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Abstract 
 
 

Digital signal processors (DSPs) such as the Motorola 56k are equipped with two 

memory banks that are accessible in parallel in order to offer high memory bandwidth, 

which is required for high-performance applications.  In order to make efficient use of the 

memory bandwidth offered by two or more memory banks, compilers for such DSPs 

should be capable of appropriately partitioning the program variables between the two 

memory banks and scheduling accesses.  If two variables can be accessed simultaneously, 

then it is essential to have these two variables assigned to two different memory banks. 

Also if these two variables are in different banks, then instead of using two separate 

instructions for accessing the variables, both the accesses can be encoded into a single 

instruction, thereby reducing the code size as well. An efficient heuristic for maximizing 

the parallel accesses in DSPs with dual memory banks is proposed and evaluated. The 

heuristic is shown to be very effective on several examples. 

Architectures like the M3 DSP have a group memory for the single-instruction 

multiple-data (SIMD) architecture, for which addressing an element of the group means 

to access all the elements of that group in parallel, so there is no need for separately  

addressing each element of the group. Given a variable access sequence for a particular 

code, instead of separately accessing each one of the variables, if the variables are 

grouped then the number of memory accesses can be reduced as per SIMD paradigm. An 

efficient way of forming groups can significantly reduce the memory accesses. Two 

solutions for this problem are presented in this thesis. First, a novel integer linear 

programming formulation for forming the groups, thereby reducing the number of 

memory accesses in DSPs with SIMD architecture is presented. Second, a heuristic based 

 vi



on the solution for optimizing multiple memory bank accesses is presented and evaluated 

for this problem. Results on several graphs show the effectiveness of the heuristic. 
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1. Introduction 
 

Digital signal processors (DSPs) such as the Motorola 56k and the Analog 

Devices ADSP- 210x series are equipped with two memory banks (frequently referred to 

banks X and Y) that are accessible in parallel in order to offer high memory bandwidth, 

which is required for high-performance applications. In order to make efficient use of the 

memory bandwidth offered by two or more memory banks, compilers for such DSPs 

should be capable of appropriately partitioning the program variables between the two 

memory banks and scheduling accesses. For instance, consider the line of code                        

a = b + c; 

From this line of code it is clear that variables b and c can be accessed in parallel. 

If these two variables are assigned to the same memory bank, then the variables b and c 

must be accessed one after the other (i.e., sequentially), thereby masking the parallelism 

that exists. Therefore to exploit the parallelism that exists between these two variables, it 

is essential to have these two variables assigned to two different memory banks. Also if 

these two variables are in different banks, then instead of using two separate instructions 

for accessing variables b and c, both the accesses can be encoded into a single instruction, 

thereby reducing the code size as well.  

Dual memory bank DSPs are poorly exploited by compilers due to lack of 

suitable variable partitioning techniques. So, one objective of this research work is to 

develop a suitable variable-partitioning technique for dual memory bank DSPs.  

DSPs such as M3-DSP are Single-Instruction Multiple-Data (SIMD) 

architectures. The SIMD paradigm refers to the concept of performing the same type of 
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computation (instructions) simultaneously on different data. In the case of the M3-DSP, 

there are 16 data path slices. In order to provide an effective use of all the data path slices 

in parallel, the memory is organized as a group memory. Here addressing one 16-bit data 

word means addressing an entire group of 16 such words. 

The M3-DSP is organized as a very long instruction word (VLIW) architecture. 

Here, two successive VLIWs can be reused and do not need to be stored as instructions in 

memory. In order to provide an effective use of this method in loops the M3-DSP also 

contains an instruction cache for up to four VLIW instructions. In order to achieve high 

performance and code quality, it is essential that code generation makes use of these 

special architectural features such as SIMD and VLIW. Lorenz et al. [14] discuss one 

such technique that makes use of both these architectural features. The technique is 

subdivided into two phases. In the first phase, referred to as horizontal address 

assignment, the variables are partitioned  into groups such that the same group is used as 

much as possible before using an another group, thereby making use of M3-DSPs SIMD 

group memory architecture. This reduces the number of memory accesses, and thereby 

the code size is reduced and the performance is improved. This research work includes a 

heuristic and an ILP formulation for addressing this optimization problem. 

In the second phase the address generation instructions for addressing all the 

groups are optimized for a given memory layout. A heuristic proposed in [14] is based on 

the concept of maximizing the reuse of address generation instructions which reside in a 

VLIW of the instruction cache, thereby making use of the M3-DSPs VLIW instruction 

cache architecture. This optimizes the address generation instructions for a given memory  

layout.                                                                      

 2



1.1 Objectives and Thesis Overview  

It has been mentioned in [12] that an efficient partitioning of the variables used in 

a processor application into two memory banks, results in an increased memory 

bandwidth utilization and high code quality. However the heuristic proposed in [9] to 

address this problem, incorporated a rigid assumption that there is an even distribution of 

variables in the two memory banks, which masks the possibility of computing a more 

optimal solution if a certain degree of imbalance was tolerated. This possibility has been 

investigated in [15]. However the heuristic proposed in [15], masks some other 

possibilities, which could further benefit to the optimal solution. So, one of the objectives 

of this research work is to investigate those possibilities, thereby computing an even more 

optimal solution. It has been discussed in Chapter 2. 

It has been discussed in [14] that horizontal address assignment problem is a 

graph partitioning problem involving multiple banks rather than just two banks as in the 

previous case and finding an efficient partitioning of the variables into multiple banks 

will reduce the number of memory accesses. So the other research objective is to exploit 

the benefit and more optimal solution that could be achieved by using the heuristic 

discussed in previous Chapter 2, for solving this multiple bank partition problem. A 

heuristic and an ILP formulation which addresses this problem has been discussed in 

Chapter 3, Sections 3.1 and 3.2 respectively. Chapter 4 presents a summary of the results 

and points to further possible research. 
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2. Variable Partitioning Problem 
 

Effective partitioning of the variables of a program is essential to the effective use 

of high memory bandwidths available in digital signal processors (DSPs) with multiple 

memory banks. It is well known that the problem of finding an optimal partition of a set 

of nodes of a weighted graph into two sets X and Y such that the sum of the edges 

between the sets X and Y is minimum (referred to as the graph bisection or the mincut 

problem) is NP-complete [4,21]. The same is true for the problem of maximizing the sum 

of the edges between X and Y.  

