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NOMENCLATURE 

Indices  

  𝑓 = 1, . . . , 𝐹 Decision variables. 

  𝑔 = 1, . . . , 𝐺 Number of expensive function simulations. 

  ℎ = 1, . . . , 𝐻 Number of uncertain parameters. 

𝑖 = 1, . . . , 𝐷 Times a population of uncertain parameters is generated. 

𝑗 = 1, . . . , 𝐽 RBF evaluated points. 

𝑛 = 1, . . . , 𝑁 Number of samples per parameter in sensitivity analysis. 

𝑝 = 1, . . . , 𝑃 Processors/workers. 

  𝑞 = 1, . . . , 𝑄    Number of parameters evaluated in sensitivity analysis. 

Parameters 

EHCF Simultaneous hydrolysis and co-fermentation for ethanol production 

α relating substrate reactivity with degree of hydrolysis 

E1max maximum enzyme 1 that can be adsorbed on substrate 

E2max maximum enzyme 2 that can be adsorbed on substrate 

K1ad dissociation constant for enzyme 1 

K2ad dissociation constant for enzyme 2 

K1r reaction rate constant 1 

K1IG2 inhibition constant for cellobiose 1 

K1IG inhibition constant for glucose 1 

K1IXy inhibition constant for xylose 1 

K2r reaction rate constant 2 

K2IG2 inhibition constant for cellobiose 2 

K2IG inhibition constant for glucose 2 

K2IXy inhibition constant for xylose 2 

K3r reaction rate constant 3 

K3M substrate (cellobiose) saturation constant 

K3IG inhibition constant for glucose 3 

K3IXy inhibition constant for xylose 3 

Ea activation energy 

μm,g maximum specific growth rate in cell growth (glucose as substrate) 

K4g monod constant for growth on glucose 

K4Ig inhibition constant for growth on glucose 

CEtmax,g maximum ethanol concentration in cell growth (glucose as substrate) 

CEtx,g threshold Ethanol Concentration in cell growth (glucose as substrate) 

μm,xy maximum specific growth rate in  cell growth (xylose as substrate) 

K5xy monod constant for growth on glucose 

K5Ixy inhibition constant for growth on xylose 

CEtmax,xy maximum ethanol concentration in cell growth (xylose as substrate) 
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CEtx,xy threshold Ethanol Concentration in cell growth (xylose as substrate) 

α weighing factor for glucose consumption 

qsmax,g overall maximum specific glucose utilization 

K7g substrate limitation constant in glucose consumption 

K7Isg substrate Inhibition constant in glucose consumption 

CEtis,g threshold Ethanol Concentration in glucose consumption 

CEtmax,g maximum ethanol concentration in glucose consumption 

qsmax,xy overall maximum specific xylose utilization 

K8xy substrate limitation constant 

K8Isxy substrate Inhibition constant in xylose consumption 

CEtis,xy threshold Ethanol Concentration in xylose consumption 

CEtmaxsxy maximum ethanol concentration in xylose consumption 

qpmax,g overall maximum specific ethanol production by glucose fermentation 

K9g substrate limitation constant in glucose fermentation 

K9Ipg substrate Inhibition constant in glucose fermentation 

CEtip,g threshold Ethanol Concentration in glucose fermentation 

CEtimaxp,g maximum ethanol concentration in glucose fermentation 

qpmax,xy overall maximum specific ethanol production by xylose fermentation 

K10xy substrate limitation constant in xylose fermentation 

K10Ipxy substrate Inhibition constant in xylose fermentation 

CEtip,xy threshold Ethanol Concentration in xylose fermentation 

CEtmaxp,xy maximum ethanol concentration in xylose fermentation 

SAEH Enzymatic hydrolysis for succinic acid production 

αsa relating substrate reactivity with degree of hydrolysis 

E1max sa maximum enzyme 1 that can be adsorbed on substrate 

E2max sa maximum enzyme 2 that can be adsorbed on substrate 

K1ad sa dissociation constant for enzyme 1 

K2ad sa dissociation constant for enzyme 2 

K1r sa reaction rate constant 1 

K1IG2 sa inhibition constant for cellobiose 1 

K1IG sa inhibition constant for glucose 1 

K1IXy sa inhibition constant for xylose 1 

K2r sa reaction rate constant 2 

K2IG2 sa inhibition constant for cellobiose 2 

K2IG sa inhibition constant for glucose 2 

K2IXy sa inhibition constant for xylose 2 

K3r sa reaction rate constant 3 

K3M sa substrate (cellobiose) saturation constant 

K3IG sa inhibition constant for glucose 3 

K3IXy sa inhibition constant for xylose 3 

Ea sa activation energy 

SACF Co-fermentation for succinic acid production 

μm,sg maximum specific growth rate in glucose fermentation 

KSg glucose saturation constant 



xi 

 

KSIg inhibition constant for growth on glucose 

PCrit,g critical product concentration at which cell growth fully stops 

i degree of product inhibition 

Kd specific death rate 

Yi stoichiometric yield coefficient of cell on glucose 

YSA stoichiometric yield coefficient of succinic acid on glucose 

YAA stoichiometric yield coefficient of acetic acid on glucose 

YFA stoichiometric yield coefficient of formic acid on glucose 

YLA stoichiometric yield coefficient of lactic acid on glucose 

msg specific maintenance coefficient 

αSA growth-associated parameter for succinic acid formation 

βSA non-growth-associated parameter for succinic acid formation 

αAA growth-associated parameter for acetic acid formation 

βAA non-growth-associated parameter for acetic acid formation 

αFA growth-associated parameter for formic acid formation 

βFA non-growth-associated parameter for formic acid formation 

βLA non-growth-associated parameter for lactic acid formation 
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ABSTRACT 

This work presents a decision-making framework for global optimization of detailed renewable 

energy processes considering technological uncertainty. The critical uncertain sources are 

identified with an efficient computational method for global sensitivity analysis, and are obtained 

in two different ways, simultaneously and independently per product pathway respect to the 

objective function. For global optimization, the parallel stochastic response surface method 

developed by Regis & Shoemaker (2009) is employed. This algorithm is based on the multi-start 

local metric stochastic response surface method explored by the same authors (2007a). The 

aforementioned algorithm uses as response surface model a radial basis function (RBF) for 

approximating the expensive simulation model. Once the RBF’s parameters are fitted, the 

algorithm selects multiple points to be evaluated simultaneously. The next point(s) to be evaluated 

in the expensive simulation are obtained based on their probability to attain a better result for the 

objective function. This approach represents a simplified oriented search. To evaluate the efficacy 

of this novel decision-making framework, a hypothetical multiproduct lignocellulosic biorefinery 

is globally optimized on its operational level. The obtained optimal points are compared with 

traditional optimization methods, e.g. Monte-Carlo simulation, and are evaluated for both 

proposed types of uncertainty calculated. 
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1. INTRODUCTION 

Propped by worldwide population and industry growth, it is estimated that by 2040 the global 

energy consumption will merge in 56%, from 524 quadrillion of British thermal units (Btu) to 820 

quadrillion Btu (EIA, 2013). Currently, around 85% of world’s energy comes from fossil fuel 

resources. In the U.S., approximately 79% of energy sources come from non-renewables, making 

it the highest share of the energy sources in the market. Figure 1 shows the share per energy sector 

in the United States in 2013 (Dale & Holtzapple, 2015). Even though in the past year the price of 

oil has been dropping from its previous attractive peak, its volatility and uncertainty should 

encourage governments to diversify theirs energy portfolios. Cheap oil prices should not be a 

temptation for stepping away from renewables. Indeed, uncertainty and variability of oil in the 

market shall encourage investors, shareholders and decision-makers to prepare for the long 

farewell that mankind has to say to fossil fuels. 

 

Figure 1: Energy surces in the US 2013 
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Many efforts have been done in order to promote renewable energy sources as global 

population recognizes being dependent on limited resources, such as fossil fuels. The modern 

portfolio of available renewables includes biofuels produced from biomass, which appears to be a 

sustainable and reasonable solution for mobile energy services giving also an innovative usage of 

organic waste. However, market volatility, technological uncertainty, and limited experience in 

biorefining processes can prevent the development of this burgeoning industry. 

By processing biomass, e.g., lignocellulose, in mainly biochemical or thermochemical 

pathways, industrial biorefineries are able to produce fuels, heat, bioelectricity, and value-added 

chemicals. First and second generation biorefineries are already operating worldwide and are 

expected to foment economic growth and reduce mineral oil dependency (Kokossis et al., 2015). 

Process systems engineering has contributed over the past few years in addressing the complexity 

of the decision-making and modeling problem in order to optimize and make cost-effective 

renewable energy projects. The regular approach to optimize these type of processes considers 

most of the time a deterministic design approach (Geraili et al., 2014; Martín & Grossmann, 2011; 

Leduc et al., 2010; Zhang et al., 2013; Zondervan et al., 2011), in which the model assumes that 

all the parameters are known from experimental data. By assuming ideality, external factors that 

might affect the process behavior and the project profitability are neglected. However, during the 

conceptual design of a project there is lack of information at different levels which generates 

uncertainty. The global optimization problem should be addressed considering risk management 

at the technological level in conceptual stages. Thus, decision-makers can have a versatile 

approach for making and supporting critical decisions. 

When processes are in their first stages, they appear to be uncertain for managers and investors. 

