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Abstract

We generalize a Paley-Wiener theorem to homogeneous line bundles Lχ on a com-
pact symmetric space U/K with χ a nontrivial character of K. The Fourier co-
efficients of a χ-bi-coinvariant function f on U are defined by integration of f
against the elementary spherical functions of type χ on U , depending on a spectral
parameter µ, which in turn parametrizes the χ-spherical representations π of U .
The Paley-Wiener theorem characterizes f with sufficiently small support in terms
of holomorphic extendability and exponential growth of their χ-spherical Fourier
transforms. We generalize Opdam’s estimate for the hypergeometric functions in
a bigger domain with the multiplicity parameters being not necessarily positive,
which is crucial to the proof of Paley-Wiener theorem in our case.
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Chapter 1

Introduction

In the first chapter I intend to give some motivation and background information.

One of the fundamental questions in harmonic analysis is to determine the image
of different function spaces under the Fourier transform. Paley-Wiener theorem
characterizes the image of the space of compactly supported smooth functions or
distributions under the Fourier transform in terms of holomorphic extendibility
and growth condition.

The classical Paley-Wiener theorem identifies the space C∞
c (Rn) of smooth com-

pactly supported functions on Rn with certain classes of holomorphic functions on
Cn of exponential growth via the usual Fourier transform on Rn. The exponent
is determined by the size of the support. Precisely, recall that the space C∞

c (Rn)
equipped with the Schwartz topology is denoted by D (Rn). For a compact set
K ⊂ Rn, DK (Rn) denotes the space of smooth functions on Rn with compact sup-
port in K. For a positive number r > 0 we let Dr (Rn) = DBr (0) (R

n). Then Dr (Rn)
is the space of smooth functions on Rn with support contained in a closed ball of
radius r centered at zero. To each f ∈ D (Rn) we associate its Fourier transform

F (f) (λ) := (2 π)−n/2

∫

Rn

f (x) e−i x·λ dx.

Let r > 0 and f ∈ Dr (Rn). Then λ 7→ F (f) (λ) has a holomorphic extension
to Cn. The image of Dr (Rn) under the (extended) Fourier transform is PWr (Cn)
which is the space of entire functions F on Cn of exponential type r, that is, for
every k ∈ Z+ there exists a constant Ck such that

|F (λ)| ≤ Ck (1 + ‖λ‖)−k er ‖Im (λ)‖, ∀λ ∈ Cn.

The vector space PWr (Cn) is topologized by the family of seminorms

ρk (F ) := sup
λ∈Cn

(1 + ‖λ‖)k e−r ‖Im (λ)‖ |F (λ)|, k ∈ Z+.

The classical Paley-Wiener theorem states that the Fourier transform F is a linear
topological isomorphism of Dr (Rn) onto PWr (Cn) for any r > 0. The Fourier
inversion is

f (x) = F−1 (F ) (x) = (2 π)−n/2

∫

Rn

F (λ) ei λ·x dλ. (1.1)

An important aspect of this theorem is that the smallest exponent r in the esti-
mates coincides with the radius of the smallest closed ball Br (0) = {x ∈ Rn |
‖x‖ ≤ r}. The polynomial factor (1 + ‖λ‖)−k is related to the smoothness of f .
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There are several generalizations of this theorem to settings where Rn is re-
placed by a locally compact Hausdorff topological group, by a Lie group, or by a
homogeneous space. Among the homogeneous spaces, the symmetric spaces play
an important role for their many applications to other branches of mathematics
and to physics.

In fact, the above is a basic example of noncompact Lie group if we consider Rn

as an additive group. Also, Rn is viewed as a homogeneous space G/H with G = Rn

and H = {0}, the trivial subgroup. Here, G acts on Rn by translations. Recall that
all irreducible unitary representations of Rn are one dimensional and given by the
exponential map x 7→ ei λ·x with x ∈ Rn. Let ℓ be the regular representation of G
on L2 (Rn). We see that the inversion formula (1.1) provides a decomposition of ℓ
as the direct integral over λ ∈ Rn of one dimensional irreducible representations
of Rn:

(ℓ, L2 (Rn)) ∼=
∫ ⊕

Rn

(χλ, C) d λ

where χλ (x) = ei λ·x and the Plancherel measure on the unitary dual R̂n ∼= Rn is
the Lebesgue measure. This is the Plancherel decomposition for Rn with respect to
the group action of G. Moreover, Rn can be interpreted as a noncompact symmetric
space by (Rn ⋊ SO (n))/SO (n)1.

The most general results have been obtained for Riemannian symmetric spaces
G/K of the non-compact type by Gangolli [8] and Helgason [14, 16] for smooth
functions, and by Eguchi [5] (also see Dadok [4]) for distributions, to semisimple
Lie groups by Arthur [1], and to pseudo-Riemannian reductive symmetric spaces
by van den Ban and Sclichtkrull [33]. More recently, Ólafsson and Sclichtkrull
extended the result to Riemannian symmetric spaces U/K of the compact type,
[22] for K-invariant functions, [23] for K-finite functions, and [24] for distributions.

In contrast to the noncompact case G/K, the results obtained for compact case
U/K are local in the sense that they are only valid for functions supported in
sufficiently small balls with an explicit upper bound for the radius (the upper
bound need not to be optimal). In the compact case U/K, it is clear that the
support is compact because a closed subset of a compact set is compact. The
essential issue is then to determine the size of the support of a smooth function
from the growth property of its Fourier transform.

As an example, consider the torus T = {z ∈ C | |z| = 1} which is a compact
Lie group and also a compact symmetric space. Suppose f ∈ C∞

r (T), i.e. f has
support in exp (i [−r, r]) with 0 < r < π (one can also write T = R/2πZ and view
f as a periodic function on R by t 7→ f (ei t) with supp (f) ⊆ [−r, r] + 2π Z). The

1Rn⋊SO (n) is the orientation preserving Euclidean motion group which is the semidirect product of the group
of rotations and the group of translations. Here a topological group G is the semidirect product of two closed
subgroups M and N if M is normal in G and the map M ×N → N , (m, n) 7→ mn is a homomorphism. In this
case G = M ⋊N .
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Fourier transform of f is n 7→ f̂ (n) on Z where

f̂ (n) =
1

2π

∫ π

−π

f (ei t) e−i n t dt.

It has a holomorphic extension to C, defined by the same formula, say λ 7→ f̂ (λ),
λ ∈ C. By the Paley-Wiener theorem on Rn we see that this extension has at most
exponential growth of type r, and each holomorphic function on C of this type
arises in this way from a unique f ∈ C∞

r (T). The inversion

f (t) =

∞∑

n=−∞

f̂ (n) ei n t

gives a decomposition of L2 ([−π, π]) as the direct sum (over Z) of all one dimen-
sional irreducible representations of T defined by t 7→ χn (t) = ei n t with n ∈ Z,

(ℓ, L2 ([−π, π])) ∼=
⊕

n∈Z

(χn, C).

The result of [22] generalized this local Paley-Wiener theorem on T to any
arbitrary Riemannian symmetric space U/K of the compact type. In [22] they
proved a Paley-Wiener theorem which characterized the Fourier image of the space
C∞

r (U/K)K of smooth compactly supported K-biinvariant functions f on U . The
compactness of U/K is reflected by the discreteness of its dual space, which is the
set Λ+

0 of irreducible spherical unitary representations of U . This set parametrizes
the set of elementary spherical functions on U . In this case, the spherical repre-
sentations of U (and thus the spherical functions on U) correspond to the trivial
one dimensional representation of K (the trivial K-type). The spherical Fourier
transform of f are functions on the discrete set Λ+

0 . The Fourier coefficients of
f are defined by integration of f against the spherical functions on U . Likewise,
the Fourier inversion formula, which recovers f in terms of spherical functions, is
thus given by a series. Under the (extended) spherical Fourier transform there is
a bijection from C∞

r (U/K)K onto the relevant Paley-Wiener space, which is the
space of holomorphic functions of exponential type r plus satisfying certain Weyl
group translation law.

Our work is motivated by [22]. We generalizes their result to the settings where
the trivialK-type is replaced by the nontrivialK-types. Instead of C∞

r (U/K)K , we
consider C∞

r (U//K, χ) of χ-bi-coinvariant functions on U where χ is a nontrivial
character ofK. These functions can be viewed geometrically as smooth sections in a
homogeneous line bundle over U/K. In our case, the elementary spherical functions
on U correspond to the nontrivialK-types χ (thus called spherical functions of type
χ). The χ-spherical Fourier transform and Fourier inversion are defined in a similar
way. The χ-bi-coinvariant functions f with small support will be characterized in
terms of holomorphic extendibility and exponential growth of their χ-spherical
Fourier transform with the exponent linked to the size of the support of f . This

3



is the content of Paley-Wiener theorem for line bundles over U/K. Let G/K be
the noncompact dual symmetric space of U/K. Our proof relies on the fact that
the spherical functions of type χ on U are connected to the spherical functions of
type χ on G by holomorphic continuation, while there are many known results on
the latter which we can use. Notice that the spherical functions of type χ on G
are linked to the hypergeometric functions, but whose multiplicity parameters are
not necessarily positive. We thus need to generalize Opdam’s estimate (see [27])
for the hypergeometric functions to meet our situation.

The Paley-Wiener theorem is also known for many particular cases (refer to
[22, §1] for more information on further developments of this subject). A Paley-
Wiener type theorem for central functions on a compact Lie group U was proved
by Gonzalez [9] where U is viewed as a symmetric space (U × U)/diag (U). He
basically reduced the proof to the Euclidean case by using the Weyl character
formula. The proof of one aspect of our case relies on this result. An analogue
of Paley-Wiener theorem for line bundles over noncompact symmetric spaces was
obtained by [31].

This manuscript is organized as follows. In Chapter 2 we introduce basic no-
tations and structure theory on Riemannian symmetric spaces. In Chapter 3 we
discuss harmonic analysis related to line bundles over compact symmetric spaces,
including the theory of highest weights for χ-spherical representations, elementary
spherical functions of type χ, and χ-spherical Fourier transforms. In Chapter 6
we define the relevant Paley-Wiener space and state the Paley-Wiener theorem
for line bundles over compact symmetric spaces (Theorem 6.6), to prove which we
need some tools of differential operators (Chapter 4) and hypergeometric functions
(Chapter 5). Sections 6.2 and 6.4.2 contains the main body of the proof. Section 6.2
shows the χ-spherical Fourier transform maps into the Paley-Wiener space, relied
on a uniform estimate of the hypergeometric function (not requiring all multiplicity
parameters to be positive) in a suitably big tubular domain (see Proposition 5.10).
Section 6.4.2 proves the bijectivity of the χ-spherical Fourier transform. Finally,
in Chapter 7, we treat rank one case and give an alternative method to prove the
χ-spherical Fourier transform maps into the Paley-Wiener space.
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Chapter 2

Riemannian Symmetric Spaces and
Related Structure Theory

This introductory chapter is divided into four parts. In section 2.1 we recall some
standard notations and facts related to differential geometry, Lie groups, and sym-
metric spaces with some emphasis on topics needed for the later treatment. In
particular, a short review on compact symmetric spaces and their noncompact du-
als is given in Section 2.2. Then we discuss homogeneous line bundles over compact
symmetric spaces in Section 2.3. The study of symmetric spaces leads naturally
to semisimple Lie algebras. The last section is devoted to study root structures of
these Lie algebras. The main references of this chapter are [11], [30], and [29].

2.1 Differential Geometry, Lie Groups, and

Symmetric Spaces

Lie Groups: A Lie group G is a group and a manifold so that the map

G×G −→ G, (x, y) 7−→ x y−1

is smooth. Roughly speaking, a Lie group is an analytic manifold with a group
structure such that the group operations are analytic. A homogeneous space is a
manifoldM with a transitive action1 of a Lie groupG. Equivalently, it is a manifold
of the form G/H where G is a Lie group and H a closed subgroup of G.

Theorem 2.1. Assume that G acts transitively on M . Let p ∈M and stabp (G) =
{g ∈ G | g · p = p} the stabilizer of p. Then the map

G/stabp (G) −→ M

is a G-isomorphism (i.e. a diffeomorphic G-map).

A class of homogeneous spaces, for which the program of harmonic analysis via
spectral decomposition of invariant differential operators is particularly compelling,
is the class of symmetric spaces. We will work on Riemannian geometry and begin
a study of Riemannian symmetric spaces.

Riemannian Symmetric Spaces: For a Riemannian manifold M denote by
I (M) the isometry group of M , that is, the set of all isometries2 of M . A Rie-
mannian homogeneous space is a Riemannian manifold M on which I (M) acts
transitively. It is shown that a Riemannian homogeneous space is diffeomorphic to
a homogeneous space G/K where G = I (M) and K is the isotropy subgroup of a
point in M3.

1The action is transitive if any point of M can be transformed into another point by an element of G.
2An isometry of M is a diffeomorphism that preserves the metric on M .
3Let a group G act on M . The isotropy subgroup of G at a point p ∈ M is {g ∈ G | g · p = p}.
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A Riemannian manifold M is called a Riemannian symmetric space, if for any
p ∈M , there exists an involutive4 isometry sp ofM such that p is an isolated fixed
point of sp. In this case, sp is the symmetry of M at p.

Let G be a Lie group and K a closed subgroup. A symmetric pair may be defined
as a pair (G, K) for which there is an involutive automorphism θ of G such that
Gθ

0 ⊂ K ⊂ Gθ, where
Gθ = {g ∈ G | θ (g) = g}

is the subgroup of fixed points for θ and Gθ
0 denotes its identity component con-

taining the identity element e of G. If, in addition, the image AdG (K) under the
map AdG : G→ GL (g), where g is the Lie algebra of G, is compact, then (G, K)
is said to be a Riemannian symmetric pair.

Theorem 2.2. There is a correspondence between Riemannian symmetric spaces
and Riemannian symmetric pairs. Precisely,

1. If (G, K) is a Riemannian symmetric pair, then there is a G-invariant metric
g on M = G/K which makes (M, g) a Riemannian symmetric space5;

2. Let M be a Riemannian symmetric space and p ∈ M . Let G = I0 (M) (the
identity component of I (M)), K the isotropy subgroup of G at p, and sp the
symmetry ofM at p. Then (I0 (M), K) is a Riemannian symmetric pair with
the involution θ of G given by θ (x) = sp x sp.

A symmetric pair (G, K) is called a semisimple symmetric pair if G is semisim-
ple. A symmetric space X is semisimple if and only if there is a semisimple sym-
metric pair (G, K) with G acting on X by affine transformations, such that X is
the symmetric space G/K. Note that the same space X with the same symmetries
may correspond to several symmetric pairs (G, K), among which only some are
semisimple. When we speak of a semisimple symmetric space G/K, it is to be
understood that (G, K) is a semisimple symmetric pair.

Let G be a locally compact group and K a compact subgroup. Then the pair
(G, K) is a Gelfand pair if the convolution algebra

L1 (K\G/K) ∼= {f ∈ L1 (G) | f (k1 g k2) = f (g), ∀ k1, k2 ∈ K, g ∈ G a.e.}
is commutative. LetM be a compact Riemannian symmetric space. Let U = I0 (M)
and K the isotropy subgroup of U at a point in M . Then (U, K) is a Riemannian
symmetric pair and M = U/K. Since M is compact, then U is compact. We call
(U, K) a compact Riemannian symmetric pair. In fact, the pair (U, K) is a Gelfand
pair.

Vector Bundles: A complex vector bundle of rank k over a manifold M is a
manifold V together with a smooth map π : V → M (called the projection) so that

4A map θ : M → M is an involutive map (or an involution) if θ (a b) = θ (a) θ (b), θ 6= id, and θ2 = id.
5In this case, if θ is the involution for the pair (G, K) then the map gK 7→ θ(g)K from X into itself is then

the symmetry around the origin o = eK. By parallel transport there are symmetries around all other points of
G/K as well.
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1. For each x ∈M the fiber over x, π−1 (x) =: Vx, is a vector space of dimension
k;

2. For each x ∈M there is a neighborhood U of x and a diffeomorphism

Φ : π−1 (U) −→ U × Ck

so that Φ (Vy) = (y, Ck) for y ∈ U .
A vector bundle V over M is a homogeneous vector bundle if G acts on V in such
a way that

1. If g ∈ G and x ∈M then a · Vx = Vg·x;

2. The map Vx → Vg·x, v 7→ g · v, is linear.
A section s : M → V is a smooth map such that π ◦ s = idM or equivalently,
s(x) ∈ Vx for all x ∈M .

Representation Theory: Let G be a locally compact Hausdorff topological
group. Let V, V ′ be topological vector spaces and Hom (V, V ′) be the set of con-
tinuous linear transformations from V to V ′. Let GL (V ) be the set of invert-
ible elements in Hom (V, V ). A representation of G on V is a pair (π, V ) where
π : G→ GL (V ) is a homomorphism and the map

G× V −→ V, (g, v) 7−→ π (g) v

is continuous. If n = dim V < ∞ then π : G → GL (n, C) is a continuous homo-
morphism and hence analytic. A subspace W ⊂ V is G-invariant if π(g)W ⊆ W
for all g ∈ G. A nonzero representation (π, V ) is irreducible if the only closed G-
invariant subspaces are {0} and V . Let (π, V ) and (π′, V ′) be representations of
G. Then T ∈ Hom (V, V ′) is an intertwining operator (or G-map) if T ◦π = π′ ◦T .
Denote by HomG (V, V ′) (or HomG (π, π′)) the set of all G-maps. We say V and V ′

are equivalent, V ∼= V ′ (or π ∼= π′) if there is a bijective G-map from V to V ′. If V
is a Hilbert space we say the representation (π, V ) is unitary when π(g) is unitary
for all g ∈ G. Two unitary representations π and π′ are unitarily equivalent if there
is a unitary isomorphism T ∈ HomG (V, V ′). Unitary equivalence is an equivalence

relation on the set of all unitary representations of G. Let Ĝ denote the set of
all equivalence classes of irreducible unitary representations of G. We call Ĝ the
unitary dual of G.

Measures: For any locally compact group G there is a left (or right) Haar
measure onG, which is a nonzero Radon measure6 µ on G satisfying µ(g E) = µ(E)

6If X is any topological space, the σ-algebra of Borel sets in X is the smallest σ-algebra containing all open
subsets of X. A measure defined on the Borel sets is called a Borel measure if it is finite for each compact set. The
σ-algebra of Baire sets in X is the smallest σ-algebra of subsets of X such that each f ∈ Cc(X) is measurable. It
is the smallest σ-algebra containing every compact Gδ set. A Radon measure on X is a measure µ on the Baire
sets such that µ(Y ) < ∞ for each compact Gδ set Y , and for each Baire set E, µ(E) is the supremum of all µ(Y )
where Y is a compact Gδ subset of E.

7



(or µ(E g) = µ(E)) for any Borel set E ⊂ G and any g ∈ G. If G is compact, then
there is a left Haar measure which is also a right Haar measure, called a Haar
measure.

A type I group is a second countable locally compact Hausdorff group whose
unitary representations are all type I. We do not go into this here, but remark that
abelian, connected nilpotent and semisimple Lie groups, and compact groups are
type I. Let G be a unimodular locally compact type I group. Then if µ is a Haar
measure on G, there is a unique measure σ, called the Plancherel measure on Ĝ,
such that ∫

G

|f(g)|2 dµ(g) =
∫

Ĝ

Tr (π(f) π(f)∗) dσ(π).

The left regular representation of G with a Haar measure is the representation ℓ
on L2(G) given by ℓ (g) f(x) = f (g−1 x). The right regular representation of G on
L2(G) is defined by ρ(g) f(x) = f(x g).

2.2 Compact Symmetric Spaces U/K and Their

Noncompact Duals G/K

Consider a Riemannian symmetric space of the compact type which can be realized
by U/K where U is a connected semisimple compact Lie group and K ⊆ U a
closed symmetric subgroup. Thus, there exists a nontrivial involution θ : U → U
such that Uθ

0 ⊆ K ⊆ Uθ where Uθ is the subgroup of θ-fixed points, and Uθ
0 is

its connected component containing the identity element e of U . Then (U, K) is
the compact Riemannian symmetric pair associated with θ. As K is closed in U
and U is compact, it follows that K is compact. For simplicity, assume U/K is
irreducible. We can further assume U is simply connected because the spherical
harmonic analysis on a general compact symmetric space U/K can be reduced to
the simply connected case (see [21, p.7]). Since U is simply connected, then K is
connected and U/K is simply connected.

Let u be the Lie algebra of U . Then θ induces an involution (automorphism) of u
which is the differential of θ, also denoted by θ. We have the Cartan decomposition

u = k⊕ q

where
k = {X ∈ u | θ (X) = X}, q = {X ∈ u | θ (X) = −X}

are the eigenspaces of θ with the eigenvalues 1 and −1, respectively. Then k is
the Lie algebra of K, and q ∼= To (U/K) where o = eK is the identity coset of
U/K. Every element u ∈ U can be written as u = k exp X for some k ∈ K and
X ∈ q. However, in general, this decomposition is not unique. The exponential
map exp : u→ U is surjective. Define Exp: q→ U/K by Exp(X) = exp (X) · o.
Let 〈 , 〉 be the inner product on u given by

〈X, Y 〉 = −K (X, Y ) = −Tr (adX ◦ adY ), ∀X, Y ∈ u
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where K is the Cartan-Killing form on u. Since u is compact and semisimple,
K is negative definite on u. We assume that the Riemannian metric of U/K is
normalized such that it agrees with 〈 , 〉 on the tangent space q. The inner product
on u gives an inner product on the dual space u∗ in a canonical way, and by
sesquilinear extensions they induce inner products on uC = u⊕i u and the complex
dual space u∗C. Here and in the following the subscript C denotes complexification.
All of these involved inner products are denoted by the same symbol.

Let b be a maximal abelian subspace of q, called a Cartan subspace of the com-
pact symmetric pair (U, K), which is unique up to conjugacy by K. In particular,
all Cartan subspaces have the same dimension. The number n = dim b is called
the real rank of u and of U . This is, by definition, also the rank of the compact
symmetric space U/K. Let b∗ be the (real) dual space of b and b∗C its complexified
dual space. Let h be a Cartan subalgebra7 of u containing b. Then h is θ-stable
and

h = (h ∩ k)⊕ b.

Let B be the analytic subgroups of U with Lie algebras b. Then B = exp b is
a connected abelian closed subgroup of U . We call B the corresponding Cartan
subgroup of (U, K).

Since U is compact, it admits a finite dimensional faithful unitary representation.
Thus if p is the dimension of this representation, we can assume that U ⊂ U (p) ⊂
GL (p, C). So there is a unique connected complex Lie group UC with the Lie
algebra uC such that U ⊆ UC is a real subgroup. For any g ∈ UC there are a unique
u ∈ U and a unique X ∈ u such that g = u exp (iX). Note that UC is a closed
analytic subgroup of GL (p, C) and is a complex submanifold of GL (p, C).
Let G = K exp (i q). Then G is the analytic subgroup of UC with the Lie algebra

g := k⊕ i q.