A heuristic for this problem that uses swapping of nodes has been proposed by 

Kernighan and Lin [9]. The Kernighan-Lin heuristic assumes that at any given point of 

time during the execution of the heuristic, the number of nodes in the sets X and Y differ 

by at most one; this assumption may prevent the possibility of computing a solution 

perhaps closer to the optimal solution. Allowing a certain degree of imbalance between 

the sets X and Y could lead to better solutions [4]. However, if the case in which any 

amount of imbalance between sets X and Y is tolerable were to be valid, then the 

possibility of a scenario wherein all nodes migrate to a particular set cannot be ruled out, 

and safeguarding against that scenario needs some thought and consideration. A heuristic 

that attempts to solve this problem by incorporating the concept of transferring nodes 

from set X to set Y and vice-versa, rather than swapping nodes on the basis of a one-to-

one mapping between the two sets, has been discussed in [15]. This chapter considers and 

presents several improvements to the heuristic in [15]. The reader is referred to [15] for 

details of that heuristic.  
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First, the heuristic in [15] does not consider the following possibility: 

Transfer of some of the nodes that are marked without making any transfers, but 

for violating the size constraint, could still add to the gain of the graph. 

We have modified the heuristic in [15 ] to take care of this issue, by marking a node only 

when there is a transfer of that node from one partition to an another one.  

Secondly, the we have observed the following case: 

Some node transfers could possibly still benefit to the overall gain, even though 

      the maximum cumulative gain has become zero. 

We have taken care of this, by continuing with the transfers, even though the maximum 

cumulative gain becomes 0, till the nodes that are being transferred in the current 

iteration are a subset of nodes that had already been transferred with the maximum 

cumulative gain being 0. 

Thirdly, [15] does not use a tie-breaking function in the case of multiple nodes 

that are candidates at any point. We have introduced a tie-breaking function, to break a 

tie, if there are two or more nodes with the same maximum gain among the set of nodes 

that are ready to be transferred.                                                                                            

2.1 The Improved Heuristic 

We use the following definitions. The total cost (Overall Gain) of the two sets X 

and Y, denoted by T = cost(X, Y), is defined as the sum of the weights of the edges 

whose end-points belong to distinct partitions. Thus T= ∑ {w(e) where e is an edge 

between some node in X and some node in Y}. The internal cost of a node u (denoted 

I(u)) is defined as the sum of weights of all edges incident at u whose other end-point is 

in the same set as u. Let I(x) denote the internal cost of x in X; thus, I(x) = ∑ w(x, x’) for 
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other x’ in the set X. The internal cost I(y) for nodes y in the set Y is defined similarly. 

The external cost of a node u (denoted E(u)) is defined as the sum of weights of all edges 

incident at u whose other end-point is not in the same set as u. Let E(x) denote the 

external cost of x in X; thus, E(x) = ∑ w(x, y) for other y not in the set X; with just two 

sets X and Y, this means that y belongs to the set Y. The external cost E(y) for nodes y in 

the set Y is defined similarly. We define D(u) for every node u as I(u)-E(u).  

With just two sets X and Y, T = ∑ E(x) for x belonging to X; also T = ∑ E(y) for 

y belonging to Y. Now we consider the effect of transferring a node p from its current 

partition to the other partition. We say node a is adjacent to node b if there is an edge 

(a,b) in the graph. There are two cases to consider, which we discuss in detail.                    

2.1.1 Node p Is Initially in X 

 In this case, node p is being transferred from X to Y. As a result of this transfer, 

the cost of the partitions changes; let the resulting cost of the partitions (X - {p},Y + {p}) 

be referred to as newT. As a result of the transfer, the internal cost of p becomes its 

external cost, and the external cost of p becomes its internal cost. Thus newT T + I(p) - 

E(p).= T + D(p); one can view D(p) as the gain due to transferring p referred to as 

gain(p).  

The internal cost I(x) for nodes in X that are adjacent to p are updated as follows: 

I(x) = I(x)-w(x,p) for all nodes x in the set X such that there is an edge (x,p) in the graph. 

The external cost E(x) for nodes in X that are adjacent to p are updated as follows: E(x) = 

E(x)+w(x,p) for all nodes x in the set X such that there is an edge (x,p) in the graph. Thus 

D(x) for all nodes for all nodes x in the set X that are adjacent to p are updated as 

D(x)=D(x)-2w(x,p). We can define the effects on nodes y in the set Y analogously. The 
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internal cost I(y) for nodes in Y that are adjacent to p are updated as follows: I(y) = 

I(y)+w(y,p) for all nodes y in the set Y such that there is an edge (y,p) in the graph. The 

external cost E(y) for nodes in Y that are adjacent to p are updated as follows: E(y) = 

E(y)-w(y,p) for all nodes y in the set Y such that there is an edge (y,p) in the graph. Thus 

D(y) for all nodes for all nodes y in the set Y that are adjacent to p are updated as 

D(y)=D(y)+2w(y,p).                                                                                                        

2.1.2 Node p Is Initially in Y 

In this case, node p is being transferred from Y to X. The analysis in this case is 

similar to the previous case. As a result of this transfer, the cost of the partitions changes; 

let the resulting cost of the partitions (X + {p},Y- {p}) be referred to as newT. As a result 

of the transfer, the internal cost of p becomes its external cost, and the external cost of p 

becomes its internal cost. Thus newT T + I(p) - E(p).= T + D(p); one can view D(p) as 

the gain due to transferring p referred to as gain(p). The internal cost I(y) for nodes in Y 

that are adjacent to p are updated as follows: I(y) = I(y)-w(y,p) for all nodes y in the set Y 

such that there is an edge (y,p) in the graph.  

The external cost E(y) for nodes in Y that are adjacent to p are updated as follows: 

E(y) = E(y)+w(y,p) for all nodes y in the set Y such that there is an edge (y,p) in the 

graph. Thus D(y) for all nodes for all nodes y in the set Y that are adjacent to p are 

updated as D(y)=D(y)-2w(y,p). We can define the effects on nodes x in the set X 

analogously.  

The internal cost I(x) for nodes in X that are adjacent to p are updated as follows: 

I(x) = I(x)+w(x,p) for all nodes x in the set X such that there is an edge (x,p) in the graph. 

The external cost E(x) for nodes in X that are adjacent to p are updated as follows: E(x) = 
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E(x)-w(x,p) for all nodes x in the set X such that there is an edge (x,p) in the graph. Thus 

D(x) for all nodes for all nodes x in the set X that are adjacent to p are updated as 

D(x)=D(x)+2w(x,p).                                

 2.1.3 Variations 

1. If transferring a node ‘p’ from one partition to the other partition, say for example 

from X to Y, exceeds the size limit in the Y partition, then as per the heuristic in 

[15] all the nodes in the X partition are marked, thereby making them ineligible 

from being transferred to the Y partition. Thus the nodes in X partition are 

marked, even though they are not transferred to Y, but for violating the size 

constraint in Y. This masks the possibility of nodes in X, increasing the Overall 

Gain, by being transferred to the partition Y, without violating the size constraint. 

We have modified the heuristic to take care of this possibility, by marking a node 

only when there is a transfer of that node from one partition to an another one.  

2. From the heuristic in [15], it is clear that the repeat until loop will execute as long 

as the maximum cumulative gain is positive. The loop will terminate when the 

maximum cumulative gain becomes Zero or negative. But we know that the 

maximum cumulative gain of Zero will not harm the Overall Gain. So we have 

considered the possibility of Zero Gain as a special case,  by continuing with the 

transfers even if the maximum cumulative gain is Zero, till the nodes that  are 

being transferred in the current iteration are a subset  of nodes that had already 

been transferred with the maximum cumulative gain = 0. 

These two variations have been implemented and tested and we obtained significant 

improvement in the Overall Gain. The heuristic with these two variations is given next.             
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2.1.4 Heuristic                                                                                                            

1.  Compute the Cost for the Initial partition X and Y                                                                                        
2.  terminateList =NULL, terminate = # of nodes; 
3.  repeat 
     { 
4. Unmark and unticket all the nodes u in XUY 
5.         Compute the gain D(u) for all nodes u in XUY  
6. while( # of unmarked and unticketed nodes != 0) 
 { 
7.  Find an unmarked and unticketed node pi in X U Y maximizing the 

gain. 
8.  If (transferring pi from current partition to the other partition  

exceeds size constraint  in the other partition) 
{ 

9.   set ticket = 1 for all nodes in the current partition.  
}   

10.  else 
{  

11.   ticket = 0 for all nodes in the other partition. 
12.   Mark the node pi. 
13.                     Update D(u) for all the unmarked nodes u as though pi had been 

transferred, and save gain(pi) and pi.  
} 

14. }endwhile; 
 

15. Pick ‘k’ for which Max.Cumulative.Gain = ∑gain(pt) for t =1 to k is maximum       
where 0<=k<=i; 

 
16. If (Max. Cumulative.Gain == 0) 

{ 
17.    terminate = k; 
18.                   for  ( t =1 to k ) 

{ 
19.   if (pt     Є  terminateList  ) 

{ 
20.       terminate = terminate -1 ; 

} 
21.   else 

{ 
22.         terminateList = terminateList +  pt

            } 
23.  } 

}                                                                                                     
                            Figure 2.1 Heuristic for Variable Partitioning               (fig. cont’d.) 
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24. if (terminate != 0 and  Max.Cumulative.Gain >= 0) 
{ 

25.              Update set X with new nodes. 
26.              Update set Y with new nodes. 
27.              T = T + Max.Cumulative.Gain; 
28.                 } 

 
29. } until (Max.Cumulative.Gain <0 or terminate == 0) 
 
If two nodes A, B have the same gain, then the following Tie Breaking function is used: 
 

TieBreaking function (A,B) 
       { 
30.  if( gain > 0 ) 
31   { 
32      if ((E(A) > E(B)) 
33      return A; 
34      else return B.  
       } 
35  else 
      {  
36      if ((E(A) > E(B)) 
37      return B; 
38      else return A. 
39   } 
40 } 

2.1.5 Explanation 
 

For the initial partition, the Initial Cost is determined by adding the weights of the 

edges whose end-points are in different partitions. In line 5, the node gains D(u) are 

determined using the expression I(u) - E(u)  and the node with the maximum gain value 

D(u) (say p) is chosen. If transferring the node p from current partition to other partition 

leads to exceeding the size limit in the other partition, then all the nodes in the current 

partition are set with a flag named “ticket” (lines 8-9). This disables those nodes from 

being transferred. 

On the other hand, if there is no size limit violation on transferring the node p 

from current partition to the other partition, then  the ticket flag is reset (ticket = 0) for  all 
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the nodes in other partition (line 11). This makes the nodes in the other partition eligible 

for   being transferred. Then the node p is set with the marker flag (marker =1) (line 12). 

In line 13, D values for those unmarked nodes are updated using the formula as 

though p has been transferred. Gain of the node p and the node p are saved in line 13.The 

whole process of finding the node with maximum gain, checking for size violation, 

setting the ticket flag, marking the node, updating the D value  are repeated till there exist 

some node which is unmarked and the ticket flag is not set (lines 6-14). 

When there are no more unmarked and unticketed nodes, find the set of nodes 

whose transfer gives the maximum gain (Max.Cumulative.Gain) (line 15). If the 

maximum cumulative gain is positive then the sets X and Y are updated with those set of 

nodes and the new Overall Gain (T) value is obtained. 

If the maximum cumulative gain is equal to zero, it is checked if the nodes that 

must be transferred to get the maximum cumulative gain are already in the terminateList. 

If so then a variable “terminate” is decremented, or else that node is added to the 

terminateList. If all the nodes to be transferred (i.e pt’s) are in the list then the “terminate” 

variable will have value Zero (lines 16- 23) and the while loop (line 3) terminates. This 

means that the nodes that are already transferred for no improvement in the gain are to be 

transferred again, and the subsequent passes will require the same nodes to be transferred 

again, which marks the end of the execution and the while loop terminates. 

If  the “terminate” variable value is not zero, then there are some new nodes that 

are to be transferred ,which might possibly increase the Overall Gain (T) value and the 

partition sets X and Y are updated with the new nodes and the T value is also updated 

(lines 24 – 28). 
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If two nodes have the same gain and if the gain is positive, then the node with  
 
higher external Cost is transferred, or else the node with lower external cost is transferred  
 
(lines 30–40).  

                                                                                                                                        
2.2 Examples 

                                                                                                                  
2.2.1 Example Showing Improvement in the Overall Gain due to the 
Variation.1 

 
Consider the Interference Graph given below in Figure.2.2. Let the partition Size 

be 3 and initial partition be partition_1 = {a,b,c} and partition_2 = {d,e}. 

 

 
 
Figure 2. 2: Example Interference Graph to Show Improvement in the Overall Gain 

due to the Variation.1 
 

Initial Cost for this partition is 3, as per the definition described before. For every 

node initial gain value D(u) is computed  and is shown below. 

Table 2. 1: Initial Gain Computation of all Nodes in Figure 2.2 
 

Node 
‘u’ 

Internal Cost  
I(u) 

External Cost  
E(u)  D(u)  

a 1 1 0 
b 1 1 0 
c 0 1 -1 
d 1 3 -2 
e 1 0 1 
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The node with the maximum gain is ‘e’. Now, transferring node ‘e’ to the other 

partition exceeds size constraint and so all the nodes in Y partition are set with ticket flag 

(line 9). The next node with the maximum gain value is ‘a’ and it is marked (line 12). 

Assuming that node ‘a’ has been transferred the remaining node gains are updated as per 

the definition. 

Table 2. 2: Updated Gain Computation for Transferring Node ‘a’ 
 

NewD(b) D(b) – 2*w(b,a) = 0 - 2*1 =  -2  
NewD(c) D(c) -  2 *w(c,a) = -1 – 2*0 = -1 
NewD(d) D(d) + 2*w(d,a) = -2 + 2*1 = 0 
NewD(e) D(e) + 2 *w(e,a) =1 +2*0 = 1 

 

Now the next node with maximum gain is ‘e’. Once again, the gains of the 

remaining nodes are updated and the whole process is repeated till there is some 

unmarked and unticketed node. When this loop terminates, the nodes whose transfers 

yield the maximum cumulative gain is determined and those nodes are transferred, and 

the Overall Gain (T) is updated. This process continues till the maximum cumulative gain 

becomes negative or when the same set of nodes is transferred in subsequent passes for 

no improvement in the Overall Gain. 

The Overall Gain for this graph computed by this heuristic is 4 and the optimal  
 
partition obtained is bce in one partition and ad in the other. But the Overall Gain that 
 
 is obtained without these variations in the heuristic is only 3.                                                
 
2.2.2 Example Showing Improvement in the Overall Gain due to the 
Variation.2 
 
Now let us consider an example in Figure.2.3 for which the Variation.2 produces 

significant results. In Figure 2.3 the outputs of the operators numbered 

7,8,9,10,11,12,13,14,15,16,17 are represented by the variables A,B,C,D,E,F,G,H,I,J,K. 
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From this data dependency graph, a folded interference graph is constructed which is not 

shown here due to space constraints. The heuristic was implemented on this interference 

graph and it has been observed that the maximum cumulative gain value increases, even 

after taking a value zero.  

 

Figure 2. 3: Example Data Flow Graph  to Show Improvement in the Overall Gain 
due to the Variation.2 

                                                                                                     
Table 2.3 shows the maximum cumulative gain value and the nodes that are to be 

transferred in each of the iteration. It has been observed that at iteration.4 maximum 

cumulative gain value is 2, even after being 0 at iteration.2, making the Overall Gain to            

Table 2. 3: Max.Cumulative Gain value for each  Iteration of the Heuristic on the 
Interference Graph of Figure 2.3 

 
Iteration Max. Cumulative Gain Nodes to be transferred 

1 14 dyCJHu 
2 0 IdbB 
3 0 k 
4 2 uKkHd 
5 0 E 
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be 59. If the execution had stopped at iteration 2 because the maximum cumulative gain 

being 0, then we would have ignored this possibility of improvement in the gain and 

Overall Gain would have been just 57. After the 4th iteration, there is no improvement in 

the gain and the same set of nodes are transferred again and again and thereby the 

execution terminates at the iteration.6.                                                                                                                

2.3 Experimental Results 

Consider the Interference graph below with 5 nodes with initial partitions partition_1 =   

{a,b,c} and  partition_2 = {d,e}. The heuristic was implemented on this graph and the 

results are  tabulated as given below. 

  

 

 

 

 

 

                                   
 
                            

 
Figure 2. 4: Example Interference Graph    

                                                                                                     
Table 2. 4:Overall Gain and the Final Partition for Various values of S of  Figure 2.4 
                                                                                                                             

S.No S Overall Gain Final partition 

1 3 3 eab, dc 

2 4 4 abec,d 

3 5 4 abec,d 
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The table above shows the Overall Gain and the Final partition for various S. It can be 

observed that once the Maximum possible Overall Gain is achieved, any further increase 

in the S value will not have any effect on the Overall Gain. 

Consider the Interference graph below with 10 nodes with initial partitions 

partition_1={B,C,A,b,x} and partition_2 ={k,d,y,u,D}.Let the weights of all the edges be 

1. The heuristic was implemented on this graph and the results are tabulated (Table 2.5).  

 

 

Figure 2.5: Example Interference Graph 
 

Table 2. 5: Overall Gain and Final Partitions for Various values of S of Figure 2.5 
 

S.No S Overall Gain Final partition 

1 6 13 AxydD 
kuBCb 

2 7 13 AxydD 
kuBCb 

3 8 13 AxydD 
kuBCb 

 

The table above shows the Overall Gain and the Final partition for various S. It can be 

observed that after achieving a maximum possible Overall Gain of 13, any increase in S 

still maintains the same Overall Gain. Also the final partition remains the same in this 
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case, this is because once the max. Overall Gain of 13 is achieved, there is not any further 

improvement in the Overall Gain and thereby the partitions are not updated. 

Consider the graph in Figure.2.3 with 17 nodes which shows the node numbers. It 

is assumed that the outputs of the operators numbered 7,8,9,10,11,12,13,14,15,16 and 17 

are stored in  temporary variables A,B,C,D,E,F,G,H,I,J and K. From this graph a folded 

Interference graph is constructed and the heuristic was implemented with initial partitions 

being  partition_1 = {A,B,C,D,E,F,G,H,I} and partition_2 = {b,x,k,d,y,u,J,K}, and  the 

results are tabulated below. Table 2.6 shows the Overall Gain and the Final partition for 

various S. In this case, the maximum possible Overall Gain as shown in the table is 59. 

Table 2. 6: Overall Gain and Final Partitions for Various values of S for the 
Interference Graph of Figure 2.3 

 
S.No. S Overall Gain Final partition 

1 9 59 BuJGdHKb 
CxADkIEFy 

2 10 59 ACDIkxBu 
bdJKHGyFE 

3 11 59 ACDIkxBu 
bdJKHGyFE 

4 12 59 ACDIkxBu 
bdJKHGyFE 

 13 59 ACDIkxBu 
bdJKHGyFE 

 
Table 2. 7: Overall Gain and Final Partitions for Various Initial Partitions for the 

Interference Graph of Figure 2.3 
 

S.No. Initial partition Final partition  Overall Gain 
1 ABCDEFGHI 

bxkdyuJK 
ACDIkxBu 
bdJKHGyFE 

59 

2 BCEFGHI 
AbxkdyuJKD 

FGyJbKHd 
AxDCIBukE 

59 

3 BCHIkdyu 
AbxJKDEFG 

BCIkuDAxE 
bJKFGyHd 

59 

4 JKDEFBCu 
AbxGHIkdy 

DBCuxIAkE 
byFKHJGd 

59 
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For the same graph in Figure 2.3, the table below shows the Final partition and Overall 

Gain value for various Initial partitions. It can be observed from the Table 2.7, that there 

are several final partitions yielding the same Overall Gain value of 59 depending on the 

choice of the Initial partition.                                                                                                                                

2.4 Complexity Analysis 

Let N be the number of nodes. In the calculation of the initial cost for each of the 

node in one partition, all the nodes in the other partition are considered, which requires 

O(N2) time. Each pass requires the following computations: 

At the beginning of each pass, unmarking and unticketing each of the node requires O(N) 

time.  

1.Each D(u) computation for nodes in one partition requires consideration of all the      

nodes in the same partition (for computing the internal cost) and also all the nodes 

in the other partition (for computing the external cost). This requires O(N2) time. 

2.Computing the # of unmarked and unticketed nodes requires considering all the 

nodes and hence requires O(N) time. 

3.Finding the node with the maximum gain requires O(N) time. 

4.If the size constraint is violated then ticketing the nodes requires O(N) time. 

5.Updating the D values for the unmarked nodes requires consideration of all the 

unmarked nodes, which requires O(N) time. 

6.Finding the maximum cumulative gain requires O(N) time.  

7.If the maximum cumulative gain becomes equal to zero, then the for-loop requires 

consideration of all the nodes in the worst case and this requires O(N) time. 

8.Updating the sets X and Y require O(N) time. Updating T value requires O(1) time.                               
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If the total pass is ‘P’ then the total time required is P*(O(N ) + O(N) + O(1)) = O(PN ). 

In practice, ‘P’ is observed to be independent of N.                                                         

2 2

2.5 Chapter Summary                                                                                                 

In this chapter, we presented several improvements to a heuristic for partitioning the 

variables of a graph. Results on several graphs demonstrate the effectiveness of our 

improvements.     
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3. Horizontal Address Assignment 

 
Horizontal address assignment is the problem of assigning the variables into groups 

such that the number of memory accesses is reduced. The memory accesses are represented 

by the variable access sequence (VAS). Two variables vi and vj are neighbors if there are 

successive accesses in the VAS to these variables. Two variables vi and vj have an 

unexploited neighbor relation if they are neighbors in the VAS but are not members of the 

same group [14]. 

   The main concept of minimizing the number of unexploited neighbor relations to 

minimize the number of memory accesses as explained in [14] is as follows: “Load the group 

containing the required data and work on these data as long as possible without further 

memory accesses. If another group should be loaded into the group register and the currently 

loaded group is modified, it is necessary to store the current group back to memory.” Thus 

the number of memory accesses can be minimized by minimizing the number of unexploited 

neighbor relations.  Now we will represent the horizontal address assignment problem as a 

graph partitioning problem as explained below.   

Definition: The Variable Access Graph VAG = (V,E) is an undirected graph with node set 

V, where each node vi in V represent a variable (vi) in VAS and the edge set E contains set 

of edges between the nodes vi and vj if the corresponding variables vi and vj of VAS are 

neighbors. An edge which represents an unexploited neighbor relation is called an external 

edge otherwise this edge is called internal edge. The weights wij on the edge represent the 

number of the times the two variables vi and vj are neighbors.   
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Definition: The cost of an undirected graph, denoted by Cost (G) is defined as the sum of                        

weights of edges whose end-points are not both in the same partition. 

Now with this graph representation and definitions, the problem can be redefined as 

partitioning the variables (nodes) of the VAG such that the Cost of the VAG is minimized. 

To address this problem we have discussed an ILP formulation which maximizes the sum of 

the weights of internal edge, and a heuristic approach which uses the heuristic for variable 

partitioning into two memory banks, that has been discussed in the previous chapter.                   

3.1 ILP Formulation for Variable Partitioning into Multiple Groups 

For a given VAG = (V, E), we use an integer-linear programming (ILP) approach to 

solve this optimization problem. Let k represent the groups and the total number of groups 

be P, i.e., 1<=k<=P. The ILP model comprises the following variables. 

For every element vi of V:  

Xik = 1  if  variable vi is assigned to group k 

         0  otherwise 

For every pair of variables vi, vj and every group k:  

Sijk = 1  if Xik = Xjk =  1

0 otherwise              
 

Let wij be the weight of the edge (vi, vj). The variable Xik indicates if variable vi is assigned 

to group k. The variable Sijk indicates whether the variables vi and vj are assigned to the same 

group k. Using these variables the internal cost between the variables vi and vj if both are 

assigned to group k is computed using the expression Sijk . wij. If Sijk = 1, then the internal 

cost between the variables vi and vj if they are both assigned to group k will be wij. Thus the 

 sum of Sijk . wij over all vi,vj and k needs to be maximized in order to maximize the internal 
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cost of the graph. That is the objective function will be  

Maximize ijk ij
k i j

S w∑∑∑  

The requirement that Sijk = 1 if and only if Xik = Xjk = 1 is enforced by the following 

constraints in conjunction: 

• Sijk >= Xik + Xjk - 1 

• Sijk <= Xik 

• Sijk <= Xjk  

The ILP formulation should also take care of the memory-width constraint, i.e., the 

maximum size of each group. This is enforced by the following constraints: 

For all groups k:  ik
i

X S ≤ ∑  where S is the memory width of each group k. 

Also each variable should be assigned to only one of the group. This is enforced the 

following constraint: 

ik
k

X  =  1∑  for all the variables vi in V.  

3.1.1 Illustration 

For the variable access graph given below in Figure 3.1, the ILP formulation can be  

illustrated as follows. 

 

Figure 3. 1: Example Variable Access Graph to Illustrate the ILP Formulation 
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Let the maximum memory width of each group (S) be 3 and the total number of groups (k) 

be 3.  Then the objective function considering all the variables and all the groups, will be  

Maximize:  Sac1+ Sad1+2*Sae1 + Sbc1 + Sbd1+ 2*Scf1 + Sac2+ Sad2+2*Sae2 + Sbc2 + Sbd2 + 2*Scf2+ 

Sac3+ Sad3+2*Sae3 + Sbc3 + Sbd3 + 2*Scf3; 

The setting   Sijk = 1, if and only if Xik = Xjk = 1 for all the variables of the graph, is enforced 

by the following constraints. 

For group k =1: 

Sab1 ≥ Xa1 + Xb1 - 1;      Sab1 ≤ Xa1;     Sab1 ≤ Xb1; 

Sac1 ≥ Xa1 + Xc1 - 1;      Sac1 ≤ Xa1;      Sac1 ≤ Xc1;         

Sad1 ≥ Xa1 + Xd1 - 1;     Sad1 ≤ Xa1;      Sad1 ≤ Xd1;         

Sae1 ≥ Xa1 + Xe1 - 1;     Sae1 ≤ Xa1;      Sae1 ≤ Xe1;         

Saf1 ≥ Xa1 + Xf1 - 1;    Saf1 ≤ Xa1;      Saf1 ≤ Xf1;         

 

Sbc1 ≥ Xb1 + Xc1 - 1;      Sbc1 ≤ Xb1;       Sbc1 ≤ Xc1; 

Sbd1 ≥ Xb1 + Xd1 - 1;      Sbd1 ≤ Xb1;       Sbd1 ≤ Xd1; 

Sbe1 ≥ Xb1 + Xe1 - 1;     Sbe1 ≤ Xb1;       Sbe1 ≤ Xe1; 

Sbf1 ≥ Xb1 + Xf1 - 1;      Sbf1 ≤ Xb1;       Sbf1 ≤ Xf1; 

 

Scd1 ≥ Xc1 + Xd1 -1;      Scd1 ≤ Xc1;      Scd1 ≤ Xd1;         

Sce1 ≥ Xc1 + Xe1 - 1;       Sce1 ≤ Xc1;      Sce1 ≤ Xe1; 

Scf1 ≥ Xc1+ Xf1 - 1;        Scf1 ≤ Xc1;      Scf1 ≤ Xf1; 

 

Sde1 ≥ Xd1 + Xe1 -1;        Sde1 ≤ Xd1;      Sde1 ≤Xe1; 
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Sdf1 ≥ Xd1 + Xf1- 1;        Sdf1 ≤ Xd1;      Sdf1 ≤Xf1; 

Sef1 ≥ Xe1 + Xf1 -1;        Sef1 ≤ Xe1;      Sef1 ≤Xf1; 

Similarly the constraints for other groups (k=2 and k=3) are written. 
 
The memory-width constraint for k =1 is written as 
    

1 1 1 1 1 1a b c d e fX X X X X X +  +  +  +  +  ≤ 3 

The constraints for the other groups are written in a similar fashion. The uniqueness 

constraint for variable a is written as 

1 2 3a a aX X X +  +  = 1 

Again, the constraints for other variables are written. All these constraints are given as the 

input the ILP Solver and the objective function value (the sum of weights of the internal 

edges) was found to be 6. The partitioning of the variables as determined by the solver is 

shown in Table 3.1 for total groups P = 3. 

Table 3. 1: Final Partition obtained by the ILP Solver for the Graph in Figure 3.1 
 

k Final Partition  obtained by the ILP Solver

1 - 

2 bcf 

3 aed 

 

3.1.2 Experimental Results 

Consider the graph in Figure 3.1 with 6 nodes. ILP formulation was applied to this Graph 

with the P = 2. Table 3.2 shows the Objective function value for various S values. It can 

be observed that as the S value increases the Objective function value increases. Table 

3.3 shows the ILP results on the same Graph in Figure 3.1, with P =3. 
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Table 3. 2: Objective Function value for various S values for the Graph in Figure 
3.1 with P = 2 

 
No. S Objective function value 

1 3 6 

2 4 6 

3 5 6 

4 6 8 

 
The following table shows the ILP results on the same Graph in Figure 3.1, with P =3. 

Table 3. 3: Objective function value for various S value for the Graph in Figure 3.1 
with P = 3 

 
No. S Objective function value 

1 2 5 

2 3 6 

3 4 6 

4 5 6 

5 6 8 

 

Consider the graph in Figure 3.2 with 10 nodes. Let the weights of all the edges be 1 and 

let P =2. ILP formulation was applied for this graph and the results are tabulated below. 

Table 3.4 shows the Objective function value for various S values. It can be observed that 

as the S value increases the Objective function value increases. Table 3.5 shows the 

increase in the Objective function value with increase in S value for the same Graph in 

Figure 3.2, with P = 3. 
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Figure 3. 2: Example Variable Access Graph on which the ILP Formulation was 
Implemented. 

 
Table 3. 4: ILP Results for the Graph in Figure 3.2 with P = 2 

 
S.No S Objective function value 

1 6 13 

2 7 15 

3 8 18 

 

Table 3. 5 ILP Results for the Graph in Figure 3.2 with P = 3 
 

S.No S Objective function value 

1 5 10 

2 6 13 

3 7 15 

 

 

3.2 Heuristic for Variable Partitioning into Multiple Groups 
 
This section discusses an heuristic for partitioning the variables of the VAG such that the 

Cost (VAG) is minimized. Let P be the total number of partitions or groups. Let S be the 

memory width of each group. If S < | V | / P, then it would be impossible to accommodate all 
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the | V | variables in P partitions. Therefore the value of S given as input should be greater 

than .  V P⎡ | | / ⎤

ALGORITHM  MULTIPLE  BANK(VAG(V, E, w), Initial partitions) 

1.    new VAG (V,E,w) = VAG(V,E,-w)  ; Count = 1;  
2.    while ( count !=0) 
       { 
3.             Count = 0; 
4.             for (a=1 to P) 
                  { 
5.                     for (b=a+1 to P) 

          {  
      6.                     Construct RVAG (partition_a, partition_b):  new VAG with only the 

edges whose both the end-points are in partition_a or partition_b; 
7.                     Heuristic2Bank(partition_a, partition_b, RVAG); 

      8.                     if (T  > initialCost (partition_a, partition_b) 
                              { 
      9.                           Count = Count + 1; 
    10.                           Update the partitions; 
    11.                      } 
    12.                   } 
    13.               } 
    14.}                                                                                                                                  

3.2.1 Explanation 

The inputs to this heuristic are Variable Access Graph (VAG), and the initial partitions 

(partition_a and partition_b). This heuristic addresses the problem of finding an efficient 

partitioning of the variables such that the Cost (VAG) is minimized. We know that the 

heuristic discussed in the previous chapter, addresses the problem of partitioning the 

variables of graph G between 2 Banks, such that the Cost (G) is maximized. So using the 

heuristic  for 2 Banks, for solving  this problem requires making all the edge weights 

negative which constitutes the new Variable Access Graph ( new VAG ) (line 1). Also since 

the heuristic for 2 Banks, works on two partitions, for this multiple partitioning problem we 
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consider two partitions at a time and the best partitioning of the variables between the two 

partitions is obtained.  

For all pairs of partition the following operations are performed. In line 6, a 

Restricted Variable Access Graph (RVAG) is constructed by including only those edges 

whose end-point variables are in any of the two partitions under consideration. In line 7, the 

two partitions and the RVAG are given as input to the heuristic for two banks. The output of 

this heuristic will be a partitioning of those variables between the two partitions under 

consideration, such that the cost of the RVAG (Cost (RVAG)), denoted by T is maximized. 

If  T value  is greater  than the initial Cost of those two partitions, then the new partitions are 

better than the initial ones, because since  all the edge weights are negative the initial Cost 

will be negative, and T > initial Cost implies that the Cost (VAG) is minimized, which is 

what is desired. Now the two partitions, i.e., partition_a and partition_b are updated with the 

variables in the new partitions. All the steps starting from applying the heuristic for two 

banks for all the partitions, checking for any improvement and updating the partitions 

constitutes a iteration (line 4 to line 13). This is repeated until in any iteration none of the 

partition shows any improvement (line.2 to line.14). Thus the final output will be a partition 

such that Cost (new VAG) is maximized, and thereby the Cost (VAG) is minimized.                   

3.2.2 Illustration 

Let us illustrate this heuristic with a VAG of Figure 3.1. The new VAG with negative 

edge weights is shown in Figure 3.3. Let P be 3 and the initial partitions partition_1 = ab, 

partition_2 = ed and partition_3 =cf and the maximum size of each partition S be 4. Table 

3.6 shows the two partitions partition_a, partition_b , their initial Cost, final Cost T  and 

the updated partitions for each pair of partitions for each of the iteration. 
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Figure 3. 3: Input Graph for the VAG in Figure 3.1 

 
Table 3. 6 Illustration of the Heuristic with the example Graph in Figure 3.3  

 

Updated partitions Itn. a b partition_a partition_b initial 

Cost 
T 

Partition_1 Partition_2 Partition_3 

1 2 ab ed -4 0 bdae - cf 

1 3 bdae cf -2 -2 ae - cfbd 

 

 
 
1 2 3 - cfbd 0 0 ae dbcf - 

          

1 2 ae dbcf -2 -2 aed bcf - 

1 3 aed - 0 0 - bcf aed 

2 

2 3 bcf aed -2 -2 - cf daeb 

From the table it is clear that in the second iteration there is no more improvement in 

the cost by any of the 3 partition and therefore the program terminates. The final partition as 

shown in the table is cf, daeb and the Cost of the VAG for this partition is found to be 2.  

3.2.3 Experimental Results 

Consider the graph in Figure.3.3 (6 nodes). Let the initial partitions be partition_1 

= ab, partition_2 = ed and partition_3 =cf. The heuristic was implemented on this graph 
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and the results are tabulated below. Table 3.7 shows the Final partition and the Cost for 

various S values. It can be observed that as the S increases the Cost decreases. This is 

because the heuristic assigns the variables to the same partition as much as possible, and 

thereby the Cost decreases as the size S increases.  

Table 3. 7: Heuristic Results for the Graph in Figure 3.2 with P = 3 
 

Final partitions S 

Partition_1 Partition_2 Partition_3 

Cost  

3 b  dae cf 3 

4 - cf daeb 2 

5 - f eadbc 2 

6 - - abcdef 0 

 

Now let P = 4. Let the initial partitions be partition_1 = ae, partition_2 = c, partition_3 = 

f, partition_4 = bd. Table 3.8 shows the variation of the Cost with S value with P = 4.  

Table 3. 8 Heuristic Results for the Graph in Figure 3.3 with P = 4 
 

Final Partition S 

Partition_1 Partition_2 Partition_3 Partition_4 

Cost  

3 aec - f bd 4 

4 - - ae cfbd 2 

5 - e fcbda - 2 

6 - - abcdef - 0 

 
Consider the graph in Figure.3.2 (10 nodes). From this Graph, a graph with negative edge  
 
weights is constructed and is given as Input to the heuristic.The table 3.9 below shows 
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the results of the Heuristic on this Graph  with the initial partitions being partition_1 = 

BCAbx and partition_2 = kdyuD.  

Table 3. 9 Heuristic Results for the Input Graph of the VAG in Figure 3.2 with P = 2 
 

Final partitions S 

Partition_1 Partition_2 

Cost  

5 BCAbx kdyuD 9 

6 byBAxu dDCk 5 

7 dAubxBy kDC 3 

8 ABbxyudk DC 0 

 
Table 3.10 shows the final partition and Cost for various S value, for the input graph of 

Figure 3.2 with the initial partitions being partition_1 = B, partition_2 = CA, partition_3 

= bxk, partition_4 = dyuD.  

Table 3. 10 Heuristic Results for the Input Graph of the VAG in Figure 3.2 with P=4 
 

Final Partitions S 

Partition_1 Partition_2 Partition_3 Partition_4

Cost  

4 ABbx C duyk D 9 

5 C BAx dkbyu D 8 

6 ABbyux C dk D 5 

7 dxubABy k C D 3 

3.3 Result Comparison ILP Vs Heuristic                                                    

Consider the Input Graph of Figure 3.2. The table shows the Cost  obtained  by  the  ILP 

Formulation and the heuristic, for various S value with the initial partitions being BCAbx  

and kdyuD. It can be observed that the heuristic  results  are same as that obtained by the 
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ILP, except for S = 5. This is because, we have  exactly  5  variables  in  each  of  the  two 

partitions and  also the S = 5, so  any  transfer  from  any  partition  will  violate  the  size 

constraint and thereby the Cost remains the Initial Cost of 9. 

Table 3. 11 Result Comparison for the Input Graph of Figure 3.2 

S.No S ILP Cost Heuristic Cost Final Partition obtained by the Heuristic 
1 5 8 9 BCAbx 

kdyuD 
2 6 5 5 byBAxu  

dDCk  
3 7 3 3 dAubxBy  

kDC  
4 8 0 0 ABbxyudk  

DC  

3.4 Chapter Summary                       
 
This chapter presented an integer linear programming formulation for the horizontal address 

assignment problem for digital signal processors with SIMD memory accesses. In addition, 

we have developed a heuristic for the same problem. Experimental results on several graphs 

demonstrate that the heuristic is very effective. 
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4. Conclusion 
 

Exploiting the memory features in modern DSP architectures remains a 

significant challenge for optimizing compilers. This thesis presents and evaluates 

solutions for two important problems in generating efficient code for DSP architectures 

with multiple memory banks and SIMD DSP architectures.  

In Chapter 2, a heuristic was proposed for addressing the problem of variable 

partitioning between two memory banks such that there is maximum parallel access 

between the variables, thereby reducing the execution time and the code size. This 

heuristic incorporates the assumption that at any point of time during the execution, the 

size of the two banks need not be constant and uses the concept of transferring the node 

rather than swapping the nodes. This heuristic was an improvement to the heuristic 

proposed in [15], in terms of the possibilities that have been considered. We have 

considered two additional possibilities to the latest heuristic proposed in [15], which has 

shown to produce significant results. We have also demonstrated with an example how 

the gain improvement is achieved by considering those two possibilities. We have also 

observed that the same gain can be achieved by a number of final partitions, depending 

on the choice of the initial partition. 

In Chapter 3, we have discussed the variable partitioning problem for DSPs with 

SIMD architecture to minimize the number of memory accesses. We have discussed how 

to map this problem to the variable partitioning problem discussed in the previous 

chapter. To address this problem, we have developed an Integer Linear Programming 

(ILP) model as well as a heuristic approach. We have demonstrated with an example how 
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the ILP formulation is used for addressing this problem and have tested this formulation 

for several graphs. We have observed that as the maximum size of the partition increases, 

the objective function value of this formulation also increases. In the next section of 

Chapter 3, we have presented a heuristic for addressing this problem. This heuristic 

builds on the heuristic developed in Chapter 2. We have demonstrated in detail one 

iteration of this heuristic for a sample graph and have tabulated the results of execution 

on a couple of graphs. At the end we have compared the results of the ILP formulation 

with that obtained by the heuristic and have shown that the heuristic results are 

promising.                                                                                                                          

4.1 Future Work  

In Chapter 2 we have discussed how to partition the variables between two memory 

banks such that there is maximum parallel access between the variables. We have not 

considered the execution time of the operations for this problem. So, one possible future 

work will be to extend the heuristic for two banks, discussed in Chapter 2, to partition the 

variables with the execution times of the operations under consideration. A second 

problem that needs to be addressed is effective code generation dealing with control-flow 

(i.e., branches) through the use of profiling techniques; note that our work assumes 

straight-line code. Another possible avenue of research is the exploration of the use of 

static single assignment (SSA) which allows one to breakdown the live ranges of 

variables so that a variable could be in different banks during different sections of its live 

range. In addition, there is scope for exploring the design space of multiple memory 

banks by getting the compiler in the loop. 
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