variables into groups

such that the number of memory accesses is reduced. The memory accesses are represented

by the variable access sequence (VAS). Two variables vi and vj are neighbors if there are

successive accesses in the VAS to these variables. Two variables vi and vj have an

unexploited neighbor relation if they are neighbors in the VAS but are not members of the

same group [14].

 The main concept of minimizing the number of unexploited neighbor relations to

minimize the number of memory accesses as explained in [14] is as follows: “Load the group

containing the required data and work on these data as long as possible without further

memory accesses. If another group should be loaded into the group register and the currently

loaded group is modified, it is necessary to store the current group back to memory.” Thus

the number of memory accesses can be minimized by minimizing the number of unexploited

neighbor relations. Now we will represent the horizontal address assignment problem as a

graph partitioning problem as explained below.

Definition: The Variable Access Graph VAG = (V,E) is an undirected graph with node set

V, where each node vi in V represent a variable (vi) in VAS and the edge set E contains set

of edges between the nodes vi and vj if the corresponding variables vi and vj of VAS are

neighbors. An edge which represents an unexploited neighbor relation is called an external

edge otherwise this edge is called internal edge. The weights wij on the edge represent the

number of the times the two variables vi and vj are neighbors.

 20

Definition: The cost of an undirected graph, denoted by Cost (G) is defined as the sum of

weights of edges whose end-points are not both in the same partition.

Now with this graph representation and definitions, the problem can be redefined as

partitioning the variables (nodes) of the VAG such that the Cost of the VAG is minimized.

To address this problem we have discussed an ILP formulation which maximizes the sum of

the weights of internal edge, and a heuristic approach which uses the heuristic for variable

partitioning into two memory banks, that has been discussed in the previous chapter.

3.1 ILP Formulation for Variable Partitioning into Multiple Groups

For a given VAG = (V, E), we use an integer-linear programming (ILP) approach to

solve this optimization problem. Let k represent the groups and the total number of groups

be P, i.e., 1<=k<=P. The ILP model comprises the following variables.

For every element vi of V:

Xik = 1 if variable vi is assigned to group k

 0 otherwise

For every pair of variables vi, vj and every group k:

Sijk = 1 if Xik = Xjk = 1

0 otherwise

Let wij be the weight of the edge (vi, vj). The variable Xik indicates if variable vi is assigned

to group k. The variable Sijk indicates whether the variables vi and vj are assigned to the same

group k. Using these variables the internal cost between the variables vi and vj if both are

assigned to group k is computed using the expression Sijk . wij. If Sijk = 1, then the internal

cost between the variables vi and vj if they are both assigned to group k will be wij. Thus the

 sum of Sijk . wij over all vi,vj and k needs to be maximized in order to maximize the internal

 21

cost of the graph. That is the objective function will be

Maximize ijk ij
k i j

S w∑∑∑

The requirement that Sijk = 1 if and only if Xik = Xjk = 1 is enforced by the following

constraints in conjunction:

• Sijk >= Xik + Xjk - 1

• Sijk <= Xik

• Sijk <= Xjk

The ILP formulation should also take care of the memory-width constraint, i.e., the

maximum size of each group. This is enforced by the following constraints:

For all groups k: ik
i

X S ≤ ∑ where S is the memory width of each group k.

Also each variable should be assigned to only one of the group. This is enforced the

following constraint:

ik
k

X = 1∑ for all the variables vi in V.

3.1.1 Illustration

For the variable access graph given below in Figure 3.1, the ILP formulation can be

illustrated as follows.

Figure 3. 1: Example Variable Access Graph to Illustrate the ILP Formulation

 22

Let the maximum memory width of each group (S) be 3 and the total number of groups (k)

be 3. Then the objective function considering all the variables and all the groups, will be

Maximize: Sac1+ Sad1+2*Sae1 + Sbc1 + Sbd1+ 2*Scf1 + Sac2+ Sad2+2*Sae2 + Sbc2 + Sbd2 + 2*Scf2+

Sac3+ Sad3+2*Sae3 + Sbc3 + Sbd3 + 2*Scf3;

The setting Sijk = 1, if and only if Xik = Xjk = 1 for all the variables of the graph, is enforced

by the following constraints.