The decomposition G = K exp (i q) ∼= K × (i q) implies that G/K as a manifold
is diffeomorphic via the exponential map to the Euclidean space i q. Note that G
is a noncompact semisimple Lie group and is connected, closed in UC, and K ⊂ G
maximal compact. Also, gC = uC as complex vector spaces, and UC complexifies
both U and G. So UC = GC. The involution θ can be extended to a holomorphic
involution on UC, also denoted by θ. Then θ |G is a Cartan involution on G. The
pair (G, K) is a noncompact Riemannian symmetric pair associated with θ |G. We
still denote θ |G by θ. The symmetric space G/K is called the noncompact dual
of U/K. We have K = Gθ = U ∩ G is connected and G/K is simply connected.
Let kC = k⊕ i k and KC be the connected subgroup of GC with the Lie algebra kC.
Then (UC, KC) is non-Riemannian symmetric pair with respect to the involution
θ. The symmetric spaces U/K and G/K embed in the complex homogeneous space
UC/KC as totally real submanifolds.

7A subalgebra h of u is called a Cartan subalgebra if h is nilpotent and h = Nu (h) = {X ∈ u | [h, X] ⊂ h}.
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Let a = i b and A = exp a. Then a ⊂ i q is maximal abelian, called a Cartan
subspace for the symmetric pair (G, K), and A ⊂ G is the corresponding Car-
tan subgroup. The elements of ad a can be simultaneously diagonalized with real
eigenvalues. Let aC := a⊗RC = a⊕ i a and AC the connected subgroup of GC with
Lie algebra aC. We have bC = aC and BC = AC = AB is the polar decomposition
of BC. The exponential map exp : bC → BC is the canonical projection of bC onto
BC whose multi-valued inverse is log.

By restriction, 〈 , 〉 defines an inner product on b, which in turn induces an
inner product on b∗ by duality. By sesquilinear extension we obtain inner products
on i b∗ and b∗C.

It is convenient to establish some conventions about the normalization of invari-
ant measures on the groups and symmetric spaces considered in this manuscript.
We normalize the Haar measures du, dk, and db on compact groups U , K, and
B, respectively, such that the total measure is one. In general, we normalize any
compact group in this way. Moreover, if L is a Lie group and Q is a closed subgroup
of L, with left Haar measures dl and dq, respectively, then the homogeneous space
L/Q (when it exists) possesses a unique left L-invariant Borel measure d (l Q)8.
We normalize it so that

∫

L

f (l) dl =

∫

L/Q

(∫

Q

f(l q) dq

)
d (l Q) (2.1)

where f ∈ L1(L). In this case,
∫

L/Q

F (l Q) d (l Q) =

∫

L

F ◦ ι(l) dl

where ι : L → L/Q is the canonical projection and F ∈ L1(L/Q). This condition
(2.1) fixes the U -invariant measure d (uK) on U/K to have total mass one. We
shall use the notation dx = d (uK) for the invariant measure on U/K.

2.3 Line Bundles over Compact Symmetric

Spaces U/K

Given a representation (χ, Vχ) of K, let K act on U × Vχ from the right by

(g, v) · k = (g k, χ (k)−1 (v)).

It is clear that the left U -action on U × Vχ, u · (g, v) = (u g, v) and the right K
action commutes. Define an equivalence relation ∼ on U × Vχ by (u, v) ∼ (g, w)
if and only if they are in the same K-orbit, i.e. there is a k ∈ K such that

u k = g and χ(k)−1 (v) = w.

8The measure d(l Q) is obtained by taking the push forward measure on L/Q of the Haar measure dl on L via
the canonical projection ι : L → L/Q given by l 7→ l Q.
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Denote by [u, v] the equivalence class of (u, v). Then the homogeneous vector
bundle over U/K is defined by

U ×K Vχ = (U × Vχ)/ ∼ = {[u, v] | u ∈ U, v ∈ Vχ}.
The projection map π : U ×K Vχ → U/K is given by π(u, v) = uK.

If dim Vχ = 1 then Vχ ∼= C and χ : K → T is a character of K. In this case,

Lχ := U ×K Vχ ∼= U ×K C

is then a homogeneous line bundle over U/K.

Denote by Z(K) and z (k) the centers of K and k. Let K1 = [K, K] be the
commutator subgroup generated by {aba−1b−1 | a, b ∈ K}. As K is a compact
connected Lie group, K1 is a connected closed normal Lie subgroup of K with the
Lie algebra k1 = [k, k]. We have

χ (a b a−1 b−1) = χ (a)χ (b)χ (a−1)χ (b−1) = 1.

This implies that χ |K1 = 1. Since k = k1 ⊕ z (k), if K is semisimple, then z (k) = {0}
and k1 = k. Thus, K = K1 and χ ≡ 1, i.e. the trivial representation is the only
one dimensional representation of K. But if K is not semisimple, or equivalently if
U/K is of Hermitian type, there are nontrivial one dimensional K-types to occur.
It is for these groups U we take into consideration.

In the following table we give the classification of possible spaces U/K where K
is not semisimple so that a nontrivial one dimensional K-types exists and so that
over such a space a nontrivial homogeneous line bundle exists (cf. [11, p.516, 518])

Table 1: Classification of irreducible Riemannian symmetric spaces:
U compact, G noncompact, K connected

class G U K n d

1 AIII SU (p, q) SU (p+ q) S (Up ×Uq) q 2pq p ≥ q ≥ 1
2 BDI SOo (p, 2) SO (p+ 2) SO (p)× SO (2) 2 2p p ≥ 3

3 DIII SO∗ (2 j) SO (2 j) U (j) [ j
2
] j(j − 1) j ≥ 4

4 CI Sp (j, R) Sp (j) U (j) j j(j + 1) j ≥ 2
5 EIII e6 (−14) e6 (−78) so (10) + R 2

6 EV II e7 (−25) e7 (−133) e6 + R 3

Remark 2.3. In Table 1, n = dim b is the rank of U/K and d = dim U/K. The
conditions listed in the last column are given to prevent coincidence due to lower
dimensional isomorphisms, which might give redundant candidates, so we should
take them out. Precisely,

1. Case 2 with p = 1 is a redundant candidate since

SO (3)/SO (2) ∼= S2 ∼= SU (2)/S (U1 × U1)

(cf. [11, p.519]) which coincides with Case 1 with p = q = 1.
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2. Because U (1) ∼= SO(2) and U(2) ∼= U (1) × U (1), we see that Case 2 with
p = 2 coincides with Case 3 with j = 2, they are

SO (4)/SO (2)× SO (2) ∼= SO(4)/U (2).

Since SO (4) = SO (3)×SO (3), this space is isomorphic to S2×S2. In view of
[19, p.424], the root system is of type D2 = A1×A1, a split case. It is not in
our consideration since we only consider irreducible root systems. Therefore,
this case is not listed in Table 1.

3. In case 3, j 6= 1 because [1
2
] = 0.

4. Since SO (6) ∼= SU (4), then

SO (6)/U (3) ∼= SU (4)/U3

which implies that Case 3 with j = 3 coincides with Case 1 with p = 3 and
q = 1.

5. Since Sp (1) ∼= SU (2) and U (1) ∼= S (U1 × U1), we see that

Sp (1)/U (1) ∼= SU (2)/S (U1 ×U1).

So Case 4 with j = 1 coincides with Case 1 with p = q = 1.

It is helpful to discuss the geometric meanings of such U/K. In Case 1,

U/K = SU (p+ q)/S (Up × Uq)

is the space of p-planes in Cp+q, known as the complex Grassmann manifolds. In
Case 2,

U/K = SO (p+ 2)/(SO (p)× SO (2))

is a covering of SO (p+2)/S (O (p)×O (2)). Note that SO (p+2)/S (O (p)×O (2))
is the space of p-planes in Rp+2, known as the real Grassmann manifolds.

In the case U/K of Hermitian type, the set of such χ’s are parametrized by Z,
precisely,

Proposition 2.4. Let l ∈ Z. Define χl : K → T by
{
χl (k) = 1, ∀ k ∈ K1

χl (e
t Z) = ei l t, ∀ t ∈ R.

Here, Z ∈ z (k) \ {0} is defined as [29, (3.1)] so that et Z ∈ Z (K), and et Z ∈ K1 if
and only if t ∈ 2 πZ. This is a well defined one dimensional representation of K.
Moreover, if χ is an one dimensional representation of K, then there is a unique
l ∈ Z such that χ = χl.

Proof. Refer to Proposition 3.4 in [29] and its following comment.
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Since all one dimensional representations χ of K have this form, hereafter, we
parametrize χ = χl for l ∈ Z. If l = 0, then χ0 is trivial. The character χl satisfies

χl (k)
−1 = χl (k

−1) = χ−l (k).

Denote by L2 (U/K, χl) the space of functions f on U satisfying

f(u k) = χl(k)
−1 f(u) and

∫

U

|f (u)|2 du <∞,

where the latter condition is equivalent to
∫
U/K
|f (x)|2 dx <∞ because |χl (k)| =

1, for all k ∈ K. Consider

C∞ (U/K, χl) = {f ∈ C∞ (U) | f (u k) = χl (k)
−1 f (u), ∀ k ∈ K}

the space of smooth χl-right-coinvariant functions on U . When l = 0, this space
becomes C∞ (U/K). Let Γ∞ (Lχl

) be the space of smooth sections of Lχl
. The

group U acts on Γ∞ (Lχl
) by (u · s)(x) = u · s(u−1 x). It is well known that

Proposition 2.5. There is a U-isomorphism (linear U-intertwining bijection) Φ :
C∞ (U/K, χl)→ Γ∞ (Lχl

), given by

Φ (f) (uK) = [u, f (u)] = sf (uK),

whose inverse is Φ−1 (s) (u) = u−1 · (s(uK)).

Hence we may think of functions in C∞ (U/K, χl) geometrically as smooth
sections in a homogeneous line bundle Lχl

→ U/K.

2.4 Root Structures of Semisimple Lie Algebras

Let ∆ = ∆(u, h) be the set of roots of u with respect to h, that is, it contains all
nonzero β ∈ h∗C for which the vector space

u
β
C = {X ∈ uC | ∀H ∈ hC, [H, X ] = β (H)X}

is nonzero. Since u is compact, all elements of ∆ take purely imaginary values on
h. So ∆ ⊂ i h∗. For α ∈ b∗C, let

uC, α = {X ∈ uC | ∀H ∈ bC, [H, X ] = α (H)X}.

If uC, α 6= {0}, then α is called a (restricted) root. The spaces uC, α are called root
spaces. Denote by Σ = Σ (u, b) the set of nonzero restricted roots of the pair
(u, b). Then Σ is a root system9. We do not assume Σ is a reduced root system10.
If β ∈ ∆, then β |b either equals zero or is in Σ. Since all the elements of Σ are

9That means Σ satisfies the axioms of an abstract root system.
10A root system Σ is said to be reduced if α, β ∈ Σ and β = r α implies that r = ± 1.
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purely imaginary on b, we see that Σ ⊂ i b∗ = a∗, and uC, α ∩ u = {0}. Note that
Cartan duality is a bijection between the classes of simply connected symmetric
spaces of compact type and noncompact type: U/K ←→ G/K. On the Lie algebra
level this bijection is given by

u = k⊕ q ←→ g = k⊕ i q. (2.2)

Let Σ (g, a) ⊂ a∗ be the set of nonzero restricted roots of the pair (g, a), i.e. the
set of nonzero α such that

gC, α = {X ∈ gC | ∀H ∈ aC, [H, X ] = α (H)X} 6= {0}.

It is clear that gC, α = uC, α, gC, α = gα + i gα where

gα = gC, α ∩ g = {X ∈ g | ∀H ∈ a, [H, X ] = α (H)X}.

Since bC = aC, the set of roots is preserved under duality, i.e. Σ (u, b) = Σ (g, a),
where we view these roots as C-linear functionals on bC. The eigenspace g0 is the
centralizer of a. Let m = {X ∈ k | [a, X ] = 0} be the centralizer of a in k. Then
g0 = a⊕m and hence

g = a⊕m⊕
⊕

α∈Σ

gα.

A point X ∈ a is called regular if α(X) 6= 0 for all α ∈ Σ, otherwise singular.
The subset areg ⊂ a of regular elements in a consists of the complement of finitely
many hyperplanes, and its connected components are called Weyl chambers. Fix a
Weyl chamber a+ and call a root α positive if α has positive values on a+. Fix a set
Σ+ ⊂ Σ of positive restricted roots and fix a compatible set ∆+ ⊂ ∆ of positive
roots. Then Σ = Σ+ ·∪ (−Σ+). The positive Weyl chamber is given by

a+ := {H ∈ a : α (H) > 0, ∀α ∈ Σ+}.

This is an open polyhedral cone. Let b+ = i a+. Let A+ = exp a+ andB+ = exp b+.

If α ∈ Σ, it can happen that either α/2 ∈ Σ or 2α ∈ Σ, but not both. A root
α ∈ Σ is said to be unmultiplicable if 2α /∈ Σ and indivisible if α/2 /∈ Σ. Denote
by

Σ∗ = {α ∈ Σ | 2α /∈ Σ}, Σi = {α ∈ Σ | 1

2
α /∈ Σ}.

Both Σ∗ and Σi are reduced root systems. Set Σ+
∗ = Σ∗ ∩ Σ+. Note that U/K is

irreducible if and only if Σi is irreducible
11.

A root α ∈ Σ+ is called simple if it can not be written as a sum α = β+γ where
β and γ are positive roots. Recall that

n = rank U/K = dim b = the number of simple roots.

11A root system is called irreducible if it can not be decomposed into two nonempty disjoint orthogonal subsets.
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Let Π = {αj}nj=1 be the fundamental system of simple roots associated with Σ+

which is a basis of i b∗. For j = 1, . . . , n choose

βj =

{
αj , if 2αj /∈ Σ

2αj, if 2αj ∈ Σ.

Then Π∗ = {βj}nj=1 consists of simple roots in Σ+
∗ which is also a basis of i b∗.

Define the dual basis {ωj}nj=1 to be the linear functionals ωj ∈ i b∗ satisfying

〈ωi, βj〉
〈βj, βj〉

= δi, j, 1 ≤ i, j ≤ n. (2.3)

The weights ωj are the class 1 fundamental weights for (u, k).

For any λ ∈ b∗C and α ∈ i b∗ with α 6= 0, set

λα :=
〈λ, α〉
〈α, α〉 .

We have 2 λα = λα/2. The restricted integral weight lattice of Σ is the set

P = {λ ∈ i b∗ | λα ∈ Z, ∀α ∈ Σ}.

An element in b∗C \ P is said to be generic. The set of dominant restricted integral
weights is

P+ = {λ ∈ i b∗ | λα ∈ Z+, ∀α ∈ Σ+}.
In fact, it is enough to use Σ∗ instead of Σ in the constraint of P and P+.

For λ ∈ b∗C, we define the function eλ on BC by

eλ (a) = aλ := eλ (log a) ∈ C∗, a ∈ BC.

If λ ∈ P , eλ is single-valued on BC. So a 7→ aλ is a character on BC if λ ∈ P .
Denote by C [P ] the group algebra over C generated by eλ with λ ∈ P . An element
of C [P ] is an exponential polynomial on BC of the form

∑
λ∈P cλ e

λ where cλ ∈ C
and cλ 6= 0 for only finitely many λ ∈ P . It satisfies

eλ · eµ = eλ+µ, (eλ)−1 = e−λ, e0 = 1.

For any 0 6= α ∈ Σ, define a linear transformation rα : i b∗ → i b∗ by

rα (λ) := λ− 2
〈λ, α〉
〈α, α〉 α = λ− 2 λα α, ∀λ ∈ i b∗.

Denote the hyperplane with normal α by

α⊥ = {β ∈ i b∗ | 〈β, α〉 = 0}.

If β ∈ α⊥ then rα (β) = β (this says that the fixed points of rα constitute a
hyperplane in i b∗) and if β = k α with k ∈ R then rα (β) = −β. Thus rα is the
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reflection in the hyperplane α⊥. In particular, rα is an orthogonal transformation12,
det rα = −1, and r2α = id.

LetW = W (Σ) be he finite group of orthogonal transformations of i b∗ generated
by rα with α ∈ Σ. Then W is called the Weyl group associated to Σ. Note that
W (Σ) = W (Σi). Let W (h) = W (h, ∆) be the Weyl group of u relative to h, i.e.
it is generated by the reflections along the roots in ∆. Let

ZK (b) = {k ∈ K | Ad(k)X = X, ∀X ∈ b},
NK (b) = {k ∈ K | Ad(k) b = b}

be the centralizer and normalizer of b in K, respectively. Similar for NU (b) and
ZU (b). It is known that

W ∼= NK (b)/ZK (b) ∼= NU (b)/ZU (b).

The Weyl group action extends to i b by duality13, and then to bC and b∗C by C-
linearity, and to B and BC by the exponential map. Moreover, W acts on functions
f on any of these spaces by (w f) (x) := f (w−1 x) for w ∈ W . The lattice P is
W -invariant, and W acts on C [P ] by w (eλ) := ewλ for all w ∈ W .

Note that
W a+ = {H ∈ a : α (H) 6= 0, ∀α ∈ Σ+} = areg

is open and dense in a. If w 6= e then w a+ ∩ a+ = ∅. The set

b
reg
C := {X ∈ bC | e2α (X) 6= 1, ∀α ∈ Σ+}

= {X ∈ bC | α (X) /∈ π iZ, ∀α ∈ Σ+}

consists of the regular points of bC for the action of W . Note that a+ and b+ are
subsets of bregC . We can also define the set of regular points in Lie group level by

Breg
C := exp b

reg
C , Areg = Breg

C ∩ A = exp areg.

Then A+ ⊂ Areg, W A+ = Areg is open and dense in A, and A \ Areg has measure
zero.

For the set {ω1, . . . , ωn} ⊂ P+, we put

zj =
∑

w∈W/Wωj

ewωj , j = 1, . . . , n

where W ωj is the subgroup of W that stabilizes ωj. The zj are called the funda-
mental W -invariant exponential polynomials, and it is well known from [2, p.188]
(or by Chevalley’s theorem) that

C [P ]W = C [z1, . . . , zn].

12A linear transformation from a vector space V into itself is orthogonal if it preserves the inner product on V .
13This means we define the Weyl group action on i b by 〈w ·X, λ〉 = 〈X, w−1 · λ〉 for w ∈ W and X ∈ i b. It is

shown that this action is same as w (X) = Ad (w)X.
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A multiplicity function on Σ is a W -invariant function m : Σ → C. Set mα :=
m (α). Thus, mw α = mα for all α ∈ Σ and w ∈ W . Denote by

M = {m = (mα) | mα ∈ C, mw α = mα, ∀α ∈ Σ, w ∈ W}
the C-vector space of C-valued multiplicity functions on Σ. It is a finite-dimensional
subspace of CΣ, andM∼= Ck, k equal to the number of conjugacy classes of roots
in Σ. A multiplicity function m is said to be positive if mα ≥ 0 for all α ∈ Σ. Given
m ∈M we define the following functions on BC:

ρ (m) :=
1

2

∑

α∈Σ+

mα α ∈ i b∗

υ (m) :=
∏

α∈Σ+

(eα − e−α)mα = e2 ρ (m)
∏

α∈Σ+

(1− e−2α)mα

δ (m) :=
∏

α∈Σ+

|eα − e−α|mα.

Since we are working on compact symmetric spaces, the multiplicity function m in
our case is geometric14, that is, m : Σ→ R+ is defined by

mα := dimR gα = dimC uC, α ≥ 0, ∀α ∈ Σ.

In contrast to the diagonalization of a Cartan subalgebra of a complex Lie algebra
where the root spaces are always one dimensional, the root α ∈ Σ has a multiplicity
mα which may exceed 1.

In chapters 4 and 5 we will discuss the various spectral problems associated with
commutative algebra Dl. For that we impose the restriction on m (always satisfied
for group values15):

mα +mα/2 ≥ 0 and mα ≥ 0, ∀α ∈ Σ∗. (2.4)

Because of this constraint the function δ (m) is a nonnegative continuous function
on all of BC and thus δ (m, b) db is a positive measure on B, whereas the function
υ (m) is viewed as a multivalued holomorphic function on Breg

C obtained by analytic
continuation of δ (m) on A+ ⊂ Breg

C .

Similarly for a multiplicity function m on ∆ we define

ρ (m, h) :=
1

2

∑

β∈∆+

mβ β ∈ i h∗.

Note that dim u
β
C = 1 for any β ∈ ∆ (as h is a Cartan subalgebra), so in the

geometric case mβ = 1 and

ρ (m, h) =
1

2

∑

β∈∆+

β.

14A multiplicity function m is geometric if there is a Riemannian symmetric space with restricted root system
Σ such that mα is the multiplicity of the root α for all α ∈ Σ.

15It means mα is an integer for all α ∈ Σ.
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When U/K is fixed, m is fixed and no need to underline their dependence on m,
we then write δ (m) = δ, ρ (m) = ρ, and ρ (m, h) = ρ (h).

Proposition 2.6. We have the relation

ρ (h) |b = ρ. (2.5)

Proof. Note that
Σ = {β|b | β ∈ ∆, β|b 6= 0}.

For α ∈ Σ, let
∆ (α) := {β ∈ ∆ | β|b = α}.

Then dimR gα equals the number of elements in the set ∆ (α), i.e. mα = #(∆ (α)).
Since ∆+ is compatible with Σ+, it follows that if β ∈ ∆+ then β |b is either zero
or is in Σ+. So

2 ρ (h) =
∑

β∈∆+

β =
∑

α∈Σ+

∑

β∈∆(α)

β +
∑

β∈∆+

β|b=0

β.

It follows that

2 ρ (h) |b =
∑

α∈Σ+

∑

β∈∆(α)

β|b =
∑

α∈Σ+

(#∆ (α))α =
∑

α∈Σ+

mα α = 2ρ.

This gives the desired result.

That U/K is irreducible and K is not semisimple is equivalent to the fact that
Σ is of type BCn (or Cn) and the multiplicity of long roots is 1. This is the content
of the following result due to either the theory of strongly orthogonal roots (cf.
Moore [20, Theorem 5.2] or [11, p. 528]) or the classification of root systems (cf.
[11, p.532]):

Theorem 2.7. Let {ε1, . . . , εn} be an orthogonal basis of i b∗. There are two pos-
sibilities for the root system Σ+:

Case I: Σ+ = {εj ± εi (1 ≤ i < j ≤ n), 2 εj (1 ≤ j ≤ n)}
Case II: Σ+ = {εj (1 ≤ j ≤ n), εj ± εi (1 ≤ i < j ≤ n), 2 εj (1 ≤ j ≤ n)}.