Lack of understanding and, more important, experience with new technologies can harm the 
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economy of a renewable energy enterprise. In order to minimize risk and maximize the success of 

a biorefinery endeavor, it is required to measure uncertainties from the process and anticipate their 

effect. In other words, it is imperative to develop a technological risk management strategy able to 

provide a low risk solution of the problem. Uncertainties at the operational level are multiple and 

can be found in various parts. The lack of experience when scaling-up new equipment can be a 

source. Parameters that explain chemical reactions and are obtained considering probability 

distributions, and limited thermodynamic data of complex or non-studied chemical species 

contribute to uncertainty as well. To underestimate these limitations may lead into non-optimal 

designs and even generate extra expenses or difficulties during startup and operation. A typical 

form to estimate uncertainties is by applying a sensitivity analysis (Sobol’, 1993; Saltelli, 2002; 

Wu et al, 2011). Literature review presents studies which aforethought integrated biorefinery 

optimization under price, supply chain, demand and operational level uncertainties (Dal-Mas et 

al., 2011; Kim et al., 2011; Kostin et al., 2012; Morales-Rodriguez et al, 2012) respectively. The 

optimization strategies available in literature trend to reduce the complexity of the problem into a 

mixed integer linear programming (MILP), or perform stochastic optimization methods such as 

Monte-Carlo simulations. Other optimization strategies are usually non feasible due to the 

computational cost of the simulation model when uncertainties are considered. 

Surrogate models, also known as response surface or meta-models, are approximations of 

expensive functions. Since surrogate models have the capability of simplifying highly non-linear 

problems, they are widely utilized in multi-objective optimization (Simpson, 2001). Literature 

shows that metamodelling optimization strategies have applications in diverse fields of 

engineering (Razavi et al., 2012). Some relevant studies include, groundwater systems analysis 

and modeling including uncertainties (Keating et al., 2010; Mugunthan & Shoemaker, 2006; 
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Zhang et al., 2009; Zou et al., 2009), optimization problems that study groundwater bioremediation 

(Regis & Shoemaker, 2004; Regis & Shoemaker, 2007a; Regis & Shoemaker, 2007b; Regis & 

Shoemaker, 2009), and in aviation environmental systems modeling for uncertainty estimation 

(Allaire & Willcox, 2010). 

In a previous work (Geraili & Romagnoli, 2015), proposed a systematic optimization 

methodology for biorefining processes under uncertainties. Also, as an improvement of this 

framework an optimal design considering both, strategic and operational level uncertainties was 

explored (Geraili et al., 2016). The present work continues this proposed idea and aims to explore 

deeply in uncertainty sources while optimizing the process variables of a renewable energy 

endeavor employing a novel methodology. In Chapter 2 the framework for expensive model-based 

processes optimization under uncertainty is presented, and the multi-product biorefinery model is 

explained. In Chapter 3 two sensitivity analysis approaches are presented, the first one when 

sensitivity indices are calculated simultaneously and the other one when sensitivity indices are 

calculated independently per product pathway. In Chapter 4 the objective function to be optimized 

is defined, and the optimization method is presented and explained. For global optimization, the 

parallel version of the multi-start local metric stochastic response surface method with restart, 

developed and tested by Regis & Shoemaker (2009), is employed. The surrogate model selects the 

next evaluation point(s) based on the proximity to previously selected and evaluated ones and by 

exploring the fitted RBF. Parallel computing of the expensive function can be done on multiple 

processors. In Chapter 5 the optimal points founds are tested and statistically evaluated with other 

points obtained using conventional methods, e.g. Monte-Carlo simulation. Finally, Chapter 6 

presents general conclusions and provide future work in the field. 
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2. A FRAMEWORK FOR OPTIMIZATION OF EXPENSIVE MODEL-BASED 

PROCESSES UNDER UNCERTAINTY 

2.1 Literature Review 

Different optimization frameworks have been developed recently for optimizing renewable 

energy processes under different types and levels of uncertainty. For instance, optimization under 

uncertainties in biomass costs and biofuels’ prices have been addressed previously by Dal-Mas et 

al. (2011), who concluded that in some scenarios the most adequate solution is to not enter in the 

business. Moreover, logistics and supply chain seem to be an important constraint for critical 

decision-making in a renewable energy business. Candidate sites, capacities, supply chain 

locations and quantities have been studied under uncertainty represented over different scenarios. 

The optimization problem was simplified into a two stage mixed integer stochastic programming 

platform able to define the size and location of the facility, and the input and output flows in order 

to select the most profitable scenario using Monte-Carlo simulation (Kim et al., 2011). Also, by 

introducing uncertainty in the demand of bioethanol and sugar, a multi-scenario mixed-integer 

linear programming supply chain was optimized using a sample average approximation strategy 

(Kostin et al., 2012). Another optimization methodology for supply chain network, which included 

uncertainties from the fuel market, feedstock yield and cost of logistics, employed a two-stage 

stochastic programming model considering conditional value at risk (Kazemzadeh, 2013). 

For biorefinery optimization under technical uncertainties, a global sensitivity analysis is 

required for choosing the most significant parameters. For instance, a framework for model-based 

optimization under uncertainty, which considered four different process configurations, utilized 

uncertainty analysis for determining the impact of these parameters. Later, the process operation 

variables were optimized through Monte-Carlo simulation (Morales-Rodriguez et al, 2012). 

Geraili & Romagnoli (2015) developed another framework for optimizing biorefineries while 
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integrating the strategic and operational level. In this approach, uncertainties were considered only 

at the strategic level. Market prices were modeled assuming a market driven by petroleum since it 

happens to be the main competitor for energetics. Once the strategic level was optimized under 

uncertain conditions, the operation variables were optimized with a differential evolution 

algorithm. An extension of this work, in which uncertainty for both levels was considered, a 

sensitivity analysis was implemented for determining the main uncertain sources at the operational 

level. In this new approach, operating conditions were optimized using Monte-Carlo simulation 

for obtaining high profitability while considering risk management of the business (Geraili et al., 

2016). 

2.2 Framework design 

The current optimization framework is a continuation of the previous work developed by 

Geraili et al. (2016). Uncertainties at the operational level are explored more carefully, and a new 

metaheuristic optimization mechanism is employed. The dimensionality of the problem increases 

as well in order to evaluate the robustness of the optimization algorithm when considering 

uncertainty. 

In order to optimize the operating conditions of the plant under technological uncertainties four 

main steps are required. Identification of significant uncertain parameters through global 

sensitivity analysis (simultaneously and independently per product pathway), detailed simulation 

of processes and unit operations in the simulation software(s) under uncertainty (nonlinear model), 

optimization of the operating conditions of the plant by seeking the best points using the Parallel 

Local Metric Stochastic RBF with restart algorithm, and statistical evaluation of results previous 

final implementation. Figure 2 shows a general schematic structure of the proposed framework. 
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Figure 2: Framework for stochastic optimization of uncertain biorefineries 

2.3 General objective function 

The objective function to be maximized has 𝐹 decision variables as input data, and, as 

explained by Geraili et al. (2014), it is the cash flow after tax of a renewable business. This function 

considers the total sold products, cost of raw materials, operational expenses, labor, and taxes 

(credits and liabilities). Since the model considers uncertainty, it runs stochastically 𝐷 simulations 

with 𝐻 different and randomly generated uncertain parameters (selected as presented in Chapter 

3). However, the general objective function is composed of a group of results. It represents an F-

dimensional problem composed of 𝐷 cash flow after tax results for a certain group of 𝐹 decision 

variables. It is assumed that the population of 𝐷 results has a normal distribution and represents 

the general objective function. Also, this group of results denote the expensive function to be 

optimized by the presented framework. In order to improve the simulation resolution, Aspen Plus 

is linked with the numerical computing software Matlab through ActiveX Automation technology, 
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which permits Aspen Plus to transfer data from and to other Windows applications. Figure 3 shows 

a representation of the interaction between Matlab and Aspen Plus, and how the normal 

distribution is obtained. The distribution results are computed in Matlab. 

 

Figure 3: Matlab and Aspen Plus interaction for computing general objective function  

2.4 Lignocellulosic Multi-Product Biorefinery modelling 

In the following case study, the proposed framework is tested with the stochastic optimization 

of a hypothetical multi-product biorefinery. The lignocellulosic biorefinery is integrally modelled 

in the simulation software Aspen Plus guaranteeing a rigorous process simulation of the plant, able 

to represent complex nonlinear processes and unit operations. The biorefinery model is linked with 

a complex kinetic model of bio-reactions previously implemented in Matlab in which the kinetic 

parameters are varied for simulating uncertainty following the previous work done by Geraili et 

al. (2016). 
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The feedstock material used is lignocellulose in the form of switchgrass, and the main desired 

products are biofuels and value-added chemicals. Even though other feedstocks can be used for 

obtaining lignocellulosic material, the simulation assumes a sample feedstock whose chemical 

composition is similar to switchgrass. The conversion pathway used is via the sugar platform with 

two main products from biochemical reactions, bioethanol and succinic acid, as secondary 

products, heat, bioelectricity and treated water are obtained as well. 

The selected scheme is composed of six major treating units. Including, raw material 

pretreatment, sugar hydrolysis, sugar fermentation, product purification, heat and power 

generation, and wastewater treatment. The optimal configuration utilized in the current work 

comes from a previous work (Geraili et al., 2014) that tested different process arrangements, and 

selected the current one as the most adequate. Figure 4 shows the actual processes implemented in 

the integrated multiproduct biorefinery. The independent sub-processes are: 

i. Low concentration acid pretreatment for breaking the structures of the feedstock material 

into smaller pieces of hemicellulose, lignin and cellulose while increasing the 

fragmentation of cellulose; 

ii. Ammonia conditioning for detoxification and pH stabilization of pre-treated biomass; 

iii. Simultaneous enzymatic hydrolysis and co-fermentation for ethanol production; 

iv. Separate hydrolysis and fermentation for succinic acid production; 

v. Ethanol purification with distillation columns and molecular filtration; 

vi. Solid separation for extracting residual solids; 

vii. Succinic acid recovery using a configuration based on cell filtration followed by 

crystallization; 
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viii. Anaerobic and aerobic digestion of organic materials contained in the produced waste 

water from biorefining processes, and 

ix. Combined system of combustion, boiler, and turbo-generator for steam and electricity 

production. 

 

Figure 4: Multiproduct biorefinery block diagram plant and process variables to be optimized 

As presented in Figure 4, the operational variables of interest that aim to be optimized are four: 

enzyme loading ratio, sugar allocation for bioethanol production, temperature of enzymatic 

hydrolysis in succinic acid production, and temperature of simultaneous enzymatic hydrolysis and 

co-fermentation for ethanol production. All in all, the integrated multiproduct biorefinery 

simulation represents a 4-dimentional highly non-linear optimization problem. Information related 

to succinic acid production, including operational and economic data, was obtained from Vlysidis 

et al. (2011). Furthermore, operational expenditures, product yields and energy information for 

bioethanol production was obtained from previous works in technical and economic studies for 

production of cellulosic bioethanol (Humbird et al., 2011; Kazi et al., 2010). Finally, the 
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biochemical reactions’ models implemented in Matlab for rigorous simulation of bioethanol and 

succinic acid production where obtained from trustworthy sources from literature (Kadam et al., 

2004; Morales-Rodriguez et al., 2012; Song et al., 2008). Values and data from literature are used 

as starting points and reference estimates during the global sensitivity analysis and optimization. 
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3. SENSITIVITY ANALYSIS 

3.1 Literature Review 

Uncertainties can be found in different parts of a renewable energy business, from volatility in 

the market to the process itself. The most common uncertainties that have been studied in 

renewable energy endeavors come from the strategic planning stage. At operational level, 

uncertainties can be found in the process itself, and a global sensitivity analysis is required for 

choosing the most representative parameters for modelling uncertain conditions. Operational level 

uncertainties may be introduced to the process mainly because of errors in experimental 

measurements, activity changes in microorganisms involved in biochemical reactions, impurities 

of the chemical species, and external factors. A complete list of all the kinetic parameters and their 

description is provided in the Appendix. The current study aims to evaluate sensible parameters 

following two different approaches. The first approach is to evaluate all the parameters 

simultaneously. The second, to evaluate the parameters independently per product pathway. 

In general, a sensitivity analysis studies the variations of the output value of a system respect 

to changes in its input parameters. A robust sensitivity method was developed by the Russian 

mathematician I. M. Sobol’ (1993). Sobol’s method is a variance-based Monte-Carlo technique, 

and in its standard form a function 𝑌 = 𝑓(𝑧1, … , 𝑧q, . . , 𝑧𝑄) defined as a Q-dimensional cube 𝑲𝑄 

can be decomposed as presented in Ec. (1) if it is assumed that the input parameters are 

independent. 

𝑌 = 𝑓0 + ∑ 𝑓𝑞(𝑧𝑞)

𝑄

𝑞=1

+ ∑ 𝑓𝑞𝑏(𝑧𝑞 , 𝑧𝑏)

1≤𝑞<𝑏≤𝑄

+ ⋯+ 𝑓1,2,⋯,𝑄(𝑧1, … , 𝑧𝑄) 

(1) 
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The current study considers that the function 𝑌 is the objective function explained previously 

in Chapter 2, and the parameters 𝑧1, … , 𝑧q, . . , 𝑧𝑄 are the kinetic models’ parameters listed in the 

Appendix. The first evaluation includes all the parameters simultaneously, and the second 

evaluation considers independently the parameters involved in ethanol and succinic acid 

production. Eq. (2) shows how the variance of 𝑌 is split. 

𝑉(𝑌) =  ∑ 𝑉𝑞

𝑄

q=1

+ ∑ 𝑉𝑞𝑏 + ⋯+

1≤𝑞<𝑏≤𝑄

𝑉1,..,𝑞,…,𝑄 

(2) 

The values of 𝑉𝑞, 𝑉𝑞𝑏, 𝑉1,⋯,q,⋯,Q symbolize the individual variance of 𝑓𝑞 , 𝑓𝑞𝑏 , 𝑓1,⋯,q,⋯,Q 

respectively. Eq. (3) shows how the parameter 𝑧q’s first-order sensitivity index is calculated. 

𝑆̂𝑞 =
𝑉̂𝑞

𝑉̂
 

(3) 

The first-order sensitivity index allows to rank and select from all parameters the most sensitive 

ones depending on the individual importance of their contribution in changing the variance of the 

evaluated function. Therefore, the main effect of variating the parameter 𝑧𝑞 on the output value 𝑌 

is measured. Furthermore, the total sensitivity index for the parameter 𝑧𝑞 is calculated as Eq. 4 

denotes. 

𝑆̂𝑇𝑞 = 1 −
𝑉̂−𝑞

𝑉̂
 

(4) 

The total sensitivity index evidences the sum of all the effects involving the parameter 𝑧𝑞 since 

𝑉̂−𝑞 is the sum of all variance terms that do not include this parameter. 

An improvement of the standard Sobol’s method was initially presented by Homma & Saltelli 

(1996) and completed some years later by one of the original authors (Saltelli, 2002). The main 
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improvement of this method was to reduce its computational effort. However, since the current 

case study involves highly non-linear functions and complex bio-kinetic models, a more efficient 

approach is required. 

The Sobol’ indices to be calculated in this study follow the efficient computational method for 

global sensitivity analysis developed and tested by Wu et al. (2011) which is an improvement of 

the method developed by Homma & Saltelli (1996; Saltelli, 2002). This method reduces 

computational effort by averaging the results of the evaluated functions and uses those points as 

data which increases the size of the original sample (Wu et al, 2011). 

3.2 Sensitivity indices calculation methodology 

Using the previously defined single objective function, the first and total sensitivity indices are 

calculated for 𝑄 parameters. The algorithm is composed of the following steps: 

1) Define the sample dimension N for the input parameters, and for each parameter define an 

uncertainty class. Class 1 correspond to 5% of change, and class 2 to 20% of change with 

respect to its default value. 

2) Build two random matrices, 𝑴𝟏 and  𝑴𝟐, of dimensions 𝑁 × 𝑄. The first matrix will be 

known as the ‘sampling’ and the second the ‘re-sampling’ matrix. 

𝑴𝟏 = [

𝑧11 ⋯ 𝑧1𝑞 ⋯ 𝑧1𝑄

⋮ ⋮ ⋮
𝑧𝑁1 ⋯ 𝑧𝑁𝑞 ⋯ 𝑧𝑁𝑄

]                  𝑴𝟐 = [

𝑧11
′ ⋯ 𝑧1𝑞

′ ⋯ 𝑧1𝑄
′

⋮ ⋮ ⋮
𝑧𝑁1

′ ⋯ 𝑧𝑁𝑞
′ ⋯ 𝑧𝑁𝑄

′
] 

 

3) Generate a matrix 𝑵𝒒 formed by all the columns of matrix 𝑴𝟐, except the column of the 

𝑧q parameter, which is pulled from 𝑴𝟏. Consecutively, generate another matrix 𝑵𝑻𝒒 

formed with all columns of 𝑴𝟏 and with the column of the 𝑧𝑞
′  parameter, pulled from 𝑴𝟐. 
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𝑵𝒒 = [

𝑧11
′ ⋯ 𝑧1𝑞 ⋯ 𝑧1𝑄

′

⋮ ⋮ ⋮
𝑧𝑁1

′ ⋯ 𝑧𝑁𝑞 ⋯ 𝑧𝑁𝑄
′

]                  𝑵𝑻𝒒 = [

𝑧11 ⋯ 𝑧1𝑞
′ ⋯ 𝑧1𝑄

⋮ ⋮ ⋮
𝑧𝑁1 ⋯ 𝑧𝑁𝑞

′ ⋯ 𝑧𝑁𝑄

] 

 

4) Evaluate the row vectors with the objective function maintaining constant values for the 

decision variables. Each simulation runs with each sample of parameters from matrices 

𝑴𝟏, 𝑴𝟐, 𝑵𝒒, and 𝑵𝑻𝒒. The values of the objective function are obtained in column vectors 

and are illustrated as: 

𝒚 = 𝑓(𝑀1),            𝒚𝑹 = 𝑓(𝑀2),            𝒚
′ = 𝑓(𝑁𝑞), 𝒚𝑹

′ = 𝑓(𝑁𝑇𝑞) 

5) Finally, the Sobol’s indices are calculated based on scalar products of the aforementioned 

vectors: 

𝑓0 = 
1

2𝑁
 ∑(𝒚 + 𝒚𝑹) 

𝑁

𝑛=1

 
(5) 

𝛾2 = 
1

2𝑁
 ∑(𝒚 ∙ 𝒚𝑹 + 𝒚′ ∙ 𝒚𝑹

′ ) 

𝑁

𝑛=1

 
(6) 

𝑉̂ =  
1

2𝑁
 ∑(𝒚2 + 𝒚

𝑹
2)

𝑁

𝑛=1

− 𝑓̂
0

2
 

(7) 

𝑉̂𝑞 = 
1

2𝑁
 ∑(𝒚 ∙ 𝒚

𝑹
′ + 𝒚

𝑹
∙ 𝒚′)

𝑁

𝑛=1

− 𝛾2 

(8) 

𝑉̂−𝑞 = 
1

2𝑁
∑(𝒚 ∙ 𝒚′ + 𝒚𝑹 ∙ 𝒚𝑹

′ )

𝑁

𝑛=1

− 𝛾2 
(9) 

The algorithm runs three times. First, for evaluating all the parameters simultaneously, 

𝑄𝑡𝑜𝑡𝑎𝑙 = 86. Second, for evaluating the parameters involved in bioethanol production, 

𝑄𝑏𝑖𝑜𝑒𝑡ℎ𝑎𝑛𝑜𝑙 = 49. Third, for evaluating the parameters involved in succinic acid production, 

𝑄𝑠𝑢𝑐𝑐𝑖𝑛𝑖𝑐 𝑎𝑐𝑖𝑑 = 37. 
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3.3 Case Study 1: sensitivity indices calculated simultaneously 

When all 86 parameters are evaluated simultaneously through sensitivity analysis and 

extensive Monte-Carlo simulations, their first and total sensitivity indices show that some 

parameters are relatively insensitive. The insensitive parameters are neglected and their values are 

considered continuous for simplify the stochastic model and reducing the complexity of the 

expensive function. 

The first order and total sensitivity indices of the relevant sensitive parameters are presented 

in Figure 5 & Figure 6, respectively. In brief, 18 kinetic parameters are significantly contributing 

with uncertainty on the cash flow of the biorefinery. Also, the results evidence that a highest 

uncertainty is introduced by the parameters involved in enzymatic hydrolysis and fermentation of 

sugars for succinic acid production. 

 

Figure 5: First order sensitivity indices of cash flow calculated simultaneously 
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This result is expected when all the parameters are evaluated simultaneously. Succinic acid has 

a higher price than ethanol in the market, and a higher cost of separation. Consequently, the 

sensitivity analysis is alerting that when considering operational level uncertainty, succinic acid 

production will have a leading role in the multiproduct biorefinery optimization problem because 

its bio-kinetic model’s parameters introduce higher uncertainty. On the other hand, the sensitivity 

analysis shows low sensitivity in the parameters from simultaneous hydrolysis and co-fermentation 

of bioethanol. For optimizing the biorefinery (Chapter 4) 𝐻 = 18 is considered for this case 

scenario. 

 

Figure 6: Total sensitivity indices of cash flow calculated simultaneously 

Figure 5 & Figure 6 show that in the enzymatic hydrolysis of sugars for succinic acid 

production, the conversion rate of cellulose to cellobiose is an important step in the reaction 

mechanism and a possible rate limitting step in the reaction pathway. Also, high sensitivity in αsa, 

K1r sa, Ea sa and E1 max sa insinuate that the competition in glucose consumption between formic acid 
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and succinic acid production is significant and determinant in the profitability of the analyzed 

renewable energy business. Thus, adequate operational conditions will minimize the risk of 

glucose conversion to formic acid and increases succinic acid production. In other words, increase 

the profitability of the biorefinery due to the minimization of undesired products. Since ethanol 

has a lower value in the market, three parameters appear to be significant sources of uncertainty. 

During simultaneous hydrolysis and co-fermentation for ethanol production only the enzymatic 

hydrolysis stage contributes with uncertainty. 

3.4 Case Study 2: sensitivity indices calculated per product pathway 

Evaluating the kinetic parameters independently for each product aims to treat each process as 

an autonomous section of the biorefinery whose uncertainty requires to be considered individually. 

In the following evaluation, the sensitivity analysis is done first for the 49 kinetic parameters 

related to bioethanol production and later for the next 37 parameters present in the kinetic model 

of succinic acid production. As in the previous evaluation, the obtained first and total sensitivity 

indices show that some parameters are relatively insensitive. However, since the evaluation is run 

independently, bioethanol’s kinetic parameters have a higher contribution than before. 

After extensive Monte-Carlo simulations and mathematical operations it is found that from 49 

parameters present in bioethanol production, 8 parameters arise to be sensitive. Similarly, from 37 

parameters that conform the kinetic model of succinic acid production, 10 parameters appear to be 

sensitive. This result shows a more distributed uncertainty which intends to avoid the bias from 

evaluating all the parameters simultaneously and will accurately adjust to changes in the objective 

function. For optimizing the biorefinery (Chapter 4) an 𝐻 = 8 + 10, or 𝐻 = 18 is considered for 

this case scenario. Figure 7 & Figure 8 present the first order and total sensitivity indices for 
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bioethanol, and Figure 9 & Figure 10 show the first order and total sensitivity indices for succinic 

acid production. 

 

Figure 7: First order sensitivity indices of cash flow calculated for bioethanol acid production 

 

   

Figure 8: Total sensitivity indices of cash flow calculated for bioethanol production 

From Figure 7 & Figure 8, results indicate that in simultaneous saccharification and co-

fermentation for ethanol production, the hydrolisis stage presents more sensitive parameters (7 out 

of 8). The sobol indices of parameters K1r, E1 max, K1IXy and K1ad, who have a positive effect in the 

production of cellobiose from cellulose suggest that this reaction is important in the production of 
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ethanol since their indices’ value is high. The cellulose to cellobiose reaction can be considered as 

a bottle neck in the reaction pathway. On the other hand, only one factor was identified sensitive 

in the co-fermentation stage. αef, the weighing factor for glucose consumption, shows that for the 

cell growth, the consumption of glucose is a key factor in ethanol production. 

 

Figure 9: First order sensitivity indices of cash flow calculated for succinic acid production 

 

 

Figure 10: Total sensitivity indices of cash flow calculated for succinic acid production 
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Figure 9 & Figure 10 are consistent with the sensitive parameters obtained when all the 

parameters are evaluated simultaneously. The parameters αsa, K1r sa, K1IXy sa, E1 max sa and Ea sa, 

similarly like in hydrolysis for ethanol production, point out the importance in cellobiose 

generation. The conversion of cellulose to cellobiose has again an important role in the reaction 

mechanism. In succinic acid fermentation, µm,sg, αFA, βFA, and βSA, show high sensitivity. These 

parameters show that succinic acid production and formic acid production compete between each 

other in glucose consumption. Therefore, the proper conditions will reduce formic acid, and 

increase succinic acid which translates in higher profitability of the biorefinery. 
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4. STOCHASTIC RBF ALGORITHM FOR GLOBAL OPTIMIZATION 

4.1 Literature Review 

Global optimization problems of expensive functions hold the features of non-linearity, non-

convexity and possess substantial local optima solutions. Engineering is a field where surrogate 

models have helped to achieve optimization requirements, particularly in n-dimensional problems 

that involve complex simulations. The optimization strategies that take advantage of surrogate 

models can be classified in three main groups. The first strategy, traditional sequential approach, 

requires a quite large number of sample points. The surrogate model is optimized once fitted. The 

second approach uses a validation or optimization loop which decides resampling or remodeling 

if defined criterion are not met or accuracy improvement is needed. The third strategy obtains the 

optimal point by generating guided adaptive sampling points (Wang & Shan, 2007). A previous 

work in global optimization of complex bioprocesses took advantage of surrogate models for 

different dynamic optimization problems in which optimal operating conditions were searched. 

After comparing the results with other metaheuristic approaches, the author concludes that 

surrogate model-based optimization requires less function evaluations (Egea, 2008). 

As a form of surrogate or meta-model, radial basis functions (RBF) have a wide variety of 

applications in optimization problems. Its multivariable approximation provides valuable 

properties. Literature indicates that different types of RBF can converge when seeking the global 

optima of expensive functions without requiring vast assumptions, and it concludes that this 

method is similar to a statistical global optimization approach (Gutmann, 2001). Furthermore, a 

RBF expansion has been employed for approximating the numerical solution of weakly singular 

Volterra integral equations, demonstrating its capability to simplify complex functions (Galperin 

& Kansa, 2002). A more elaborated global optimization methodology using RBF was developed 
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by Regis & Shoemaker (2007a, 2009). The metric stochastic response surface framework studied 

the calibration of ground water bioremediation parameters by minimizing the total squared residual 

error. Even though several studies have addressed global optimization using surrogate modelling, 

none of them have optimized operational variables while simulating uncertainty. The present work 

implements a stochastic RBF algorithm for optimizing a multiproduct biorefinery modelled under 

two different approaches of uncertainty at operational level. 

4.2 Optimization objective function considering uncertainty 

When sources of uncertainty are introduced to the renewable energy business model, the 

individual objective function, as presented in Figure 4, can be written in the form of Equation 10. 

The individual objective function is evaluated stochastically 𝐷 times the population of uncertain 

parameters is generated. 

𝑌𝑖 = 𝑐𝑇𝑥 + 𝐸𝑠[𝑓(𝑥, Θ𝑖ℎ)] (10) 

 

Constraints: 

𝑤(𝑥) = 0 (11) 

𝑧(𝑥) ≤ 𝑑𝑙 (12) 

Θ𝑖
𝐿𝐵 ≤ Θ𝑖 ≤ Θ𝑖

𝑈𝐵 (13) 

 

The objective function that considers uncertainty, has a deterministic term 𝑐𝑇𝑥, where 

𝑐𝑇 represents a constant vector and 𝑥 the decision variable vector. Uncertainties are deemed in the 

term 𝐸𝑠[𝑓(𝑥, 𝜃ℎ)] which is the expected value representing uncertainty as a function of the 

decision variables, 𝑥, and uncertain parameters, Θℎ. For limiting the individual objective function, 

the vectors 𝑤(𝑥) and 𝑧(𝑥) are the set of equality and inequality constraints, respectively. 
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The uncertain parameters matrix, Θ𝑖ℎ, is generated using a sampling technique, e.g. Latin 

Hypercube Sampling. The dimension of the matrix is 𝐷 × 𝐻, where 𝐷 is the number of individual 

simulations required to obtain a representative uncertain population and 𝐻 is the total number of 

uncertain parameters. 

𝚯𝒊𝒉 =

[
 
 
 
 
𝜃11 ⋯ 𝜃1ℎ ⋯ 𝜃1𝐻

⋮ ⋮ ⋮
𝜃𝑖1 ⋯ 𝜃𝑖ℎ ⋯ 𝜃𝑖𝐻

⋮ ⋮ ⋮
𝜃𝐷1 ⋯ 𝜃𝐷ℎ ⋯ 𝜃𝐷𝐻]

 
 
 
 

 

 

Figure 11 shows how the optimization criteria is defined. Once the 𝐷 simulations run, a normal 

distribution of the results is expected for a single set of decision variables. In this distribution, the 

population’s standard deviation, 𝜎𝑖, and the 2.5th percentile are calculated. The expensive function, 

including uncertainty, to be maximized is the 2.5th percentile of the normal distribution generated. 

The best set of decision variables will be the ones that obtain the highest cash flow after tax value. 

By stablishing the aforementioned statistical selection of decision variables, technological risk 

minimization is accounted in the optimization problem since the lower bound of the results is 

maximized. 

 

Figure 11: Risk management definition for the optimization problem 
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Taking advantage of the optimization methodology developed by Regis & Shoemaker (2007a; 

2009) a parallel stochastic RBF algorithm is utilized. The expensive function in which the global 

minima will be searched, is written in the following form: 

𝑚𝑎𝑥 𝑓(𝑥), subject to 𝒙𝒈
𝒍 ≤ 𝒙𝒈 ≤ 𝒙𝒈

𝒖 (14) 

 

Where, 𝒙𝒈
𝒍  and 𝒙𝒈

𝒖 are vectors that contain the lower and upper bound values of the decision 

variables of an expensive n-dimensional function. The interest is to maximize the 2.5th percentile. 

The expensive stochastic objective function is written in Equation 15. 

𝑓(𝑥) =
∑ 𝑌𝑖

𝐷
𝑖=1

𝐷
− 𝑧𝑐 ∙ 𝜎𝑖 

(15) 

 

4.3 Radial Basis Function 

The present study takes advantage of a RBF interpolation as the response surface or surrogate 

model. The RBF’s parameters are updated continuously in each iteration with a point or group of 

points evaluated in the expensive function. From Powell’s work (1992), the model fitting starts 

with 𝐽 different input points, 𝑥1, 𝑥2, … , 𝑥𝑗 , … , 𝑥𝐽, 𝑥 𝜖 ℝ𝑑, where their function values are known, 

𝑓(𝑥1),… , 𝑓(𝑥𝑗), … , 𝑓(𝑥𝐽). The interpolation can be written in the general form presented in 

Equation 16. 

𝑠(𝑥) = ∑𝜆𝑗𝛾(‖𝑥 − 𝑥𝑗‖) + 𝑝(𝑥)

𝐽

𝑗=1

, ℝ𝑑 

(16) 

Where, ‖ ∙ ‖ is the Euclidean norm, 𝜆𝑗  𝜖 ℝ for 𝑗 = 1,… , J. The current algorithm employs a 

linear polynomial tail, 𝑝(𝑥), and has a cubic form, 𝛾(𝑟) = 𝑟3. Other forms of 𝛾(𝑟) such as, linear, 

thin plate spline, Gaussian, inverse multi-quadric and multi-quadric are available as well (Powell, 
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1992). Later, a matrix Γ 𝜖 ℝ𝐽 × 𝐽 by: Γ𝑗𝑘 ∶= 𝛾(‖𝑥𝑗 − 𝑥𝑘‖), j, k = 1,… , J is denoted. 

Simultaneously, a matrix P 𝜖 ℝ𝐽 × (𝑑+1) is defined, and its 𝑗𝑡ℎ row is represented as [1, 𝑥𝑗
𝑇]. 

Equation 17 presents the system that needs to be solved for obtaining the fitted cubic RBF. 

(
Γ 𝑃
𝑃𝑇 0

) (
𝜆
𝑐
) = (

𝐹
0(𝑑+1)

) 
(17) 

Where, 𝐹 = (𝑓(𝑥1),… , 𝑓(𝑥𝐽))
𝑇 , 𝜆 = (𝜆1, … , 𝜆𝐽), 𝜖 , ℝ

𝐽, and , c = (c1, … , c𝑑+1) ϵ ℝ
𝑑+1 

represents the coefficients of the linear polynomial tail, 𝑝(𝑥). Notice that the coefficient matrix is 

invertible only if , 𝑟𝑎𝑛𝑘(𝑃) = 𝑑 + 1 (Powell, 1992; Regis & Shoemaker, 2007a). Therefore, the 

condition 𝑛 ≥ 𝑑 + 1 is mandatory. 

4.4 Global Optimization Algorithm ParLMSRBF-R 

For optimizing the expensive stochastic objective function, a parallel metric stochastic RBF 

algorithm is employed. The special case of the algorithm is the Parallel Local Metric Stochastic 

Radial Basis Function with Restart (ParLMSRBF-R) (Regis & Shoemaker, 2007a; Regis & 

Shoemaker, 2009). The algorithm seeks for the global maxima by guiding the search of optimal 

points in the expensive function until stop criteria is met, a complete exploration in the solution 

domain is guaranteed since the algorithm starts from scratch whenever it infers it has reached local 

optima. Likewise, it takes advantage of parallel computing evaluations, so multiple points are 

generated for simultaneous evaluations. 

The algorithm runs following a Master-Worker criteria for parallelization. It is assumed that 𝑃 

processors are available and that two function evaluations take the same amount of time. The 

expensive function is evaluated with a set of initial points generated from a space-filling 

experimental design. With the initial results of the expensive function evaluations, the response 
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surface model, e.g. RBF, is fitted in each iteration. The obtained model is evaluated in 𝑃 different 

points, which are obtained from a group of candidate points, utilizing 𝑃 procesors. Thus, there will 

be running 𝑃 worker plus the master task (𝑃 + 1). For starting the algorithm, the expensive 

stochastic objective function is defined as a closed hypercube 𝔇 = [𝑎, 𝑏] ⊆ ℝ𝑑; a number of 

processors, 𝑃, is defined; a particular response surface model, e.g., RBF, is designed as the 

surrogate; an initial set of evaluation points, 𝒥 = {𝑥1, 𝑥2, … , 𝑥𝑛𝑜
}, is generated based on a space-

filling experimental design (𝑛𝑜 = 𝑘 ∙ 𝑃 and 𝑘 is a positive integer); the number of candidate points 

per iteration, 𝑡, is set (𝑡 ≫ 𝑃), and a maximum number of expensive function evaluations, 𝑁𝑚𝑎𝑥. 

When 𝑁𝑚𝑎𝑥 expensive function simulations are completed (𝑛 = 𝑁𝑚𝑎𝑥), the algorithm stops. From 

the set of 𝑛 previously evaluated points, 𝒜𝑛 = {𝑥1, 𝑥2, … , 𝑥𝑛}, the outputs are points at which the 

stochastic objective function is minimized. It also represent the optimal operating conditions for 

the biorefinery (Regis & Shoemaker, 2009). The ParLMSRBF-R’s steps are described as follows: 

i. Initialize the master and the 𝑃 worker tasks while an initial experiment 𝒥 is generated. 

ii. The master distributes uniformly the initial points generated in (i) to the 𝑃 workers. Each 

worker evaluates the expensive simulation model at the given points, the results return to 

the master which waits until all workers are done with their tasks. For each result, the 

master updates the best value found. 

iii. The master initializes the algorithm parameters (Table 1 shows the parameter values 

employed in this work), and 𝑛 = 𝑘 ∙ 𝑃, 𝒜𝑛 = 𝒥 are set. While the termination criteria has 

not being met, the algorithm proceeds as described, 

a. The master fits or updates the surrogate model 𝑠𝑛(𝑥), e.g., RBF, using the data points 

generated in (i) and (ii), referred as ℬ𝑛 = {(𝑥, 𝑓(𝑥)): 𝑥 ∈ 𝒜𝑛} = {(𝑥𝑖, 𝑓(𝑥𝑖)): 𝑖 =

1, … , 𝑛}. 
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b. A set of 𝑡 random candidate points, Ω𝑛 = {𝑤𝑛,1, … , 𝑤𝑛,𝑡}, is generated following a 

probability distribution, e.g., random perturbations, in ℝ𝑑. These points are normally 

distributed with zero mean and covariance matrix σ𝑛
2𝐼𝑑, where σ𝑛 = 𝜌𝑛ℓ(𝔇). The 

length of one side of the hypercube is denoted as ℓ(𝔇) where the condition 

inf𝑛≥𝑛𝑜
𝜌𝑛 > 0 is mandatory; σ𝑛 is defined as the step size. 

c. The master selects a set 𝔉𝑛 = {𝑥𝑛+1, … , 𝑥𝑛+𝑃} of 𝑃 evaluation points from the 𝑡 

candidate points generated in Ω𝑛 using the information from the fitted and/or updated 

response surface model 𝑠𝑛(𝑥) and the ℬ𝑛 data points. The master distributes evenly to 

the 𝑃 workers, the 𝑃 selected evaluation points. 

d. Every worker evaluates the expensive simulation model at the given points and the 

results are sent back to the master task. 

e. For all the results returned by each worker, the master waits until all workers finish 

their tasks and updates the best function value obtained. Finally, the master updates the 

algorithm parameters, including the probability distribution ones. 𝒜𝑛+𝑃 ∶= 𝒜𝑛 ∪ 𝔉𝑛 

is set and 𝑛 ∶= 𝑛 + 𝑃 reset. 

End. 

iv. The best solution found, 𝑥𝑁𝑚𝑎𝑥
∗, is returned. 

The algorithm achieves exploitation by keeping track of the consecutive failed and successful 

synchronous parallel iterations, denoted by 𝐶𝑓𝑎𝑖𝑙 and 𝐶𝑠𝑢𝑐𝑐𝑒𝑠𝑠 respectively. Whenever 𝐶𝑓𝑎𝑖𝑙 or 

𝐶𝑠𝑢𝑐𝑐𝑒𝑠𝑠 exceed a predefined tolerance value, 𝒯𝑓𝑎𝑖𝑙 or 𝒯𝑠𝑢𝑐𝑐𝑒𝑠𝑠, the step size σ𝑛, from (b) of (iii), 

reduces by half or doubles respectively. The recorded values of 𝐶𝑓𝑎𝑖𝑙 and 𝐶𝑠𝑢𝑐𝑐𝑒𝑠𝑠 are reset to zero, 

and the algorithm keeps running. When the algorithm exceeds a maximum imposed limit of failed 
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synchronous parallel iterations 𝔐𝑓𝑎𝑖𝑙, different from 𝐶𝑓𝑎𝑖𝑙, the algorithm evidences local minima, 

and the entire algorithm restarts from scratch. In other words, it restarts from (i) in order to prevent 

the bias from the previous evaluated points employed for fitting 𝑠𝑛(𝑥) (Regis & Shoemaker, 2009). 

Table 1: Parameter values for ParLMSRBF-R for global optimization 

Parameter Value 

Ω𝑛, number of candidate points for each parallel 

iteration. 
500 𝑑 

Υ, weight pattern. 〈0.3, 0.5, 0.8, 0.95〉 

κ, number of weights in Υ. 4 

σ𝑛, initial step size. 0.2 ℓ(𝔇) 

σ𝑚𝑖𝑛, minimum step size. (0.1) (
1

2
)
6

ℓ(𝔇) 

𝛿𝑡𝑜𝑙, radius tolerance. 0.001ℓ(𝔇) 

𝒯𝑠𝑢𝑐𝑐𝑒𝑠𝑠, threshold parameter for deciding when 

to increase the step size. 
3 

𝒯𝑓𝑎𝑖𝑙, tolerance parameter for deciding when to 

reduce the step size. 
max ([

𝑑

𝑃
] , [

|κ|

𝑃
]) 

𝔐𝑓𝑎𝑖𝑙, maximum failure tolerance parameter. 5 𝒯𝑓𝑎𝑖𝑙 
 

Moreover, the algorithm explores close to the best solution neighborhood in n-dimensions. The 

function evaluation point selection is done following two scored criteria. The estimated value 

generated by the response surface model (response surface criterion), and the minimum distance 

from previously evaluated points (distance criterion). The two criteria might conflict; therefore, it 

is required to implement a weighted score. Each candidate point is given a score between 0 and 1 

in both criteria, from which a more desirable point is the one whose score is closer to 0. The 

standard of a good candidate point intents to have a low estimated function value and be far away 

from the previously evaluated point (Regis & Shoemaker, 2007a). The detailed steps implemented 

in (c) of (iii) can be found in (Regis & Shoemaker, 2009). 
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In summary, by approximating an expensive simulation model, this stochastic optimization 

strategy permits to reduce computational effort with a guided search in the decision variables 

domain while performing evaluations in parallel. Figure 12 presents a scheme of the ParLMSRBF-

R global optimization strategy. 

 

Figure 12: ParLMSRBF-R global optimization strategy 
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5. RESULTS FOR GLOBAL OPTIMIZATION 

5.1 Case Study 1: ParLMSRBF-R method (uncertainty simultaneously calculated) 

For maximizing the expensive objective function previously defined (2.5th percentile of 𝐷 =

100 stochastic simulations) under uncertainty simultaneously calculated, a Parallel Local Metric 

Stochastic Radial Basis Function with Restart (ParLMSRBF-R) algorithm is employed. The code 

is available in Matlab share and was developed by Regis & Shoemaker (2007a, 2009). The 

previous mentioned method applies a stochastic strategy that searches in the solution dominium 

guided better solutions with the help of a fitted and continuously updating RBF. The optimization 

method runs three times with different number of 𝑃 new samples, the input values for each 

maximization evaluation are shown in Table 2. 

Table 2: Evaluations with uncertainty simultaneously calculated and ParLMSRBF-R 

Scenario 
Inputs 

𝑁𝑚𝑎𝑥 Ntrials New Samples, 𝑃 

Evaluation 1 80 1 1 

Evaluation 2 80 1 2 

Evaluation 3 80 1 4 

 

The maximum number of expensive function evaluations, 𝑁𝑚𝑎𝑥, set is 80 and only one trial. 

The results obtained for each run are presented in Figure 13, Figure 14 and Figure 15. 

The first evaluation, presented in Figure 13, shows convergence at the 46 expensive function 

simulation. In this case, the algorithm restarts after the 56 expensive simulations, once σ𝑛 cannot 

reduce more and local optima is identified. 
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Figure 13: Convergence profile first evaluation, ParLMSRBF-R with uncertainty 

simultaneously calculated 

 

 

Figure 14: Convergence profile second evaluation, ParLMSRBF-R with uncertainty 

simultaneously calculated 
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Figure 15: Convergence profile third evaluation, ParLMSRBF-R with uncertainty 

simultaneously calculated 

 

The second and third evaluation, Figure 14 and Figure 15, respectively, show convergence at 

the 54 expensive function simulation in both cases. For both evaluations, the algorithm does not 

restart, and parallel computing or the generation of multiple points per iteration is employed with 

𝑃 = 2 and 𝑃 = 4, respectively. The third evaluation obtains the best operating conditions that will 

provide the highest profitability with uncertainty simultaneously calculated while minimizing 

technological risk. 

5.2 Case Study 1: Comparative analysis with Monte-Carlo (uncertainty simultaneously 

calculated) 
 

In order to evaluate the efficacy of the global optimization method used, the obtained optima 

points are compared with results from Monte-Carlo simulation (MC) where 80 randomly generated 

points are tested following the procedure presented by Geraili et al. (2016). The two points that 
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provide the best output value are selected and compared with the points obtained with 

ParLMSRBF-R. Table 3 presents the best operational points. 

Table 3: Best operating points (uncertainty simultaneously calculated): ParLMSRBF-R and 

Monte-Carlo simulation 

  Best operating points 

Scenario 

T, hydrolisis 

for succinic 

acid, [°C] 

Enzyme loading 

ratio 

[g enzime/ kg 

cellulose] 

Sugar allocation 

(sugar to 

ethanol) 

T, hydrolisis and 

cofermentation for 

ethanol, [°C] 

Evaluation 1 30.66 16.41 0.200 51.57 

Evaluation 2 34.30 15.47 0.200 50.96 

Evaluation 3 37.68 14.36 0.200 52.12 

MC (38) 30.77 14.62 0.223 46.35 

MC (59) 35.12 19.85 0.201 48.07 

 

All five points, three from ParLMSRBF-R and two from MC simulation, are tested under same 

uncertain conditions (𝐷 = 100). From Table 4, and recalling the established criteria from Figure 

11 (direction of improvement and risk management) it is determined that the best points for the 

hypothetical multi-product lignocellulose biorefinery are the operating conditions obtained in the 

third evaluation. 

Table 4: Biorefinery cash flow, 𝐷 = 100 (uncertainty simultaneously calculated) 

Scenario 
Cash flow, USD/h 

2.5th Mean 97.5th 

Evaluation 1 9283.62 9704.00 10124.38 

Evaluation 2 9291.05 9712.7 10134.36 

Evaluation 3 9291.61 9717.99 10144.36 

MC (38) 9130.89 9577.84 10024.79 

MC (59) 9161.81 9634.38 10106.96 

 

However, when analyzing the points, their output results yield closely. Figure 16 & Figure 17 

show a Kruskal-Wallis test of significance in which the best scenario is contrasted with the other 
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ones. MC (38) results are significantly different from the best result. Moreover, the optimal 

temperatures in hydrolysis for succinic acid production, when contrasted with enzyme loading 

ratio, show that in optima less temperature is required when there is higher enzyme loading ratio. 

Also, the optimal points when using ParLMSRBF-R for temperature in simultaneous hydrolysis 

and co-fermentation for bioethanol production agree that the temperature has to increase from its 

original point (48 °C) when uncertainty is introduced. 

 

Figure 16: Kruskal-Wallis analysis for the best scenarios 

 

Finally, Table 5 presents the improvement attained when using the points obtained with the 

ParLMSRBF-R method in contrast to the best point obtained from MC simulation. The results 

show that the implemented framework can improve in 1.76% the profitability of a renewable 

energy business in contrast to conventional methods, such as MC, while reducing the quantity of 

expensive simulation required for optima convergence. The ParLMSRBF-R method is highly 

competitive in terms of convergence since it obtains the optima result with less than three quarters 
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of expensive simulations than MC simulation. Figure 18 shows a comparison between the best 

result obtained (Evaluation 3) with the MC simulation’s evaluated points. The three continuous 

lines represent the 2.5th, mean value and 97.5th percentile of the best scenario. This configuration 

considers technological risk minimization because the worst scenario is maximized, and as a 

consequence the mean and 97.5th percentile are pushed to better values. The normal distribution 

considers 95% of probability or 5% of significance. 

 

Figure 17: Statistical difference analysis for the best scenario (Scenario 3) 

 

Table 5: Scenarios results and improvement with respect the best Monte-Carlo points 

Scenario 
Cash flow, USD Improvement 

Convergence 
2.5th Mean 97.5th 2.5th Mean 97.5th 

Evaluation 1 9283.6 9704.0 10124.4 1.67% 1.38% 1.09% Sim. 46 

Evaluation 2 9291.1 9712.7 10134.4 1.75% 1.48% 1.20% Sim. 54 

Evaluation 3 9291.6 9718.0 10144.4 1.76% 1.53% 1.31% Sim. 54 

MC (38) 9130.9 9577.8 10024.8 - - - after 80 sim. 
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Figure 18:  Comparative analysis between ParLMSRBF-R best scenario and Monte-Carlo method considering uncertainty 

simultaneously calculated 
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5.3 Case Study 2: ParLMSRBF-R method (uncertainty calculated per product pathway) 

As implemented previously, for maximizing the expensive objective function under 

uncertainty calculated per product pathway (2.5th percentile of 𝐷 = 100 stochastic simulations), a 

Parallel Local Metric Stochastic Radial Basis Function with Restart (ParLMSRBF-R) algorithm is 

employed. Similarly, the optimization method runs three times with different number of 𝑃 new 

samples. The input values for each maximization evaluation are the same as presented in Table 2. 

The maximum number of expensive function evaluations, 𝑁𝑚𝑎𝑥, is 80 and only one trial. The 

results obtained for each evaluation are presented in Figure 19, Figure 20 and Figure 21. 

 

Figure 19: Convergence profile first evaluation, ParLMSRBF-R with uncertainty per product 

pathway 
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Figure 20: Convergence profile second evaluation, ParLMSRBF-R with uncertainty per 

product pathway 

 

 

Figure 21: Convergence profile third evaluation, ParLMSRBF-R with uncertainty per product 

pathway 



41 

 

The first evaluation, presented in Figure 19, shows final convergence at the 71 expensive 

function simulation. In this evaluation, the algorithm restarts after the 48 expensive simulations 

once σ𝑛 cannot reduce more and local optima is identified. This evaluation found its global optima 

after restarting the algorithm from scratch. 

The second and third evaluation, Figure 20 and Figure 21, show convergence at the 65 and 45 

expensive function simulation, respectively. For both evaluations, the algorithm does not restart, 

and parallel computing is used with 𝑃 = 2 and 𝑃 = 4, respectively. The third evaluation provides 

the operating conditions that will generate the highest profitability with uncertainty calculated per 

product pathway. 

5.4 Case Study 2: Comparative analysis with Monte-Carlo (uncertainty calculated per 

product pathway) 
 

For evaluating the method, the previously obtained points are contrasted with results from a 

Monte-Carlo simulation (MC), as mentioned before when uncertainty is simultaneously calculated 

the evaluation follows the procedure presented in Geraili et al. (2016). From 80 randomly selected 

points, the two ones that gave the best output results are selected and compared with the points 

obtained previously in ParLMSRBF-R. Table 6 presents the best five points. From these results, it 

can be noticed that when the uncertain parameters increase in bioethanol production, for 

overcoming this uncertain conditions the algorithm suggest to increase to the highest possible the 

temperature in simultaneous hydrolysis and cofermentation. Since there are less uncertain 

parameters in succinic acid production, the temperature of hydrolysis for succinic acid production 

shows its optima around 31 °C and enzyme loading ratio around 17 g enzyme/kg cellulose. This 

results are consistent for the three optima results obtained with ParLMSRBF-R. 
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Moreover, all the five points obtained, three from ParLMSRBF-R and two from MC 

simulation, are tested under the same uncertain conditions (𝐷 = 100). Table 7 presents the cash 

flow after tax results in which it is concluded that the best points for the hypothetical multi-product 

lignocellulose biorefinery are the operating conditions obtained in the third evaluation. 

Table 6: Best operating points (uncertainty calculated per product pathway): ParLMSRBF-R and 

Monte-Carlo simulation 

  Best operating points 

Scenario 

T, hydrolisis 

for succinic 

acid, [°C] 

Enzyme loading 

ratio 

[g enzime/ kg 

cellulose] 

Sugar allocation 

(sugar to 

ethanol) 

T, hydrolisis and 

cofermentation for 

ethanol, [°C] 

Evaluation 1 31.19 17.49 0.200 53.00 

Evaluation 2 30.26 17.61 0.200 53.00 

Evaluation 3 30.60 16.30 0.200 53.00 

MC (38) 33.83 16.57 0.237 46.21 

MC (77) 31.84 16.18 0.251 47.26 

 

Table 7: Biorefinery cash flow, 𝐷 = 100 (uncertainty calculated per product pathway) 

Scenario 
Cash flow, USD/h 

2.5th Mean 97.5th 

Evaluation 1 9252.90 9729.31 10205.73 

Evaluation 2 9260.91 9731.22 10201.54 

Evaluation 3 9276.87 9729.33 10181.78 

MC (38) 9123.10 9588.86 10054.63 

MC (77) 9120.05 9562.90 10005.75 

 

When analyzing the outputs, it is noticed that their values are close from each other. Figure 22 

& Figure 23 show a Kruskal-Wallis test of significance in which the best scenario is contrasted 

with the other ones. Both MC simulation points result to be significantly different from the best 

result and the results from ParLMSRBF-R. This analysis permits to conclude that the new global 

optimization method is better than MC simulation since its optima results are statistically 
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significant and better when uncertainty calculated per product pathway is simulated in the 

biorefinery.  

 

Figure 22: Kruskal-Wallis analysis for the best scenarios 

 

Figure 23: Statistical difference analysis for the best scenario (Scenario 3) 
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Finally, Table 8 presents the improvement obtained when using the points obtained with the 

ParLMSRBF-R method in contrast to the best point obtained from MC simulation. The results 

show that the implemented framework can improve in 1.69% the profitability in terms of the 2.5th 

percentile of cash flow after tax of the studied biorefinery in contrast with conventional methods, 

such as MC simulation, while reducing the quantity of expensive simulation required for optima 

convergence. The ParLMSRBF-R is highly competitive in terms of convergence since it obtains 

the optima result with less than a half of expensive simulations when compared with MC 

simulation. Moreover, the algorithm appears to require less expensive evaluations when the 

quantity of 𝑃 evaluations increases. 

Figure 24 shows a comparison between the best result obtained (Evaluation 3) with all the MC 

simulation’s points evaluated. The three continuous lines represent the best scenario. This 

configuration considers technological risk minimization because the worst scenario is maximized, 

and as a consequence the mean and 97.5th percentile are pushed to better values. The normal 

distribution considers 95% of probability or 5% of significance. For this particular type of 

uncertainty (calculated per product pathway) the optima operating point is more conservative in 

terms of cash flow and in contrast with the previous evaluation. 

Table 8: Scenarios results and improvement with respect the best Monte-Carlo points 

Scenario 
Cash flow, USD Improvement 

Convergence 
2.5th Mean 97.5th 2.5th Mean 97.5th 

Evaluation 1 9252.90 9729.31 10205.73 1.42% 1.46% 1.50% Sim. 71 

Evaluation 2 9260.91 9731.22 10201.54 1.51% 1.48% 1.46% Sim. 65 

Evaluation 3 9276.87 9729.33 10181.78 1.69% 1.46% 1.26% Sim. 45 

MC (38) 9123.10 9588.86 10054.63 - - - after 80 sim. 
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Figure 24:  Comparative analysis between ParLMSRBF-R best scenario and Monte-Carlo method considering uncertainty per 

product pathway 
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6. CONCLUSIONS AND FUTURE WORK 

The implemented optimization framework for renewable energy processes appears to be 

competitive with traditional procedures, e.g. Monte-Carlo simulation. The algorithm searches for 

the optimal operating conditions using a fitted and continuously updating Radial Basis Function 

without requiring to lose detail in the expensive simulation model. The algorithm selects candidate 

points to be evaluated near the current best solution neighborhood achieving exploration and 

exploitation in the solution domain. Moreover, uncertainties are explored with two different 

approaches, calculated simultaneously and per product pathway. Typically, the first approach is 

commonly used, but the second one aims to be more conservative in terms that the sensitive 

parameters come from each process unit allowing to consider each process independently. Table 

9 presents the comparison of the number of parameters selected in each process section depending 

on the type of uncertainty. Clearly, the uncertainty calculated per product pathway has more 

parameters than when it is simultaneously calculated. Optimal conditions obtained with 

uncertainties calculated per product pathway  intent to anticipate different conditions, not tested 

yet, that might influence the objective function and will be tested during optimization (after 

sensitivity analysis, see Figure 2). 

Table 9: Number of uncertain parameters selected depending on the type of uncertainty 

 
Number of uncertain parameters selected 

Type of uncertainty EHCF SAEH SACF 

Simultaneously 

calculated 
3 8 7 

Calculated per 

product pathway 
8 5 5 
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In terms of computational effort, the optimization algorithm employed requires less expensive 

function evaluations to reach global optima. In fact, ParLMSRBF-R finds optimal points after 54 

expensive simulations when uncertainty is simultaneously calculated and after 45 when 

uncertainty is calculated per product pathway, both cases for the best scenario (Evaluation 3). Also, 

the improvement registered in contrast to the best value achieved with traditional methods, e.g., 

Monte-Carlo simulation, is 1.76% when uncertainty is simultaneously calculated and 1.69% when 

uncertainty is calculated per product pathway. 

Table 10 presents the optimal operating conditions found when uncertainty is simultaneously 

calculated and when calculated per product pathway. The main difference is the temperature 

selected for enzymatic hydrolysis and enzyme loading ratio. Since the first type of uncertainty 

considers more parameters in succinic acid production, apparently for overcoming this condition 

the hydrolysis temperature raises. On the other hand, when less uncertain parameters from succinic 

acid production are introduced less temperature is required and more enzyme required. In the case 

of simultaneous hydrolysis and co-fermentation for ethanol production (EHCF) both cases suggest 

an increase of temperature from the previous one (48 °C) suggested from litterature (Geraili et al., 

2015; Morales-Rodriguez et al., 2012) when uncertainty is introduced. 

Table 10: Best operating conditions for both uncertain conditions 

 
Best operating conditions 

Type of uncertainty 

T, hydrolisis 

for succinic 

acid, [°C] 

Enzyme loading 

ratio, 

[g enzime/ kg 

cellulose] 

Sugar allocation 

(sugar to ethanol) 

T, hydrolisis and 

cofermentation 

for ethanol, [°C] 

Simultaneously 

calculated 
37.68 14.36 0.20 52.12 

Calculated per 

product pathway 
30.60 16.30 0.20 53.00 
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Finally, the new framework and optimization algorithm implemented increases the 

dimensionality of the original problem from 3-dimentional to 4-dimentional, which represents a 

substantial improvement for renewable energy production facilities and encourages to increase the 

produced products for evaluating technological risk. 

For future work, the following ideas can be developed: 

- Increase the quantity of added value chemicals, biofuels or both that a renewable energy 

enterprise has in its portfolio while evaluating technological uncertainty. Increase the 

dimensionality of the problem. 

- Tune the ParLMSRBF-R algorithm’s parameters and explore other types of RBFs for 

improving convergence towards optima. 

- Evaluate the presented framework with other technological problems to evaluate its 

applicability in different businesses. 
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APPENDIX: UNCERTAINTY INPUT IN BIO-KINETIC PARAMETERS 

ID Parameter Units Default value Lower bound Upper bound Section of the process 

1 α - 1 0.8 1.2 EHCF 

2 E1max g-protein/g-substrate 0.06 0.048 0.072 EHCF 

3 E2max g-protein/g-substrate 0.01 0.008 0.012 EHCF 

4 K1ad g-protein/g-substrate 0.4 0.32 0.48 EHCF 

5 K2ad g-protein/g-substrate 0.1 0.08 0.12 EHCF 

6 K1r g/(mg.h) 22.3 17.84 26.76 EHCF 

7 K1IG2 g/kg 0.015 0.012 0.018 EHCF 

8 K1IG g/kg 0.1 0.08 0.12 EHCF 

9 K1IXy g/kg 0.1 0.08 0.12 EHCF 

10 K2r g/(mg.h) 7.18 5.744 8.616 EHCF 

11 K2IG2 g/kg 132 105.6 158.4 EHCF 

12 K2IG g/kg 0.04 0.032 0.048 EHCF 

13 K2IXy g/kg 0.2 0.16 0.24 EHCF 

14 K3r h-1 285.5 228.4 342.6 EHCF 

15 K3M g/kg 24.3 19.44 29.16 EHCF 

16 K3IG g/kg 3.9 3.12 4.68 EHCF 

17 K3IXy g/kg 201 160.8 241.2 EHCF 

18 Ea cal/mol -5540 -6648 -4432 EHCF 

19 μm,g h-1 0.31 0.2945 0.3255 EHCF 

20 K4g g/kg 1.45 1.3775 1.5225 EHCF 

21 K4Ig g/kg 200 190 210 EHCF 

22 CEtmax,g g/kg 57.2 54.34 60.06 EHCF 

23 CEtx,g g/kg 28.9 27.455 30.345 EHCF 

24 μm,xy h-1 0.1 0.095 0.105 EHCF 

25 K5xy g/kg 4.91 4.6645 5.1555 EHCF 

26 K5Ixy g/kg 600 570 630 EHCF 

27 CEtmax,xy g/kg 56.3 53.485 59.115 EHCF 

28 CEtx,xy g/kg 26.6 25.27 27.93 EHCF 

29 α - 0.65 0.6175 0.6825 EHCF 

30 qsmax,g g/(g.h) 10.9 10.355 11.445 EHCF 

31 K7g g/L 6.32 6.004 6.636 EHCF 

32 K7Isg g/L 186 176.7 195.3 EHCF 

33 CEtis,g g/L 42.6 40.47 44.73 EHCF 

34 CEtmax,g g/L 75.4 71.63 79.17 EHCF 

35 qsmax,xy g/(g.h) 3.27 3.1065 3.4335 EHCF 

36 K8xy g/L 0.03 0.0285 0.0315 EHCF 

37 K8Isxy g/L 600 570 630 EHCF 

38 CEtis,xy g/L 53.1 50.445 55.755 EHCF 

39 CEtmaxsxy g/L 81.2 77.14 85.26 EHCF 

40 qpmax,g g/(g.h) 5.12 4.864 5.376 EHCF 

41 K9g g/L 6.32 6.004 6.636 EHCF 

42 K9Ipg g/L 186 176.7 195.3 EHCF 

43 CEtip,g g/L 42.6 40.47 44.73 EHCF 
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ID Parameter Units Default value Lower bound Upper bound Section of the process 

44 CEtimaxp,g g/L 75.4 71.63 79.17 EHCF 

45 qpmax,xy g/(g.h) 1.59 1.5105 1.6695 EHCF 

46 K10xy g/L 0.03 0.0285 0.0315 EHCF 

47 K10Ipxy g/L 600 570 630 EHCF 

48 CEtip,xy g/L 53.1 50.445 55.755 EHCF 

49 CEtmaxp,xy g/L 81.2 77.14 85.26 EHCF 

50 αsa - 1 0.8 1.2 SAEH 

51 E1max sa g-protein/g-substrate 0.06 0.048 0.072 SAEH 

52 E2max sa g-protein/g-substrate 0.01 0.008 0.012 SAEH 

53 K1ad sa g-protein/g-substrate 0.4 0.32 0.48 SAEH 

54 K2ad sa g-protein/g-substrate 0.1 0.08 0.12 SAEH 

55 K1r sa g/(mg.h) 22.3 17.84 26.76 SAEH 

56 K1IG2 sa g/kg 0.015 0.012 0.018 SAEH 

57 K1IG sa g/kg 0.1 0.08 0.12 SAEH 

58 K1IXy sa g/kg 0.1 0.08 0.12 SAEH 

59 K2r sa g/(mg.h) 7.18 5.744 8.616 SAEH 

60 K2IG2 sa g/kg 132 105.6 158.4 SAEH 

61 K2IG sa g/kg 0.04 0.032 0.048 SAEH 

62 K2IXy sa g/kg 0.2 0.16 0.24 SAEH 

63 K3r sa h-1 285.5 228.4 342.6 SAEH 

64 K3M sa g/kg 24.3 19.44 29.16 SAEH 

65 K3IG sa g/kg 3.9 3.12 4.68 SAEH 

66 K3IXy sa g/kg 201 160.8 241.2 SAEH 

67 Ea sa cal/mol -5540 -6648 -4432 SAEH 

68 μm,sg h-1 1.324 1.2578 1.3902 SACF 

69 KSg g/kg 1.123 1.0669 1.1792 SACF 

70 KSIg g/kg 88.35 83.9325 92.7675 SACF 

71 PCrit,g g/kg 17.23 16.3685 18.0915 SACF 

72 i - 1.3 1.235 1.365 SACF 

73 Kd h-1 0.01 0.0095 0.0105 SACF 

74 Yi g/g 0.765 0.7268 0.8033 SACF 

75 YSA g/g 1.31 1.2445 1.3755 SACF 

76 YAA g/g 0.999 0.9491 1.049 SACF 

77 YFA g/g 1.532 1.4554 1.6086 SACF 

78 YLA g/g 0.999 0.9491 1.049 SACF 

79 msg h-1 0.061 0.058 0.0641 SACF 

80 αSA - 0.626 0.5947 0.6573 SACF 

81 βSA h-1 0.355 0.3373 0.3728 SACF 

82 αAA - 0.626 0.5947 0.6573 SACF 

83 βAA h-1 0.124 0.1178 0.1302 SACF 

84 αFA - 0.665 0.6318 0.6983 SACF 

85 βFA h-1 0.105 0.0998 0.1103 SACF 

86 βLA h-1 0.21 0.1995 0.2205 SACF 
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