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Abstract

Robertson and Seymour proved Wagner’s Conjecture, which says that finite graphs are

well-quasi-ordered by the minor relation. Their work motivates the question as to whether

any class of graphs is well-quasi-ordered by other containment relations. This dissertation

is concerned with a special graph containment relation, the induced-minor relation.

This dissertation begins with a brief introduction to various graph containment relations

and their connections with well-quasi-ordering. In the first chapter, we discuss the results

about well-quasi-ordering by graph containment relations and the main problems of this

dissertation. The graph theory terminology and preliminary results that will be used are

presented in the next chapter. The class of graphs that is considered in this research is

the class W of graphs that contain neither W4 (a wheel graph with five vertices) and

K5\e (a complete graph on five vertices minus an edge) as an induced minor. Chapter 3 is

devoted to studying the structure of this class of graphs. A class of graphs is well-quasi-

ordered by a containment relation if it contains no infinite antichain, so infinite antichains

are important. We construct in Chapter 4 an infinite antichain of W with respect to the

induced minor relation and study its important properties in Chapter 5. These properties

are used in determining all well-quasi-ordered subclasses of W to reach the main result of

Chapter 6.

v



Chapter 1
Introduction

The graph theory terminology used here generally follows Diestel [5] except where other-

wise noted. Most terminology is formally define in Section 2.2.

An antichain in a partially ordered set (Q,6) is a subset of Q for which no two distinct

elements are comparable. One of the most important results in graph theory is Robertson

and Seymour’s proof of Wagner’s Conjecture [16], which says that the class of all finite

graphs has no infinite antichain under the minor relation. In other words, a graph is a

minor of another if the first is obtained from the second by a (possibly empty) sequence

of vertex deletions, edge deletions, and edge contractions (where the order of the graph

operations is irrelevant). Their work leads to the question as to whether the class of all

finite graphs has no infinite antichain for other containment relations.

An induced minor relation is a special minor relation that allows only vertex deletion and

edge contraction. The class of all finite graphs has an infinite antichain for the induced

minor relation, which is the set of the complement of cycles on at least three vertices.

However, if we restrict to some smaller classes of graphs, there could be no infinite antichain

for this relation. The following result of Thomas [18] is the first result on the induced

minor with this property and it is also one of the motivation behind our research. A

series-parallel graph is a graph that does not contain a subdivision of K4.

Theorem 1.1. [18] The class of series-parallel graphs has no infinite antichain for the

induced minor relation.

Thomas proved this result by studying the labeled rooted version of this class of graphs.

He also gave an example of infinite antichain in the class of planar graphs for the induced
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minor relation. He proposed the problem whether there is an infinite antichain in the class

of graphs that cannot be contracted onto K5\e (a complete graph on five vertices minus

an edge) for the induced minor relation or not. Our research is concerned with the induced

minor relation. We can also use our result to answer this question and generalize Thomas’

result.

Remark that a formal definition of well-quasi-ordering (or wqo) is given in Chapter 2,

and for a natural graph containment relation, it is wqo on a class of graphs if and only if

there is no infinite antichain. The remainder of this chapter is devoted to briefly discussing

results on wqo and graph containment relations, properties of induced minor, and the main

results of this dissertation.

1.1 Well-Quasi-Ordering and Graph Containment Relations

Natural operations in graphs include vertex deletion, edge deletion , and edge contraction.

Table 1.1 [1] shows graph containment relations obtained by combining these graph oper-

ations. For example, a graph H is an induced minor of a graph G if H is obtained from G

by a (possibly empty) sequence of vertex deletions and edge contractions. All relations in

Table 1.1, except the minor relation, are not wqo. For instance, the set of the complement

of complete graphs on at least 1 vertex is an infinite antichain for the spanning subgraph

and isomorphism relations.

The topological minor is a graph relation that was the background of the earliest results

in the area of wqo. A subdivision of H is a graph obtained from H by replacing edges

by paths. A graph H is a topological minor of a graph G if G has a subgraph that is a

subdivision of H. The topological minor is not well-quasi-ordering on the class of finite

graphs, see examples of infinite antichains in [7] and [9]. However, this relation is wqo on

some smaller classes of graphs. Kruskal proved the positive results of this relation.
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Table 1.1: Containment relations obtained by vertex deletion (VD), edge deletion (ED),
or edge contraction (EC) [1].

Containment Relation VD ED EC
Minor Yes Yes Yes
Induced Minor Yes No Yes
Contraction No No Yes
Subgraph Yes Yes No
Induced Subgraph Yes No No
Spanning Subgraph No Yes No
isomorphism No No No

Theorem 1.2. [5] The finite trees are well-quasi-ordered by the topological minor relation.

For a positive integer n, a double path Bn of length n is the graph obtained from a n-

edge path by doubling each edge in parallel. Robertson conjectured the following statement,

which was proved later by Liu [14].

Theorem 1.3. [14] (Robertson’s Conjecture) For every positive integer k, graphs that do

not have a topological minor Bn are well-quasi-ordered by the topological minor relation.

Ding [7] proved Robertson’s Conjecture in the special case of a minor-closed class of

graphs. A class G of graphs is minor-closed if every minor of a graph in G is in G .

Theorem 1.4. [7] A minor-closed class G of graphs is well-quasi-ordered by the topological

minor relation if and only if some Bn is not in G .

The class of finite graphs has an infinite antichain for the edge contraction relation,

which is the set of graphs with two vertices and n edges, for n = 1, 2, . . .. Kamiński,

Raymond, and Trunk [11] proved the following result on the wqo by this relation for the

class of multigraphs (parallel edges are allowed) with some restrictions. A bond in a graph

is a minimal set of edges whose removal increases the number of connected components in

the graph.
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Theorem 1.5. [11] The class of multigraphs with at most p connected components and

bonds of size at most k is well-quasi-ordered by the edge contraction relation for all positive

integers p, k.

We next discuss some results of wqo by subgraph relation,induced subgraph relation,

and induced minor relation.

1.1.1 Well-Quasi-Ordering by subgraph relation and induced subgraph
relation

A graph H is a subgraph of a graph G if H is obtained from G by a (possibly empty)

sequence of vertex deletions and edge deletions. An induced subgraph can be constructed

by only a (possibly empty) sequence of vertex deletions. In general, these two relations are

not wqo. For example, cycles with different length do not contain another as a subgraph or

an induced subgraph so we can form an infinite antichain by cycles with different length.

We will discuss the positive results of these two relations by excluding some graphs as

subgraphs or induced subgraphs. Damaschke [4] proved the following results.

Theorem 1.6. [4] Then the following classes of graphs are well-quasi-ordered by the

induced subgraph relation.

(i) The class of cographs, graphs that do not have an induced subgraph a path on four

vertices.

(ii) The class of graphs that do not have an induced subgraph P5 or a complete graph on

three vertices K3.

(iii) The class of graphs that do not have an induced subgraph K3 or K2+2K1 (the disjoint

union of K2 and two copies of K1).

We call a class of graphs F an ideal with respect to the subgraph relation, ⊆, if G ⊆

G′ ∈ F implies that G ∈ F . Ding [6] characterized these graph ideals in terms of
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excluding subgraphs. Let Cn be a cycle on n vertices and Fn be a graph obtained from a

path on n vertices by attaching two leaves to each end of the path.

Theorem 1.7. [6] Let F be an ideal of graphs with respect to the subgraph relation. Then

the following are equivalent.

(i) F is well-quasi-ordered by the subgraph relation.

(ii) F is well-quasi-ordered by the induced subgraph relation.

iii F contains only finitely many graphs Cn and Fn.

The following theorem of Ding [6] shows the positive results of the induced subgraph

relation by excluding some graphs as subgraphs or induced subgraphs.

Theorem 1.8. [6] The class of graphs that do not have a subgraph Pn is well-quasi-ordered

by the induced subgraph relation.

Ding also studied the class of bipartite graphs. A graph G is called bipartite if its vertex

set V (G) can be partitioned into two sets X,Y such that every edge in its edge set E(G)

connects a vertex in X to a vertex in Y . Let Ḡ denote the bipartite complement of G which

is a bipartite graph with the partition sets X,Y and the edge set X×Y \E(G). He proved

the following results.

Theorem 1.9. [6] The following classes of graphs are well-quasi-ordered by the induced

subgraph relation.

(i) The class of bipartite graphs that do not have an induced subgraph P7, J1, or J2

illustrated in Figure 1.1.

(ii) The class of bipartite graphs that do not have an induced subgraph P6 or P̄6.

Ding [6] also proved the same result as 1.9(i) for digraphs (or directed graphs). On the

other hand, he gave an example of a class of graphs obtained by excluding some graphs as
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Figure 1.1: Graphs J1 and J2 in [6].

induced sugraphs that is not well-quasi-ordered by the induced minor relation. He found

an infinite antichain of the class of bipartite graphs that do not have an induced subgraph

P8 or P̄8.

From [6], the induced subgraph on the class of bipartite graphs that do not have an

induced subgraph P6 or P̄6 is wqo, but it is not wqo on the class of bipartite graphs that

do not have an induced subgraph P8 or P̄8. The question is whether it is wqo on the class

of bipartite graphs that do not have an induced subgraph P7 or not. Notice that P7 and P̄7

are isomorphic. Korpelainen and Lozin [12] proved that this class is not wqo by showing

an infinite antichain. They found that this antichain does not have an induced subgraph

Sun4 illustrated in Figure 1.2.

Figure 1.2: Graphs Sun4, Sun1, and Sun1,2,3 in [12].

Notice that Sun1,2,3 and Sun4 in Figure 1.2 are isomorphic to J1 and J2 in Figure 1.1,

respectively. Korpelainen and Lozin [12] extended the results in Theorem 1.9 to the larger

class of bipartite graphs that do not have an induced subgraph P7 or Sun1,2,3. They proved

the following positive results.

Theorem 1.10. [12] The following classes of graphs are well-quasi-ordered by the induced

subgraph relation.

(i) The class of bipartite graphs that do not have an induced subgraph P7 or Sun1,2,3.

(ii) The class of bipartite graphs that do not have an induced subgraph P7 or Sun1.

6



They also gave a negative example on the induced subgraph relation that they provided

is the class of biconvex graphs that do not have an induced subgraph P8 or P̄8, where they

defined a biconvex graph as a bipartite graph such that its vertices can be linearly ordered

so that the neighborhood of each vertex u (the set of vertices adjacent to u) consists of

consecutive vertices in the order.

In the same research, they proved the following positive result on the classes of bipartite

permutation graphs, which are the intersection of bipartite graphs and permutation graphs.

Theorem 1.11. [12] The class of bipartite permutation graphs that do not have an induced

subgraph Pn is well-quasi-ordered by the induced subgraph relation.

Korpelainen and Lozin [13] studied a class of graphs obtained by excluding two graphs

as induced subgraphs. They called this class of graphs bigenic. They characterized many

bigenic classes of graphs that are well-quasi-ordered or are not well-quasi-ordered by the

induced subgraph relation. Let G + H denote the disjoint union of graphs G and H,

and let nG denote union of n copies of G. For example, they proved that the following

bigenic classes of graphs are well-quasi-ordered by the induced subgraph relation; {K3, P3+

2K1}, {K3, P4 + K1}, {K3, P3 + P2}, and {Kn,mK1}. On the other hand the following

bigenic classes of graphs are not well-quasi-ordered by the induced subgraph relation by

revealing their infinite antichains; {C4, 2K2}, {K3, 2P3}, {K3, K2 + 3K1}, and {K4, 2K2}.

More details on bigenic classes of graphs can be found in [13].

1.1.2 Well-Quasi-Ordering by the induced minor relation

A graph H is an induced minor of a graph G if H is obtained from G by a (possibly

empty) sequence of vertex deletions and edge contractions. Ding [8] studied wqo by the

induced minor relation on the class of chordal graphs and the class of interval graphs. An

intersection graph, which is a graph whose vertex set consists of nonempty sets and there

is an edge connecting two vertices if and only if the intersection of the corresponding sets
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of those two vertices is not empty. A chordal graph is an intersection graph with vertex

set consisting of vertex sets of finite subtrees of an infinite tree. In other words, it is a

graph for which every cycle on at least four vertices has a chord, which is an edge that

is not in the cycle but connects two vertices in the cycle. Two vertices of this graph are

adjacent if the intersection of corresponding vertex sets of finite subtrees is not empty.

An interval graph is a special chordal graph, which is the intersection graph with vertex

set consisting of vertex sets of subpaths of an infinite path. We can think of the interval

graph as the intersection graph of intervals of the real line. These classes are closed under

induced minor. Ding proved that the class of interval graphs is not well-quasi-ordered by

the induced minor relation. He constructed an antichain in this class with respect to the

relation. The antichain consists of graphs Gn, which is an intersection graph of intervals

in Sn ∪ Tn where Sn is the set of closed intervals [i, j] for i = ±1,±2, . . . ,±2n, and Tn is

the set of the following closed intervals:

• [−2, 2], [−4, 1], [−2n+ 3, 2n], [−2n+ 1, 2n− 1];

• [−2i+ 1, 2i+ 1] for i = 1, 2, . . . , n− 2; and

• [−2i, 2i− 2] for i = 3, 4, . . . , n.

Ding proved that the class of chordal graphs of bounded clique size is well-quasi-ordered

by the induced minor relation by proving the stronger result on the Q-labeled fully oriented

version. Note that a fully oriented graph is a graph that its vertex set of every clique is

linearly ordered, and the label is put on the set of all cliques of a graph.

Theorem 1.12. [8] Let (Q,≤) be a wqo and let t be a positive integer. Then the class of

all Q-labeled fully oriented chordal graphs without cliques of size t+1 is well-quasi-ordered

by the induced minor relation.
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The dichotomy result on induced minors and well-quasi-ordering was proved by Blasiok,

Kamiński, Raymond, and Trunk [2].