Remark 2.8. To coincide with the setting of [29], our choice of Σ+ is consistent
with the positive roots of (g, t) in [29] through the Cayley transform where t is a
Cartan subalgebra of k. The choice of strongly orthogonal roots16 is also the same
as that in [29], that is, {2εj}nj=1 is a maximal strongly orthogonal subset in Σ+.

Since U/K is irreducible, Σ is a disjoint union of three W -orbits in Σ corre-
sponding to short, medium, and long roots17, respectively, that is,

Σ = Os ·∪ Om ·∪ Ol.

16Two roots α, β ∈ Σ are called strongly orthogonal if α 6= ± β and α± β /∈ Σ
17They are determined by the lengths of roots. If α is a root, the length of α is given by ‖α‖ = 〈α, α 〉1/2.
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Let O+
s = Os ∩ Σ+, O+

m = Om ∩ Σ+, and O+
l = Ol ∩ Σ+. Thus

O+
s = {εi}, O+

m = {εj ± εi}, O+
l = {2εi}.

Adopt the notation
m = (mα) = (ms, mm, ml)

for root multiplicities of short, medium, and long roots, respectively, where

case I: ms = 0 mm = mεj±εi (i 6= j) ml = m2 εi ≡ 1
case II: ms = mεi mm = mεj±εi (i 6= j) ml = m2 εi ≡ 1,

given by dimensions of root spaces. The case I is actually of type Cn. We consider
it as being of type BCn with ms = 0 in BCn. In this way, the root system Σ is of
type BCn in both cases. In view of [11, p. 518, table V, and p. 532, table VI], we
give the root structures and root multiplicities of each space listed in the Table 1:

Table 2: Root structures and multiplicities

compact symmetric spaces U/K

U K Σ (ms, mm, ml)

1 SU (p+ q) S (Up ×Uq)
case I p = q
case II p > q

(0, 2, 1)
(2 (p− q), 2, 1)

2 SO (p+ 2) SO (p)× SO (2) case I (0, p− 2, 1)

3 SO (2 j) U (j)
case I j is even
case II j is odd

(0, 4, 1)
(4, 4, 1)

4 Sp (j) U (j) case I (0, 1, 1)
5 e6 (−78) so (10) + R case II (8, 6, 1)

6 e7 (−133) e6 + R case I (0, 8, 1)

Remark 2.9. Our multiplicity notation is different from the one used by Heckman
and Opdam. The root system R they use is related to our Σ by R = {2α | α ∈ Σ}.
The multiplicity function k they deal with is related to our m by k2α = mα/2.
Let R+ be a set of positive roots in R. We can easily see that the definition of our
ρ(m) coincides with their ρ(k). The reason is

ρ(m) =
1

2

∑

α∈Σ+

mα · α =
1

2

∑

α∈Σ+

2(k2α) · α

=
1

2

∑

α∈Σ+

(k2α) · (2α)

=
1

2

∑

β∈R+

kβ · β

=
1

2

∑

α∈R+

kα · α = ρ(k).
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For any l ∈ Z define m±(l) ∈ M ∼= C3 by

m+(l) = m(l) = (ms − 2 |l|, mm, ml + 2 |l|),
m−(l) = (ms + 2 |l|, mm, ml − 2 |l|),

with ml = 1. It is clear that m±(l) satisfy (2.4). Let ρ(l) := ρ(m(l)). Define

ρs =
1

2

∑

α∈O+
s

α.

We then come up with a nice formula in the following proposition which tells the
relation between ρ and ρ(l). It plays a role in the description of the restricted
highest weights of χl-spherical representations of U (see (3.4)).

Proposition 2.10. We have

ρ(l) = ρ+ 2|l| ρs. (2.6)

Proof. Note that Σ+ = O+
s ·∪ O+

m ·∪ O+
l , so

ρ(l) =
1

2

∑

α∈Σ+

(m(l))α · α

=
1

2


∑

α∈O+
s

(ms − 2|l|)α+
∑

α∈O+
m

mm α +
∑

α∈O+
l

(ml + 2|l|) (2α)




=
1

2


∑

α∈O+
s

ms α +
∑

α∈O+
m

mm α +
∑

α∈O+
l

ml (2α)


+

1

2

∑

α∈O+
s

2|l| (α)

=
1

2

∑

α∈Σ+

mα α + 2|l| · 1
2

∑

α∈O+
s

α

= ρ+ 2|l| ρs.

Since {ε1, . . . , εn} is an orthogonal basis of i b∗, any λ ∈ b∗C can be written as

λ =

n∑

j=1

λj εj

where λj = λεj ∈ C. It follows obviously that

λα ≥ 0, ∀α ∈ Σ+ ⇐⇒ λn ≥ · · · ≥ λ1 ≥ 0.

Choose Hεj ∈ [gεj , g−εj ] such that {Hεj} is a basis of a which is dual to {εj}, i.e.
εj (Hεi) = δi j. So any Z ∈ bC can be written as Z =

∑
zj Hεj for zj ∈ C. We then

identify

b∗C
∼= Cn, λ 7−→ (λ1, . . . , λn)

bC ∼= Cn, Z 7−→ (z1, . . . , zn).
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Last, we introduce the Cartan decomposition U = K BK. It says that every
u ∈ U can be written as u = k b h with k, h ∈ K and b ∈ B. We have

B = ·∪w∈W wB+

and K B+K ⊂ U is open dense. The element b is uniquely determined up to
W -invariance, and thus can be chosen in B+. So the Cartan decomposition of U is

U = K B+K.

As a consequence we get a kind of a polar coordinate decomposition of U/K:

Theorem 2.11. We have U/K = K B+ · o and the map (K/M) × B+ → U/K
given by

(kM, b) 7−→ k bK

is an analytic diffeomorphism from (K/M) × B+ onto an open dense subset of
U/K.

Proof. See, for instance, Corollary 1.2 in [11, Chapter IX].

This theorem is true for any connected semisimple Lie group U . It guarantees
we can write the radial part of the Laplace-Beltrami operator on U/K (or G/K)
in terms of coordinates in B+ (or A+) as it guarantees the manifold B+ (or A+)
satisfies the transversality condition (see chapters 4 and 5 for more discussion).
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Chapter 3

Fourier Analysis Related to Line Bundles
over Compact Symmetric Spaces U/K

This chapter is devoted to a preliminary study of harmonic analysis related to line
bundles over compact symmetric spaces, including the theory of highest weights for
χl-spherical representations, elementary spherical functions of type χl, χl-spherical
Fourier transforms, and the Plancherel formula. The central result is the properties
(3.4) and (3.12). We refer to [29] and [18] as the main source for this chapter.

3.1 Harmonic Analysis on Compact Groups

In this section we review some well-known facts for harmonic analysis on compact
groups. This material will be presented mostly without proofs, which can be found
in [30] and [7].

Proposition 3.1. Let π be a representation of a compact group U on a finite
dimensional vector space V . There exists a Euclidean inner product on V for which
π is unitary.

Theorem 3.2 (Schur’s Lemma). Let V and W be unitary representations of a Lie
group G on Hilbert spaces. If V and W are irreducible, then

dim HomG (V, W ) =

{
1 if V ∼= W

0 if V ≇ W.

In general, the representation V is irreducible if and only if HomG (V, V ) = C I.

Theorem 3.3 (Schur’s Orthogonal Relations). Let V and W be irreducible finite
dimensional unitary representations of a compact Lie group U with U-invariant
inner products ( · , · )V and ( · , · )W . If v1, v2 ∈ V and w1, w2 ∈ W ,

∫

U

(gv1, v2)V (gw1, w2)W dg =

{
0 if V ≇W

1
dim V

(v1, w1)V (v2, w2)W if V = W.

Definition 3.4. Let G be a locally compact Hausdorff group and ϕ : G → C a
continuous function. ϕ is said to be positive definite if for all finite sets {g1, . . . , gn}
of elements in G,

n∑

i, j=1

ci cj ϕ (g−1
i gj) ≥ 0,

for all n ∈ N and all cj ∈ C, j = 1, . . . , n. Such a function ϕ satisfies

ϕ (e) ≥ 0, ϕ (g−1) = ϕ (g), |ϕ (g)| ≤ ϕ (e).
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Theorem 12.1 in [13, Chapter III] proved

Proposition 3.5. We have

1. Let π be a unitary representation of locally compact group G on a Hilbert
space V . For each vector v ∈ V the function g 7→ (v, π(g) v) on G is positive
definite.

2. If ϕ 6≡ 0 is a positive definite function on G, then there is a unitary rep-
resentation π of G on a Hilbert space V such that ϕ (g) = (v, π(g) v) for a
suitable vector v ∈ V . These can be chosen so that v is a cyclic vector1.

Let U be a compact group. For each π ∈ Û we choose a representative (π, Vπ).
Let d(π) = dim Vπ. Write End (Vπ) = Hom (Vπ, Vπ) for the set of endomorphisms
on Vπ. The space End (Vπ) is a Hilbert space with respect to the Hilbert-Schmidt
inner product

(T, S)HS = Tr (S∗ ◦ T ),
and dim End (Vπ) = d(π)2. If f ∈ L1 (U), we define the operator-valued Fourier

transform of f to be f 7→ f̂ (π) = π (f) where

π (f) =

∫

U

f (u) π (u) du ∈ End (Vπ).

Since U is compact, it has finite volume. By Hölder inequality L2(U) ⊆ L1(U). Thus
π(f) is well defined when f ∈ L2(U). It follows from the Peter-Weyl Theorem and
from Schur’s orthogonal relations that

Theorem 3.6 (Plancherel’s Theorem). Let U be a compact group and f ∈ L2(U).
Then f equals the sum of its Fourier series (in L2-sense):

f (u) =
∑

π∈Û

d (π) Tr (π (u)−1 π (f)) =
∑

π∈Û

d (π)

d (π)∑

j=1

(π (u)−1 π (f) ej, ej)

where for each π ∈ Û , {ej}d (π)j=1 is an orthonormal basis for Vπ. Moreover, we have
the following Plancherel formula

‖f‖22 =
∑

π∈Û

d (π) ‖π (f)‖HS

=
∑

π∈Û

d (π) Tr (π (f)∗ π (f))

=
∑

π∈Û

d (π)

d (π)∑

j=1

‖π (f) ej‖2.

1A vector v is a cyclic vector for π if the vector space spanned by π(G) v is dense in V .
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3.2 Representations of Compact Semisimple Lie

Groups

3.2.1 Theory of Highest Weights

For each π ∈ Û we choose in the equivalence class a concrete representation π on a
complex vector space Vπ and d(π) = dim Vπ. Since U is compact, π automatically
extends to a holomorphic representation πC of UC. If we assume U is a closed
subgroup of some unitary group as in Section 2.2 then

πC (g)
∗ = πC (g

∗)

where g∗ is the complex conjugate transpose of g. The derived representation
(d πC, Vπ) is a Lie algebra representation of uC satisfying exp (d πC Z) = πC (exp Z)
where the differential of πC is defined by

d πC (Z) =
d

d t
πC (exp (t Z))

∣∣∣
t=0
, ∀Z ∈ uC.

Recall that a triangular decomposition of uC is given by

uC = ñ−C ⊕ hC ⊕ ñ+C

where
ñ±C =

⊕

β∈∆±

u
β
C.

Also recall that the weight space decomposition of Vπ is given by

Vπ =
⊕

λ∈∆(Vπ)

Vπ, λ

where the weight space

Vπ, λ = {v ∈ Vπ | dπC (H) = λ (H) v, ∀H ∈ hC}

is of dimension 1, and ∆ (Vπ) ⊂ h∗C is the set of the weights of Vπ, that is, it consists
of those λ such that Vπ, λ is nonzero. A µ ∈ b∗C is called a restricted weight if there
exists a 0 6= w ∈ Vπ such that

d π(H)w = µ(H)w, ∀H ∈ b.

The restricted weights of Vπ coincide with the restrictions to b of the weights of
Vπ (see proposition 4.21 in [13]).

By C-linearity, λ ∈ ∆(Vπ) is completely determined by its restriction to either h
or i h. Thus we can interchangeably view λ as an element of any of the dual spaces
h∗C, (i h)

∗ (real valued), or i h∗ (purely imaginary valued).
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Let λ ∈ ∆(Vπ). A nonzero vector v ∈ Vπ, λ is called a highest weight vector of
the representation (π, Vπ) with the weight λ if ñ+C v = 0, i.e.

d πC (Z) v = 0, ∀Z ∈ ñ+C .

The corresponding linear functional λ is called a highest weight of the representa-
tion (π, Vπ).

3.2.2 Spherical Representations

Let Λ+(U) ⊂ i h∗ be the set of highest weights of irreducible representations of U .
For any general compact group (not necessarily semisimple nor simply connected)

there is a one-to-one correspondence between Û and Λ+(U), given by each π ∈ Û
being sent to its highest weight λπ. Let Λ+(h) be the set of dominant integral
weights on h. Then

Λ+(h) =

{
λ ∈ h∗C

∣∣∣∣∣
2〈λ, α〉
〈α, α〉 ∈ Z+, ∀α ∈ ∆+

}

Note that all elements of Λ+(h) take purely imaginary values on h. So Λ+(h) ⊂ i h∗.
For any compact group, Λ+(U) ⊆ Λ+(h) with equality holds if and only if U is
simply connected and semisimple. Since we assume U is simply connected and
semisimple, Λ+(U) = Λ+(h) and so Λ+(h) is a parametrization of Û in our case.

For λ ∈ Λ+(U) choose an irreducible unitary representation (πλ, Vλ) of U and
define the space of K-fixed vectors in Vλ by

V K
λ = {v ∈ Vλ | πλ(k) v = v, ∀ k ∈ K}.

If V K
λ 6= {0}, then πλ is said to be a spherical representation of U . In this case,

dim V K
λ = 1. Otherwise, dim V K

λ = 0. Denote by Û0 the set of all irreducible
spherical representations of U . Thus

Û0 = {πλ ∈ Û | V K
λ 6= 0}

Let Λ+
0 (h) denote the subset of Λ+(U) which consists of highest weights of irre-

ducible spherical representations of U , i.e.

Λ+
0 (h) = {λ ∈ Λ+ (U) | V K

λ 6= 0} ⊂ i h∗.

So there is a bijection Λ+
0 (h)

∼= Û0 given by λ 7→ πλ.

Theorem 3.7. Let (πλ, Vλ) be an irreducible unitary representations of U with
the highest weight λ and v a nonzero highest weight vector with weight λ. Then the
followings are equivalent:

1. πλ is a spherical representation.
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2. v is invariant under M = ZK (b), that is πλ(m) v = v for m ∈M .

3. For H ∈ h ∩ k, λ(H) = 0 so that λ ∈ i b∗ and for

H ∈ bK := {H ∈ b | exp H ∈ K},

we have λ(H) ∈ 2π iZ.

Proof. See Theorem IV.4.2 in [6].

In the following we recall an identification of Λ+
0 (h) which was proved by Helga-

son (see [12, p.535 and p.538]). Also see [22, p.205].

Theorem 3.8 (Helgason). Let U be a compact simply connected semisimple Lie
group and K the fixed point group of an involutive automorphism of U . Then

Λ+
0 (h) =

{
λ ∈ i h∗

∣∣∣∣∣ λ|h∩k = 0 and
〈λ, α〉
〈α, α〉 ∈ Z+, ∀α ∈ Σ+

}
.

Recall that h = (h∩ k)⊕b. For λ ∈ Λ+
0 (h), write µ = λ|b ∈ i b∗. For any α ∈ Σ+,

〈λ, α〉
〈α, α〉 ∈ Z+ ⇐⇒ 〈µ, α〉

〈α, α〉 ∈ Z+

because λ|h∩k = 0. Denote by

Λ+
0 = {µ ∈ i b∗ | µ = λ|b, λ ∈ Λ+

0 (h)} ⊂ i b∗

the set of the restrictions on b of highest weights of irreducible spherical rep-
resentations of U . Thus this set is in bijective correspondence with Λ+

0 (h) via
µ 7→ λ = (µ, 0). This allows us to view µ as a linear form on h∗C with 0 on h ∩ k.
Therefore,

Λ+
0
∼= Û0, µ 7−→ πµ.

We then come to the following fact which gives a parametrization of Λ+
0 .

Corollary 3.9. Let U and K be the same as in the previous theorem. Then

Λ+
0 =

{
µ ∈ i b∗

∣∣∣∣∣
〈µ, α〉
〈α, α〉 ∈ Z+, ∀α ∈ Σ+

}
. (3.1)

This corollary tells us that the highest restricted weights of irreducible spherical
representations of U are the dominant restricted integral weights, that is,

Λ+
0 = P+.

In general, if we do not assume that U is simply connected, more work should be
taken (see [23, p.614] or [25, Remark 5.3]).

Recall (2.3) for the definition of the fundamental weights ωj. It follows from
[13, Chapter II, Proposition 4.23], that we can also parametrize Λ+

0 in terms of
Z+-combinations of ωj:
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Proposition 3.10. Let µ ∈ i b∗. Then µ ∈ Λ+
0 if and only if

µ =

n∑

j=1

kj ωj, kj ∈ Z+.

Furthermore, according to Theorem 3.7, we obtain the following parametrization
of Λ+

0 :

Proposition 3.11. Let µ ∈ i b∗. Then µ ∈ Λ+
0 if and only if

µ (bK) ⊂ 2π iZ, and 〈µ, α〉 ≥ 0, ∀α ∈ Σ+.

In summary, we set up a bijection from the set Λ+
0 of highest restricted weights

of irreducible spherical representations onto the set Û0 of equivalence classes of
irreducible spherical representations via µ 7→ πµ.

3.2.3 χl-spherical Representations

We study spherical representations in the previous section. They are irreducible
unitary representations of U which have nonzero K-fixed vectors. In this section we
will discuss χl-spherical representations where l ∈ Z. They are those which have
nonzero K1-fixed vectors. When l = 0, χ0-spherical representations are exactly
spherical representations. The necessary and sufficient condition on the highest
weight λ of a finite dimensional irreducible representation π of U in order for π has
1-dimensional K-types is similar to that of Helgason’s theorem. We will discuss it
in the following.

Definition 3.12. Let (π, V ) be an irreducible unitary representation of U and χl

a nontrivial character of K. Let

V l := {v ∈ V | π (k) v = χl (k) v, ∀ k ∈ K}.

be the subspace of V consisting of χl-coinvariant vectors. The representation (π, V )

is said to be χl-spherical if V
l 6= {0}. Fix l ∈ Z denote by Ûl the set of all irreducible

χl-spherical representations of U .

The spherical representations are those where χl is a trivial character, i.e. l = 0.
In this case, V 0 = V K consists of K-fixed vectors.

Proposition 3.13. There is a l ∈ Z such that π is a χl-spherical representation
of U if and only if π has a K1-fixed vector.

Proof. ⇒: Recall that χl |K1 = 1. If π ∈ Ûl, then there is 0 6= v ∈ V l such that

π (k) v = χl (k) v = 1 · v = v, ∀ k ∈ K1.

So π has v as a K1-fixed vector. This implies that V K ⊆ V l ⊆ V K1 , where V K1 =
{v ∈ V | π(k) v = v, ∀ k ∈ K1}.
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⇐: If π has a nonzero K1-fixed vector then V K1 6= {0}. Since V K1 ⊂ V , it is
finite dimensional. Recall thatK = T K1 where T = exp (RZ) is a one dimensional
abelian compact subgroup of K. Since T commutes with K1, we see that T leaves
V K1 invariant. So V K1 is a representation of T (or even a representation of T/(T ∩
K1) since V

K1 is stable under the action of K1). But T/(T ∩K1) ∼= K/K1 which
are compact. Thus V K1, as a finite dimensional representation of a compact group,
can be written as a finite sum of irreducibles:

(π |K , V K1) ∼=
d⊕

j=1

(χlj , C)

where χlj are some characters of K and {1, . . . , d} is some finite index set. Hence
a v ∈ V K1 can be written as v = v1 + · · · + vn such that π (k) vj = χlj (k) vj for
k ∈ K and for all j. So π is a χlj -spherical representation for some lj ∈ Z. For this
direction also see Theorem 7.2 in [29] for a different proof.

Proposition 3.14. For the compact symmetric pair (U, K), if (π, V ) is a χl-
spherical representation of U , then dim V l = 1.

Proof. Consider π as a representation of the commutative algebra

L1(U//K, χl) ∼=
{
f ∈ L1(U)

∣∣∣∣∣
f(k1 u k2) = χl(k1k2)

−1 f(u),
∀k1, k2 ∈ K, and a.e. u ∈ U

}
.

Since V l is irreducible under the action π of L1(U//K, χl), it is one-dimensional
by Schur’s lemma. Also see Theorem 7.2 in [29] for a different proof.

We have the canonical decomposition (see Proposition 3.20)

(ℓ, L2 (U/K, χl)) ∼=U

⊕

π∈Ûl

(π, Vπ) (3.2)

where ℓ stands for the left regular representation of U on L2 (U/K, χl) given by
ℓ(u) f(x) = f (u−1 x) for all u ∈ U , and π occurs with multiplicity one.

For λ ∈ Λ+(U) choose an irreducible unitary representation (πλ, Vλ) of U . Then

Ûl = {πλ ∈ Û | V l
λ 6= 0}.

Let Λ+
l (h) be the set of highest weights of irreducible χl-spherical representations

of U . Then
Λ+

l (h) = {λ ∈ Λ+(U) | V l
λ 6= 0} ⊂ h∗C.

So there is a bijection Λ+
l (h)

∼= Ûl given by λ 7→ πλ.

Recall that b ⊆ q is a Cartan subspace and we extend it to a Cartan subalgebra
h with h = b⊕ (h ∩ k). Following from [29], we decompose h ∩ k as

h ∩ k = (h ∩ k) ∩ k1 ⊕ RX

where X is defined as in [29, p.285, (4.4)] so that

28



1. etX ∈ K1 if and only if t ∈ 2π iZ,

2. Z − X ∈ k1 where Z is the same as in Proposition 2.4 (see Lemma 4.3 in
[29]).

Let λ (iX) = µ0, a fixed integer (cf. [29, p.290]). When χl is fixed for some l ∈ Z,
µ0 is then fixed. According to the possible two types of Σ (cf. Table 2), there are
two cases:

Case I: h = b ⊕ (h ∩ k) ∩ k1

Case II: h = b ⊕ (h ∩ k) ∩ k1 ⊕ RX,

where in Case I, X = 0 (whence µ0 = 0) and h ∩ k ⊆ k1. The condition on λ for
one-dimensional K-types to occur was given by [29]:

1. λ
∣∣
(h∩k)∩k1

= 0,

2. λ has to satisfy a certain integrality condition (see below).

Let µ := λ|b. If λ ∈ Λ+
l (h), we have

Case I: λ = (µ, 0, 0)

Case II: λ = (µ, 0, µ0).

Hence, λ is uniquely determined by its restriction µ ∈ i b∗. Let Λ+
l denote the set of

the restrictions on b of highest weights of irreducible χl-spherical representations
of U . Then

Λ+
l = {µ ∈ i b∗ | µ = λ|b, λ ∈ Λ+

l (h)}.
Thus there is a bijective correspondence Λ+

l (h) ∼= Λ+
l via λ = (µ, 0, µ0) 7→ µ.

Recall that {ε1, . . . , εn} is an orthogonal basis of i b∗. For λ ∈ Λ+
l (h) we have

λ = (µ, 0, µ0) (these three components are mutually orthogonal), so

〈λ, εj〉
〈εj, εj〉

=
〈µ, εj〉
〈εj, εj〉

=: µj, j = 1, . . . , n.

Proposition 7.1 in [29] gives the following parametrization of Λ+
l (h):

Proposition 3.15. Let λ ∈ h∗C satisfy λ|(h∩k)∩k1 = 0. Then λ ∈ Λ+
l (h) if and only

if {
µ0 ∈ Z, µj ∈ Z+ (1 ≤ j ≤ n), |µ0| ≤ µ1

µj − µi ∈ 2Z+ (Case I: 1 ≤ i < j ≤ n, Case II: 0 ≤ i < j ≤ n).

Let M = ZK (b). The following fact was proved in [29, Theorem 7.2]:

Theorem 3.16. For λ ∈ Λ+(U) the followings are equivalent:

1. λ|(h∩k)∩k1 = 0 and µj − µi ∈ 2Z+, 1 ≤ i < j ≤ n.
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2. πλ has a nonzero K1-fixed vector.

3. πλ|M is trivial on M ∩K1.

If any of these three conditions holds, then λ ∈ Λ+
l (h). Precisely, πλ contains the

following one-dimensional K-types χl, each contained once,

In Case I : l = −µ1,−µ1 + 2, . . . , µ1 − 2, µ1;

In Case II : l = µ0.

Note that Λ+(h) = Λ+(U) in our case, so these above two facts determine the
condition for λ to be the highest weight of a χl spherical representation, that is,

Λ+
l (h) =

{
λ ∈ Λ+(U)

∣∣∣∣∣
λ|(h∩k)∩k1 = 0, µj − µi ∈ 2Z+ (1 ≤ i < j ≤ n)
µ1 ∈ |l|+ 2Z+, µ0 = 0 (Case I); µ0 = l (Case II)

}
.

It thus follows that

Theorem 3.17. Let U be a compact simply connected semisimple Lie group and
K the fixed point group of an involution of U . Let χl be a nontrivial character of
K for some l ∈ Z. The set of highest restricted weights of irreducible χl-spherical
representations of U is

Λ+
l =



µ ∈ i b

∗

∣∣∣∣∣
µj − µi ∈ 2Z+ (1 ≤ i < j ≤ n)
µ0 = 0 (Case I); µ0 = l (Case II)
µ1 ∈ |l|+ 2Z+



 . (3.3)

Lemma 3.18. When l = 0, (3.3) agrees with (3.1).

Proof. Substituting l = 0 in (3.3) gives µj ∈ 2Z+ for j = 1, . . . , n. For any µ
satisfies (3.3), µ1 ∈ 2Z+ and so µj = µεj ∈ 2Z+ for all j. Then

〈µ, 2εj〉
〈2εj, 2εj〉

=
1

2

〈µ, εj〉
〈εj, εj〉

=
µj

2
∈ Z+,

and for 1 ≤ i < j ≤ n,

〈µ, εj ± εi〉
〈εj ± εi, εj ± εi〉

=
〈µ, εj ± εi〉
2〈εj, εj〉

=
〈µ, εj〉
2〈εj, εj〉

± 〈µ, εi〉
2〈εi, εi〉

=
µj

2
± µi

2
∈ Z+.

This is enough to prove µ satisfies (3.1). So (3.3) agrees with (3.1).

The next proposition gives an even simpler parametrization of Λ+
l and sets up a

connection between Λ+
0 and Λ+

l for l ∈ Z. They differ by a factor depending on l.

Proposition 3.19. For l ∈ Z we have

Λ+
l = Λ+

0 + 2|l| ρs = P+ + 2|l| ρs. (3.4)

30



Proof. Let µ ∈ Λ+
l . To obtain (3.4) we want to show µ− 2|l| ρs ∈ P+. Recall that

ρs =
1

2

∑

α∈O+
s

α =
1

2
(ε1 + · · ·+ εn),

so 2|l| ρs = |l| (ε1 + · · ·+ εn). We then need to show

〈µ− |l| (ε1 + · · ·+ εn), α〉
〈α, α〉 ∈ Z+, ∀α ∈ Σ+.

In view of Theorem 2.7, {2εj} are the long roots in Σ+, so it is enough to check

〈µ− |l| (ε1 + · · ·+ εn), 2εj〉
〈2εj, 2εj〉

∈ Z+, j = 1, . . . , n.

Note that εi ⊥ εj for i 6= j. Thus

〈µ− |l| (ε1 + · · ·+ εn), 2εj〉
〈2εj, 2εj〉

=
〈µ, 2εj〉
〈2εj, 2εj〉

− 〈|l| εj, 2εj〉〈2εj, 2εj〉
=

1

2
(µj − |l|).

Since µ ∈ Λ+
l , µ satisfies (3.3). For case I we have µ1− |l| ∈ 2Z+. So (µ1− |l|)/2 ∈

Z+. For j = 2, . . . , n, µj = µ1 + 2 kj with some kj ∈ Z+. Then

1

2
(µj − |l|) =

1

2
(µ1 − |l|+ 2 kj) =

1

2
(µ1 − |l|) + kj ∈ Z+.

For case II, l = µ0 and µj − |µ0| ∈ 2Z+ for j = 1, . . . , n. So

1

2
(µj − |l|) =

1

2
(µj − |µ0|) ∈ Z+

as desired.

So far we see that there is a bijection from the set Λ+
l of highest restricted weights

of irreducible χl-spherical representations of U onto the set Ûl of equivalence classes
of irreducible χl-spherical representations:

Λ+
l

∼=−−→ Ûl, µ 7−→ πµ.

For π ∈ Û we choose a representative irreducible unitary representation (πµ, Vµ)
with the highest weight µ for some µ ∈ Λ+(U). For brevity we write Vµ instead
of Vπµ as the representation space on which πµ acts. Write V l

µ as the subspace of
Vµ consisting of χl-coinvariant vectors. Put d(µ) = d(πµ) = dim Vµ. Let ( · , · )
be the inner product in the space Vµ of πµ for which πµ is unitary, i.e. ( · , · ) is
πµ(U)-invariant. Fix eµ ∈ V l

µ with ‖eµ‖ =
√
(eµ, eµ) = 1.

Proposition 3.20. Let U be compact and simply connected. The followings are
equivalent:
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1. πµ is a χl-spherical representation of U ,

2. V l
µ 6= {0},

3. µ ∈ Λ+
l ,

4. πµ is a subrepresentation of the representation ℓ of U on L2 (U/K, χl).

If these hold, dim V l
µ = 1 and πµ occurs with multiplicity 1 in the representation

of U on L2 (U/K, χl).

Proof. That 1⇔ 2 follows from the definition of a χl-spherical representation. The
above discussion has proved 2⇔ 3. It remains to prove 2⇔ 4.

For 2 ⇒ 4: Assume V l
µ 6= {0} and pick eµ ∈ V l

µ with ‖eµ‖ = 1. To prove 4,
we simply need to prove there is a nontrivial intertwining operator T : Vµ →
L2 (U/K, χl). Define

ϕv := (v, πµ( · ) eµ), v ∈ Vµ,

For k ∈ K we have

ϕv (u k) = (v, πµ(u k) eµ) = (v, χl(k) πµ(u) eµ) = χl(k)
−1 ϕv(u).

This implies ϕv ∈ L2 (U/K, χl). Define T ∈ HomU (π, ℓ) by T (v) = ϕv. We want
to show T 6= 0 and

T ◦ πµ (h) v = ℓ (h) ◦ T (v), h ∈ U, v ∈ Vµ.

Since T (eµ) (e) = (eµ, πµ(e)eµ) = ‖eµ‖2 = 1, it follows that T 6= 0. Next, T
intertwins πµ and ℓ because for u ∈ U ,

T (πµ(h)v) (u) = ϕh·v (u)

= (πµ(h)v, πµ(u)eµ)

= (v, πµ(h
−1 u)eµ)

= ϕv (h
−1 u)

= ℓ (h)ϕv (u)

= ℓ (h) T (v) (u).

Let Wµ := T (Vµ) = {ϕv | v ∈ Vµ}. Then Wµ ⊂ L2 (U/K, χl) and T is a bijective
U -map from Vµ onto Wµ. So Vµ ∼=U Wµ. Since πµ(h)v ∈ Vµ, then ℓ (h)ϕv(u) =
ϕπµ (h)v (u) ∈ Wµ. This implies that Wµ is a subrepresentation of L2 (U/K, χl) and
thus so is Vµ.

For 4 ⇒ 2: Assume Wµ ⊂ L2(U/K, χl) is an irreducible subrepresentation. To
prove 2, It is enough to prove

W l
µ := {f ∈ Wµ | ℓ (k) f = χl(k) f, ∀ k ∈ K} 6= {0}.
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Let 0 6= f ∈ Wµ. Then there is a x ∈ U such that f(x) 6= 0. Let g = ℓ (x−1) f .
Since Wµ is U -invariant, then g ∈ Wµ. Also, g(e) = f(x) 6= 0. Let

F (u) :=

∫

K

χl(k)
−1 g(k−1 u) dk =

∫

K

χl(k)
−1 ℓ (k) g(u) dk.

Since g ∈ Wµ ⊂ L2(U/K, χl), we have g(k−1) = g(e k−1) = χl(k) g(e) and so

F (e) =

∫

K

χl(k)
−1 χl(k) g(e) dk =

∫

K

g(e) dk = g(e) 6= 0.

Thus, F 6= 0. As g ∈ Wµ, the left translation of g is still in Wµ. Integrating it over
a compact set the outcome is also in Wµ. So from the construction of F we see
that F ∈ Wµ. Last, we show F ∈ W l

µ:

ℓ (h)F (u) = F (h−1 u)

=

∫

K

χl(k)
−1 g(k−1 h−1 u) dk

(hk 7→ k) =

∫

K

χl(h
−1 k)−1 g(k−1 u) dk

= χl(h)

∫

K

χl(k)
−1 g(k−1 u) dk

= χl(h)F (u).

Therefore, F ∈ W l
µ, as desired.

Remark 3.21. (1) The space Wµ contains a unique χl-coinvariant function ψµ, l

satisfying ψµ, l (e) = 1, namely the χl-spherical function

ψµ, l (u) = (eµ, πµ (u) eµ)

which we will discuss in more details in the next section.

(2) We have the decomposition

L2 (U/K, χl) =
⊕

µ∈Λ+
l

Wµ.

By the equivalence 2⇔ 3, the canonical decomposition (3.2) thus takes the form

(ℓ, L2 (U/K, χl)) ∼=U

⊕

µ∈Λ+
l

(πµ, Vµ). (3.5)

The equivalence 3 ⇔ 4 implies that Λ+
l runs over the highest weights of the rep-

resentations showing up in the representation of U on L2(U/K, χl). Therefore,
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there exists a measure, the Plancherel measure, say d σ(µ) on Λ+
l ⊆ Û given by

d σ(µ) = d (µ) d µ where d µ is the counting measure2 on Λ+
l , such that

(ℓ, L2(U/K, χl)) ∼=
∫ ⊕

Λ+
l

(πµ, Vµ) dσ(µ). (3.6)

Since Λ+
l is a discrete set, the decomposition (3.6) is nothing but the direct sum

(3.5).

3.3 Harmonic Analysis on Line Bundles over

U/K

In this section we will define the spherical functions of type χl on the compact
group U and the relevant spherical functions of type χl on the noncompact group
G, and the χl-spherical Fourier transform of f ∈ C∞ (U//K, χl), where

C∞ (U//K, χl) = {f ∈ C∞ (U) | f (k1 u k2) = χl (k1 k2)
−1 f (u), ∀ k1, k2 ∈ K}

is the subspace of C∞ (U/K, χl) of χl-bi-coinvariant functions on U .

Definition 3.22. Let G be a locally compact Hausdorff group and K ⊂ U a
compact subgroup. A continuous function ϕ : G → C is an elementary spherical
function of type χl if it is not identically 0,

ϕ (k1 g k2) = χl (k1 k2)
−1 ϕ (g), ∀ g ∈ G, ∀ k1, k2 ∈ K,

and ∫

K

ϕ (g k h)χl (k) dk = ϕ (g)ϕ (h), ∀ g, h ∈ U. (3.7)

Note that the equation (3.7) ensures that ϕ is χl-bi-invariant and ϕ(e) = 1.

3.3.1 Spherical Functions of type χl on U

Let f ∈ L2 (U/K, χl). For π ∈ Û we choose an irreducible unitary representation
(πµ, Vµ) with the highest weight µ ∈ Λ+(U). For all v ∈ Vµ and all k ∈ K,

π (f) v =

∫

U

f (u) π (u) v du

=

∫

U

χl (k) f (u k) π (u) v du

=

∫

U

χl (k) f (u) π (u k
−1) v du.

2A counting measure is a measure which takes the value one at each point.
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As this holds for all k ∈ K, integrating each side over K gives

π (f) v =

∫

K

∫

U

χl (k) f (u) π (u k
−1) v du dk

=

∫

U

f (u) π (u)

∫

K

χl (k
−1) π (k) v d k d u.

Define an operator Pl : Vµ → V l
µ by

Pl (v) =

∫

K

χl (k
−1) π (k) v d k.

Since π is finite dimensional, Pl is well-defined. It has the property that

π (f) v = π (f)Pl (v), ∀ v ∈ Vµ. (3.8)

Proposition 3.23. Pl is an orthogonal projection of Vµ onto V l
µ, and

π (f) = π (f)Pl

for f ∈ L2 (U/K, χl).

Proof. For any h ∈ K and v ∈ Vµ we have

π (h)Pl (v) =

∫

K

χl (k
−1) π (h) π (k) v d k

=

∫

K

χl (k
−1) π (h k) v d k

=

∫

K

χl (k
−1 h) π (k) v d k

= χl (h)

∫

K

χl (k
−1) π (k) v d k

= χl (h)Pl (v).

This implies that Pl (v) ∈ V l
µ. Also,

P 2
l (v) =

∫

K

χl (h
−1) π (h)

∫

K

χl (k
−1) π (k) v d k dh

=

∫

K

∫

K

χl (h
−1 h k−1
︸ ︷︷ ︸

= k−1

) π (k) v d k dh

= Pl (v),

where
∫
K
dh = 1. So Pl is idempotent. For v, w ∈ Vµ,

(Pl (v), w) =

∫

K

(χl (k
−1) π (k) v, w) dk

=

∫

K

(v, χl (k) π (k
−1)w) dk

= (v,

∫

K

χl (k
−1) π (k)w dk)

= (v, Pl (w)),
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So Pl is self-adjoint. Thus Pl is an orthogonal projection.

If µ /∈ Λ+
l then V l

µ = {0} and so π(f) v = 0 for all v ∈ Vµ. If µ ∈ Λ+
l then

dim V l
µ = 1. Fix eµ ∈ V l

µ with ‖eµ‖ = 1. Then V l
µ = C eµ. The equation (3.8)

implies that π (f)
∣∣
(V l

µ)
⊥ = 0 and thus π (f) is determined by π (f)

∣∣
V l
µ
. It follows

that π(f) is a rank one operator3. Hence, for χl-spherical representations πµ (i.e.
µ ∈ Λ+

l ) it is natural to define the vector valued Fourier transform of f to be

f̃l (µ) := πµ (f) eµ ∈ Vµ,

where f̃l : Λ
+
l → ⊕µ∈Λ+

l
Vµ. This vector-valued Fourier transform extends to the

unitary isomorphism (3.6).

Note that we have

Pl (v) = (v, eµ) eµ

π (f) v = (v, eµ) π (f) eµ

Tr (π (f)) = (π (f) eµ, eµ).

We extend {eµ} to an orthonormal basis for Vµ, say {e1, . . . , ed (µ)} with e1 = eµ.
Recall Theorem 3.6 for the Plancherel formulas for f ∈ L2(U). They are reduced
to the Plancherel formulas for f ∈ L2 (U/K, χl):

f (u) =
∑

µ∈Λ+
l

d (µ) (π (u−1) π (f) eµ, eµ);

‖f‖22 =
∑

µ∈Λ+
l

d (µ) ‖π (f) eµ‖2.

Assume f ∈ L2 (U//K, χl) where

L2 (U//K, χl) = {f ∈ L2 (U) | f (k1 u k2) = χl (k1 k2)
−1 f (u), ∀ k1, k2 ∈ K}.

For k ∈ K we have

π (k) π (f) eµ =

∫
f(u) π (k u) eµ du

=

∫
f (k−1 u) π (u) eµ du

= χl (k)

∫
f (u) π (u) eµ du

= χl (k) π (f) eµ.

3A finite rank operator is a bounded linear transformation from a Hilbert space into another Hilbert space
which has a finite dimensional range. A rank one operator is a finite rank operator whose range is one dimensional.
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So π (f) eµ ∈ V l
µ. Since V

l
µ = C eµ, there is a scalar f̃l (µ) ∈ C such that π (f) eµ =

f̃l (µ) eµ. Then the Plancherel formulas for f ∈ L2 (U//K, χl) become

f (u) =
∑

µ∈Λ+
l

d (µ) f̃l (µ) (eµ, π (u) eµ);

‖f‖22 =
∑

µ∈Λ+
l

d (µ) ‖f̃l (µ)‖2.

We compute f̃l (µ) by

f̃l (µ) = (f̃l (µ) eµ, eµ) = (π (f) eµ, eµ) =

∫

U

f (u) (π (u) eµ, eµ) du.

This is named the scalar valued Fourier transform of f .

We therefore define ψµ, l = ψµ,χl
on U to be the matrix coefficient of the χl-

spherical representation πµ, i.e.

ψµ, l (u) := (eµ, πµ (u) eµ), ∀ u ∈ U, µ ∈ Λ+
l .

Lemma 3.24. The function ψµ, l is an (elementary) spherical function of type χl

on U associated with πµ.

Proof. We have ψµ, l (e) = 1, and

ψµ, l (k1 u k2) = (eµ, πµ (k1 u k2) eµ)

= (πµ (k
−1
1 ) eµ, πµ (u) πµ (k2) eµ)

= χl (k1 k2)
−1 ψµ, l (u)

for all k1, k2 ∈ K. Moreover, for k ∈ K and g, h ∈ U ,
∫

K

ψµ, l (g k h)χl (k) dk =

∫

K

(eµ, π (g k h) eµ)χl (k) dk

=

∫

K

(π (g−1) eµ, π (k) π (h) eµ)χl (k) dk

= (π (g−1) eµ,

∫

K

χl (k
−1) π (k) π (h) eµ dk)

= (π (g−1) eµ, (π (h) eµ, eµ) eµ)

= (π (g−1) eµ, eµ) (π (h) eµ, eµ)

= (eµ, π (g) eµ) (eµ, π (h) eµ)

= ψµ, l (g) ψµ, l (h).
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Note that ψµ, l is smooth (by its definition), positively definite (see Proposition
3.5), and independent of the choice of eµ. Each spherical function of type χl on U
is of the form ψµ, l for some µ ∈ Λ+

l . When l = 0, ψµ, 0 = ψµ is exactly the spherical
function on U (see [22]).

Let f ∈ C∞ (U//K, χl). The χl-spherical Fourier transform Sl of f is a function

Sl (f) = f̃l : Λ
+
l → C defined by

f̃l (µ) = (f, ψµ, l) =

∫

U

f (u)ψµ, l (u) du. (3.9)

Note that f̃l is uniquely determined by f . From Schur’s orthogonality relations,

‖ψµ, l‖2 =
1

d (µ)
, Sl (ψν, l) (µ) =

1

d (µ)
δν, µ,

for all ν, µ ∈ Λ+
l . The χl-spherical Fourier series of f is given by

f(u) =
∑

µ∈Λ+
l

d (µ) f̃l (µ)ψµ, l (u). (3.10)

Proposition 3.25. If f ∈ C∞ (U//K, χl) and f̃l = 0 then f = 0.

The sum (3.10) is convergent absolutely and uniformly due to the smoothness of

f . Note that f is smooth if and only if f̃l is rapidly decreasing, i.e. for each k ∈ Z+,
there is a constant Ck such that

|f̃l (µ)| ≤ Ck (1 + |µ|)−k, ∀µ ∈ Λ+
l .

By using the classification of symmetric spaces, we can derive an explicit formula
for d (µ) fromWeyl dimension formula (also see [18, Proposition 5.2.10] for details).
For µ ∈ Λ+

l , µ 7→ d (µ) extends to a polynomial function on b∗C. Define

ℓ2 (Λ+
l , d (µ) dµ) = {(aµ)µ∈Λ+

l
| aµ ∈ C,

∑

µ∈Λ+
l

d (µ) |aµ|2 <∞},

where dµ is the counting measure. This is a Hilbert space with the inner product

((aµ)µ, (bµ)µ) =
∑

µ∈Λ+
l

d (µ) aµ bµ.

We see that the sequence Sl (f) = (f̃l (µ))µ ∈ ℓ2 (Λ+
l ), and

Sl : C∞ (U//K, χl) −→ ℓ2 (Λ+
l )

is an isometry, i.e. ‖f‖2 = ‖Sl (f)‖2. Since

|ψµ, l (u)| = |(eµ, πµ (u) eµ)| ≤ ‖eµ‖ ‖πµ (u)‖ ‖eµ‖ ≤ 1,
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then if f ∈ Lp(U//K, χl) we have |f̃l (µ)| ≤ ‖f‖p. In particular,

|f̃l (µ)| ≤ ‖f‖∞
if f is continuous (and hence bounded).

Notice that the set
{
√
d (µ)ψµ, l | µ ∈ Λ+

l }
is an orthonormal basis for the Hilbert space L2 (U//K, χl). The above discussion
gives

Theorem 3.26 (Plancherel Theorem). The χl-spherical Fourier transform Sl ex-
tends by continuity to an unitary isomorphism

Sl : L2 (U//K, χl)
∼=−−→ ℓ2 (Λ+

l ).

If f ∈ L2 (U//K, χl), then the sum in (3.10) is understood in L2 sense, |f̃l (µ)| ≤
‖f‖2, and

‖f‖22 =
∑

µ∈Λ+
l

d (µ) |f̃l (µ)|2.

Lemma 3.27. Let µ ∈ Λ+
l . Then ψµ, l (u) = ψµ, l (u

−1) for u ∈ U .
Proof. This comes from the fact that ψµ, l is positive definite.

Recall that πµ extends to a holomorphic representation (πµ)C of UC. This gives

Lemma 3.28. Let µ ∈ Λ+
l . Then the χl-type spherical function ψµ, l : U → C

extends to a holomorphic function on UC. The extension is given by

ψµ, l (g) = ((πµ)C (g
−1) eµ, eµ), g ∈ UC.

3.3.2 Spherical Functions of type χl on G

Recall that the pair (G, K) is noncompact dual of (U, K). We shall discuss the
spherical functions of type χl on G which are the matrix coefficients of the (nonuni-
tary) spherical principal series representations of G.

Before we get into this topic we first review a property: the group G and its Lie
algebra g admit the Iwasawa decomposition. Let n = ⊕α∈Σ+ gα and N = exp n

be the analytic subgroup of G with Lie algebra n. Then N is closed in G and
nilpotent. The Iwasawa map

K × A×N ∋ (k, a, n) 7−→ k a n ∈ G

is a holomorphic diffeomorphism. Let H : G→ a be the Iwasawa projection given
by k (exp X)n 7→ X . Thus for each g ∈ G we see that

g = κ (g) exp (H (g))n (g)
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is uniquely determined for κ (g) ∈ K, H (g) ∈ a, and n (g) ∈ N . Write a(g) =
exp (H(g)) ∈ A. The Iwasawa decomposition of Lie algebras g and gC are

g = k+ a+ n, gC = kC + aC + nC.

Adopt the notation

aλ := eλ (log (a)) = eλ (X), λ ∈ b∗C

where a = exp (X) ∈ A. Notice that the homomorphisms A → C∗ are exactly
a 7→ aλ. So this is a character of A. Define ϕλ, l : G→ C by

ϕλ, l (g) =

∫

K

a (g−1 k)λ−ρ χl (κ (g
−1 k) k−1) dk. (3.11)

Proposition 3.29. The corresponding (elementary) spherical function of type χl

on G with spectral parameter λ ∈ b∗C has the integral form (3.11). Any spherical
function of type χl on G has this form for some λ ∈ b∗C. Moreover, ϕλ, l is real
analytic in g ∈ G, and holomorphic in (λ, l) ∈ b∗C × Z.

Proof. See Proposition 5.4.1 in [18] and Proposition 3.3 in [31].

Notice that the formula (3.11) differs from the one defined in [18, P.82, (5.4.1)]
by an inverse sign (due to a technical reason).

Proposition 3.30. The definition (3.11) for ϕλ, l (g) is equivalent to

ϕλ, l (g) =

∫

K

a (g k)−λ−ρ χl (κ (g k)
−1 k) dk.

Proof. Using the integral formula

∫

K

f (κ (g−1 k)) a (g−1 k)−2 ρ dk =

∫

K

f (k) dk,

for an integrable function f on K and the fact that a (g−1 k)−1 = a (g κ (g−1 k)),
we obtain

ϕλ, l (g) =

∫

K

a (g−1 k)λ−ρ χl (κ (g
−1 k) k−1) dk

=

∫

K

a (g−1 k)λ+ρ χl (κ (g
−1 k) k−1) a (g−1 k)−2 ρ dk

=

∫

K

a (g κ (g−1 k))−λ−ρ χl (κ (g
−1 k) κ (g κ (g−1 k))−1) a (g−1 k)−2 ρ dk

=

∫

K

a (g k)−λ−ρ χl (k κ (g k)
−1) dk.
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When l = 0 we see that

ϕλ (g) = ϕλ, 0 (g) =

∫

K

a (g k)−λ−ρ dk =

∫

K

a (g−1 k)λ−ρ dk

is exactly the well-known Harish-Chandra spherical function on G.

Proposition 3.31. The function ϕλ, l satisfies

1. ϕλ, l = ϕµ, l if and only if there is a w ∈ W such that λ = w µ.

2. ϕλ, l (a) = ϕλ,−l (a) = ϕ−λ,−l (a) = ϕ−λ, l (a), ∀ a ∈ A.

3. ϕλ, l (g) = ϕ−λ,−l (g
−1) = ϕλ,−l (g

−1) = ϕ−λ, l (g), ∀ g ∈ G.

Proof. Part 1 follows from Proposition 3.3 in [31]. Observe that ε1, . . . , εn are
roots so rε1 · · · rεn = −1 ∈ W . Then part 2 comes from this fact, part 1, and
Corollary 3.7 in [31]. Compare the above two equivalent definitions of ϕλ, l and we
get

ϕλ, l (g) =

∫

K

a (g k)−λ−ρ χl (κ (g k)
−1 k) dk = ϕ−λ,−l (g

−1).

Apply the fact −1 ∈ W and part 1 again. It completes the proof of part 3.

Note: We will extend ϕλ, l holomorphically to a complex domain V in GC (see
Remark 3.34 and Chapter 5). These properties of ϕλ, l are thus also valid on the
extended domain.

The χl-type spherical functions ψµ, l on U are defined on a discrete set Λ+
l . They

can be extended continuously to b∗C. How we do it relies on the fact that the
functions ψµ, l are related to the corresponding χl-type spherical functions ϕλ, l on
G by holomorphic continuation.

Lemma 3.32. Let µ ∈ Λ+
l and ψµ, l the holomorphic extension to UC of the χl-type

spherical function ψµ, l on U . Then ψµ, l |G = ϕµ+ρ, l.

Proof. Let µ ∈ Λ+
l . For any v ∈ Vµ, Pl (v) = (v, eµ) eµ. So we can fix a highest

weight vector v for πµ such that (v, eµ) = 1. Then

eµ =

∫

K

χl (k
−1) πµ (k) v dk.

For h ∈ B,

ψµ, l (h) = (πµ (h
−1) eµ, eµ) =

∫

K

(χl (k
−1) πµ (h

−1 k) v, eµ) dk.

Since K is compact, the above equality is still true for the holomorphic extension
of ψµ, l to UC. In particular, it is true for h ∈ A. Since (v, eµ) = 1 and since v is a
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highest weight vector of weight µ, we have

(χl (k
−1) πµ (h

−1 k) v, eµ) = (χl (k
−1) πµ (κ (h

−1 k) a (h−1 k)n (h−1 k)) v, eµ)

= χl (k
−1) (πµ (a (h

−1 k)) v, πµ (κ (h
−1 k)−1) eµ)

= χl (k
−1) (a (h−1 k)µ v, χl (κ (h

−1 k)−1) eµ)

= χl (κ (h
−1 k) k−1) a (h−1 k)µ (v, eµ)

= χl (κ (h
−1 k) k−1) a (h−1 k)(µ+ρ)−ρ.

where we use the fact that πµ (n (h
−1 k)) v = v and

πµ (a(h
−1 k)) v = πµ(e

H(h−1 k)) v = eπµ (H(h−1 k)) v = eµ(H(h−1 k)) v = a (h−1 k)µ v.

Therefore,

ψµ, l (h) =

∫

K

a (h−1 k)(µ+ρ)−ρ χl (κ (h
−1 k) k−1) dk = ϕµ+ρ, l (h).

This is enough to show ψµ, l (g) = ϕµ+ρ, l (g) for g ∈ G because of the Cartan
decomposition G = K AK.

Lemma 3.33. The elementary χl-type spherical function ϕλ, l which is analytic on
G extends to a holomorphic function on GC, and by restriction gives an elementary
χl-type spherical function on U if and only if λ belongs to the W -orbit of Λ+

l + ρ.

Proof. Recall (2.6) and (3.4). We have

Λ+
l + ρ = P+ + ρ+ 2|l| ρs = P+ + ρ (l).

Thus the proof follows from [18, corollary 5.2.3].

Remark 3.34. Lemma 3.32 says for µ ∈ Λ+
l the restriction on G of the holomor-

phic extension of ψµ, l equals ϕµ+ρ, l, i.e. ψµ, l |G = ϕµ+ρ, l. Lemma 3.33 states that
we may think of ψµ, l as the restriction on U of the holomorphic extension of the
corresponding ϕµ+ρ, l, i.e. ψµ, l = ϕµ+ρ, l

∣∣
U
for µ ∈ Λ+

l . Since both ψµ, l and ϕµ+ρ, l

are holomorphic onGC, they agree everywhere onGC by holomorphic continuation,
that is,

ψµ, l (g) = ϕµ+ρ, l (g), ∀ g ∈ GC, µ ∈ Λ+
l . (3.12)

By (3.9) and (3.12), for µ ∈ Λ+
l we have

f̃l (µ) =

∫

U

f(u)ψµ, l (u
−1) du =

∫

U

f(u)ϕµ+ρ, l (u
−1) du.

Therefore µ 7→ f̃l (µ) can (formally) have an extension to b∗C, which has the same

form, λ 7→ f̃l (λ) given by

f̃l (λ) =

∫

U

f (u)ϕλ+ρ, l (u
−1) du, λ ∈ b∗C. (3.13)
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The extension of the χl-spherical Fourier transform of f is still denoted by f̃l or
Sl (f). Since ϕλ, l is W -invariant in λ, then the function f̃l (λ) is W -invariant, too.

Recall that ϕλ, l (g) is holomorphic for (λ, l, g) ∈ b∗C × Z × G. Thus f̃l (λ) is
holomorphic in this set. However, for every λ ∈ b∗C the (extended) ϕλ, l might not
be defined on all of GC. To prove a Paley-Wiener type theorem, we need to verify
(3.13) is well-defined and holomorphic for all λ ∈ b∗C, that is, to determine for
which spaces of functions f this extension is meaningful. So we have to find a
suitable subset in GC, say G ⊆ V ⊆ GC, such that ϕλ, l (g) is well-defined for every
λ ∈ b∗C and g ∈ V.
Since K is compact, χl extends holomorphically to a representation χl,C of KC.

In view of (3.11), it suffices to see for which space V, a (g−1 k)λ−ρ and κ (g−1 k) are
well-defined for g ∈ V. From the Iwasawa map G ∼= K AN , we see that the A-part
a (g) and K-part κ (g) of an element g ∈ G are uniquely determined. However,

{e} $ KC ∩ AC, KCACNC ∩ G 6= G.

Thus, the AC-part and KC-part of g ∈ GC are not uniquely determined in the
complexified Iwasawa decomposition of GC. In order for a (g−1 k)λ−ρ and κ (g−1 k)
being well-defined, we need g−1 k ∈ KCACNC, i.e. a (g

−1 k) ∈ AC and κ (g−1 k) ∈
KC are uniquely determined. There is, by [23, lemma 2.1], a KC × K invariant
domain G ⊆ W ⊆ GC such that the map

W −→ KC × AC ×NC, g 7→ (κ (g), a (g), n (g))

is well-defined, holomorphic in g, and agrees with the Iwasawa decomposition on
W∩G. Let V =W−1. Then the map (λ, g) 7→ ϕλ, l (g) extends holomorphically to

b∗C × V. So the holomorphic extension λ 7→ f̃l (λ) is well-defined for all λ ∈ b∗C if
f ∈ C∞

c (V ∩ U). A particular V can be constructed by using Lemma 5.8.
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Chapter 4

Invariant Differential Operators

The aim of this chapter is to present some fundamental facts about invariant
differential operators on Γ∞ (Lχl

) and their radial components. We will give a
generalization of the well-known Harish-Chandra isomorphism. Then the χl-type
spherical functions can also be defined via eigenequations whose eigenvalues are
derived from the generalized Harish-Chandra map. In particular, we shall consider
Laplace-Beltrami operator and need an explicit form for its eigenvalues later. A
good discussion in this aspect can be found in [18].

4.1 The Harish-Chandra Isomorphism

Let Dl = Dl (U/K) be the (commutative) algebra of U -invariant differential opera-
tors on U which maps C∞ (U/K, χl) into itself (these operators commute with the
action of U , hence called invariant differential operators). We can identify Dl as
the algebra of all U -invariant differential operators on smooth sections in the line
bundle Lχl

. If l = 0, then D0 = D (U/K) is the algebra of U -invariant differential
operators on U/K. Let Dd

l = Dl (G/K) for the noncompact symmetric space G/K.
We will see that Dl

∼= Dd
l by means of Cartan duality which is a useful and im-

portant technique throughout this manuscript. Recall that duality gives bijections
U/K ∼= G/K and u ∼= g (see (2.2)), and ensures that Σ (u, b) is essentially the
same as Σ (g, a).

Let U (u) be the universal enveloping algebra1 of uC and

U (u)K = {z ∈ U (u) | Ad (K) z = z}.

If {X1, . . . , Xk} is a basis of u, then

{Xn1
1 · · · Xnk

k | nj ∈ Z+}

is a basis of U (u) over C. For any f ∈ C∞(U) we let

(Xn1
1 · · · Xnk

k f) (u) =

(
∂

∂t1

)n1

· · ·
(
∂

∂tk

)nk

f (u et1 X1 · · · etk Xk)
∣∣∣
t1=···=tn=0

(this action is extended to uC by C-linearity). This means the elements of uC and
U (u) are considered as left-invariant differential operators on U .

Lemma 4.1. For f ∈ C∞ (U/K, χl) and z ∈ U (u)K we have

z f ∈ C∞ (U/K, χl).

1If u is any Lie algebra, the symbol U (u) denotes the universal enveloping algebra of uC. The meanings of the
notations such as U (g), U (a), U (b), and so on should be clear without further explanation.
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Proof. If X ∈ u then

(X f) (u k) =
d

d t

∣∣∣
t=0

f (u k exp (tX))

=
d

d t

∣∣∣
t=0

f (u exp (tAd (k)X) k)

= χl (k)
−1 d

d t

∣∣∣
t=0

f (u exp (tAd (k)X))

= χl (k)
−1 [(Ad (k)X) f ] (u).

So if z ∈ U (u)K then

(z f) (u k) = χl (k)
−1 [(Ad (k) z) f ] (u) = χl (k)

−1 (z f) (u).

This implies that z f ∈ C∞ (U/K, χl).

It follows that there is a natural action of the elements of U (u)K on C∞ (U/K, χl).
This action is exactly the action of differential operators in Dl. Therefore, we obtain
a homomorphism of algebras τ : U (u)K → Dl. Let

tl := {X + χl (X) | X ∈ kC}.

It is clear that U (u)K ∩ U (u) tl is a two-sided ideal in U (u)K , and that it is
annihilated by τ . We thus come to the fact below:

Proposition 4.2. The kernel of the natural homomorphism τ from U (u)K onto
Dl is U (u)K ∩ U (u) tl. Hence, there is a natural isomorphism

Dl
∼= U (u)K/(U (u)K ∩ U (u) tl).

Proof. Proposition 5.1.1 in [18, P.71] proves Dd
l
∼= U (g)K/(U (g)K ∩U (g) tl). Sim-

ply apply it on the compact dual U/K of the space G/K as the above discussion
and we get the desired isomorphism.

Since U (u) = U (g) and U (u)K = U (u)k = U (g)K , in the terminology of the
proof above we have actually that

Dl
∼= Dd

l .

For any z ∈ U (u)K , Dz ∈ Dl is simply the class of z modulo U (u)K ∩ U (u) tl.
But for any z ∈ U (u)K ∩ U (u) tl, we have Dz = 0. Therefore, Dz f = z f for f ∈
C∞ (U/K, χl). It is obvious that Dz f ∈ C∞ (U//K, χl) for f ∈ C∞ (U//K, χl)
and Dz ∈ Dl.

Let S (b) be the symmetric algebra over the vector space bC, and

S (b)W = {p ∈ S (b) | w p = p, ∀w ∈ W}.

For p ∈ S (b), it is considered to be a C-valued polynomial function on b∗C =
HomC (bC, C). Also, write ∂p ∈ S (b) if we consider ∂p as the corresponding
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constant coefficient differential operator on bC (or on BC). Write U (b) for the
translation invariant differential operators on BC. Since b is abelian,

S (b) ∼= U (b)

are canonically isomorphic.

Recall the Cartan decomposition U = KBK. It follows that any smooth χl-bi-
coinvariant function f on U is essentially determined by f |B. Let Breg = Breg

C ∩B.
Theorem 5.1.4 in [18] proves (applied on the dual space U/K)

Proposition 4.3. For each D ∈ Dl there exists a unique differential operator
△l (D) : C∞ (Breg)→ C∞ (Breg) such that for f ∈ C∞ (U//K, χl),

△l (D) (f
∣∣
B
) = (Df)

∣∣
B
.

Definition 4.4. The operator △l (D) ∈ (R⊗ S (b))W is called the χl-radial part
of D along B.2 We simply write it as △ (D) and call it the radial part of D if
no confusion arises. Let rad (Dl) be the commutative algebra of radial components
along B of the differential operators in Dl. Similarly, rad (Dd

l ) denotes the algebra
of radial components along A of the differential operators in Dd

l .

We will give the description of Dd
l which is based on the Iwasawa decomposition

g = k ⊕ a ⊕ n and the Poincaré-Birkhoff-Witt theorem. From these we have the
direct sum decomposition

U (g) = U (a)⊕ (nC U (g) + U (g) tl).

Identify U (a) ∼= S (a). Define a map ̺l : U (g) → S (a) as the projection with
respect to this decomposition. It follows from Proposition 4.2 that this map give
rise to a homomorphism from Dd

l into S (a). It depends on the choice of Σ+ because
n depends on it. Let ς be the automorphism of S (a) generated by

ς (X) = X + ρ(X), ∀X ∈ a.

Define γdl : U (g)K → S (a) by γdl = ς ◦ ̺l. This map is called the (general-
ized) Harish-Chandra homomorphism. The construction of the Harish-Chandra
homomorphism can be generalized to the setting of the dual space U/K, say
γl : U (u)K → S (b).

Also see Definition 5.1.9 in [18] where they use radial parts of differential oper-
ators in Dd

l to construct the map γdl .
3 But these two ideas match.

The following theorem in the case l = 0 is due to Harish-Chandra [17], for the
proof see [12, Chapter II, Theorem 5.17].

2Let R be the algebra generated by the constant function 1 (the unit) and 1/(1 − e−2α) with α ∈ Σ. Since
(1− e2α)−1 = 1− (1− e−2α)−1, R is generated by the functions (1− e−2α)−1 with α ∈ Σ+. The Weyl group W
acts on R and R is invariant under S (b). Hence R ⊗ S (b) represents the algebra of differential operators on BC

with coefficients in R and (R ⊗ S (b))W consists of those which are invariant under the action of W .
3Here is a review of Heckman’s construction of γd

l . Write (1 − e−2α)−1 = 1 + e−2α + e−4α + · · · for α ∈ Σ+.
We can expand a P ∈ R⊗ S (a) in the form P = γ′(P ) + · · · with γ′(P ) ∈ S (a). View R⊗ S (a) as a subalgebra
of C [e−2α1 , . . . , e−2αn ]⊗ S (a) with {αj} ∈ Π. Then these formal expansion in R⊗ S (a) are convergent on A+.
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Theorem 4.5 (Harish-Chandra Isomorphism). The Harish-Chandra map γl :
U (u)K → S (b) is a homomorphism onto S (b)W with kernel U (u)K ∩ U (u) tl.
Hence it induces an isomorphism

γl : Dl −→ S (b)W

of commutative algebras. As a consequence of W -invariance, it is independent of
the choice of Σ+.

Proof. Refer to Theorem 5.1.10 in [18] or Proposition 2.2 in [31] where γdl : Dd
l →

S (a)W was proved to be an algebra isomorphism. Since S (b)W ∼= S (a)W , from
the construction we see that the isomorphism γl is actually identical with γdl . Thus
the proof of this theorem reduces to that case, again by duality.

It follows immediately from the above theorem that Dl is commutative. More-
over, it is a polynomial algebra of n independent generators (recall n = dim b).
From Proposition 4.2 and Theorem 4.5 we have the commutative diagram:

U (u)K

��

τ // Dl

γl ∼=

��

U (u)K/(U (u)K ∩ U (u) tl)

∼=

66lllllllllllllllllllllllllllllll ∼= // S (b)W

We define functions

ηl = η+l :=
∏

α∈O+
s

(
eα + e−α

2

)|l|

, η−l :=
∏

α∈O+
s

(
eα + e−α

2

)−|l|

.

They are holomorphic on BC and is W -invariant (thus it is an even function).

Corollary 4.6. For χl nontrivial we have a bijection

△l: Dl

∼=−−→ η± l ◦ rad (Dl) ◦ η∓ l.

Proof. This follows from Corollary 5.1.11 in [18, p.75].

The element γ′(P ) ∈ S (a) is called the constant term of P along A+. For m ∈ M define γ(m) : R⊗S (a) → S (a)
by γ(m) (P ) = eρ(m) ◦ γ′(P ) ◦ e−ρ(m) and call it the m-constant term along A+. Both γ′ and γ(m) are algebra
homomorphisms. Let

D (m) = {P ∈ R⊗ S (a) | [P, L(m)] = 0, w P w−1 = P,∀w ∈ W}

where L(m) is the radial part of the Laplacian on A+. Then the m-constant term γ(m) : D(m) → S (a)W

is an isomorphism of commutative algebras. The Harish-Chandra map γd
l : Dd

l → S (a)W is defined by
γd
l (D) = γ(m±) (△ (D)). It is a homomorphism since both m-constant term γ(m) and the radial part are al-

gebra homomorphisms. Note that the algebra D(m±) agrees with rad (Dl) in the geometric case.
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4.2 The Hypergeometric Differential Equations

Elementary spherical functions can be defined in various ways: by integral form or
differential equations, or by representation theory. We have seen the integral form
of a χl-type spherical function in Chapter 3 (recall (3.11)). In the following we will
introduce the approach with differential equations.

For λ ∈ b∗C and l ∈ Z write

γl (D) (λ) = γl (D, λ) ∈ C, ∀D ∈ Dl.

This is the value at λ ∈ b∗C of the polynomial γl (D), which is the image under
the Harish-Chandra isomorphism γl of the differential operator D ∈ Dl. We can
view D 7→ γl (D, λ) as a character (an algebra homomorphism) from Dl to C. Any
character from Dl to C has this form for some λ ∈ b∗C. We have γl (D, λ) = γl (D, µ)
if and only if there is a w ∈ W such that λ = w µ.

Definition 4.7. For λ ∈ b∗C and l ∈ Z the system of differential equations

Dϕ = γl (D, λ)ϕ, ∀D ∈ Dl, (4.1)

is called the system of hypergeometric differential equations with spectral param-
eter λ ∈ b∗C, where ϕ ∈ C∞ (U/K, χl).

Since S (b)W is itself a polynomial algebra, the system of hypergeometric differ-
ential equations (4.1) is just the simultaneous eigenvalue problem for the commut-
ing algebra Dl.

Proposition 4.8. A χl-bi-coinvariant function ϕ is an elementary χl-type spher-
ical function on G if and only if ϕ satisfies (4.1) for some λ ∈ b∗C and ϕ (e) = 1.

Proof. See [18, Definition 5.2.1] or [31, Theorem 3.2].

Corollary 4.9. The function ϕλ, l defined in (3.11) is the unique χl-bi-coinvariant
function satisfying (4.1) and ϕ (e) = 1. Any spherical function of type χl on G has
this form for some λ ∈ b∗C.

Proof. See [31, Proposition 3.3].

The above proposition states that the χl-type spherical functions are the nor-
malized joint eigenfunctions of Dl. In fact, the integrand in (3.11) is already an
eigenfunction of Dl with this eigenvalue γl(D, λ) where D ∈ Dl. Since Dl contains
the Laplace-Beltrami operator4 (which is an elliptic operator), all χl-type spherical
functions on G are indeed real analytic5.

4The Laplace-Beltrami operator exists on any semisimple symmetric space due to the pseudo-Riemannian
structure. It is an invariant differential operator since the pseudo-Riemannian structure is invariant.

5An eigenfunction of an elliptic operator on an analytic Riemannian manifold is analytic.
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The formal transpose (or adjoint) D∗ of D ∈ Dl is the differential operator
defined by ∫

U

(Df)(u) g (u) du =

∫

U

f (u) (D∗ g) (u)du

with respect to Haar measure du on U for f, g ∈ C∞ (U/K, χl) with at least of
them having compact support. Then D∗ ∈ Dl and it has the properties that

(D1D2)
∗ = D∗

2D
∗
1, (∂p)

∗ = ∂p∗

where for p ∈ S (bC), p
∗ ∈ S (bC) is defined by p∗(λ) = p (−λ). The latter formula

is same as γl (D
∗) = γl (D)∗ for D ∈ Dl. If D

∗ = D then D is called formally
self-adjoint, which means D is a symmetric operator.

If D is a differential operator on Breg
C we denote by D∗ the formal transpose of

D as a differential operator on B with respect the Haar measure d b on B:

∫

B

(Df (b)) g (b) db =

∫

B

f (b)(D∗ g) (b) db

for all f, g ∈ C∞ (Breg) with at least one of them having compact support.

Proposition 4.10. The χl-type spherical function ψµ, l on U satisfies the joint
eigenequation

Dψµ, l = γl (D, µ+ ρ)ψµ, l, ∀D ∈ Dl.

Hence,

Sl (Df) = γl (D∗, ·+ ρ)Sl f, ∀f ∈ C∞ (U/K, χl).

Proof. By (3.12) and (4.1) we have

Dψµ, l = Dϕµ+ρ, l = γl (D, µ+ ρ)ϕµ+ρ, l = γl (D, µ+ ρ)ψµ, l.

It follows that for µ ∈ Λ+
l

Sl (Df) (µ) = (Df, ψµ, l)

= (f, D∗ ψµ, l)

= (f, γl (D
∗, µ+ ρ)ψµ, l)

=

∫

U

f(u) γl (D∗, µ+ ρ)ψµ, l (u) du

= γl (D∗, µ+ ρ)Sl (f) (µ).
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Let {ξj}nj=1 be an orthonormal basis of a. Then
∑n

j=1 ∂
2
ξj
∈ S (a)W 6 is the

Laplace operator on A. For m ∈M define a differential operator

L (m) :=

n∑

j=1

∂2ξj +
∑

α∈Σ+

mα
1 + e−2α

1− e−2α
∂α

which generalizes to arbitrary multiplicity function m the radial part on A+ of the
Laplace-Beltrami operator on G/K, independent of the choice of A+7. This is the
standard second order hypergeometric operator. It is well defined on b

reg
C (or Breg

C )
and is invariant under the Weyl group W .

Recall that we have the integral formula for Cartan decomposition U = K BK
(see [12, theorem 5.10, p.190]):

∫

U

f(u) du =
1

|W |

∫

K

∫

B

∫

K

f (k1 b k2) δ (m, b) d k2 d b d k1

where f ∈ C∞ (U/K, χl), m is given associated with the symmetric space U/K,
and |W | denotes the cardinality ofW . Let f1, f2 be in C

∞ (U//K, χl) with at least
one of them having compact support. Then

(f1, f2)

:=

∫

U

f1 (u) f2 (u) du

=
1

|W |

∫

K

∫

B

∫

K

f1 (k1 b k2) f2 (k1 b k2) δ (m, b) d k2 d b d k1

=
1

|W |

∫

K

∫

K

χl(k1 k2)
−1 χl(k1 k2)−1

︸ ︷︷ ︸
=1

dk1 dk2

∫

B

f1 (b) f2 (b) δ (m, b) db

=
1

|W |

∫

B

f1 (b) f2 (b) δ (m, b) db. (4.2)

Let m ∈ M satisfy (2.4). Then δ (m, b) db is a positive measure on B. Define an
inner product ( · , · )m on C∞ (B)W by (4.2).

Proposition 4.11. The operator L(m) is symmetric with respect to δ (m, b) db for
any m ∈M subject to (2.4).

6For any X ∈ a let ∂X denote the directional derivative in a with respect to X, that is,

(∂X φ) (Y ) =
d

d t
φ (Y + tX)

∣∣∣
t=0

, Y ∈ a.

We identify a∗ with a via α 7→ Aα and then view ∂α = ∂Aα
for any α ∈ Σ+.

7Here K acts on G/K with A+ · o = Exp a+ as a transversal manifold, that is, it is a submanifold of G/K
which meets each K-orbit K · p at only one point p ∈ A+ · o, and

Tp (G/K) = Tp (A+ · o)⊕ Tp (K · p).

See Propositions 3.9 and 3.11 of Chapter II in [12].
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Proof. The idea comes from the proof of Proposition 5.1.5 in [18, p.72]. Write
L = L(m) and we want to show L is invariant under taking adjoint with respect
to ( · , · )m. Let ML := L+ 〈ρ, ρ〉 with ρ = ρ(m). Since 〈ρ, ρ〉 is just a number, it
is automatically symmetric with respect to any measure. If ML is symmetric with
respect to δ (m, b) db, then so is L. So it is enough to show

∫

B

[MLf1 (b)] f2 (b) δ (m, b) db =

∫

B

f1 (b) [MLf2 (b)] δ (m, b) db.

Note that
δ (m) = υ (m)1/2 υ (m)

1/2 ∈ C [P ]W ,

and from Theorem 2.1.1 in [18] we have

υ (m)1/2 ◦ML ◦ υ (m)−1/2 =

n∑

j=1

∂2ξj +
∑

α∈Σ+

mα (2−mα − 2m2α) 〈α, α〉
(eα − e−α)2

where the first term of the right-hand side is the second-order directional deriva-
tives, it is symmetric with respect to both Haar measures d b on B and d a on
A (a natural choice could be the continuation of d b); and the second term is the
first-order term, which is a potential function and no differentiation to deal with
there, and hence symmetric with d b and d a. This implies that the right-hand side
(and hence the left-side) is symmetric with respect to the measure d b and d a. It
follows that
∫

B

[MLf1 (b)] f2 (b) δ (m, b) db

=

∫

B

[MLf1 (b)] f2 (b) υ (m, b)
1/2 υ (m, b)

1/2
db

=

∫

B

[(υ (m)
1
2 ◦ML ◦ υ (m)−

1
2 ) υ (m)

1
2 (b) f1 (b)] υ (m)

1
2 (b) f2 (b) db

=

∫

B

υ (m)
1
2 (b) f1 (b) (υ (m)

1
2 ◦ML ◦ υ (m)−

1
2 ) υ (m)

1
2 (b) f2 (b) db

=

∫

B

f1 (b) υ (m, b)
− 1

2 [(υ (m)
1
2 ◦ML ◦ υ (m)−

1
2 ) υ (m)

1
2 (b) f2 (b)] υ (m, b)

1
2 υ (m, b)

1
2 db

=

∫

B

f1 (b) [MLf2 (b)] δ (m, b) db

as desired.
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Chapter 5

The Hypergeometric Functions

The geometry constrains the root multiplicities mα to assume certain specific val-
ues. The spherical functions are determined by the geometry as well because the
system (5.1) of differential equations originates from the algebra of G-invariant
differential operators on G/K. Heckman and Opdam aimed to construct, for arbi-
trary complex values of multiplicities, the systems (5.1) of differential equations.
As analytic continuations in the multiplicity parameters of Harish-Chandra spher-
ical functions, the unique (up to normalization) simultaneous eigenfunctions of
these new systems would have provided a class of multivariable generalized spher-
ical functions which are nowadays known as hypergeometric functions associated
with root systems. The hypergeometric function we will study is a generalization
of the χl-type spherical function for a real semisimple Lie group in a sense which
will be explained in this chapter. The main work we have done is to obtain a nice
exponential growth estimate for such a hypergeometric function (see Proposition
5.10). This is of crucial importance for the proof of the Paley-Wiener Theorem for
line bundles over symmetric spaces. Our study below is based mainly on [18], [27],
[12, Chapter IV], and [31], to which we refer for details.

5.1 The Harish-Chandra Expansion

In this section we will give a short introduction of the Harish-Chandra asymptotic
expansion for χl-type spherical functions ϕλ, l. Refer to [18, Part I, Chapter 4] and
[31, Theorem 3.6] for details.

If a χl-bi-coinvariant function ϕ is an eigenfunction for Dl (i.e. it satisfies (4.1))
then

△ (D) (ϕ|A+) = (Dϕ)|A+ = (γl (D, λ)ϕ)|A+ = γl (△ (D), λ)ϕ|A+.

Abusing notation by writing ϕ = ϕ|A+ the above equation is

△ (D)ϕ = γl (△ (D), λ)ϕ, ∀ D ∈ Dd
l .

This tells us that ϕ is an eigenfunction for Dl if and only if ϕ|A+ is an eigenfunction
for rad (Dd

l ), i.e. it satisfies the system of differential equations

Dϕ = γl (D, λ)ϕ, ∀ D ∈ rad (Dd
l ). (5.1)

Therefore the restriction of χl-type spherical function ϕλ, l on A+ satisfies (5.1).
Moreover, the function η−l ϕλ, l is a joint eigenfunction of a commutative algebra
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of differential operators η−l ◦D ◦ ηl (this can also be seen from Corollary 4.6), that
is, it satisfies the system of equations

(η−l ◦D ◦ ηl)ϕ = γl (D, λ)ϕ, ∀D ∈ rad (Dd
l ). (5.2)

Note that the radial part of the Laplace-Beltrami operator on G/K (acting on
χl-bi-coinvariant functions) is exactly the operator

L (l) = L (m(l)) :=

n∑

j=1

∂2ξj +
∑

α∈Σ+

(m(l))α
1 + e−2α

1− e−2α
∂α ∈ rad (Dd

l )

associated with the root system Σ and the multiplicity m(l). This operator is
actually defined on Breg

C . It is shown that

γl (L (l), λ) = 〈λ, λ〉 − 〈ρ(l), ρ(l)〉

and thus the differential equation (5.2) corresponding to the operator L(l) can be
written as

L (l) (ϕ) = (〈λ, λ〉 − 〈ρ(l), ρ(l)〉)ϕ, λ ∈ b∗C, (5.3)

(see [31, (3.8)]). The function η−l ϕλ, l on A
+ satisfies (5.3).

We briefly review the Harish-Chandra series for ϕλ, l in the below. We look for
solutions of (5.3) with spectral parameter λ which are of the form

Φ (λ, m(l); a) = Φλ, l (a) = aλ−ρ(l)
∑

µ∈Ξ

Γµ, l (λ) a
−µ, a ∈ A+ (5.4)

where Ξ := {∑n
j=1 nj αj | nj ∈ Z+, αj ∈ Π} (recall Π is the set of simple roots in

Σ+). The coefficients Γµ, l (λ) ∈ C are uniquely determined by Γ0, l (λ) ≡ 1 and the
recurrence relation

〈µ, µ− 2λ〉Γµ, l (λ) = 2
∑

α∈Σ+

(m(l))α
∑

k∈N
µ−2k α∈Ξ

Γµ−2k α, l (λ) 〈µ+ ρ(l)− 2 k α− λ, α〉

provided λ ∈ b∗C satisfies 〈µ, µ − 2λ〉 6= 0 for all µ ∈ Ξ \ {0}. For such λ the
Harish-Chandra series (5.4) converges to a meromorphic function of λ and Φλ, l is
real analytic on A+. In fact, there is a tubular neighborhood of A+ in AC on which
this series converges to a holomorphic function. If D ∈ rad (Dd

l ) then DΦλ, l =
γl (D, λ) Φλ, l. It is remarkable that Φλ, l turns out to solve the entire system (5.2)
and allows to construct a basis for the smooth solutions of (5.2) on A+.

Theorem 5.1 (The Harish-Chandra Expansion). Let the notation be as above.
There is a meromorphic function c (λ, l) = c (λ, m(l)) on b∗C ×M so that ϕλ, l

admits on A+ the expansion

ϕλ, l = ηl
∑

w∈W

c (wλ, l) Φwλ, l. (5.5)
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The function c (λ, l) is the known Harish-Chandra c-function which governs the
asymptotic behavior of ϕλ, l on A

+ and is given by

c (λ, l) =

∫

N

e−(λ+ρ) (H (n)) χl (κ (n))
−1 d n

where N := θ (N) and the Haar measure d n on N is normalized by the condition
c (ρ, 0) = 1 (see [29, Remark 7.3]). It admits an explicit form [31, (3.15)] by using
Gindikin-Karpelevic̆ product formula.

5.2 The Hypergeometric Functions

Heckman and Opdam used the right-hand side of (5.5) with arbitrary multiplicity
function m ∈ M to define their generalized spherical functions known as the
hypergeometric functions:

Definition 5.2. Define meromorphic functions c̃, c : b∗C ×M→ C by

c (λ, m) =
c̃ (λ, m)

c̃ (ρ, m)
, c̃ (λ, m) =

∏

α∈Σ+

Γ (λα +
mα/2

4
)

Γ (λα +
mα/2

4
+ mα

2
)
.

The function

F (λ, m; a) =
∑

w∈W

c (w λ, m) Φ (w λ, m; a)

is called the hypergeometric function associated with the triple (a, Σ,M) or simply
Σ. Here Φ (λ, m; a) is the Harish-Chandra series.

Heckman and Opdam proved the fundamental result of the hypergeometric func-
tions (see Theorem 4.4.2 in [18]):

Theorem 5.3. Let P ⊂M be defined by

P = {m ∈M | c̃ (ρ, m) = 0}.

Then F (λ, m; a) is W -invariant and holomorphic in b∗C × (M\P)× T , where T
is a W -invariant tubular neighborhood of A in BC.

Remark 5.4. The open setM\P contains the closed subset

{m ∈M | Re (mα/2 +mα) ≥ 0, ∀α ∈ Σ∗}.

It is easy to see that m±(l) is contained in this subset and thus inM\P. It follows
that F (λ, m±(l); ·) is holomorphic in b∗C × (M\P)× T .
By construction the hypergeometric functions reduce to Harish-Chandra’s spher-

ical functions of type χl if m is a geometric multiplicity. This is the content of the
following fact:
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Proposition 5.5. Let F be the hypergeometric functions associated with Σ. Then

ϕλ, l |A = η± l F (λ, m±(l); ·)

where λ ∈ b∗C, and the ± sign indicates that both possibilities are valid.

Proof. See [18, p.76, theorem 5.2.2].

Proposition 5.6. The hypergeometric function F (λ, m; ·) has a holomorphic ex-
tension to b∗C ×M× (a+ V ) where V is a neighborhood of 0 in b.

Proof. This is well known, see theorem 3.15 in [27].

Write ϕλ, l = ϕλ, l|A. We therefore have ϕλ, l = ηl F (λ, m(l); ·) on a + V by
holomorphic continuation for some neighborhood V of 0 in b. Since F are the
solutions of (5.3), we have

L (l) F (λ, m(l); Z) = (〈λ, λ〉 − 〈ρ(l), ρ(l)〉)F (λ, m(l); Z), ∀Z ∈ a+ V. (5.6)

Remark 5.7. Consider the domains

Ω := {X ∈ b | |α (X)| < π, ∀α ∈ Σ}

and for ε > 0,
Ωε := {X ∈ b | |α (X)| < π − ε, ∀α ∈ Σ}.

Recall from Remark 3.34 that the χl-type spherical function ϕλ, l (g) is holomorphic
in (λ, g) ∈ b∗C × V. Let F be the hypergeometric function associated with Σ. It
follows from [3, Remark 3.17] that F has a holomorphic extension to b∗C ×M×
(a+ Ω), so

ϕλ, l (a) = ηl F (λ, m(l); a), a ∈ exp (a+ Ω).

Then a natural choice of the complex domain V could be

V = KC exp (a+ Ω)KC. (5.7)

Lemma 5.8. For X ∈ Ω and µ ∈ Λ+
l , the map µ 7→ ψµ, l (e

X) has an analytic con-
tinuation to b∗C, say λ 7→ ψλ, l (e

X). Moreover, the map X 7→ ψλ, l (e
X) is analytic,

and
ψw (λ+ρ)−ρ, l (e

X) = ψλ, l (e
X), ∀w ∈ W.

Proof. Let V be as in (5.7). For each g ∈ V and λ ∈ b∗C we define

ψλ, l (g) = ϕλ+ρ, l (g)

and therefore attain an analytic continuation to b∗C of the map µ 7→ ψµ, l (g) where
µ ∈ Λ+

l , which has the same form, λ 7→ ψλ, l (g). Let f ∈ C∞
r (U//K, χl). This gives

a well-defined holomorphic extension of the spherical Fourier transform λ 7→ f̃l (λ)

with f̃l (λ) given by (3.13) if f has compact support in U ∩ V. In particular, for
X ∈ Ω, the map (λ, X) 7→ ψλ, l (e

X) is holomorphic (or analytic) in b∗C × Ω.
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By the fact that ϕλ, l is W -invariant in λ ∈ b∗C, we have

ψw (λ+ρ)−ρ, l (e
X) = ϕw (λ+ρ), l (e

X) = ϕ(λ+ρ), l (e
X) = ψλ, l (e

X).

Remark 5.9. For X ∈ Ω and λ ∈ b∗C, we have ϕλ, l (e
X) = ηl (e

X)F (m(l), λ, X)
where

ηl (e
X) =

∏

α∈O+
s

(
eα (X) + e−α (X)

2

)|l|

.

Since α (b) ∈ iR, then

0 < |ηl (eX)| =
∏

α∈O+
s

|cos Imα (X)||l| ≤ 1.

Therefore, ηl is holomorphic on A (exp Ω) and bounded on exp Ω.

In Chapter 6 we will show the spherical Fourier transform of a χl-bi-coinvariant
function actually ends up into the Paley-Wiener space, for which we need to have
a nice control over the growth behaviour in λ ∈ b∗C of F (λ, m(l); X) where X is in
some neighborhood of 0 in b. Proposition 6.1 in [27] gives a uniform estimate both
in λ ∈ b∗C and in X ∈ a+Ω/2, but requires all multiplicities involved in F (λ, k; X)
to be positive, i.e. kα ≥ 0 for all α ∈ R (recall Remark 2.9 for the meaning of these
notations used in [27]). Clearly, the multiplicity m(l) might be negative. So we can
not use this result. However, we can generalize it to a similar but still nice growth
estimate for F (λ, m; X) where X is in a bigger domain a + Ωε, even though we
have a weaker assumption (2.4) on the multiplicity parameters.

Proposition 5.10. Let F be the hypergeometric function associated with Σ. Let
m ∈ M satisfy mα +mα/2 ≥ 0 and mα ≥ 0 for all α ∈ Σ∗. Let ε > 0. Then there
is a constant C = Cε > 0 depending on ε such that

|F (λ, m; Z)| ≤ |W | 12 exp (−min
w∈W

Im (w λ (Y ))+
√
C max

w∈W
w ρ (Y )+max

w∈W
Re (w λ (X)))

where Z = X+i Y with X, Y ∈ a and |α (Y )| ≤ π−ε for all α ∈ Σ, and ρ = ρ(m).

Proof. Let φw(Z) = G (λ,m, w−1Z) where G is the nonsymmetric hypergeomet-
ric function defined as in [27, Theorem 3.15], so that F = |W |−1

∑
w Gw where

Gw (λ,m, Z) = G (λ,m,w−1Z). By Definition 3.1 and Lemma 3.2 in [27] this im-
plies that

∂ξφw = −1
2

∑

α∈Σ+

mα α(ξ)

[
1 + e−2α (Z)

1− e−2α (Z)
(φw − φrα w)− sgn (w−1 α)φrα w

]
+(wλ, ξ)φw.

Assume mα +mα/2 ≥ 0 and mα ≥ 0 for all α ∈ Σ∗. Taking complex conjugates,

∂ξφw = −1
2

∑

α∈Σ+

mα α(ξ)

[
1 + e−2α (Z)

1− e−2α (Z)
(φw − φrα w)− sgn (w−1 α)φrα w

]
+(w λ, ξ)φw.
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It follows that

∂ξ
∑

w

|φw|2

=
∑

w

[(∂ξ φw)φw + φw (∂ξ φw)]

= −1
2

∑

α∈Σ+, w

[mα α(ξ)

(
1 + e−2α (Z)

1− e−2α (Z)
(φw − φrα w)φw − sgn (w−1 α)φrα w φw

)

+mα α(ξ)

(
1 + e−2α (Z)

1− e−2α (Z)
(φw − φrα w)φw − sgn (w−1 α)φrα w φw

)
]

+2
∑

w

Re (wλ (ξ)) |φw|2.

For fixed α, we add the terms with index w and rαw. Then

∂ξ
∑

w

|φw|2

= −1
4

∑

α∈Σ+, w

mα

[
α (ξ)

1 + e−2α (Z)

1− e−2α (Z)
+ α (ξ)

1 + e−2α (Z)

1− e−2α (Z)

]
|φw − φrα w|2

+
∑

α∈Σ+, w

mα sgn (w
−1α) Im (α(ξ)) Im (φw φrα w) + 2

∑

w

Re (w λ (ξ)) |φw|2.

Observe that

|1− e−2α (Z)|2 = (1− e−2α (Z)) 1− e−2α (Z) = (1− e−2α (Z)) (1− e−2α (Z)),

which gives

α (ξ)
1 + e−2α (Z)

1− e−2α (Z)
+ α (ξ)

1 + e−2α (Z)

1− e−2α (Z)

=
α(ξ) (1 + e−2α (Z)) (1− e−2α (Z)) + α (ξ) (1 + e−2α (Z)) (1− e−2α (Z))

|1− e−2α (Z)|2 .

Write Z = X+ i Y with X, Y ∈ a and |α (Y )| ≤ π−ε, ∀α ∈ Σ. Let α (X) = t ∈ R
and α (Y ) = s ∈ R. Then α (Z) = t + i s. Write α (ξ) = a + i b with a = Reα (ξ)
and b = Imα (ξ). Note that

(1 + e−2α (Z)) (1− e−2α (Z)) = 1 + e−2α (Z) − e−2α (Z) − e−2α (Z)−2α (Z)

= 1 + e−2t cos (2s)− i e−2t sin (2s)− e−2t cos (2s)

−i e−2t sin (2s)− e−2t−i 2s−2t+i 2s

= 1− e−4t − 2 i e−2t sin (2s).

Similarly,

(1 + e−2α (Z)) (1− e−2α (Z)) = 1− e−4t + 2 i e−2t sin (2s).
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Therefore,

α(ξ) (1 + e−2α (Z)) (1− e−2α (Z)) + α (ξ) (1 + e−2α (Z)) (1− e−2α (Z))

= (a+ i b) (1− e−4t − 2 i e−2t sin (2s)) + (a− i b) (1− e−4t + 2 i e−2t sin (2s))

= 2 a (1− e−4t) + 4 b e−2t sin (2s)

= 2Re (α (ξ)) (1− e−4α (X)) + 4 Im (α (ξ)) e−2α(X) sin (2α (Y )).

Hence,

∂ξ
∑

w

|φw|2 (5.8)

=− 1

2

∑

α∈Σ+, w

mα

[
Re (α(ξ)) (1− e−4α (X)) + 2Im (α (ξ)) e−2α(X) sin (2α (Y ))

|1− e−2α (Z)|2
]
|φw − φrα w|2

+
∑

α∈Σ+, w

mα sgn (w
−1α) Im (α(ξ)) Im (φw φrα w) + 2

∑

w

Re (w λ (ξ)) |φw|2.

We first take X, ξ ∈ areg such that they are in the same Weyl chamber. Let µ ∈
{wReλ}w∈W be such that µ (ξ) = maxw Re (w λ) (ξ). Then (wReλ− µ) (ξ) ≤ 0.
The formula (5.8) gives

∂ξ (e
−2µ (X)

∑

w∈W

|φw (Z)|2)

= −1
2

∑

α∈Σ+, w

mα
α (ξ) (1− e−4α (X))

|1− e−2α (Z)|2 |φw − φrα w|2e−2µ (X) (5.9)

+2
∑

w∈W

(wReλ− µ) (ξ) |φw|2 e−2µ (X), (5.10)

Observe that the term (5.10) is clearly less than or equal to zero. In the term (5.9),
the factor |φw − φrα w|2 e−2µ (X) ≥ 0. Consider

∑

α∈Σ+

mα
α (ξ) (1− e−4α (X))

|1− e−2α (Z)|2

=
∑

α∈Σ+
∗

[
mα

α(ξ) (1− e−4α(X))

|1− e−2α(Z)|2 +mα/2
(1/2)α(ξ) (1− e−2α(X))

|1− e−α(Z)|2
]

=
∑

α∈Σ+
∗

[
mα

α(ξ) (1− e−2α(X)) (1 + e−2α(X))

|1− e−α(Z)|2 |1 + e−α(Z)|2 +mα/2
(1/2)α(ξ) (1− e−2α(X))

|1− e−α(Z)|2
]

=
∑

α∈Σ+
∗

α (ξ)
1− e−2α (X)

|1− e−α(Z)|2
[
mα

1 + e−2α (X)

|1 + e−α(Z)|2 +
1

2
mα/2

]
. (5.11)

Since X, ξ are in the same Weyl chamber, α(ξ) (1 − e−2α(X)) ≥ 0 for all α ∈ Σ+.
Since mα/2 ≥ −mα and mα ≥ 0, then

mα
1 + e−2α (X)

|1 + e−α(Z)|2+
1

2
mα/2 ≥ mα

1 + e−2α (X)

|1 + e−α(Z)|2−
1

2
mα = mα

[
1 + e−2α (X)

|1 + e−α(Z)|2 −
1

2

]
≥ 0
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The reason is as follows:

1 + e−2α (X)

|1 + e−α(Z)|2 −
1

2
=

2 (1 + e−2t)− |1 + e−t e−i s|2
2 |1 + e−t e−i s|2 ≥ 0

if and only if the numerator is great than or equal to zero, which is clearly

2 (1 + e−2t)− |1 + e−t e−i s|2
= 2 (1 + e−2t)− |1 + e−t cos (s)− i e−t sin (s)|2
= 2 (1 + e−2t)− [(1 + e−t cos (s))2 + (e−t sin (s))2]

= 2 (1 + e−2t)− [1 + e−2t cos2 (s) + 2 e−t cos (s) + e−2t sin2 (s)]

= 1 + e−2t − 2 e−t cos (s/2)

≥ 1 + e−2t − 2 e−t = (1− e−t)2 ≥ 0.

It follows that (5.11) is great than or equal to zero. Thus the term (5.9) is non-
positive and hence

∂ξ (e
−2µ (X)

∑

w∈W

|φw (Z)|2) ≤ 0.

This implies that the function is decreasing. So

e−2maxw Re (w λ(X))
∑

w

|φw (Z)|2 ≤ e−2maxw Re (w λ(0))
∑

w

|φw (0 + i Y )|2

=
∑

w

|φw (i Y )|2

if X ∈ areg, and by continuity it holds for all X ∈ a. Note that

|φe (Z)| = |G (λ, m, e−1Z)| = |G (λ, m, Z)|

and |φe (Z)|2 ≤
∑

w |φw (Z)|2 which implies |φe (Z)| ≤ (
∑

w |φw (Z)|2)1/2, we have

|G (λ, m, X + i Y )| ≤ emaxw Re (wλ(X))

(∑

w

|φw (i Y )|2
)1/2

. (5.12)

Substituting Y = 0 yields

|G (λ, m, X)| ≤ |W |1/2 emaxw Re (w λ(X)),

where we use the fact that G (λ, m, 0) = 1 (cf. [27, Theorem 3.15]).

Next, we take Y ∈ areg such that |α (Y )| ≤ π − ε for all α ∈ Σ, and η ∈ areg

belonging to the same Weyl chamber, and let ξ = i η. Then

Re (w λ(ξ)) = −Im (w λ(η)) and Im (α (ξ)) = Re (α (η)).
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Take µ ∈ {w Im λ}w∈W such that −Im (w λ(η)) ≤ −µ (η) for all w ∈ W . This is to
say, µ = minw Im (w λ). Observe that

2 ρ =
∑

α∈Σ+

mα α =
∑

α∈Σ+
∗

(mα +
1

2
mα/2)α,

and ∑

α∈Σ+
∗

(mα +
1

2
mα/2) |α (η)| ≤ max

w

∑

α∈Σ+
∗

(mα +
1

2
mα/2)α (w η).

We have
∣∣∣∣∣∣
∑

α∈Σ+, w

mα sgn (w
−1 α) Im (α(ξ)) Im (φw φrα w)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

α∈Σ+
∗ , w

(mα +
1

2
mα/2) sgn (w

−1 α) Im (α(ξ)) Im (φw φrα w)

∣∣∣∣∣∣

Since mα + 1
2
mα/2 ≥ 0, then

≤
∑

α∈Σ+
∗ , w

(mα +
1

2
mα/2) |α (η)| |φw| |φrαw|

≤2 max
w

(w ρ, η)
∑

w

|φw|2,

Choose ν ∈ {w ρ}w∈W such that (ν, η) = maxw (wρ, η). Let C > 2 be a constant
to be determined and let

H (i Y ) = e2µ (Y ) e−Cν (Y )
∑

w

|φw (i Y )|2.

Using the formula (5.8) we obtain

(∂ξH) (i Y ) (5.13)

=−
∑

α∈Σ+, w

mα
α (η) sin 2α (Y )

|1− e−2α (i Y )|2 |φw − φrα w|2 · e(2µ−C ν) (Y )

− (C − 2) (ν, η)
∑

w

|φw|2 e(2µ−C ν) (Y )

+


 ∑

α∈Σ+, w

mα sgn (w
−1 α) Im (α(ξ)) Im (φw φrα w)− 2 (ν, η)

∑

w

|φw|2

 e(2µ−C ν) (Y )

+

[
2
∑

w

(µ− w Imλ) (η) |φw|2
]
e(2µ−C ν) (Y ),
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where the last three terms on the right-hand side are clearly non-positive. For the
first term, observe that, recalling α (Y ) = s,

|1− e−2α (i Y )|2 = |1− e−2 i s|2 =
(
|e−i s| |ei s − e−i s|

)2
= 4 sin2 (s).

It follows that

∑

α∈Σ+

mα
α (η) sin 2α (Y )

|1− e−2α (i Y )|2

=
∑

α∈Σ+
∗

[
mα

α (η) sin 2α (Y )

|1− e−2α (i Y )|2 +
1

2
mα/2

α (η) sin (α (Y ))

|1− e−α (i Y )|2
]

Since mα/2 ≥ −mα and mα ≥ 0, then

≥
∑

α∈Σ+
∗

[
mα

α (η) sin 2α (Y )

|1− e−2α (i Y )|2 −
1

2
mα

α (η) sin (α (Y ))

|1− e−α (i Y )|2
]

=
∑

α∈Σ+
∗

[
mα

α (η) sin (2s)

4 sin2 (s)
− 1

2
mα

α (η) sin (s)

4 sin2 (s/2)

]

=
∑

α∈Σ+
∗

mα α (η)

4

[
sin (2s)

sin2 (s)
− 1

2

sin (s)

sin2 (s/2)

]

Using the formulas from trigonometry: sin (2 s) = 2 sin (s) cos (s) and cos (2s) =
cos2 (s)− sin2 (s), we have

=
∑

α∈Σ+
∗

mα α (η)

4

[
2 sin (s) cos (s)

sin2 (s)
− 1

2

2 sin (s/2) cos (s/2)

sin2 (s/2)

]

=
∑

α∈Σ+
∗

mα α (η)

4

[
2 cos (s)

sin (s)
− cos (s/2)

sin (s/2)

]

=
∑

α∈Σ+
∗

mα α (η)

4

[
2 (cos2 (s/2)− sin2 (s/2))

2 sin (s/2) cos (s/2)
− cos (s/2)

sin (s/2)

]

=
∑

α∈Σ+
∗

mα α (η)

4

[
cos (s/2)

sin (s/2)
− sin (s/2)

cos (s/2)
− cos (s/2)

sin (s/2)

]

=
∑

α∈Σ+
∗

−mα α (η)

4
tan (s/2).

Since η, Y belong to the same chamber, we see that α (η) tan (s/2) ≥ 0. Since
|s| = |α(Y )| ≤ π− ε, then there is a constant C1 = C1(ε) > 0 depending on ε such
that | tan (s/2)| ≤ C1. Also,

∑

w

|φw − φrα w|2 ≤
∑

w

(|φw|+ |φrα w|)2 =
∑

w

4 |φw|2.
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It follows that the first term of the right-hand side of (5.13) is

≤
∑

α∈Σ+
∗ , w

mα |α (η)|C1 |φw|2 e(2µ−C ν) (Y )

≤ 2C1 max
w

(w ρ, η)
∑

w

|φw|2 e(2µ−C ν) (Y ).

Hence the sum of the first two terms of the right-hand side of (5.13) is less than
or equal to zero, by taking C = 2 + 2C1 (C thus depends on ε).

Thus, (∂ξH) (i Y ) ≤ 0. We see that H (i Y ) ≤ H (0) = |W |. So
∑

w

|φw (i Y )|2 ≤ |W | e(C ν−2µ) (Y ).

Together with (5.12), we get

|G (λ, m, Z)| ≤ |W | 12 exp (−min
w∈W

Im (w λ (Y ))+
√
Cmax

w∈W
w ρ (Y )+max

w∈W
Re (w λ (X))).

But |G| = |F |, we therefore prove the desired estimate for F .

Since ρ( · ) and |W | are constants, we restate Proposition 5.10 as

Proposition 5.11. Let m ∈ M satisfy (2.4). Let ε > 0. Then there exists a
constant C = Cε such that

|F (λ, m; X + i Y )| ≤ C exp (max
w∈W

Rew λ (X)− min
w∈W

Imw λ (Y )),

for all X ∈ Ωε, Y ∈ b, and λ ∈ b∗C.
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Chapter 6

Paley-Wiener Theorem for Line Bundles
over Compact Symmetric Spaces

With the preparations of the previous chapters we will present our main result in
this chapter. In the first section we will introduce the Paley-Wiener spaces and
state Paley-Wiener Theorem for line bundles over compact symmetric spaces. The
detailed proof of this theorem, which is motivated by [22], will be given in the
consecutive three sections.

6.1 Paley-Wiener Space and Paley-Wiener

Theorem

Let ‖ ‖ be the norm on u with respect to the U -invariant inner product 〈 , 〉, i.e.
‖ ‖ = 〈 , 〉1/2. Recall that we give U/K the Riemannian structure induced by the
restriction of 〈 , 〉 to q× q. For r > 0 let

Br (0) = {X ∈ q | ‖X‖ < r}
be the geodesic open ball in q centered at 0 with radius r. Define a function d
on U by d (u, e) := d1 (u · o, o) where d1 is the associated Riemannian distance
function on U/K. Then d (k, e) = 0, for all k ∈ K. The injectivity radius R of
U/K is the supremum of the values r for which the restriction of Exp to Br (0) is
a diffeomorphism of onto its image.

All functions in C∞ (U//K, χl) have compact supports since U is compact. We
consider those with small supports. Assume that r ≤ R. Let

C∞
r (U//K, χl) = {f ∈ C∞ (U//K, χl) | supp f ⊆ K exp Br (0)K}

= {f ∈ C∞ (U//K, χl) | supp sf ⊆ ExpBr (0)}
where we identify f with the smooth section sf (recall Proposition 2.5) and then
C∞

r (U//K, χl) is also well defined using the support of sf . The subscript r indi-
cates that the support is contained in a metric ball of radius r. If l = 0 this space
is C∞

r (U/K)K . A Paley-Wiener theorem for this case was proved in [22].

The topology on C∞ (U) is defined by the seminorms

νz (f) := ‖ℓ (z) f‖∞, z ∈ U (u) (6.1)

where ℓ is the left regular representation. This is the topology of uniform con-
vergence of functions and their derivatives over compact sets. The same family
of seminorms (6.1) also defines the topology on a closed subspace of C∞ (U).
This applies to the following closed subspaces: C∞ (U/K, χl), C

∞ (U//K, χl), and
C∞

r (U//K, χl). The same topology can be defined by the seminorms

σk (f) := ‖Lk
U/K f‖∞, k ∈ Z+
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where LU/K is the negative definite Laplacian on U/K (see Theorem 4 in [32]).
The topology on C∞ (B · o) is given by the seminorms νz with z ∈ U (b). Also,
C∞ (B · o)W is a closed subspace whose topology is given by the same family of
seminorms.

Let S (Λ+
l ) be the space of sequences a = (aµ)µ∈Λ+

l
of complex numbers such

that for each k ∈ N,

τk (a) := sup
µ∈Λ+

l

(1 + ‖µ‖)k |aµ| <∞.

The τk are seminorms. Sequences (aµ)µ∈Λ+
l
satisfying τk (a) <∞ for all k ∈ N are

said to be rapidly decreasing. The topology on S (Λ+
l ) defined by the seminorms

τk makes it into a locally convex complete topological vector space. It follows that
the χl-spherical Fourier transform

Sl : C∞ (U//K, χl)
∼=−−→ S (Λ+

l )

is a topological isomorphism.

Lemma 6.1. The restriction map C∞ (U//K, χl)→ C∞ (B)W defines a bijection

res : C∞ (U//K, χl)
∼=−−→ ηl · C∞ (B · o)W .

Moreover, it is a topological isomorphism.

Proof. Since B · o ∼= B/B∩K, it follows from [18, p.77] that the restriction map is
bijective. Thus, Sl also gives a topological isomorphism from ηl ·C∞ (B · o)W onto
S (Λ+

l ). Hence, we have the following commutative diagram

C∞ (U//K, χl)

Sl
∼=

��

res // ηl · C∞ (B · o)W

Sl
∼=

��

S (Λ+
l ) id

∼= // S (Λ+
l )

It follows that the restriction map is a topological isomorphism.

Lemma 6.2. Let 0 < r < R. Then

C∞
r (B)W ∼= C∞

r (B · o)W

is a linear isomorphism of vector spaces (also of algebras).

Proof. We have B · o = B/(B ∩K) =: T where B ∩K is a discrete finite subgroup
and it is not necessarily {e}. Let ι : B → B · o which is a finite covering map1.

1It means ι is continuous and surjective, and every point x ∈ B · o has a neighborhood V such that the inverse
image ι−1 (V ) can be written as the union of disjoint open sets Vj in B, and for each j the restriction of ι to Vj

is a homeomorphism of Vj onto V . Note that the map ι is not injective because ker ι = B ∩K 6= {e}.
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Since 0 < r < R, we can find a ǫ > 0 so that r + ǫ < R. Denote by

DB
r (e) = exp Bb

r (0) ⊆ B

the metric ball in B of radius r centered at e, and by

DT
r (o) = ExpBb

r (0) ⊆ B · o

the metric ball in B ·o of radius r centered at o. Similarly for DB
r+ǫ (e) and D

T
r+ǫ (o).

Then ι : DB
r+ǫ (e)→ DT

r+ǫ (o) is a diffeomorphism. Thus

C∞ (DB
r+ǫ (e))

∼=−−→ C∞ (DT
r+ǫ (o))

is a linear isomorphism given by f 7→ f ◦ ι (this map is linear and bijective). We
extend this map to the desired isomorphism as follows. If f ∈ C∞

r (B · o)W , we
define F ∈ C∞ (DB

r+ǫ (e)) by F = f ◦ ι. Then F is smooth on DB
r+ǫ (e) since both f

and ι are smooth, and F isW -invariant since f is so. Also, F has compact support

in D
B

r (e) since f has compact support in D
T

r (o) and ι is a diffeomorphism from
DB

r+ǫ (e) onto D
T
r+ǫ (o). We see that

F = 0 on DB
r+ǫ (e) \DB

r (e).

Extend F to all of B by taking zero outside DB
r+ǫ (e). Therefore F ∈ C∞

r (B)W . On

the other hand, if F ∈ C∞
r (B)W , then suppF ⊆ D

B

r (e). We construct a function
f on B · o by

f |DT
r+ǫ (o)

:= F ◦ (ι−1 |DT
r+ǫ (o)

),

and zero elsewhere. In a similar way we see that f ∈ C∞
r (B · o)W . It follows that

C∞
r (B)W ∼= C∞

r (B · o)W .

Proposition 6.3. Let 0 < r ≤ R. Let f ∈ C∞ (U//K, χl). It follows that f ∈
C∞

r (U//K, χl) if and only if f |B ∈ C∞
r (B)W . That is, supp f ⊆ K exp Br (0)K

if and only if supp f |B ⊆ exp B
b

r (0) where

Bb
r (0) = Br (0) ∩ b = {X ∈ b | ‖X‖ < r}.

Proof. ⇒: Assume supp f ⊆ K exp Br (0)K. Let X ∈ b with ‖X‖ < R be so that

f (exp X) = f |B (exp X) 6= 0.

So exp X ∈ supp f . Then there are k1, k2 ∈ K and Y ∈ Br (0) (i.e. Y ∈ q and
‖Y ‖ ≤ r < R) such that

exp (X) = k1 exp (Y ) k2.

Since Br(0) = Ad (K)Bb
r (0), then there is a h ∈ K so that Ad (h) Y ∈ b (this

is actually valid for any Y ∈ q). Because the Killing form K is Ad (U)-invariant,
‖Ad (h) Y ‖ = ‖Y ‖ ≤ r. We then get

exp (X) = (k1 h
−1) exp (Ad (h) Y ) (h k2).
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It follows from the Cartan decomposition of U that there is a w ∈ W such that
Ad (h) Y = w ·X . Hence,

‖X‖ = ‖Ad (h) Y ‖ ≤ r.

This implies that supp f |B ⊆ exp B
b

r (0).

⇐: Let f ∈ C∞ (U//K, χl) be such that supp f |B ⊆ exp B
b

r (0). Let Y ∈ q with
‖Y ‖ < R and assume that there are k1, k2 ∈ K such that f (k1 exp (Y ) k2) 6= 0.
But we have

f (k1 exp (Y ) k2) = χl (k1 k2)
−1 f (exp Y ),

and since χl (k1 k2)
−1 is never zero, then f (k1 exp (Y ) k2) 6= 0 if and only if

f (exp Y ) 6= 0. Let h ∈ K be so that X := Ad (h) Y ∈ b. Then

0 6= f (exp Y ) = f (exp (Ad (h−1)X)) = f (h exp (X) h−1) = f (exp X).

Since supp f |B ⊆ exp B
b

r (0), then ‖X‖ ≤ r and therefore

‖Y ‖ = ‖Ad (h−1)X‖ = ‖X‖ ≤ r.

This implies that supp f ⊆ K exp Br (0)K.

Corollary 6.4. Let 0 < r < R. Then the restriction map

res : C∞
r (U//K, χl)

∼=−−→ ηl · C∞
r (B)W

is a topological isomorphism.

Proof. This follows immediately from the above two lemmas and the previous
proposition.

Definition 6.5. Let r > 0. Denote by PWr (b
∗
C) the space of holomorphic functions

ϕ on b∗C satisfying

1. ϕ is of exponential type r, i.e. for every k ∈ N, there is a constant Ck such
that

|ϕ (λ)| ≤ Ck (1 + ‖λ‖)−k er ‖Reλ‖, ∀λ ∈ b∗C.

2. ϕ satisfies the W -transformation law: for all w ∈ W and λ ∈ b∗C,

ϕ (w (λ+ ρ)− ρ) = ϕ (λ).

We now represent our main result, Paley-Wiener Theorem for homogeneous line
bundles over compact symmetric space, in the following:

Theorem 6.6 (Paley-Wiener Theorem). There is a S > 0 such that the (extended)
χl-spherical Fourier transform Sl gives a linear bijection

Sl : C∞
r (U//K, χl)

∼=−→ PWr (b
∗
C)

for each 0 < r < S. Precisely,
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1. If f ∈ C∞
r (U//K, χl), then Sl (f) : Λ+

l → C extends to a function in
PWr (b

∗
C);

2. Let ϕ ∈ PWr (b
∗
C). Then there exists a unique f ∈ C∞

r (U//K, χl) such that
Sl (f) (µ) = ϕ (µ), for all µ ∈ Λ+

l ;

3. The functions in PWr (b
∗
C) are uniquely determined by their values on Λ+

l .

Remark 6.7. By Theorem 6.6, the extension of the χl-spherical Fourier transform
of a function f ∈ C∞

r (U//K, χl) satisfies

|Sl (f) (λ)| ≤ Ck (1 + ‖λ‖)−k er ‖Re λ‖, ∀λ ∈ b∗C, k ∈ N.

We see that essentially the polynomial factor (1+‖λ‖)−k in the estimate is related
to the property of f , i.e. f is smooth. The exponential factor er ‖Re λ‖ results in
the compact support of f , i.e. the exponent r is characterized by the size of the
support. The value of r has to be less than an upper bound S. As discussed in [22,
Remark 4.3], the explicit values of S could be distinct in each part of Theorem 6.6.

1. In part 1, S has to be so that S ≤ R and K exp BS (0)K ⊂ U ∩ V for a
suitable domain V (see Remark 3.34). When we make a particular choice for
V (see (5.7)), the latter condition becomes S ≤ π/(‖α‖) for all α ∈ Σ (see
Section 6.2).

2. For part 2, we need S ≤ R (see Section 6.4.2).

3. For part 3, it can be proved that S ≤ π/max ‖ωj‖, j = 1, . . . , n.

Finally, S is taken to be the minimum of these three values.

Corollary 6.8. There is a bijection C∞
r (U/K)K ∼= C∞

r (U//K, χl). If U is a
classical Lie group, then there is a surjective map C∞

r (U)U ։ C∞
r (U//K, χl), for

l ∈ Z, which is given by

F 7−→ f, f (u) =

∫

K

χl (k)F (u k) dk.

Proof. The first statement follows from Theorem 6.6 and [22, Theorem 4.2]:

C∞
r (U//K, χl)

Sl

∼=

((PPPPPPPPPPPP

∼= // C∞
r (U/K)K

PWr (b
∗
C)

S−1
0

∼=
77ooooooooooo

The second statement follows from Theorem 6.6, Theorem 6.10, and Remark 6.14:

C∞
r (U)U ∼= PWρ (h)

r (h∗C)
W (h) ∼= PWr (h

∗
C)

W (h)

։ PWr (b
∗
C)

W ∼= PWr (b
∗
C)
∼= C∞

r (U//K, χl).
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6.2 χl-Spherical Fourier Transform Maps Into

Paley-Wiener Space

In this section we shall prove part 1 of Theorem 6.6, that is, for f ∈ C∞
r (U//K, χl)

we want to show the extension to b∗C of f̃l is in the Paley-Wiener space PWr (b
∗
C).

Precisely, we want to show the extended map f̃l has the right exponential growth
and polynomial decay, and satisfies Weyl group transformation law.

Let m = (ms, mm, 1) ∈M+ is given associated with the symmetric space U/K
and δ = δ (m). Using the same pattern as (4.2) we obtain the following integral
formula for f ∈ C∞ (U//K, χl), up to a constant,

f̃l (µ) = (f, ψµ, l) =

∫

B

f (b)ψµ, l (b
−1) δ (b) db.

Let S ≤ R be small enough. If 0 < r < S and f ∈ C∞
r (U//K, χl), in view of

Corollary 6.4 (it ensures that the restriction of f on B still has the right size of
the support) , we have

f̃l (µ) =

∫

D
B
r (e)

f (b)ψµ, l (b
−1) δ (b) d b

=

∫

Bb
r (0)

f (eX)ψµ, l (e
−X) δ (eX) dX (6.2)

where we lift up the invariant measure d b on B to the measure dX on b in the
sense that (6.2) holds. If X ∈ Bb

r (0), then |α (X)| ≤ ‖α‖ · ‖X‖ < ‖α‖ · r for all
α ∈ Σ. So

‖α‖ · r < π ⇐⇒ r <
π

‖α‖ .

So if S ≤ π/‖α‖ for all α ∈ Σ, then |α (X)| < π. In order for Bb
r (0) ⊂ Ω we need

r < S ≤ π

maxα∈Σ ‖α‖
.

By Lemma 5.8, µ 7→ f̃l (µ) has an analytic continuation to b∗C, which is given by
the same formula,

f̃l (λ) =

∫

Bb
r (0)

f (eX)ψλ, l (e
−X) δ (eX) dX.

It follows that

f̃l (λ) =

∫

B

f (b)ψλ, l (b
−1) δ (b) d b

=

∫

B

f (b)ϕλ+ρ, l (b
−1) δ (b) d b

=

∫

B

f (b)ϕλ+ρ, l (b) δ (b) d b

=

∫

B

f (b) ηl (b)F (λ+ ρ, m(l); b) δ (b) d b
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for all λ ∈ b∗C. Since m(l) ∈M satisfies (2.4), it follows from Proposition 5.11 that

|f̃l (λ)| ≤
∫

B

∣∣f (b) ηl (b) δ (b)
∣∣ |F (λ+ ρ, m(l); b)| d b

≤ C max
b∈B
{|f (b) ηl (b) δ (b)|} exp (max

w∈W
Rew (λ+ ρ) (X)),

where X ∈ Bb
r (0) satisfies

| exp (max
w∈W

Rew (λ+ ρ) (X))| = | exp (max
w∈W

Rew λ (X))|
≤ exp (‖max

w∈W
Rew λ‖ · ‖X‖)

= exp (‖Reλ‖ · ‖X‖)
< exp (r ‖Reλ‖)

due to the fact that ρ ∈ i b∗ and so Re ρ (X) = 0, and the fact that a Weyl group
element preserves the norm. It follows that

|f̃l (λ)| ≤ C max
b∈B
{|f (b) ηl (b) δ (b)|} er ‖Reλ‖.

Here and in the following C is a constant subject to change. But f has compact

support, i.e. supp (f |B) ⊂ exp B
b

r (0). Also, ηl is bounded by 1, and δ is bounded
by some constant. Thus maxb∈B {|f (b) ηl (b) δ (b)|} is actually a constant depending
on r.

We next show the polynomial decay of f̃l. Write pl (λ) = 〈λ, λ〉 − 〈ρ(l), ρ(l)〉.
Using Proposition 4.11 and the formula (5.6) we obtain

pl (λ+ ρ) f̃l (λ)

=

∫

B

f (b) ηl (b) pl(λ+ ρ)F (λ+ ρ, m(l); b) δ (m, b) d b

=

∫

B

f (b) ηl (b) δ(2|l|, 0,−2|l|) (b)L(l)
[
F (λ+ ρ, m(l); b)

]
δ (m(l), b) d b

=

∫

B

L(l)
[
f (b) ηl (b) δ(2|l|, 0,−2|l|) (b)

]
F (λ+ ρ, m(l); b) δ (m(l), b) d b,

where

δ(2|l|, 0,−2|l|) =
∏

α∈O+
s

∣∣∣∣
eα − e−α

e2α − e−2α

∣∣∣∣
2|l|

=
∏

α∈O+
s

∣∣∣∣
1

eα + e−α

∣∣∣∣
2|l|

so δ(2|l|, 0,−2|l|) ( · ) ≤ C which will not blow up since the denominator is never
zero (note: for any α ∈ O+

s , |α( · )| < π/2). We also use the fact

δ (m(l)) = δ (m) δ(−2|l|, 0, 2|l|)

where

δ(−2|l|, 0, 2|l|) ( · ) =
∏

α∈O+
s

|eα + e−α|2|l| =
∏

α∈O+
s

|2 cos (Imα( · ))|2|l| ≤ C,
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and thus the term δ (m(l), · ) will not blow up too. It follows from Proposition 5.11
that

|pl(λ+ ρ)| |f̃l (λ)| ≤ C max
b∈B

{∣∣∣L(l)
[
f (b) ηl (b) δ(2|l|, 0,−2|l|) (b)

]∣∣∣
}
er ‖Reλ‖.

Applying suitably high powers of L(l) will yield the right polynomial decay. Let
k ∈ N. Then

|pl(λ+ ρ)|k |f̃l (λ)| ≤ C max
b∈B

{∣∣∣L(l)k
[
f (b) ηl (b) δ(2|l|, 0,−2|l|) (b)

]∣∣∣
}

︸ ︷︷ ︸
=:Ck

er ‖Reλ‖.

Note that both ρ and ρ(l) are constants (independent of the variable λ), so

pl (λ+ ρ) = 〈λ+ ρ, λ+ ρ〉 − 〈ρ(l), ρ(l)〉 ∼ ‖λ‖2 ∼ 1 + ‖λ‖2.

Therefore,
|f̃l (λ)| ≤ Ck (1 + ‖λ‖2)−k er ‖Reλ‖, ∀λ ∈ b∗C.

This is equivalent to

|f̃l (λ)| ≤ Ck (1 + ‖λ‖)−k er ‖Reλ‖, ∀λ ∈ b∗C.

In the end, the Weyl group translation law follows easily from Lemma 5.8:

f̃l (w (λ+ ρ)− ρ) =

∫

B

f (b)ψw (λ+ρ)−ρ, l (b
−1) δ (b) db

=

∫

B

f (b)ψλ, l (b
−1) δ (b) db

= f̃l (λ).

Hence, f̃l ∈ PWr (b
∗
C).

6.3 Central Functions on Compact Lie Groups

The proof of surjectivity of χl-spherical Fourier Transform Sl is reduced to the
special group case where the symmetric space is the compact semisimple Lie group
U itself. In this case the local Paley-Wiener theorem was proved by Gonzalez [9].
We briefly review his result as follows.

Consider the transitive action of U × U on U given by (g, h) · u = g u h−1 and
the involution τ : U × U → U × U , (g, h) 7→ (h, g). Then

stabe (U × U) = (U × U)τ = diagU = {(u, u) | u ∈ U} ∼= U.

So U is viewed as a symmetric space by (U×U)/diagU or (U ×U)/U via the map

(U × U)/diagU −→ U, (g, h) diagU 7−→ g h−1.
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The diagU -invariant functions on U are the central functions, i.e. F ◦Ad (g) = F
for all g ∈ U , where Ad (g) (u) = g u g−1. Denote

C∞ (U)U = C∞ (U × U/diagU)diagU
= {F ∈ C∞ (U) | F (g u g−1) = F (u), ∀ g ∈ U}.

Recall from Section 3.2.2 that we have Λ+(U) ∼= Û . For µ ∈ Λ+ (U), (πµ, Vµ)
denotes a unitary irreducible representation with the highest weight µ. Let d (µ) =
dim Vµ. Then µ 7→ d (µ) is a polynomial function on h∗C. Let χµ∨ denote the
character of the dual representation π∨

µ . Then

χµ∨ (u) = Tr (πµ (u
−1)), ∀ u ∈ U.

The function d (µ)−1 χµ∨ takes value 1 at e, and it is exactly the spherical function
on the symmetric space U associated with πµ⊗πµ∨ . The set of d (µ)−1 χµ∨ exhausts
the class of (elementary) spherical function on U . However, χµ∨ is a unit vector in
L2 (U) and the set {χµ∨}µ∈Λ+ (U) forms a complete orthonormal basis for

L2 (U)U = {F ∈ L2 (U) | F ◦ Ad (g) = F, ∀ g ∈ U}.
For F ∈ C∞ (U)U , define the Fourier transform of F as F̂ : Λ+ (U)→ C,

F̂ (µ) = (F, χµ∨) =

∫

U

F (u) χµ (u) du, µ ∈ Λ+ (U)

where ( , ) is the L2 inner product. The Fourier transform extends to a unitary
isomorphism̂ : L2 (U)U → ℓ2 (Λ+ (U)). The corresponding Fourier series is

∑

µ∈Λ+ (U)

F̂ (µ) χµ∨ . (6.3)

It converges to F in L2 sense. If F ∈ C∞ (U)U , then the convergence is absolute
and uniform (cf. [12, p. 534]). Let R > 0 be the injective radius of U .

Definition 6.9. Let PWρ (h)
r (h∗C)

W (h) be the space of holomorphic functions Φ on
h∗C such that

1. for all k ∈ N, there is a Ck > 0 such that

|Φ (λ)| ≤ Ck (1 + ‖λ‖)−k er ‖Reλ‖, ∀λ ∈ h∗C.

2. for all w ∈ W (h) and λ ∈ h∗C,

Φ (w (λ+ ρ (h))− ρ (h)) = det (w)Φ (λ).

Theorem 6.10 (Gonzalez Theorem). Let U be a compact semisimple Lie group.

Let F ∈ C∞ (U)U and 0 < r < R. Then F ∈ C∞
r (U)U if and only if µ 7→ F̂ (µ)

extends to a holomorphic function Φ = ΦF on h∗C such that Φ ∈ PWρ (h)
r (h∗C)

W (h).

Note that the extension Φ is unique when r is small enough. In that case, the
holomorphic extension of Fourier transform gives an isomorphism

C∞
r (U)U ∼= PWρ (h)

r (h∗C)
W (h).
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6.4 Bijectivity of χl-Spherical Fourier

Transform

6.4.1 Preliminaries

In this section we shall prove part 2 and part 3 of Theorem 6.6. We start with a
few simple lemmas which enable us to construct f ∈ C∞

r (U//K, χl) by averaging
F ∈ C∞

r (U)U .

Lemma 6.11. Let λ ∈ Λ+ (U) and µ = λ |b. If λ ∈ Λ+
l (h), then

∫

K

χl (k)χλ ((u k)
−1) dk = ψµ, l (u), ∀ u ∈ U,

and otherwise equals zero.

Proof. This lemma says that we can express the χl-spherical functions on U by
means of characters of irreducible χl-spherical representation of U . The proof goes
as follows. Recall that the operator Pl =

∫
K
χl (k

−1) π (k) dk is an orthogonal
projection from Vλ onto V l

λ. Since χλ (k
−1 u−1) = χλ (u

−1 k−1), we have

∫

K

χl (k)χλ ((u k)
−1) dk =

∫

K

χl (k) Tr (πλ (u
−1 k−1)) dk

= Tr (πλ (u
−1)

∫

K

χl (k) πλ (k
−1) dk)

= Tr (πλ (u
−1)Pl).

There are two possibilities:

1. If λ /∈ Λ+
l (h), then V l

λ = {0} and so Pl = 0. Thus,

∫

K

χl (k)χλ ((u k)
−1) dk = 0.

2. If λ ∈ Λ+
l (h), let eλ be a unit χl-coinvariant vector. Then V

l
λ = C eλ, and we

can extend v1 = eλ to an o.n.b. v1, . . . , vd for Vλ where d = d (λ). So

Pl v1 = v1, Pl vj = 0, ∀ j > 1.

It follows that
∫

K

χl (k)χλ ((u k)
−1) dk = (πλ (u

−1) v1, v1) = ψµ, l (u).
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Lemma 6.12. Let F ∈ C∞ (U)U and define f : U → C by

f (u) =

∫

K

χl (k)F (u k) dk.

Then f ∈ C∞ (U//K, χl) and d (µ) f̃l (µ) = F̂ (µ) for all µ ∈ Λ+
l .

Proof. Since F ∈ C∞ (U)U , then for h, g ∈ K,

f (h u g) =

∫

K

χl (k)F (h u g k) dk

=

∫

K

χl (g
−1 k h−1)F (u k) dk

= χl (h g)
−1 f (u),

which implies that f ∈ C∞ (U//K, χl). Since F is smooth, the series (6.3) con-
verges uniformly, and in view of Lemma 6.11, we have

f (u) =

∫

K

χl (k)
∑

λ∈Λ+ (U)

F̂ (λ)χλ (u k)
−1 dk

=
∑

λ∈Λ+ (U)

F̂ (λ)

∫

K

χl (k)χλ (u k)
−1 dk

=
∑

λ∈Λ+
l (h)

F̂ (λ)

∫

K

χl (k)χλ (u k)
−1 dk

=
∑

µ∈Λ+
l

F̂ (µ)ψµ, l (u),

where µ = λ |b. Compare this to the series (3.10), we have d (µ) f̃l (µ) = F̂ (µ).

Let 0 < r < R. Let Bu
r (0) = {X ∈ u : ‖X‖ < r}. Then

C∞
r (U)U = {F ∈ C∞ (U)U | suppF ⊆ exp Bu

r (0)}.

Lemma 6.13. Let F and f be as in Lemma 6.12. If F ∈ C∞
r (U)U for some r > 0,

then f ∈ C∞
r (U//K, χl).

Proof. Recall that via the identification of f with a smooth section Sf of Lχl
we

see that f ∈ C∞
r (U//K, χl) means suppSf ⊆ ExpBr (0). Then the proof goes the

same as [22, Lemma 9.3], except for f(u) =
∫
K
χl (k)F (u k) dk, there is a factor

χl(k) ∈ T when averaging F , but which does not affect anything.
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6.4.2 Proof of Bijectivity of Sl
We first introduce the following notations. Let PWr (b

∗
C)

W be the space of W -
invariant holomorphic functions on b∗C of exponential type r, and PWr (h

∗
C)

W (h)

the space of W (h)-invariant holomorphic functions on h∗C of exponential type r.

To see the χl-spherical Fourier transform

Sl : C∞
r (U//K, χl) −→ PWr (b

∗
C),

is a bijection, we shall first show f 7→ Sl (f)|Λ+
l
is a bijection. This is the content

of part 2 of Theorem 6.6. Precisely, let ϕ ∈ PWr (b
∗
C), we need to find a f ∈

C∞
r (U//K, χl) such that f̃l (µ) = ϕ (µ), ∀µ ∈ Λ+

l . Moreover, such a f is unique.

Proof I: If U is any classical group in Table 1, the proof of surjectivity of Sl,
follows easily from [25, Lemma 4.4] and Theorem 2.2 in [26].

Define ϕ1 (λ) := ϕ (λ− ρ) for all λ ∈ a∗C. Then for w ∈ W ,

ϕ1 (w λ) = ϕ (w λ− ρ) = ϕ (w [(λ− ρ) + ρ]− ρ) = ϕ (λ− ρ) = ϕ1 (λ).

So ϕ1 ∈ PWr (b
∗
C)

W . From Remark 6.14 we see that the restricted map

PWr (h
∗
C)

W (h) −→ PWr (b
∗
C)

W

is surjective (in general this map is not injective), so there is a ψ1 ∈ PWr (h
∗
C)

W (h)

such that

ψ1 |b∗
C
= ϕ1.

By Remark 6.14 there is a linear isomorphism

T : PWρ (h)
r (h∗C)

W (h) ∼=−→ PWr (h
∗
C)

W (h).

Thus, there exists a ψ ∈ PWρ (h)
r (h∗C)

W (h) such that T ψ = ψ1, i.e. ψ = T−1 ψ1

where

(T−1 ψ1) (λ) =
̟ (λ+ ρ (h))

̟ (ρ (h))
ψ1 (λ+ ρ (h)) = d (λ)ψ1 (λ+ ρ (h)).

where ̟ (λ) =
∏

β∈∆+ 〈λ, β〉. Moreover, by Theorem 6.10 there exists a F ∈
C∞

r (U)U such that F̂ (λ) = ψ (λ) for all λ ∈ h∗C. We then construct a f : U → C
by

f (u) =

∫

K

χl (k)F (u k) dk.
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By Lemma 6.12 and Lemma 6.13, f ∈ C∞
r (U//K, χl). For µ ∈ Λ+

l ,

f̃l (µ) =
1

d (µ)
F̂
∣∣∣
b∗
C

(µ)

=
1

d (µ)
ψ
∣∣∣
b∗
C

(µ)

=
1

d (µ)
(T−1 ψ1)

∣∣∣
b∗
C

(µ)

=
1

d (µ)
d (µ)ψ1

∣∣∣
b∗
C

(µ+ ρ (h) |b)

= ψ1

∣∣∣
b∗
C

(µ+ ρ)

= ϕ1 (µ+ ρ)

= ϕ (µ+ ρ− ρ)
= ϕ (µ),

where we use the fact that ρ (h) |b = ρ. This shows the surjectivity of the map
f 7→ Sl (f)|Λ+

l
.

Remark 6.14. (1) Let Πi be the set of simple roots in Σ+
i . Let W̃ be the extension

of W defined as in [25, §2]:

W̃ =

{
W if Πi is not of type D

W ⋊ {± 1} otherwise,

and similarly for W̃ (h). By [25, §2], if U are the classical Lie groups, the only two
cases where Πi is of type D are

• SO (2n, C)/SO (2n);

• SOo (p, p)/SO (p)× SO (p) (a split case);

however, which are not in our consideration (see the Table 1), since we assume

K is not semisimple. Therefore, we have W̃ = W (also W̃ (h) = W (h)) for the
classical case. Hence, by [25, Lemma 4.4], there is a linear isomorphism

T : PWρ (h)
r (h∗C)

W (h) ∼=−→ PWr (h
∗
C)

W (h).

(2) Write
Wb (h) = {w ∈ W (h) | w (b) = b}.

It is well known that for all semisimple Lie algebras u we have

Wb (h) |b = W. (6.4)

Helgason proved, in [15], that for all classical semisimple Lie algebras,

S (h)W (h)
∣∣
b
= S (b)W . (6.5)
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If both (6.4) and (6.5) are satisfied then the restriction map

PWr (h
∗
C)

W (h) −→ PWr (b
∗
C)

W (6.6)

is surjective (see [26, Theorem 2.2] or [25, Theorem 6.9]). However, if U is of
exceptional type, for example, the last two listed in Table 1,

S (h)W (h)
∣∣
b
6= S (b)W

according to [13, Theorem 10.3, p.327] and [14, Proposition 2.1]. Therefore, the
surjectivity of (6.6) is unknown for the exceptional case. Hence, the above proof
is not applicable to the exceptional case. Refer to Theorem 1.4, Theorem 1.5,
Theorem 1.6, and Theorem 6.9 in [25], and Theorem 2.2 in [26] for more details.

Proposition 6.15. Let ϕ ∈ PWr (b
∗
C)

W . Let k = |W (h)|. Then there exist a
collection of polynomials pj ∈ S (b)W and φj ∈ PWr (h

∗
C)

W (h), j = 1, . . . , k, such
that

ϕ1 = p1 (φ1

∣∣
b∗
C

) + · · ·+ pk (φk

∣∣
b∗
C

).

Proof. This is an application of the result of Rais [28]. For proof see [22, Corollary
10.2].

Proof II: The method we use in the following comes from [22, Section 10, 11].
Notice that it is applicable to both the classical case and exceptional case.

Define ϕ1 (λ) := ϕ (λ− ρ), for all λ ∈ b∗C. Then for w ∈ W ,

ϕ1 (w λ) = ϕ (w λ− ρ) = ϕ (w [(λ− ρ) + ρ]− ρ) = ