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ABSTRACT 

The goal of the research was to synthesize magnetic polymeric nanoparticles 

(MPNPs) under 100 nm in diameter, for future drug delivery applications. The thesis is 

divided into two main sections. In the first section, a quantitative, and comprehensive 

description of the top-down synthesis techniques available for poly(lactide-co-glycolide) 

(PLGA) and magnetic polymeric nanoparticles (MPNPs) formation is provided, as well 

as the techniques commonly used for nanoparticle characterization. In the second part, a 

novel way to form MPNPs is presented. The emulsion evaporation method was selected 

as the method of choice to form poly(lactide-co-glycolide) (PLGA) nanoparticles with 

entrapped magnetite (Fe3O4) in the polymeric matrix, in the presence of sodium dodecyl 

sulfate (SDS) as a surfactant. The magnetite, a water soluble compound, was surface 

functionalized with oleic acid to ensure its efficient entrapment in the PLGA matrix. The 

inclusion of magnetite with oleic acid (MOA) into the PLGA nanoparticles was 

accomplished in the organic phase. Synthesis was followed by dialysis, performed to 

eliminate the excess SDS, and lyophilization. The nanoparticles obtained ranged in size 

between 38.6 nm and 67.1 nm for naked PLGA nanoparticles, and from 78.8 to 115.1 nm 

for MOA entrapped PLGA nanoparticles. The entrapment efficiency ranged from 57.36% 

to 91.9%. The SDS remaining in the nanoparticles varied from 51.02% to 88.77%.  
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CHAPTER 1. INTRODUCTION 

January 2005, FDA approves ABRAXANE® for breast cancer treatment, the first 

nanoparticle system for drug delivery [1, 2]. This system, based on nanoparticle 

Albumin-bound (nab®) Paclitaxel, showed better and faster rate of shrinking tumors in 

460 patients with metastic breast cancer, almost double compared with solvent-based 

Taxol®. The application of nanotechnology to the health market is significant, 

considering the extensive research developed in this area during the last 20 years.  

A basic requirement for the use of nanoparticles and other synthetic systems as 

drug delivery systems for human therapy is their biodegradability and biocompatibility. 

Another challenge for the use of nanoparticles as drug delivery systems is to minimize 

their side effects in the biological system in which dispersed. A controlled size 

distribution (monodisperse distribution of size), for accurate drug administration, is a 

central need for the use of nanoparticles in drug delivery systems. Moreover, the absence 

of toxic residues in the final nanosystem is required, and therefore stronger restrictions to 

the type of methods used for nanoparticles formation exist. Additionally, the stability of 

the nanoparticles should be addressed if parenteral administration of the nanoparticle is 

used. The aggregation process due to dispersion forces (i.e. electrostatic, hydrogen 

bonding, hydrophilic/hydrophobic, steric-Van der Waals) is the principal drawback of 

nanoparticle use in drug delivery. Therefore, the understanding of the complexity of the 

nanosystem, the biological system, and the interactions between the two is a basic 

requirement for successful implementation of new nano-systems designed for drug 

delivery.  

 The goal of the present research was to form nanoparticles from a preformed 

polymer (poly(lactide-co-glycolide)) with entrapped magnetite. The thesis is divided in 

two main sections. The first section contains a review of PLGA and magnetic polymeric 

nanoparticles (MPNPs) synthesis and characterization. A detailed description of the 

important parameters affecting the nanoparticle size is also provided. The second section 

of the thesis is focused on the entrapment of magnetite into the PLGA matrix. The 

formation process of MPNPs nanoparticles by emulsion evaporation method, the effect of 

surfactant, and the magnetite entrapment results are explained in detail. The selection of 
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the method, materials, and processing parameters to form MPNPs (Chapter 3) is based on 

the extensive literature cited in the first section of the thesis (Chapter 2), as follows. 

1.1. Method Selection 

 Two main procedures can be followed to form polymeric nanoparticles, namely 

top-down and bottom-up techniques. The top-down methods use size reduction to obtain 

controlled-size nanoparticles. This size reduction is based on the application of strong 

shear stress by wave sound emission (sonication), high pressure (microfluidization), and 

high speed agitation (homogenization). The bottom-up methods start from individual 

molecules to form nanoparticles, by polymerization. The polymerization methods 

commonly used are emulsion polymerization (water in oil, oil in water, and 

polymerization in bicontinuous structures), dispersion polymerization, and interfacial 

polymerization [3]. Monomers, initiators, additives, and solvent are the basic chemical 

components used in the polymerization methods. The main drawbacks of the bottom-up 

methods are the presence of residual sub-products in the final nanoparticles that can 

impart toxicity to the nanoparticles, the difficulty in the prediction of polymer molecular 

weight, affecting the biodistribution and release behavior of the drug from the 

nanoparticle; and the possibility for drug inhibitions due to interactions, or cross reactions 

of the drug with activated monomers and H+ ions present during polymerization [4]. To 

overcome these limitations, top-down methods were developed using naturals and 

synthetic polymers. The emulsion evaporation, salting out, nanoprecipitation, and 

emulsion diffusion are the main top-down methods used to form polymeric nanoparticles. 

During the last years, significant modifications of these methods have been developed 

(see Chapter 2 for details) in an attempt to avoid the use of toxic solvents and surfactants, 

to improve drug entrapment efficiency and nanoparticle stability, and to more efficiently 

use energy in droplet size reduction. All these methods involve two liquid phases, the 

organic phase which can dissolve the polymer and the other hydrophobic components, 

and the continuous aqueous phase.   

Each synthesis method has advantages and disadvantages as described in detail in 

Chapter 2. Emulsion evaporation, was selected as the method of choice in the present 

research due to its advantages described as follows. The versatility and flexibility of the 

method allows for the use of different polymers and solvents. Emulsion evaporation 
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permits higher polymer concentration per batch production improving the nanoparticle 

yield by batch. It can be used for entrapment of hydrophobic and hydrophilic drugs. The 

hydrophobic drugs use oil in water (o/w) emulsion. The hydrophilic drugs require the use 

of double emulsion (w/o/w), and the first aqueous phase dissolves the hydrophilic drug. 

The fast evaporation rate of the solvent permits a reduction in the processing time [4, 5, 

6, 7]; moreover the evaporation rate may be used to control the nanoparticle size as 

compared with other methods where evaporation follows the nanoparticle formation. 

1.2. Materials Selection 

1.2.1. Polymer (PLGA) 

A wide spectrum of synthetic and natural polymers is available for nanoparticle 

formation, but their biocompatibility and biodegradability are the major limiting factors 

for their use in the drug delivery area. Natural polymers are more restricted due to 

variation in their purity. Also, some natural polymers require crosslinking, which can 

inactivate the entrapped drug [8]. Synthetic polymers, on the other hand, offer better 

reproducibility of the chemical characteristics of the synthesized nanoparticles as 

compared to the natural polymers. Synthetic polymers from the ester family, such as 

poly(lactic acid), poly(β-hydroxybutyrate), poly(caprolactone), poly(dioxanone), or other 

families such as poly(cyanoacrylates), poly(acrylic acid), poly(anhydrides), poly(amides), 

poly(ortho esters), poly(ethylene glycol),  and poly(vinyl alcohol) are suitable for drug 

delivery due to their biodegradability, special release profiles and biocompatibility [9].  

Poly(lactide-co-glycolide acid) (PLGA), from the ester family, has been widely 

used in the biomedical industry as a major components in biodegradable sutures, bone 

fixation nails and screws [10, 11]. It is a well-characterized polymer, its degradation sub-

products are non toxic, it provides controlled drug release profiles by changing the PLGA 

copolymer ratio which affects the crystallinity (low crystallinity, more amorphous 

polymer means more fast degradation) of PLGA [9, 10, 11, 12, 13]. For these reasons, 

PLGA has been selected as the polymer of choice in the present research. PLGA of 

different molecular weights (from 10 kDa to over 100 kDa) and different copolymer 

molar ratios (50:50, 75:25, and 85:15) is available on the market. Molecular weight and 

copolymer molar ratio influence the degradation process and release profile of the drug 
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entrapped. In general, low molecular weight PLGA with higher amounts of glycolic acid 

offer faster degradations rates [13, 14].   

1.2.2. Solvent (Ethyl Acetate) 

The top-down method requires the dissolution of the polymer in the aqueous or 

organic phase. The solvent election is restricted to the method used; for example, 

nanoprecipitation and emulsion diffusion use water-soluble solvents (i.e. acetone, benzyl 

alcohol), and emulsion evaporation requires water immiscible solvents. The method 

selected to form the nanoparticles was emulsion evaporation, in which the polymer 

(PLGA) was dissolved in the organic phase (solvent). The chlorinate solvents have been 

extensively used with this method to dissolve the PLGA (i.e. methylene chloride, 

dichloromethane, chloroform), but their toxicity and inflammability are of concern [15, 

16]. A solvent that could be used as an alternative to chlorinate solvents is ethyl acetate. 

The low toxicity, low boiling point (77 °C) and inflammability are the main advantages 

of using ethyl acetate to dissolve the polymer. Because ethyl acetate is partially water 

soluble however, it is required to saturate the solvent with water before emulsification [7, 

17].  

1.2.3. Surfactant (SDS) 

The stability of the organic droplet (ethyl acetate and PLGA) in water, during the 

emulsification step, is insured by the addition of surfactants. A wide spectrum of 

surfactants are available for emulsion stabilization, ionic surfactants (cationic, anionic, 

zwitterionic) and nonionic surfactants. The nonionic surfactants are macromolecules 

formed by copolymers or tripolymers (amphiphilic) which can form stable micelles due 

to the hydrophobic hydrophilic interactions with the two phases. The anionic and cationic 

surfactants use electrostatic interactions to stabilize emulsions. The major nonionic 

surfactants used in the emulsion evaporation method are poly(vinyl alcohol) (PVA), 

poloxamer and poloxamines family, pluronic family (F68, F127, and others), sodium 

cholate, and tween 80. The formation of amphiphilic PLGA molecule has been studied to 

eliminate the surfactant addition during the emulsification step; this is accomplished by 

the attachment of a hydrophilic polymer (covalent link) to hydrophobic PLGA. Some of 

the common hydrophilic polymers used are poly(ethylene glycol) (PEG), chitosan, and 

poly(ethylene oxide) (PEO) [18, 19]. Anionic or cationic surfactants permit formation of 
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micelles under 100 nm [20, 21] because of the electrostatic interaction (and other 

properties like value of packing number, HLB value, surface tension, and morphology). 

Sodium dodecyl sulfate (SDS), an anionic surfactant, was selected because it has high 

HLB value (40) and forms micelles with sizes ranging between 20 to 150 nm in oil in 

water emulsion [7, 21, 22].  

1.3. Processing Parameters 

 The method and material selection, as well as the synthesis parameters play an 

important role in forming nanoparticles of controlled physical and chemical properties. 

Process parameters like phase volume ratio, sonication time and amplitude, amount of 

surfactant, PLGA concentration, evaporation conditions, and purification play a key role 

in determining the final nanoparticle size. Synthesis parameters were selected as follows. 

The phase volume ratio used was 20%, value based on previous works [7, 23, 24]. In the 

sonication step (droplet size reduction), two main parameters were controlled, the 

amplitude and the sonication time. The amplitude, defined as the peak to peak 

displacement at the probe tip, and the sonication time were selected based on the work of 

Landfester, K. [25], which showed that amplitudes over 30% formed small nano-droplets 

for a sonication time of 500 seconds. The sonication time selected was 10 minutes with 

39% amplitude, which were proven experimentally to form small size nanoparticles (See 

Chapter 3). The PLGA concentration used was 5 %w/v (mg PLGA/ml ethyl acetate) 

based on previous published studies [23, 24, 26]. Dialysis was selected as a purification 

method to reduce the excess of SDS as opposed to ultracentrifugation, because of the 

aggregation of the nanoparticles observed when centrifugation was used. The time of 

dialysis and number of washes was based on the published work of Jeong et al. [27, 28]. 

1.4. References 
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CHAPTER 2. SYNTHESIS AND CHARACTERIZATION OF 

PLGA NANOPARTICLES AND MAGNETIC POLYMERIC 

NANOPARTICLES: A REVIEW
1
 

2.1. Introduction 

Synthetic polymers and natural macromolecules have been extensively researched 

as colloidal materials for nanoparticle production designed for drug delivery. Synthetic 

polymers have the advantage of high purity and reproducibility over natural polymers. 

Among the synthetic polymers, the polyesters family (i.e. poly(lactic acid) (PLA), poly(e-

caprolactone) (PCL), poly(glycolic acid) (PGA)) are of interest in the biomedical area 

because of their biocompatibility and biodegradability properties. In particular, 

poly(lactide-co-glycolide) (PLGA) has been FDA approved for human therapy [1].  

The size and size distribution of the PLGA nanoparticles and magnetic polymeric 

nanoparticles (MPNPs) among other physical characteristics, are affected by the 

technique used for the nanoparticle production and the pertinent synthesis parameters, i.e. 

PLGA molecular weight, the addition of active components, surfactants, and other 

additives [2-8]. The current review is designed to present the reader with comprehensive 

information on PLGA nanoparticle synthesis, control of nanoparticle properties (i.e. size, 

size distribution, zeta potential, morphology, hydrophobicity/hydrophilicity, drug 

entrapment) by manipulation of the synthesis parameters, methods for NPMPs synthesis, 

and methods available for nanoparticle characterization. The words nanoparticles and 

nanospheres will be used interchangeably in this review based on the term preferably 

used by the cited authors; both terms denote particles smaller than 1 µm (1000 nm).  

A number of reviews published in the literature focused on polymeric 

nanoparticle synthesis in general and PLGA nanoparticles in particular [7, 9-16]. The 

current review differs from the aforementioned reviews in several ways. First, it focuses 

specifically on PLGA nanoparticles, covering topics such as synthesis, size control and 

characterization. Second, it addresses in detail all top-down techniques available for 

PLGA nanoparticle formation. Third and last, in-depth discussions of available methods 

                                                 
1 Reprinted with permission from “Brill Academic Publishers”  
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to control the size, size distribution, surface charge, and other nanoparticle properties are 

also presented.  

2.2. Synthesis of PLGA Nanoparticles  

Methods available for PLGA nanoparticle synthesis can be divided into two 

classes: bottom-up and top-down techniques. The bottom-up techniques such as emulsion 

or microemulsion polymerization, interfacial polymerization, and precipitation 

polymerization, employ a monomer as a starting point. Emulsion evaporation, emulsion 

diffusion, solvent displacement, and salting out are top-down techniques, in which the 

nanoparticles are synthesized from the pre-formed polymer. Table 1 summarizes the 

nanoparticles characteristics (size, nanoparticle yield) formed by different methods 

(emulsion diffusion, salting out, nanoprecipitation, emulsion evaporation, dialysis, 

solvent diffusion), as a function of important parameters (polymer concentration, 

copolymer ratio, polymer molecular weight, surfactant concentration, solvent used, phase 

volume ratio). The data is catalogued according to the method used for nanoparticle 

formation.  

2.2.1. Emulsion Diffusion Method  

In this synthetic scheme, the polymer (PLGA) is dissolved in an organic phase 

(e.g., benzyl alcohol, propylene carbonate, ethyl acetate), which must be partially 

miscible in water. The organic phase is emulsified with an aqueous solution of a suitable 

surfactant (i.e. anionic sodium dodecyl sulfate (SDS), non-ionic polyvinyl alcohol (PVA), 

or cationic didodecyl dimethyl ammonium bromide (DMAB), under stirring. The 

diffusion of the organic solvent and the counter diffusion of water into the emulsion 

droplets induce polymer nanoparticle formation [11].  

Important parameters that affect the nanoparticle size synthesized by emulsion 

evaporation are: PLGA copolymer ratio, polymer concentration, solvent nature, 

surfactant polymer molecular weight, viscosity, phase ratios, stirring rate, solvent nature, 

temperature and flow of water added.  

• Lactide/glycolide ratio 

The common PLGA copolymer ratios (lactide/glycolide molar ratio) used are 

50:50 and 75:25. The difference detected in nanoparticles size is minimal when different 
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copolymer ratios are used. Konan et al. [17] obtained nanoparticles with a mean size of 

93 nm for 50:50 PLGA and 95 nm for 75:25 PLGA. 

• PLGA concentration  

The data obtained by Kwon et al. [18] showed the effect of PLGA concentration 

on the nanoparticle size. For an increased PLGA concentration from 1% to 4% w/v, an 

increase in the mean nanoparticle size from 205 nm to 290 nm was observed (Figure 2.1); 

PVA concentration was maintained at 2.5% w/v, and the solvent used was propylene 

carbonate (PC) in all experiments. The work of Lee et al. [19] showed similar results. At 

a fixed agitation (homogenizer speed 15000 RPM and agitator speed 400 RPM), the 

mean nanoparticle size obtained was 120 nm for 1% w/v PLGA, and 230 nm for 5% w/v 

PLGA. The solvent used was ethyl acetate, and the surfactant was 5% of Pluronic F-127 

in aqueous suspension.  

 

Figure 2.1. Effect of PLGA concentration on the mean particle size of PLGA 

nanoparticles (PVA concentration of 2.5 % w/v). Reproduced from Ref. Kwon et al. 

[18]  

• Solvents (organic phase) 

The nature of the organic phase affects the final nanoparticle size. This is clearly 

shown by Choi et al. [20]. Ethyl acetate, methyl ethyl ketone, propylene carbonate, and 

benzyl alcohol were used to dissolve the PLGA (75:25 with a molecular weight from 75 

to 120 kDa), and the continuous phase contained the surfactant poloxamer 188. The 

smaller nanosphere size was 120 nm when ethyl acetate was used, and it was close to the 
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nanosphere size obtained with methyl ethyl ketone, 125 nm. The highest size 

nanoparticles of 260 nm were obtained with benzyl alcohol as the organic solvent. The 

experiments were carried out under a constant PLGA concentration of 2% w/v. 

• Thermodynamic parameters  

Choi et al. [20] studied the exchange solvent ratio, solubility, and polymer-solvent 

interaction in a quest for the right method to decrease nanoparticle size. The PLGA 

concentration used was 2 mg/ml, with four different solvents (ethyl acetate, methyl ethyl 

ketone, propylene carbonate, and benzyl alcohol). Ethyl acetate solvent formed the 

smallest nanospheres (approx. 120 nm in size). The authors suggest that solvents with 

low exchange ratio, ratio between diffusion from solvent to water and vice versa, and 

high polymer-solvent interaction parameter form small nanoparticles due to small 

supersaturation region produced.  

• Surfactants (or stabilizer) 

A wide variety of surfactants can be used for stabilization of the organic droplets, 

which contain the polymer. The effect of PEG, tween 80, gelatin, dextran, pluronic L-63, 

PVA, and DMAB as surfactants (for nanoparticle stabilization) was evaluated by Kwon 

et al. [18]. PVA and DMAB (a cationic surfactant) were the only surfactants that formed 

nanoparticles with the emulsion diffusion method. The smaller mean size of PLGA 

nanoparticles was obtained when DMBA was used (Figure 2.2.a). The mean size was 76 

nm for a concentration of 2% w/v of DMAB. The mean PVA nanoparticle size was 210 

nm for 5% w/v. When the DMAB concentration was increased from 2 to 4% w/v, a slight 

decrease in size of the nanosphere was noticed (from 80 nm to 75 nm). The smaller 

nanoparticle size formed with DMAB is attributed to the more pronounced surface 

tension reduction as compared with PVA, 22 dyne/cm at 10-2 % w/v for DMAB versus 37 

dyne/cm at 10-1 % w/v for PVA (Figure 2.2.b).  

Ravi Kumar et al. [21] studied the effect of PVA, and a mix of PVA and chitosan 

(needed to form positive charges over the surface of the nanospheres) in an attempt to 

improve the entrapment efficiency of DNA (DNA has negative charges allowing its 

migration to the external phase due to the repulsion with the negative charges of PLGA 

formed nanospheres in the presence of PVA). 
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Figure 2.2. a. The influence of surfactant on the mean size of PLGA nanoparticles. 

b. Surface tension of DMAB and PVA solution as a function of concentration (wt%). 

Reproduced from Ref. Kwon et al. [18].  

When PVA was used alone, the mean nanoparticle size was 111.7 ± 4.2 nm. The 

addition of chitosan alone did not allow formation of nanospheres, so the addition of a 

blend of PVA and chitosan was crucial for the formation of stable nanospheres with a 

positive surface charge. In a further work, Ravi Kumar et al. [22] prepared two surfactant 

blends and tested the DNA transfection in vivo. The first blend contained chitosan and 

PVA, and the second blend was a mix of chitosan, PVA, and PEG. The mean size was 

180 ± 11 nm for both systems, with a zeta potential of 10 mV for the former, and 7 mV 

for the latter. They attributed the decrease of zeta potential to PEG chains present in the 

second blend, but there is no mention if there is a statistical difference between the data 

points. 

• Viscosity of continuous and discontinuous phase 

The viscosity of the continuous and discontinuous phase is an important 

parameter to take into account because it affects the diffusion process, a key step in 

forming smaller nanoparticles. Ahlin et al. [23] prepared dispersed phases with different 

viscosities by changing the PLGA molecular weight. A solution of 5% w/w PLGA in 

benzyl alcohol had viscosities of 0.03 Pa s, 0.036 Pa s, and 0.046 Pas for 50:50 PLGA 

(12000 Da), 75:25 PLGA (12000 Da), and 75:25 PLGA (63000 Da), respectively.  

(A) (B) 
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Nanoparticles with mean size of 175 nm, 220 nm, and 280 nm, were obtained by 

increasing viscosity of the organic solution from 0.03 to 0.046 Pa s. The viscosity of the 

continuous phase was determined to be 1.5 Pa s, 5 Pa s, and 13 Pa s for 10%, 15% and 

20% w/w of aqueous PVA solution, respectively. The mean size of nanoparticles 

synthesized with 10% of PVA was 310 nm and 170 nm with 20% PVA. The conclusion 

reached was that the size of the nanoparticles increases with an increase in the viscosity 

of the dispersed phase, whereas a decrease in the nanoparticle size was observed for a 

more viscous continuous phase. Other polymers with the same viscosity should be 

studied for an accurate analysis of the viscosity effect on the nanoparticle size. 

• Homogenizer speed and agitation speed 

The homogenization of the oil-in-water emulsion is another important step in 

forming smaller nanospheres. Lee et al. [19] evaluated the effect of homogenizing speed 

(when the organic phase is added to the aqueous suspention). The speed range tested was 

from 5000 to 15000 RPM for a suspension with 5% w/v of PVA for a fixed time (7 min). 

A mean size of 200 nm was obtained for speeds up to 11500 RPM, and at higher 

revolutions (22000 RPM) the mean nanoparticle size decreased up to 120 nm with no 

further decrease in size at higher RPM.  

Agitation is applied during the addition of excess of water to improve solvent 

diffusion and nanosphere precipitation. The nanoparticle size was reduced from 115 nm 

to 90 nm when the agitation speed was increased from 200 RPM to 600 RPM; increasing 

the agitation speed further to 1000 RPM did not affect the particle size [19]. In the work 

of Ravi Kumar et al. [21, 22], nanoparticles of 884 ± 17 nm mean size were synthesized 

when the emulsion was not homogenized and no additional water was added. When 

homogenization was included, the mean size decreased to 403 ± 8 nm. The mean size 

was further improved to 181 ± 3 nm by stirring at 1000 RPM and applying 

homogenization at 13500 RPM. In the studies mentioned above there is no description of 

the system hydrodynamics which could affect the nanosphere size, so the process scale 

up and reproducibility of the experiment should be complicated and reconsidered. 

• Addition rate of water  

The addition rate of water to allow the solvent diffusion was studied by Kwon et 

al. [18]. No significant size difference was detected for water added at 0.03 mL/s and 16 
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mL/s. When DMAB was used, the mean size was 76 nm and 78 nm at 0.03 mL/s and 16 

mL/s, respectively. When PVA was used, the mean size was 220 nm and 204 nm, for 

0.03 mL/s and 16 mL/s, respectively. 

• Temperature of the water added for solvent diffusion  

An important size reduction of the nanoparticles can be achieved by careful 

control of the water temperature added to improve the diffusion of the solvent. Kwon et 

al. [18] worked with PVA (5% w/v) and DMAB (2% w/v) with a constant water addition 

rate of 16 mL/s. For both surfactants, the mean size of nanoparticles was decreased with 

an increase in the temperature of the water added. For DMAB, the smaller size obtained 

was 65 nm (polydispersity of 0.056 ±0.019) at 60 °C, and the larger size was 78 nm 

(polydispersity of 0.023 ±0.012) at 25 °C. For PVA, the smaller size obtained was 170 

nm (polydispersity of 0.063 ±0.034) at 60 °C, and the higher size was 204 nm 

(polydispersity of 0.064 ±0.028) at 25 °C. The main drawback of this approach is the 

effect of the water temperature on the polymer structure, because the Tg (glass transition 

temperature) of PLGA is lower than 60 °C. It is important to understand the effect of 

temperature on the polymer matrix when the working temperature is 60 °C and higher. 

• Cryoprotectant  

The most common way to stabilize a preparation of nanospheres is lyophilization. 

The sample is pre-frozen at low temperatures to form small crystals of water, important 

in that the water crystal disrupts the stabilizer shell around the particle, which results in 

clustering in the nanoparticle resuspension. Konan et al. [17] worked with trehalose as a 

lyoprotectant to preserve the nanoparticle size after lyophylization. The weight ratio used 

was of 2:1 trehalose to nanoparticles. The nanospheres size varied from 120 nm to 140 

nm with the addition of trehalose for the 50:50 PLGA copolymer ratio, and from 125 nm 

to 200 nm for the 75:25 PLGA copolymer ratio. The re-suspension was carried in 

different mediums (distilled water, phosphate buffer saline (PBS), fetal bovine serum 

(FBS), human plasma, waymouth grouth) by 30 seconds of manual agitation. The only 

re-suspension media that showed increase in size was human plasma (from 125 nm to 

155 nm for nanospheres prepared with 50:50 PLGA copolymer ratio). Ahlin et al. [24] 

worked with the same ratio of nanoparticles to trehalose (1:2 w/w for nanoparticles to 

trehalose) for entrapment of enalaprilat. The mean nanoparticle size before lyophilization 
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was 204 ± 6 nm. Nanoparticles undergoing lyophilization without trehalose measured 

283 ± 65 nm. The nanoparticle mean size was 255 ± 30 nm and 210 ± 12 nm for 

nanoparticle to trehalose ratios of 1:1 and 1:2, respectively. The PI for the three 

resuspensions was higher (0.9 ± 0.09, 0.91 ± 0.15, and 0.59 ± 0.11 for 0, 1:1, and 1:2) 

compared to the sample before lyophilization (0.13 ± 0.1). This suggested that the 

aggregation is reduced with the increase of trehalose amount, but it is not eliminated.  

• Drug entrapment 

The drug entrapment affects the final nanosphere mean size and stability over 

time. This effect can be positive, reducing the mean size of nanospheres, or negative, 

increasing the mean nanospheres size. Ahlin et al. [24] entrapped enalaprilat, which was 

dissolved in the organic phase, benzyl alcohol. The free drug nanospheres had a mean 

size of 183 ± 5 nm. The nanospheres with entrapped drug had a mean size of 204 ± 6 nm. 

The effect of the drug on the nanoparticle stability, defined as the size variation as a 

function of time, was also studied. The mean size after 15 days for the free drug 

nanosphere was almost constant (181 ± 6 nm), and for the nanospheres with the 

entrapped drug was 730 ± 200 nm. This data suggests that the diffusion of enalaprilat 

drug from PLGA matrix induced formation of PLGA nanoparticle clusters, increasing the 

final mean nanoparticle size.  

A positive effect of the drug entrapped on the nanoparticle size is shown in the 

work of Konan et al [17]. Benzyl alcohol was the organic phase used and meso-tetra(p-

hydroxyphenyl)porphyrin (p-THPP) was the drug. The preparation with 50:50 copolymer 

ratio and free drug nanospheres had a size of 124 ± 2 nm. When the drug was 

incorporated, the size was reduced to 93 ± 0 nm for a theoretical loading of 15%. The 

samples with 75:25 copolymer ratio and free drug nanospheres had a mean size of 132 ± 

12 nm. The addition of the drug decreased the size to 95 ± 6 nm for a theoretical loading 

of 15%. Both copolymer ratios showed a mean size increase with further increases in 

theoretical loading of drug. It should be highlighted that increases in the theoretical drug 

loading decreases the entrapment efficiency. The higher entrapment efficiency (76.3% 

±1.4%) was for the 5% theoretical drug loading.  

Advantages (A)/Disadvantages (D) 

• (A) The use of non highly toxic solvents (i.e. benzyl alcohol) 
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• (A) Reduced energy consumption because it only requires mild stirring. The 

process does not require high stress shear (i.e. sonication or 

microfluidization) 

• (D) The requirement of large amounts of water for nanoparticles formation 

• (D) Large time of emulsion agitation 

• (D) The size is highly sensitive to polymer concentration if the process does not 

use shear stress for size reduction (high speed agitation or sonication)  

• (A/D) Suitable for hydrophobic active components. The hydrophilic 

components have a high migration tendency due to the diffusion of the 

polar solvent to the aqueous phase and therefore the drug entrapment 

efficiency is low 

2.2.2. Salting Out Method 

In this synthesis method, the polymer is dissolved in the organic phase, which 

should be water-miscible, like acetone or tetrahydrofuran (THF). The organic phase is 

emulsified in an aqueous phase, under strong mechanical shear stress. The aqueous phase 

contains the emulsifier and a high concentration of salts which are not soluble in the 

organic phase. Typically, the salts used are 60% w/w of magnesium chloride hexahydrate 

[25, 26] or magnesium acetate tetrahydrate in a ratio of 1:3 polymer to salt [27]. Contrary 

to the emulsion diffusion method, there is no diffusion of the solvent due to the presence 

of salts. The fast addition of pure water, to the o/w emulsion, under mild stirring, reduces 

the ionic strength and leads to the migration of the water-soluble organic solvent to the 

aqueous phase inducing nanosphere formation [5]. The final step is purification by cross 

flow filtration or centrifugation to remove the salting out agent. Common salting out 

agents are electrolytes (sodium chloride, magnesium acetate, or magnesium chloride) or 

non-electrolytes, such as sucrose [14].  

Important parameters to be considered are: polymer concentration and molecular 

weight, stirring rate and time, nature and concentration of surfactant and solvent, and 

cryoprotectans. 

• Polymer concentration 

This method is more robust than emulsion-diffusion technique because the mean 

size is not highly sensitive to increments in polymer concentration. Konan et al. [25] 
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varied the PLGA concentration from 10% to 25% w/w. The mean size of 150 nm was 

constant up to a polymer concentration as high as 17% w/w. At concentrations higher 

than 20% w/w the size of the nanoparticles increased (to 300 nm for 25% w/w).  

• Polymer molecular weight and copolymer molar ratio 

The PLGA molecular weight impacts the final mean nanosphere size. In general, 

higher molecular weight forms higher mean size nanoparticles. The change in 

nanoparticle size was evaluated as the composition and molecular weight of PLGA was 

varied (12000 to 48000 for 50:50 PLGA; 12000 to 98000 Da for 75:25 PLGA). For the 

nanospheres with 50:50 PLGA, the mean size ranged from 102 ± 4 nm to 154 ± 17 nm 

for 12000 Da and 48000 Da, respectively. For the 75:25 PLGA, the nanoparticle mean 

size ranged from 132 ± 3 nm to 152 ± 25 nm for 12000 Da and 98000 Da, respectively. 

For the same molecular weight, the two copolymer ratio (50:50 and 75:25 with free 

carboxylic end groups) formed nanospheres with similar sizes (125 ± 9 nm compared 

with 132 ± 3 nm, respectively) [25]. 

• Solvent 

The solvent plays an important role in the formation and mean size of the 

nanoparticles. Konan et al. [25] obtained different nanosphere sizes with acetone and 

THF. Smaller nanoparticles were obtained when THF was used. The samples using THF 

formed nanospheres in the range of 102 ± 4 nm to 166 ± 5 nm, and the mean size for the 

samples with acetone range from 120 ± 7 nm to 210 ± 66 nm. Acetone was used by 

Zweers et al. [26]. The mean nanoparticle size formed was 230 nm (polydispersity index 

(PI) of 0.09), and 139 nm (polydispersity index (PI) of 0.19) for PLGA and PEO-PLGA, 

respectively. 

• Surfactant 

The PVA family is widely used as surfactant for the preparation of PLGA 

nanoparticles. Konan et al. [25] tested two types of PVA: Mowiol® 4-88 (87.7% 

hydrolyzed with molecular weight of 26,000 Da), and Mowiol® 3-83 (82.6% hydrolyzed 

with molecular weight of 18,000 Da). PVA Mowiol® 3-83 was most efficient in lowering 

the size of the nanoparticles to 148 nm (±5 nm) in a concentration of 15% w/w. Zweers et 

al. [26] used PVA 80% hydrolyzed with molecular weight of 10 kDa, and the 

concentration in the aqueous suspension was 2 wt.%. The mean size obtained was 230 
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nm with PI of 0.09. The PVA or Mowiol® 4-88 were used by Eley et al. [27] to make 

nanoparticles with a normal size distribution between 400 to 1100 nm, as obtained by 

light scattering laser spectrophotometry. 

• Stirring rate and time 

The size can be controlled by stirring rate and time. This was shown by Konan et 

al. [25]. The stirring speed was varied from 2000 to 13500 RPM (figure 2.3), and the 

stirring time tested varied from 5 to 50 min. At 13500 RPM, nanospheres with a mean 

size of 155 nm were formed using THF as a solvent, with 17% w/w of polymer 

concentration, and 10% w/w of PVA. Nanoparticles sizes under 200 nm were obtained at 

8000 RPM; no statistical analysis was provided to detect the significance of these 

differences. At an optimum stirring time of 15 minutes, nanospheres of 140 nm mean size 

were formed; no significant decrease in the mean size was notices after 25 minutes (the 

total size increment was 8 nm up to 45 minutes of stirring).  

• Cryoprotectants in freeze-drying 

The lyophilization step must be carried out in the presence of cryoprotectants to 

preserve the mean nanoparticle size obtained in the formation process. The sugar family 

is widely used as cryoprotectant. Konan et al. [25] tested trehalose, mannitol, glucose, 

and lactose. All lyoprotectants showed a good size preservation with just a slightly size 

increment for lyoprotectant to nanoparticles mass ratio over 0.5 (size was increased from 

135 nm to 150 nm). The sample without cryoprotectant had a mean size of 480 nm after 

resuspension. 

Advantages(A)/Disadvantages(D) 

• (A) Reduced energy consumption because it only requires normal stirring. The 

process does not require high stress shear (i.e. sonication or 

microfluidization) 

•  (A) Low time consuming process 

• (D) The main drawback is the requirement of purification step for salting out 

agent elimination, which is in higher amounts (at least three times more 

amount of salting out than polymer) 
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Figure 2.3. Influence of the stirring rate on the main nanoparticle size (Aqueous 

phase: 10% (w/w) of Mowiol 4-88 and 60% (w/w) MgCl2, organic phase: 17% (w/w) 

of polymer in THF (mean ± SD, n=3). Reproduced from ref. Konan et al. (2002)  

•  (A/D) Suitable for hydrophobic components because the salting out agent is 

water soluble 

•  (A/D)The use of not highly toxic, but explosive, solvents (i.e. acetone, THF) 

2.2.3. Nanoprecipitation (Solvent Diffusion, or Solvent Displacement) Method 

Typically, this method is used for hydrophobic drug entrapment, but it has been 

adapted for hydrophilic drugs as well. Polymer and drug are dissolved in a polar, water-

miscible solvent such as acetone, acetonitrile, ethanol, or methanol. The solution is then 

poured in a controlled manner (i.e. drop-wise addition) into an aqueous solution with 

surfactant. Nanoparticles are formed instantaneously by rapid solvent diffusion. Finally, 

the solvent is removed under reduced pressure.  

Important parameters to be considered are: polymer/surfactant ratio, polymer 

concentration, surfactant nature and concentration, solvent nature, viscosity, additives, 

active component, and phase injection. 

• Polymer concentration 

The polymer concentration is maintained in the range of 1% w/v up to 10% w/v. 

Prakobvaitayakit and Nimmannit [28] tested three different concentrations of 50:50 

PLGA for nanosphere formation. The nanoparticle mean size was 190 nm for 1 % w/v, 
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and the size increased to 238.9 nm for 10% w/v. Govender et al. [29] used a 

concentration of 1% w/v to synthesize nanospheres of 157.1 ± 1.9 nm in size. Csaba et al. 

[30] worked with a polymer concentration of 5 % w/v to form nanoparticles with a size 

range from 161 ± 7 nm to 269 ± 11 nm. This size range is correlated to the presence of 

different polymers in the polymer blend used (detailed in the surfactant section). Niwa et 

al. [31] worked with two different concentrations of 0.39% w/v and 0.44 % w/v, and the 

mean size was 195 ± 34 nm and 283 ± 37 nm, respectively. In another work, Niwa et al. 

[32] used 0.77% w/v PLGA forming nanospheres with a mean size of 224 ± 14 nm. 

Ameller et al. [33] worked with a concentration of 2% w/v and obtained nanospheres 

with a mean size of 260 ± 50 nm, approximately (0.1 %w/w of poloxamer 188 was in the 

aqueous phase); a significant size reduction (approximately, 80 ± 20 nm for the same 

concentration) was achieved when PLGA was grafted to PEG (5 kDa) (no poloxamer in 

the aqueous phase) suggesting that the hydrophilic lattices provided by PEG stabilized 

the nanoparticles; the PLGA aggregation was reduced during nanosphere formation 

reducing the nanosphere mean size. The trend was maintained for other two polymers 

used, poly(D,L-lactide) (PLA) and poly(ε-caprolactone) (PCL), which were covalently  

grafted with PEG (5 kDa). 

• Polymer molecular weight and copolymer ratio 

The polymer molecular weight affects the size more significantly than the 

copolymer ratio, as follows. Niwa et al. [31] worked with different molecular weights, 

and copolymer ratios. The PLGA 50:50 with a MW of 66475 Da formed nanospheres 

with a size of 338 ± 67 nm, which was similar to the nanospheres size of 85:15 PLGA 

with a MW of 66671 Da, measuring 385 ± 51 nm in size. The 85:15 PLGA with a MW of 

127598 Da formed nanospheres with mean size of 637 ± 40 nm. These nanospheres were 

prepared with a mix of chloroform and acetone for the entrapment of indomethacin.  

• Solvent nature 

The selection of good solvents to form smaller nanoparticles and to improve the 

entrapment efficiency of the active component is a complex and an important process. 

There is no clear definition of the ‘best solvent’ for this method. Niwa et al. [31] used a 

mix of organic solvents (acetone, methanol, dichloromethane, or chloroform) to dissolve 

PLGA and drugs (indomethacin and 5-fluorouracil). The size of the 85:15 PLGA 
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nanoparticles of two molecular weights (12279 Da and 66671 Da) changed when the mix 

of solvents was altered from 0.5:5:5 ml to 0.5:25:5 ml (dichloromethane /acetone 

/methanol). The first mix of solvents formed nanospheres with a mean size of 283 ± 37 

nm and 213 ± 13 nm for the two molecular weights tested, and the second one formed 

nanospheres of 195 ± 34 nm, and 207 ± 13 nm. The reduction in size with increased 

acetone concentration is attributed to the reduction in the surface tension of the 

dichloromethane solution in the presence of acetone. The formation process performed 

with dichloromethane or chloroform formed nanospheres 1 µm and bigger in size. 

Acetone is commonly used alone for the preparation of nanospheres. Ameller et 

al. [33, 34] obtained a mean size nanoparticles of 258 ± 97 nm with zeta potential of -

53.4 ± 0.5 mV. Prakobvaitayakit and Nimmannit [28] formed nanospheres with a mean 

size varying from 190 nm to 643.9 nm. Panagi et al. [35] formed nanospheres with mean 

size of 154 ± 23.5 nm, polydispersity of 0.489, and zeta potential of 45.1 ± 1.9 mV with 

the same solvent. Oster et al. [36] obtained a mean size of 152 ± 3 nm and zeta potential 

of 35 ± 3 mV. 

Saxena et al. [37] added methanol to acetonitrile (in which PLGA was dissolved) 

for a good dissolution of the active component. The mean size was 357 ± 0.21 nm with 

zeta potential of -16.3 ± 1.5 mV. The higher zeta potential (less negative) is attributed to 

the presence of PVA over the nanosphere surface. 

Csaba et al. [38] worked with ethanol (organic phase) for the polymer 

nanoprecipitation. The mean size of the nanospheres (PLGA 50:50) obtained was 191.5 ± 

7.1 nm. Other works used acetonitrile as the organic solvent. For example, Govender et 

al. [29] prepared nanospheres with a size of 157.1 ± 1.9 nm with acetonitrile. 

• Surfactant 

A variety of surfactants are used for nanoparticle formation and stabilization. The 

surfactant can be anionic, cationic or nonionic. Surfactants in the poloxamer and 

poloxamines family, formed with polyoxiyethylene and polyoxypropylene, are 

commonly used in nanoparticle synthesis. Surfactants of different HLB values can be 

obtained by varying the amount of monomers; less ethylene oxide monomers and more 

propylene oxide monomers form surfactants with lower HLB values. Csaba et al. [38] 

used poloxamer and poloxamines blended with PLGA in the organic phase. The samples 
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formed with more hydrophobic surfactants (HLB of 1 and 2.5) had an increased final size 

of up to 333.7 ± 82.1 nm for a mass ratio PLGA:surfactant of 50:75 mg/mg. The lower 

size nanoparticle formed was 159.8 ± 6.5 nm for the blend PLGA:Pluronic® F68 (HLB 

value of 29) of 50:75 mg/mg. Pluronic® F68 has shorter ethylene oxide chains and larger 

propylene oxide chains compared with the other surfactants tested. Ameller et al. [34] 

used poloxamer 188 with a concentration of 0.1% w/w forming PLGA nanospheres of 

262 ± 52 nm mean size. The zeta potential obtained was -11 mV.  

Another important surfactant used is PVA. Niwa et al. [31] tested different 

concentrations of PVA. The range tested was from 0.5 % to 2 % of PVA in the aqueous 

suspension leading to nanoparticle formation with a mean size of 300 nm (not significant 

difference in the range tested). Saxena et al. [37] obtained mean nanoparticle size of 357 

± 0.21 nm using 88 - 89 % hydrolyzed PVA. 

• Additives 

Certain compounds can improve the stability and size of the nanoparticles (fatty 

acids, short chains of carbons). Additionally, they can affect the entrapment efficiency of 

the active component. Govender et al. [29] found that fatty acid incorporation affected 

the entrapment efficiency of the active component (procaine hydrochloride and procaine 

dihydrate, water soluble drugs) reducing the nanoparticles mean size. The authors added 

caprylic acid, (molar ratio of 1:1 and 1:3), lauric acid (molar ratio of 1:1 and 1:3), PLA 

oligomers (molar ratio of 1:1), and poly(methyl methacrylate-co-methacrylic acid) 

(PMMA-MA) (molar ratio of 5:1). Lauric acid in a molar ratio of 1:1 increased the drug 

content from 11% to 34.8%, and the nanoparticle size was reduced from 157.1 ± 1.9 nm 

to 118.8 ± 1.4 nm (p value <0.05). With the 3:1 molar ratio, the size was lower (55.8 ± 

1.5 nm) but the morphology was altered (irregular shape). Zeta potential showed a slight 

increase from -49.2 ±0.7 mV to -44.1 ± 1.8 mV. The longer carbon chain of lauric acid 

(in comparison to that of caprylic acid) was associated with the improvement in the 

nanoparticle characteristics. 

• Active component entrapment 

Entrapment of active components has an important effect on the final nanospheres 

final size; as a general rule, entrapment of hydrophobic active components leads to 

formation of smaller nanospheres, as compared to the entrapment of hydrophilic 
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components. The interaction between solvent, polymer and active component must be 

taken into account to improve the drug loading and the drug entrapment efficiency. 

The entrapment of procaine hydrochloride (with a pH of 5.8 for aqueous solution) 

was found to increase the nanoparticle size from 157.1 ± 1.9 nm to 209.5 ± 2.7 nm for a 

theoretical drug loading of 0% to 10%, respectively. The drug content increased from 0.2 

to 4.6% w/w when the theoretical drug loading was increased from 1% to 10% w/w, but 

the entrapment efficiency decreased from 14.5% to 6.3% [29]. Although, they reduced 

the nanosphere mean size by change of the aqueous pH (buffer at pH 9.3), the size for 

PLGA alone was 123.6 ± 2.3 nm, and for nanospheres with 10% w/w theoretical drug 

loading, the size was 186.5 ± 2.3 nm. In both cases, the entrapment formed bigger 

nanospheres in the presence of the drug, as compared with the PLGA alone. The 

nanospheres size was reduced with the entrapment of procaine dehydrate. When the 

theoretical drug loading of procaine dyhidrate was increased up to 10% w/w, the mean 

size was reduced from 157 ± 1.9 nm to 56.2 ± 1.9 nm. The drug entrapment efficiency 

ranged from 36.2% up to 44.1% [29]. 

The entrapment of plasmids in PLGA nanoparticles increased the nanoparticle 

size, which can be observed in the work developed by Csaba et al. [30] as depicted in 

Figure 2.4. The organic solvent used to dissolve the polymer blends was methylene 

chloride, and the polymer blends were PLGA: poloxamer and PLGA:poloxamine in a 

ratio of 50:50 mg/mg. Plasmid DNA encoding green fluorescent protein with CMV 

promoter (pEGFP-C1) in an aqueous solution was added to the organic phase. The mean 

size of naked PLGA nanospheres was 191 ± 7 nm with a polydispersity index (PI) of 

0.046 and zeta potential of -60.1 ± 7.4 mV. When plasmid was added to the preparation 

with PLGA alone, the final size was 234 ± 13 nm with PI of 0.187 and zeta potential of -

72.7 mV. The addition of plasmid increases the size all samples tested, but the exception 

was for poloxamine Tetronic® 904 (HLB of 14.5 and molecular weight of 6700). This 

sample showed a reduction of size from 168 ± 9 nm to 161 ± 7 nm, without and with 

plasmid, respectively. The zeta potential decreased from -38.4 ± 3.3 mV to -54.1 ± 2 mV 

for the same preparation and the PI was reduced from 0.179 to 0.154.  
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Figure 2.4. TEM micrographs of blank and plasmid-loaded (A) PLGA: poloxamer 

(Pluronic F68) and (B) PLGA:poloxamine (Tetronic 908) blend nanoparticles. 

Reproduced from Ref. Csaba et al. [30].  

Saxena et al. [37] found that the retention of the ICG-NaI into the polymeric 

matrix was less than ICG because of the more hydrophilic nature of ICG-NaI. As a result 

of the lower retention of ICG-NaI, all further discussions will only consider ICG 

formulations. The mean nanoparticle size decreased with increasing concentration of ICG 

from 405 ± 0.05 nm with 1% w/w of drug to 307 ± 0.08 nm with 10% w/w of drug, and 

the nanoparticle recovery was improved from 48% to 65.3%, respectively. The drug 

entrapment was reduced from 9.92% to 1.14% and the drug content decreased from 

0.21% to 0.17% with increasing amounts of ICG (1% w/w to 10% w/w). When the drug-

polymer ratio was reduced drastically to 0.125% w/w, the drug entrapment increased to 

74.47%. The drug content was 0.2%, and the nanoparticle recovery was slightly 

decreased to 45.7% for the lower drug concentration.  

• Phase injection 

The organic phase addition to the continuous aqueous phase should be controlled 

and constant, by mild stirring, to assure a uniform distribution and diffusion. 

(A) Blank    plasmid-loaded 

(B) Blank    plasmid-loaded 
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Prakobvaitayakit and Nimmannit [28] used a constant flow rate of 0.3 ml/min with 

mechanical stirring of 750 RPM. In the Govender et al. [29] work, they reported a drop 

wise organic phase addition. The stirring was done by a magnetic stirrer. The same 

procedure was followed by Saxena et al. [37]. Csaba et al. [30, 38] used vortex agitation 

for mixing both phases getting a fast organic phase dispersion and further moderate 

magnetic stirring. Other works using fast organic phase dispersion is that by Ameller et 

al. [33, 34]. 

Advantages (A)/Disadvantages (D) 

• (A) The use of non highly toxic solvents (i.e. acetone). 

• (A) Reduced energy consumption because it only requires regular stirring. 

The process does not require high stress shear (i.e. sonication or 

microfluidization). 

• (A) Additives can be used for nanoparticle size reduction. 

• (D) The solvent is removed by evaporation (time consuming). 

• (D) The main drawback is the requirement of drugs that are highly soluble 

in polar solvents (i.e. acetone, ethyl acetate), but they should be slightly 

soluble in water to minimize losses during solvent diffusion. The drug can 

diffuse to the aqueous phase reducing the drug entrapped in the PLGA 

nanospheres [39].  

• (D) The drug loading efficiency is lower for the hydrophilic drugs than 

hydrophobic ones because of their poor interaction (hydrophobic 

interaction) with the polymer leading to diffusion of the drug during the 

solvent displacement from the polymer in the organic phase to the external 

aqueous environment [15].  

• (D) Nanoparticle size is very much affected by the polymer concentration; 

higher nanoparticle sizes are obtained at higher polymer concentrations. 

2.2.4. Emulsion Evaporation Method 

Emulsion evaporation is the oldest method used to form polymeric nanoparticles 

from preformed polymers. The method is based on the emulsification of an organic 

solution of the polymer in an aqueous phase followed by the evaporation of the organic 

solvent. The polymer is dissolved in a suitable solvent (e.g., ethyl acetate, chloroform, 
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methylene chloride). The organic phase or aqueous phase is poured into the continuous 

phase (aqueous or organic phase) in which a surfactant is dissolved to impart stability to 

the emulsion. Emulsification is carried out under high-shear stress to reduce the size of 

the emulsion droplet (directly related with the final size of the nanoparticles). The process 

of emulsification is followed by evaporation of the organic solvent under vacuum, which 

leads to polymer precipitation and nanoparticle formation. 

Normal emulsions oil in water (o/w) or water in oil (w/o) and double emulsions 

(w/o/w) can be used to accommodate the entrapment of active components with different 

properties. The o/w emulsion is used for entrapment of hydrophobic compounds, whereas 

w/o/w double emulsion is used for the entrapment of hydrophilic compounds. The 

method is widely used for microencapsulation because it is easy to scale up, it doesn’t 

require high shear stress, and it can be adjusted (by use of the double emulsion method) 

to encapsulate water soluble drugs [40-44]. 

The formation of the emulsion is a key aspect of this method [45], considering 

that the size of the emulsion droplet is directly related to the final nanoparticle size. 

Emulsions can be classified in microemulsions, miniemulsions (or nanoemulsions), and 

macroemulsions. The microemulsions are transparent and thermodynamically stable 

emulsions, with droplets mean sizes from 20 to 50 nm, obtained by conjugation of 

surfactant, solvent and co-surfactant. Microemulsions are thermodynamically stable due 

to the entropic effect of smaller droplets [46, 47]. The size of mini or nanoemulsions is in 

the order of 40 to 500 nm [48, 49]; high shear stress and enough surfactant amounts are 

needed to make stable nanoemulsions. Nanoemulsions are kinetically stable and the 

surfactant is used in the most efficient way [48]. The macroemulsion droplet size is in the 

micrometer range; macroemulsions are formed by mild stirring and surfactant addition 

for stability. Macroemulsions are unstable over time, so they tend to aggregate.  

The procedure followed to form a miniemulsion involves the use of surfactants 

and the application of mechanical stirring with high RPM, high pressure or sonication, as 

well as the addition of hydrophobic components that act as a suppressant agent against 

Ostwald ripening (migration of small droplets to bigger ones) [50]. The effect of 

sonication on the droplet size was studied by Landfester et al. [51], and it showed that the 

amplitude of wavelength should be over 20% with 600 to 800 seconds of sonication to 
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form a stable miniemulsions with no more droplet size changes. The main draw-back of 

sonication is the lack of monodispersity of the emulsion formed [52].  

Mason and Bibette [53, 54] showed that the application of laminar shear rate 

flow, as opposed to sonication, can result in a monodisperse droplet size. The formation 

of monodisperse viscous droplets in viscoelastic complex fluids by the application of 

shear stresses with laminar flows was experimentally studied. The emulsion was sheared 

in a thin gap of two glasses under a uniform shear flow to form a uniform droplet size 

distribution in the nanometer range by adjustment of the gap in where the sample is 

placed [53, 55, 56]. Some requirements must be met, such as the phases must be 

viscoelastic, and the initial emulsion droplets must be rather big in size (5 to 10 µm) for a 

monodisperse miniemulsion to result.  

Advantages (A)/Disadvantages (D) 

• (A) The use of non highly toxic solvents (i.e. ethyl acetate) 

• (A) Additives can be used for nanoparticle size reduction 

• (A) Suitable for hydrophilic (double emulsions) and hydrophobic active 

components. 

• (D) High consumption of energy by the necessity of high stress shear (i.e. 

sonication or microfluidization) 

• (A/D) The solvent is removed by evaporation (energy consumption), but 

the process time for solvent removal is reduced (special with fast 

evaporation with vacuum) 

• (A/D) The addition of active component affects the final size of 

nanoparticles 

2.2.4.1. Oil in Water Emulsion Method (Single Emulsion) 

The method is based on the emulsification of an organic solution which contains 

the polymer and the active component in an aqueous phase, followed by the evaporation 

of the organic solvent. Different surfactants such as PVA, SDS, Pluronic F68 can be 

dissolved in the aqueous phase. The size reduction of the emulsion droplet is done by 

sonication or microfluidization for miniemulsion formation. The evaporation step is 

required to eliminate the organic solvent present in the organic phase. This leads to the 

precipitation of the polymer as nanoparticles with a diameter in the nanometers range.  
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Important parameters to be considered are: polymer molecular weight and 

concentration, copolymer ratio and end groups, surfactant nature, phase ratio, solvent 

nature, evaporation rate, drug entrapment, additives, shear stress, and sterilization. 

• Polymer concentration 

Polymer concentration is an important parameter to consider when forming 

nanoparticles. Julienne et al. [57] worked with 85:15 PLGA, MW of 87000 Da, and 88% 

hydrolyzed PVA in a fixed concentration of 0.5% w/v. Nanoparticles formed under these 

conditions at four PLGA concentrations, 0.79%, 2.5%, 5%, and 7.5% w/v had a mean 

size of 220, 178, 177, and 236 nm, respectively.  

• Polymer molecular weight 

Usually, the increase in molecular weight leads to formation of nanospheres of 

significantly bigger size, but the entrapment of active components reduces this effect. 

Panyam et al. [58] formed PLGA nanospheres (theoretical loading of dexamethasone was 

20 % w/w) with a size of 260 nm (PI of 0.115) and 270 nm (PI of 0.228) for PLGA with 

molecular weight of 103,000 Da and 143,000 Da, respectively.  

• Copolymer ratio and end groups 

Different copolymer ratios have been tested with no significant difference in the 

mean nanospheres size. Panyam et al. [58] tested three different proportions of lactide 

molar ratios for the entrapment of dexamethasone. The 100% lactide polymer formed 

nanospheres with a mean size of 260 nm (PI of 0.255), which was the same for the 

sample with 75% of lactide, but the PI decreased to 0.115 with the decrease in the lactide. 

The sample with 50 % slightly increased the mean size to 270 nm with a PI of 0.228. Zeta 

potential varied from -23.9 ± 3.5 mV to -19.6 ± 1.5 mV, respectively. There is no 

mention of statistical analysis to detect significant differences in the parameters analyzed. 

Another important factor was the effect of end groups on the mean size. Samples 

prepared with ester end groups formed nanospheres with an average size of 740 nm (PI of 

0.394); the mean size for acid PLGA end group was 240 nm (PI of 0.225). The PLGA 

used was 50:50 with a molecular weight of 12000 and 10000 Da, respectively.  

• Surfactant 

Many options of surfactant can be used for nanosphere formation by emulsion 

evaporation. Julienne et al. [57] tested PVA, methylcellulose (MC), gelatin, and lecithin. 
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For PVA, the concentrations tested were 0.1%, 0.2%, and 0.5% w/v. The size varied from 

342 nm to 291 nm. When MC was used, the mean size obtained varied from 1880 nm to 

1950 nm for the same concentrations. At a fixed surfactant concentration of 0.5% w/v, a 

PLGA concentration of 2% w/v and a phase ratio of 20% v/v (organic to aqueous phase), 

the mean sizes obtained were 288, 2013, 1400, and 298 nm for PVA, MC, gelatin, and 

lecithin, respectively.  

The surfactant type is critical in forming small and stable nanospheres. Moreover, 

when the target applications of the nanoparticles are in the biomedical area, the presence 

of toxic surfactant residues over the surface of the nanospheres is of concern. To address 

this concern, researchers looked to find other surfactants, biodegradable and 

biocompatible to form nanoparticles. Mu and Feng (2003) use vitamin E TPGS (d-α-

tocopheryl polyethylene glycol 1000 succinate), amphiphile molecule due to the presence 

of PEG chains) as a surfactant. Different surfactant concentrations were tested, from 15 

mg/ml to 60 mg/ml. The smaller size nanoparticles were formed at a surfactant 

concentration of 60 mg/ml, measuring in size 567.4 ± 362.6 nm when 85:15 PLGA of a 

molecular weight of 90 to 120 kDa was used. 

• Phase ratios 

The phase ratio (organic to aqueous solvent) plays an important role in controlling 

the size of the nanospheres. In general, the lower ratio of organic-aqueous phase produces 

nanoparticle of smaller size. Juliene et al. [57] showed the effect with different ratios. At 

three organic:aqueous ratios, 10%, 25%, and 40% v/v nanoparticles of 106.8 nm (CV 

43.1%), 111.2 nm (CV 29.4%), and 130.5 nm (CV 16.5) were formed. The samples were 

formed in the presence of 8 % w/v of PVA.  

• Solvent 

Several organic solvents can be selected based on two criteria, (1) the PLGA must 

be soluble in this solvent, and (2) the solvent must be completely immiscible with the 

aqueous phase. Solvents from the chlorinate family have been widely used in the 

emulsion evaporation method. Julienne et al [57] used methylene chloride to form PLGA 

nanospheres with a mean size of 177 nm (CV of 32%). The same solvent was used by 

Pietzonka et al. [59] with a mean size of 400 to 500 nm. Song et al. [60] used a mix of 

dichloromethane and acetone (8:2 v/v) and formed nanospheres with a mean size of 117 
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± 40 nm. Panyam et al. [58] used chloroform to dissolve the PLGA, and the drug 

(dexamethasone) was dissolved in methanol to form nanoparticles of a mean size of 240 

nm (PI of 0.225).   

• Evaporation rate 

Fast evaporation of the organic solvent under vacuum is more efficient in forming 

smaller nanoparticles. Chung et al. [61, 62] compared vacuum solvent evaporation at 160 

mmHg and normal evaporation at 760 mmHg as two methods to form microspheres of 

albumin-loaded poly L-lactide (LPLA) and poly D-lactide (DPLA). The fast rate of 

evaporation produced a mean particle size around 30% smaller than the mean particle 

size obtained under a normal rate of evaporation. The reduction in particle size coupled 

with the low glass transition (Tg) and melting temperature (Tm) of PLGA polymer (i.e. Tg 

of 25.7 °C for 50:50 PLGA with molecular weight of 5 to 15 kDa) makes the vacuum 

evaporation method indispensable in the formation of PLGA nanoparticles.  

• Drug entrapment 

In emulsion evaporation, as in other synthesis methods, entrapment of highly 

hydrophobic drugs tends to reduce the size of the nanospheres. This fact is clearly 

observed in the work of Mu and Feng [63]. Paclitaxel, an active drug used in breast 

cancer therapy is added at a 2.4% w/w concentration to form nanoparticles of an average 

size of 272.5 ± 169.5 nm in the presence of vitamin E TPGS as a surfactant. The samples 

without paclitaxel formed nanospheres with a mean size of 914.8 ± 380.1 nm and 699.3 ± 

286.9 nm for 60 mg/ml and 15 mg/ml of vitamin E TPGS, respectively. Other paclitaxel 

concentrations (0.62% and 0.83% w/w) were tested, but the mean size was higher than 

that obtained with 2.4% w/w. The entrapment efficiency was 50.4% with a recovery yield 

of 41.7%. 

The solubility of the drug in water is the main drawback in forming smaller size 

nanospheres and improving the drug entrapment efficiency. This effect was shown by the 

study of Song et al. [60] where the pH (aqueous phase) effect on the drug solubility was 

reflected on the drug loading and the size of the nanospheres (Figure 2.5). The higher 

drug (U-86983, anti-proliferative agent) entrapment efficiency was for basic pH (over 8) 

due less solubility at basic pHs. The drug load increased from 5.4% to 20.4%, and the 

entrapment efficiency increased from 28.2% to 84.3% by increasing the pH. Although, 
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there is high improvement in entrapment efficiency by increasing the pH (linear relation), 

the nanosphere mean size showed different pattern. The low pH (6.5) formed nanosphere 

with mean size of 142 ± 36 nm, and the mean size for higher pH (8.14) was 144 ± 37 nm. 

The smaller size was for pH 7.5 with an average of 88 ± 41 nm, and entrapment 

efficiency of 56.9%. The entrapment of the drug U61431F was done for pH 4 and 4.5. 

The sample with pH 4 formed nanospheres with mean size of 109 ± 41 nm, and 

entrapment efficiency of 86.1%. The pH 4.5 formed nanospheres with mean size of 115 ± 

42 nm, and entrapment efficiency of 77.5%.  

 

 

Figure 2.5. Efficiency of drug (U-86983) entrapment into PLGA nanoparticles by 

changing the pH of the aqueous phase from neutral to basic. Reproduced from Song 

et al. [60]. 

• Additives 

Addition of hydrophobic additives can improve the nanosphere size, the drug 

entrapment efficiency, and release profile. Song et al. [60] tested wax (PLGA/wax of 

80/20%) and palmitate (PLGA/palmitate of 80/20%) to improve the release profile 

(reduce the burst effect, fast initial drug release) of the drug U-86983 (an anti-

proliferative agent). The mean size for the wax sample was 105 ± 38 nm, which was 

almost the same with the palmitate sample (107 ± 30 nm). The entrapment efficiency was 
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higher for the wax sample (85.3%) as compared with the palmitate sample (80%), but the 

burst effect was not reduced (around 40% of drug release in the first day). 

• Shear stress 

The emulsion formation requires a strong agitation to reduce the droplet size. This 

highly impacts the nanoparticles size. Julienne et al. [57] tested two methods of shear 

stress (mechanical stirring, high pressure homogenizer). They tested two homogenizer 

pressures of 100 and 200 bars (high pressure homogenizer). The mean size obtained was 

178 nm (CV of 22%) and 188 nm (CV of 38%) for 100 and 200 bars, respectively. There 

is a favorable impact in the size reduction when the emulsion is homogenized with a high 

pressure homogenizer compared with just high stirring (10000 RPM). The nanosphere 

mean size with stirring was 288 nm (CV 37%), and the mean size for nanosphere using 

homogenization (high pressure of 300 bars) was 231 nm (CV of 21%). The samples used 

PVA at 5% w/v and phase ratio of 20%.  

• Sterilization 

The effect of sterilization on nanosphere size was evaluated by Song et al. [60]. 

The sterilization was done by γ- irradiation at 2.5 Mrad doses for nanospheres with 2 

aminochromone drug family. The mean size slightly changed from 123 ± 38 nm before 

irradiation to 149 ± 43 nm after irradiation. The drug release was the same for both 

preparations, and the nanoparticles uptake was slightly increased from 13.4 µg/10 mg to 

15.4 µg/10 mg artery, before and after irradiation.   

2.2.4.2. Double Emulsion (w/o/w) Method 

The first step of the double emulsion method is the formation of a water in oil 

(w/o) emulsion where the aqueous solution contains the hydrophilic active component 

and the organic phase contains PLGA and a suitable surfactant (Span 80, pluronic F 68, 

and others) with a low HLB. The miniemulsion is formed under strong shear stress (i.e. 

sonication, microfluidization, high speed homogenization). Next, the water in oil in water 

(w/o/w) emulsion formation is sonicated or homogenized for droplet size reduction. This 

second size reduction should be controlled to minimize the hydrophilic active component 

diffusion to the external aqueous phase. Evaporation, the final step, is used to remove the 

organic solvent. Evaporation is done under vacuum to avoid polymer and active 

component damage, and to promote final nanoparticle size reduction. 
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The main drawback of the double emulsion method is the large size of the 

nanoparticles formed and the leakage of the hydrophilic active component [64], 

responsible for low entrapment efficiencies. The coalescence and Ostwald ripening [65, 

66] are the two important mechanisms that destabilize the double emulsion droplets, and 

the diffusion through the organic phase of the hydrophilic active component is the main 

mechanism responsible of low levels of entrapped active component [64]. One strategy 

followed by Song et al. [60] to reduce the nanoparticle size was to apply a second strong 

shear rate. The leakage effect can be reduced by using a high polymer concentration, and 

a high polymer molecular weight, accompanied by an increase in the viscosity of the 

inner water phase, and an increase in the surfactant molecular weight [60, 67].  

Important parameters to be considered are: polymer/surfactants ratio, polymer 

concentration, surfactant nature, viscosity, solvent nature, shear stress, evaporation, 

additives, and first/second phase ratios.  

• Polymer molecular weight and copolymer ratio 

An interesting effect of nanosphere size reduction against molecular weight 

increase is shown by Prabha and Labhasetwar [68]. The molecular weights tested were 

12, 53, and 143 kDa for 50/50 copolymer ratio, and the mean size achieved were 563 ± 6, 

685 ± 40, and 375 ± 22 nm, respectively. The zeta potential was -17.8 ± 1.0 mV, -16.6 ± 

1.4 mV, and -11.5 ± 3.4 mV, respectively. The PLGA copolymer ratio tested were 75:25 

and 50:50 (molecular weight of 53 kDa) with mean size of 485 ± 11 nm and 685 ± 40 

nm. The zeta potential was -16.6 ± 1.4 mV, and -18.2 ± 3.8 mV, respectively. The 

polymer concentration was maintained at 3 %w/v. 

• Solvent  

The chlorinate family is widely used for nanosphere preparation with double 

emulsion. Aukunuru et al. [69] used methylene chloride to dissolve PLGA, and entrapped 

a 19-mer antisense oligonucleotide (PS-ODN). The mean size obtained was 252 ± 3.4 nm 

with zeta potential of -12.98 ± 1.8 mV. Dillen et al. [70] used dichloromethane and 

formed nanospheres with a size of 209.5 ± 2.5 nm before freeze drying. The same solvent 

was used by Vandervoort et al. [71] with mean size of 204 ± 4 nm. Yan et al. [72] used 

ethyl acetate to dissolve PLGA, and insulin was added to the first aqueous solution. The 

smaller nanosphere size was 149.2 nm (PI of 0.09). 
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• Surfactant  

Two surfactants are needed in double emulsion evaporation method, a 

hydrophobic surfactant for the first emulsion and a hydrophilic surfactant for the second 

emulsion. Vandervoort and Ludwig [73] evaluated a series of stabilizers against PVA. 

The stabilizers used were methylcellulose (MC), hydroxy-ethylcellulose (HEC), hydroxy-

propylcelluloose (HPC) hydroxyl-propylmethylcellulose (HPMC), gelatin type A and B, 

carbomer (Carbopol® 980) and poloxamer (Lutrol® F68). The stabilizers used alone 

formed nanoparticles up to 3.2 µm with an exception for Carbopol® 980- and Lutrol® 

F68, which formed nanospheres with a size of 400 nm. In the presence of PVA, 

nanospheres under 1 µm were formed. The lower mean size was obtained by using a mix 

of the stabilizer (the concentration used was equivalent to the same viscosity of 1% PVA) 

and PVA. The mix of PVA with Carbopol and poloxamer were exceptions because the 

blend of carbopol and PVA showed a slightly increase in mean size (420 nm), and the 

blend of poloxamer and PVA showed no variation on the mean size. Zeta potential varied 

from +14 mV to -50 mV for all preparations. Almost all formulation showed negative 

values with the exception of gelatin type A, showing a zeta potential of +13 mV.  

Another work dealing with PVA use as a surfactant in the second emulsion is that 

by Yan et al. [72]. PVA concentration was varied to study the entrapment of insulin in 

PLGA nanoparticles (molecular weight of 11000 Da). The PVA concentrations tested 

were 0.4%, 0.7%, and 1% w/v. The mean size was reduced from 266.7 nm (PI of 0.15 

nm) to 149.2 nm (PI of 0.09), and the entrapment efficiency was improved from 19.3% 

(±4.2%) to 42.8% (±1.5%) by increasing the PVA concentration from 0.4 to 1% w/v. The 

insulin concentration for the higher entrapment efficiency was 3.048 mg/mL, the 

surfactant concentration was 1% w/v, and polymer concentration was 50 mg/mL.  

Prabha and Labhasetwar [68] tested different PVA concentrations, varying from 

0.5% to 2%. The 2% PVA samples formed smaller nanospheres size, 270 ± 1 nm with a 

PI of 0.2 (±0.01). They also quantified the amount of PVA bounded to the nanosphere 

surface and found that this amount was directly correlated to the amount of surfactant 

used in the preparation. The lower PVA concentration formed nanospheres with 2.2% ± 

0.2% w/w PVA bounded, and the 5% PVA sample formed nanospheres with 5.3% ± 

0.7% w/w PVA over the surface. 
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Aukunuru et al. [69] used a PVA concentration of 5% in the continuous phase. It 

was found that zeta potential increased to less negative values when the PVA 

concentration increased. Prabha and Labhasetwar [68] showed an increase in zeta 

potential from -31.3 ± 1.6 mV to -6.5 ±1.7 mV for PVA concentrations from 0.5% to 2%. 

Aukunuru et al. [69] obtained zeta potential value of -12.98 ± 1.8 mV. Sahoo et al. [74] 

showed a similar effect of PVA. The PVA concentration was varied from 0.5% w/v to 

5% w/v. The mean size varied from 522 nm to 380 nm, and the zeta potential varied from 

-15.4 ± 0.8 mV to -8 ± 2.3 mV, respectively.  

Yan et al. [72] studied the entrapment of insulin in PLGA nanoparticles 

(molecular weight of 11000 Da). The effect of surfactant concentration (poloxamer 188) 

on the nanoparticle size was tested. The lowest mean size obtained for 1% w/v of 

poloxamer 188 was 149.2 nm with a polydispersity index of 0.09, and the entrapment 

efficiency was 42.8% ± 1.5%. The large size obtained of 266.7 nm (PI of 0.15 and 

entrapment efficiency of 19.3% ± 4.2%) was for 0.4% w/v of poloxamer 188. 

• Drug entrapment 

Dillen et al. [75] showed a slight increase in the nanosphere size from 234.7 nm to 

238.1 nm, when the drug ciprofloxacin was added. When boric acid was added to the first 

aqueous suspension to acidify and improve the drug entrapment, the size increased 

slightly from 234.7 nm to 239 nm and the entrapment efficiency was improved from 

61.7% to 62.6%. The improvement was greater (79.9%) when the number of 

homogenization cycles was increased from one to three. The entrapment of hydrophilic 

drugs is improved by using high molecular weight of PLGA and high molecular weight 

of first surfactant, which results in a higher inner phase viscosity. Song et al. [60] tested 

two different molecular weights of PLGA (58 and 102 Da). The lower molecular weight 

resulted in an entrapment efficiency of 24.8% and 9.2% for a PLGA concentration of 3% 

and initial theoretical drug (bovine serum albumin, BSA) of 10%, and for a PLGA 

concentration of 6% with 14 % of BSA, respectively. The entrapment efficiencies were 

improved to 68% and 74.8% for high molecular weight, under the same conditions. The 

mean size obtained for these samples was 150 ± 38 nm. 

 

 



 

36 

• Shear stress 

High shear stress for droplet size reduction is a basic requirement to make small 

nanoparticles by double emulsion. Homogenization by microfluidization has been used 

and found to affect the size of the nanoparticles as a function of the pressure and number 

of cycles. Dillen et al. [75] tested one and three cycles with a fixed pressure of 50 bars. 

The mean size obtained for one cycle was 234.7 nm, and the mean size was reduced to 

188.7 nm with three cycles. Vandervoort et al. [71] tested the effect of pressure and 

homogenization cycles forming a wide spectrum of nanoparticle sizes and entrapment 

efficiencies. The size reduction was achieved by an increase in the homogenization 

pressure and cycles. The lowest PLGA nanoparticle size was for the PVA and PVA 

mixed with carbopol (204 ±4 nm, and 205 ±5 nm, respectively) with 500 bar and three 

cycles. The drug entrapment decreased with an increase in homogenization pressure and 

cycles; the PVA sample varied from 61.5% ±12.4% to 20% ±8.2%, and the PVA mixed 

with carbopol varied from 41.8% ±12.1% to 20.8% ±8.4% for the entrapment of 

pilocarpine HCl. 

• Sterilization 

Sterilization is an important step to obtain a suitable system to be used in vivo. 

Dillen et al. [75] observed that nanoparticle size increased from 255.8 nm to 295.1 nm 

following gamma irradiation for sterilization purposes. This effect of slight increment of 

size is similar to that showed by Song et al. [60] with single emulsion method. 

2.2.5. Important Modifications of Traditional Methods 

The methods detailed above are the main methods extensively employed in the 

synthesis of PLGA nanoparticles for different purposes. There is a continuous effort to 

improve the nanoparticle size (size reduction), to reduce the polydispersity index, to 

better entrap the active components (hydrophilics and hydrophobics), and to reduce the 

potential toxicity of the different components involved. These efforts stimulated research 

and discovery of new methods, based on slight modifications of standard methods, and 

the application of new synthesis steps in the PLGA nanoparticles formation. The use of 

microfluidizers, dialysis, spray drying, and mix of standard techniques are examples of 

new methods created to improve the PLGA nanoparticle physical characteristics. 
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2.2.5.1. Membrane Emulsion Evaporation Method 

The aqueous and organic phases are separated by a membrane which has a 

defined pore diameter and distribution. The organic phase is forced through the pores to 

form an organic droplet which is detached from the membrane by a certain movement of 

the aqueous phase. The membrane has a hydrophobic or hydrophilic behavior as a 

function of the disperse phase (aqueous or organic solvent) [76]. This can lead to very 

uniform size distribution of nanoparticles, but the main drawback is the bigger size 

obtained compared to normal emulsion evaporation method [77]. The pore diameter 

affects the final size of the nanoparticles, and there is a relation pore to droplet diameter 

of 1:3 [78]. There are a number of criteria that have to be met in order to obtain 

nanoparticles in the nanometer range: the membrane must have a pore diameter between 

100 and 200 nm, the applied pressure difference should be slightly greater than the 

critical pressure, the contact angle should be as small as possible, and the surfactant 

should be adsorbed fast at the oil water interface [76]. SPG (Shirasu Porous Glass) and 

PTFE (poly(tetrafluoroethylene)) are the main membranes used in this technique [79].  

2.2.5.2. Spray Dry Method for Water in Oil 

Pamujula et al. [80] developed a method to improve the entrapment efficiency of 

hydrophilic drugs. An emulsion was formed between the organic phase and water. The 

organic phase, consisted of a mix of dichloromethane and chloroform, containing the 

polymer, and lipophilic surfactant L-α-phosphatidylcholine. The aqueous phase contained 

the drug (amifostine). The final emulsion was injected in a standard 0.7 mm nozzle 

blowing into a chamber with hot air (55 °C). The mean size obtained was 257 nm (182-

417 nm) and 240 nm (182-417 nm) for preparations with 40% w/w and 100% of 

theoretical drug loading, respectively. The main advantage of this method is the high 

entrapment efficiency for hydrophilic drugs, which were 90.9% ± 0.16% and 100.03% ± 

2.01% for the same preparations.  

2.2.5.3. Spryer Solvent Displacement with Dialysis and Freeze Dryer Stabilization 

Kim et al. [81] modified the solvent displacement as follows. The organic phase 

was injected into an aqueous solution by a nozzle and the solvent removed by dialysis. 

The drug addition (paclitaxel) was done after dialysis, by adsorption onto the nanosphere 

surface. The system was stabilized by the addition of an aqueous solution of pluronic F-
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68 and subsequently freeze dried. The solvent used in the organic phase (discontinuous) 

was tetraglycol. For the PLGA concentration tested, 0.5 wt% to 5 wt% the nanosphere 

mean size obtained were in the range of 150 nm to over 1.4 µm. The maximum 

entrapment efficiency was 28.5% ± 3.3% and loading amount of 9.4% ± 1.4 wt% for 

PLGA nanospheres formed with 0.05 wt% of paclitaxel-ethanol solution. A limitation of 

this procedure is the strong dependence of the nanosphere size with respect to the 

polymer concentration.  

2.2.5.4. Double Emulsion with Emulsion Diffusion 

Cegnar et al. [82] modified the normal emulsion solvent evaporation method. The 

evaporation step, required for the solvent elimination, was changed by the addition of 

large amounts of distilled water to promote the diffusion of the solvent from the polymer 

(organic phase) to the aqueous suspension to improve the energy consumption. PVA was 

used as surfactant in the emulsion, and it was added to the second aqueous phase, in low 

concentrations (0.3% w/v), to avoid aggregation. Ethyl acetate was used as the organic 

solvent. The excess of PVA was reduced by centrifugation and wash steps with distilled 

water. Four 50:50 PLGA polymers (free carboxyl end groups with 12 and 48 kDa, and 

esterified carboxyl end group with 12 and 48 kDa) were employed to entrap cystatin, a 

cysteine protease inhibitor. The free carboxyl end group with 42 kDa 50:50- PLGA led to 

mean sizes varying from 300 nm to 350 nm with a polydispersity index of 0.3, and zeta 

potential of -30 mV. The free carboxyl end groups PLGA incorporated higher amounts of 

cystatin than esterified carboxyl end groups (free carboxyl end groups: for the 12 kDa 

was 57 ± 8%, and for 42 kDa was 35 ± 8%; esterified carboxyl end groups: for the 12 

kDa was 12 ± 4%, and for the 42 kDa was 14 ± 6%).  

In a further work, Cegnar et al. [83] optimized different parameters to obtain 

smaller nanoparticles with maximum cystatin activity into the matrix. The parameters 

tested were stirring rate (from 5000 to 15000 RPM), solvent (ethyl acetate and a mix of 

dichloromethane with acetone, DCMA), stirring with sonication, and polymer type. The 

stirring with sonication formed the smaller particles with slight difference for both 

solvents tested. The mean nanosphere size were 254 ± 16 nm and 235 ± 19 nm for ethyl 

acetate and DCMA preparations, respectively. The reduction in the cystatin activity was 

more pronounced with the mix of acetone and DCM (30%) compared with ethyl acetate 
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(15%). Therefore, a mix of sonication and mild stirring in ethyl acetate was applied to 

preserve up to 85% of cystatin activity. The mean nanoparticle size was 180 ± 9 nm for 

free carboxylic end group PLGA with molecular weight of 12 kDa. Best drug loading and 

entrapment efficiencies were obtained for the PLGA polymer with free carboxylic end 

groups, 2.6% ± 0.2% and 57% ± 8%, respectively.  

2.2.5.5. Dialysis Method for Modified PLGA 

This is a simple method that can be used for the preparation of nanoparticles with 

block-copolymers, graft copolymers, and amphiphilic materials [84, 85]. Typically, this 

method consists of using a dialysis device in which the organic solution is placed. The 

organic solution, containing the polymer and the lipophylic active component is dialyzed 

for at least 12 hours against distilled water to remove the organic solvent and the free 

active component. 

Jeon et al. [84] investigated the effect of different solvents on the size of PLGA 

nanoparticles formed and release of norfloxacin. PLGA copolymer ratios used were 

85:15, 75:25, and 50:50 with molecular weight of 48.4, 47.5, and 40.1 kDa, respectively. 

The experiments were developed with low PLGA concentration (0.2% w/v) suggesting 

that the mean size of nanospheres obtained by this method is highly sensitive to polymer 

concentration. The solvents studied were acetone, dimethylsulfoxide (DMSO), 

dimethylacetamide (DMAc), and dimethylformamide (DMF). The lowest mean size 

obtained was for DMF with 50:50 PLGA with 183 ± 70.6 nm (number average), and the 

drug content was 9.74 wt % with a loading efficiency of 10.8 wt %. The highest drug 

content (12.97 wt%) and loading efficiency (14.9 wt%) was for the 50:50 PLGA in 

DMAc, but the nanoparticle size obtained was higher (over 300 nm).  

The solvent effect was further studied by Jeong et al. [85], who looked at different 

solvents (acetone, tetrahydrofuran (THF), DMF, DMAc, and DMSO). The lowest size 

nanosphere obtained was 200.4 ± 133 nm in the presence of DMAc as organic solvent 

(Figure 2.6). The nanoparticle sizes (number average) varied from 421.2 nm to 276.9 nm 

for 85:15 and 75:25 copolymer ratios, respectively. It should be noted that the entrapment 

efficiency was 13.3 wt% and 11.7 wt% for 85:15 and 50:50 ratios, respectively. 
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Figure 2.6. Scanning electron microphotographs of 50:50 PLGA nanoparticles 

prepared from (a) DMAc or (b) acetone as a function of the initial solvent. 

Reproduced from ref. Jeong et al. [85]. 

The study of testosterone-free surfactant PLGA nanoparticles was done by Jeong 

et al. [86]. They compared the dialysis method with solvent diffusion method in terms of 

PLGA nanoparticle size. The nanoparticles mean size obtained by dialysis method was 

732.8 ± 190.7 nm with a drug loading of 8.5 wt% and an entrapment efficiency of 46.4 

wt% using acetone. For DMF, the mean size was 164.1 ± 32.5 nm with a drug loading of 

9.1 wt% and entrapment efficiency of 50.1 wt%. The solvent diffusion was done with 

acetone, and the mean size was 81.3 ± 10.4 nm with a drug loading of 11.2 wt% and 

entrapment efficiency of 63.1 wt%. The release profile for testosterone differed for each 

preparation suggesting that drug release is related more to the nanoparticle size than 

active component concentration and that it is regulated by diffusion pathways more than 

polymer degradation. Nanoparticle synthesized using the acetone-solvent displacement 

method was released faster than the nanoparticles prepared with the dialysis method 

(almost 100% after 3 days for the former, and almost 60% for the latter).  
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A further work of Jeong et al. [87] studied the addition of PLA-poly(ethylene 

glycol) diblock copolymer to the organic phase with dissolved PLGA. The organic 

solvent used was dimethylformamide. The organic solution was placed in a dialysis tube 

with a cutoff of 12,000 g/mol. The mean nanoparticle size (number average) was 295.3 ± 

171.3 nm and 307.6 ± 27.2 nm for the PLGA and PLGA/(PLA-PEG) blend, respectively. 

The entrapment of adriamycin-HCl (ADR) increased the mean size to 307.6 ± 27.2 nm 

and 348.4 ± 176.6 nm for 1:1 and 1:2 PLGA/ADR weight ratio, respectively. Poly(L-

lysine)-grafted-PLGA polymer was another modification done to PLGA by Jeong et al. 

[88, 89] to obtain an amphiphilic polymer suitable for micelle formation under 

dissolution in water. The polymer concentration used was 0.4% w/v. The mean size 

ranged from 149.6 ± 4.8 nm to 69.4 ± 2.8 nm for 3% or 8% of polymer grafting, 

respectively.  

2.3. Magnetic Polymeric Nanoparticles (MPNPs) 

There are numerous methods available to form magnetic polymeric nanoparticles 

(MPNPs), divided in two main classes, 1) polymerization techniques, starting with a 

monomer, and 2) chemical and physical entrapment of magnetite in a preformed polymer. 

Polymerization methods include emulsion or microemulsion polymerization, interfacial 

polymerization, precipitation polymerization, and suspension polymerization. When a 

preformed polymer is the starting material, the methods used are impregnation of 

magnetite in the polymer matrix, polymer immobilization onto inorganic magnetite, 

incorporation of magnetite by precipitation, and others. 

2.3.1. Polymerization Methods 

The materials resulting from the inclusion of magnetite (inorganic material) into a 

polymer matrix (organic material) are usually named polymer latexes [128, 129] or 

nanocomposites [130]. Both names, the first originating from colloidal chemistry and the 

last from nanotechnology, define a mixture of two materials forming a new material with 

improved properties. 
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Table 2.1. Summary of important parameters for PLGA nanoparticles formation 

 

Year Author Method 
Polymer 

conc. 
(mg/mL) 

Ratio 
M.W. 
kDa 

Surfactant 
conc. 

(% w/w) 
Solvent 

Phase 
vol. 

(mL/mL) 

Nanopart. 
yield 
(%) 

Active 
component 

Initial 
conc. 

(mg/mL) 

Nanoparticle 
size 
(nm) 

Entrapment 
efficiency 

(%) 

Nanoparticle 
loading 
(% w/w) 

Notes 

2001 
Ahlin 
[23] 

ED 5% w/w 
50/50 
75/25 

12 
and 

12, 63 

PVA at 10, 
15, 20% w/w 

Benzyl 
alcohol 

10/20 na. na. na. 
310 
190 
165 

na. na. 
Viscosity 

effect 

2001 
Kim 
[90] 

ED 20 75/25 
75 to 
120 

PVA Pluronic 
F68 and 

F127 

Benzyl 
alcohol 

10/20 na. Estrogen na. 
Approx. 200 
132 and 146 

na. na. 
Surfactant 

effect 

2002 
Ahlin 
[24] 

ED 5% w/w 50/50 12 
PVA at 10, 

15, 20% w/w 
Benzyl 
alcohol 

2.1g/4g na. Enalaprilat 2% w/v 183±5 204±6 46.4±1.7 13.2±0.5 Drug effect 

2004 

Ravi 
Kumar 

(a) 
[21] 

ED 20 70/30 na. 
100 mg PVA 

30 mg 
chitosan 

Ethyl acetate 
10/10 + 

extra 
water 

na. DNA 10 181.5±3 na. na. 
DNA on 
surface 

2005 
Lee 
[19] 

ED 20 75/25 
75 to 
120 

Pluronic F68 
and F127 

(5%) 
Ethyl acetate 10/20 na. 

Magnetite 
(40%magn. 

content) 
5 mg 95 to 210 na. na. 

Test stirring 
rates 

2002 
Konan 

[25] 
SO 17% w/w 50/50 

12, 
48 

PVA 82.6% 
hydrated 
(15w/w%) 

THF and 
Acetone 

5 g / 20 g na. na. na. 
102±4 
154±17 
137±6 

na. na. 
Agitation 

effect 

2004 
Eley 
[27] 

SO 20% w/w na. na. PVA Acetone na. 65 
Coumarin-

6 
1% 400 to 1100 50-55 na. 

Vitro, vivo 
release 

2004 
Zweers 

[26] 
SO 2%wt. 57/43 11.4 

PVA at 2 
wt.% 

Acetone 5 g / 7.5 g na. na. na. 230 (0.09)* na. na. Degradation 

1993 
Niwa (b) 

[32] 
NP 8 85/15 

12, 
66, 
127 

PVA at 2% 
w/v 

Acetone, 
DCM, water 

17 / 50 
76.3-
79.4-
94.5 

Nafarelin 
Acetate 

17.6% 
w/v 

311±20 
224±14 
233±31 

4.96  11.8   
8.22 

0.15   0.37   
0.22 

Hydrophilic 
drug 
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Year Author Method 
Polymer 

conc. 
(mg/mL) 

Ratio 
M.W. 
kDa 

Surfactant 
conc. 

(% w/w) 
Solvent 

Phase 
vol. 

(mL/mL) 

Nanopart. 
yield 
(%) 

Active 
component 

Initial 
conc. 

(mg/mL) 

Nanoparticle 
size 
(nm) 

Entrapment 
efficiency 

(%) 

Nanoparticle 
loading 
(% w/w) 

Notes 

1993 
Niwa (a) 

[31] 
NP 4.4 85/15 

66, 
127 

PVA at 2% 
w/v 

Chloroform 
acetone 

27.5 / 50 
77.7-
76.7 

Indometha
cin 

10% w/w 
385±51 
637±40 

50 - 33 5.85-3.91 
Low- water 
soluble drug 

1993 
Niwa (a) 

[31] 
NP 5 85/15 

12, 
66, 
127 

PVA at 2% 
w/v 

DCM, 
acetone, 
methanol 

27.5 / 50 
96.6-
83.9-
93.7 

5-
fluorouracil 

10% w/w 
195±34 
207±13 
199±11 

1.62   
5.42   
15.0 

0.15   0.59   
2.65 

Water 
soluble drug 

1994 
Stolnik 

[92] 
NP 20 75/25 63 

Poloxamine 
and 

PLA:PEG 
(1% w/v) 

Acetone and 
water 

na. na. na. na. 
161±3.7 
147±3.6 
160±3.8 

na. na. 
Surface 
modific. 

1997 
Hawley 
[91] 

NP 0.1% w/v 
75/25 
65/35 
55/45 

50 
PLA:PEG 
(1.5:0.75 

1.5:2   2:5) 

Acetone and 
water 

10/20 na. na. na. 
84.8±3.4 
90.3±2.8 
99.3±4.0 

na. na. 
Surface 
modific. 

1998 
Kawashim

a 
[93] 

NP 33.3 50/50 20 
PVA at 1% 
w/v or span 
80 (100 mg) 

Acetone+Me
OH in water 

or oil 
2+1/25 

92.6 
77.7 
66.9 

Elcatonin 1% w/w 
250(0.06) 

700(0.2-0.3) 
800(0.3-0.5) 

19.5     
44.5      
2.05 

0.208 0.567 
0.0303 

Highly water 
soluble 
drugs 

2000 
Muraka-

mi 
[94] 

NP 40 50/50 na. 
PVA at 4% 

w/w 
Acetone or 

AN 
125/300 na. na. na. 258 na. na. 

Matrix 
material 

2002 
Ricci 
[95] 

NP 7.74 85/15 105 
PVA at 1% 

w/v 
acetone + 

DCM/ water 
7.75/25 na. 

Leucinostat
in-A 

0.77 213±11 na. 20.8 
Drug 

entrapment 

2002 
Casco-

ne 
[96] 

NP 2.5% w/v 50/50 
40 to 

75 
PVA at 5% 

Acetone and 
DCM 

na. na. 
Dexametha

sone 
na. 100-300 na. na. 

PVA 
hydrogel 

2003 
Jiang 
[97] 

NP 25 
50/50 
75/25 

7.5 
and 
25 

PVA 97% 
hyd (1%) 

Acetone + 
ethanol 

8/40 > 90 na. na. na. na. na. 
effect of 
solvents 

2003 
Prakobvai

tayakit 
[28] 

NP 10 to 100 50/50 na. 
Pluronic F68 

(0.25%) 
Acetone 10 / 25 na. 

Itraconazol
e 

0.2 to 1.8 190 to 644 na. na.  
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Year Author Method 
Polymer 

conc. 
(mg/mL) 

Ratio 
M.W. 
kDa 

Surfactant 
conc. 

(% w/w) 
Solvent 

Phase 
vol. 

(mL/mL) 

Nanopart. 
yield 
(%) 

Active 
component 

Initial 
conc. 

(mg/mL) 

Nanoparticle 
size 
(nm) 

Entrapment 
efficiency 

(%) 

Nanoparticle 
loading 
(% w/w) 

Notes 

2003 
Ameller 

[34] 
NP 20 na. 75 

poloxamer 
188 (1%) 

Acetone 1 / 2 na. 
Antistrogen 
RU 58668 

2x10
-5

 to 
10

-3
 M 

249 ±64 94.1 3.1 
Surface 
modific. 

2004 
Saxena 

[37] 
NP 

4.2,   4.2,   
33.3 

50/50 na. PVA 
Methanol + 
acetonitrile 

8+16/120 
49.4 
65.3 
45.7 

ICG and 
ICG-NaI 

0.21,    
0.42,   
0.04 

338±0.12 
307±0.02 
357±0.06 

2.92±0.4 
1.5±0.08 
74.5±0.7 

0.3±0.04 
0.17±0.01 
0.2±0.0 

Drug effect 

2000 
Dawson 

[98] 
EEV 1% w/v 50/50 na. Tween 80 DCM na. na. DiO 0.1 130 to 600 na. na. 

Surface 
modific. 

2002 
Pietzonka 

(b) 
[99] 

EEV 50 na. na. PVA 0.2% 
Met-chlor / 

water 
10/50 na. 

Nile red or 
coumarin-6 

0.10% 400-500 70-80 0.1 
Cellular 
uptake 

2003 
Mu and 
Feng 
[63] 

EEV 1.25-2.5 
75/25 
50/50 

90-
120 
40-
75 

Vitamin E 
TPGS 0.03 

g/mL 
DCM na. 

41.7 
37.7 

Paclitaxel 
2.4 and 
0.62% 

w/w 

272.5±169 
369.1±80.8 

50.4 - 
83.8 

na. 
Effect of 

surfactant 

2002 
Pietzon-

ka (a) 
[59] 

EEV 10 na. na. PVA 0.2% 
methylene 

chloride and 
water 

10/50 na. 
Coumarin-

6 
0.05 400-500 70-80 0.1 

Cellular 
uptake 

2003 
Diwan 
[100] 

EEV 
and 
DEV 

30% w/v 50/50 7 PVA 7.5% 
water/chl-

met in water 

0.06/0.6 
0.66/4 
4.66/16 

na. 
TMR 

dextran 
and BLP25 

1% w/v 
and 0.2% 

w/v 
290-325 na. na. 

Antigen 
delivery 

2004 
Panyam 

[58] 
EEV 24.2 50/50 

143,  
12,   
10 

PVA at 2.5% 
w/v 

Methanol+ 
chloroform 

1/6 na. 
Dexametha

sone 
4.8 

270 (0.23)* 
740 (0.39) 
240 (0.23) 

na. 
6±0.4 

9.3±2.5 
6.3±1.7 

Solid state 
solubility 

2004 
Feng 
[101] 

EEV na. 50/50 
90-
126 

TPGS 0.025 
and 1:2 
(PLGA) 

DCM  and 
water 

na. na. Paclitaxel na. 
369.1±80.8 
552±81.4 

83.8 100 1 and 10 
Surfactant 

effect 

2004 
Bivas-
Benita 
[102] 

EEV 10% w/v 53/47 na. 

Tween80 
1%, 

poloxamer 
0.5% w/v 

DCM + 
acetone/ 

water 
10/20 na. 

V1Jns DNA 
plasmid 

0.025 209±16 99.8±0.1 na. 
Cationic NS 

for DNA 
entrapment 
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Year Author Method 
Polymer 

conc. 
(mg/mL) 

Ratio 
M.W. 
kDa 

Surfactant 
conc. 

(% w/w) 
Solvent 

Phase 
vol. 

(mL/mL) 

Nanopart. 
yield 
(%) 

Active 
component 

Initial 
conc. 

(mg/mL) 

Nanoparticle 
size 
(nm) 

Entrapment 
efficiency 

(%) 

Nanoparticle 
loading 
(% w/w) 

Notes 

2005 
Win 
[103] 

EEV na. 50/50 
40-
75 

PVA 2% and 
TPGS 0.03% 

w/v 
DCM na. na. 

Coumarin-
6 

0.05% 
w/v 

216.6±8.8 
295.4±14.8 

na. na. 
Surface 
effect on 
uptake 

2005 
Elaman-

chili 
[104] 

EEV 50% 50/50 7 PVA 9% 
chl-

met/water 
0.4/2 na. 

BPL25 and 
MPLA 

1% w/v 
0.2% w/v 

357 na. 1% 
Antigen to 
dendritic 

cells 

1997 

Blanco 
and 

Alonso 
[105] 

DEV 200 50/50 na. PVA 1% w/v EAc 
0.05/1 
1.05/2 

2.05/100 
na. BSA 40 

320±2 457±2 
398±5 

38.9±1.4 
15.4±0.6 
56.8±0.7 

na. 
Different 

parameters 

2001 
Jiao 
[106] 

DEV 40 50/50 40 PVA at 0.1% 
Methylene 
chloride 

1/10 
11/200 

na. Heparin 5000 IU 259±6 14±4 
2792±801 
IU/g poly. 

In vitro 
studies 

2002 
Gutierro 

[107] 
DEV 5% w/v 50/50 na. PVA 8% 

methylene 
chloride and 

water 

0.25/5 
2.25/25 

na. BSA na. 200 and 500 na. na. 
Vaccine 
mucosal 

immunization 

2002 
Panyam 

[108] 
DEV 30 50/50 143 

PVA at 2.5% 
w/v 

water/ 
chloroform/w

ater 
1/6 7/50 na. DNA pGL3 10 97±3 (TEM) 89.8 2.1 

DNA 
entrapment 

2003 
Sanchez 

[109] 
DEV 50 50/50 98 

poloxamer 
10%, Sodium 
cholate 1% 

w/v 

Methylene 
chloride 

0.1/1 
1.1/2 

3.1/100 
na. 

Interferon 
alpha 

na. 280±12 85.1±3.1 na. 
Nano and 

micro 
particles 

2003 
Eyles 
[110] 

DEV 10 50/50 20 
PVA 2.5% 
w/v and 

1.5% w/v 

DCM and 
water 

10/3 
13/20 

na. 
Tetanus 
toxoid 

na. 180 (0.1)* na. 3.6 
Vaccine 

entrapment 

2004 
Vander-

voort 
[71] 

DEV 100 52/48 40 
PVA 

Poloxamer 
Carbopol 

Methylene 
chloride 

2/10 and 
12/50 

na. 
Pilocarpine 

HCl 
2.5% w/v 

204±4 304±5 
309±6 

20±8.2 
16.8±5.6 
32.1±6.4 

na.  

2004 
Scholl 
[111] 

DEV 200 50/50 na. 
Pluronic 10% 

and 1% 
Ethyl acetate na. na. 

Recombina
nt Bet v1 

4 
270 and 360 
(50% value) 

na. 
16.45 

µg/mg pol. 
Allergen 
vehicle 
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Year Author Method 
Polymer 

conc. 
(mg/mL) 

Ratio 
M.W. 
kDa 

Surfactant 
conc. 

(% w/w) 
Solvent 

Phase 
vol. 

(mL/mL) 

Nanopart. 
yield 
(%) 

Active 
component 

Initial 
conc. 

(mg/mL) 

Nanoparticle 
size 
(nm) 

Entrapment 
efficiency 

(%) 

Nanoparticle 
loading 
(% w/w) 

Notes 

2004 
Weissenb

oeck 
[112] 

DEV 200 50/50 na. 
Pluronic F68 

(10% w/v) 
Eac 

0.2/1 
1.2/3 

na. 
Covalent 

link 
na. 

300-460 (50% 
value) 

na. na. 
Surface 
modific. 

2004 
Dillen 

[70, 75] 
DEV 100 52/48 40 

PVA at 1% 
w/v 

DCM and 
water 

8/20 na. 
Ciprofloxac

in 
2.5% w/v 209.5±2.5 61 na. 

Viscosity 
effect 

2004 
Prabha 

(b) 
[113] 

DEV 30 50/50 na. PVA 2% w/v 
Chloroform / 

water 
0.2/1 

1.2/na. 
na. 

p53 
plasmid 

DNA 
5 280(0.143)* 60 to 63 1.99 to 2.1 

DNA 
entrapment 

2000 
Jeon 
[84] 

Dya 2 
50/50 
85/15 

40.1 
48.4 

NO 
surfactant 

DMF 
10/1Lx3 

24 hr 
na. Norfloxacin 2 

183±70.6 
287.5±147.6 

10.8 and 
13.9 

9.74 and 
12.17 

Free 
surfactant 

2002 
Horisawa 

[114] 
SDO 33.3 75/25 

19.9 
9.9 
5.9 

Span 80 
(33.3 mg/mL) 

Acetone + 
methanol 

3 solvent / 
60 oil 

75.3  
35.8  
25.6 

BSP 3.3 
302±43 
379±64 
463±74 

60.0      
31.5       
6.8 

5.45     2.86     
0.62 

Modified 
method 

2004 
Cegnar 

(b) 
[83] 

DESD 50 50/50 
12   
12    
48 

PVA at 5% 
w/v 

Eac 
0.2/1 
1.2/4 

5.2/100 
na. Cystatin 0.012 

380±130 
180±9 
331±25 

12±4   
57±8   
45±8 

0.6±0.2 
2.6±0.2 
2.1±0.4 

Max. activity 
for 

entrapment 

2004 
Kim 
[81] 

SDya 
0.5% w/v 
to 5% w/v 

75/25 90 
Tween 80 at 

5% w/w 
Tetraglycol 
and water 

10/100 70 Paclitaxel 
0.05wt% 

to 
1.0wt.% 

150 to 1500 
3.1±2.4 
28.5±3.3 

19.3±2.2 
9.4±1.4 

Hydrophilize
d PLGA 

 

Notes: The data presented in the table is classified in function of the method. The main parameters presented are: polymer concentration in mg PLGA/ml of solvent; PLGA copolymer molar ratio; PLGA molecular 
weight (M.W.); surfactant concentration; solvent in the organic phase; phase volume ratio; nanoparticle yield (% of final nanoparticle obtained as a function of the initial amounts of components); active component 
used in the formulation; initial concentration of drug in the discontinuous phase; nanoparticle size, drug entrapment efficiency (drug entrapped / initial amount added); nanoparticle loading (amount of drug related 
to the amount of PLGA nanoparticle).  When the units are different, they are detailed in the cells.  

Abbreviations used:      *: Polydispersity index (0 to 1)  BLP25: MUC1 lipopeptide 

 E.D.: emulsion diffusion    DiO: 3'3-dioctadecyloxacarbocyanine perchlorate BSA: bovine serum albumin 

 S.O.: Salting out      (fluorescent dye)   DMF: dimethylformamide 

 N.P.: nanoprecipitation or solvent diffusion  BSP: Betamethasone Sodium phosphate THF: tetrahydrofuram 

 EEV: Emulsion evaporation (single emulsion)  ICG: Indocyanine green (free of sodium iodide) AN: acetonitrile  

 DEV: Double emulsion evaporation   ICG-NaI: Indocyanine green sodium iodide EAc: athyl acetate  

 Dya: Dialysis method, free of surfactant  chl-met: mix of chloroform and methanol  DCM: dichloromethane 

 SDO: Solvent diffusion in oil    MPLA: monophosphoryl lipid A  DXM: dexamethasone 

 NS: nanosphere  TMR-dextran: Tetramethylrhodamine conjugated dextran Met-chlor: Methylene chloride 

 DESD: Double emulsion with solvent diffusion  TPGS: vitamin E succinate with polyethyleneglycol 1000    

 SDya: spray injection and dialysis  Polymer concentration is based on the organic phase    
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Examples of this are the addition of 1 wt% of multiwalled carbon nanotubes to 

polystyrene to improve the tensile strength of polystyrene by at least 25% [131], the 

application of cellulose whiskers (nanocrystals) as mechanical reinforcing agents for low 

thickness polymer electrolytes for lithium batteries [132], or the use of iron oxides and 

ferrites to form conducting polymers [129].  

Several monomers have been used to form the shell surrounding a magnetic 

nanoparticle by polymerization techniques. Sauzedde et al. [128, 133] worked with 

polystyrene (PS), poly N-isopropylacrylamide (NIPAM) and poly S/N-

isopropylacrylamide (PNIPAM) to form a stable nanoparticle by precipitation 

polymerization. The maximum magnetite adsorbed was 1.24 g/g for PNIPAM, and the 

hydrodynamic diameter of the nanoparticles formed was 450 nm at 20 °C. When the 

adsorption was carried out at 40 °C, the mean size decreased to 215 nm, but the magnetite 

adsorbed decreased as well to 0.95 g/g.   

Dresco et al. [134] used a single inverse microemulsion by seed copolymerization 

of methacrylic acid, hydroxyethyl methacrylate and cross-linker to form magnetic 

nanoparticles. Nanoparticles in the range of 80 to 320 nm were obtained. Arias et al. 

[135] used anionic polymerization to synthesize a shell of poly(ethyl-2-cyanoacrylate) 

with a magnetite core. The core/shell nanoparticles obtained were spherical in shape and 

measured around 144 nm (± 15 nm) with a polymer shell of 30 nm (approx.), for an 

initial weight ratio of 4 to 3 between monomer to magnetite. Landfester and Ramirez 

[136] studied miniemulsion polymerization technique as a way to form magnetic 

polymeric nanoparticles. The nanospheres made from polystyrene matrix with entrapped 

magnetite measured in average 60 nm, and the entrapment efficiency of magnetite ranged 

from 19.4% to 34.7% as measured by thermogravimetric measurements. Zheng et al. 

[137] used the same method to improve the magnetite content and the nanoparticle size 

distribution. The final nanoparticle mean size was around 120 nm as measured by DLS. 

Different ratios of magnetite/styrene monomers were tested. The lowest particle diameter 

(102 nm) was observed for the 1/1 ratio, and the highest diameter (128 nm) was for the 

1/3 ratio. The magnetic content was found to change proportionally to the amount of 

magnetite used for the preparation of the magnetic core polymeric shell system, ranging 

from 27 to 55 %.  
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The polymerization techniques have the advantage of forming well controlled 

magnetic core polymeric shell nanoparticles, by close monitoring the magnetite to 

polymer ratio, as compared to other methods. A limitation of the polymerization 

techniques is that the polymeric shell, in some cases, is not thick enough to transport a 

suitable amount of drug [130, 138]. Other drawbacks are the risk of residual additives and 

the possibility of interactions or cross-reactions between the drug and the polymer during 

the polymerization process, leading to drug inactivation [117]. 

2.3.2. Chemical and Physical Entrapment of Magnetite 

2.3.2.1. Chemical Entrapment and Surface Modification of Magnetite 

Another procedure used to form polymeric latexes or nanocomposites is the 

attachment of preformed polymers to magnetite by chemical reaction. The polymer is 

formed previously and added to the magnetite synthesis or formed magnetite. 

Burke et al. [130] worked with polyethylene, polystyrene and polyisobutylen to 

form a suitable polymeric shell for magnetic nanoparticles (called nanocomposites). The 

previously formed polymers were added to iron pentacarbonyl and kerosene to form the 

core/shell nanoparticle. The average size varied from 8 nm to 50 nm with a core size 

range of 3 nm to 45 nm. The iron content varied from 21 to 61 % wt %. In general, a 

smaller size distribution of nanoparticles was observed for polyethylene and 

polyisobutylene as compared to polystyrene shell nanocomposites. 

2.3.2.2. Physical Entrapment 

In the physical entrapment techniques (top-down techniques), the starting 

materials are the polymer and magnetite. No chemical reactions are involved in the 

process; magnetite is entrapped into the polymeric matrix by hydrophobic-hydrophilic, 

electrostatic, or steric interaction. 

Emulsion evaporation, emulsion diffusion, salting out, nanoprecipitation or 

solvent displacement, are some of the common methods used to form nanoparticles from 

preformed polymers. These methods can be adapted to entrap magnetite. Jeong et al. 

[139] entrapped magnetite into a preformed polymer (PLGA) by the emulsion diffusion 

method. The nanoparticles obtained had an average size of 120 nm. Lee et al. [19] 

entrapped magnetite in PLGA by nanoprecipitation. The magnetite was suspended in 

acetone after the PLGA dissolution (150 mg), and the initial magnetite concentration 
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(theoretical loading) was 3.33 % w/w (related to PLGA weight). The nanoparticle size 

obtained ranged from 120 nm to 230 nm for PLGA concentration varied from 1% to 5%, 

respectively. 

Emulsion evaporation is one of the oldest methods used with preformed polymers, 

and it has been extensively used to entrapment numerous drugs [63, 72, 121]. 

Hydrophilic compounds (normal magnetite) can be modified by adding a layer of oleic 

acid to the surface to ensure its entrapment in the PLGA (hydrophobic polymer) matrix 

by emulsion evaporation method. 

2.3.3. Surface Modification  

Surface modification is pursued not only to ensure effective magnetite entrapment 

in PLGA, but also in an attempt to improve stability of the magnetic nanoparticles, to 

increase their circulation half life, and improve the nanoparticle cellular uptake. Zaitsev 

et al. [140] used methacrylic acid for magnetite coating. The size of the nanoparticles 

formed was 5.7 nm. Dextran coated magnetite nanoparticles have been researched by 

Lacava et al. [141], who focused on long term retention of the particles in the liver and 

spleen. Magnetite nanoparticles with an average size of 9.4 nm were obtained. The use of 

triblocks copolymer is yet another approach to improve the stability of magnetite. Harris 

et al. [138] synthesized a triblock copolymer which was adsorbed onto the magnetite 

surfaces. The mean size of the nanoparticles was 8.7 nm (SD 2.7 nm). The amount of 

entrapped magnetite ranged from 6.9 to 45.4 wt%.  

 The incorporation of poly(ethylene glycol) (PEG) on the magnetite surface is 

another approach to improve stability and increase the circulation half life. Kim et al. 

[142] obtained nanoparticles of 4.2 nm in size. Gupta and Curtis [143] studied the effect 

of PEG coated magnetite on human fibroblasts cells suggesting that the cellular uptake is 

improved compared with unmodified magnetite. The size of the magnetite coated 

nanoparticles was around 40 -50 nm in diameter. Goodarzi et al. [144] used citric acid for 

surface modification to obtain a suitable aqueous suspension of magnetite. The size range 

ranged from 5 to 13 nm. The amount of citric acid attached to the surface was around 

30% in weight as determined by thermogravimetric analysis (TGA).  

 Surfactants were used to stabilize magnetite and to form hydrophilic or 

hydrophobic magnetic nanoparticles. The adsorption of surfactants on the magnetite 
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surface was studied by Korolev et al. [145]. Oleic, stearic, and linoleic acids were tested 

in CCl4, and oleic acid in hexane. A higher amount of oleic acid was adsorbed for both 

solvents on the magnetite surface as compared to stearic and linoleic acids, suggesting a 

better performance for this fatty acid. The nanoparticle size obtained varied between 5.7 

nm and 9.3 nm, depending on the temperature. Montagne et al. [146] worked with oleic 

acid for stabilization of water-oil emulsion of maghemite (Fe3O2) ferromagnetic fluid. 

Wooding et al. [147] studied the effect of different carboxylic acids (C6 to C18) on the 

stability of surface modified magnetite in aqueous suspension for one and two surfactant 

layers. The surface covered was between 21 to 38 Å2. Along the same lines, the addition 

of fatty acids (oleic acid, dodecanoic acid, etc.) was found to improve the stability of 

magnetite in aqueous and organic suspension. Xu et al. [131] used N-oleoylsarcosine to 

form a double layer on the magnetite surface by changing the amount of surfactant added 

to the suspension. The nanoparticle size varied between 8.1 nm and 20.7 nm. Landfester 

and Ramirez [136] used oleic acid to form a hydrophobic magnetite which was 

suspended in octane. The nanoparticle size was around 20 nm. A different approach was 

followed by Jain et al. [148], who mixed two surfactants to entrap a suitable drug. The 

first one was oleic acid which was attached to the magnetite surface. The second 

surfactant was Pluronic F-127 which was added to the system magnetite-oleic and stirred 

over night. The optimum composition was 70.1 wt% magnetite, 15.4 wt% oleic acid, and 

14.5 wt% Pluronic F-127 determined by TGA. The drug (doxorubicin) loaded into the 

system was 8.2 ± 0.5 wt% with an entrapment efficiency of 82%. 

Another option for magnetite surface modification is the incorporation of ligands 

like folic acid [149], proteins like HIV-1 tat peptide [150], or poly ethylene glycol (PEG) 

[142, 149], which was found to improve the half-life by limiting the mononuclear 

phagocyte system (MPS) uptake. 

2.4. Characterization  

2.4.1. Morphology 

The methods most broadly used to characterize nanoparticle morphology are 

transmission electron microscopy (TEM), scanning electron microscopy (SEM), 

cryogenic transmission electro microscopy (cryo-TEM) and atomic force microscopy 

(AFM). TEM is used for shape, aggregation, and internal details. It is common to use a 
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negative staining with phosphotungstic acid solution (3% w/v, adjusted to pH 4.7 with 

KOH) [115]. Panyam et al. [108, 116] used negative staining with uranyl acetate for 

TEM. SEM is used for surface characterization (shape, distribution, aggregation) with a 

layer of gold [117] or nanoparticles alone [59, 60, 80, 81, 99]. Cryo-TEM is used to 

observe the micellar formation of PLGA-g-PEG [118]. Dailey et al. [119] used AFM to 

visualize three different formulation (PVA grafted PLGA polymer with different amounts 

of carboxymethyl cellulose) on mica with and without nickel chloride pretreatment. Ravi 

Kumar et al. [22] and Saxena et al. [37] used AFM for size and morphology of 

nanoparticles. Moreover, a three D image of one nanoparticle was obtained by Feng et al. 

[101]. 

2.4.2. Size and Size Distribution 

Dynamic light scattering is the most widely technique used to determine size and 

size distribution. One of the most common used techniques is photon correlation 

spectroscopy at room temperature with water as suspension medium [17, 87, 116, 120]. 

Typically, the suspension is previously sonicated to reduce aggregation if the sample is a 

re-suspension of nanoparticles. Panyam and Labhasetwar [121] used TEM to determine 

the mean size of the nanoparticles. The same equipment is used to determine mean size 

and size distribution. The turbidity measurements are used to evaluate droplet size 

changes and aggregation during emulsification and evaporation [117]. 

2.4.3. Surface Properties 

Laser doppler anemometry is used to measure the zeta potential, an important 

parameter when considering the stability of the nanoparticles [30, 34, 103, 105, 119] in 

vitro. The more negative or positive values of zeta potential are related to more stable 

particles; more repulsion between particles reduce the particle aggregation.  For chemical 

characterization, Fourier transform infrared spectroscopy (FT-IR) is used when there is 

surface modification by the attachment of special components [122]. Gref et al. [123] 

used two-dimensional electrophoresis to determine the plasma protein adsorbed onto the 

nanoparticles surface. The surface hydrophobicity was measured by the binding constant 

of Rose Bengal [74].  
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2.4.4. Active Component Entrapment 

The entrapment into the nanoparticles is described by two important parameters: 

theoretical drug loading, which is the ratio between mass of drug used in synthesis and 

mass of polymer used in synthesis, and nanoparticle recovery, which is the ratio between 

mass of nanoparticles recovered and mass of polymer and drug used in synthesis. The 

drug content is calculated by the ratio of mass of drug in nanoparticles to mass of 

nanoparticles recovered, and the drug entrapment by the ratio of mass of drug in 

nanoparticles to mass of drug used in synthesis [17, 31, 120]. The quantitative 

determination of active component entrapped in nanoparticles is done by extraction of the 

drug. The polymer dissolution in a suitable solvent (acetonitrile, ethyl acetate, and others) 

is required, washing steps with distilled water, and purification. The drug concentration 

of the final suspension can be measured by ultraviolet spectroscopy at defined 

wavelength (related to the active component) or HPLC. When the target is the 

quantification of surfactant attached to the surface, the thermo-gravimetric analysis is 

used [50]. 

2.4.5. Other Techniques 

Gel permeation chromatography is suitable to determine the molecular weight of 

the polymers used for nanoparticle formation and for studies of degradation [87, 124]. 

Dailey et al. [119] studied degradation by measuring the lactic and glycolic acid present 

in the supernatant at different time intervals with a UV spectrophotometer. When the 

nanoparticles are tested in vitro, flow cytometry is used to determine the cell association 

in 3’3-dioctadecyloxacarbocyanine perchlorate (DiO) [98]. H-NMR is commonly used 

when the target is the identification of a specific structure in the nanoparticle and polymer 

blends [38, 125], but Chognot et al. [126] used to determine the molecular weight (Mn 

and Mw) of MPEO. To determine the PVA residues on the nanoparticles, a colorimetric 

method is used [17, 116] with measurements at 644 nm. Desgouilles et al. [127] used a 

small angle neutron scattering to investigate the nanoparticle structure. The sample was 

diluted in deuterium oxide (D2O), and the sample-to-detector distance was 1.62 or 4.62 m 

with incident wavelengths of 6 or 15 Å. For porosity measurements, the true density was 

calculated with helium pycnometer equipment by Murakami et al. [94], and the formula 

used was Porosity = (1-(apparent density/true density))*100. The crystallinity of polymer 
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and drugs are estimated by x-ray diffraction [17, 58, 70] or using differential scanning 

calorimetry [70]. A common method used to determine the crystallinity of the polymer 

and drug entrapped is done by x-ray diffraction [17, 101]. 

2.5. Conclusions 

Many methods are available to synthesize PLGA nanoparticles, starting with a 

preformed polymer. Each has its advantages and disadvantages, but the principal 

selection criteria should be the chemical characteristics of the active component and its 

interactions with the organic solvents, polymer, and surfactant, as well as the final use of 

the nanoparticles. Polymerization methods are widely employed for magnetic polymeric 

nanoparticles (MPNPs) synthesis as compared with methods based on preformed 

polymers. The final application of MPNPs is the limiting factor in selecting the adequate 

synthesis method. For example, the potential toxicity of chemical compounds (initiators, 

residual monomers, and additives) needed in some polymerization techniques limits the 

use of these methods in formation of nanoparticles for drug delivery applications.  

The methods based on diffusion of the organic solvent to form the PLGA 

nanoparticles are limited to low polymer concentration to maintain a nanoparticle mean 

size of 200 nm. Methods that involve solvent evaporation are more time consuming and 

expensive, but are less sensitive to changing the polymer concentration. Emulsion 

evaporation, in particular, can be used for entrapment of hydrophilic (w/o/w emulsion) or 

hydrophobic (w/o emulsion) drugs, which is an advantage. The salting-out method is 

suitable for formation of nanoparticles at higher polymer concentration, but the involved 

purification process is a limitation of the synthesis method. Surfactant concentration, 

polymer concentration, polymer molecular weight, solvents, surfactant concentrations, 

and phase ratios play an important role in controlling the size of the nanoparticles in all 

methods available for nanoparticles formation. There are important advances in 

understanding the mechanisms involved and possible manipulation of the nanoparticle 

characteristics and the improvement in the drug entrapment efficiency by carefully 

controlling these parameters. 

The availability of different characterization techniques makes the detailed 

analysis of the nanoparticle system possible. The nanoparticles size is affected by many 

parameters and researchers are continually attempting to decrease the average 
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nanoparticle size. Synthesis of PLGA nanoparticles smaller in size than 100 nm is not 

common by the methods detailed above; however, the advantages of smaller sizes should 

be studied in depth (i.e. nanoparticles designed for intracellular use should be smaller 

than nanoparticles designed for extra cellular use).  

The magnetic polymeric nanoparticles (MPNPs) are synthesized by 

polymerization methods. The size range is from 30 nm to over 100 nm. The common 

structure of the MPNPs is a magnetic core with a polymer shell. The amount of magnetite 

entrapped ranged from 10 %wt. to 35% wt. The use of preformed polymer to entrap 

magnetite is limited, and nanoprecipitation is the only top-down method employed in 

forming MPNPs.  

Formation of nanoparticles that can interact with the human body and can modify 

their responses based on changes in the environment is the next research step in the field. 

Several questions will be addressed to reach this goal, such as the addition of new 

polymers to form grafted PLGA, surface modification by adding new polymers or 

ligands, as well as the creation of nanoparticles with new properties for modulated 

responses and a better performance.  
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CHAPTER 3. SYNTHESIS OF POLY(DL-LACTIDE-CO-

GLYCOLIDE) NANOPARTICLES WITH ENTRAPPED 

MAGNETITE 

3.1. Introduction 

Biosensor development [1], imaging [2, 3], bio-separation [4], hyperthermia [5, 

6], drug delivery [1, 7], targeted diagnostics and therapy [8] are some of the many 

biomedical areas where magnetic nanoparticles could be of relevant use. Magnetic-

polymeric nanoparticles (MPNPs), made from organic and inorganic components, have 

unique characteristics due to the specific properties of the blend. The constituents of a 

MPNP play different roles: the polymeric matrix acts as a shell, reservoir, and vehicle for 

the active component, whereas magnetite is the component which makes targeting 

possible by external magnetic field manipulation. MPNPs can be used for delivery of 

active components such as drugs [7, 9, 10, 11], vaccines [12], proteins [13], DNA [14, 

15, 16], antisense oligonucleotides [17], enzymes [18], and others.  

In biomedical applications, synthetic polymers and natural macromolecules have 

been extensively researched as colloidal materials for the MPNPs production. Synthetic 

polymers have the advantage of high purity and reproducibility over the natural 

polymers. Among those, the polymers in the polyesters family are of interest because of 

their biocompatibility and biodegradability to nontoxic metabolites. Poly(lactide-co-

glycolide) (PLGA) is a polyester that has been FDA approved for human therapy [19, 

20]. 

The mainly technique used to form a magnetic core with a polymer shell is 

polymerization which is known as bottom up technique. Another interesting approach is 

the top down techniques due to the advantages discussed in chapter 1. In the top-down 

techniques, the starting materials are the polymer and magnetite. No chemical reactions 

are involved in the process; magnetite is entrapped into the polymeric matrix by 

hydrophobic-hydrophilic, electrostatic, or steric interaction. 

The common top-down methods using preformed polymers are emulsion 

evaporation, emulsion diffusion, salting out, nanoprecipitation or solvent displacement. 

These methods can be adapted to entrap magnetite. Jeong et al. [21] entrapped magnetite 
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into a preformed polymer (PLGA) by the emulsion diffusion method. The nanoparticles 

obtained had an average size of 120 nm. Lee et al. [22] entrapped magnetite in PLGA by 

nanoprecipitation. The magnetite was suspended in acetone after the PLGA dissolution 

(150 mg), and the initial magnetite concentration (theoretical loading) was 3.33 % w/w 

(related to PLGA weight). The nanoparticle size obtained ranged from 120 nm to 230 nm 

for PLGA concentration varied from 1% to 5%, respectively. The emulsion evaporation 

is one of the oldest methods used with preformed polymers, and it has been extensively 

used to entrapment numerous drugs [23, 24, 25, 26]. The versatility of emulsion 

evaporation method permits to entrap magnetite by double emulsion due to the 

hydrophilic behavior of magnetite, although hydrophilic compounds (normal magnetite) 

can be tailored to hydrophobic compounds by addition of a surfactant layer (oleic acid) to 

the particle surface. This magnetite surface modification ensures its entrapment in the 

PLGA (hydrophobic polymer) matrix by emulsion evaporation method.  

3.2. Objectives 

The aim of this research was to synthesize PLGA nanoparticles with entrapped 

magnetite in the polymeric matrix, by emulsion evaporation method. Single emulsion 

evaporation was the technique used for the entrapment of surface modified magnetite 

with oleic acid (MOA). The nanoparticles were characterized in terms of size and size 

distribution with dynamic light scattering (DLS). The magnetite entrapment efficiency 

was measured by colorimetric method for free iron (Fe3+) detection. The sodium dodecyl 

sulfate remaining in the nanospheres after dialysis was calculated by thermogravimetric 

analysis (TGA), and the morphology of the particles was visualized with Transmission 

Electron Microscopy (TEM).  

3.3. Materials and Methods 

3.3.1. Materials 

 Poly(DL-lactide-co-glycolide) (PLGA) 50:50, with a molecular weight of 5,000 – 

15,000, PLGA 50:50, with a molecular weight of 45,000-75,000, and PLGA 85:15 with a 

molecular weight of 90,000 -120,000 were purchased from Sigma Aldrich (Sigma 

Chemical Co, St Louis, MO). Sodium dodecyl sulfate of 99% purity (20% w/v) was 

obtained from Amresco (Amresco inc., Solon, OH). Ethyl acetate at 99% of purity was 

acquired from EMD chemicals (EMD chemicals Inc., Gibbstown, NJ), and hydrochloric 
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acid 32 -38% was purchased from Fisher Chemical (Fisher Scientific International, 

Fairlawn, NJ). Oleic acid, trehalose, iron oxide, and potassium ferrocyanide were 

purchased from Sigma Aldrich (Sigma Chemical Co, St Louis, MO). Magnetite (Fe3O4) 

was obtained from the Center for Advanced Microstructures and Devices (CAMD). 

3.3.2. Nanoparticles Preparation 

3.3.2.1. Hydrophobic Magnetite 

 Magnetite was prepared by coprecipitation of ferrous salts (Fe(II) and Fe(III)) by 

addition of excess of ammonium hydroxide. The attachment of oleic acid to the surface 

was done after the formation of magnetite by addition of 15 ml of 20 %wt aqueous 

solution of oleic acid and 10% ammonium hydroxide. The solution was stirred with a 

magnetic bar for 30 minutes at 80 °C in an oil bath. Following stirring, the solution was 

placed on a magnet and washed three times, twice with distilled water and once with 

ethanol. The solution was dried with nitrogen for two hours and stored for further use. 

3.3.2.2. Single Emulsion Evaporation with Hydrophobic Magnetite 

PLGA nanoparticles were prepared using emulsion evaporation method. 

Typically, 125 mg of PLGA was dissolved in 2.5 ml of ethyl acetate. The magnetite-oleic 

acid (MOA) was suspended in ethyl acetate and sonicated for 10 min in an ice bath and it 

was added to the organic phase at two concentrations, 4% and 8% w/w (relative to 

PLGA). The organic phase was poured into to 2 mg/ml of aqueous SDS solution 

(distilled water saturated with ethyl acetate), and the emulsion was stirred with a 

homogenizer Ultra Turrax T18 (IKA Works Inc., Wilmington, NC) for 3 minutes at 

12000 RPM. The emulsion was sheared with sonication in an ice bath at 4 to 6 °C using a 

probe-type sonicator VC505 (Vibracell, Sonic & Materials Inc., Denbury, CT) for 10 

minutes in pulse mode (38% of amplitude). The organic solvent was evaporated with a 

rotoevaporator (Buchi R-124, Buchi Analytical Inc, New Castle, DE) for 7 min under 

vacuum (40 mmHg). After nanospheres formation, the purification (extraction of excess 

of SDS) was done by dialysis with a Spectra/Por® (Spectrum Laboratories Inc., Rancho 

Dominguez, Ca) membrane of a 100 kDa molecular weight cut off. The dialysis process 

was done with distilled water with three washes. Washes for the low molecular weight 

PLGA were performed at 20 °C (tg is 25.7 °C). The first one was for two hours, the 

second one was for 8 hr, and the last one was over night. The amount of distilled water 
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was 1.5 l each time. Finally, the nanoparticles were pre-frozen at – 80 °C for three hours 

followed by lyophilization for 48 hours at -41 °C under 110 mmHg of vacuum (freezone 

4.5, Labconco Corporation, Kansas City, Missouri) in the presence of trehalose. The final 

samples were injected with nitrogen (to avoid degradation due to humidity, hydrolysis) 

and stored at 4 °C.  

3.3.3. Nanoparticles Characterization 

3.3.3.1. Morphology and Size 

Transmission electron microscope (TEM) JEOL 100-CX (JEOL USA Inc, 

Peabody, MA) was used for morphology studies. The aqueous dispersion (one drop) was 

placed over a copper grid of 400 mesh with carbon film. The droplet was reduced after 5 

min with a filter paper to eliminate the excess of nanoparticles. Finally, the sample was 

air dried prior to placing it in the TEM. 

3.3.3.2. Size and Zeta Potential 

Diffraction light scattering was used for size and polydespesity index 

measurements (Zetasizer nano ZS, Malvern instruments Inc, Southborough, MA). 

Typically, a sample of 1.5 ml was placed in a cuvette at a concentration of 0.3 mg/ml. 

The measurements were done at 25°C. The viscosity and refraction index of the 

continuous phase were set equal to those specific to water. Zeta potential measurements 

were done with a disposable capillary cell with a volume of 1 ml. The mean value was 

determined using a mono-modal distribution. 

3.3.3.3. Colorimetric Method for Iron Content 

The magnetite with oleic acid entrapped into the polymeric matrix was measured 

by detection of free iron (Fe3+) with a UV/vis spectrophotometer Genesys 6 (Thermo 

Spectronic Corp., Rochester, NY), colorimetric method, that uses the prussian blue 

reaction. The calibration curve was done with iron oxide at 99.999% of purity and 

potassium ferrocyanide solution at 4% w/v. Typically, a certain amount of PLGA 

nanospheres with entrapped MOA (10 mg) was digested with hydrochloric acid at 6 N (1 

ml) for two hours or until the residue was white. A dilution step was added (10 ml) to 

insure that the concentration was in the calibration plot range. The solution formed a 

white-yellow color. Next, 0.3 ml of sample was reacted with equal amount of potassium 

ferrocyanide for 15 min. The absorbance was measured at 700 nm. To determine the 
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magnetite content, a final correction was applied to the iron content of magnetite (molar 

ratio of 72.4%).  

3.3.3.4. Thermogravimetric Analysis 

The sample was placed in the furnace of TGA 2950 thermogravimetric analyzer 

(TA instruments, New Castle, DE) over an aluminum pan under a nitrogen atmosphere to 

avoid oxidation. The temperature was varied from 25 to 600 °C with increments of 5 °C 

per minute.  

3.3.3.5. Statistical Analysis 

Data collected were analyzed by SAS software. The test performed was analysis 

of variance (ANOVA) with Tukey-kramer adjustment. P<0.05 was considered 

significant. The proc mixed procedure was used to analyze the interaction between the 

process parameters (molecular weight, MOA addition, and sonication amplitude) and 

their effect in the nanoparticle size. 

3.4. Results and Discussions 

3.4.1. Single Emulsion Evaporation with Hydrophobic Magnetite 

3.4.1.1. Morphology and Magnetite Distribution into the Polymeric Matrix 

The magnetite with oleic acid (MOA) nanoparticles analyzed by TEM showed a 

spherical shape with a narrow size distribution (Figure 3.1). The aggregation present in 

MOA was due to the solvent elimination prior to TEM analysis and to natural clustering 

of MOA.   

 The TEM pictures of the MPNPs formed with 4% MOA theoretical loading 

showed a good distribution and a small size of the nanoparticles. The presence of MOA 

into the polymeric matrix is identified by the black dots over the grey background 

representing the PLGA (Figure 3.2). A clear visual difference between 4% and 8% MOA 

theoretical loading was not possible by TEM. Figures 3.3 and 3.4 show MOA 

nanoparticle surrounded by PLGA. MOA aggregation affects the size and PI of PLGA 

nanoparticle with entrapped MOA. The distribution and density of MPNPs can be 

observed in Figure 3.5. MOA distribution into PLGA nanoparticles can be appreciated in 

Figure 3.6, where MOA is depicted by the black dots. 
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Figure 3.1. Surface modified magnetite with oleic acid (MOA). The MOA 

nanoparticle size was around 15 nm. The appearance of clustering was common by 

observed . 

 

 

Figure 3.2. PLGA (molecular weight (M.W.) 45 to 75 kDa) nanospheres with 4% 

MOA theoretical loading. The black circles are showing the MOA entrapped in the 

polymeric matrix. Clustering was observed, and some PLGA nanoparticles are 

without MOA (empty PLGA nanoparticles). 
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100 nm 

Magnetite 

PLGA nanospheres 
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Figure 3.3. PLGA (M.W. 45 to 75 kDa) nanospheres with 8% MOA theoretical 

loading. The black dots represent MOA entrapped in PLGA nanospheres.  

 

 

Figure 3.4. Nanoparticles formed with PLGA M.W. of 45 to 75 kDa with 4% w/w of 

MOA theoretical loading. The big dark sphere (inside the dotted circle) manifests 

the presence of MOA. The appearance of clustering is observed in the surrounded 

PLGA nanoparticles. 
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Figure 3.5. Low molecular weight PLGA nanospheres with 4% w/w of MOA 

theoretical loading. The black dots represent MOA entrapped in the PLGA 

nanoparticle. 

 

 

Figure 3.6. Medium molecular weight PLGA (40 to 75 kDa) nanosphere with 4% 

w/w of MOA theoretical loading. The magnetite is clearly showed in the center of 

this nanosphere by darker spots. 
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3.4.1.2. The Effect of Synthesis Parameters on Nanoparticle Physical 

Characteristics 

• Surfactant concentration 

The study of the surfactant concentration effect on the nanoparticle size was 

performed for the low molecular weight PLGA 5 to 15 kDa (Figure 3.7). Three 

distinctive regions were observed. Region A: For a SDS concentration lower than the 

critical micelle concentration (CMC), 1.2 mg/ml for SDS [27], the mean nanoparticle size 

decreased from 69.1 nm (0.4 mg/ml SDS) to 45.6 nm (1.2 mg/ml SDS). The 

polydispersity index (PI) decreased with increasing SDS concentration from 0.170 to 

0.227 in the same range. The decrease in size and PI can be explained by the decrease in 

the surface tension with increasing surfactant concentrations up to the CMC. The 

availability of the surfactant molecules at higher concentrations, required for stabilization 

of the smaller emulsion droplets created during sonication, is another reason for the 

improved size and size distribution in this region. Region B: At SDS concentrations 

higher than CMC, smaller particles were formed as a result of SDS molecules 

availability, as well. Although the size decreased, the polydispersity index (PI) of the 

formed nanoparticles increased with increasing SDS concentration. The increase of the PI 

suggests that the excess SDS was responsible for aggregation of the nanoparticles by 

interactions between the SDS polar heads and cluster formation. Region C: Ultimately, 

the aggregation due to the excess surfactant was responsible for an increase in the size 

and the PI of the nanoparticles when the SDS concentration exceeded a threshold of 7 

mg/ml (Figure 3.7). 

Nanoparticle aggregation due to the excess surfactant was apparent in the 

nanoparticle size distribution curves (Figure 3.8) for a SDS concentration of 4.8 mg/ml 

(Figure 3.8-b) with PLGA of low molecular weight. The main  peak was at 37 nm, a 

second peak (size range of 200 to 900 nm), and a third pick (over 4 µm) were present, 

which impacted the polydispersity index; whereas at SDS concentrations of 1.2 mg/ml a 

single peak was observed at 60 nm (Figure 3.8a) for PLGA with medium molecular 

weight.  
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Figure 3.7. Effect of SDS concentration on the size and polydispersity index of 

PLGA nanospheres (PLGA 5% w/v, molecular weight of 5 to 10 kDa, and 

copolymer molar ratio of 50:50), n = 2 

• PLGA concentration 

The study of different PLGA concentrations was completed for low molecular weight 

PLGA (5 to 15 kDa). The increase from 5% to 15 % w/v in the PLGA concentration 

resulted in an increase in the nanoparticle size (Figure 3.9) for SDS concentrations of 2 

mg/ml and 4 mg/ml. For a SDS concentration of 2% mg/ml, there was a slight increase in 

size from 38.6 nm to 52.7 nm, and for 4% SDS, the nanoparticle size increased from 36.1 

to 41.6 nm. The increase in size, however small, suggested that the amount of surfactant 

was not enough to maintain the stability of the droplets and coalescence of the droplets 

occurred. The nanoparticle size improved when the SDS concentration increased from 

2% to 4% w/v for all polymer concentrations tested (from 5 to 15% w/v). The results also 

showed that it was possible to increase the polymer concentration three fold (from 5 to 15 

% w/v) without forming particles over 100 nm in size. This finding is important because 

an increase in the polymer concentration is directly related to an increase in the efficiency 

of the nanoparticle synthesis. 

CMC  
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Figure 3.8. Size distribution and undersize curve for PLGA nanoparticles. Three 

runs at 25 °C with detector at 70°. a was PLGA 50:50 with molecular weight of 40 to 

75 kDa and a SDS concentration of 1.2 mg/ml. b was PLGA 50:50 with molecular 

weight of 5 to 15 kDa and SDS concentration of 4.8 mg/ml  

• Sonication amplitude 

The sonication effect on size was evaluated with two different amplitudes at a SDS 

concentration of 2 mg/ml for naked PLGA nanoparticles. Amplitudes of 30% and 39% 

were evaluated (Table 3.1), showing a small decrease in the PLGA nanoparticles size for 

the three PLGA molecular weights tested. 

a 

b 

First peak 

Third peak 
Second peak 



 

79 

0

10

20

30

40

50

60

2.0 4.0SDS (mg/ml) 

S
iz

e
 (

n
m

)

5% w/w PLGA

10% w/w PLGA

15% w/w PLGA

 

Figure 3.9. Effect of PLGA and SDS concentration on the nanospheres size (PLGA 

molecular weight of 5 to 10 kDa, copolymer molar ratio of 50:50) 

The amplitude in sonication is defined as peak to peak displacement at the probe 

tip, which is maintained constant during sonication. The percentages of amplitude are in 

function of the maximum displacement. The random process of droplet disruption and 

fusion during sonication improved the nanoparticle size for all polymer molecular 

weights (amplitude 39%). 

Table 3.1. Size of PLGA nanospheres as a function of sonication wave amplitude  

  Sonicated with 30% amplitude Sonicated with 39% amplitude 

MW (kDa)  

(L:G ratio) 

5 to 15 

(50:50) 

40 to 75 

(50:50) 

90 to 126 

(75:25) 

5 to 15 

(50:50) 

40 to 75 

(50:50) 

90 to 126 

(75:25) 

Size (nm) 39.4±1.7 66.8±1.8 70.6±0.3 38.6±0.2 63.3±0.3 67.1±0.5 

PI  0.285±0.016 0.107±0.008 0.121±0.01 0.217±0.018 0.127±0.003 0.127±0.005 

ζ (mV)  -28.0±3.7 -31.4±4.6 -39.7±2.9 -19.2±4.6 -26.3±1.3 -27.1±2.9 

* n=3 for all samples 

The nanoparticles size reduction with increasing the sonication amplitude was 

higher for the medium and high molecular weight (5.3% and 5%) as compared with the 

nanospheres of low molecular weight (2.03%). However, the decrease in size with 

increasing sonication amplitude was not significant for the three molecular weights tested 

(p values of 0.9768, 0.0542, and 0.3065 for low, medium and high PLGA molecular 

weight, respectively). Not only the size, but also the PI was affected by the sonication 

amplitude. A better PI was observed for the low molecular weight (5 to 15 kDa) PLGA 
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with increasing the sonication amplitude. The medium (40 to 75 kDa) and high (90 to 126 

kDa) molecular weights had similar PIs (close to 0.1), and indicator of monodisperse 

suspension, for both sonication amplitudes.  

• Effect of MOA size on the final MPNP size and size distribution   

To evaluate the effect of MOA size on the final MPNPs size, MOA was sonicated 

before it was added to the nanosphere preparation. At constant amplitude of 39%, the 

sonication time tested was 2 and 10 minutes. The final size of MPNPs was affected 

(Table 3.2) by sonication time.  

Table 3.2. Effect of sonication time of MOA on the PLGA nanosphere with 

magnetite entrapped in the polymeric matrix    
  MOA sonicated for 2 min   MOA sonicated for 10 min 

Molecular size PI Ζ  size PI ζ 

weight (kDa) nm a.u. mV  nm a.u. mV 

4% magnetite        

5 to 15 (50:50) 109.2±2.4 0.321±0.024 -39.5±1.7  87.2±0.8 0.297±0.006 -28.5±3.9 

40 to 75 (50:50) 87.5±4.1 0.270±0.019 -49.9±23.9  81.8±6.1 0.222±0.06 -26.9±2.9 

90 to 126 (75:25) 84.0±0.7 0.234±0.006 -49.6±11.1  78.8±0.3 0.172±0.017 -33.6±1.9 

8% magnetite        

5 to 15 (50:50) 138.7±10.5 0.299±0.076 -38.9±2.5  115.1±1.0 0.320±0.019 -36.1±4.4 

40 to 75 (50:50) 100.0±1.9 0.268±0.008 -39.2±4.3  93.0±1.4 0.249±0.01 -34.1±3.2 

90 to 126 (75:25) 96.8±1.3 0.258±0.003 -38.1±3.4   107.4±4.9 0.258±0.004 -37.6±3.1 

* MOA suspension in ethyl acetate. n = 3, and the amplitude of sonication was 39%  

The size of nanospheres with 4% of MOA theoretical loading was improved from 

109.2 nm to 87.2 nm for the low molecular weight sample. The medium and high 

molecular weight showed a reduction in size of 5.7 nm and 6 nm, respectively. Moreover, 

the PI was lower for all 4% MOA preparations after 10 minutes of sonication. It was 

obvious that the size decrease in the MOA accomplished by increasing the sonication 

time, which was associated with an improvement in the final MPNP characteristics for 

low, medium, and high PLGA molecular weight at 4% of MOA.  

When the nanospheres were prepared with 8% of MOA theoretical loading, with 

low molecular weight PLGA (5 to 15 kDa), the size was reduced from 138.7 nm to 115.1 

nm. The MPNPs size decreased from 100 nm to 93 nm for the medium molecular weight 

PLGA (40 to 75 kDa). However, the size of the MPNPs formed with high molecular 

weight PLGA (90 to 126 kDa) increased by 10.6 nm, while the PI remained constant. In 
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general, a strong shear stress applied to the MOA suspension reduced the size the MOA 

clusters naturally occurring and therefore improved the MPNP size.  

• Polymer molecular weight 

The particle size, size distribution, and zeta potential were measured after 

nanoparticle formation for three PLGA molecular weights (MW): low MW 5-15 kDa, 

medium MW 40-75 kDa, and high MW 90-126 kDa (Table 3.3). The nanoparticle size 

was found to increase with the polymer molecular weight, from 38.6 nm to 67.1 nm. The 

size distribution improved for high MW PLGA (PI of 0.127) as compared to low MW 

PLGA (PI of 0.217). The results are consistent with the literature, where a direct 

relationship is defined between the polymer molecular weight and the nanoparticle size 

(for naked PLGA nanoparticles). The differences in nanoparticle size between low and 

medium PLGA molecular weight, and low and high PLGA molecular weight, were 

significant (both p values < 0.05 (0.0001)). The difference between medium and high 

PLGA molecular weight was not significant (p value > 0.05 (0.9455)).  

• Magnetite concentration 

The amount of magnetite entrapped in the polymeric matrix was found to affect 

the final mean size of the polymeric nanoparticle (Table 3.3). The addition of magnetite 

increased the size and size distribution of the nanoparticles (Figure 3.10). 

When 4% magnetite was entrapped into the matrix, the size increased from 38.6 

nm to 87.2 nm (for low MW) and from 67.1 to 78.8 nm (for high MW). The increase in 

the nanoparticle size was even more evident when 8% magnetite was entrapped into the 

polymeric matrix. The size increment was higher for low molecular weight PLGA as 

compared to the medium and high molecular weight PLGA, with a maximum size of 

115.1 nm for low MW PLGA. The difference in size was significant for all combinations 

of MOA entrapped (0%, 4%, and 8%) and for all three PLGA molecular weights (P 

values < 0.05). 

The increase in size observed for all MW PLGA can be explained by the 

hydrophobic interactions between the oleic acid tails belonging to two or more partially 

covered magnetic particles. These interactions could be responsible for magnetite 

clustering, and therefore could explain the increase in the particle size and size 

distribution. 
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Figure 3.10. PLGA nanoparticles size and polydispersity measured by DLS (at 70°, 

25 °C). n = 3 

Table 3.3. Mean size, polydispersity index, and zeta potential of nanoparticles for 

different molecular weights and magnetite concentration BEFORE dialysis 

MW (kDa) Size (nm) PI ζ (mV) 

0% magnetite    

5 to 15 (50:50) 38.6±0.2 0.217±0.018 -19.2±4.6 

40 to 75 (50:50) 63.3±0.3 0.127±0.003 -26.3±1.3 

90 to 126 (75:25) 67.1±0.5 0.127±0.005 -27.1±2.9 

4% magnetite    

5 to 15 (50:50) 87.2±0.8 0.297±0.006 -28.5±3.9 

40 to 75 (50:50) 81.8±6.1 0.222±0.060 -26.9±2.9 

90 to 126 (75:25) 78.8±0.3 0.172±0.017 -33.6±1.9 

8% magnetite    

5 to 15 (50:50) 115.1±1.0 0.320±0.019 -36.1±4.4 

40 to 75 (50:50) 93.0±1.4 0.249±0.010 -34.1±3.2 

90 to 126 (75:25) 107.4±4.9 0.258±0.004 -37.6±3.1 

*All samples were run in triplicate, measured after three to four hours after formation 
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Table 3.4. Mean size, polydispersity index, and zeta potential of nanoparticles for 

different molecular weights and magnetite concentration AFTER dialysis 

MW (kDa) Size (nm) PI ζ (mV) 

0% magnetite    

5 to 15 (50:50) 54.5±1.6 0.155±0.027 -33.2±7.3 

40 to 75 (50:50) 68.5±0.8 0.146±0.014 -30.9±4.8 

90 to 126 (75:25) 70.3±0.2 0.138±0.007 -33.5±4.6 

4% magnetite    

5 to 15 (50:50) 82.9±1.6 0.261±0.003 -29.2±12.3 

40 to 75 (50:50) 82.6±0.7 0.167±0.003 -30.8±3.3 

90 to 126 (75:25) 82.8±0.7 0.169±0.007 -27.1±4.0 

8% magnetite    

5 to 15 (50:50) 108.4±3.7 0.290±0.007 -42.2±7.4 

40 to 75 (50:50) 95.8±1.1 0.238±0.006 -45.7±7.5 

90 to 126 (75:25) 108.5±3.8 0.246±0.006 -37.7±9.3 

*All samples were run in triplicate, measured after four to 10 hours after formation 

The increase in size, most evident in the low molecular weight PLGA, was 

probably due to the limited coating of the magnetite by the polymer as compared to the 

higher molecular weight PLGA nanoparticles. The polydispersity of the modified 

magnetite could be another factor which could have negatively impacted the 

polydispersity of the system, which was observed when two different sonication times 

were applied to the MAO suspension before nanosphere preparation.  

Medium (40 to 75 kDa) and high (90 to 126 kDa) molecular weight polymer 

proved to be more suitable for magnetite entrapment. The size of the particles only 

increased from 63.3 nm to 81.8 nm for medium M.W. and from 67.1 nm to 78.8 nm for 

high M.W., when 4% of MOA was entrapped. The higher lactide (a more hydrophobic 

component) present in the high M.W. polymer (75:25), as compared to 50:50 

lactide:glycolide for medium M.W., may explain the smaller increase in size for the 

medium MW PLGA nanoparticles in the presence of MOA. 

The nanoparticles were characterized before and after purification. An increase in 

the mean nanoparticle size from 38.6 nm to 54.5 nm (significant difference, p value 

<0.05) was detected after dialysis for the low MW PLGA nanoparticles without 

magnetite (Table 3.4), while the polydispersity index was improved from 0.217 to 0.155 

due to the removal of small nanoparticles and MOA by dialysis. A similar effect, an 

increase in the mean particle size following dialysis, was observed for the medium and 
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high PLGA molecular weights, but the difference was not significant (p value >0.05).. 

The polydispersity index was improved for all samples due to the removal of SDS in 

excess and the SDS trapped over the nanoparticle surface, which limited the nanoparticle 

aggregation. In addition, losses of small nanoparticles during dialysis explain the increase 

in the PLGA nanoparticles mean size without MOA, and the PI improvement. When 4% 

w/w of MOA was added, the difference in size was not significant for the medium 

molecular weight PLGA. It was not conclusive whether the PLGA nanoparticle size was 

affected by dialysis (p value almost 0.05) for low and high PLGA molecular weight with 

4% w/w of MOA. The difference in nanoparticle mean size before and after dialysis was 

not significant when 8% w/w of MOA was added (p value > 0.05). 

3.4.1.3. Yield of Nanoparticles, Entrapment Efficiency of MOA, Remaining SDS, 

and Oleic Acid Amount over Magnetite 

The amount of MOA in the PLGA matrix was measured by a colorimetric 

method, and the SDS left in the sample was calculated from TGA data (Figure 3.11a and 

3.11b) combined with data collected from the colorimetric method (Table 3.5). The 

residue after 600 °C obtained by TGA analysis for the MPNPs was composed of 

magnetite, sulfate, and sodium (from SDS). The SDS residue was determined by 

subtracting the amount of magnetite obtained from the colorimetric method (Table 3.5) 

from the total residue amount obtained by TGA. From Figure 3.11a, a relation between 

SDS residue and total SDS can be obtained (The sodium and sulfate groups are 24.75 

wt.% of SDS). The entrapment efficiency (final weight ratio of MOA in lyophilized 

MPNPs measured by colorimetric method divided by the initial amount of MOA added in 

the formation process) varied from 57.36% to 91.9% for the PLGA with low and high 

PLGA molecular weight nanoparticles, respectively. The differences in the entrapment 

efficiency were not significant between the 4 and 8 %w/w MOA samples for all 

molecular weights (p values > 0.05).  

The medium molecular weight (40 to 75 kDa) PLGA nanoparticles showed 

similar entrapment efficiency for 4% and 8% of MOA theoretical loading, 77.34% and 

78.75%, respectively. The low (5 to 15 kDa) and high (40 to 75 kDa) molecular weight 

PLGA MPNPs presented different entrapment efficiencies for 4 and 8% w/w MOA 

theoretical loading. The entrapment efficiency of MPNPs formed with 5 to 15 kDa PLGA 
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M.W. was 57.36% and 76.27% for 4 and 8% w/w of MOA theoretical loading, 

respectively. 

Table 3.5. Entrapment of magnetite oleic acid and SDS residue in nanoparticles 
  Magnetite with oleic acid (MOA)   Surfactant 

Nanoparticle Theoretical  Nanosphere Entrapment  SDS SDS 

molecular weight loading1 yield2 efficiency3  residue4 removed5 

kDa wt% % %   wt% % 

PLGA 5 to 15 4% 66.8±3.6 57.36±6.8  5.95±1.3 55.34% 

PLGA 5 to 15 8% 61.6±1.8 76.27±11.7  6.59±2.5 48.90% 

PLGA 40 to 75 4% 58.9±9.3 77.34±8.50  1.50±0.4 88.77% 

PLGA 40 to 75 8% 62.7±3.9 78.75±3.80  6.32±1.7 51.02% 

PLGA 90 to 126 4% 66.6±2.6 70.23±18.5  4.80±2.6 64.00% 

PLGA 90 to 126 8% 56.2±3.7 91.90±31.8   4.71±3.1 63.48% 

*All samples in triplicate 
1. Theoretical loading: Initial amount of MOA added to the nanoparticle formation process (wt%) 
2. Nanosphere yield: final weight of sample after freeze drying (mg)/initial weight of sample (mg) 
3. Entrapment efficiency: MOA in samples (wt%)/theoretical loading (wt%) 
4. SDS residue: Total residue (wt%) (from TGA) – magnetite (wt%) (from colorimetric method)  
5. SDS removed: SDS residue (wt%)/total SDS added in the nanoparticle formation process (wt%) 
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Figure 3.11. a. SDS profiles acquired by TGA. Temperature was varied from 25 to 

600 °C. A residue of 24.75% composed of sulfate and sodium group of the SDS 

molecule was found at 600 ºC. This residue present in all samples was used to 

calculate the amount of SDS remaining in the nanoparticles. b. A typical curve for 

the MPNPs formed with low molecular weight PLGA (CA64). The residue at 600 °C 

was due to the sodium and sulfate groups of SDS, and magnetite.  

The medium molecular weight (40 to 75 kDa) PLGA nanoparticles showed 

similar entrapment efficiency for 4% and 8% of MOA theoretical loading, 77.34% and 

78.75%, respectively. The low (5 to 15 kDa) and high (40 to 75 kDa) molecular weight 

PLGA MPNPs presented different entrapment efficiencies for 4 and 8% w/w MOA 

theoretical loading. The entrapment efficiency of MPNPs formed with 5 to 15 kDa PLGA 

a b 
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M.W. was 57.36% and 76.27% for 4 and 8% w/w of MOA theoretical loading, 

respectively 

The MPNPs yield ranged from 56.2% to 66.8% due to losses during dialysis and 

freeze drying. This data suggested that the dialysis membrane cutoff was high, or 

compatibility between nanoparticles and membrane promoted adsorption of PLGA 

nanoparticles with entrapped MOA on the surface of the dialysis membrane. All 

membranes presented surface areas visibly brown in color (membrane is white prior to 

use) after the samples were removed. No visual difference was observed between MPNPs 

prepared with 4% and 8% of MOA. 

The SDS amount removed by the three washes varied from 51.02% to 88.77%. No 

obvious relationship was found between the SDS removed and the PLGA molecular 

weights, or amount of magnetite added.  

• Oleic acid on magnetite 

The amount of oleic acid was measured by thermogravimetric analysis (TGA) 

(Figure 3.12).  

 

Figure 3.12. TGA data for magnetite and MOA (magnetite plus oleic acid). The 

initial decrease was due to the presence of water (approximately 2 wt% for 

magnetite and 1.15% for MOA). The 2.74 wt% and 3.64 wt% remaining could be 

explained by ammonium used in the magnetite formulation.  
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The TGA residue for MOA at 600 °C was 86.39 wt%. The TGA residue for 

normal magnetite was 95.23%. The 8.84 wt% difference was associated with the oleic 

acid presence. This data correlated well with the colorimetric method for iron detection, 

in which the oleic acid content detected was 10.24 wt% with an error of 0.03 wt%. 

3.5. Conclusions 

Surface modification of magnetite with oleic acid was a useful approach to ensure 

the entrapment of magnetite into a hydrophobic polymer (PLGA) with high entrapment 

efficiency. MPNPs with a final mean size under 100 nm were obtained, at 4% w/w MOA 

theoretical loading. When MOA theoretical loading was increased to 8% w/w, 

nanoparticles mean size under 120 nm were formed. The entrapment efficiency was 

highly different for the low (57%) and high PLGA molecular weight (92%).  

The emulsion evaporation method was a suitable synthesis method for the 

formation of nanoparticles with a mean size under 100 nm. The SDS concentration 

played a critical role in controlling the nanoparticle size. The size and uniformity of the 

MOA suspension was found critical in forming small and uniform MPNPs. With the 

method proposed, it was possible to increase the PLGA concentration by at least three 

times without increasing the nanoparticle size over 100 nm. Stability of MPNPs was 

improved by applying a purification step quickly after synthesis. Dialysis was used as a 

purification step to remove the excess of SDS and avoid aggregation. 
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CHAPTER 4. CONCLUSIONS 

Magnetite was successfully entrapped into PLGA nanoparticles while maintaining 

their size under 100 nm, for 4% w/w MOA theoretical loading. The SDS concentration 

and MOA size and size distribution were found to be the critical factors in controlling the 

nanoparticle size. The entrapment efficiency varied between 57% for low MW PLGA 

and 92% for high MW PLGA. Entrapment of magnetite can be coupled with the 

entrapment and delivery of active components (cancer drug, peptides, DNA, and others) 

to the target by the developed MPNPs.  

It was found that an increase in the PLGA concentration (batch of production) by 

three times was possible with the proposed method, while keeping the nanosphere size 

less than 100 nm. This finding is significant, considering that commercial application of 

the synthesis method is strongly dependent on the nanoparticle yield formation, directly 

proportional to polymer concentration. Lastly, it was found that synthesis must be 

followed by a purification step (i.e. dialysis) to avoid aggregation of the nanoparticles 

due to excess of surfactant in the suspension.  
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CHAPTER 5. FUTURE WORK 

 The main target of the thesis research was to synthesize nanoparticles less than 

100 nm in size, with entrapped magnetite in the polymeric matrix. The study of 

technologies available and the main parameters affecting the final PLGA nanoparticle 

size were the two main parts of this research. Although significant progress was made 

toward understanding the system developed, other areas of research should be addressed 

before the developed MPNPs could be successfully implemented in the drug delivery 

field. The future work should address the following aspects: 

• Test the MPNP system with a suitable drug. The hydrophilic and hydrophobic 

drugs have different behaviors affecting the process parameters and size of the 

nanospheres. Although, the hydrophobic drugs are suitable for single emulsion 

evaporation method, the hydrophilic drugs should be tested. This requires 

switching from the single emulsion-evaporation to double emulsion-evaporation 

method. Some limitations should be addressed for the double emulsion -

evaporation method, such as formation of bigger nanoparticles with lower drug 

entrapment efficiency (losses of active component in the continuous phase due to 

hydrophilic behavior of active component). The addition of some additives can 

improve the entrapment efficiency (i.e. higher viscosity, cationic-anionic 

interaction). 

• Remove or replace SDS by other surfactants. SDS can not be administrated by 

parenteral route. To overcome this limitation two approaches can be followed: 

o Purification of the nanoparticles suspension to remove the SDS associated 

with the nanoparticles. Dialysis is an adequate method for elimination of 

SDS, but ultra-filtration can be used, and it should be tested. 

o Synthesis of a suitable surfactant with high hydrophilic-lipophilic balance 

(HLB) value (over 20), biodegradable, biocompatible, good packing 

number (less than 0.3), and small molecular size to replace SDS. The 

advantage of SDS is the use of electrostatic and steric forces to form small 

micelles that are used to form small nanoparticles. 



 

92 

• Optimize the SDS concentration, PLGA concentration, sonication time, 

entrapment efficiency of active component, and purification steps to obtain the 

optimum nanoparticle size by factorial design. 

• Study the effect of sonication on the structure of the LGA chains, especially for 

high molecular weight. The size reduction of polymer chains can affect the 

possible release profiles of the active component entrapped.  

• Conduct stability studies. The aggregation profile should be measured over time 

at different pHs. The nanoparticles aggregation must be avoided at corporal pH 

(neutral) for parenteral administration. 

• Study the release profile of drugs entrapped in the MPNPs, an important step for 

further uses in vivo. 

• Test the cellular uptake of PLGA-SDS nanoparticles to find the toxicity levels, 

and the advantages/disadvantages of the system. This is related with the active 

component bio-distribution, mechanism of cellular uptake and action (i.e. the 

negative and positive charges over the surface of the particle play an important 

role in the cellular uptake of PLGA nanoparticles). 

• Conduct targeting studies required to find the minimum amount of magnetite that 

should be entrapped in the MPNP to obtain a suitable drug delivery system. 
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APPENDIX B. STANDARD CURVE FOR IRON DETECTION 

 

 Iron determination based on Prussian blue reaction. The wavelength used was at 

700 nm. The digestion was made with Hydrochloric acid at 6 N.  

 The standard curve was prepared with iron (III) oxide, 99.999% of purity. 
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APPENDIX C. SIZE MEASUREMENTS WITH DLS (MALVERN 

ZETASIZER NANOSERIES) 

There were prepared a lot of sample to define the important parameters to obtain 

nanoparticle under 100 nm. The tables presented in this appendix showed the diversity of 

nanoparticle size in function of the parameters tested. Many experiments were design to 

test some theories and procedures.  

Double emulsion method without second sonication (CAR 140, CAR 132), and 

all other parameters were maintained constant. CAR 131 is the standard single emulsion 

evaporation method, but the magnetite entrapped was without oleic acid surface 

modification. CAR 133 was double emulsion method with second sonication. CAR 135 

and CAR 136 were different evaporation rates with single emulsion method (PLGA of 

LMW). The evaporation procedure tested were without injection of nitrogen and high 

vacuum (40 cm Hg), and without nitrogen injection and high vacuum (40 cm Hg). The 

sample CAR 138 was with low vacuum (100 cm Hg) and nitrogen injection. All other 

samples are explained in the table. 

 

Record Type Sample Date 
T 

(°C) 
Z-Ave 
(nm) 

PDI 
ZP 

(mV) 
Cond 

(mS/cm) 

1 Size CAR140 DE w/o II sonic 01/26/05 25 201.2 0.212   

2 Size CAR140 DE w/o II sonic 01/26/05 25 204.8 0.198   

3 Size CAR140 DE w/o II sonic 01/26/05 25 204.6 0.226   

4 Size CAR131 Standard Mgn 01/26/05 25 171.6 0.263   

5 Size CAR131 Standard Mgn 01/26/05 25 115.1 0.527   

6 Size CAR131 Standard Mgn 01/26/05 25 100.5 0.598   

7 Size CAR131 Standard Mgn 2pick 01/26/05 25 89.05 0.762   

8 Size CAR131 Standard Mgn 2pick 01/26/05 25 91.3 0.801   

9 Size CAR131 Standard Mgn 2pick 01/26/05 25 99.11 0.512   

10 Size CAR132 DEWOS 01/26/05 25 124 0.364   

11 Size CAR132 DEWOS 01/26/05 25 125.6 0.281   

12 Size CAR132 DEWOS 01/26/05 25 122.8 0.281   

13 Size CAR133 DEWS 01/26/05 25 110.4 0.42   

14 Size CAR133 DEWS 01/26/05 25 99.45 0.524   

15 Size CAR133 DEWS 01/26/05 25 100.9 0.461   

16 Size CAR133 DEWS 2picks 01/26/05 25 93.49 0.464   

17 Size CAR133 DEWS 2picks 01/26/05 25 87.23 0.434   

18 Size CAR133 DEWS 2picks 01/26/05 25 93.32 0.604   

19 Size CAR134 stdb liposurf 01/26/05 25 172.1 0.265   
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20 Size CAR134 stdb liposurf 01/26/05 25 124.3 0.393   

21 Size CAR134 stdb liposurf 01/26/05 25 94.34 0.686   

22 Size CAR134 stdb liposurf 2pick 01/26/05 25 90.47 0.498   

23 Size CAR134 stdb liposurf 2pick 01/26/05 25 85.02 0.625   

24 Size CAR134 stdb liposurf 2pick 01/26/05 25 92.21 0.502   

25 Size CAR 135 Ev rate 01/26/05 25 41.43 0.342   

26 Size CAR 135 Ev rate 01/26/05 25 41.39 0.302   

27 Size CAR 135 Ev rate 01/26/05 25 39.95 0.322   

28 Size CAR 136 Ev rate 01/26/05 25 58.02 0.414   

29 Size CAR 136 Ev rate 01/26/05 25 57.96 0.418   

30 Size CAR 136 Ev rate 01/26/05 25 56.94 0.41   

31 Size CAR 137 DEWOS VE 01/26/05 25 193.2 0.7   

32 Size CAR 137 DEWOS VE 01/26/05 25 136.9 0.959   

33 Size CAR 137 DEWOS VE 01/26/05 25 140.2 0.957   

34 Size CAR 137 DEWOS VE 2pick 01/26/05 25 77.14 0.759   

35 Size CAR 137 DEWOS VE 2pick 01/26/05 25 80.67 0.521   

36 Size CAR 137 DEWOS VE 2pick 01/26/05 25 88.12 0.493   

37 Size CAR 138 Ev Rate low vac 01/26/05 25 66.34 0.212   

38 Size CAR 138 Ev Rate low vac 01/26/05 25 42.57 0.402   

39 Size CAR 138 Ev Rate low vac 01/26/05 25 42.34 0.367   

40 Size CAR 139 DEWOS VE MMW 01/26/05 25 71.66 0.393   

41 Size CAR 139 DEWOS VE MMW 01/26/05 25 70.43 0.388   

42 Size CAR 139 DEWOS VE MMW 01/26/05 25 72.11 0.365   

43 Size CAR Mgn lipo 01/26/05 25 175.3 0.4   

44 Size CAR Mgn lipo 01/26/05 25 179.3 0.417   

45 Size CAR Mgn lipo 01/26/05 25 176.6 0.392   

46 Size CAR Mgn lipo 2pick 01/26/05 25 329.9 0.695   

47 Size CAR Mgn lipo 2pick 01/26/05 25 297 0.535   

48 Size CAR Mgn lipo 2pick 01/26/05 25 248.2 0.664   

49 Size CAR Mgn  01/26/05 25 270.5 0.359   

50 Size CAR Mgn  01/26/05 25 241.9 0.431   

51 Size CAR Mgn  01/26/05 25 237.8 0.418   

52 Size CAR 134 waste 01/26/05 25 51.6 0.443   

53 Size CAR 134 waste 01/26/05 25 50.64 0.416   

54 Size CAR 134 waste 01/26/05 25 48.25 0.418   

55 Size CAR 131 waste 01/26/05 25 67.18 0.463   

56 Size CAR 131 waste 01/26/05 25 67.55 0.464   

57 Size CAR 131 waste 01/26/05 25 65.2 0.478   

58 Size CAR 131 waste 2pick 01/26/05 25 66.86 0.49   

59 Size CAR 131 waste 2pick 01/26/05 25 63.78 0.469   

60 Size CAR 131 waste 2pick 01/26/05 25 67.85 0.464   

61 Size water 01/26/05 25 1639 0.776   

62 Size water 2 01/26/05 25 2609 1   

63 Size water 2 01/26/05 25 1274 0.617   

64 Size water 2 01/26/05 25 875.1 0.568   

65 Size water 2 fitered 01/26/05 25 426.9 0.382   
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Sample CAR 185 and CAR 186 were prepared with different amounts of PLGA. 

The sample CAR 178, CAR 179, and CAR181 were with high molecular weight PLGA. 

The samples CAR 168, CAR 172, CAR 182 and CAR 180 were prepared with more 

surfactant (35 mg). CAR 173 and CAR 174 were formed with medium PLGA molecular 

weight (MMW). In all samples presented in this table, the aqueous phase was prepared 

with a buffer solution (pH 8). They showed a strong precipitation after two hour ended 

the formation process. Strong aggregation was present, which was reflected in the higher 

size measured. 

 

Record Type Sample Name Date 
T 

(°C) 
Z-Ave 
(nm) 

PDI 
ZP 

(mV) 
Cond 

(mS/cm) 

1 Size Car185-100mg May 20, 2005 25 74.43 0.124   

2 Size Car185-100mg May 20, 2005 25 74.11 0.137   

3 Size Car185-100mg May 20, 2005 25 74.72 0.126   

4 Size Car184-150mg May 20, 2005 25 65.02 0.171   

5 Size Car184-150mg May 20, 2005 25 65.36 0.143   

6 Size Car184-150mg May 20, 2005 25 65.16 0.175   

7 Size Car178-HMW May 20, 2005 25 149.8 0.504   

8 Size Car178-HMW May 20, 2005 25 148.5 0.495   

9 Size Car178-HMW May 20, 2005 25 149.5 0.502   

10 Size Car181-HMW May 20, 2005 25 122.6 0.417   

11 Size Car181-HMW May 20, 2005 25 123 0.427   

12 Size Car181-HMW May 20, 2005 25 123.8 0.433   

13 Size Car182-HMW35mg May 20, 2005 25 118.4 0.473   

14 Size Car182-HMW35mg May 20, 2005 25 115.7 0.456   

15 Size Car182-HMW35mg May 20, 2005 25 118.4 0.422   

16 Size Car180-HMW35mg May 20, 2005 25 148.2 0.55   

17 Size Car180-HMW35mg May 20, 2005 25 154.6 0.522   

18 Size Car180-HMW35mg May 20, 2005 25 154.9 0.521   

19 Size Car179-HMW May 20, 2005 25 142.2 0.492   

20 Size Car179-HMW May 20, 2005 25 138.3 0.499   

21 Size Car179-HMW May 20, 2005 25 142.6 0.49   

22 Size Car172-MMW35mg May 20, 2005 25 171 0.523   

23 Size Car172-MMW35mg May 20, 2005 25 173.7 0.537   

24 Size Car172-MMW35mg May 20, 2005 25 166.5 0.584   

25 Size Car173-MMW May 20, 2005 25 211.6 1   

26 Size Car173-MMW May 20, 2005 25 208.7 1   

27 Size Car173-MMW May 20, 2005 25 209.1 1   

28 Size Car174-MMW May 20, 2005 25 215.8 1   

29 Size Car174-MMW May 20, 2005 25 214.8 1   

30 Size Car174-MMW May 20, 2005 25 209.4 0.985   

31 Size Car166-LMW May 20, 2005 25 297.2 0.667   

32 Size Car166-LMW May 20, 2005 25 233.7 1   

33 Size Car166-LMW May 20, 2005 25 287.1 0.655   

34 Size Car168-LMW35mg May 20, 2005 25 201.5 0.637   
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35 Size Car168-LMW35mg May 20, 2005 25 196.2 0.619   

36 Size Car168-LMW35mg May 20, 2005 25 200.7 0.64   

37 Size Car167-LMW May 20, 2005 25 188.1 0.597   

38 Size Car167-LMW May 20, 2005 25 192 0.603   

39 Size Car167-LMW May 20, 2005 25 191.7 0.594   

40 Size Car-MAO May 20, 2005 25 200.6 0.242   

41 Size Car-MAO May 20, 2005 25 198.9 0.225   

42 Size Car-MAO May 20, 2005 25 202.6 0.239   

43 Zeta Car-184Z May 20, 2005 25   -98.5 0.8654 

44 Zeta Car-184Z May 20, 2005 25   -99.18 0.9144 

45 Zeta Car-184Z May 20, 2005 25   -101.5 0.9352 

46 Zeta Car-184Zdup May 20, 2005 25   -99.1 0.8952 

47 Zeta Car-184Zdup May 20, 2005 25   -99.85 0.9099 

48 Zeta Car-184Zdup May 20, 2005 25   -98.01 0.9187 

 

 

 

The samples CAR 250, CAR 256, CAR 262 were formed with poly(vinyl alcohol) 

(PVA). All other samples were for magnetite entrapment by emulsion evaporation (single 

emulsion).  

 

Record Type Sample Name Date 
T 

(°C) 
Z-Ave 
(nm) 

PDI 
ZP 

(mV) 
Cond 

(mS/cm) 

1 Size CAR250pva May 25, 2005 25 117.8 0.161   

2 Size CAR250pva May 25, 2005 25 120.6 0.16   

3 Size CAR250pva May 25, 2005 25 121.2 0.18   

4 Size CAR250pva May 25, 2005 25 121.6 0.164   

5 Size CAR256pva May 25, 2005 25 135.8 0.135   

6 Size CAR256pva May 25, 2005 25 137.4 0.127   

7 Size CAR256pva May 25, 2005 25 138.1 0.068   

8 Size CAR262pva May 25, 2005 25 149.3 0.073   

9 Size CAR262pva May 25, 2005 25 148.2 0.093   

10 Size CAR262pva May 25, 2005 25 147.3 0.058   

11 Size CAR196magLMW May 25, 2005 25 110.1 0.395   

12 Size CAR196magLMW May 25, 2005 25 107.3 0.433   

13 Size CAR196magLMW May 25, 2005 25 108.7 0.396   

14 Size CAR197magLMW May 25, 2005 25 146 0.269   

15 Size CAR197magLMW May 25, 2005 25 145.3 0.281   

16 Size CAR197magLMW May 25, 2005 25 142.1 0.28   

17 Size CAR198magLMW May 25, 2005 25 130.4 0.281   

18 Size CAR198magLMW May 25, 2005 25 128.1 0.271   

19 Size CAR198magLMW May 25, 2005 25 130.6 0.28   

20 Size CAR199magLMW May 25, 2005 25 149.2 0.229   

21 Size CAR199magLMW May 25, 2005 25 147.1 0.241   

22 Size CAR199magLMW May 25, 2005 25 145.7 0.234   

23 Size CAR200magLMW May 25, 2005 25 91.23 0.371   
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24 Size CAR200magLMW May 25, 2005 25 90.09 0.361   

25 Size CAR200magLMW May 25, 2005 25 89.59 0.373   

26 Size CAR201magLMW May 25, 2005 25 146.7 0.253   

27 Size CAR201magLMW May 25, 2005 25 145.8 0.241   

28 Size CAR201magLMW May 25, 2005 25 144.1 0.246   

29 Size CAR202magMMW May 25, 2005 25 84.67 0.295   

30 Size CAR202magMMW May 25, 2005 25 82.7 0.284   

31 Size CAR202magMMW May 25, 2005 25 82.19 0.284   

32 Size CAR203magMMW May 25, 2005 25 144.1 0.284   

33 Size CAR203magMMW May 25, 2005 25 140.6 0.214   

34 Size CAR203magMMW May 25, 2005 25 139.3 0.207   

35 Size CAR204magMMW May 25, 2005 25 89.9 0.381   

36 Size CAR204magMMW May 25, 2005 25 89.31 0.387   

37 Size CAR204magMMW May 25, 2005 25 86.9 0.374   

38 Size CAR208magHMW May 25, 2005 25 77.04 0.325   

39 Size CAR208magHMW May 25, 2005 25 77.1 0.257   

40 Size CAR208magHMW May 25, 2005 25 75.78 0.263   

41 Size CAR209magHMW May 25, 2005 25 83.38 0.341   

42 Size CAR209magHMW May 25, 2005 25 81.91 0.337   

43 Size CAR209magHMW May 25, 2005 25 81.28 0.327   

44 Size CAR210magHMW May 25, 2005 25 83.44 0.397   

45 Size CAR210magHMW May 25, 2005 25 82.5 0.403   

46 Size CAR210magHMW May 25, 2005 25 79.15 0.365   

47 Size CAR205HmagMMW May 25, 2005 25 101.5 0.285   

48 Size CAR205HmagMMW May 25, 2005 25 102.4 0.299   

49 Size CAR205HmagMMW May 25, 2005 25 101.8 0.281   

50 Size CAR211HmagHMW May 25, 2005 25 99.01 0.356   

51 Size CAR211HmagHMW May 25, 2005 25 95.27 0.371   

52 Size CAR211HmagHMW May 25, 2005 25 94.68 0.387   

 

 

 All sample were prepared with emulsion evaporation method (SDS of 2 mg/ml), 

and with the three PLGA molecular weight used in this research. 

 

Record Type Sample Name Date 
T 

(°C) 
Z-Ave 
(nm) 

PDI 
ZP 

(mV) 
Cond 

(mS/cm) 

1 Size CAR238LMWLS May 26, 2005 25 37.91 0.301   

2 Size CAR238LMWLS May 26, 2005 25 39.13 0.304   

3 Size CAR238LMWLS May 26, 2005 25 39.12 0.299   

4 Size CAR238LMWLSB May 26, 2005 25 39.42 0.3   

5 Size CAR238LMWLSB May 26, 2005 25 39.77 0.274   

6 Size CAR238LMWLSB May 26, 2005 25 39.55 0.255   

7 Size CAR239LMWLS May 26, 2005 25 37.89 0.293   

8 Size CAR239LMWLS May 26, 2005 25 38.27 0.296   

9 Size CAR239LMWLS May 26, 2005 25 38.16 0.262   

10 Size CAR240MMWLS May 26, 2005 25 41.15 0.288   

11 Size CAR240MMWLS May 26, 2005 25 41.53 0.261   
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12 Size CAR240MMWLS May 26, 2005 25 41.38 0.257   

13 Size CAR241MMWLS May 26, 2005 25 67.16 0.106   

14 Size CAR241MMWLS May 26, 2005 25 67.49 0.111   

15 Size CAR241MMWLS May 26, 2005 25 66.86 0.111   

16 Size CAR242MMWLS May 26, 2005 25 68.02 0.097   

17 Size CAR242MMWLS May 26, 2005 25 68.38 0.096   

18 Size CAR242MMWLS May 26, 2005 25 68.86 0.1   

19 Size CAR244HMWLS May 26, 2005 25 69.83 0.132   

20 Size CAR244HMWLS May 26, 2005 25 70.4 0.113   

21 Size CAR244HMWLS May 26, 2005 25 70.71 0.114   

22 Size CAR245HMWLS May 26, 2005 25 71.7 0.132   

23 Size CAR245HMWLS May 26, 2005 25 70.53 0.129   

24 Size CAR245HMWLS May 26, 2005 25 69.66 0.134   

25 Size CAR270LMWLS May 26, 2005 25 111.4 0.315   

26 Size CAR270LMWLS May 26, 2005 25 112.5 0.312   

27 Size CAR270LMWLS May 26, 2005 25 111.9 0.313   

28 Size CAR271LMWLS May 26, 2005 25 110.3 0.314   

29 Size CAR271LMWLS May 26, 2005 25 103 0.422   

30 Size CAR271LMWLS May 26, 2005 25 108.3 0.306   

31 Size CAR272LMWLS May 26, 2005 25 108.3 0.304   

32 Size CAR272LMWLS May 26, 2005 25 109.8 0.303   

33 Size CAR272LMWLS May 26, 2005 25 107.6 0.298   

34 Size CAR250LMWPVACentA May 26, 2005 25 131.3 0.19   

35 Size CAR250LMWPVACentA May 26, 2005 25 129.4 0.165   

36 Size CAR250LMWPVACentA May 26, 2005 25 129.9 0.188   

37 Size CAR250LMWPVACentB May 26, 2005 25 134.9 0.218   

38 Size CAR250LMWPVACentB May 26, 2005 25 132.9 0.191   

39 Size CAR250LMWPVACentB May 26, 2005 25 133.7 0.205   

40 Zeta CAR238 May 26, 2005 25   -27.01 0.04717 

41 Zeta CAR238 May 26, 2005 25   -31.68 0.04591 

42 Zeta CAR238 May 26, 2005 25   -28.26 0.04641 

43 Zeta CAR239 May 26, 2005 25   -0.419 0.02604 

44 Zeta CAR239 May 26, 2005 25   -0.39 0.03365 

45 Zeta CAR239 May 26, 2005 25   -0.007 0.02787 

46 Zeta CAR240 May 26, 2005 25   -32.73 0.04691 

47 Zeta CAR240 May 26, 2005 25   -34.34 0.05291 

48 Zeta CAR240 May 26, 2005 25   -25.87 0.04898 

49 Zeta CAR241 May 26, 2005 25   -37.32 0.05661 

50 Zeta CAR241 May 26, 2005 25   -32.94 0.05253 

51 Zeta CAR241 May 26, 2005 25   -28.45 0.0505 

52 Zeta CAR242 May 26, 2005 25   -33.32 0.04405 

53 Zeta CAR242 May 26, 2005 25   -36.94 0.04596 

54 Zeta CAR242 May 26, 2005 25   -35.23 0.04512 

55 Zeta CAR244 May 26, 2005 25   -37.73 0.04893 

56 Zeta CAR244 May 26, 2005 25   -38.21 0.05791 

57 Zeta CAR244 May 26, 2005 25   -33.36 0.05458 

58 Zeta CAR245 May 26, 2005 25   -40.82 0.05726 

59 Zeta CAR245 May 26, 2005 25   -48.45 0.05051 

60 Zeta CAR245 May 26, 2005 25   -36.99 0.04983 

61 Zeta CAR239good May 26, 2005 25   -26.67 0.0492 
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62 Zeta CAR239good May 26, 2005 25   -24.14 0.05313 

63 Zeta CAR239good May 26, 2005 25   -20.9 0.05301 

64 Zeta CAR270 May 26, 2005 25   -38.42 0.04357 

65 Zeta CAR270 May 26, 2005 25   -39.54 0.04467 

66 Zeta CAR270 May 26, 2005 25   -41.52 0.05614 

67 Zeta CAR271 May 26, 2005 25   -40.02 0.05087 

68 Zeta CAR271 May 26, 2005 25   -34.48 0.04217 

69 Zeta CAR271 May 26, 2005 25   -38.64 0.04197 

70 Zeta CAR272 May 26, 2005 25   -39.71 0.05134 

71 Zeta CAR272 May 26, 2005 25   -40.38 0.04539 

72 Zeta CAR272 May 26, 2005 25   -42.87 0.04933 

73 Zeta CAR250 May 26, 2005 25   -23.5 0.01789 

74 Zeta CAR250 May 26, 2005 25   -24.4 0.03051 

75 Zeta CAR250 May 26, 2005 25   -22.29 0.01175 

76 Zeta CAR197 May 26, 2005 25   -35.26 0.09469 

77 Zeta CAR197 May 26, 2005 25   -36.1 0.094 

78 Zeta CAR197 May 26, 2005 25   -35.72 0.0928 

 

 

 All sample were prepared with emulsion evaporation method (SDS of 2 mg/ml), 

and with the three PLGA molecular weight used in this research. 

 

Record Type Sample Name Date 
T 

(°C) 
Z-Ave 
(nm) 

PDI 
ZP 

(mV) 
Cond 

(mS/cm) 

1 Size CAR280LMW12S May 27, 2005 25 40.42 0.344   

2 Size CAR280LMW12S May 27, 2005 25 39.79 0.328   

3 Size CAR280LMW12S May 27, 2005 25 39.37 0.319   

4 Size CAR282LMW08S May 27, 2005 25 39.94 0.268   

5 Size CAR282LMW08S May 27, 2005 25 40.68 0.296   

6 Size CAR282LMW08S May 27, 2005 25 41.49 0.3   

7 Size CAR283LMW12Smag May 27, 2005 25 120.7 0.382   

8 Size CAR283LMW12Smag May 27, 2005 25 121.6 0.366   

9 Size CAR283LMW12Smag May 27, 2005 25 122.8 0.376   

10 Size CAR273MMWmag May 27, 2005 25 90.06 0.312   

11 Size CAR273MMWmag May 27, 2005 25 91.53 0.269   

12 Size CAR273MMWmag May 27, 2005 25 90.49 0.266   

13 Size CAR274MMWmag May 27, 2005 25 90.13 0.262   

14 Size CAR274MMWmag May 27, 2005 25 88.95 0.308   

15 Size CAR274MMWmag May 27, 2005 25 87.93 0.271   

16 Size CAR276HMWmag May 27, 2005 25 84.14 0.228   

17 Size CAR276HMWmag May 27, 2005 25 84.36 0.242   

18 Size CAR276HMWmag May 27, 2005 25 82.73 0.226   

19 Size CAR277HMWmag May 27, 2005 25 84.36 0.251   

20 Size CAR277HMWmag May 27, 2005 25 85.37 0.239   

21 Size CAR277HMWmag May 27, 2005 25 84.65 0.233   

22 Zeta CAR280 May 27, 2005 25   -23.61 0.05224 

23 Zeta CAR280 May 27, 2005 25   -35.74 0.04815 
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24 Zeta CAR280 May 27, 2005 25   -29.58 0.05152 

25 Zeta CAR282 May 27, 2005 25   -20.9 0.045 

26 Zeta CAR282 May 27, 2005 25   -26.71 0.05282 

27 Zeta CAR282 May 27, 2005 25   -26.43 0.04728 

28 Zeta CAR283 May 27, 2005 25   -47.24 0.04702 

29 Zeta CAR283 May 27, 2005 25   -46.15 0.05155 

30 Zeta CAR283 May 27, 2005 25   -43.66 0.04594 

31 Zeta CAR273 May 27, 2005 25   -38.31 0.04669 

32 Zeta CAR273 May 27, 2005 25   -40.96 0.05421 

33 Zeta CAR273 May 27, 2005 25   -42.22 0.04773 

34 Zeta CAR274 May 27, 2005 25   -78.11 0.2119 

35 Zeta CAR274 May 27, 2005 25   -81.23 0.2167 

36 Zeta CAR274 May 27, 2005 25   -72.12 0.2184 

37 Zeta CAR276 May 27, 2005 25   -47.2 0.06435 

38 Zeta CAR276 May 27, 2005 25   -48.1 0.06122 

39 Zeta CAR276 May 27, 2005 25   -53.9 0.06464 

40 Zeta CAR277 May 27, 2005 25   -65.88 0.1229 

41 Zeta CAR277 May 27, 2005 25   -54.92 0.1237 

42 Zeta CAR277 May 27, 2005 25   -61.07 0.1224 

43 Size car280B May 27, 2005 25 39.05 0.312   

44 Size car280B May 27, 2005 25 39.54 0.28   

45 Size car280B May 27, 2005 25 38.87 0.257   

46 Size CAR206MMW8mag May 27, 2005 25 96.61 0.365   

47 Size CAR206MMW8mag May 27, 2005 25 98.76 0.289   

48 Size CAR206MMW8mag May 27, 2005 25 98.99 0.281   

49 Size CAR207MMW8mag May 27, 2005 25 89.24 0.274   

50 Size CAR207MMW8mag May 27, 2005 25 90.53 0.273   

51 Size CAR207MMW8mag May 27, 2005 25 90.69 0.279   

52 Size CAR212HMW8mag May 27, 2005 25 101 0.288   

53 Size CAR212HMW8mag May 27, 2005 25 97.37 0.354   

54 Size CAR212HMW8mag May 27, 2005 25 97.06 0.363   

55 Size CAR213HMW8mag May 27, 2005 25 101 0.366   

56 Size CAR213HMW8mag May 27, 2005 25 101 0.382   

57 Size CAR213HMW8mag May 27, 2005 25 102.2 0.371   

 

 

 All sample were prepared with emulsion evaporation method (SDS of 2 mg/ml), 

and with the three PLGA molecular weight used in this research. 

 

Record Type Sample Date 
T 

(°C) 
Z-Ave 
(nm) 

PDI 
ZP 

(mV) 
Cond 

(mS/cm) 

1 Size car284 June 1, 2005 25 39.74 0.329   

2 Size car284 June 1, 2005 25 41.02 0.285   

3 Size car284 June 1, 2005 25 41.49 0.338   

4 Size car285 June 1, 2005 25 36.79 0.271   

5 Size car285 June 1, 2005 25 36.64 0.265   

6 Size car285 June 1, 2005 25 35.83 0.252   
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7 Size car286 June 1, 2005 25 35.72 0.31   

8 Size car286 June 1, 2005 25 35.26 0.314   

9 Size car286 June 1, 2005 25 34.92 0.305   

10 Size car287 June 1, 2005 25 33.74 0.328   

11 Size car287 June 1, 2005 25 32.87 0.312   

12 Size car287 June 1, 2005 25 32.13 0.287   

13 Size car227 June 1, 2005 25 59.69 0.136   

14 Size car227 June 1, 2005 25 59.28 0.13   

15 Size car227 June 1, 2005 25 59.34 0.129   

16 Size car228 June 1, 2005 25 58.51 0.128   

17 Size car228 June 1, 2005 25 58.64 0.147   

18 Size car228 June 1, 2005 25 58.8 0.126   

19 Size car230 June 1, 2005 25 54.29 0.146   

20 Size car230 June 1, 2005 25 54.66 0.156   

21 Size car230 June 1, 2005 25 54.99 0.147   

22 Size car231 June 1, 2005 25 56.23 0.157   

23 Size car231 June 1, 2005 25 55.54 0.154   

24 Size car231 June 1, 2005 25 56.38 0.136   

25 Size car233 June 1, 2005 25 65.26 0.145   

26 Size car233 June 1, 2005 25 66.01 0.143   

27 Size car233 June 1, 2005 25 65.86 0.106   

28 Size car234 June 1, 2005 25 64.64 0.13   

29 Size car234 June 1, 2005 25 64.35 0.138   

30 Size car234 June 1, 2005 25 64.62 0.098   

31 Size car236 June 1, 2005 25 62.64 0.113   

32 Size car236 June 1, 2005 25 61.84 0.123   

33 Size car236 June 1, 2005 25 62 0.118   

34 Size car237 June 1, 2005 25 62.67 0.108   

35 Size car237 June 1, 2005 25 62.66 0.123   

36 Size car237 June 1, 2005 25 62.81 0.119   

37 Zeta CAR227 June 1, 2005 25   -42.25 0.05356 

38 Zeta CAR227 June 1, 2005 25   -39.85 0.04572 

39 Zeta CAR227 June 1, 2005 25   -48.49 0.04773 

40 Zeta CAR228 June 1, 2005 25   -26.31 0.04532 

41 Zeta CAR228 June 1, 2005 25   -32.21 0.05414 

42 Zeta CAR228 June 1, 2005 25   -40.24 0.05379 

43 Zeta CAR230 June 1, 2005 25   -38.04 0.05605 

44 Zeta CAR230 June 1, 2005 25   -46.52 0.05541 

45 Zeta CAR230 June 1, 2005 25   -33.7 0.04612 

46 Zeta CAR231 June 1, 2005 25   -39.71 0.0532 

47 Zeta CAR231 June 1, 2005 25   -30.69 0.05288 

48 Zeta CAR231 June 1, 2005 25   -40.24 0.04728 

49 Zeta CAR233 June 1, 2005 25   -37.77 0.05128 

50 Zeta CAR233 June 1, 2005 25   -37.49 0.04805 

51 Zeta CAR233 June 1, 2005 25   -34.04 0.04194 

52 Zeta CAR234 June 1, 2005 25   -41.83 0.05085 

53 Zeta CAR234 June 1, 2005 25   -37.96 0.05366 

54 Zeta CAR234 June 1, 2005 25   -40.49 0.05513 

55 Zeta CAR236 June 1, 2005 25   -44.75 0.04805 

56 Zeta CAR236 June 1, 2005 25   -43.62 0.05331 
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57 Zeta CAR236 June 1, 2005 25   -41.81 0.04469 

58 Zeta CAR237 June 1, 2005 25   -40.27 0.04468 

59 Zeta CAR237 June 1, 2005 25   -30.79 0.05193 

60 Zeta CAR237 June 1, 2005 25   -44.99 0.05545 

 

 

 All sample were prepared with emulsion evaporation method (SDS of 2 mg/ml), 

and with the three PLGA molecular weight used in this research. 

 

Record Type 
Sample 
Name 

Date 
T 

(°C) 
Z-Ave 
(nm) 

PDI 
ZP 

(mV) 
Cond 

(mS/cm) 

1 Size car305 June 3, 2005 25 42.45 0.245   

2 Size car305 June 3, 2005 25 42.28 0.235   

3 Size car305 June 3, 2005 25 41.65 0.219   

4 Size car306 June 3, 2005 25 45.82 0.226   

5 Size car306 June 3, 2005 25 46.19 0.227   

6 Size car306 June 3, 2005 25 45.95 0.211   

7 Size car307 June 3, 2005 25 50.31 0.214   

8 Size car307 June 3, 2005 25 50.59 0.208   

9 Size car307 June 3, 2005 25 50.33 0.206   

10 Size car308 June 3, 2005 25 71.61 0.146   

11 Size car308 June 3, 2005 25 71.68 0.16   

12 Size car308 June 3, 2005 25 71.17 0.141   

13 Size car220 June 3, 2005 25 50.43 0.43   

14 Size car220 June 3, 2005 25 50.43 0.407   

15 Size car220 June 3, 2005 25 50.6 0.381   

16 Size car221 June 3, 2005 25 46.06 0.338   

17 Size car221 June 3, 2005 25 45.73 0.338   

18 Size car221 June 3, 2005 25 45.37 0.326   

19 Size car222 June 3, 2005 25 54.98 0.4   

20 Size car222 June 3, 2005 25 55.29 0.409   

21 Size car222 June 3, 2005 25 54.93 0.404   

22 Size car223 June 3, 2005 25 45.21 0.329   

23 Size car223 June 3, 2005 25 45.2 0.326   

24 Size car223 June 3, 2005 25 44.5 0.326   

25 Size car224 June 3, 2005 25 48.13 0.363   

26 Size car224 June 3, 2005 25 48.15 0.368   

27 Size car224 June 3, 2005 25 47.93 0.36   

28 Size car225 June 3, 2005 25 45.7 0.347   

29 Size car225 June 3, 2005 25 44.92 0.337   

30 Size car225 June 3, 2005 25 45.98 0.298   

31 Size car278 June 3, 2005 25 85.09 0.239   

32 Size car278 June 3, 2005 25 82.13 0.215   

33 Size car278 June 3, 2005 25 83.19 0.232   

34 Size car298 June 3, 2005 25 94.42 0.255   

35 Size car298 June 3, 2005 25 97.01 0.27   

36 Size car298 June 3, 2005 25 94.58 0.253   
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37 Size car246B June 3, 2005 25 71.21 0.109   

38 Size car246B June 3, 2005 25 70.77 0.109   

39 Size car246B June 3, 2005 25 70.7 0.119   

40 Zeta 305 June 3, 2005 25   -22.79 0.04735 

41 Zeta 305 June 3, 2005 25   -21.41 0.04462 

42 Zeta 305 June 3, 2005 25   -30.68 0.04621 

43 Zeta 306 June 3, 2005 25   -30.49 0.04179 

44 Zeta 306 June 3, 2005 25   -33.5 0.04166 

45 Zeta 306 June 3, 2005 25   -28.08 0.04476 

46 Zeta 307 June 3, 2005 25   -34.34 0.04706 

47 Zeta 307 June 3, 2005 25   -31.02 0.04254 

48 Zeta 307 June 3, 2005 25   -38.75 0.04664 

49 Zeta 308 June 3, 2005 25   -28.79 0.03723 

50 Zeta 308 June 3, 2005 25   -28.87 0.04204 

51 Zeta 308 June 3, 2005 25   -28.89 0.04493 

52 Zeta 220 June 3, 2005 25   -29.28 0.05139 

53 Zeta 220 June 3, 2005 25   -30.57 0.0493 

54 Zeta 220 June 3, 2005 25   -29.12 0.05355 

55 Zeta 221 June 3, 2005 25   -43.6 0.05563 

56 Zeta 221 June 3, 2005 25   -36.31 0.05485 

57 Zeta 221 June 3, 2005 25   -32.76 0.04848 

58 Zeta 221 June 3, 2005 25   -37.38 0.05555 

59 Zeta 221 June 3, 2005 25   -45.27 0.05616 

60 Zeta 221 June 3, 2005 25   -47.66 0.05769 

61 Zeta car222 June 3, 2005 25   -28.31 0.05764 

62 Zeta car222 June 3, 2005 25   -31.09 0.0509 

63 Zeta car222 June 3, 2005 25   -32.73 0.05893 

64 Zeta car224 June 3, 2005 25   -41.64 0.06209 

65 Zeta car224 June 3, 2005 25   -38.75 0.05962 

66 Zeta car224 June 3, 2005 25   -36.83 0.05459 

67 Zeta car225 June 3, 2005 25   -33.29 0.0526 

68 Zeta car225 June 3, 2005 25   -35.63 0.05361 

69 Zeta car225 June 3, 2005 25   -31.65 0.06025 

70 Zeta car278 June 3, 2005 25   -39.8 0.05376 

71 Zeta car278 June 3, 2005 25   -37.75 0.05196 

72 Zeta car278 June 3, 2005 25   -37.74 0.04382 

73 Zeta car298 June 3, 2005 25   -40.16 0.04919 

74 Zeta car298 June 3, 2005 25   -42.54 0.04754 

75 Zeta car298 June 3, 2005 25   -41.52 0.05034 

76 Zeta car246B June 3, 2005 25   -41.94 0.06332 

77 Zeta car246B June 3, 2005 25   -42.72 0.06383 

78 Zeta car246B June 3, 2005 25   -37.01 0.06173 

79 Zeta car290 June 3, 2005 25   -39.09 0.05605 

80 Zeta car290 June 3, 2005 25   -40.2 0.05033 

81 Zeta car290 June 3, 2005 25   -37.92 0.04803 

82 Zeta car291 June 3, 2005 25   -35.57 0.04945 

83 Zeta car291 June 3, 2005 25   -36.68 0.0434 

84 Zeta car291 June 3, 2005 25   -36.67 0.04517 

85 Zeta car292 June 3, 2005 25   -41.85 0.04898 

86 Zeta car292 June 3, 2005 25   -39.76 0.04906 
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87 Zeta car292 June 3, 2005 25   -42.32 0.04582 

88 Zeta car294 June 3, 2005 25   -36.1 0.05677 

89 Zeta car294 June 3, 2005 25   -35.98 0.05735 

90 Zeta car294 June 3, 2005 25   -41.99 0.05419 

91 Zeta car295 June 3, 2005 25   -36.26 0.04908 

92 Zeta car295 June 3, 2005 25   -36.45 0.05581 

93 Zeta car295 June 3, 2005 25   -34.19 0.04544 

94 Zeta car281 June 3, 2005 25   -16.26 0.05288 

95 Zeta car281 June 3, 2005 25   -22.89 0.05259 

96 Zeta car281 June 3, 2005 25   -27.3 0.05847 

97 Zeta car284 June 3, 2005 25   -46.72 0.05927 

98 Zeta car284 June 3, 2005 25   -48.39 0.06012 

99 Zeta car284 June 3, 2005 25   -47.27 0.06056 

100 Zeta car297 June 3, 2005 25   -39.78 0.06191 

101 Zeta car297 June 3, 2005 25   -39.57 0.0657 

102 Zeta car297 June 3, 2005 25   -35.74 0.06543 

103 Zeta car267D June 3, 2005 25   -21 0.01114 

104 Zeta car267D June 3, 2005 25   -22.63 0.03553 

105 Zeta car267D June 3, 2005 25   -22.16 0.03242 

106 Zeta car285 June 3, 2005 25   -22.37 0.05831 

107 Zeta car285 June 3, 2005 25   -21.55 0.05001 

108 Zeta car285 June 3, 2005 25   -19.88 0.05926 

109 Zeta car286 June 3, 2005 25   -20.47 0.07439 

110 Zeta car286 June 3, 2005 25   -21.63 0.0766 

111 Zeta car286 June 3, 2005 25   -33.98 0.0734 

112 Zeta car287 June 3, 2005 25   -28.58 0.07888 

113 Zeta car287 June 3, 2005 25   -15.81 0.07966 

114 Zeta car287 June 3, 2005 25   -23.97 0.08622 

 

 All sample were prepared with emulsion evaporation method (SDS of 2 mg/ml), 

and with the three PLGA molecular weight used in this research. The symbol D in the 

samples name means after dialysis. 

 

Record Type 
Sample 
Name 

Date 
T 

(°C) 
Z-Ave 
(nm) 

PDI 
ZP 

(mV) 
Cond 

(mS/cm) 

1 Size car309 June 7, 2005 25 46.32 0.22   

2 Size car309 June 7, 2005 25 46.99 0.223   

3 Size car309 June 7, 2005 25 47 0.229   

4 Size car310 June 7, 2005 25 38.39 0.239   

5 Size car310 June 7, 2005 25 38.38 0.249   

6 Size car310 June 7, 2005 25 38.49 0.251   

7 Size car311 June 7, 2005 25 41.53 0.242   

8 Size car311 June 7, 2005 25 41.48 0.239   

9 Size car311 June 7, 2005 25 41.82 0.225   

10 Size car312 June 7, 2005 25 52.67 0.199   

11 Size car312 June 7, 2005 25 52.38 0.213   

12 Size car312 June 7, 2005 25 52.95 0.196   
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13 Size car310B June 7, 2005 25 38.26 0.243   

14 Size car310B June 7, 2005 25 38.52 0.242   

15 Size car310B June 7, 2005 25 38.45 0.236   

16 Size car295B June 7, 2005 25 98.2 0.269   

17 Size car295B June 7, 2005 25 98.71 0.274   

18 Size car295B June 7, 2005 25 96.59 0.238   

19 Size car322 June 7, 2005 25 80.42 0.257   

20 Size car322 June 7, 2005 25 81.54 0.268   

21 Size car322 June 7, 2005 25 81.39 0.287   

22 Size car323 June 7, 2005 25 81.14 0.254   

23 Size car323 June 7, 2005 25 79.85 0.227   

24 Size car323 June 7, 2005 25 79.63 0.212   

25 Size car227 June 7, 2005 25 65.8 0.212   

26 Size car227 June 7, 2005 25 65.6 0.209   

27 Size car227 June 7, 2005 25 65.02 0.215   

28 Size car292 June 7, 2005 25 119.4 0.252   

29 Size car292 June 7, 2005 25 120.1 0.248   

30 Size car292 June 7, 2005 25 119.2 0.255   

31 Size car291 June 7, 2005 25 116.8 0.237   

32 Size car291 June 7, 2005 25 118.2 0.262   

33 Size car291 June 7, 2005 25 116.9 0.252   

34 Size car271 June 7, 2005 25 105.3 0.291   

35 Size car271 June 7, 2005 25 104.9 0.287   

36 Size car271 June 7, 2005 25 104.8 0.296   

37 Size car270 June 7, 2005 25 107.3 0.291   

38 Size car270 June 7, 2005 25 106.4 0.28   

39 Size car270 June 7, 2005 25 106.8 0.276   

40 Size car293 June 7, 2005 25 96.1 0.216   

41 Size car293 June 7, 2005 25 96.24 0.19   

42 Size car293 June 7, 2005 25 94.16 0.213   

43 Size car236D June 7, 2005 25 68.75 0.119   

44 Size car236D June 7, 2005 25 68.51 0.115   

45 Size car236D June 7, 2005 25 68.8 0.095   

46 Size car294D June 7, 2005 25 95.97 0.213   

47 Size car294D June 7, 2005 25 96.29 0.198   

48 Size car294D June 7, 2005 25 94.67 0.211   

49 Size car274D June 7, 2005 25 87.45 0.198   

50 Size car274D June 7, 2005 25 87.02 0.187   

51 Size car274D June 7, 2005 25 85.13 0.207   

52 Size car297 June 7, 2005 25 87.44 0.193   

53 Size car297 June 7, 2005 25 86.63 0.193   

54 Size car297 June 7, 2005 25 87.34 0.197   

55 Size car226D June 7, 2005 25 67.08 0.15   

56 Size car226D June 7, 2005 25 67.89 0.119   

57 Size car226D June 7, 2005 25 67.55 0.103   

58 Size car290D June 7, 2005 25 111.4 0.247   

59 Size car290D June 7, 2005 25 111.9 0.256   

60 Size car290D June 7, 2005 25 113.6 0.241   

61 Size car276D June 7, 2005 25 81.97 0.177   

62 Size car276D June 7, 2005 25 81.43 0.197   
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63 Size car276D June 7, 2005 25 81.94 0.192   

64 Size car244D June 7, 2005 25 75.07 0.115   

65 Size car244D June 7, 2005 25 75.11 0.104   

66 Size car244D June 7, 2005 25 75.16 0.123   

67 Size car240D June 7, 2005 25 50.51 0.31   

68 Size car240D June 7, 2005 25 50.85 0.269   

69 Size car240D June 7, 2005 25 50.55 0.276   

70 Size car277D June 7, 2005 25 80.06 0.194   

71 Size car277D June 7, 2005 25 79.45 0.18   

72 Size car277D June 7, 2005 25 78.07 0.187   

73 Size car243D June 7, 2005 25 70.89 0.183   

74 Size car243D June 7, 2005 25 70.18 0.176   

75 Size car243D June 7, 2005 25 70.6 0.17   

76 Zeta car295B June 7, 2005 25   -44.34 0.05961 

77 Zeta car295B June 7, 2005 25   -44.42 0.05544 

78 Zeta car295B June 7, 2005 25   -45.08 0.05587 

79 Zeta car323 June 7, 2005 25   -41.11 0.04982 

80 Zeta car323 June 7, 2005 25   -39.99 0.04692 

81 Zeta car323 June 7, 2005 25   -36.61 0.05343 

82 Zeta car227D June 7, 2005 25   -38.45 0.01142 

83 Zeta car227D June 7, 2005 25   -36.13 0.03206 

84 Zeta car227D June 7, 2005 25   -30.63 0.03136 

85 Zeta car292D June 7, 2005 25   -30.87 0.0338 

86 Zeta car292D June 7, 2005 25   -32.12 0.03201 

87 Zeta car292D June 7, 2005 25   -32.89 0.03613 

88 Zeta car271D June 7, 2005 25   -35.94 0.0408 

89 Zeta car271D June 7, 2005 25   -45.65 0.0403 

90 Zeta car271D June 7, 2005 25   -31.3 0.03191 

91 Zeta car240D June 7, 2005 25   -38.86 0.01368 

92 Zeta car240D June 7, 2005 25   -24.2 0.02971 

93 Zeta car240D June 7, 2005 25   -26.85 0.02055 

94 Zeta car243D June 7, 2005 25   -41.66 0.03599 

95 Zeta car243D June 7, 2005 25   -48.75 0.0348 

96 Zeta car243D June 7, 2005 25   -38.25 0.03574 

97 Zeta car226D June 7, 2005 25   -29.73 0.0322 

98 Zeta car226D June 7, 2005 25   -29.31 0.03894 

99 Zeta car226D June 7, 2005 25   -32.48 0.02884 

100 Zeta car310 June 7, 2005 25   -45.63 0.1611 

101 Zeta car310 June 7, 2005 25   -43.63 0.1635 

102 Zeta car310 June 7, 2005 25   -46.17 0.168 

103 Zeta car312 June 7, 2005 25   -39.38 0.05628 

104 Zeta car312 June 7, 2005 25   -36.82 0.05124 

105 Zeta car312 June 7, 2005 25   -37.6 0.04674 

106 Zeta car249D June 7, 2005 25   -39.44 0.02625 

107 Zeta car249D June 7, 2005 25   -40.31 0.03019 

108 Zeta car249D June 7, 2005 25   -42.8 0.02894 

109 Zeta car277D June 7, 2005 25   -41.84 0.06295 

110 Zeta car277D June 7, 2005 25   -33.74 0.05501 

111 Zeta car277D June 7, 2005 25   -38.54 0.05573 
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 All sample were prepared with emulsion evaporation method (SDS of 2 mg/ml), 

and with the three PLGA molecular weight used in this research. The amplitude used was 

39%. The evaporation time was 7 min. The amount of MOA was 4% w/w and 8%w/w. 

 

Record Type Sample Date 
T 

(°C) 
Z-Ave 
(nm) 

PDI 
ZP 

(mV) 
Cond 

(mS/cm) 

1 Size CA64 July 5, 2005 25 38.81 0.233   

2 Size CA64 July 5, 2005 25 39.01 0.212   

3 Size CA64 July 5, 2005 25 38.86 0.214   

4 Size CA65 July 5, 2005 25 38.47 0.226   

5 Size CA65 July 5, 2005 25 38.62 0.245   

6 Size CA65 July 5, 2005 25 38.61 0.23   

7 Size CA66 July 5, 2005 25 52.72 0.385   

8 Size CA66 July 5, 2005 25 53.59 0.364   

9 Size CA66 July 5, 2005 25 54.77 0.399   

10 Size CA67 July 5, 2005 25 63.61 0.135   

11 Size CA67 July 5, 2005 25 63.39 0.132   

12 Size CA67 July 5, 2005 25 63.74 0.121   

13 Size CA68 July 5, 2005 25 63.35 0.117   

14 Size CA68 July 5, 2005 25 63.05 0.118   

15 Size CA68 July 5, 2005 25 62.91 0.148   

16 Size CA69 July 5, 2005 25 63.55 0.119   

17 Size CA69 July 5, 2005 25 62.94 0.126   

18 Size CA69 July 5, 2005 25 62.92 0.124   

19 Size CA70 July 5, 2005 25 66.06 0.13   

20 Size CA70 July 5, 2005 25 66.58 0.117   

21 Size CA70 July 5, 2005 25 66.75 0.128   

22 Size CA71 July 5, 2005 25 67.65 0.125   

23 Size CA71 July 5, 2005 25 67.27 0.118   

24 Size CA71 July 5, 2005 25 66.87 0.127   

25 Size CA72 July 5, 2005 25 68.05 0.156   

26 Size CA72 July 5, 2005 25 66.95 0.13   

27 Size CA72 July 5, 2005 25 67.47 0.111   

28 Size CAR324B July 5, 2005 25 83.27 0.169   

29 Size CAR324B July 5, 2005 25 84.46 0.165   

30 Size CAR324B July 5, 2005 25 84.95 0.204   

31 Size CAR324Bd July 5, 2005 25 76.41 0.17   

32 Size CAR324Bd July 5, 2005 25 76.97 0.164   

33 Size CAR324Bd July 5, 2005 25 76.41 0.154   

34 Size CAR325B July 5, 2005 25 92.94 0.168   

35 Size CAR325B July 5, 2005 25 92.32 0.203   

36 Size CAR325B July 5, 2005 25 90.89 0.183   

37 Size CAR325Bd July 5, 2005 25 87.11 0.21   

38 Size CAR325Bd July 5, 2005 25 86.32 0.207   

39 Size CAR325Bd July 5, 2005 25 85.56 0.202   

40 Zeta CA64 July 5, 2005 25   -12.91 0.06245 
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41 Zeta CA64 July 5, 2005 25   -9.807 0.06122 

42 Zeta CA64 July 5, 2005 25   -23.13 0.06295 

43 Zeta CA65 July 5, 2005 25   -20.57 0.05185 

44 Zeta CA65 July 5, 2005 25   -15.61 0.0536 

45 Zeta CA65 July 5, 2005 25   -18.51 0.05874 

46 Zeta CA66 July 5, 2005 25   -21.27 0.05534 

47 Zeta CA66 July 5, 2005 25   -25.83 0.05911 

48 Zeta CA66 July 5, 2005 25   -25.59 0.06282 

49 Zeta CA67 July 5, 2005 25   -25.64 0.06076 

50 Zeta CA67 July 5, 2005 25   -18.51 0.05591 

51 Zeta CA67 July 5, 2005 25   -30.33 0.05918 

52 Zeta CA68 July 5, 2005 25   -21.49 0.05441 

53 Zeta CA68 July 5, 2005 25   -30.42 0.0583 

54 Zeta CA68 July 5, 2005 25   -30.31 0.05497 

55 Zeta CA69 July 5, 2005 25   -25.83 0.05436 

56 Zeta CA69 July 5, 2005 25   -26.66 0.05299 

57 Zeta CA69 July 5, 2005 25   -27.58 0.06211 

58 Zeta CA70 July 5, 2005 25   -33.42 0.06064 

59 Zeta CA70 July 5, 2005 25   -29.55 0.0613 

60 Zeta CA70 July 5, 2005 25   -24.87 0.06363 

61 Zeta CA71 July 5, 2005 25   -26.76 0.05636 

62 Zeta CA71 July 5, 2005 25   -22.09 0.05531 

63 Zeta CA71 July 5, 2005 25   -22.4 0.06397 

64 Zeta CA72 July 5, 2005 25   -32.47 0.05571 

65 Zeta CA72 July 5, 2005 25   -27.75 0.06102 

66 Zeta CA72 July 5, 2005 25   -24.19 0.05908 

67 Zeta CAR324B July 5, 2005 25   -34.2 0.04592 

68 Zeta CAR324B July 5, 2005 25   -39.53 0.04942 

69 Zeta CAR324B July 5, 2005 25   -38.91 0.04601 

70 Zeta CAR324Bd July 5, 2005 25   -25.59 0.03581 

71 Zeta CAR324Bd July 5, 2005 25   -24.94 0.03331 

72 Zeta CAR324Bd July 5, 2005 25   -22.89 0.02498 

73 Zeta CAR325B July 5, 2005 25   -40.11 0.04227 

74 Zeta CAR325B July 5, 2005 25   -37.64 0.04801 

75 Zeta CAR325B July 5, 2005 25   -38.79 0.03533 

76 Zeta CAR325Bd July 5, 2005 25   -34.66 0.02218 

77 Zeta CAR325Bd July 5, 2005 25   -22.75 0.03844 

78 Zeta CAR325Bd July 5, 2005 25   -36.66 0.02003 

 

 

 

 

 All sample were prepared with emulsion evaporation method (SDS of 2 mg/ml), 

and with the three PLGA molecular weight used in this research. The amplitude used was 

39%. The evaporation time was 7 min. The amount of MOA was 4% w/w and 8%w/w. 
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Record Type Sample Date 
T 

(°C) 
Z-Ave 
(nm) 

PDI 
ZP 

(mV) 
Cond 

(mS/cm) 

1 Size CA46 July 12, 2005 25 87.85 0.312   

2 Size CA46 July 12, 2005 25 86.56 0.297   

3 Size CA46 July 12, 2005 25 84.91 0.298   

4 Size CA47 July 12, 2005 25 86.7 0.299   

5 Size CA47 July 12, 2005 25 87.94 0.297   

6 Size CA47 July 12, 2005 25 86.36 0.296   

7 Size CA48 July 12, 2005 25 88.3 0.295   

8 Size CA48 July 12, 2005 25 86.79 0.288   

9 Size CA48 July 12, 2005 25 89.19 0.291   

10 Size CA52 July 12, 2005 25 89.39 0.295   

11 Size CA52 July 12, 2005 25 88.59 0.306   

12 Size CA52 July 12, 2005 25 88.42 0.272   

13 Size CA53 July 12, 2005 25 80.98 0.198   

14 Size CA53 July 12, 2005 25 78.88 0.188   

15 Size CA53 July 12, 2005 25 78.12 0.181   

16 Size CA54 July 12, 2005 25 77.05 0.195   

17 Size CA54 July 12, 2005 25 77.6 0.183   

18 Size CA54 July 12, 2005 25 77.37 0.18   

19 Size CA58 July 12, 2005 25 78.76 0.173   

20 Size CA58 July 12, 2005 25 79.56 0.188   

21 Size CA58 July 12, 2005 25 79.07 0.166   

22 Size CA59 July 12, 2005 25 77.95 0.168   

23 Size CA59 July 12, 2005 25 79.16 0.139   

24 Size CA59 July 12, 2005 25 78.96 0.154   

25 Size CA60 July 12, 2005 25 79.37 0.189   

26 Size CA60 July 12, 2005 25 78.3 0.19   

27 Size CA60 July 12, 2005 25 78.15 0.181   

28 Size CA64 July 12, 2005 25 53.38 0.154   

29 Size CA64 July 12, 2005 25 53.68 0.153   

30 Size CA64 July 12, 2005 25 53.47 0.154   

31 Size CA65 July 12, 2005 25 54.11 0.118   

32 Size CA65 July 12, 2005 25 53.35 0.142   

33 Size CA65 July 12, 2005 25 53.58 0.129   

34 Size CA66 July 12, 2005 25 57.22 0.192   

35 Size CA66 July 12, 2005 25 56.08 0.185   

36 Size CA66 July 12, 2005 25 55.61 0.172   

37 Size CA67AD July 12, 2005 25 68.46 0.149   

38 Size CA67AD July 12, 2005 25 68.31 0.137   

39 Size CA67AD July 12, 2005 25 68.44 0.128   

40 Size CA68AD July 12, 2005 25 70.21 0.153   

41 Size CA68AD July 12, 2005 25 69.44 0.166   

42 Size CA68AD July 12, 2005 25 68.55 0.169   

43 Size CA69AD July 12, 2005 25 69.03 0.138   

44 Size CA69AD July 12, 2005 25 67.28 0.127   

45 Size CA69AD July 12, 2005 25 66.88 0.147   

46 Size CA70AD July 12, 2005 25 70.89 0.14   

47 Size CA70AD July 12, 2005 25 69.61 0.128   

48 Size CA70AD July 12, 2005 25 69.98 0.12   
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49 Size CA71AD July 12, 2005 25 70.83 0.137   

50 Size CA71AD July 12, 2005 25 70.45 0.143   

51 Size CA71AD July 12, 2005 25 70.21 0.148   

52 Size CA72AD July 12, 2005 25 70.6 0.143   

53 Size CA72AD July 12, 2005 25 70.11 0.143   

54 Size CA72AD July 12, 2005 25 69.99 0.136   

55 Size CA46AD July 12, 2005 25 81.3 0.272   

56 Size CA46AD July 12, 2005 25 82.33 0.255   

57 Size CA46AD July 12, 2005 25 82.19 0.255   

58 Size CA47AD July 12, 2005 25 85.85 0.262   

59 Size CA47AD July 12, 2005 25 84.95 0.263   

60 Size CA47AD July 12, 2005 25 83.37 0.268   

61 Size CA48AD July 12, 2005 25 81.71 0.259   

62 Size CA48AD July 12, 2005 25 81.62 0.259   

63 Size CA48AD July 12, 2005 25 82.88 0.257   

64 Size CA52AD July 12, 2005 25 83.3 0.181   

65 Size CA52AD July 12, 2005 25 83.74 0.17   

66 Size CA52AD July 12, 2005 25 83.27 0.15   

67 Size CA53AD July 12, 2005 25 82.29 0.157   

68 Size CA53AD July 12, 2005 25 82.69 0.176   

69 Size CA53AD July 12, 2005 25 81.56 0.175   

70 Size CA54AD July 12, 2005 25 81.68 0.174   

71 Size CA54AD July 12, 2005 25 82.68 0.146   

72 Size CA54AD July 12, 2005 25 82.13 0.172   

73 Size CA58AD July 12, 2005 25 82.57 0.181   

74 Size CA58AD July 12, 2005 25 82.35 0.164   

75 Size CA58AD July 12, 2005 25 82.47 0.164   

76 Size CA59AD July 12, 2005 25 81.44 0.172   

77 Size CA59AD July 12, 2005 25 82.92 0.16   

78 Size CA59AD July 12, 2005 25 82.58 0.153   

79 Size CA60AD July 12, 2005 25 84.64 0.182   

80 Size CA60AD July 12, 2005 25 83.04 0.175   

81 Size CA60AD July 12, 2005 25 82.88 0.171   

82 Zeta CA64AD July 12, 2005 25   -29.52 0.03673 

83 Zeta CA64AD July 12, 2005 25   -31.71 0.03312 

84 Zeta CA64AD July 12, 2005 25   -33.99 0.02105 

85 Zeta CA65AD July 12, 2005 25   -28.67 0.03486 

86 Zeta CA65AD July 12, 2005 25   -25.85 0.02822 

87 Zeta CA65AD July 12, 2005 25   -25.55 0.02596 

88 Zeta CA66AD July 12, 2005 25   -41.61 0.01139 

89 Zeta CA66AD July 12, 2005 25   -38.18 0.03504 

90 Zeta CA66AD July 12, 2005 25   -43.41 0.03109 

91 Zeta CA67AD July 12, 2005 25   -32.31 0.02989 

92 Zeta CA67AD July 12, 2005 25   -32.16 0.01203 

93 Zeta CA67AD July 12, 2005 25   -31.04 0.03462 

94 Zeta CA68AD July 12, 2005 25   -34.72 0.0114 

95 Zeta CA68AD July 12, 2005 25   -33.48 0.02884 

96 Zeta CA68AD July 12, 2005 25   -36.98 0.03461 

97 Zeta CA69AD July 12, 2005 25   -23.02 0.01207 

98 Zeta CA69AD July 12, 2005 25   -29.77 0.02555 
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99 Zeta CA69AD July 12, 2005 25   -24.23 0.0297 

100 Zeta CA70AD July 12, 2005 25   -25.97 0.03194 

101 Zeta CA70AD July 12, 2005 25   -31.58 0.01207 

102 Zeta CA70AD July 12, 2005 25   -33.4 0.01913 

103 Zeta CA71AD July 12, 2005 25   -36.35 0.01369 

104 Zeta CA71AD July 12, 2005 25   -39.24 0.02446 

105 Zeta CA71AD July 12, 2005 25   -40.65 0.02406 

106 Zeta CA72AD July 12, 2005 25   -34.67 0.03526 

107 Zeta CA72AD July 12, 2005 25   -26.06 0.03188 

108 Zeta CA72AD July 12, 2005 25   -33.2 0.01604 

109 Zeta CA46AD July 12, 2005 25   -23.52 0.01603 

110 Zeta CA46AD July 12, 2005 25   -24.21 0.0302 

111 Zeta CA46AD July 12, 2005 25   -24.1 0.01675 

112 Zeta CA47AD July 12, 2005 25   -43.38 0.03603 

113 Zeta CA47AD July 12, 2005 25   -42.63 0.03764 

114 Zeta CA47AD July 12, 2005 25   -43.82 0.02526 

 

 

 All sample were prepared with emulsion evaporation method (SDS of 2 mg/ml), 

and with the three PLGA molecular weight used in this research. The amplitude used was 

39%. The evaporation time was 7 min. The amount of MOA was 4% w/w and 8%w/w. 

 

Record Type Sample Date T (°C) 
Z-Ave 
(nm) 

PDI ZP (mV) 
Cond 

(mS/cm) 

1 Size CA49 July 15, 2005 24 118 0.309   

2 Size CA49 July 15, 2005 24 115.2 0.365   

3 Size CA49 July 15, 2005 24 115.3 0.297   

4 Size CA50 July 15, 2005 24 113.6 0.342   

5 Size CA50 July 15, 2005 24 114.8 0.367   

6 Size CA50 July 15, 2005 24 115.7 0.304   

7 Size CA51 July 15, 2005 24 115 0.306   

8 Size CA51 July 15, 2005 24 114.3 0.298   

9 Size CA51 July 15, 2005 24 113.8 0.296   

10 Size CA49AD July 15, 2005 24 106.7 0.285   

11 Size CA49AD July 15, 2005 24 106.9 0.277   

12 Size CA49AD July 15, 2005 24 106.2 0.286   

13 Size CA50AD July 15, 2005 24 113.9 0.291   

14 Size CA50AD July 15, 2005 24 112.2 0.295   

15 Size CA50AD July 15, 2005 24 111.6 0.291   

16 Size CA51AD July 15, 2005 24 107.7 0.296   

17 Size CA51AD July 15, 2005 24 104.4 0.302   

18 Size CA51AD July 15, 2005 24 105.6 0.288   

19 Size CA55 July 15, 2005 24 92.62 0.23   

20 Size CA55 July 15, 2005 24 91.51 0.242   

21 Size CA55 July 15, 2005 24 91.91 0.241   

22 Size CA56 July 15, 2005 24 92.61 0.265   

23 Size CA56 July 15, 2005 24 92.29 0.25   
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24 Size CA56 July 15, 2005 24 92.18 0.239   

25 Size CA57 July 15, 2005 24 94.65 0.259   

26 Size CA57 July 15, 2005 24 94.7 0.257   

27 Size CA57 July 15, 2005 24 94.32 0.257   

28 Size CA55AD July 15, 2005 24 96.65 0.249   

29 Size CA55AD July 15, 2005 24 95.45 0.224   

30 Size CA55AD July 15, 2005 24 93.38 0.234   

31 Size CA56AD July 15, 2005 24 97.31 0.242   

32 Size CA56AD July 15, 2005 24 93.97 0.236   

33 Size CA56AD July 15, 2005 24 94.27 0.219   

34 Size CA57AD July 15, 2005 24 97.76 0.257   

35 Size CA57AD July 15, 2005 24 97.17 0.246   

36 Size CA57AD July 15, 2005 24 96.12 0.231   

37 Size CA61 July 15, 2005 24 111.2 0.251   

38 Size CA61 July 15, 2005 24 111.3 0.257   

39 Size CA61 July 15, 2005 24 111.5 0.254   

40 Size CA62 July 15, 2005 24 102.1 0.258   

41 Size CA62 July 15, 2005 24 102.1 0.262   

42 Size CA62 July 15, 2005 24 101.4 0.255   

43 Size CA63 July 15, 2005 24 110.9 0.267   

44 Size CA63 July 15, 2005 24 108.6 0.256   

45 Size CA63 July 15, 2005 24 107.2 0.263   

46 Size CA61AD July 15, 2005 24 110.1 0.228   

47 Size CA61AD July 15, 2005 24 109.1 0.25   

48 Size CA61AD July 15, 2005 24 108.7 0.239   

49 Size CA62AD July 15, 2005 24 105.3 0.248   

50 Size CA62AD July 15, 2005 24 105.2 0.255   

51 Size CA62AD July 15, 2005 24 102.7 0.244   

52 Size CA63AD July 15, 2005 24 110.6 0.259   

53 Size CA63AD July 15, 2005 24 112 0.246   

54 Size CA63AD July 15, 2005 24 112.9 0.245   

55 Size CA63ADT July 15, 2005 25 115.1 0.261   

56 Size CA63ADT July 15, 2005 25 115.6 0.258   

57 Size CA63ADT July 15, 2005 25 113.1 0.255   

58 Zeta CA49 July 15, 2005 25   -28.87 0.04323 

59 Zeta CA49 July 15, 2005 25   -31.17 0.04672 

60 Zeta CA49 July 15, 2005 25   -34.76 0.04642 

61 Zeta CA50 July 15, 2005 25   -34.93 0.05304 

62 Zeta CA50 July 15, 2005 25   -36.48 0.05332 

63 Zeta CA50 July 15, 2005 25   -37.35 0.05282 

64 Zeta CA51 July 15, 2005 25   -40.45 0.04901 

65 Zeta CA51 July 15, 2005 25   -41.48 0.04936 

66 Zeta CA51 July 15, 2005 25   -39.01 0.05645 

67 Zeta CA49AD July 15, 2005 25   -41.38 0.02754 

68 Zeta CA49AD July 15, 2005 25   -43.95 0.03569 

69 Zeta CA49AD July 15, 2005 25   -41.24 0.02272 

70 Zeta CA50AD July 15, 2005 25   -34.82 0.0348 

71 Zeta CA50AD July 15, 2005 25   -35.08 0.03603 

72 Zeta CA50AD July 15, 2005 25   -34.41 0.01709 

73 Zeta CA51AD July 15, 2005 25   -49.81 0.01232 

74 Zeta CA51AD July 15, 2005 25   -49.2 0.0168 

75 Zeta CA51AD July 15, 2005 25   -49.76 0.03254 
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76 Zeta CA55 July 15, 2005 25   -29.59 0.04544 

77 Zeta CA55 July 15, 2005 25   -31.16 0.03277 

78 Zeta CA55 July 15, 2005 25   -30.48 0.0339 

79 Zeta CA56 July 15, 2005 25   -36.54 0.04697 

80 Zeta CA56 July 15, 2005 25   -33.83 0.03484 

81 Zeta CA56 July 15, 2005 25   -36.25 0.03411 

82 Zeta CA57 July 15, 2005 25   -35.92 0.04955 

83 Zeta CA57 July 15, 2005 25   -33.4 0.05804 

84 Zeta CA57 July 15, 2005 25   -39.5 0.05686 

85 Zeta CA55D July 15, 2005 25   -42.79 0.03703 

86 Zeta CA55D July 15, 2005 25   -44.05 0.01857 

87 Zeta CA55D July 15, 2005 25   -48.3 0.03593 

88 Zeta CA56D July 15, 2005 25   -52.03 0.03032 

89 Zeta CA56D July 15, 2005 25   -51.25 0.02136 

90 Zeta CA56D July 15, 2005 25   -57.2 0.01252 

91 Zeta CA57D July 15, 2005 25   -37.83 0.01333 

92 Zeta CA57D July 15, 2005 25   -39.23 0.03353 

93 Zeta CA57D July 15, 2005 25   -38.38 0.01364 

94 Zeta CA61 July 15, 2005 25   -41.51 0.03602 

95 Zeta CA61 July 15, 2005 25   -37.65 0.0474 

96 Zeta CA61 July 15, 2005 25   -44.16 0.04636 

97 Zeta CA62 July 15, 2005 25   -34.9 0.04585 

98 Zeta CA62 July 15, 2005 25   -35.7 0.04746 

99 Zeta CA62 July 15, 2005 25   -36.08 0.04751 

100 Zeta CA63 July 15, 2005 25   -37.74 0.04386 

101 Zeta CA63 July 15, 2005 25   -35.24 0.04193 

102 Zeta CA63 July 15, 2005 25   -35.28 0.04543 

103 Zeta CA61d July 15, 2005 25   -26.78 0.03368 

104 Zeta CA61d July 15, 2005 25   -27.03 0.01376 

105 Zeta CA61d July 15, 2005 25   -27.08 0.02994 

106 Zeta CA62d July 15, 2005 25   -41.93 0.03316 

107 Zeta CA62d July 15, 2005 25   -39.23 0.01798 

108 Zeta CA62d July 15, 2005 25   -48.8 0.01908 

109 Zeta CA63d July 15, 2005 25   -40.16 0.03061 

110 Zeta CA63d July 15, 2005 25   -44.62 0.0335 

111 Zeta CA63d July 15, 2005 25   -43.7 0.03591 

112 Zeta CA48d July 15, 2005 25   -18.73 0.03706 

113 Zeta CA48d July 15, 2005 25   -20.29 0.036 

114 Zeta CA48d July 15, 2005 25   -22.26 0.03334 

115 Zeta CA52d July 15, 2005 25   -29.83 0.02918 

116 Zeta CA52d July 15, 2005 25   -31.95 0.01571 

117 Zeta CA52d July 15, 2005 25   -29.56 0.01591 

118 Zeta CA53d July 15, 2005 25   -34.32 0.03804 

119 Zeta CA53d July 15, 2005 25   -32.85 0.03811 

120 Zeta CA53d July 15, 2005 25   -35.72 0.03805 

121 Zeta CA54d July 15, 2005 25   -31.29 0.03255 

122 Zeta CA54d July 15, 2005 25   -24.45 0.01913 

123 Zeta CA54d July 15, 2005 25   -27.42 0.03508 

124 Zeta CA58d July 15, 2005 25   -28.33 0.01526 

125 Zeta CA58d July 15, 2005 25   -21.29 0.01581 

126 Zeta CA58d July 15, 2005 25   -29.2 0.03316 

127 Zeta CA59d July 15, 2005 25   -33.44 0.0172 
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128 Zeta CA59d July 15, 2005 25   -31.54 0.02946 

129 Zeta CA59d July 15, 2005 25   -29.23 0.03231 

130 Zeta CA60d July 15, 2005 25   -26.36 0.03619 

131 Zeta CA60d July 15, 2005 25   -21.51 0.01768 

132 Zeta CA60d July 15, 2005 25   -22.77 0.02739 

133 Zeta CA46 July 15, 2005 25   -23.53 0.05858 

134 Zeta CA46 July 15, 2005 25   -26.56 0.06197 

135 Zeta CA46 July 15, 2005 25   -24.98 0.06733 

136 Zeta CA47 July 15, 2005 25   -26.51 0.05669 

137 Zeta CA47 July 15, 2005 25   -28.95 0.05978 

138 Zeta CA47 July 15, 2005 25   -27.72 0.05673 

139 Zeta CA48 July 15, 2005 25   -27.56 0.05657 

140 Zeta CA48 July 15, 2005 25   -36.56 0.06527 

141 Zeta CA48 July 15, 2005 25   -33.94 0.06606 

142 Zeta CA52 July 15, 2005 25   -28.73 0.06249 

143 Zeta CA52 July 15, 2005 25   -29.87 0.05929 

144 Zeta CA52 July 15, 2005 25   -31.98 0.05971 

145 Zeta CA53 July 15, 2005 25   -25.2 0.09448 

146 Zeta CA53 July 15, 2005 25   -26.15 0.09667 

147 Zeta CA53 July 15, 2005 25   -23.58 0.09639 

148 Zeta CA54 July 15, 2005 25   -25.46 0.05217 

149 Zeta CA54 July 15, 2005 25   -25.27 0.05263 

150 Zeta CA54 July 15, 2005 25   -25.78 0.05351 

151 Zeta CA58 July 15, 2005 25   -34.38 0.05817 

152 Zeta CA58 July 15, 2005 25   -32.91 0.05886 

153 Zeta CA58 July 15, 2005 25   -31.59 0.06233 

154 Zeta CA59 July 15, 2005 25   -38.18 0.07735 

155 Zeta CA59 July 15, 2005 25   -34.96 0.07765 

156 Zeta CA59 July 15, 2005 25   -34.03 0.078 

157 Zeta CA60 July 15, 2005 25   -31.96 0.05438 

158 Zeta CA60 July 15, 2005 25   -31.93 0.05455 

159 Zeta CA60 July 15, 2005 25   -32.56 0.0565 

 

 

 All sample were prepared with emulsion evaporation method (SDS of 2 mg/ml), 

and with the three PLGA molecular weight used in this research. The amplitude used was 

39%. The evaporation time was 7 min. The amount of MOA was 4% w/w and 8%w/w. 

 

Record Type Sample Date 
T 

(°C) 
Z-Ave 
(nm) 

PDI 
ZP 

(mV) 
Cond 

(mS/cm) 

1 Size CA66b July 26, 2005 25 42.36 0.136   

2 Size CA66b July 26, 2005 25 36.85 0.247   

3 Size CA66b July 26, 2005 25 36.13 0.212   

4 Size CA1 July 26, 2005 25 66.14 0.18   

5 Size CA1 July 26, 2005 25 67.14 0.201   

6 Size CA1 July 26, 2005 25 66.68 0.192   

7 Size CA4 July 26, 2005 25 45.64 0.234   
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8 Size CA4 July 26, 2005 25 44.97 0.232   

9 Size CA4 July 26, 2005 25 44.76 0.234   

10 Size CA7 July 26, 2005 25 34.2 0.243   

11 Size CA7 July 26, 2005 25 34.98 0.242   

12 Size CA7 July 26, 2005 25 34.99 0.24   

13 Size CA10 July 26, 2005 25 32.52 0.274   

14 Size CA10 July 26, 2005 25 32.13 0.27   

15 Size CA10 July 26, 2005 25 31.8 0.274   

16 Size CA13 July 26, 2005 25 31.23 0.294   

17 Size CA13 July 26, 2005 25 30.68 0.271   

18 Size CA13 July 26, 2005 25 30.24 0.258   

19 Size TCA1 July 26, 2005 25 87.18 0.218   

20 Size TCA1 July 26, 2005 25 87.28 0.21   

21 Size TCA1 July 26, 2005 25 85.15 0.211   

22 Size TCA2 July 26, 2005 25 81.43 0.191   

23 Size TCA2 July 26, 2005 25 79.26 0.195   

24 Size TCA2 July 26, 2005 25 79.52 0.199   

25 Size TCA3 July 26, 2005 25 95.33 0.391   

26 Size TCA3 July 26, 2005 25 94.86 0.309   

27 Size TCA3 July 26, 2005 25 94.08 0.391   

28 Size CA62RS July 26, 2005 25 872.2 0.703   

29 Size CA62RS July 26, 2005 25 850 0.683   

30 Size CA62RS July 26, 2005 25 937.3 0.764   

31 Size CA62TRS July 26, 2005 25 1036 0.666   

32 Size CA62TRS July 26, 2005 25 1165 0.673   

33 Size CA62TRS July 26, 2005 25 1239 0.805   

34 Size CA65RS July 26, 2005 25 976.5 0.779   

35 Size CA65RS July 26, 2005 25 801.5 0.661   

36 Size CA65RS July 26, 2005 25 429.9 0.641   

37 Size CA65TRS July 26, 2005 25 2103 1   

38 Size CA65TRS July 26, 2005 25 1363 0.848   

39 Size CA65TRS July 26, 2005 25 687 0.642   

40 Size CA65RS2 July 26, 2005 25 981.8 0.757   

41 Size CA65RS2 July 26, 2005 25 1011 0.789   

42 Size CA65RS2 July 26, 2005 25 414.9 0.741   

43 Zeta CA66b July 26, 2005 25   -27.31 0.04447 

44 Zeta CA66b July 26, 2005 25   -35.92 0.03059 

45 Zeta CA66b July 26, 2005 25   -29.38 0.04481 

46 Zeta CA1 July 26, 2005 25   -32.02 0.02929 

47 Zeta CA1 July 26, 2005 25   -28.15 0.03035 

48 Zeta CA1 July 26, 2005 25   -35.93 0.01985 

49 Zeta CA4 July 26, 2005 25   -27.53 0.02218 

50 Zeta CA4 July 26, 2005 25   -29.69 0.02354 

51 Zeta CA4 July 26, 2005 25   -22.71 0.04021 

52 Zeta CA7 July 26, 2005 25   -38.59 0.03356 

53 Zeta CA7 July 26, 2005 25   -48.12 0.04156 

54 Zeta CA7 July 26, 2005 25   -38.45 0.04042 

55 Zeta CA10 July 26, 2005 25   -36.28 0.03359 

56 Zeta CA10 July 26, 2005 25   -30.14 0.04715 

57 Zeta CA10 July 26, 2005 25   -48.55 0.03741 
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58 Zeta CA13 July 26, 2005 25   -32.16 0.05517 

59 Zeta CA13 July 26, 2005 25   -27.43 0.0535 

60 Zeta CA13 July 26, 2005 25   -30.97 0.05652 

61 Zeta TCA1 July 26, 2005 25   -24.26 0.03499 

62 Zeta TCA1 July 26, 2005 25   -23.23 0.04819 

63 Zeta TCA1 July 26, 2005 25   -24.41 0.0491 

64 Zeta TCA2 July 26, 2005 25   -22.07 0.03822 

65 Zeta TCA2 July 26, 2005 25   -21.93 0.03767 

66 Zeta TCA2 July 26, 2005 25   -22.34 0.04373 

67 Zeta TCA3 July 26, 2005 25   -23.85 0.04753 

68 Zeta TCA3 July 26, 2005 25   -22.39 0.03561 

69 Zeta TCA3 July 26, 2005 25   -23.49 0.03684 

70 Zeta CA62RS July 26, 2005 25   -41.4 0.02966 

71 Zeta CA62RS July 26, 2005 25   -41.5 0.02326 

72 Zeta CA62RS July 26, 2005 25   -37.58 0.02265 

73 Zeta CA62TRS July 26, 2005 25   -43.33 0.02563 

74 Zeta CA62TRS July 26, 2005 25   -47.49 0.0171 

75 Zeta CA62TRS July 26, 2005 25   -48.52 0.03385 

76 Zeta CA65RS July 26, 2005 25   -32.12 0.02134 

77 Zeta CA65RS July 26, 2005 25   -35.79 0.03574 

78 Zeta CA65RS July 26, 2005 25   -37.82 0.03545 

79 Zeta CA65TRS July 26, 2005 25   -50.64 0.02522 

80 Zeta CA65TRS July 26, 2005 25   -48.32 0.01853 

81 Zeta CA65TRS July 26, 2005 25   -64.5 0.03354 
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APPENDIX D. STATISTICS ANALYSIS OF DATA 

Analysis by SAS software using proc mixed procedure (α = 0.05). The results 

showed the effect of active component (AC), PLGA molecular weight (MW), and 

dialysis (Dys) in nanoparticle size is significant.   

 

Randomize complete design (one-way anova) 
Effect of PLGA molecular weight, MOA, and dialysis in Np size 
List of Data        SIN GROUP DIALSYSIS 
 
Obs     Size    Dys    AC    MW    Rep 
 
  1     38.9     1      1     1     1 
  2     38.6     1      1     1     2 
  3     38.4     1      1     1     3 
  4     63.6     1      1     2     1 
  5     63.1     1      1     2     2 
  6     63.1     1      1     2     3 
  7     66.5     1      1     3     1 
  8     67.3     1      1     3     2 
  9     67.5     1      1     3     3 
 10     86.4     1      2     1     1 
 11     87.0     1      2     1     2 
 12     88.1     1      2     1     3 
 13     88.8     1      2     2     1 
 14     79.3     1      2     2     2 
 15     77.3     1      2     2     3 
 16     79.1     1      2     3     1 
 17     78.7     1      2     3     2 
 18     78.6     1      2     3     3 
 19    116.2     1      3     1     1 
 20    114.7     1      3     1     2 
 21    114.4     1      3     1     3 
 22     92.0     1      3     2     1 
 23     92.4     1      3     2     2 
 24     94.6     1      3     2     3 
 25    111.3     1      3     3     1 
 26    101.9     1      3     3     2 
 27    108.9     1      3     3     3 
 28     53.5     2      1     1     1 
 29     53.7     2      1     1     2 
 30     56.3     2      1     1     3 
 31     68.4     2      1     2     1 
 32     69.4     2      1     2     2 
 33     67.7     2      1     2     3 
 34     70.2     2      1     3     1 
 35     70.5     2      1     3     2 
 36     70.2     2      1     3     3 
 37     81.9     2      2     1     1 
 38     84.7     2      2     1     2 
 39     82.1     2      2     1     3 
 40     88.8     2      2     2     1 
 41     82.2     2      2     2     2 
 42     82.2     2      2     2     3 
 43     82.5     2      2     3     1 
 44     82.3     2      2     3     2 
 45     83.5     2      2     3     3 
 46    106.6     2      3     1     1 
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 47    112.6     2      3     1     2 
 48    105.9     2      3     1     3 
 49     95.2     2      3     2     1 
 50     95.2     2      3     2     2 
 51     97.0     2      3     2     3 
 52    109.3     2      3     3     1 
 53    104.4     2      3     3     2 
 54    111.8     2      3     3     3 
 
 
 
 
Randomize complete design (one-way anova) 
effect of PLGA molecular weight, MOA, and dialysis in Np size 
 CRD with proc mixed       SIN GROUP DIALSYSIS 
 
The Mixed Procedure 
 
                  Model Information 
 
Data Set                     WORK.NANOPARTICLES 
Dependent Variable           Size 
Covariance Structure         Variance Components 
Estimation Method            REML 
Residual Variance Method     Profile 
Fixed Effects SE Method      Model-Based 
Degrees of Freedom Method    Containment 
 
 
             Class Level Information 
 
Class    Levels    Values 
 
AC            3    1 2 3 
MW            3    1 2 3 
Dys           2    1 2 
Rep           3    1 2 3 
 
 
            Dimensions 
 
Covariance Parameters             2 
Columns in X                     48 
Columns in Z                     27 
Subjects                          1 
Max Obs Per Subject              54 
 
 
          Number of Observations 
 
Number of Observations Read              54 
Number of Observations Used              54 
Number of Observations Not Used           0 
 
 
                     Iteration History 
 
Iteration    Evaluations    -2 Res Log Like       Criterion 
 
        0              1       188.74031456 
        1              1       178.18514374      0.00000000 
 
 
                   Convergence criteria met. 
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 Covariance Parameter 
       Estimates 
 
Cov Parm       Estimate 
 
Rep(AC*MW)       4.2600 
Residual         2.1356 
 
 
           Fit Statistics 
 
-2 Res Log Likelihood           178.2 
AIC (smaller is better)         182.2 
AICC (smaller is better)        182.5 
BIC (smaller is better)         184.8 
 
 
        Type 3 Tests of Fixed Effects 
 
              Num     Den 
Effect         DF      DF    F Value    Pr > F 
 
AC              2      18     829.10    <.0001 
MW              2      18      12.37    0.0004 
AC*MW           4      18      59.33    <.0001 
Dys             1      18      44.21    <.0001 
AC*Dys          2      18      48.56    <.0001 
MW*Dys          2      18       1.97    0.1684 
AC*MW*Dys       4      18      31.21    <.0001 
 
 
                                Least Squares Means 
 
                                            Standard 
Effect       AC    MW    Dys    Estimate       Error      DF    t Value    Pr > |t| 
 
AC           1                   60.3833      0.7694      18      78.48      <.0001 
AC           2                   82.9722      0.7694      18     107.84      <.0001 
AC           3                    104.69      0.7694      18     136.07      <.0001 
MW                 1             81.1111      0.7694      18     105.42      <.0001 
MW                 2             81.1278      0.7694      18     105.44      <.0001 
MW                 3             85.8056      0.7694      18     111.52      <.0001 
AC*MW        1     1             46.5667      1.3326      18      34.94      <.0001 
AC*MW        1     2             65.8833      1.3326      18      49.44      <.0001 
AC*MW        1     3             68.7000      1.3326      18      51.55      <.0001 
AC*MW        2     1             85.0333      1.3326      18      63.81      <.0001 
AC*MW        2     2             83.1000      1.3326      18      62.36      <.0001 
AC*MW        2     3             80.7833      1.3326      18      60.62      <.0001 
AC*MW        3     1              111.73      1.3326      18      83.84      <.0001 
AC*MW        3     2             94.4000      1.3326      18      70.84      <.0001 
AC*MW        3     3              107.93      1.3326      18      80.99      <.0001 
Dys                      1       81.3593      0.4867      18     167.17      <.0001 
Dys                      2       84.0037      0.4867      18     172.60      <.0001 
AC*Dys       1           1       56.3333      0.8430      18      66.83      <.0001 
AC*Dys       1           2       64.4333      0.8430      18      76.44      <.0001 
AC*Dys       2           1       82.5889      0.8430      18      97.97      <.0001 
AC*Dys       2           2       83.3556      0.8430      18      98.88      <.0001 
AC*Dys       3           1        105.16      0.8430      18     124.74      <.0001 
AC*Dys       3           2        104.22      0.8430      18     123.64      <.0001 
MW*Dys             1     1       80.3000      0.8430      18      95.26      <.0001 
MW*Dys             1     2       81.9222      0.8430      18      97.18      <.0001 
MW*Dys             2     1       79.3556      0.8430      18      94.14      <.0001 
MW*Dys             2     2       82.9000      0.8430      18      98.34      <.0001 
MW*Dys             3     1       84.4222      0.8430      18     100.15      <.0001 
MW*Dys             3     2       87.1889      0.8430      18     103.43      <.0001 
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AC*MW*Dys    1     1     1       38.6333      1.4601      18      26.46      <.0001 
AC*MW*Dys    1     1     2       54.5000      1.4601      18      37.33      <.0001 
AC*MW*Dys    1     2     1       63.2667      1.4601      18      43.33      <.0001 
AC*MW*Dys    1     2     2       68.5000      1.4601      18      46.92      <.0001 
AC*MW*Dys    1     3     1       67.1000      1.4601      18      45.96      <.0001 
AC*MW*Dys    1     3     2       70.3000      1.4601      18      48.15      <.0001 
AC*MW*Dys    2     1     1       87.1667      1.4601      18      59.70      <.0001 
AC*MW*Dys    2     1     2       82.9000      1.4601      18      56.78      <.0001 
AC*MW*Dys    2     2     1       81.8000      1.4601      18      56.02      <.0001 
AC*MW*Dys    2     2     2       84.4000      1.4601      18      57.80      <.0001 
AC*MW*Dys    2     3     1       78.8000      1.4601      18      53.97      <.0001 
AC*MW*Dys    2     3     2       82.7667      1.4601      18      56.69      <.0001 
AC*MW*Dys    3     1     1        115.10      1.4601      18      78.83      <.0001 
AC*MW*Dys    3     1     2        108.37      1.4601      18      74.22      <.0001 
AC*MW*Dys    3     2     1       93.0000      1.4601      18      63.69      <.0001 
AC*MW*Dys    3     2     2       95.8000      1.4601      18      65.61      <.0001 
AC*MW*Dys    3     3     1        107.37      1.4601      18      73.53      <.0001 
AC*MW*Dys    3     3     2        108.50      1.4601      18      74.31      <.0001 
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                                                Differences of Least Squares Means 
 
                                                                  Standard 
Effect       AC    MW    Dys    _AC    _MW    _Dys    Estimate       Error      DF    t Value    Pr > |t|    Adjustment       Adj P 
 
AC           1                  2                     -22.5889      1.0881      18     -20.76      <.0001    Tukey           <.0001 
AC           1                  3                     -44.3056      1.0881      18     -40.72      <.0001    Tukey           <.0001 
AC           2                  3                     -21.7167      1.0881      18     -19.96      <.0001    Tukey           <.0001 
MW                 1                   2              -0.01667      1.0881      18      -0.02      0.9879    Tukey           0.9999 
MW                 1                   3               -4.6944      1.0881      18      -4.31      0.0004    Tukey           0.0012 
MW                 2                   3               -4.6778      1.0881      18      -4.30      0.0004    Tukey           0.0012 
AC*MW        1     1            1      2              -19.3167      1.8846      18     -10.25      <.0001    Tukey           <.0001 
AC*MW        1     1            1      3              -22.1333      1.8846      18     -11.74      <.0001    Tukey           <.0001 
AC*MW        1     1            2      1              -38.4667      1.8846      18     -20.41      <.0001    Tukey           <.0001 
AC*MW        1     1            2      2              -36.5333      1.8846      18     -19.38      <.0001    Tukey           <.0001 
AC*MW        1     1            2      3              -34.2167      1.8846      18     -18.16      <.0001    Tukey           <.0001 
AC*MW        1     1            3      1              -65.1667      1.8846      18     -34.58      <.0001    Tukey           <.0001 
AC*MW        1     1            3      2              -47.8333      1.8846      18     -25.38      <.0001    Tukey           <.0001 
AC*MW        1     1            3      3              -61.3667      1.8846      18     -32.56      <.0001    Tukey           <.0001 
AC*MW        1     2            1      3               -2.8167      1.8846      18      -1.49      0.1524    Tukey           0.8442 
AC*MW        1     2            2      1              -19.1500      1.8846      18     -10.16      <.0001    Tukey           <.0001 
AC*MW        1     2            2      2              -17.2167      1.8846      18      -9.14      <.0001    Tukey           <.0001 
AC*MW        1     2            2      3              -14.9000      1.8846      18      -7.91      <.0001    Tukey           <.0001 
AC*MW        1     2            3      1              -45.8500      1.8846      18     -24.33      <.0001    Tukey           <.0001 
AC*MW        1     2            3      2              -28.5167      1.8846      18     -15.13      <.0001    Tukey           <.0001 
AC*MW        1     2            3      3              -42.0500      1.8846      18     -22.31      <.0001    Tukey           <.0001 
AC*MW        1     3            2      1              -16.3333      1.8846      18      -8.67      <.0001    Tukey           <.0001 
AC*MW        1     3            2      2              -14.4000      1.8846      18      -7.64      <.0001    Tukey           <.0001 
AC*MW        1     3            2      3              -12.0833      1.8846      18      -6.41      <.0001    Tukey           0.0001 
AC*MW        1     3            3      1              -43.0333      1.8846      18     -22.83      <.0001    Tukey           <.0001 
AC*MW        1     3            3      2              -25.7000      1.8846      18     -13.64      <.0001    Tukey           <.0001 
AC*MW        1     3            3      3              -39.2333      1.8846      18     -20.82      <.0001    Tukey           <.0001 
AC*MW        2     1            2      2                1.9333      1.8846      18       1.03      0.3186    Tukey           0.9779 
AC*MW        2     1            2      3                4.2500      1.8846      18       2.26      0.0368    Tukey           0.4145 
AC*MW        2     1            3      1              -26.7000      1.8846      18     -14.17      <.0001    Tukey           <.0001 
AC*MW        2     1            3      2               -9.3667      1.8846      18      -4.97      <.0001    Tukey           0.0025 
AC*MW        2     1            3      3              -22.9000      1.8846      18     -12.15      <.0001    Tukey           <.0001 
AC*MW        2     2            2      3                2.3167      1.8846      18       1.23      0.2348    Tukey           0.9390 
AC*MW        2     2            3      1              -28.6333      1.8846      18     -15.19      <.0001    Tukey           <.0001 
AC*MW        2     2            3      2              -11.3000      1.8846      18      -6.00      <.0001    Tukey           0.0003 
AC*MW        2     2            3      3              -24.8333      1.8846      18     -13.18      <.0001    Tukey           <.0001 
AC*MW        2     3            3      1              -30.9500      1.8846      18     -16.42      <.0001    Tukey           <.0001 
AC*MW        2     3            3      2              -13.6167      1.8846      18      -7.23      <.0001    Tukey           <.0001 
AC*MW        2     3            3      3              -27.1500      1.8846      18     -14.41      <.0001    Tukey           <.0001 
AC*MW        3     1            3      2               17.3333      1.8846      18       9.20      <.0001    Tukey           <.0001 
AC*MW        3     1            3      3                3.8000      1.8846      18       2.02      0.0589    Tukey           0.5519 
AC*MW        3     2            3      3              -13.5333      1.8846      18      -7.18      <.0001    Tukey           <.0001 
Dys                      1                    2        -2.6444      0.3977      18      -6.65      <.0001    Tukey-Kramer    <.0001 
AC*Dys       1           1      1             2        -8.1000      0.6889      18     -11.76      <.0001    Tukey-Kramer    <.0001 
AC*Dys       1           1      2             1       -26.2556      1.1922      18     -22.02      <.0001    Tukey-Kramer    <.0001 
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AC*Dys       1           1      2             2       -27.0222      1.1922      18     -22.67      <.0001    Tukey-Kramer    <.0001 
AC*Dys       1           1      3             1       -48.8222      1.1922      18     -40.95      <.0001    Tukey-Kramer    <.0001 
AC*Dys       1           1      3             2       -47.8889      1.1922      18     -40.17      <.0001    Tukey-Kramer    <.0001 
AC*Dys       1           2      2             1       -18.1556      1.1922      18     -15.23      <.0001    Tukey-Kramer    <.0001 
AC*Dys       1           2      2             2       -18.9222      1.1922      18     -15.87      <.0001    Tukey-Kramer    <.0001 
AC*Dys       1           2      3             1       -40.7222      1.1922      18     -34.16      <.0001    Tukey-Kramer    <.0001 
AC*Dys       1           2      3             2       -39.7889      1.1922      18     -33.38      <.0001    Tukey-Kramer    <.0001 
AC*Dys       2           1      2             2        -0.7667      0.6889      18      -1.11      0.2804    Tukey-Kramer    0.8698 
AC*Dys       2           1      3             1       -22.5667      1.1922      18     -18.93      <.0001    Tukey-Kramer    <.0001 
AC*Dys       2           1      3             2       -21.6333      1.1922      18     -18.15      <.0001    Tukey-Kramer    <.0001 
AC*Dys       2           2      3             1       -21.8000      1.1922      18     -18.29      <.0001    Tukey-Kramer    <.0001 
AC*Dys       2           2      3             2       -20.8667      1.1922      18     -17.50      <.0001    Tukey-Kramer    <.0001 
AC*Dys       3           1      3             2         0.9333      0.6889      18       1.35      0.1922    Tukey-Kramer    0.7518 
MW*Dys             1     1             1      2        -1.6222      0.6889      18      -2.35      0.0301    Tukey-Kramer    0.2237 
MW*Dys             1     1             2      1         0.9444      1.1922      18       0.79      0.4386    Tukey-Kramer    0.9653 
MW*Dys             1     1             2      2        -2.6000      1.1922      18      -2.18      0.0427    Tukey-Kramer    0.2933 
MW*Dys             1     1             3      1        -4.1222      1.1922      18      -3.46      0.0028    Tukey-Kramer    0.0285 
MW*Dys             1     1             3      2        -6.8889      1.1922      18      -5.78      <.0001    Tukey-Kramer    0.0002 
MW*Dys             1     2             2      1         2.5667      1.1922      18       2.15      0.0451    Tukey-Kramer    0.3057 
MW*Dys             1     2             2      2        -0.9778      1.1922      18      -0.82      0.4228    Tukey-Kramer    0.9599 
MW*Dys             1     2             3      1        -2.5000      1.1922      18      -2.10      0.0504    Tukey-Kramer    0.3317 
MW*Dys             1     2             3      2        -5.2667      1.1922      18      -4.42      0.0003    Tukey-Kramer    0.0038 
MW*Dys             2     1             2      2        -3.5444      0.6889      18      -5.15      <.0001    Tukey-Kramer    0.0008 
MW*Dys             2     1             3      1        -5.0667      1.1922      18      -4.25      0.0005    Tukey-Kramer    0.0054 
MW*Dys             2     1             3      2        -7.8333      1.1922      18      -6.57      <.0001    Tukey-Kramer    <.0001 
MW*Dys             2     2             3      1        -1.5222      1.1922      18      -1.28      0.2179    Tukey-Kramer    0.7933 
MW*Dys             2     2             3      2        -4.2889      1.1922      18      -3.60      0.0021    Tukey-Kramer    0.0214 
MW*Dys             3     1             3      2        -2.7667      0.6889      18      -4.02      0.0008    Tukey-Kramer    0.0089 
AC*MW*Dys    1     1     1      1      1      2       -15.8667      1.1932      18     -13.30      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     1      1      2      1       -24.6333      2.0649      18     -11.93      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     1      1      2      2       -29.8667      2.0649      18     -14.46      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     1      1      3      1       -28.4667      2.0649      18     -13.79      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     1      1      3      2       -31.6667      2.0649      18     -15.34      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     1      2      1      1       -48.5333      2.0649      18     -23.50      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     1      2      1      2       -44.2667      2.0649      18     -21.44      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     1      2      2      1       -43.1667      2.0649      18     -20.91      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     1      2      2      2       -45.7667      2.0649      18     -22.16      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     1      2      3      1       -40.1667      2.0649      18     -19.45      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     1      2      3      2       -44.1333      2.0649      18     -21.37      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     1      3      1      1       -76.4667      2.0649      18     -37.03      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     1      3      1      2       -69.7333      2.0649      18     -33.77      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     1      3      2      1       -54.3667      2.0649      18     -26.33      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     1      3      2      2       -57.1667      2.0649      18     -27.69      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     1      3      3      1       -68.7333      2.0649      18     -33.29      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     1      3      3      2       -69.8667      2.0649      18     -33.84      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     2      1      2      1        -8.7667      2.0649      18      -4.25      0.0005    Tukey-Kramer    0.0326 
AC*MW*Dys    1     1     2      1      2      2       -14.0000      2.0649      18      -6.78      <.0001    Tukey-Kramer    0.0002 
AC*MW*Dys    1     1     2      1      3      1       -12.6000      2.0649      18      -6.10      <.0001    Tukey-Kramer    0.0008 
AC*MW*Dys    1     1     2      1      3      2       -15.8000      2.0649      18      -7.65      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     2      2      1      1       -32.6667      2.0649      18     -15.82      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     2      2      1      2       -28.4000      2.0649      18     -13.75      <.0001    Tukey-Kramer    <.0001 
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AC*MW*Dys    1     1     2      2      2      1       -27.3000      2.0649      18     -13.22      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     2      2      2      2       -29.9000      2.0649      18     -14.48      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     2      2      3      1       -24.3000      2.0649      18     -11.77      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     2      2      3      2       -28.2667      2.0649      18     -13.69      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     2      3      1      1       -60.6000      2.0649      18     -29.35      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     2      3      1      2       -53.8667      2.0649      18     -26.09      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     2      3      2      1       -38.5000      2.0649      18     -18.65      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     2      3      2      2       -41.3000      2.0649      18     -20.00      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     2      3      3      1       -52.8667      2.0649      18     -25.60      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     1     2      3      3      2       -54.0000      2.0649      18     -26.15      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     2     1      1      2      2        -5.2333      1.1932      18      -4.39      0.0004    Tukey-Kramer    0.0248 
AC*MW*Dys    1     2     1      1      3      1        -3.8333      2.0649      18      -1.86      0.0798    Tukey-Kramer    0.8954 
AC*MW*Dys    1     2     1      1      3      2        -7.0333      2.0649      18      -3.41      0.0031    Tukey-Kramer    0.1524 
AC*MW*Dys    1     2     1      2      1      1       -23.9000      2.0649      18     -11.57      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     2     1      2      1      2       -19.6333      2.0649      18      -9.51      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     2     1      2      2      1       -18.5333      2.0649      18      -8.98      <.0001    Tukey-Kramer    <.0001 
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Randomize complete design (one-way anova) 
effect of PLGA molecular weight, MOA, and dialysis in Np size 
 CRD with proc mixed 
 
The Mixed Procedure 
 
                                                Differences of Least Squares Means 
 
                                                                  Standard 
Effect       AC    MW    Dys    _AC    _MW    _Dys    Estimate       Error      DF    t Value    Pr > |t|    Adjustment       Adj P 
 
AC*MW*Dys    1     2     1      2      2      2       -21.1333      2.0649      18     -10.23      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     2     1      2      3      1       -15.5333      2.0649      18      -7.52      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     2     1      2      3      2       -19.5000      2.0649      18      -9.44      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     2     1      3      1      1       -51.8333      2.0649      18     -25.10      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     2     1      3      1      2       -45.1000      2.0649      18     -21.84      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     2     1      3      2      1       -29.7333      2.0649      18     -14.40      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     2     1      3      2      2       -32.5333      2.0649      18     -15.76      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     2     1      3      3      1       -44.1000      2.0649      18     -21.36      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     2     1      3      3      2       -45.2333      2.0649      18     -21.91      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     2     2      1      3      1         1.4000      2.0649      18       0.68      0.5064    Tukey-Kramer    1.0000 
AC*MW*Dys    1     2     2      1      3      2        -1.8000      2.0649      18      -0.87      0.3948    Tukey-Kramer    1.0000 
AC*MW*Dys    1     2     2      2      1      1       -18.6667      2.0649      18      -9.04      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     2     2      2      1      2       -14.4000      2.0649      18      -6.97      <.0001    Tukey-Kramer    0.0002 
AC*MW*Dys    1     2     2      2      2      1       -13.3000      2.0649      18      -6.44      <.0001    Tukey-Kramer    0.0004 
AC*MW*Dys    1     2     2      2      2      2       -15.9000      2.0649      18      -7.70      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     2     2      2      3      1       -10.3000      2.0649      18      -4.99      <.0001    Tukey-Kramer    0.0075 
AC*MW*Dys    1     2     2      2      3      2       -14.2667      2.0649      18      -6.91      <.0001    Tukey-Kramer    0.0002 
AC*MW*Dys    1     2     2      3      1      1       -46.6000      2.0649      18     -22.57      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     2     2      3      1      2       -39.8667      2.0649      18     -19.31      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     2     2      3      2      1       -24.5000      2.0649      18     -11.87      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     2     2      3      2      2       -27.3000      2.0649      18     -13.22      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     2     2      3      3      1       -38.8667      2.0649      18     -18.82      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     2     2      3      3      2       -40.0000      2.0649      18     -19.37      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     3     1      1      3      2        -3.2000      1.1932      18      -2.68      0.0152    Tukey-Kramer    0.4501 
AC*MW*Dys    1     3     1      2      1      1       -20.0667      2.0649      18      -9.72      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     3     1      2      1      2       -15.8000      2.0649      18      -7.65      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     3     1      2      2      1       -14.7000      2.0649      18      -7.12      <.0001    Tukey-Kramer    0.0001 
AC*MW*Dys    1     3     1      2      2      2       -17.3000      2.0649      18      -8.38      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     3     1      2      3      1       -11.7000      2.0649      18      -5.67      <.0001    Tukey-Kramer    0.0020 
AC*MW*Dys    1     3     1      2      3      2       -15.6667      2.0649      18      -7.59      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     3     1      3      1      1       -48.0000      2.0649      18     -23.25      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     3     1      3      1      2       -41.2667      2.0649      18     -19.99      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     3     1      3      2      1       -25.9000      2.0649      18     -12.54      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     3     1      3      2      2       -28.7000      2.0649      18     -13.90      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     3     1      3      3      1       -40.2667      2.0649      18     -19.50      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     3     1      3      3      2       -41.4000      2.0649      18     -20.05      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     3     2      2      1      1       -16.8667      2.0649      18      -8.17      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     3     2      2      1      2       -12.6000      2.0649      18      -6.10      <.0001    Tukey-Kramer    0.0008 
AC*MW*Dys    1     3     2      2      2      1       -11.5000      2.0649      18      -5.57      <.0001    Tukey-Kramer    0.0024 
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AC*MW*Dys    1     3     2      2      2      2       -14.1000      2.0649      18      -6.83      <.0001    Tukey-Kramer    0.0002 
AC*MW*Dys    1     3     2      2      3      1        -8.5000      2.0649      18      -4.12      0.0006    Tukey-Kramer    0.0418 
AC*MW*Dys    1     3     2      2      3      2       -12.4667      2.0649      18      -6.04      <.0001    Tukey-Kramer    0.0010 
AC*MW*Dys    1     3     2      3      1      1       -44.8000      2.0649      18     -21.70      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     3     2      3      1      2       -38.0667      2.0649      18     -18.44      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     3     2      3      2      1       -22.7000      2.0649      18     -10.99      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     3     2      3      2      2       -25.5000      2.0649      18     -12.35      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     3     2      3      3      1       -37.0667      2.0649      18     -17.95      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    1     3     2      3      3      2       -38.2000      2.0649      18     -18.50      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    2     1     1      2      1      2         4.2667      1.1932      18       3.58      0.0022    Tukey-Kramer    0.1135 
AC*MW*Dys    2     1     1      2      2      1         5.3667      2.0649      18       2.60      0.0181    Tukey-Kramer    0.4972 
AC*MW*Dys    2     1     1      2      2      2         2.7667      2.0649      18       1.34      0.1970    Tukey-Kramer    0.9927 
AC*MW*Dys    2     1     1      2      3      1         8.3667      2.0649      18       4.05      0.0007    Tukey-Kramer    0.0472 
AC*MW*Dys    2     1     1      2      3      2         4.4000      2.0649      18       2.13      0.0471    Tukey-Kramer    0.7707 
AC*MW*Dys    2     1     1      3      1      1       -27.9333      2.0649      18     -13.53      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    2     1     1      3      1      2       -21.2000      2.0649      18     -10.27      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    2     1     1      3      2      1        -5.8333      2.0649      18      -2.83      0.0112    Tukey-Kramer    0.3738 
AC*MW*Dys    2     1     1      3      2      2        -8.6333      2.0649      18      -4.18      0.0006    Tukey-Kramer    0.0369 
AC*MW*Dys    2     1     1      3      3      1       -20.2000      2.0649      18      -9.78      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    2     1     1      3      3      2       -21.3333      2.0649      18     -10.33      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    2     1     2      2      2      1         1.1000      2.0649      18       0.53      0.6007    Tukey-Kramer    1.0000 
AC*MW*Dys    2     1     2      2      2      2        -1.5000      2.0649      18      -0.73      0.4769    Tukey-Kramer    1.0000 
AC*MW*Dys    2     1     2      2      3      1         4.1000      2.0649      18       1.99      0.0625    Tukey-Kramer    0.8426 
AC*MW*Dys    2     1     2      2      3      2         0.1333      2.0649      18       0.06      0.9492    Tukey-Kramer    1.0000 
AC*MW*Dys    2     1     2      3      1      1       -32.2000      2.0649      18     -15.59      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    2     1     2      3      1      2       -25.4667      2.0649      18     -12.33      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    2     1     2      3      2      1       -10.1000      2.0649      18      -4.89      0.0001    Tukey-Kramer    0.0091 
AC*MW*Dys    2     1     2      3      2      2       -12.9000      2.0649      18      -6.25      <.0001    Tukey-Kramer    0.0006 
AC*MW*Dys    2     1     2      3      3      1       -24.4667      2.0649      18     -11.85      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    2     1     2      3      3      2       -25.6000      2.0649      18     -12.40      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    2     2     1      2      2      2        -2.6000      1.1932      18      -2.18      0.0429    Tukey-Kramer    0.7445 
AC*MW*Dys    2     2     1      2      3      1         3.0000      2.0649      18       1.45      0.1635    Tukey-Kramer    0.9843 
AC*MW*Dys    2     2     1      2      3      2        -0.9667      2.0649      18      -0.47      0.6453    Tukey-Kramer    1.0000 
AC*MW*Dys    2     2     1      3      1      1       -33.3000      2.0649      18     -16.13      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    2     2     1      3      1      2       -26.5667      2.0649      18     -12.87      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    2     2     1      3      2      1       -11.2000      2.0649      18      -5.42      <.0001    Tukey-Kramer    0.0032 
AC*MW*Dys    2     2     1      3      2      2       -14.0000      2.0649      18      -6.78      <.0001    Tukey-Kramer    0.0002 
AC*MW*Dys    2     2     1      3      3      1       -25.5667      2.0649      18     -12.38      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    2     2     1      3      3      2       -26.7000      2.0649      18     -12.93      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    2     2     2      2      3      1         5.6000      2.0649      18       2.71      0.0143    Tukey-Kramer    0.4334 
AC*MW*Dys    2     2     2      2      3      2         1.6333      2.0649      18       0.79      0.4392    Tukey-Kramer    1.0000 
AC*MW*Dys    2     2     2      3      1      1       -30.7000      2.0649      18     -14.87      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    2     2     2      3      1      2       -23.9667      2.0649      18     -11.61      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    2     2     2      3      2      1        -8.6000      2.0649      18      -4.16      0.0006    Tukey-Kramer    0.0380 
AC*MW*Dys    2     2     2      3      2      2       -11.4000      2.0649      18      -5.52      <.0001    Tukey-Kramer    0.0026 
AC*MW*Dys    2     2     2      3      3      1       -22.9667      2.0649      18     -11.12      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    2     2     2      3      3      2       -24.1000      2.0649      18     -11.67      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    2     3     1      2      3      2        -3.9667      1.1932      18      -3.32      0.0038    Tukey-Kramer    0.1749 
AC*MW*Dys    2     3     1      3      1      1       -36.3000      2.0649      18     -17.58      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    2     3     1      3      1      2       -29.5667      2.0649      18     -14.32      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    2     3     1      3      2      1       -14.2000      2.0649      18      -6.88      <.0001    Tukey-Kramer    0.0002 
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AC*MW*Dys    2     3     1      3      2      2       -17.0000      2.0649      18      -8.23      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    2     3     1      3      3      1       -28.5667      2.0649      18     -13.83      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    2     3     1      3      3      2       -29.7000      2.0649      18     -14.38      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    2     3     2      3      1      1       -32.3333      2.0649      18     -15.66      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    2     3     2      3      1      2       -25.6000      2.0649      18     -12.40      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    2     3     2      3      2      1       -10.2333      2.0649      18      -4.96      0.0001    Tukey-Kramer    0.0080 
AC*MW*Dys    2     3     2      3      2      2       -13.0333      2.0649      18      -6.31      <.0001    Tukey-Kramer    0.0006 
AC*MW*Dys    2     3     2      3      3      1       -24.6000      2.0649      18     -11.91      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    2     3     2      3      3      2       -25.7333      2.0649      18     -12.46      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    3     1     1      3      1      2         6.7333      1.1932      18       5.64      <.0001    Tukey-Kramer    0.0021 
AC*MW*Dys    3     1     1      3      2      1        22.1000      2.0649      18      10.70      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    3     1     1      3      2      2        19.3000      2.0649      18       9.35      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    3     1     1      3      3      1         7.7333      2.0649      18       3.75      0.0015    Tukey-Kramer    0.0837 
AC*MW*Dys    3     1     1      3      3      2         6.6000      2.0649      18       3.20      0.0050    Tukey-Kramer    0.2156 
AC*MW*Dys    3     1     2      3      2      1        15.3667      2.0649      18       7.44      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    3     1     2      3      2      2        12.5667      2.0649      18       6.09      <.0001    Tukey-Kramer    0.0009 
AC*MW*Dys    3     1     2      3      3      1         1.0000      2.0649      18       0.48      0.6340    Tukey-Kramer    1.0000 
AC*MW*Dys    3     1     2      3      3      2        -0.1333      2.0649      18      -0.06      0.9492    Tukey-Kramer    1.0000 
AC*MW*Dys    3     2     1      3      2      2        -2.8000      1.1932      18      -2.35      0.0306    Tukey-Kramer    0.6474 
AC*MW*Dys    3     2     1      3      3      1       -14.3667      2.0649      18      -6.96      <.0001    Tukey-Kramer    0.0002 
AC*MW*Dys    3     2     1      3      3      2       -15.5000      2.0649      18      -7.51      <.0001    Tukey-Kramer    <.0001 
AC*MW*Dys    3     2     2      3      3      1       -11.5667      2.0649      18      -5.60      <.0001    Tukey-Kramer    0.0022 
AC*MW*Dys    3     2     2      3      3      2       -12.7000      2.0649      18      -6.15      <.0001    Tukey-Kramer    0.0008 
AC*MW*Dys    3     3     1      3      3      2        -1.1333      1.1932      18      -0.95      0.3548    Tukey-Kramer    0.9998 
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Randomize complete design (one-way anova) 
effect of PLGA molecular weight, MOA, and dialysis in Np size 
 CRD with proc mixed 
post hoc adjustment with macro by Arnold Saxton 
 
Effect=AC ADJUSTMENT=Tukey(P<0.05) bygroup=1 
 
Obs    AC    MW    Dys    Estimate      StdErr    MSGROUP 
 
  1    3     _      _       104.69      0.7694       A 
  2    2     _      _      82.9722      0.7694       B 
  3    1     _      _      60.3833      0.7694       C 
 
 
Effect=MW ADJUSTMENT=Tukey(P<0.05) bygroup=2 
 
Obs    AC    MW    Dys    Estimate      StdErr    MSGROUP 
 
  4    _     3      _      85.8056      0.7694       A 
  5    _     2      _      81.1278      0.7694       B 
  6    _     1      _      81.1111      0.7694       B 
 
 
Effect=AC*MW ADJUSTMENT=Tukey(P<0.05) bygroup=3 
 
Obs    AC    MW    Dys    Estimate      StdErr    MSGROUP 
 
  7    3     1      _       111.73      1.3326       A 
  8    3     3      _       107.93      1.3326       A 
  9    3     2      _      94.4000      1.3326       B 
 10    2     1      _      85.0333      1.3326       C 
 11    2     2      _      83.1000      1.3326       C 
 12    2     3      _      80.7833      1.3326       C 
 13    1     3      _      68.7000      1.3326       D 
 14    1     2      _      65.8833      1.3326       D 
 15    1     1      _      46.5667      1.3326       E 
 
 
Effect=Dys ADJUSTMENT=Tukey-Kramer(P<0.05) bygroup=4 
 
Obs    AC    MW    Dys    Estimate      StdErr    MSGROUP 
 
 16    _     _      2      84.0037      0.4867       A 
 17    _     _      1      81.3593      0.4867       B 
 
 
Effect=AC*Dys ADJUSTMENT=Tukey-Kramer(P<0.05) bygroup=5 
 
Obs    AC    MW    Dys    Estimate      StdErr    MSGROUP 
 
 18    3     _      1       105.16      0.8430       A 
 19    3     _      2       104.22      0.8430       A 
 20    2     _      2      83.3556      0.8430       B 
 21    2     _      1      82.5889      0.8430       B 
 22    1     _      2      64.4333      0.8430       C 
 23    1     _      1      56.3333      0.8430       D 
 
 
Effect=MW*Dys ADJUSTMENT=Tukey-Kramer(P<0.05) bygroup=6 
 
Obs    AC    MW    Dys    Estimate      StdErr    MSGROUP 
 
 24    _     3      2      87.1889      0.8430      A 
 25    _     3      1      84.4222      0.8430      B 
 26    _     2      2      82.9000      0.8430      BC 
 27    _     1      2      81.9222      0.8430      BCD 
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 28    _     1      1      80.3000      0.8430      CD 
 29    _     2      1      79.3556      0.8430      D 
 
 
Effect=AC*MW*Dys ADJUSTMENT=Tukey-Kramer(P<0.05) bygroup=7 
 
Obs    AC    MW    Dys    Estimate      StdErr    MSGROUP 
 
 30    3     1      1       115.10      1.4601      A 
 31    3     3      2       108.50      1.4601      AB 
 32    3     1      2       108.37      1.4601      B 
 33    3     3      1       107.37      1.4601      AB 
 34    3     2      2      95.8000      1.4601      C 
 35    3     2      1      93.0000      1.4601      CD 
 36    2     1      1      87.1667      1.4601      DE 
 37    2     2      2      84.4000      1.4601      EF 
 38    2     1      2      82.9000      1.4601      EF 
 39    2     3      2      82.7667      1.4601      EF 
 40    2     2      1      81.8000      1.4601      EF 
 41    2     3      1      78.8000      1.4601      F 
 42    1     3      2      70.3000      1.4601      GH 
 43    1     2      2      68.5000      1.4601      G 
 44    1     3      1      67.1000      1.4601      GH 
 45    1     2      1      63.2667      1.4601      H 
 46    1     1      2      54.5000      1.4601      I 
 47    1     1      1      38.6333      1.4601      J 
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Randomize complete design (one-way anova) 
effect of PLGA molecular weight, MOA, and dialysis in Np size 
 CRD with proc mixed 
Univariate analysis of residuals 
 
The UNIVARIATE Procedure 
Variable:  Resid 
 
                            Moments 
 
N                          54    Sum Weights                 54 
Mean                        0    Sum Observations             0 
Std Deviation      0.93308206    Variance            0.87064214 
Skewness           0.61780823    Kurtosis            1.30643015 
Uncorrected SS     46.1440334    Corrected SS        46.1440334 
Coeff Variation             .    Std Error Mean      0.12697639 
 
 
              Basic Statistical Measures 
 
    Location                    Variability 
 
Mean      0.00000     Std Deviation            0.93308 
Median   -0.12025     Variance                 0.87064 
Mode       .          Range                    4.63333 
                      Interquartile Range      0.89214 
 
 
           Tests for Location: Mu0=0 
 
Test           -Statistic-    -----p Value------ 
 
Student's t    t         0    Pr > |t|    1.0000 
Sign           M        -2    Pr >= |M|   0.6835 
Signed Rank    S     -54.5    Pr >= |S|   0.6432 
 
 
                   Tests for Normality 
 
Test                  --Statistic---    -----p Value------ 
 
Shapiro-Wilk          W     0.953407    Pr < W      0.0351 
Kolmogorov-Smirnov    D     0.114721    Pr > D      0.0762 
Cramer-von Mises      W-Sq  0.156856    Pr > W-Sq   0.0198 
Anderson-Darling      A-Sq    0.8974    Pr > A-Sq   0.0215 
 
 
Quantiles (Definition 5) 
 
Quantile       Estimate 
 
100% Max       2.700799 
99%            2.700799 
95%            2.040987 
90%            1.173660 
75% Q3         0.478603 
50% Median    -0.120250 
25% Q1        -0.413535 
10%           -1.092346 
5%            -1.641995 
1%            -1.932534 
0% Min        -1.932534 
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           Extreme Observations 
 
------Lowest-----        -----Highest----- 
 
   Value      Obs           Value      Obs 
 
-1.93253       20         1.36653       19 
-1.82140       15         1.36767       54 
-1.64200       26         2.04099       25 
-1.50014       46         2.44238       13 
-1.20066       48         2.70080       47 
 

 
   Stem Leaf                     #  Boxplot                        Normal Probability Plot 
     26 0                        1     0         2.7+                                                * 
     24 4                        1     0            |                                            * 
     22                                             |                                                 ++ 
     20 4                        1     0            |                                          *    ++ 
     18                                             |                                             ++ 
     16                                             |                                           ++ 
     14                                             |                                         ++ 
     12 77                       2     |            |                                      +** 
     10 57                       2     |            |                                    +** 
      8 8                        1     |            |                                  ++* 
      6 1                        1     |            |                                ++ * 
      4 88267                    5  +-----+         |                              ++*** 
      2 24890                    5  |     |         |                            +*** 
      0 444838                   6  |  +  |         |                         +**** 
     -0 96226                    5  *-----*         |                       +*** 
     -2 62298842                 8  |     |         |                   ***** 
     -4 76110                    5  +-----+         |                 ***+ 
     -6 12                       2     |            |                *++ 
     -8 652                      3     |            |             ***+ 
    -10 9                        1     |            |            *++ 
    -12 0                        1     |            |          +*+ 
    -14 0                        1     |            |        ++* 
    -16 4                        1     |            |      ++* 
    -18 32                       2     0        -1.9+  * ++* 
        ----+----+----+----+                         +----+----+----+----+----+----+----+----+----+----+ 
    Multiply Stem.Leaf by 10**-1                         -2        -1         0        +1        +2 
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 The analysis of sonication amplitude was performed with the same 

program, but the parameters tested were in molecular weight without addition of MOA 

and sonication amplitude. The proc mixed procedure (α = 0.05) was used.    

 

 

Randomize complete design (one-way anova) 
effect of PLGA molecular weight, MOA, and dialysis in Np size 
List of Data         SONICATION 

EFFECT 

 
Obs    Size    Son    MW    Rep 
 
  1    38.7     1      1     1 
  2    38.1     1      1     2 
  3    41.4     1      1     3 
  4    67.2     1      2     1 
  5    68.4     1      2     2 
  6    64.9     1      2     3 
  7    70.3     1      3     1 
  8    70.6     1      3     2 
  9    67.1     1      3     3 
 10    38.9     2      1     1 
 11    38.6     2      1     2 
 12    38.4     2      1     3 
 13    63.6     2      2     1 
 14    63.1     2      2     2 
 15    63.1     2      2     3 
 16    66.5     2      3     1 
 17    67.3     2      3     2 
 18    67.5     2      3     3 
 
Randomize complete design (one-way anova) 
effect of PLGA molecular weight, MOA, and dialysis in Np size 
 CRD with proc mixed 
The Mixed Procedure 
 
                  Model Information 
 
Data Set                     WORK.NANOPARTICLES 
Dependent Variable           Size 
Covariance Structure         Variance Components 
Estimation Method            REML 
Residual Variance Method     Profile 
Fixed Effects SE Method      Model-Based 
Degrees of Freedom Method    Containment 
 
 
             Class Level Information 
 
Class    Levels    Values 
 
Son           2    1 2 
MW            3    1 2 3 
Rep           3    1 2 3 
 
 
            Dimensions 
 
Covariance Parameters             2 
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Columns in X                     12 
Columns in Z                     18 
Subjects                          1 
Max Obs Per Subject              18 
 
 
          Number of Observations 
 
Number of Observations Read              18 
Number of Observations Used              18 
Number of Observations Not Used           0 
 
 
                     Iteration History 
 
Iteration    Evaluations    -2 Res Log Like       Criterion 
 
        0              1        47.29665069 
        1              4        47.29665069      0.00000000 
 
 
                   Convergence criteria met. 
 
  Covariance Parameter 
       Estimates 
 
Cov Parm        Estimate 
 
Rep(Son*MW)            0 
Residual          1.7406 
 
 
           Fit Statistics 
 
-2 Res Log Likelihood            47.3 
AIC (smaller is better)          49.3 
AICC (smaller is better)         49.7 
BIC (smaller is better)          50.2 
 
 
        Type 3 Tests of Fixed Effects 
 
              Num     Den 
Effect         DF      DF    F Value    Pr > F 
 
Son             1      12      12.39    0.0042 
MW              2      12     885.01    <.0001 
Son*MW          2      12       1.69    0.2255 
 
 
                           Least Squares Means 
 
                                   Standard 
Effect    Son    MW    Estimate       Error      DF    t Value    Pr > |t| 
 
Son       1             58.5222      0.4398      12     133.08      <.0001 
Son       2             56.3333      0.4398      12     128.10      <.0001 
MW               1      39.0167      0.5386      12      72.44      <.0001 
MW               2      65.0500      0.5386      12     120.78      <.0001 
MW               3      68.2167      0.5386      12     126.65      <.0001 
Son*MW    1      1      39.4000      0.7617      12      51.73      <.0001 
Son*MW    1      2      66.8333      0.7617      12      87.74      <.0001 
Son*MW    1      3      69.3333      0.7617      12      91.02      <.0001 
Son*MW    2      1      38.6333      0.7617      12      50.72      <.0001 
Son*MW    2      2      63.2667      0.7617      12      83.06      <.0001 
Son*MW    2      3      67.1000      0.7617      12      88.09      <.0001 
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                                        Differences of Least Squares Means 
 
                                                  Standard 
Effect    Son    MW    _Son    _MW    Estimate       Error      DF    t Value    Pr > |t|    Adjustment       Adj P 
 
Son       1            2                2.1889      0.6219      12       3.52      0.0042    Tukey           0.0042 
MW               1             2      -26.0333      0.7617      12     -34.18      <.0001    Tukey           <.0001 
MW               1             3      -29.2000      0.7617      12     -38.34      <.0001    Tukey           <.0001 
MW               2             3       -3.1667      0.7617      12      -4.16      0.0013    Tukey           0.0035 
Son*MW    1      1     1       2      -27.4333      1.0772      12     -25.47      <.0001    Tukey           <.0001 
Son*MW    1      1     1       3      -29.9333      1.0772      12     -27.79      <.0001    Tukey           <.0001 
Son*MW    1      1     2       1        0.7667      1.0772      12       0.71      0.4902    Tukey           0.9768 
Son*MW    1      1     2       2      -23.8667      1.0772      12     -22.16      <.0001    Tukey           <.0001 
Son*MW    1      1     2       3      -27.7000      1.0772      12     -25.71      <.0001    Tukey           <.0001 
Son*MW    1      2     1       3       -2.5000      1.0772      12      -2.32      0.0387    Tukey           0.2577 
Son*MW    1      2     2       1       28.2000      1.0772      12      26.18      <.0001    Tukey           <.0001 
Son*MW    1      2     2       2        3.5667      1.0772      12       3.31      0.0062    Tukey           0.0542 
Son*MW    1      2     2       3       -0.2667      1.0772      12      -0.25      0.8087    Tukey           0.9998 
Son*MW    1      3     2       1       30.7000      1.0772      12      28.50      <.0001    Tukey           <.0001 
Son*MW    1      3     2       2        6.0667      1.0772      12       5.63      0.0001    Tukey           0.0012 
Son*MW    1      3     2       3        2.2333      1.0772      12       2.07      0.0603    Tukey           0.3605 
Son*MW    2      1     2       2      -24.6333      1.0772      12     -22.87      <.0001    Tukey           <.0001 
Son*MW    2      1     2       3      -28.4667      1.0772      12     -26.43      <.0001    Tukey           <.0001 
Son*MW    2      2     2       3       -3.8333      1.0772      12      -3.56      0.0039    Tukey           0.0357 
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Randomize complete design (one-way anova) 
effect of PLGA molecular weight, MOA, and dialysis in Np size 
 CRD with proc mixed 
post hoc adjustment with macro by Arnold Saxton 
 
Effect=Son ADJUSTMENT=Tukey(P<0.05) bygroup=1 
 
Obs    Son    MW    Estimate      StdErr    MSGROUP 
 
  1     1     _      58.5222      0.4398       A 
  2     2     _      56.3333      0.4398       B 
 
 
Effect=MW ADJUSTMENT=Tukey(P<0.05) bygroup=2 
 
Obs    Son    MW    Estimate      StdErr    MSGROUP 
 
  3     _     3      68.2167      0.5386       A 
  4     _     2      65.0500      0.5386       B 
  5     _     1      39.0167      0.5386       C 
 
 
Effect=Son*MW ADJUSTMENT=Tukey(P<0.05) bygroup=3 
 
Obs    Son    MW    Estimate      StdErr    MSGROUP 
 
  6     1     3      69.3333      0.7617      A 
  7     2     3      67.1000      0.7617      A 
  8     1     2      66.8333      0.7617      AB 
  9     2     2      63.2667      0.7617      B 
 10     1     1      39.4000      0.7617      C 
 11     2     1      38.6333      0.7617      C 
 
 
Randomize complete design (one-way anova) 
effect of PLGA molecular weight, MOA, and dialysis in Np size 
 CRD with proc mixed 
Univariate analysis of residuals 

 
The UNIVARIATE Procedure 
Variable:  Resid 
 
                            Moments 
 
N                          18    Sum Weights                 18 
Mean                        0    Sum Observations             0 
Std Deviation      1.10843469    Variance            1.22862745 
Skewness           -0.3005744    Kurtosis            0.14206577 
Uncorrected SS     20.8866667    Corrected SS        20.8866667 
Coeff Variation             .    Std Error Mean      0.26126056 
 
 
              Basic Statistical Measures 
 
    Location                    Variability 
 
Mean      0.00000     Std Deviation            1.10843 
Median    0.08333     Variance                 1.22863 
Mode     -0.16667     Range                    4.23333 
                      Interquartile Range      1.00000 
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           Tests for Location: Mu0=0 
 
Test           -Statistic-    -----p Value------ 
 
Student's t    t         0    Pr > |t|    1.0000 
Sign           M         0    Pr >= |M|   1.0000 
Signed Rank    S       5.5    Pr >= |S|   0.8234 
 
 
                   Tests for Normality 
 
Test                  --Statistic---    -----p Value------ 
 
Shapiro-Wilk          W     0.968394    Pr < W      0.7670 
Kolmogorov-Smirnov    D     0.138858    Pr > D     >0.1500 
Cramer-von Mises      W-Sq   0.05184    Pr > W-Sq  >0.2500 
Anderson-Darling      A-Sq  0.293812    Pr > A-Sq  >0.2500 
 
Quantiles (Definition 5) 
 
Quantile        Estimate 
 
100% Max       2.0000000 
99%            2.0000000 
95%            2.0000000 
90%            1.5666667 
75% Q3         0.4000000 
50% Median     0.0833333 
25% Q1        -0.6000000 
10%           -1.9333333 
5%            -2.2333333 
1%            -2.2333333 
0% Min        -2.2333333 
 
            Extreme Observations 
 
------Lowest-----        ------Highest----- 
 
   Value      Obs            Value      Obs 
 
-2.23333        9         0.400000       18 
-1.93333        6         0.966667        7 
-1.30000        2         1.266667        8 
-0.70000        1         1.566667        5 
-0.60000       16         2.000000        3 
 
 

   Stem Leaf                     #  Boxplot                        Normal Probability Plot 
      2 0                        1     0        2.25+                                           *++++ 
      1 6                        1     |            |                                      *+++++ 
      1 03                       2     |            |                                   +*++ 
      0                                |        0.75+                              +++*+ 
      0 23344                    5  +--+--+         |                         +**+** * 
     -0 2220                     4  |     |         |                    **++* 
     -0 76                       2  +-----+    -0.75+                +**++ 
     -1 3                        1     |            |            ++*+ 
     -1 9                        1     |            |       +++++* 
     -2 2                        1     0       -2.25+   ++++* 
        ----+----+----+----+                         +----+----+----+----+----+----+----+----+----+----+ 
                                                         -2        -1         0        +1        +2 
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The analysis of entrapment efficiency (EE) was performed with the same 

program, but the parameters tested were in molecular weight (MW), and MOA (AC). The 

proc mixed procedure (α = 0.05) was used with Tukey adjustment.    

 

Randomize complete design (one-way anova) 
effect of PLGA molecular weight, MOA, and dialysis in Np size 
List of Data 
 
Obs      EE     AC    MW    Rep 
 
  1     68.3     2     1     1 
  2     49.1     2     1     2 
  3     54.7     2     1     3 
  4     82.2     2     2     1 
  5     72.0     2     2     2 
  6     77.8     2     2     3 
  7     62.8     2     3     1 
  8     93.2     2     3     2 
  9     54.6     2     3     3 
 10     71.7     3     1     1 
 11     64.8     3     1     2 
 12     92.3     3     1     3 
 13     69.2     3     2     1 
 14     84.3     3     2     2 
 15     82.7     3     2     3 
 16    125.0     3     3     1 
 17     58.4     3     3     2 
 18     92.2     3     3     3 
 
 
Randomize complete design (one-way anova) 
effect of PLGA molecular weight, MOA, and dialysis in Np size 
 CRD with proc mixed 
 
The Mixed Procedure 
 
                  Model Information 
 
Data Set                     WORK.NANOPARTICLES 
Dependent Variable           EE 
Covariance Structure         Variance Components 
Estimation Method            REML 
Residual Variance Method     Profile 
Fixed Effects SE Method      Model-Based 
Degrees of Freedom Method    Containment 
 
 
             Class Level Information 
 
Class    Levels    Values 
 
AC            2    2 3 
MW            3    1 2 3 
Rep           3    1 2 3 
 
 
            Dimensions 
 
Covariance Parameters             2 
Columns in X                     12 
Columns in Z                     18 
Subjects                          1 
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Max Obs Per Subject              18 
 
 
 
 
          Number of Observations 
 
Number of Observations Read              18 
Number of Observations Used              18 
Number of Observations Not Used           0 
 
 
                     Iteration History 
 
Iteration    Evaluations    -2 Res Log Like       Criterion 
 
        0              1       109.86421701 
        1              2       109.86421700      0.00000000 
 
 
                   Convergence criteria met. 
 
 
 Covariance Parameter 
       Estimates 
 
Cov Parm       Estimate 
 
Rep(AC*MW)       319.94 
Residual       0.007751 
 
 
           Fit Statistics 
 
-2 Res Log Likelihood           109.9 
AIC (smaller is better)         113.9 
AICC (smaller is better)        115.2 
BIC (smaller is better)         115.6 
 
 
        Type 3 Tests of Fixed Effects 
 
              Num     Den 
Effect         DF      DF    F Value    Pr > F 
 
AC              1      12       2.75    0.1230 
MW              2      12       1.05    0.3790 
AC*MW           2      12       0.57    0.5821 
 
 
                           Least Squares Means 
 
                                  Standard 
Effect    AC    MW    Estimate       Error      DF    t Value    Pr > |t| 
 
AC        2            68.3000      5.9624      12      11.46      <.0001 
AC        3            82.2889      5.9624      12      13.80      <.0001 
MW              1      66.8167      7.3024      12       9.15      <.0001 
MW              2      78.0333      7.3024      12      10.69      <.0001 
MW              3      81.0333      7.3024      12      11.10      <.0001 
AC*MW     2     1      57.3667     10.3272      12       5.55      0.0001 
AC*MW     2     2      77.3333     10.3272      12       7.49      <.0001 
AC*MW     2     3      70.2000     10.3272      12       6.80      <.0001 
AC*MW     3     1      76.2667     10.3272      12       7.39      <.0001 
AC*MW     3     2      78.7333     10.3272      12       7.62      <.0001 
AC*MW     3     3      91.8667     10.3272      12       8.90      <.0001 
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                                       Differences of Least Squares Means 
 
                                                Standard 
Effect    AC    MW    _AC    _MW    Estimate       Error      DF    t Value    Pr > |t|    Adjustment       Adj P 
 
AC        2           3             -13.9889      8.4321      12      -1.66      0.1230    Tukey           0.1230 
MW              1            2      -11.2167     10.3272      12      -1.09      0.2988    Tukey           0.5401 
MW              1            3      -14.2167     10.3272      12      -1.38      0.1938    Tukey           0.3830 
MW              2            3       -3.0000     10.3272      12      -0.29      0.7764    Tukey           0.9547 
AC*MW     2     1     2      2      -19.9667     14.6048      12      -1.37      0.1966    Tukey           0.7446 
AC*MW     2     1     2      3      -12.8333     14.6048      12      -0.88      0.3968    Tukey           0.9447 
AC*MW     2     1     3      1      -18.9000     14.6048      12      -1.29      0.2200    Tukey           0.7829 
AC*MW     2     1     3      2      -21.3667     14.6048      12      -1.46      0.1692    Tukey           0.6917 
AC*MW     2     1     3      3      -34.5000     14.6048      12      -2.36      0.0359    Tukey           0.2429 
AC*MW     2     2     2      3        7.1333     14.6048      12       0.49      0.6341    Tukey           0.9957 
AC*MW     2     2     3      1        1.0667     14.6048      12       0.07      0.9430    Tukey           1.0000 
AC*MW     2     2     3      2       -1.4000     14.6048      12      -0.10      0.9252    Tukey           1.0000 
AC*MW     2     2     3      3      -14.5333     14.6048      12      -1.00      0.3393    Tukey           0.9109 
AC*MW     2     3     3      1       -6.0667     14.6048      12      -0.42      0.6852    Tukey           0.9980 
AC*MW     2     3     3      2       -8.5333     14.6048      12      -0.58      0.5699    Tukey           0.9902 
AC*MW     2     3     3      3      -21.6667     14.6048      12      -1.48      0.1637    Tukey           0.6801 
AC*MW     3     1     3      2       -2.4667     14.6048      12      -0.17      0.8687    Tukey           1.0000 
AC*MW     3     1     3      3      -15.6000     14.6048      12      -1.07      0.3065    Tukey           0.8848 
AC*MW     3     2     3      3      -13.1333     14.6048      12      -0.90      0.3862    Tukey           0.9394 
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Randomize complete design (one-way anova) 
effect of PLGA molecular weight, MOA, and dialysis in Np size 
 CRD with proc mixed 
post hoc adjustment with macro by Arnold Saxton 
 
Effect=AC ADJUSTMENT=Tukey(P<0.05) bygroup=1 
 
Obs    AC    MW    Estimate      StdErr    MSGROUP 
 
  1    3     _      82.2889      5.9624       A 
  2    2     _      68.3000      5.9624       A 
 
 
Effect=MW ADJUSTMENT=Tukey(P<0.05) bygroup=2 
 
Obs    AC    MW    Estimate      StdErr    MSGROUP 
 
  3    _     3      81.0333      7.3024       A 
  4    _     2      78.0333      7.3024       A 
  5    _     1      66.8167      7.3024       A 
 
 
Effect=AC*MW ADJUSTMENT=Tukey(P<0.05) bygroup=3 
 
Obs    AC    MW    Estimate      StdErr    MSGROUP 
 
  6    3     3      91.8667     10.3272       A 
  7    3     2      78.7333     10.3272       A 
  8    2     2      77.3333     10.3272       A 
  9    3     1      76.2667     10.3272       A 
 10    2     3      70.2000     10.3272       A 
 11    2     1      57.3667     10.3272       A 
 
 
 
Randomize complete design (one-way anova) 
effect of PLGA molecular weight, MOA, and dialysis in Np size 
 CRD with proc mixed 
Univariate analysis of residuals 

 
The UNIVARIATE Procedure 
Variable:  Resid 
 
                            Moments 
 
N                          18    Sum Weights                 18 
Mean                -8.29E-15    Sum Observations    -1.492E-13 
Std Deviation      0.00036405    Variance            1.32536E-7 
Skewness           0.18387008    Kurtosis            1.17850428 
Uncorrected SS     2.25311E-6    Corrected SS        2.25311E-6 
Coeff Variation    -4.3917E12    Std Error Mean      0.00008581 
 
 
              Basic Statistical Measures 
 
    Location                    Variability 
 
Mean     -0.00000     Std Deviation          0.0003641 
Median   -0.00003     Variance              1.32536E-7 
Mode       .          Range                    0.00161 
                      Interquartile Range    0.0003351 
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           Tests for Location: Mu0=0 
 
Test           -Statistic-    -----p Value------ 
 
Student's t    t  -966E-13    Pr > |t|    1.0000 
Sign           M         0    Pr >= |M|   1.0000 
Signed Rank    S      -4.5    Pr >= |S|   0.8650 
 
 
                   Tests for Normality 
Test                  --Statistic---    -----p Value------ 
 
Shapiro-Wilk          W     0.969305    Pr < W      0.7845 
Kolmogorov-Smirnov    D     0.133315    Pr > D     >0.1500 
Cramer-von Mises      W-Sq  0.050249    Pr > W-Sq  >0.2500 
Anderson-Darling      A-Sq  0.318331    Pr > A-Sq  >0.2500 
 
 
 Quantiles (Definition 5) 
 
Quantile          Estimate 
100% Max       8.02645E-04 
99%            8.02645E-04 
95%            8.02645E-04 
90%            5.57168E-04 
75% Q3         1.34851E-04 
50% Median    -2.82622E-05 
25% Q1        -2.00258E-04 
10%           -3.77905E-04 
5%            -8.10720E-04 
1%            -8.10720E-04 
0% Min        -8.10720E-04 
 
 
               Extreme Observations 
--------Lowest-------        -------Highest------- 
       Value      Obs               Value      Obs 
 
-0.000810720       17         0.000134851       14 
-0.000377905        9         0.000264857        1 
-0.000277777       11         0.000388403       12 
-0.000230942       13         0.000557168        8 
-0.000200258        2         0.000802645       16 
 
 

   Stem Leaf                     #  Boxplot                        Normal Probability Plot 
      8 0                        1     0      0.0009+                                           *   ++++ 
      6                                             |                                          +++++ 
      4 6                        1     |            |                                    ++*+++ 
      2 69                       2     |      0.0003+                               ++*++* 
      0 11023                    5  +-----+         |                          **+** * 
     -0 8316                     4  *--+--*         |                    **+**+ 
     -2 8830                     4  +-----+  -0.0003+            * *++**+ 
     -4                                             |         ++++++ 
     -6                                             |    +++++ 
     -8 1                        1     0     -0.0009+++++   * 
        ----+----+----+----+                         +----+----+----+----+----+----+----+----+----+----+ 
    Multiply Stem.Leaf by 10**-4                         -2        -1         0        +1        +2 
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