Theorem 1.13. [2] Let H be a graph. The class of graphs that do not have an induced

minor H is well-quasi-ordered by the induced minor relation if and only if H is an induced

minor of the gem or K̂4 illustrated in Figure 1.3.

Figure 1.3: The gem and the graph K̂4 in [2].

Notice that K4 is an induced minor of K̂4 and K5\e is not an induced minor of both the

gem and K̂4. By this theorem, the class of graphs with no K4-induced minor is well-quasi-

ordered by the induced minor relation, but the class of graphs with no K5\e-induced minor

is not. This also generalizes Thomas’ result and answers the question that he proposed in

[18].

1.2 Related Results

Cicalese and Milanic [3] studied graphs of separability at most k, which are graphs such

that every two nonadjacent vertices are separated by a set of at most k other vertices.

Note that complete graphs have separability at most 0. The main results are on graphs of

separability at most 2. They proved the result on the structure of these graphs as follow.

Theorem 1.14. [3] A graph G has separability at most 2 if and only if G can be built

from complete graphs and cycles by an iterative application of the disjoint union operation

and of pasting two disjoint graphs along a vertex or along an edge.

They characterized graphs of separability at most 2 in terms of graphs that have common

properties involving induced subgraph and induced minor relations.
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Theorem 1.15. [3] A graph G has separability at most 2 if and only if G does not have

an induced subgraph K5\e, H0, H1, H2, or H3, which are graphs illustrated in Figure 1.4.

Figure 1.4: GraphsK5\e,H0,H1,H2, andH3 (wheel), where a dotted indicates a chordless
path containing one or more edges [3].

Theorem 1.16. [3]

(i) Graphs of separability 0 are precisely graphs that do not have an induced minor P3.

(ii) Graphs of separability at most 1 are precisely graphs that do not have an induced

minor C4 or diamond (K4 minus an edge).

(iii) Graphs of separability at most 2 are precisely graphs that do not have an induced

minor K2,3, F5, W4, or K5\e, illustrated in Figure 1.5.

Figure 1.5: Graphs K2,3, F5, W4, and K5\e in [3].

The problem of testing that a graph H is an induced minor of a graph G or not is called

a decision problem. All relations in Table 1.1 have their corresponding decision problems,

and all these problem, except the isomorphism problem, are NP-complete when both G

and H are input [1]. By fixing H and inputting only G, we state these problems by

adding H− in front of the relations. For any graph H, the H-minor problem can be solved

in cubic time [15], and the H-subgraph, H-spanning subgraph, H-induced subgraph, and

H-graph isomorphism can be solved in polynomial time [1]. However, for the H-induced
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minor problem and H-contractibility problem, there exist graphs H such that these two

problems are NP-complete [1]. Fellows, Kratochvil, Middendorf, and Pfeiffer [10] proved

the following theorem by showing that the induced minor testing of the graph in Figure

1.6 is NP-complete.

Theorem 1.17. [10] There is a graph H such that the H-induced minor problem is

NP-complete.

Figure 1.6: A graph H such that the H-induced minor testing is NP-complete [10].

1.3 Main Result

We are now discuss the main result of this dissertation. By a graph we mean a finite,

undirected, simple graph. This research concerns with {W4, K5\e}-free graphs, which are

graphs that contain neither W4 (a wheel graph with five vertices) nor K5\e as an induced

minor. This class of graphs will be denoted by W . In order to study W , we introduce a

composite graph, which is obtained from a graph in W by assigning directions to some

edges and declaring some vertices as special. Then we create a labelled rooted directed

graph from a composite graph by fixing two vertices as roots and assigning labels on

directed edges and special vertices. We defined the terminology in Chapter 2. Using these

new notations will produce a stronger result, but the main reason for using them is to make
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the process in our proof work. In Chapter 3, we study the structure theorem for graphs

in W and prove that the graphs can be constructed from cliques (complete graphs) by

repeatedly applying the disjoint union operation and combining two graphs by identifying

a vertex or an edge. We call these operations sums of graphs. Note that there is a specific

condition for identifying an edge, that will be defined in Chapter 3.

As part of our goal to characterize subclasses of W that are well-quasi-ordered by the

induced minor relation, we study the structure of an antichain in W . Let DΓ be the class

of graphs illustrated in Figure 1.7. In Chapter 4, we prove the following result.

D n,p,q

xn

yn

x0 x1

y0 y1

, ,{ }p q p, q

p
1

p
2

p
3

p
1

p
2

p3

p
1

Figure 1.7: A graph Dn,p,q in DΓ.

Theorem 1.18. DΓ ⊆ W and DΓ is an antichain.

In order to prove this statement, we have to consider D̄Γ+, which consists of labeled

rooted directed version of DΓ. This theorem implies that W is not well-quasi-ordered by

the induced minor relation. Notice that the main part of a graph in DΓ can be obtained

from K3’s and K4’s by identifying edges. In Chapter 5, we focus on the subclass of W

whose members can be constructed using such method. We prove important properties of

an infinite antichain in this subclass. Then we study the structure of a graph in this class

in term of tree structure and prove the results on labeled rooted directed version. Finally,

in Chapter 6, we prove the main result of the research. We define a closed subclass Z of

W as a subclass of W such that every induced minor of any G ∈ Z is in Z .

Theorem 1.19. For any closed subclass Z of W , Z contains an infinite antichain if and

only if Z ∩ DΓ is infinite.
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In terms of wqo, this says a closed subclass Z of W is well-quasi-ordered by the induced

minor relation if and only if Z ∩ DΓ is finite. This implies that Z is well-quasi-ordered

by the induced minor relation if Z contains only finitely many graphs Dn,p,q in DΓ.

Let K4 be the class of series-parallel graphs. Then every graph in K4 does not have

a minor K4 and an induced minor K4. Since K4 is an induced minor of W4 and K5\e,

K4 ⊆ W . Since K4 is an induced minor of Dn,p,q for all n ≥ 3, K4 ∩ DΓ is finite. From

Theorem 1.19, K4 is well-quasi-ordered by the induced minor relation. This implies the

result of Thomas in [18]. From the implication of Theorem 1.18 in terms of wqo, the class

of graphs with no K5\e-induced minor is not because it contains W as a subclass. We

answer the question that Thomas proposed in [18].

From Theorem 1.16(iii), every graph of separability at most 2 is in W . Since K2,3 is an

induced minor of Dn,p,q for all n ≥ 2, the class of graphs separability at most 2 contains

only finitely many graphsDn,p,q. So this class of graphs is well-quasi-ordered by the induced

minor relation.
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Chapter 2
Preliminaries

In this chapter we introduce some standard terminology that will be use throughout the

dissertation, and important previous results in graph theory.

2.1 Well-Quasi-Ordering

Let X be a set and 6 be a binary relation on X. The relation 6 on X is called a quasi-

ordering if it is reflexive and transitive. A sequence x1, x2, . . . of members of X is called

a good sequence if there are indices i < j such that xi 6 xj. The ordered pair (xi, xj) is

called a good pair. It is a bad sequence if otherwise. We call (X,6) a well-quasi-ordering

(or a wqo) if every infinite sequence x1, x2, . . . in X is a good sequence, in other words,

there is no infinite bad sequence.

Recall that Two elements x and y of X are comparable if x 6 y or y 6 x. A subset A of

X is called an antichain of X if no two distinct elements are comparable. The following is

one of the key lemmas that is used in this research.

Lemma 2.1. [5] (X,6) is not a well-quasi-ordering if and only if there is either an

infinite antichain or an infinite strictly decreasing sequence.

Note that since a class of finite graphs ordered by the induced minor relation has no

infinite strictly decreasing sequence, it is well-quasi-ordered by the induced minor relation

if and only if it contains no infinite antichain.

An element a of a subset A of X is a minimal element of A if x 6 a implies a 6 x for

all x in A. The relation 6 on X is called well-founded if every nonempty subset of X has

a minimal element, which means there is no an infinite strictly decreasing sequence.
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For any antichain A of X, let A< = {x ∈ X : x < a for some a ∈ A}. We say that

antichain A is fundamental if A< has no infinite antichains. This definition implies the

following lemma.

Lemma 2.2. If B is a subset of a fundamental antichain A, then B is also fundamental.

We call A a maximal antichain if no proper superset of A is an antichain.

Lemma 2.3. [9] If a well-founded partial order (X,6) has an infinite antichain, then

(X,6) has an infinite maximal antichain A such that every infinite antichain of A ∪ A<

is a subset of A.

Observe that the infinite maximal antichain A determined by this lemma is fundamental.

This lemma implies the following lemma.

Lemma 2.4. If a well-founded quasi-order (X,6) has an infinite antichain, then there is

a fundamental infinite antichain A of X.

Let A and B be two subsets of (X,6). We define A 6∗ B if there is a one to one mapping

ϕ from A to B such that x 6 ϕ(x) for all x ∈ A. We define A <∗ B if there is a one to one

mapping ϕ from A to B such that x < ϕ(x) for all x ∈ A. If (X,6) is a quasi-ordering, we

can extend 6 to a quasi-ordering 6∗ on [X]<ω, the set of all finite subsets of X.

Lemma 2.5. [5] (Higman’s theorem) If (X,6) is a wqo, then ([X]<ω,6∗) is a wqo.

Let (X1,61), (X2,62), . . . , (Xn,6n) be wqo. The Cartesian product of these n sets can

be represented by an array of n dimensions, where each element is an n-tuple,X1×X2×. . .×

Xn = {(x1, x2, . . . , xn)|xi ∈ Xi for all i = 1, . . . , n}. Let (x1, x2, . . . , xn) and (y1, y2, . . . , yn)

be two elements of this set. We define (x1, x2, . . . , xn) 6× (y1, y2, . . . , yn) if xi 6i yi for

all i = 1, . . . , n. A sequence x1, x2, . . . of members of X is increasing if x1 6 x2 6 . . ..

Corollary 12.1.2 in [5] says that every infinite sequence of a wqo set contains an infinite

increasing subsequence. This corollary imply the following lemma.
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Lemma 2.6. The Cartesian product of finite number of wqo sets is wqo.

2.2 Graphs

A graph G is an ordered pair (V,E), where V is a finite set and E is a finite multiset whose

elements are unordered pairs of elements of V . We call the elements of V the vertices of

G, and the elements of E the edges of G. The order of G, |G|, is the number of vertices.

If u, v ∈ V and e = (u, v) ∈ E, then u and v are called the endvertices or ends of e and

we write e = uv. An edge is incident with each of its ends and vice versa. If uv ∈ E then

vertices u, v ∈ V are adjacent or neighbors. The neighborhood of a vertex v in V is the set

of neighbors of v, written as NG(v). Two edges with a common end are adjacent, and two

edges with the same ends are parallel. An edge with identical ends is called a loop.

A graph with no loops or parallel edges is simple. A multigraph is a graph that can have

loops and parallel edges. A simplification of a graph G is a simple graph obtained from

G by deleting all loops an parallel edges. In this research, by a graph we mean a simple

graph. The complement Ḡ of a graph G is the graph with the vertex set V such that two

vertices in Ḡ are adjacent if they are not adjacent in G. The degree of a vertex v, degG(v),

in a graph G is the number of edges incident with v, which is equal to |NG(v)|.

Let G = (V (G), E(G)) and H = (V (H), E(H)) be two graphs. Then G is isomorphic

to H, G ≃ H, if there is a bijection ϕ : V (G) → V (H) so that uv ∈ E(G) if and only if

ϕ(u)ϕ(v) ∈ E(H). LetG∪H be the union of graphs G andH, (V (G)∪V (H), E(G)∪E(H)),

and let G ∩ H be the intersection of graphs G and H, (V (G) ∩ V (H), E(G) ∩ E(H)). If

V (G)∩ V (H) = ∅, then G and H are disjoint. We say that H is a subgraph of G, denoted

as H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆ E(G). If H ⊆ G and H ̸= G, then H is a proper

subgraph of G. If H ⊆ G and V (H) = V (G), then H is a spanning subgraph of G. We

say H is an induced subgraph of G if H ⊆ G and H contains every edge in G whose ends
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belong to V (H). If H is an induced subgraph of G with vertex set X ⊆ V (G), then H is

the subgraph of G induced by X, written as H = G[X]. If X is any set of vertices (usually

of G), we denote G[V (G) \X] by G \X. If G′ is a graph, we simply write G \G′ instead

of G \ V (G′).

A complete graph or clique Kn is a simple graph on n vertices such that each distinct

pair of vertices are adjacent. A triangle is the complete graph on 3 vertices. A path P =

(V (P ), E(P )) is a graph with V (P ) = {v0, v1, . . . , vn} and E(P ) = {v0v1, v1v2, . . . , vn−1vn},

where vi’s are all distinct. The vertices v0 and vn are called the endvertices of P , and the

vertices v1, . . . , vn−1 are called the inner vertices. We call P a v0 − vn path. The length of

path P is n, and P can also be denoted by Pn. If A and B are sets of vertices such that

V (P ) ∩ A = {v0} and V (P ) ∩ B = {vn}, then we say P is an A − B path. Two or more

paths are independent if their inner vertices are disjoint.

A cycle C = (V (C), E(C)) is a graph with V (C) = {v1, . . . , vn} and E(C) = {v1v2, . . . ,

vnv1}, where vi’s are all distinct. The length of cycle C is n, and we call C an n-cycle,

denoted by Cn. A wheel Wn is a graph on n + 1 vertices obtained from a cycle Cn by

adding a vertex connecting to all vertices on the cycle.

A graph G is connected if for any two distinct vertice u, v ∈ V (G), there is a u− v path

in G. We say G is disconnected if G is not connected. A maximal connected subgraph of

G is a component of G. A forest is a graph with no cycles. A tree is a connected forest. A

vertex of degree 1 in a tree is called a leaf.

We say that a subset X of V (G)∪E(G) separates sets A,B ⊆ V (G) if every A−B path

in G contains a vertex or an edge from X. We say X separates G if G \X is disconnected,

in other words, X separates some two vertices in G that are not in X. A cutvertex in

G is a vertex that separates two other vertices of the same component in G. A bridge is

an edge that is not contained in any cycle. A separation of a graph G is an unordered

pair {A,B} such that A ∪ B = V (G) and there is no edge between A \ B and B \ A. If
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A \B ̸= ∅ and B \A ̸= ∅, then {A,B} is a proper separation. The order of the separation

{A,B} is |A ∩ B|, and {A,B} is called a k-separation if |A ∩ B| = k. The set A ∩ B

separates A from B. A graph G is k-connected for some k ∈ N if |G| > k and every proper

separation of G has order at least k. Notice that every non-empty graph is 0-connected,

and the non-trivial connected graphs are 1-connected. The following theorem is a classical

result of Menger [5].

Theorem 2.7. [5] (Menger’s theorem) Let G be a graph and A,B ⊆ V (G). Then the

minimum number of vertices separating A from B in G is equal to the maximum number

of independent A−B paths in G.

If e = uv is an edge of G, let G/e be the graph obtained from G \ u \ v by adding a

new vertex and connecting it to all vertices that were adjacent to u or v in G without

creating parallel edges. This operation will be referred to as edge contraction. Notice that

this definition is slightly different from the ordinary definition of edge contraction, under

which parallel edges could be created. As a matter of fact, our edge contraction is exactly

the simplification of the corresponding ordinary edge contraction. The following lemma is

a result of the structure of 3-connected graphs, which can be found in [5].

Lemma 2.8. [5] If G is 3-connected and G ̸= K4 then there is an edge e in G such that

G/e is 3-connected.

2.3 Directed Graphs, Mixed Graphs, and Composite Graphs

This section contains some new graph terminology that will be used throughout the dis-

sertation. A directed graph is a pair D = (V,A), where V is a finite set and A ⊆ V × V

such that (v, v) /∈ A for all v ∈ V , and at most one of (v1, v2), (v2, v1) is in A for all distinct

v1, v2 ∈ V . Members of V are vertices and members of A are directed edges, which are

also called arcs. An arc (u, v) can be written as uv. If a = uv is an arc, we will say that
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a is directed from u to v. If the direction is irrelevant in the context, we use the similar

terminology as graphs: between, incident, and end. The underlying graph of D = (V,A) is

the graph G = (V,E) such that G has an edge between u, v ∈ V if and only if D has an

arc between u and v. We will call D an orientation of G. That is, we can think of D as a

result of orienting edges of G. A directed graph D is connected if its underlying graph is

connected.

A mixed graph is a triple M = (V,E,A) such that (V,E) is a graph, (V,A) is a directed

graph, and there is at most one (directed or undirected) edge between any two vertices.

Equivalently, a mixed graph M is obtained from a simple graph G by orienting some of

its edge. We will call G the underlying graph of M . An edge of M with ends u, v will be

denoted by uv, where we assume implicitly that if the edge is directed then it is directed

from u to v. We call a mixed graph M ′ = (V ′, E ′, A′) a subgraph of M , denoted M ′ ⊆ M , if

V ′ ⊆ V , E ′ ⊆ E, and A′ ⊆ A. Notice that M ′ is obtained from the subgraph G′ = (V ′, E ′)

of G by inheriting the orientation from A. If M ′ ⊆ M and M ′ ̸= M , then M ′ is a proper

subgraph. A mixed graph M is connected if its underlying graph is connected.

A composite graph is a pair C = (G,D), where G is a graph and D is an orientation of

a subgraph of G. The way to think of a composite graph is to consider it as a graph G

together with an extra structure D = (U,A), where A declares a direction on some edges

of G and U declares some vertices of G as special. Therefore, we can equivalently define

C as a pair (M,U), where M is a mixed graph and U is a set of vertices that contains

all ends of all directed edges of M . For convenience, we will use both (G,D) and (M,U)

to represent a composite graph C = (G,D). We call a composite graph C ′ = (M ′, U ′) a

subgraph of C if M ′ ⊆ M and U ′ ⊆ U . Let Ḡ denote the class of all composite graphs for

which the underlying graph is in G .

Let C = (M,U) be a composite graph with M = (V,E,A). For any distinct u, v ∈ V ,

let C + uv be the composite graph obtained as follows. If C has a directed edge from u

19



to v, then C + uv := C; else C + uv := ((V,E ∪ {uv}, A), U ∪ {u, v}). We call the triple

(C, u, v) a rooted composite graph.

Let Q be a set and let C = (G,D) be a composite graph with D = (U,A). A Q-

labeling of C is a mapping g : U ∪ A → Q. For any class C of composite graphs, let

C (Q) = {(C, g) : C ∈ C and g is a Q-labeling of C}. We call (C, g) a Q-labeled composite

graph and (C, u, v, g) a Q-labeled rooted composite graph.

2.4 Induced Minor Relation

In this section, we introduce the definition of the induced minor relation. If u is a vertex

of G, as usual, let G \u be the graph obtained from G by deleting u and all edges incident

with u, and this operation will be referred to as vertex deletion. Recall from Section 2.2

the edge contraction is the result of an ordinary contraction plus a simplification.

A graph H is an induced minor of a graph G if H is obtained from G by repeatedly

applying a vertex deletion or an edge contraction. Because the order in which the sequence

of vertex deletions and edge contractions does not affect the resulting graph, we can think

of H can be obtained from an induced subgraph G′ of G by contracting edges. For con-

venience, we say G′ is contracted to H. Assume that a vertex x of H is the result of

contracting some edges of G. Then these edges form a connected induced subgraph X of

G, and for distinct vertices these induced subgraphs are disjoint. We say X is contracted

to x. We say that H is a proper induced minor of G if H is an induced minor of G but

H ̸= G.

We call G H-free if H is not an induced minor of G. For a set H of graphs, G is called

H -free if G is H-free for all H ∈ H . We say that a subclass X of a class of graphs G

is a closed subclass of G if for every induced minor of any G ∈ X , if it is in G , then it is

in X .
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The concept of induced minor can be naturally extended to mixed graphs and composite

graphs. Let M = (V,E,A) be a mixed graph. For any vertex v, let M \ v be the mixed

graph obtained from M by deleting v from its vertex set and also deleting edges incident

with v from E ∪ A. For any edge uv of M , let M/uv be a mixed graph obtained from M

as follows:

(1) delete uv from E ∪ A;

(2) identify u with v, and let w be the new vertex;

(3) for each z ∈ V \ {u, v}, if there are two edges between z and w, delete exactly one

of them.

Notice that step (3) could produce different mixed graphs since different edges could be

deleted. Therefore, notation M/uv presents any one of these mixed graphs. Finally, an

induced minor of M is a mixed graph obtained from M by repeatedly applying:

(1) a vertex deletion;

(2) an edge contraction;

(3) an arc unmarked operation, which removes an arc from A (turning a directed edge

into an undirected edge).

Let C = (M,U) be a composite graph. For any vertex v of C, let C \ v = (M \ v, U \ v).

We call a composite graph C ′ = (M ′, U ′) an induced subgraph of C if M ′ = M \ X and

U ′ = U \X for some subset X of V (G), where G is the underlying graph ofM . For any edge

uv of C, let C/uv = (M/uv, U/uv), where U/uv = (U \ {u, v}) ∪ {w} if U ∩ {u, v} ̸= ∅,

or U/uv = U if otherwise. We remark that w is the new vertex of M/uv. Finally, an

induced minor of C is a composite graph obtained from C by repeatedly deleting vertices,

contracting edges, and unmarking arcs. A closed subclass Z of a class G of composite
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graphs is a subclass of G such that if for every C = (G,D) ∈ Z , all induced minors of C

are in Z , and every composite graph C ′ = (G,D′) is also in Z as long as D′ is a subgraph

of D.

From the definitions of a vertex deletion and an edge contraction, the order in which

a sequence of vertex deletions and edge contractions does not affect the resulting graph.

Equivalently, a composite graph C1 = (M1, U1) is an induced minor of a composite graph

C2 = (M2, U2) if there is a map f with domain V1 ∪ E1 ∪ A1 satisfying:

(i) for every v ∈ V1, f(v) is a connected induced subgraph of G2 (the underlying graph

of M2); and if v ∈ U1, f(v) ∩ U2 ̸= ∅;

(ii) for any distinct u, v ∈ V1, f(u) ∩ f(v) = ∅ ;

(iii) for any distinct u, v ∈ V1, there is an edge in M1 between u and v if and only if there

is an edge in M2 between a vertex in V (f(u)) and a vertex in V (f(v));

(iv) for each e ∈ E1, f(e) is an edge in E2; and if e ∈ A1 directed from u to v, f(e) is an

arc in A2 directed from a vertex in V (f(u)) to a vertex in V (f(v)).

We say C1 is a proper induced minor of C2 if C1 is an induced minor of C2 but C1 ̸= C2.

Then (C1, u1, v1) is an induced minor of (C2, u2, v2) if C1 is an induced minor of C2 such

that f(u2) = u1 and f(v2) = v1.

Next, we define the notations for the induced minor relation on a class of Q-labeled

rooted composite graphs. Suppose that (Q,6) is quasi-ordering. For any two labeled com-

posite graphs (C1, g1), (C2, g2), we define (C1, g1) ≼ (C2, g2) if C1 is an induced minor

of C2 and we require the induced minor relation to respect the labels. When an edge is

contracted, the label of the new vertex is the one of label of the two old vertices. For

the label of the arcs incident to the new vertex is the one of label of the arcs in parallel

(before simplification). Equivalently, (C1, g1) ≼ (C2, g2) if there is a map f with domain
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V1 ∪E1 ∪A1 satisfying (i)-(iv) in the definition of the induced minor of composite graphs

and the following conditions:

(i) for each x ∈ U1, there is y ∈ f−1(x) such that g1(x) ≤ g2(y),

(ii) for each e ∈ A1, g1(e) ≤ g2(f
−1(e)).

We say (C1, g1) is a proper induced minor of (C2, g2), written (C1, g1) ≺ (C2, g2), if

(C1, g1) ≼ (C2, g2) and (C1, g1) ̸= (C2, g2). We define ϵ as a special element such that

for any quasi-ordering (Q,6), ϵ ≤ q for all q ∈ Q.

When Robertson and Seymour proved Wagner’s Conjecture, they proved something

stronger. In fact they proved the minor relation on a class of directed graphs with the

label on the vertices or edges. We first introduce the definition of the minor relation. If u

is an edge of a graph G, as usual, let G \ e be the graph obtained from G by deleting e,

and this operation will be called edge deletion. A graph H is a minor of a graph G if H is

obtained from G by repeatedly applying a vertex deletion, an edge deletion, and an edge

contraction. Equivalently, H can be obtained from a subgraph of G by contracting edges.

From Section 2.3, we can think of a directed graph D = (V,A) as a composite graph such

that every edge in the underlying graph is declared a direction by A and every vertex in

V is special. Let Q be a set. Then a Q-labeling of D is a mapping g : V (D) ∪ A → Q.

We call (D, g) a Q-labeled directed graph, and we can also denote the class of such graphs

as C (Q). Suppose that (Q,6) be a quasi-ordering. Then a Q-labeled directed graph D1

is a minor of a Q-labeled directed graph D2 if there is a map η with domain V (D1) ∪A1,

satisfying:

• for each v ∈ V (D1), η(v) is a connected subgraph of D2, and there exists w ∈ V (η(v))

with g1(v) 6 g2(w); and η(v) ∩ η(v′) = ∅ for all distinct v, v′ ∈ V (D1);
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• for each e ∈ A1 directed from u to v, η(e) is an arc of A2 with g1(e) 6 g2(η(e))

directed from a vertex in V (η(u)) to a vertex in V (η(v)).

From the existence of the map η, it follows that there is a subgraph D′
2 of D2 corre-

sponding to D1 such that each vertex v in D1 corresponds to a connected subgraph η(v)

of D′
2 and each edge in D1 corresponds to an edge in D′

2. By contracting every edge in

each η(v), the resulted graph is isomorphic to D1. So D1 is isomorphic to a minor of D2

respecting the directions and labels. The following is a simplified version of the Robertson

and Seymour result since they allow multiple edges and loops which we do not allow.

Theorem 2.9. The class C (Q) of labeled directed graphs is well-quasi-ordered by the minor

relation if (Q,6) is a wqo.

A labeled composite clique is a labeled composite graph such that its underlying graph

is a clique. Let K̄ (Q) denote the class of labeled composite cliques.

Corollary 2.10. (K̄ (Q),≼) is a wqo if (Q,6) is.

Proof. Let (C1, g1), (C2, g2), . . . be an infinite sequence in K̄ (Q), where Ci = (Gi, Di) with

the orientation Di = (Ui, Ai). For all i = 1, 2, . . ., let D′
i = (U ′

i , A
′
i) be a directed graph

obtained from Ci by declaring a direction on every undirected edge in E(Gi and turning

every vertex in V (Gi)\Ui be special. Then U ′
i = V (Gi) and A′

i consists of all new arcs and

all arcs in Ai. Let Q
′ = Q ∪ {ϵ}. Then (Q′,6) is still wqo. Let (D′

i, g
′
i) be the Q-labeled

directed graph obtained by defining g′i(x) = gi(x) if x ∈ Ui ∪ Ai or g
′
i(x) = ϵ if otherwise.

By Theorem 2.9, there exist 1 ≤ i ≤ j such that (D′
i, g

′
i) is a minor of (D′

j, g
′
j). Since the

underlying graph of these two composite graphs are cliques, for any distinct u, v ∈ U ′
i ,

there is an edge in A′
i between u and v if and only if there is an edge in A′

j between a

vertex in V (η(u)) and a vertex in V (η(v)). So (D′
i, g

′
i) is an induced minor of (D′

j, g
′
j). By

using the arc unmarked operation, we have that (Ci, gi) is an induced minor of (Cj, gj).

Hence, (K̄ (Q),≼) is a wqo.
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Chapter 3
{W4, K5\e}-Free Graphs

In this chapter, we study the structure of a {W4, K5\e}-free graph. Let W be the class

of such graphs. We first introduce the sum operation of graphs, 0-, 1-, 2-sums. Then we

show that a graph in W can be constructed from cliques by repeatedly applying 0-, 1-,

and 2-sums with specific conditions on 2-sum.

3.1 Sums of Graphs

The 0-sum is an operation to combining two graphs by disjoint union them to produce a

new graph, which is called a 0-sum. Note that 0-sum is an operation and a result of this

operation. Every graph G can be constructed via 0-sums starting from connected graphs.

These connected graphs are precisely connected components of G.

A clarification. Suppose O is an operation that produces a graph for any pair of input

graphs (for example, O could be 0-sum). Let G0 be a class of graphs. When we say “a graph

G can be constructed via operation O starting from graphs in G0”, we means that G can

be constructed from graphs in G0 by repeatedly applying operation O. To be more precise,

for each positive integer i, let Gi be the union of Gi−1 and the class of graphs obtained by

applying O to all possible pairs of graphs from Gi−1. Let G∞ be the union of Gi over all

integers i ≥ 0. So when we say “G can be constructed from graphs in G0 by repeatedly

applying operation O” we mean G belongs to G∞.

The 1-sum is an operation to combining two graphs by identifying a vertex of one graph

with a vertex of the other graph to produce a new graph, which is called a 1-sum. Every

connected graph G of order ≥ 2 is the 1-sum of its blocks (maximal 2-connected subgraphs

or bridges). Let B(G) be the block graph of G which is a bipartite graph on A∪B where A
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is the set of cutvertices of G, B is the set of its blocks, and a ∈ A and B ∈ B are adjacent

if a ∈ V (B). By the maximality of blocks, we obtain the following result, which is known

as block-tree theorem [5].

Lemma 3.1. [5] The block graph of a connected graph is a tree.

The 2-sum is an operation to combining two graphs by identifying an edge, where the

common edge may or may not be deleted. If the common edge is not deleted, then the

result is called a 2I-sum; otherwise, if the common edge is deleted, then the result is called

a 2II-sum. The 2-sum depends on if the common edge is deleted and how the ends of the

identified edges are paired. So there are four possible different results when 2-sum two

graphs.

Notice that the resulting graph of each sum is not unique; 1-sum depends on how the

two vertices are chosen; 2-sum depends on how the two edges are chosen, as well as how

the two edges are identified, and if the identified edge is deleted.

Lemma 3.2. Every 2-connected G can be constructed via 2-sums starting from K3 and

3-connected graphs.

Proof. To prove this, we first show that if a 2-connected graph H has a proper 2-separation

then H is a 2-sum of two smaller 2-connected graphs. Let {A,B} be a 2-proper separation

of H. Then A∪B = V (H), A\B ̸= ∅, B\A ̸= ∅, and A∩B = {u, v} for some u, v ∈ V (H).

Let e be an edge joining u and v, which may or may not be an edge of H. Let HA and

HB be induced subgraphs of H+ = (V (H), E(H) ∪ {e}) on A and B, respectively, which

both are smaller than H. So H is either a 2I-sum or a 2II-sum of HA and HB performing

over e. If HA has a proper 0- or 1-separation then we may replace e with HB to obtain

a proper 0- or 1-separation of H, which contradicts with the 2-connectivity of H. By the

same argument, HA and HB are 2-connected. Suppose that G is 2-connected but neither

3-connected nor K3. Then G has a 2-separation {A,B}. By the previous statement, G is
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a 2-sum of 2-connected graphs GA and GB. By induction, G can be constructed a 2-sum

of K3 or 3-connected graphs.

Let k be a nonnegative integer, and let G1 and G2 be vertex disjoint graphs. A graph

G is a k-sum of G1 and G2, G = G1 ⊕k G2, means G is obtained from G1 and G2 by

identifying a complete subgraph of G1 on k vertices with a complete subgraph of G2 on k

vertices and deleting a (possibly empty) set of identified edges. Then 0-, 1-, and 2- sums

are the cases when k = 0, 1, and 2, respectively. Next, we show that when we talk about

constructing graphs by repeatedly k-summing, where k is a nonnegative integer, the order

of performing the operations do not affect the result.

Proposition 3.3. Suppose G = G1 ⊕k1 (H1 ⊕k2 H2). Then G = (G1 ⊕k1 Hi)⊕k2 H3−i, for

some i ∈ {1, 2}.

Proof. For i = 1, 2, let Ci be the complete subgraph of Hi over which the k2-sum took

place. Let C be the complete subgraph of H1 ⊕k2 H2 over which the k1-sum took place.

Then edges of C consist of some identified edges and some edges from only one of H1 and

H2. Then the result follows.

3.2 0-, 1-, 2-Sums of Cliques

Let S be the class of graphs constructed from cliques by repeatedly applying 0-, 1-, and

2-sums with the condition that a 2II-sum is performed over an edge e only when every

clique containing e has size 3 or 4. We will prove the following statement.

Theorem 3.4. W = S

To do so, we need the following results.

Lemma 3.5. Let H be a connected graph, and let G be a disjoint union of graphs A and

B. Then H is an induced minor of G if and only if H is an induced minor of A or B.
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Proof. (⇐) Suppose that H is an induced minor of A. Since deleting V (B) makes A as

induced minor of G, H is an induced minor of G. (⇒) Suppose not, there are subgraphs A′

of A and B′ of B that are contracted to two different vertices of H, a and b, respectively.

Since H is connected, H has a path Pab from a to b. So there is a path P in G from A′

to B′ that is contracted to Pab, contradicting to the fact that there is no path from A to

B.

Lemma 3.6. Let H be a 2-connected graph, and let G be a 1-sum of graphs A and B.

Then H is an induced minor of G if and only if H is an induced minor of A or B.

Proof. Let x be the common vertex of A and B over which the 1-sum is performed. (⇐)

Suppose that H is an induced minor of A. Since deleting V (B)−{x} makes A an induced

minor of G, H is an induced minor of G. (⇒) Suppose on the contrary that H is not

an induced minor of either A or B. Since H is an induced minor of G, there are induced

connected subgraphs A′ of A \ x and B′ of B \ x that are contracted to two different

vertices of H, a and b, respectively. Since V (A) ∩ V (B) = {x}, every path from A′ to B′

contains x. So G does not have two independent paths between A′ and B′, and thus H

does not have two independent paths between a and b since H is obtained from an induced

subgraph of G after contraction. By Menger’s theorem, this contradicts with the fact that

H is 2-connected.

Lemma 3.7. If G is a 2-sum of 2-connected graphs A and B, then A and B are induced

minors of G.

Proof. Let e = uv be the common edge of A and B over which the 2-sum is performed. So

e may or may not be in G. Since B is 2-connected, B has a u− v path P not containing

e. Then P is also a path in G. By deleting vertices of G in B \ P and contracting all but

one edges of P , we obtain A an induced minor of G.
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Lemma 3.8. Let H be a 3-connected graph. The following statements are true.

(i) If G is a 2I-sum of 2-connected graphs A and B over the common edge e = uv, and

H is an induced minor of G, then H is an induced minor of A or B.

(ii) If G is a 2II-sum of 2-connected graphs A and B over the common edge e = uv, and

H is an induced minor of G, then H is an induced minor of A or B or A\e or B \e.

Proof. Part (i). Suppose on the contrary that H is not an induced minor of either A or B.

We consider the following cases.

Case 1. There are subgraphs A′ of A \ {u, v} and B′ of B \ {u, v} that are contracted to

two different vertices of H, a and b, respectively. Since V (A) ∩ V (B) = {u, v}, every path

between A′ and B′ contains u or v. So G has at most two independent paths between A′

and B′, and H also has at most two independent paths between a and b since H is obtained

from an induced subgraph of G after contraction. By Menger’s theorem, this contradicts

with the fact that H is 3-connected.

Case 2. If there are no such A′ and B′ as described in Case 1, so by symmetry we may

assume that for each connected subgraph C of G contracted to a vertex of H, C ∩A ̸= ∅.

There are five cases: neither u nor v is contained in any C; u is contained in some C but

v is not contained in any C; u is not contained in any C but v is contained in some C; u

and v are contained in the same C; u and v are contained in different subgraphs, C1 and

C2, respectively. In the first case, since H is an induced minor of G but not an induced

minor of either A or B, this leads to Case 1. In the second case, since C \ V (B \ {u, v})

is a connected subgraph of A, there is an induced subgraph of A contracted to H. So H

is an induced minor of A, contradiction. In the third case, we can use the same argument

as the second case to obtain a contradiction. In the fourth case, since we can replace a

uv-path in G by e, C \ V (B \ {u, v}) is a connected subgraph of A; so H is an induced

minor of A, contradiction. In the last case, since e ∈ E(G), C1 and C2 are adjacent, and
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so do C1 \V (B \{u, v}) and C2 \V (B \{u, v}), which are connected subgraphs of A. Thus

H is an induced minor of A, contradiction.

Conclusion (ii) can be proved by the same argument as (i), except the last part in

case 2 because e /∈ E(G). If C1 and C2 are adjacent in G, then C1 \ V (B \ {u, v}) and

C2 \ V (B \ {u, v}) are adjacent in A by e; so H is an induced minor of A, contradiction.

Otherwise, C1 \ V (B \ {u, v}) and C2 \ V (B \ {u, v}) are not adjacent in A \ e; so H is an

induced minor of A \ e, contradiction.

Remark that Lemma 3.8(i) is not true if G is a 2II-sum of 2-connected graphs. For

example, G is a 2II-sum of two K5’s, then K5\e is an induced minor of G but not an

induced minor of K5.

We now prove the main result of this chapter.

Prove of Theorem 3.4. First, we show that S ⊆ W . Let G ∈ S . Then G is con-

structed by 0, 1, or 2-sums of cliques. Suppose on the contrary that W4 or K5\e is an

induced minor of G. Note that W4 and K5\e are 3-connected. From Proposition 3.3, we

know that the order of the 0- and 1-sums to construct G is irrelevant. So G is the 0-sum of

graphs, that are cliques or 2-sum of cliques. By Lemmas 3.5, 3.6, and 3.8(i), W4 or K5\e

is an induced minor of some Kn or a graph that is a 2II-sum of copies of K3 and K4. Since

deleting a vertex or contracting an edge of Kn gives a clique Kn−1, all induced minors of

Kn are cliques. By Lemma 3.8(ii), K4 is the only 3-connected induced minor of a 2II-sum

of copies of K3 and K4. So W4 and K5\e are not induced minors in both cases. Hence, G

is {W4, K5\e}-free graph, and S ⊆ W .

Next, we show that W ⊆ S . We first show that if G is a 3-connected graph in W , then

G = Kn for some n ∈ N. Equivalently, if G ̸= Kn for any n ∈ N, then G has W4 or K5\e

as an induced minor. We will prove this statement by induction on |G| = n. At |G| = 5,

G ̸= K5. Since G is 3-connected, each vertex in G has degree at least 3 and |E(G)| ≥ 8.
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So G is either K5\e or W4. Suppose that this statement is true for |G| = n − 1. We will

show that it is true for |G| = n. Suppose that G ̸= Kn. From Lemma 2.8, we have that

there is an edge e in G such that G/e is 3-connected. If G/e ̸= Kn−1, then we are done by

the induction hypothesis. Suppose that G/e = Kn−1. Let u and v be incident vertices of

e. Let N(u) and N(v) denote the set of vertices that are adjacent to u and v, respectively.

Then G \ {u, v} = Kn−2.

Case 1. (N(u) − {v}) ∩ (N(v) − {u}) = ∅. Since G is 3-connected, there are w, x ∈

N(u)−{v} and y, z ∈ N(v)−{u}. By deleting all vertices in V (G)−{u, v, w, x, y, z} and

contracting xy, we obtain W4, see Figure 3.1.

u v

x

w y

z

N(u)-{v} N(v)-{u}

u v

xw y

z

Figure 3.1: (N(u)− {v}) ∩ (N(v)− {u}) = ∅.

Case 2. (N(u) − {v}) ∩ (N(v) − {u}) ̸= ∅. Let x ∈ (N(u) − {v}) ∩ (N(v) − {u}). If

there are w ∈ N(u) − N(v) − {v} and y ∈ N(v) − N(u) − {u}. By deleting all vertices

in V (G) − {u, v, w, x, y}, we obtain W4, see Figure 3.2. If either N(u) − N(v) − {v} or

N(v)−N(u)− {u} is not empty, we suppose that there is z ∈ N(v)−N(u)− {u}. Then

v is adjacent to all vertices in V (G). Since G is 3-connected, there are w, x ∈ N(u)− {v}.

By deleting all vertices in V (G)− {u, v, w, x, z}, we obtain K5\e, see Figure 3.3.

u v

x

w y

N(u)-{v} N(v)-{u}

u v

x

w y

Figure 3.2: N(u)−N(v)− {v} and N(v)−N(u)− {u} are not empty.
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u v

x

w

z
N(u)-{v}

N(v)-{u}

u v

x

w

z

Figure 3.3: Either N(u)−N(v)− {v} or N(v)−N(u)− {u} is empty.

Hence, all 3-connected graphs in W are in S . Now, we consider a graph G ∈ W which

is 2-connected but not 3-connected. We will prove that G ∈ S , by doing the induction on

|G|. Since the smallest 2-connected but not 3-connected graph is K3, which is in W , the

statement is true when |G| = 3. Suppose that the statement is true when |G| = n− 1. For

|G| = n, since G is 2-connected but not 3-connected, there are 2-connected graphs A and

B such that G is a 2-sum of these two graphs on the common edge e. By Lemma 3.7, A

and B are in W . By the induction hypothesis, A and B are in S . If the 2-sum between A

and B to construct G is a 2II-sum, and e is contained in a clique K with order greater than

4 in the constructions of A or B, then K\e contains K5\e as an induced minor. Since G

contains K\e as an induced minor, G contains K5\e as an induced minor, contradiction.

Thus either the 2-sum is a 2I-sum or all cliques that contain e have order least than 5.

So G ∈ S . For a graph G which is 1-connected but not 2-connected, we use the same

argument together with Lemma 3.6, except we start the induction at n = 2, and obtain

the result. For a graph G which is 0-connected (every graph), it consists of components

which are 1-connected and in S . So G ∈ S . Hence, W ⊆ S .
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Chapter 4
Infinite Antichain

In this chapter, we prove that DΓ is an antichain in W , which implies that W is not well-

quasi-ordered by the induced minor relation. To prove this result, we consider the class of

composite graphs with underlying graphs in DΓ and some specific graphs, which will be

explained later. We show that this class of composite graphs is an antichain in W̄ .

We define Dn for each n ∈ N to be a graph such that V (Dn) = {x0, . . . , xn, y0, . . . , yn}

and E(Dn) = {x0x1, x0y1, y0x1, y0y1, . . . , xn−1xn, xn−1yn, yn−1xn, yn−1yn}, see Figure 4.1.

Notice that Dn can be constructed from K3’s and K4’s by repeatedly applying 2II-sum.

For m < n, Dm is an induced minor of Dn by deleting vertices xm+1, . . . , xn, ym+1, . . . , yn.

xn

yn

x0 x1

y0 y1

Figure 4.1: Graph Dn

Let Γi, i = 1, . . . , 4, be a graph illustrated in Figure 4.2, and let Γ+ be the class of such

graphs.

a

b

a

b

a

b

a

b

Figure 4.2: Graphs Γ1, Γ2, Γ3, Γ4

We define Dn,p,q, where n ∈ N and p, q ∈ Γ+, to be a graph obtained from Dn, p, and

q by identifying a pair {a, b} of p to a pair {x0, y0} of Dn and identifying a pair {a, b} of

q to a pair {xn, yn} of Dn. A pair of degree-4 or degree-5 vertex in Dn,p,q are called twins
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if they have the same set of neighbors. Notice that x0 and y0 are not twins if p is Γ1 or

Γ4, which is the same as xn and yn. Let DΓ+
= {Dn,p,q|n ∈ N and p, q ∈ Γ+}. Notice that

Dn,p,q can be obtained from K2’s, K3’s, and K4’s by repeatedly applying 1- and 2II-sums;

Dn is a member in DΓ+
where p and q are Γ4. By Theorem 3.4, DΓ+ ⊆ W .

Let D̄Γ+
be the class of composite graphs with underlying graphs in DΓ+

such that for

each composite graph C = (Dn,p,q, S), its orientation S = (U,A) consists of A = ∅ and

U ∈ {{u}, {v}, {u, v}}, where u ∈ {x0, y0} and v ∈ {xn, yn}, if p or q is Γ4; otherwise

U = ∅, see Figure 4.3. Then DΓ ⊆ D̄Γ+
and D̄Γ+ ⊆ W̄ .
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q
1

q
2

q3
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D n,p,q

xn

yn

x0 x1

y0 y1

p q

p
1

p
2

p
3

p
1

p
2

p3

p
1

Figure 4.3: A composite graph C = (Dn,p,q, S), where a vertex in a box is special.

We show that D̄Γ+
is an antichain in W̄ . To prove this result, we need the following

lemma.

Lemma 4.1. For all m,n ≥ 3, if (Dm,p,q, S
1) is an induced minor of (Dn,p,q, S

2), then

(Dm,p,q, S
1) = (Dn,p,q, S

2).

Proof. Suppose that (Dm,p,q, S
1) is an induced minor of (Dn,p,q, S

2). Then there is a map

f from Dm,p,q to Dn,p,q. We begin with the following claims.

Claim 1: If u is a vertex in Dm,p,q with degree greater than 3, then Iu = {i|xi or

yi ∈ f(u) for some 0 ≤ i ≤ n} is not empty. Suppose on the contrary that Iu = ∅. Then
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f(u) is contained in either p or q, say f(u) ⊆ p. Since f(u) is connnected, p is Γ1, Γ2, or

Γ3, contradicting the fact that the degree of u is greater than 3.

Claim 2: If u and v are twins in Dm,p,q, then the following are true.

(2.1) Iu∩Iv ̸= ∅. Suppose otherwise that Iu∩Iv = ∅. Notice that Iu and Iv are consecutive

sets because f(u) and f(v) are connected. Then we assume that max Iu < min Iv. Since

u and v are not adjacent, there is an index i0 such that max Iu < i0 < min Iv. So there

are at most two independent f(u)− f(v) paths in Dn,p,q, contradicting with the fact that

Dm,p,q has four independent u− v paths.

(2.2) Iu = Iv = {i} for some 0 ≤ i ≤ n because u and v are not adjacent.

(2.3) If u has degree four in Dm,p,q, then Iu = {i} for some 0 < i < n. If f(u) contains

x0, then f(v) contains y0 because of (2.2). Since u has degree four, p in Dn,p,q is Γ2 or Γ3.

Then f(u) = {x0} and f(u) = {y0} because u and v are not adjacent. If p in Dn,p,q is Γ2,

since u has degree four, f(u) is adjacent to at least two degree-2 vertices in p, say p1 and

p2, such that these two vertices are in two different connected subgraphs f(u′) and f(v′)

of Dn,p,q for some u′ and v′ in Dm,p,q. Then f(u′) = {p1} and f(u′) = {p2}. So u′ and v′

are degree-2 vertices in Dm,p,q that are not special. Since u has degree four, p and q in

Dm,p,q are Γ1 or Γ4. We may assume that u′ ∈ p and v′ ∈ q. This implies that m < 3,

contradiction. If p in Dn,p,q is Γ3, since u has degree four, f(u) is adjacent to at least two

vertices in p, either {p1, p2} or {p2, p3} such that these two vertices are in two different

connected subgraphs f(u′) and f(v′) of Dn,p,q for some u′ and v′ in Dm,p,q. In the first

case, we can obtain a contradiction by using the same result as p in Dn,p,q is Γ2. In the

second case, there is an edge between f(u′) and f(v′), contradicting with the fact that all

neighbors of a degree-4 vertex in Dm,p,q are pairwise nonadjacent.

(2.4) If u has degree four, then f(u) = {xi} or {yi} for some 0 < i < n.

Claim 3: Let u1, . . . , um−1, v1, . . . , vm−1 be degree-4 vertices in Dm,p,q for all 1 ≤ j ≤

m−1. We will show that f(u1) = {x1} and f(um−1) = {xn−1}. Suppose that f(u1) = {xi}
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for some i > 1. By Claim 2, f(v1) = {yi}. Then xi−1 ∈ f(u0) and yi−1 ∈ f(v0). Notice

that if xi−2 ∈ f(u0) or yi−2 ∈ f(v0), then f(u0) and f(v0) are adjacent, so are u0 and v0,

contradiction. So we may assume f(u0) = {xi−1} and f(v0) = {yi−1}, where i − 1 ≥ 1.

Since xi−1 and yi−1 have degree four in Dn,p,q, u0 and v0 cannot be degree-5 vertices in

Dm,p,q. If u0 or v0 has degree three in Dm,p,q, see Γ1, then f(p1) contains xi−2. Thus, f(p1)

is adjacent to f(v0). So p1 is adjacent to v0 and u0, contradiction. If u0 and v0 have degree

two in Dm,p,q, then one of these vertices is a special vertex in Dm,p,q, which contradicts

with the fact that both xi−1 and yi−1 are not special vertices in Dn,p,q. So f(u1) = {x1},

f(um−1) = {xn−1}, f(v1) = {y1}, and f(vm−1) = {yn−1}.

Hence, (Dm,p,q, S
1) = (Dn,p,q, S

2).

From Lemma 4.1, we obtain the following.

Lemma 4.2. D̄Γ+
is an antichain in W̄ with respect to the induced minor relation.

For all m,n ≥ 3, if Dm,p,q is an induced minor of Dn,p,q in DΓ, then (Dm,p,q, S
1) is an

induced minor of (Dn,p,q, S
2) in D̄Γ+

. By Lemma 4.2, we obtain the following lemma.

Lemma 4.3. DΓ is an antichain in W with respect to the induced minor relation.

This lemma implies the following.

Corollary 4.4. W is not well-quasi-ordered by the induced minor relation.
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Chapter 5

2II-sum of K3 and K4

We notice from the previous Chapter that the main part of a graph in DΓ is constructed

from K3’s and K4’s by repeatedly applying 2II-sums. This chapter concerns with the class

of graphs constructed by such method. Let L be the class of graphs that are 2II-sums of

copies of K3 and K4. Then L̄ consists of composite graphs whose underlying graphs are

in L .

5.1 Tails

In this section, we investigate a part of a graph in L̄ , which is called tail. We can think of

the tail as a part that is attached to the main body of the graph. The main part of the tail

is constructed from K4’s by repeatedly applying 2II-sums. However, the tail is not formed

a graph in DΓ+
.

Let Br be the class of rooted composite graphs (Bn, x0, y0), where Bn = (GBn , DBn),

illustrated in Figure 5.1, Br = {(Bn, x0, y0)|n ∈ N}. Notice that in some Bn, xn or

yn is a special vertex. We call a graph in Br a tail, where n represents the length of

the tail. We call a vertex in {x1, . . . , xn, y1, . . . , yn} an inner vertex of the tail and an

edge in {x1x2, . . . xn−1xn, y1y2, . . . yn−1yn} an inner edge of the tail. Notice that for any

tail (Bn, x0, y0) in Br, where Bn = (GBn , DBn), the orientation DBn consists of UBn ⊆

{x0, y0, xn, yn} and ABn is either an empty set or a set {xnyn}. Two tails in Br have the

same type if they have the same orientation. There are seven types as illustrated in Figure

5.1. By fixing roots x0, y0, for any tails (Bm, x0, y0) and (Bn, x0, y0) in Br such that m < n

and both have the same type, (Bm, x0, y0) is an induced minor of (Bn, x0, y0). For type (a),

we obtain the result by deleting all vertices in {xm+1, . . . , xn, ym+1, . . . , yn}. For types (b)

37



(a) (b) (c)

(d) (e) (f)

(g)

n

y

1

y y

x xx0

n10

n

y

1

y y

x xx0

n10

n

y

1

y y

x xx0

n10

n

y

1

y y

x xx0

n10

n

y

1

y y

x xx0

n10

n1

y y

x xx0

10

n1

y y

x xx0
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Figure 5.1: Graphs in Br (tails)

and (c), we obtain the result by deleting all vertices in {ym+1, . . . , yn−1} and contracting

all edges in {xixi+1|m ≤ i < n}. For types (d), (e), (f), and (g), we obtain the result

by contracting all edges in {xixi+1|m ≤ i < n} ∪ {yiyi+1|m ≤ i < n}. This implies the

following.

Lemma 5.1. Br is well-quasi-ordered by the induced minor relation.

We also obtain a similar result for the labeling version.

Lemma 5.2. If (Q,≤) is a wqo, then Br(Q) is well-quasi-ordered by the induced minor

relation.

We call a connected composite induced subgraph B = (GB, DB) of a composite graph

C = (G,D) a tail of C if

(i) there is a connected subgraph H of G such that G = H ∪ GB, V (H) ∩ V (GB) =

{x0, y0}, and E(H) ∩ E(GB) = ∅, and

(ii) after making x0 and y0 to be roots of B, (B, x0, y0) ∈ Br.
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5.2 Well-Quasi-Ordering of A Subclass of L̄

In this section, we study a subclass of L̄ that its members are 2-connected graphs with no

long tail. We prove that this subclass is well-quasi-ordered by the induced minor relation.

Let C = (G,D) be a composite graph in L̄ . We define Ccut as an induced minor of C

obtained by contracting all inner edges of every tail of C. Let L̄ r = {(C, u, v) : C + uv is

2-connected and belongs to L̄ }. Let KC be a maximal subgraph of (C, u, v) such that

(i) u, v ∈ KC , and

(ii) KC was a clique Ki for some i which is in a construction of the underlying graph of

C.

We call KC a Ki-structure. For each n ∈ N, we define D′
n in the same way as Dn, except

x0y0 ∈ E(D′
n), see Figure 5.2. For k = 0, 1, 2, . . ., let L̄ r

k be the class of graphs in L̄ r

such that (Ccut, u, v) of C + uv does not contain (Dk, x0, y0) or (D
′
k, x0, y0) as an induced

minor. Our main result in this section is to prove that the labeled version of L̄ r
k is well-

quasi-ordered by the induced minor relation.

xn

yn

x0 x1

y0 y1

Figure 5.2: Graph D′
n

Theorem 5.3. Let (Q,≤) be a well-quasi-ordering. For k = 0, 1, 2, . . ., L̄ r
k (Q) is well-

quasi-ordered by the induced minor relation.

To prove this theorem, we first find the important properties of a fundamental infinite

antichain in L̄ r
k by considering the adjacency of the roots.
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5.2.1 Properties of a Fundamental Infinite Antichain in L̄ r
k Part I

We consider a graph (C, u, v) ∈ L̄ r
k such that uv /∈ E(G), where G is the underlying graph

of C.

Lemma 5.4. Let (Q,≤) be a well-quasi-ordering. If A is an infinite subset of L̄ r
k (Q) such

that for each (C, u, v, g) ∈ A, there is a 2II-sum performing over uv (u and v contain in

at least two KC’s which have K3 or K4-structure), then A is not a fundamental infinite

antichain.

Proof. LetA be an infinite subset of L̄ r
k (Q) satisfying the condition in the lemma. Suppose

on the contrary that A is a fundamental infinite antichain. Let MC denote the set of

maximal connected subgraphs of (C, u, v, g) performing 2II-sum over uv, that are made

into labeled rooted composite graphs in L̄ r
k (Q) by choosing u and v as their roots and

inheriting label and orientation from (C, u, v, g). Let M = ∪(C,u,v,g)∈AMC . Since for each C

every graph in MC is a proper induced minor of (C, u, v, g) by deleting all vertices which

are not in the vertex set of that graph, we have that M ⊆ A<. Since A is fundamental,

M is wqo. By Lemma 2.5, [M ]<ω is wqo. Then there is a good pair (MC ,MC′). Let

m : MC → MC′ be an injection map such that X ≼ m(X) for all X ∈ MC . Then there is a

map fX from X to m(X). We extend the union of these maps to a map f from V ∪E ∪A

to V ′ ∪ E ′ ∪ A′ by letting f(u) = ∪X∈MC
fX(u) and f(v) = ∪X∈MC

fX(v). This map f

shows that (C, u, v, g) ≼ (C ′, u′, v′, g′). Hence ((C, u, v, g), (C ′, u′, v′, g′)) is a good pair in

the antichain A, a contradiction.

Lemma 5.5. Let (Q,≤) be a well-quasi-ordering. If A is an infinite subset of L̄ r
k (Q) such

that for each (C, u, v, g) ∈ A,

(i) uv /∈ E(G), where G is the underlying graph of C,

(ii) there is only one KC containing u and v, and KC is a K3-structure,
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(iii) there is a clique performing 2-sum with KC,

then A is not a fundamental infinite antichain.

Proof. LetA be an infinite subset of L̄ r
k (Q) satisfying the condition in the lemma. Suppose

on the contrary that A is a fundamental infinite antichain. For each (C, u, v, g) ∈ A, let

V (KC) consist of u, v, and w. By Lemma 2.2, we can consider the case that uw and wv

are not in E(G).

Let M1 denote the set of maximal connected subgraphs H1,C of C performing 2II-sum

with KC over edge uw, that are made into labeled rooted composite graphs (H1,C , u, w,

g|H1,C
) in L̄ r

k (Q) by choosing u and w as their roots and inheriting label and orienta-

tion from (C, u, v, g). By the condition of a graph in L̄ r
k (Q), there is a maximal con-

nected subgraphs H2,C of C performing 2II-sum over wv. We define M2 consisting of

(H2,C , w, v, g|H2,C
)’s made into labeled rooted composite graphs (H2,C , w, v, g|H2,C

) in L̄ r
k (Q)

by choosing w and v as their roots and inheriting label and orientation from (C, u, v, g) So

for each (C, u, v, g) ∈ A, we have that (H1,C , u, w, g|H1,C
) ≼ (C, u, v, g) by contracting every

edge in H2,C ; similarly, we have that (H2,C , w, v, g|H2,C
) ≼ (C, u, v, g) by contracting every

edge in H1,C . By Lemma 2.4, M1 and M2 are wqo. Hence, M1 ×M2 are wqo (by Lemma

2.6). There is a good pair in a chain B = {((H1,C , u, w, g|H1,C
), (H2,C , w, v, g|H2,C

)) ∈

M1×M2 : (C, u, v, g) ∈ A}. Let ((H1,C , u, w, g|H1,C
), (H2,C , w, v, g|H2,C

)) and ((H1,C′ , u′, w′,

g′|H1,C′ ), (H2,C′ , w′, v′, g′|H2,C′ )) form a good pair in B from (C, u, v, g) and (C ′, u′, v′, g′),

respectively. Then there are a map f1 from (H1,C , u, w, g|H1,C
) to (H1,C′ , u′, w′, g′|H1,C′ ) and

a map f2 from (H2,C , w, v, g|H2,C
) to (H2,C′ , w′, v′, g′|H2,C′ ). We extend the union of these

maps to a map f from V ∪ E ∪ A to V ′ ∪ E ′ ∪ A′ by letting f(w) = f1(w) ∪ f2(w). This

map f shows that (C, u, v, g) ≼ (C ′, u′, v′, g′). Hence ((C, u, v, g), (C ′, u′, v′, g′)) is a good

pair in the antichain A, a contradiction.
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Lemma 5.6. Let (Q,≤) be a well-quasi-ordering. If L̄ r
k−1(Q) is well-quasi-ordered by the

induced minor relation and A is an infinite subset of L̄ r
k (Q) such that for each (C, u, v, g) ∈

A,

(i) uv /∈ E(G), where G is the underlying graph of C,

(ii) there is only one KC containing the roots u and v, and KC is a K4-structure,

(iii) there is a clique performing 2-sum with KC,

then A is not a fundamental infinite antichain.

Proof. Suppose that L̄ r
k−1(Q) is well-quasi-ordered the induced minor relation and A is an

infinite subset of L̄ r
k (Q) satisfying the condition in the lemma. Suppose on the contrary

that A is a fundamental infinite antichain. For each (C, u, v, g) ∈ A, let V (KC) consist of

u, v, w, and z. If there is a pair of vertices in KC , which is not {u, v}, such that there is no

edge in E connecting them and there is no 2II-sum on it, then we can consider the clique

containing the roots u and v as in Lemmas 5.5 or 5.4.

By Lemma 2.2, we can find a fundamental infinite antichain B, which is a subset of A,

such that for each (C, u, v, g) ∈ B, every pair of vertices in KC , which is not {u, v}, there is

a 2II-sum performing over them. We can use the same argument as Lemma 5.5 to obtain a

contradiction. LetM1,M2,M3,M4, andM5 denote the same kind of set asMi in Lemma 5.5

on edges uw, wv, uz, zv, and wz, respectively. First, we consider (H1,C , u, w, g|H1,C
) ∈ M1.

By deleting all vertices which are not in V (H1,C) ∪ V (H2,C), and contracting all edges in

H2,C , we have that (H1,C , u, w, g|H1,C
) ≺ (C, u, v, g). By Lemma 2.4, M1 is wqo. Similarly,

we have that M2, M3, and M4 are wqo. Since M5 ⊆ L̄ r
k−1(Q) and L̄ r

k−1(Q) is wqo, M5 is

wqo. Hence, M1 ×M2 ×M3 ×M4 ×M5 are wqo by Lemma 2.6. By the same argument as

Lemma 5.5, we can form a good pair in a chain from (C, u, v, g) and (C ′, u′, v′, g′). Then

for each j = 1, . . . , 5 there is a map fj from (Hj,C , x, y, g|Hj,C
) to (Hj,C′ , x′, y′, C ′|Hj,C′ ).
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We extend the union of these maps to a map f from V ∪ E ∪ A to V ′ ∪ E ′ ∪ A′ by

letting f(u) = f1(u) ∪ f3(u), f(v) = f3(v) ∪ f4(v), f(w) = f1(w) ∪ f2(w) ∪ f5(w), and

f(z) = f3(z) ∪ f4(z) ∪ f5(z). This map f shows that (C, u, v, g) ≼ (C ′, u′, v′, g′). Hence

((C, u, v, g), (C ′, u′, v′, g′)) is a good pair in the antichain A, a contradiction.

Lemma 5.7. Let (Q,≤) be a well-quasi-ordering. If L̄ r
k−1(Q) is well-quasi-ordered by the

induced minor relation and a closed subclass C of L̄ r
k (Q) is not well-quasi-ordered by the

induced minor relation, then there is a fundamental infinite antichain A of C such that

for all (C, u, v, g) ∈ A, an edge uv ∈ E(G), where G is the underlying graph of C.

Proof. Suppose that L̄ r
k−1(Q) is well-quasi-ordered by the induced minor relation and a

subclass C of L̄ r
k (Q), which is closed under taking induced minor, is not well-quasi-ordered

by the induced minor relation . By Lemma 2.4 there is a fundamental infinite antichain

A. By Lemma 2.2, we may assume either uv ∈ E for all (C, u, v, g) ∈ A or uv /∈ E for

all (C, u, v, g) ∈ A. In the first case we are done, and in the second case we will find a

contradiction. By Lemmas 2.2 and 5.4, we only need to consider an infinite subset B of A

with the condition that for each (C, u, v, g) ∈ B, there is only one KC containing the roots

u and v. Then KC is either K3 or K4-structure. If for each (C, u, v, g) ∈ B, G = KC , then

it is wqo because B is a finite subset, a contradiction. So for each (C, u, v, g) ∈ B, there is

a clique performing 2-sum with KC . By Lemmas 5.5 and 5.6, we are done.

5.2.2 Properties of a Fundamental Infinite Antichain in L̄ r
k Part II

We now consider a graph (C, u, v) ∈ L̄ r
k such that uv ∈ E(G), where G is the underlying

graph of C. We follow the same process as in 5.2.1 to prove the following lemmas.

Lemma 5.8. Let (Q,≤) be a well-quasi-ordering. If A is an infinite subset of L̄ r
k (Q) such

that for each (C, u, v, g) ∈ A,

(i) uv ∈ E(G), where G is the underlying graph of C,
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(ii) there is only one KC containing the roots u and v, and KC is a K3-structure,

(iii) there is a clique performing 2-sum with KC,

then A is not a fundamental infinite antichain.

Proof. Suppose thatA is an infinite subset of L̄ r
k (Q) satisfying the condition in the lemma.

Suppose on the contrary that A is a fundamental infinite antichain. For each (C, u, v, g) ∈

A, let V (KC) consist of u, v, and w. LetM1 denote the set of maximal connected subgraphs

H1,C of C performing 2II-sum with KC on edge uw that are made into labeled rooted

composite graphs (H1,C , u, w, g|H1,C
) in L̄ r

k (Q) by choosing u and w as their roots and

inheriting label and orientation from (C, u, v, g). By the condition of a graph in L̄ r
k (Q),

there is a maximal connected subgraphs H2,C of C performing 2II-sum over wv. We define

M2 consisting of H2,C ’s made into labeled rooted composite graphs (H2,C , w, v, g|H2,C
)

in L̄ r
k (Q) by choosing w and v as their roots and inheriting label and orientation from

(C, u, v, g).

By Lemma 2.2, we can find a fundamental infinite antichain B, which is a subset of A,

for each (C, u, v, g) ∈ B, H1,C and H2,C perform 2II-sum with KC . Then (H1,C , u, w, g|H1,C
)

is not an induced minor of its original graphs (C, u, v, g). However, if M1 is not wqo, we

can use Lemmas 2.4 and 5.7 to find a fundamental infinite antichain B′ which is <∗ B. So

B′ ⊆ B<, contradicting with the definition of B< that has no infinite antichain.

Hence M1 and M2 are wqo, and M1 ×M2 is wqo by Lemma 2.6. By the same argument

as Lemma 5.5, we can form a good pair in a chain from (C, u, v, g) and (C ′, u′, v′, g′). Then

there are a map f1 from (H1,C , u, w, g|H1,C
) to (H1,C′ , u′, w′, g′|H1,C′ ) and a map f2 from

(H2,C , w, v, g|H2,C
) to (H2,C′ , R′|H2,C′ , C

′|H2,C′ ). We extend the union of these maps to a

map f from V ∪ E ∪ A to V ′ ∪ E ′ ∪ A′ by letting f(w) = f1(w) ∪ f2(w). This map f

shows that (C, u, v, g) ≼ (C ′, u′, v′, g′). Hence ((C, u, v, g), (C ′, u′, v′, g′)) is a good pair in

the antichain A, a contradiction.
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Lemma 5.9. Let (Q,≤) be a well-quasi-ordering. If L̄ r
k−1(Q) is well-quasi-ordered by the

induced minor relation and A is an infinite subset of L̄ r
k (Q) such that for each (C, u, v, g) ∈

A,

(i) uv ∈ E(G), where G is the underlying graph of C,

(ii) there is only one KC containing the roots u and v, and KC is a K4-structure,

(iii) there is a clique doing 2-sum with KC,

then A is not a fundamental infinite antichain.

Proof. Suppose that L̄ r
k−1(Q) is well-quasi-ordered by the induced minor relation and A is

an infinite subset of L̄ r
k (Q) satisfying the condition in the lemma. Suppose on the contrary

that A is a fundamental infinite antichain. For each (C, u, v, g) ∈ A, let V (KC) consist

of u, v, w, and z. If for each (C, u, v, g) ∈ A, there is a pair of vertices in KC , which

is not {u, v}, such that there is no edge in E connecting them and there is no 2II-sum

on them, then we can consider this case as a K3-structure, see Lemma 5.8, and obtain a

contradiction. Suppose this case cannot happen. By Lemma 2.2, we can find a fundamental

infinite antichain C ⊆ A such that for each (C, u, v, g) ∈ C every edge in KC , that is not

uv, is performed 2II-sum over. We will use the same argument as Lemma 5.8 to obtain a

contradiction.

Let M1, M2, M3, M4, and M5 denote the same kind of set as M1 in Lemma 5.8 on

edges uw, wv, uz, zv, and wz, respectively. By Lemma 2.2, we can find a fundamental

infinite antichain B ⊆ C such that for each (C, u, v, g) ∈ B and for some j = 1, . . . , 5, Hj,C

performs 2II-sum with KC . Then each Hj,C with root and label is not an induced minor

of its original graphs (C, u, v, g). However, if Mj is not wqo, we can use Lemmas 2.4 and

5.7 to find a fundamental infinite antichain B′ which is <∗ B. So B′ ⊆ B<, contradicting

with the definition of B< that has no infinite antichain.
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Hence, M1 × M2 × M3 × M4 × M5 is wqo by Lemma 2.6. By the same argument as

Lemma 5.5, we can form a good pair in a chain from (C, u, v, g) and (C ′, u′, v′, g′). Then

for each j = 1, . . . , 5 there is a map fj from (Hj,C , x, y, g|Hj,C
) to (Hj,C′ , x′, y′, C ′|Hj,C′ ).

We extend the union of these maps to a map f from V ∪ E ∪ A to V ′ ∪ E ′ ∪ A′ by

letting f(u) = f1(u) ∪ f3(u), f(v) = f3(v) ∪ f4(v), f(w) = f1(w) ∪ f2(w) ∪ f5(w), and

f(z) = f3(z) ∪ f4(z) ∪ f5(z). This map f shows that (C, u, v, g) ≼ (C ′, u′, v′, g′). Hence

((C, u, v, g), (C ′, u′, v′, g′)) is a good pair in the antichain A, a contradiction.

Proof of Theorem 5.3. We will prove by induction on k. When k = 0, L̄ r
0 (Q) is empty

set, so it is well-quasi-ordered by the induced minor relation. Suppose that L̄ r
k−1(Q) is well-

quasi-ordered by the induced minor relation, we will prove that L̄ r
k (Q) is well-quasi-ordered

by the induced minor relation. Suppose not, by subsection 5.2.1 , there is a fundamental

infinite antichain A such that for each (C, u, v, g) ∈ A, uv ∈ E. By Lemmas 2.2, we only

have to consider a fundamental infinite antichain B ⊆ A such that for each (C, u, v, g) ∈ B

there is only one KC containing the roots u and v. Suppose that for each (C, u, v, g) ∈ B,

KC is a K3- or K4-structure. If for each (C, u, v, g) ∈ B, G = KC , then B is wqo since it

is a finite subset, a contradiction. So for some (C, u, v, g) ∈ B, there is a clique performing

2-sum with KC . By Lemmas 5.8 and 5.9, we are done.

5.3 Tree-Representation

In this section we prove an analog of the block-tree theorem for the 2-sum operation and

state properties of graphs in L̄ . The main advantage of such a theorem is to show that the

order of the 2-sum operations to construct a graph is irrelevant by looking at the structure

of the graph. We formally define a tree-representation as follow. Let G be a graph. A tree-

representation of G is a triple (T, {ex : x ∈ X}, {Gy : y ∈ Y }) that satisfies the following

properties.
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(i) T is a tree with |V (T )| ≠ 2 and X, Y are the two color classes of T such that all

leaves of T are in Y ;

(ii) For each x ∈ X, ex = uv is an edge, where u, v ∈ V (G). If u, v are adjacent in G

then ex is the edge of G joining u and v; if u, v are not adjacent in G then ex is a

new edge;

(iii) For each y ∈ Y , Gy is an induced subgraph of G+ = (V (G), E(G) ∪ {ex : x ∈ X})

with |V (Gy)| > 2 and moreover, the union of Gy over all y ∈ Y is G+;

(iv) For any x ∈ X and any two distinct components T1, T2 of T \ x, V1 ∩ V2 = {u, v},

where uv = ex and Vi (i = 1, 2) is the union of V (Gy) over all y ∈ Y ∩ V (Ti).

Lemma 5.10. A 2-connected graph G can be constructed via 2-sums from a class G of

graphs if and only if G admits a tree-representation such that every Gy belongs to G.

Proof. (⇒) Suppose that G is a 2-connected graph which can be constructed via 2-sums

from a class G of graphs. If G is a 3-connected graph, then the triple (T, ∅, {G}) satisfies

all properties, and it is a tree-representation of G. Suppose that G is a 2-sum of G1 and G2

over the common edge e = uv, which both are smaller than G. By induction, both have

tree-representations. Let (T1, {ex : x ∈ X1}, {Gy : y ∈ Y1}) and (T2, {ex : x ∈ X2}, {Gy :

y ∈ Y2}) be tree-representations of G1 and G2, respectively. We construct a tree T from

T1 and T2 by considering the following cases.

Case 1. If for all x ∈ X1 ∪X2, e ̸= ex, then we connect T1 to T2 by adding edges y1x0

and x0y2, where x0 is a new vertex such that e = ex0 , and y1 ∈ Y1, y2 ∈ Y2 such that

e ∈ Gy1 ∪Gy2 . We let X = X1 ∪X2 ∪ {x0}.

Case 2. If there is x1 ∈ X1 such that e = ex1 but for all x2 ∈ X2, e ̸= ex2 , then we connect

T1 to T2 by adding an edge x1y2 where y2 ∈ Y2 such that e ∈ Gy2 . We let X = X1 ∪X2.
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Case 3. If there are x1 ∈ X1 and x2 ∈ X2 such that ex1 = ex2 = e, then we perform

1-sum between T1 and T2 by identifying x1 with x2. We let X = X1 ∪ (X2 − x2).

Let Y = Y1 ∪ Y2, and let x0 ∈ X such that ex0 = e. Since T1 and T2 are tree-

representations, the triple (T, {ex : x ∈ X}, {Gy : y ∈ Y }) satisfies properties (i), (ii),

and (iii) of a tree-representation, and it also satisfies property (iv) for any x ∈ X − x0.

Let T1 and T2 be distinct components of T \ x0. From the construction of T in those three

cases, V1 ∩ V2 = {u, v}, and Vi (i = 1, 2) is the union of V (Gy) over all y ∈ Y ∩ V (Ti). So

(T, {ex : x ∈ X}, {Gy : y ∈ Y }) is a tree-representation of G.

(⇐) Suppose that G admits a tree-representation (T, {ex : x ∈ X}, {Gy : y ∈ Y }) such

that every Gy belongs to G. If T has only one vertex then it is y in Y because all leaves of T

are in Y (property (i)), and G = G+ = Gy ∈ G by property (iii). Notice that if X ̸= ∅, then

from property (i) |Y | ≥ 2 and |V (T )| > 2. We consider a leaf y ∈ Y of T . Then Gy ∈ G.

By the definition of T , y is adjacent to a vertex x ∈ X, and ex ∈ E(Gy). By property

(iv), T \ x has two components T1 and T2 where T1 = {y}. Let G′ = (V2, E(G[V2])∪{ex}),

where G[V2] is an induced subgraph of G on V2. If x has degree two in T , then the tree-

representation of G′ inherits from T \{x, y} with additional condition ex ∈ E(G′); if x has

degree greater than two in T , then the tree-representation of G′ inherits from T \{y} with

additional condition ex ∈ E(G′). Then G is a 2I-sum over ex of Gy and G′ if ex ∈ E(G);

G is a 2II-sum over ex of Gy and G′ if ex /∈ E(G). By induction, G can be constructed via

2-sums from G.

Lemmas 5.10 and 3.2 imply the following.

Lemma 5.11. Every 2-connected graph admits a tree-representation such that each Gy is

either 3-connected or isomorphic to K3.

The following lemma is a property of a graph in L̄ .
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Lemma 5.12. Let C = (G,D) be a composite graph such that |V | > 3, C is a 2-sum of

copies of K3 and K4, and C contains K4 as an induced minor. By the definition of induced

minor relation, there are connected subgraphs X1, X2, X3, and X4 of C mapped to those 4

vertices in K4 and adjacent to each other. Then there is a K4 graph denoted by Kt
4 and

represented by a vertex in the tree-representation (T, {ex : x ∈ X}, {Gy : y ∈ Y }) of C,

such that Kt
4 ∩Xi ̸= ∅ for all i = 1, 2, 3, 4.

Proof. Let H be such K4. We consider the underlying graph G of C. If G is K4, we

are done. Suppose that G is not K4, then G has a proper 2-separation {A,B}. Since

G is 2-connected, by Lemma 3.2, G is a 2-sum of smaller 2-connected graphs GA and

GB performing on edge e = xy, and both are 2-sums of copies of K3 and K4. Since for

all Xi ̸= Xj there is an edge in G connecting them, there is no Xi and Xj such that

Xi ⊆ GA \ {x, y} and Xj ⊆ GB \ {x, y}. Thus, we can suppose that GA ∩ Xi ̸= ∅ for all

i = 1, 2, 3, 4. If there are i and j such that Xi contains x, Xj contains y, then they are

connected by e in GA. So GA contains H as an induced minor. By induction, we continue

this process until we have a 3-connected graph Gm containing H as an induced minor such

that Gm ∩Xi ̸= ∅ for all i = 1, 2, 3, 4. Since Gm is 3-connected and it is a 2-sum of copies

of K3 and K4, Gm is Kt
4.

Let (T, {ex : x ∈ X}, {Gy : y ∈ Y }) be the tree-representation of a composite graph C

in L̄ , and let P be a path in T . Let {y1, y2, . . . , yn} be all vertices in P representing a

K4. We call the K4 represented by yi a good K4 in P if i = 1 or n; otherwise, every edge

in this K4 represented by a vertex in P does not have a common vertex. It is a bad K4

in P if otherwise. The vertex yi in P represented a good K4 is called a good vertex in P .

We define the length of P , ∥P∥, as the number of good vertices (good K4’s) in P . The

longest path in T is a path PC such that ∥PC∥ ≥ ∥P∥ for every path P in T . The distance

between two vertices u and v in C is the number of good K4’s between u and v, which is

49



the length of the shortest st-path in T where s and t represent cliques containing u and

v, respectively.

In the following lemma, we use the tree-representation of a composite graph to study

its structure involving Dn,p,q.

Lemma 5.13. Let C = (G,D) be a composite graph in L̄ such that every tail in C has

length less than 2 and ∥PC∥ = n where n ≥ 5. Then C contains Di,p,q as an induced minor

for some i ≥ n− 4.

Proof. Let {y1, . . . , yn} be the set of good vertices (represented good K4’s) in PC . We

extend PC from y1 and yn along T until both reach leaves y′ and y′′ of T , respectively.

Then y′ and y′′ represent K3 or K4. Let P
′
C be this extended path. We divide P ′

C into three

paths as follows. Let P1 be the path in P ′
C connecting y′ to y2, let P2 be the path in P ′

C

connecting yn−1 to y′′, and let Pm = P ′
C \ P1 \ P2. We first construct a graph in Γ+ by

considering P1. Let x be a vertex in P ′
C adjacent to y′, and let ex be an edge represented

by x on which is performed a 2II-sum in C. We consider two cases.

For the first case we suppose that y′ = y1. If x is adjacent to y2, since the length of

tail in C is less than 2, we can construct Γ3 or Γ4 by performing vertex deletion and edge

contraction operations as shown in Figure 5.3(a). If x is not adjacent to y2 then we perform

the operations as shown in Figure 5.3(b) to construct Γ1.

Next, we consider the case when y′ ̸= y1. Then y′ represents a K3. If x is adjacent to

y1, since the length of tail in C is less than 2, we construct a graph in Γ+ by using the

same method as in the previous case. There are two other cases which are shown in Figure

5.4(a). If x is not adjacent to y1 then we perform the operations as shown in Figure 5.4(b).

We obtain a graph in Γ+ from P2 by using the same consideration. To construct Dn−4 we

will consider Pm. Let CH denote the subgraph of C corresponding to vertices of a subgraph
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Figure 5.3: Case y′ = y1

H of T . For any component H, which is adjacent to a vertex in Pm representing an edge

in C, we delete all vertices in V (CH)\V (CPm). For any component H, which is adjacent

to a vertex in Pm not representing an edge in Ḡ, we contract all edges in CH to obtain the

edge that is represented by a vertex in T connecting H to Pm. For every K3 represented

by a vertex y in Pm, we contract an edge in K3 which are not in any 2II-sum in CPG
. For

every bad K4 represented by a vertex y in Pm, we delete a vertex in K4 which is not in any

2II-sum performing in CPG
. Then there is only one edge not in 2II-sum performing in CPG

left, and we contract this edge. The resulting graph is a Dn−4. We apply this consideration

to the parts in CP1 and CP2 that are not the graphs in Γ+ constructed above. The resulting

graph is Di,p,q for some i > n− 4. Therefore, Di,p,q is an induced minor of C.
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From Chapter 4, we know that D̄Γ+
is an infinite antichain of L̄ . We now characterize

all closed subclasses of L̄ which are well-quasi-ordered by the induced minor relation.

Lemma 5.14. The following are equivalent for any closed subclass Z̄ of L̄ .

(i) (Z̄ (Q),≼) is a wqo;

(ii) Z̄ is well-quasi-ordered by the induced minor relation;

(iii) Z̄ ∩ DΓ+
is finite.

Proof. The implication (i)⇒(ii) is clear. To prove (ii)⇒(iii), if Z̄ ∩ DΓ+
is infinite, then

by Lemma 4.3, Z̄ contains an infinite antichain. So Z̄ is not well-quasi-ordered by the

induced minor relation.

To prove (iii)⇒(i), we assume that Z̄ ∩ DΓ+
is finite. Suppose on the contrary that A

is a fundamental infinite antichain. By Lemma 2.2, we can consider the following cases.
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Case 1. There is a fundamental infinite antichain B, which is a subset of A, such that

for each (C, g) in B, (C, g) has a tail (B, x0, y0) with length greater than 1. We define

(C, x1, y1, g) be a labeled rooted composite graph. Let MC denote the set of maximal

connected subgraphs of (C, x1, y1, g) performing 2II-sum over x1y1, that are made into

labeled rooted composite graphs by choosing x1 and y1 as their roots and inheriting label

and orientation from (C, x1, y1, g). Let M = ∪(C,x1,y1,g)∈BMC . Since for each C every graph

in MC is a proper induced minor of (C, x1, y1, g) by deleting all vertices which are not in

the vertex set of that graph, we have that M ⊆ B<. Since B is fundamental, M is wqo. By

Lemma 2.5, [M ]<ω is wqo. Then there is a good pair (MC ,MC′). Let m : MC → MC′ be

an injection map such that H ≼ m(H) for all H ∈ MC . Then there is a map fH from H

to m(H) for all H ∈ MC . We extend the union of these maps to a map f from V ∪E ∪A

to V ′ ∪ E ′ ∪ A′ by letting f(x1) = ∪H∈MC
fH(x1) and f(y1) = ∪H∈MC

fH(y1). This map f

shows that (C, x1, y1, g) ≼ (C ′, x′
1, y

′
1, g

′). So (C, g) and (C ′, g′)) form a good pair in the

antichain A, a contradiction.

Case 2. There is no such fundamental infinite antichain. Then there is a fundamental

infinite antichain B, which is a subset of A, such that for each (C, g) in B, every tail in

(C, g) has length less than 2. If we can show that Z̄ (Q) ⊆ L̄n(Q) for some n, we are

done. Let ∥Z̄ (Q)∥ = {∥PC∥ : (C, g) ∈ Z̄ (Q)}. Then ∥Z̄ (Q)∥ is bounded below by 0, and

∥Z̄ (Q)∥ is either bounded above or unbounded above. We consider the following cases.

Case 2.1. ∥Z̄ (Q)∥ is bounded above. Then there is k such that ∥PC∥ < k for all (C, g) ∈

Z̄ (Q). We will show that Z̄ (Q) ⊆ L̄3k(Q). Suppose on the contrary that (D3k, d3k) is

an induced minor of (C, g). Then for each i = 1, . . . , k, the induced subgraph of D3k

with vertex set {x3i−1, x3i−2, x3i−3, y3i, y3i−1, y3i−2} contains K4 as an induced minor by

contracting x3i−2x3i−3 and y3iy3i−1. For each i = 1, . . . , k, we denote this K4 by Ki
4. Let

(T, {ex : x ∈ X}, {Gy : y ∈ Y }) be the tree-representation of C. By Lemma 5.12, there are

k Kt
4’s represented by vertices in T mapped to these k K i

4’s in D3k. Next, we will show
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that all of these vertices are in the same path of T . Suppose not, there are three vertices,

t1, t2, t3, lying in three different branches. Let s be a vertex in T linking these three branches

together. Let K1
4 , K

2
4 , and K3

4 be K4’s which are induced minor of induced subgraphs of

D3k, and they are corresponding to Kt1
4 , Kt2

4 , and Kt3
4 represented by t1, t2, and t3, in T ,

respectively. In D3k, which is 2-connected, there are two disjoint paths connecting K1
4 and

K2
4 , and others two disjoint paths connecting K2

4 and K3
4 . Moreover, these four paths are

adjacent to K2
4 in four different vertices.

According to the induced minor relation, connected subgraphs of C which are corre-

sponding to different vertices in D3k are all disjoint, and two vertices in D3k are adjacent

if and only it there is an edge in C incident with their corresponding connected subgraphs.

So a path in D3k, which consists of a set of vertices and a set of edges in D3k, is mapped

to a set of disjoint connected subgraphs of C corresponding to those vertices and a set of

edges in C corresponding to those edges. Since for every two edges which are incident with

a connected subgraph in C there is a path in this subgraph connecting these two edges

together. So we can find a path in C corresponding to a path in D3k, and for every two

paths in D3k, which are disjoint, their corresponding paths in C are also disjoint. So we

can find four disjoint corresponding paths in C such that two of them connect Kt1
4 and

Kt2
4 , and the other two of them connect Kt2

4 and Kt3
4 . These four paths are adjacent to

Kt2
4 in four different vertices. Since C is constructed by 2-sum of K3’s or K4’s, there is a

vertex t in T representing an edge et and lying between t2 and s, and this t can be s too.

Then C is constructed by 2-sum of two 2-connected subgraphs A and B on et, where Kt2
4

is an induced minor of A, and Kt1
4 and Kt3

4 are an induced minor of B. Therefore, every

path from either Kt1
4 or Kt3

4 to Kt2
4 passes through endpoints of et, which means we can

find only two disjoint corresponding paths in C, contradiction.

Thus, all vertices in T representing k Kt
4’s are in the same path in T . Since each Kt

4

lying between other two Kt
4’s has two pairs of disjoint paths adjacent to its four different
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vertices linking it to the other KT
4 ’s, we have that all these k KT

4 are good. So the length

of D3k, which is the shortest path from x0 to x3x−2, is 3k − 2 6 ∥PG∥ < k, contradiction.

Therefore, Z̄ (Q) ⊆ L̄3k(Q), and (Z̄ (Q),≼) is a wqo.

Case 2.2. ∥Z̄ (Q)∥ is unbounded above. Then for all k, there is C such that ∥PC∥ ≥ k.

By Lemma 5.13, we can conclude that Z̄ ∩ D̄Γ+
is infinite, contradiction.

Hence, (Z̄ (Q),≼) is a wqo.
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Chapter 6
Main Result

The goal of this chapter is to prove the main result that for any closed subclass Z of W ,

Z is well-quasi-ordered by the induced minor relation if and only if Z ∩DΓ is finite. From

Chapter 3, we study the structure of a graph G in W , which is {W4, K5\e}-free, and we

know that G can be constructed from cliques in K by repeatedly applying 0-, 1-, 2I-, and

2II-sums. In Chapters 4 and 5, we study the structure of an antichain and the subclass L

of W , which contains the antichain DΓ. Notice that we can decompose a graph in W where

0-, 1-, and 2I-sums are performed in the graph. Since a graph in L can be constructed

from K3’s and K4’s be repeatedly applying 2II-sums, a graph in W can be constructed

from graphs in L ∪K , by repeatedly applying 0-, 1-, and 2I-sums. We approach the result

by considering the wqo of the class of such graphs.

6.1 0-, 1-, 2I-sum of graphs in a wqo class of graphs

First we prove the following lemmas that are tools to preserve the wqo of graphs. Let X

be a class of composite graphs, and let X∗
2 be the class of graphs constructed from graphs

in X by repeatedly applying 2I-sum on arcs.

Lemma 6.1. If (X(Q),≼) is a wqo for all wqo (Q,≤), then (X∗
2 (Q),≼) is a wqo.

Proof. Suppose on contrary that there is a fundamental infinite antichain A of X∗
2 (Q).

For each (C, g) in A, let C1 = (G1, D(C1)), C2 = (G2, D(C2)), . . . , Ck = (Gk, D(Ck))

be the maximal connected subgraphs of C performing 2I-sum on an arc uv of C, where

D(Ci) = (Ui, Ai) for all i = 1, . . . , k. Let C0 = C, where U0 = U and A0 = A. We

define gi for all i = 0, . . . , k to be the Q′-labeling of Ci, where Q′ = Q × {0, 1, 2} and
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gi(x) = (g(x), hi(x)) (for all x ∈ Ui ∪ Ai) such that hi(u) = 1 and hi(v) = 2. Then

all the labeled composite graphs (Ci, gi) and (C, g0) are members of X∗
2 (Q

′). For any

(q, h), (q′, h′) ∈ Q′, we define (q, h) ≤′ (q′, h′) if q ≤ q′ and h = h′. Then (Q′,≤′) is a wqo

provided (Q,≤) is. LetMC be the class of all (Ci, gi), i = 1, . . . , k, and letM = ∪(C,g)∈AMC .

Clearly, for all i = 1, . . . , k, (Ci, gi) is a proper induced minor of (C, g0) by deleting all

vertices which are not in Vi. So M ⊆ A<. Since A is fundamental, M is wqo. By Lemma

2.5, [M ]<ω is wqo. Then there is a good pair (MC ,MC′) in [M ]<ω. Let m : MC → MC′

be an injection map such that H ≼ m(H) for all H ∈ MC . Then there is a map fH

from H to m(H) for all H ∈ MC . We extend the union of these maps to a map f from

V ∪ E ∪ A to V ′ ∪ E ′ ∪ A′ by letting f(u) = ∪H∈MC
fH(u) and f(v) = ∪H∈MC

fH(v). This

map f shows that (C, g0) ≼ (C ′, g′0). So ((C, g), (C ′, g′)) is a good pair in the antichain A,

a contradiction. Hence, (X∗
2 (Q

′),≼) is a wqo, and so is (X∗
2 (Q),≼).

Let X∗
1 be the class of graphs constructed from graphs in X by repeatedly applying

1-sum on special vertices and 2I-sum on arcs.

Lemma 6.2. If (X(Q),≼) is a wqo for all wqo (Q,≤), then (X∗
1 (Q),≼) is a wqo.

Proof. To prove this result, we use the same argument as Lemma 6.1 by decomposing

graphs, where 1-sum appears, and putting an extra label on a vertex on which 1-sum is

performed. Suppose on contrary that there is a fundamental infinite antichain A of X∗
1 (Q).

For each (C, g) in A, let C1 = (G1, D(C1)), C2 = (G2, D(C2)), . . . , Ck = (Gk, D(Ck)) be

the maximal connected subgraphs of C performing 1-sum on a special vertex u of C,

where D(Ci) = (Ui, Ai) for all i = 1, . . . , k. Let C0 = C, where U0 = U and A0 = A.

We define gi for all i = 0, . . . , k to be the Q′-labeling of Ci, where Q′ = Q × {0, 1} and

gi(x) = (g(x), hi(x)) (for all x ∈ Ui ∪ Ai) such that hi(u) = 1. Then all the labeled

composite graphs (Ci, gi) and (C, g0) are members of X∗
1 (Q

′). For any (q, h), (q′, h′) ∈ Q′,

we define (q, h) ≤′ (q′, h′) if q ≤ q′ and h = h′. Then (Q′,≤′) is a wqo provided (Q,≤) is.
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Let MC be the class of all (Ci, gi), i = 1, . . . , k, and let M = ∪(C,g)∈AMC . Clearly, for all

i = 1, . . . , k, (Ci, gi) is a proper induced minor of (C, g0) by deleting all vertices which are

not in Vi. So M ⊆ A<. Since A is fundamental, M is wqo. By Lemma 2.5, [M ]<ω is wqo.

Then there is a good pair (MC ,MC′) in [M ]<ω. Let m : MC → MC′ be an injection map

such that H ≼ m(H) for all H ∈ MC . Then there is a map fH from H to m(H) for all

H ∈ MC . We extend the union of these maps to a map f from V ∪E∪A to V ′∪E ′∪A′ by

letting f(u) = ∪H∈MC
fH(u). This map f shows that (C, g0) ≼ (C ′, g′0). So ((C, g), (C ′, g′))

is a good pair in the antichain A, a contradiction. Hence, (X∗
1 (Q

′),≼) is a wqo, and so is

(X∗
1 (Q),≼).

Let X∗ be the class of graphs constructed from graphs in X by repeatedly applying

0-sum, 1-sum on special vertices, and 2I-sum on arcs.

Lemma 6.3. If (X(Q),≼) is a wqo for all wqo (Q,≤), then (X∗(Q),≼) is a wqo.

Proof. Suppose on contrary that there is a fundamental infinite antichain A of X∗(Q). For

each (C, g) in A, letMC be the class of all connected components of C. ThenMC ⊆ X∗
1 (Q).

From Lemma 6.2, (X∗
1 (Q),≼) is a wqo. So [X∗

1 (Q)]<ω is wqo by Higman’s Theorem. Then

there is a good pair (MC ,MC′) in {MC |(C, g) ∈ A}. Let α : MC → MC′ be an injection

map with H ≼ α(H) for all H ′ ∈ MC . We define a map f from V ∪E ∪A to V ′ ∪E ′ ∪A′

by extending the union of the maps H → α(H). This map shows that (C, g) ≼ (C ′, g′). So

((C, g), (C ′, g′)) is a good pair in the antichain A, a contradiction. Hence, (X∗(Q),≼) is a

wqo.

6.2 Proof of the Main Result

In order to prove Theorem 1.19, we consider a graph constructed from graphs in L̄ (Q) ∪

K̄ (Q), by repeatedly applying 0-, 1-, and 2I-sums on special vertices and arcs. Let W̄ ′(Q)
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be the class of such graphs. We will prove that for any closed subclass Z̄ of W̄ ′, (Z̄ (Q),≼)

is a wqo if and only if Z̄ ∩DΓ+
is finite. This result is stronger than Theorem 1.19. From

3.4, each graph G in W is constructed from cliques by repeatedly applying 0-, 1-, 2I-, and

2II-sum. We can make a composite graph C = (G,D), where D = (U,A), in W̄ ′ by letting

A declare a direction on all edges of G over which 2I-sums are performed, and U consist

of all vertices of G which are ends of an arc or vertices performed 1-sum.

Theorem 6.4. The followings are equivalent for any closed subclass Z̄ of W̄ ′.

(i) (Z̄ (Q),≼) is a wqo;

(ii) Z̄ is well-quasi-ordered by the induced minor relation;

(iii) Z̄ ∩ DΓ+
is finite.

Proof. The implication (i)⇒(ii) is clear. To prove (ii)⇒(iii), if Z̄ ∩ DΓ+
is infinite, then

by Lemma 4.3 Z̄ contains an infinite antichain. So Z̄ is not well-quasi-ordered by the

induced minor relation.

To prove (iii)⇒(i), we assume that Z̄ ∩ DΓ+
is finite. Since Z̄ ⊆ W̄ ′, every graph in

Z̄ is constructed from graphs in X1∪X2 by repeatedly applying 0-sum, 1-sum on special

vertices, and 2I-sum on arcs, where X1 and X2 are subclasses of L̄ and K̄ , respectively.

Then X1 ∩DΓ+
is finite. By Lemmas 5.14 and 2.10, (X1(Q),≼) and (X2(Q),≼) are wqo.

Hence, (Z̄ (Q),≼) is a wqo by Lemma 6.3.

59



References

[1] Belmonte, R., Golovach, P.A., Heggernes, P., Hof, P., Kaminski, M., and Paulusma,D.,
Finding contractions and induced minors in chordal graphs via disjoint paths, Algo-
rithms and Computation: Lecture Notes in Computer Science. 7074 (2011), 110-119.
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