For group k =1:

Sab1 ≥ Xa1 + Xb1 - 1; Sab1 ≤ Xa1; Sab1 ≤ Xb1;

Sac1 ≥ Xa1 + Xc1 - 1; Sac1 ≤ Xa1; Sac1 ≤ Xc1;

Sad1 ≥ Xa1 + Xd1 - 1; Sad1 ≤ Xa1; Sad1 ≤ Xd1;

Sae1 ≥ Xa1 + Xe1 - 1; Sae1 ≤ Xa1; Sae1 ≤ Xe1;

Saf1 ≥ Xa1 + Xf1 - 1; Saf1 ≤ Xa1; Saf1 ≤ Xf1;

Sbc1 ≥ Xb1 + Xc1 - 1; Sbc1 ≤ Xb1; Sbc1 ≤ Xc1;

Sbd1 ≥ Xb1 + Xd1 - 1; Sbd1 ≤ Xb1; Sbd1 ≤ Xd1;

Sbe1 ≥ Xb1 + Xe1 - 1; Sbe1 ≤ Xb1; Sbe1 ≤ Xe1;

Sbf1 ≥ Xb1 + Xf1 - 1; Sbf1 ≤ Xb1; Sbf1 ≤ Xf1;

Scd1 ≥ Xc1 + Xd1 -1; Scd1 ≤ Xc1; Scd1 ≤ Xd1;

Sce1 ≥ Xc1 + Xe1 - 1; Sce1 ≤ Xc1; Sce1 ≤ Xe1;

Scf1 ≥ Xc1+ Xf1 - 1; Scf1 ≤ Xc1; Scf1 ≤ Xf1;

Sde1 ≥ Xd1 + Xe1 -1; Sde1 ≤ Xd1; Sde1 ≤Xe1;

 23

Sdf1 ≥ Xd1 + Xf1- 1; Sdf1 ≤ Xd1; Sdf1 ≤Xf1;

Sef1 ≥ Xe1 + Xf1 -1; Sef1 ≤ Xe1; Sef1 ≤Xf1;

Similarly the constraints for other groups (k=2 and k=3) are written.

The memory-width constraint for k =1 is written as

1 1 1 1 1 1a b c d e fX X X X X X + + + + + ≤ 3

The constraints for the other groups are written in a similar fashion. The uniqueness

constraint for variable a is written as

1 2 3a a aX X X + + = 1

Again, the constraints for other variables are written. All these constraints are given as the

input the ILP Solver and the objective function value (the sum of weights of the internal

edges) was found to be 6. The partitioning of the variables as determined by the solver is

shown in Table 3.1 for total groups P = 3.

Table 3. 1: Final Partition obtained by the ILP Solver for the Graph in Figure 3.1

k Final Partition obtained by the ILP Solver

1 -

2 bcf

3 aed

3.1.2 Experimental Results

Consider the graph in Figure 3.1 with 6 nodes. ILP formulation was applied to this Graph

with the P = 2. Table 3.2 shows the Objective function value for various S values. It can

be observed that as the S value increases the Objective function value increases. Table

3.3 shows the ILP results on the same Graph in Figure 3.1, with P =3.

 24

Table 3. 2: Objective Function value for various S values for the Graph in Figure
3.1 with P = 2

No. S Objective function value

1 3 6

2 4 6

3 5 6

4 6 8

The following table shows the ILP results on the same Graph in Figure 3.1, with P =3.

Table 3. 3: Objective function value for various S value for the Graph in Figure 3.1
with P = 3

No. S Objective function value

1 2 5

2 3 6

3 4 6

4 5 6

5 6 8

Consider the graph in Figure 3.2 with 10 nodes. Let the weights of all the edges be 1 and

let P =2. ILP formulation was applied for this graph and the results are tabulated below.

Table 3.4 shows the Objective function value for various S values. It can be observed that

as the S value increases the Objective function value increases. Table 3.5 shows the

increase in the Objective function value with increase in S value for the same Graph in

Figure 3.2, with P = 3.

 25

Figure 3. 2: Example Variable Access Graph on which the ILP Formulation was
Implemented.

Table 3. 4: ILP Results for the Graph in Figure 3.2 with P = 2

S.No S Objective function value

1 6 13

2 7 15

3 8 18

Table 3. 5 ILP Results for the Graph in Figure 3.2 with P = 3

S.No S Objective function value

1 5 10

2 6 13

3 7 15

3.2 Heuristic for Variable Partitioning into Multiple Groups

This section discusses an heuristic for partitioning the variables of the VAG such that the

Cost (VAG) is minimized. Let P be the total number of partitions or groups. Let S be the

memory width of each group. If S < | V | / P, then it would be impossible to accommodate all

 26

the | V | variables in P partitions. Therefore the value of S given as input should be greater

than . V P⎡ | | / ⎤

ALGORITHM MULTIPLE BANK(VAG(V, E, w), Initial partitions)

1. new VAG (V,E,w) = VAG(V,E,-w) ; Count = 1;
2. while (count !=0)
 {
3. Count = 0;
4. for (a=1 to P)
 {
5. for (b=a+1 to P)

 {
 6. Construct RVAG (partition_a, partition_b): new VAG with only the

edges whose both the end-points are in partition_a or partition_b;
7. Heuristic2Bank(partition_a, partition_b, RVAG);

 8. if (T > initialCost (partition_a, partition_b)
 {
 9. Count = Count + 1;
 10. Update the partitions;
 11. }
 12. }
 13. }
 14.}

3.2.1 Explanation

The inputs to this heuristic are Variable Access Graph (VAG), and the initial partitions

(partition_a and partition_b). This heuristic addresses the problem of finding an efficient

partitioning of the variables such that the Cost (VAG) is minimized. We know that the

heuristic discussed in the previous chapter, addresses the problem of partitioning the

variables of graph G between 2 Banks, such that the Cost (G) is maximized. So using the

heuristic for 2 Banks, for solving this problem requires making all the edge weights

negative which constitutes the new Variable Access Graph (new VAG) (line 1). Also since

the heuristic for 2 Banks, works on two partitions, for this multiple partitioning problem we

 27

consider two partitions at a time and the best partitioning of the variables between the two

partitions is obtained.

For all pairs of partition the following operations are performed. In line 6, a

Restricted Variable Access Graph (RVAG) is constructed by including only those edges

whose end-point variables are in any of the two partitions under consideration. In line 7, the

two partitions and the RVAG are given as input to the heuristic for two banks. The output of

this heuristic will be a partitioning of those variables between the two partitions under

consideration, such that the cost of the RVAG (Cost (RVAG)), denoted by T is maximized.

If T value is greater than the initial Cost of those two partitions, then the new partitions are

better than the initial ones, because since all the edge weights are negative the initial Cost

will be negative, and T > initial Cost implies that the Cost (VAG) is minimized, which is

what is desired. Now the two partitions, i.e., partition_a and partition_b are updated with the

variables in the new partitions. All the steps starting from applying the heuristic for two

banks for all the partitions, checking for any improvement and updating the partitions

constitutes a iteration (line 4 to line 13). This is repeated until in any iteration none of the

partition shows any improvement (line.2 to line.14). Thus the final output will be a partition

such that Cost (new VAG) is maximized, and thereby the Cost (VAG) is minimized.

3.2.2 Illustration

Let us illustrate this heuristic with a VAG of Figure 3.1. The new VAG with negative

edge weights is shown in Figure 3.3. Let P be 3 and the initial partitions partition_1 = ab,

partition_2 = ed and partition_3 =cf and the maximum size of each partition S be 4. Table

3.6 shows the two partitions partition_a, partition_b , their initial Cost, final Cost T and

the updated partitions for each pair of partitions for each of the iteration.

 28

Figure 3. 3: Input Graph for the VAG in Figure 3.1

Table 3. 6 Illustration of the Heuristic with the example Graph in Figure 3.3

Updated partitions Itn. a b partition_a partition_b initial

Cost
T

Partition_1 Partition_2 Partition_3

1 2 ab ed -4 0 bdae - cf

1 3 bdae cf -2 -2 ae - cfbd

1 2 3 - cfbd 0 0 ae dbcf -

1 2 ae dbcf -2 -2 aed bcf -

1 3 aed - 0 0 - bcf aed

2

2 3 bcf aed -2 -2 - cf daeb

From the table it is clear that in the second iteration there is no more improvement in

the cost by any of the 3 partition and therefore the program terminates. The final partition as

shown in the table is cf, daeb and the Cost of the VAG for this partition is found to be 2.

3.2.3 Experimental Results

Consider the graph in Figure.3.3 (6 nodes). Let the initial partitions be partition_1

= ab, partition_2 = ed and partition_3 =cf. The heuristic was implemented on this graph

 29

and the results are tabulated below. Table 3.7 shows the Final partition and the Cost for

various S values. It can be observed that as the S increases the Cost decreases. This is

because the heuristic assigns the variables to the same partition as much as possible, and

thereby the Cost decreases as the size S increases.

Table 3. 7: Heuristic Results for the Graph in Figure 3.2 with P = 3

Final partitions S

Partition_1 Partition_2 Partition_3

Cost

3 b dae cf 3

4 - cf daeb 2

5 - f eadbc 2

6 - - abcdef 0

Now let P = 4. Let the initial partitions be partition_1 = ae, partition_2 = c, partition_3 =

f, partition_4 = bd. Table 3.8 shows the variation of the Cost with S value with P = 4.

Table 3. 8 Heuristic Results for the Graph in Figure 3.3 with P = 4

Final Partition S

Partition_1 Partition_2 Partition_3 Partition_4

Cost

3 aec - f bd 4

4 - - ae cfbd 2

5 - e fcbda - 2

6 - - abcdef - 0

Consider the graph in Figure.3.2 (10 nodes). From this Graph, a graph with negative edge

weights is constructed and is given as Input to the heuristic.The table 3.9 below shows

 30

the results of the Heuristic on this Graph with the initial partitions being partition_1 =

BCAbx and partition_2 = kdyuD.

Table 3. 9 Heuristic Results for the Input Graph of the VAG in Figure 3.2 with P = 2

Final partitions S

Partition_1 Partition_2

Cost

5 BCAbx kdyuD 9

6 byBAxu dDCk 5

7 dAubxBy kDC 3

8 ABbxyudk DC 0

Table 3.10 shows the final partition and Cost for various S value, for the input graph of

Figure 3.2 with the initial partitions being partition_1 = B, partition_2 = CA, partition_3

= bxk, partition_4 = dyuD.

Table 3. 10 Heuristic Results for the Input Graph of the VAG in Figure 3.2 with P=4

Final Partitions S

Partition_1 Partition_2 Partition_3 Partition_4

Cost

4 ABbx C duyk D 9

5 C BAx dkbyu D 8

6 ABbyux C dk D 5

7 dxubABy k C D 3

3.3 Result Comparison ILP Vs Heuristic

Consider the Input Graph of Figure 3.2. The table shows the Cost obtained by the ILP

Formulation and the heuristic, for various S value with the initial partitions being BCAbx

and kdyuD. It can be observed that the heuristic results are same as that obtained by the

 31

ILP, except for S = 5. This is because, we have exactly 5 variables in each of the two

partitions and also the S = 5, so any transfer from any partition will violate the size

constraint and thereby the Cost remains the Initial Cost of 9.

Table 3. 11 Result Comparison for the Input Graph of Figure 3.2

S.No S ILP Cost Heuristic Cost Final Partition obtained by the Heuristic
1 5 8 9 BCAbx

kdyuD
2 6 5 5 byBAxu

dDCk
3 7 3 3 dAubxBy

kDC
4 8 0 0 ABbxyudk

DC

3.4 Chapter Summary

This chapter presented an integer linear programming formulation for the horizontal address

assignment problem for digital signal processors with SIMD memory accesses. In addition,

we have developed a heuristic for the same problem. Experimental results on several graphs

demonstrate that the heuristic is very effective.

 32

4. Conclusion

Exploiting the memory features in modern DSP architectures remains a

significant challenge for optimizing compilers. This thesis presents and evaluates

solutions for two important problems in generating efficient code for DSP architectures

with multiple memory banks and SIMD DSP architectures.

In Chapter 2, a heuristic was proposed for addressing the problem of variable

partitioning between two memory banks such that there is maximum parallel access

between the variables, thereby reducing the execution time and the code size. This

heuristic incorporates the assumption that at any point of time during the execution, the

size of the two banks need not be constant and uses the concept of transferring the node

rather than swapping the nodes. This heuristic was an improvement to the heuristic

proposed in [15], in terms of the possibilities that have been considered. We have

considered two additional possibilities to the latest heuristic proposed in [15], which has

shown to produce significant results. We have also demonstrated with an example how

the gain improvement is achieved by considering those two possibilities. We have also

observed that the same gain can be achieved by a number of final partitions, depending

on the choice of the initial partition.

In Chapter 3, we have discussed the variable partitioning problem for DSPs with

SIMD architecture to minimize the number of memory accesses. We have discussed how

to map this problem to the variable partitioning problem discussed in the previous

chapter. To address this problem, we have developed an Integer Linear Programming

(ILP) model as well as a heuristic approach. We have demonstrated with an example how

 33

the ILP formulation is used for addressing this problem and have tested this formulation

for several graphs. We have observed that as the maximum size of the partition increases,

the objective function value of this formulation also increases. In the next section of

Chapter 3, we have presented a heuristic for addressing this problem. This heuristic

builds on the heuristic developed in Chapter 2. We have demonstrated in detail one

iteration of this heuristic for a sample graph and have tabulated the results of execution

on a couple of graphs. At the end we have compared the results of the ILP formulation

with that obtained by the heuristic and have shown that the heuristic results are

promising.

4.1 Future Work

In Chapter 2 we have discussed how to partition the variables between two memory

banks such that there is maximum parallel access between the variables. We have not

considered the execution time of the operations for this problem. So, one possible future

work will be to extend the heuristic for two banks, discussed in Chapter 2, to partition the

variables with the execution times of the operations under consideration. A second

problem that needs to be addressed is effective code generation dealing with control-flow

(i.e., branches) through the use of profiling techniques; note that our work assumes

straight-line code. Another possible avenue of research is the exploration of the use of

static single assignment (SSA) which allows one to breakdown the live ranges of

variables so that a variable could be in different banks during different sections of its live

range. In addition, there is scope for exploring the design space of multiple memory

banks by getting the compiler in the loop.

 34

References

[1] Analog Devices, Inc., ADSP-2100 Family User’s Manual, 1993.

[2] S. Atri. Improved Code Optimization Techniques for Embedded Processors. M.S.

Thesis, Department of Electrical and Computer Engineering, Louisiana State
University, December 1999.

[3] S. Atri, J. Ramanujam, and M. Kandemir. Improving variable placement for

embedded processors. In Languages and Compilers for Parallel Computing, (S.
Midkiff et al. Eds.), Lecture Notes in Computer Science, vol. 2017, pp. 158-172,
Springer-Verlag, 2001.

[4] C. Fiduccia and R. Mattheyses. A Linear-Time Heuristic for Improving Network

Partitions. In Proceedings of the Design Automation Conference, 1982.

[5] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman, 1979.

[6] GEPARD Familiy of Embedded Software Programmable DSP Cores, Austria

Mikro Systeme International (AMS), Graz, Austria, 2000.

[7] A. Gierlinger, R. Forsyth and E. Ofner. Gepard – A Parameterisable DSP Core for

ASICs. In Proc. Int. Conf. on Signal Processing Applications and Technology
(ICSPAT), 1997.

[8] J. Hong. Memory Optimization Techniques for Embedded Systems, PhD Thesis,

Dept. of Electrical and Computer Engineering, Louisiana State University, July
2002.

[9] B. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning

Graphs. Bell System Technical Journal, 49:291-307, Feb. 1970.

[10] R. Leupers. Offset Assignment Showdown: Evaluation of DSP Address Code

Optimization Algorithms. In Proc. Compiler Construction: 12th International
Conference (CC 2003), pp. 290-302.

[11] R. Leupers and P. Marwedel. Algorithms for Address Assignment in DSP Code

Generation. In Proc. International Conference on Computer-Aided Design
(ICCAD), 1996.

[12] R. Leupers and D. Kotte. Variable Partitioning for Dual Memory Bank DSPs. In

Proc. IEEE International Conference on Acoustics Speech and Signal Processing,
pp. 1121-1124, 2001.

 35

[13] S. Liao. Code Generation and Optimization for Embedded Digital Signal
Processors. PhD thesis, MIT Department of EECS, January 1996.

[14] M. Lorenz, D. Kottmann, S. Bashford, R. Leupers, and P.Marwedel. Optimized

Address Assignment for DSPs with SIMD Memory Accesses. In Proc.
Proceedings of the 2001 Conference on Asia South Pacific Design Automation,
pp. 415-420, Yokohama, Japan, 2001.

[15] S. Mahapatra. Heuristics for Offset Assignment in Embedded Processors. M.S.

Thesis, Louisiana State University, 2005.

[16] Motorola, Inc. DSP56000 Digital Signal Processor Family Manual, 1992.

[17] D. Powell, E. Lee, and W. Newman. Direct Synthesis of Optimized DSP

Assembly Code from Signal Flow Block Diagrams. In Proc. ICASSP, 1992.

[18] M. Saghir, P. Chow, and C. Lee. Exploiting Dual Data-Memory Banks in Digital

Signal Processors. In Proc. 7th International Conference on Architectural Support
for Programming Languages and Operating Systems, 1996.

[19] A. Sudarsanam and S. Malik. Simultaneous Reference Allocation in Code

Generation for Dual Data Memory Bank ASIPs. ACM Trans. Design Automation
of Electronic Systems, 5(2):242-264, April 2000.

[20] Texas Instruments, Inc. TMS320C2x User’s Guide, 1993.

[21] K. Yelick. Lecture Handout on Graph Partitioning, Part II, CS 267: Applications

of Parallel Computers, University of California, Berkeley, CA. Fall 2001.
http://www.cs.berkeley.edu/~yelick/cs267f01/lectures/Lect18-Partition1.ppt.

[22] V. Zivojnovic, J. Velarde, C. Schlager, and H. Meyr. DSPStone – A DSP-oriented

Benchmarking Methodology. In Proc. Int. Conf. on Signal Processing
Applications and Technology (ICSPAT), 1994.

 36

http://www.cs.berkeley.edu/~yelick/cs267f01/lectures/Lect18-Partition1.ppt

Vita

Saravanan Subramanian was born in India in 1981. He did his schooling at Alpha

Matriculation Higher School, Chennai, and then his Bachelor of Engineering degree at

the University of Madras, Chennai. After working at AdventNet Development Centre,

Chennai, as a Software Engineer he came to Louisiana State University to pursue his

master’s degree. During his enrollment in the graduate school, he served as a graduate

assistant at the Louisiana State University’s College of Basic Sciences. He will graduate

with the degree of Master of Science in Electrical Engineering in December 2005.

 37

	Heuristics for memory access optimization in embedded processors
	Recommended Citation

	tmp.1483774927.pdf.FVvqe

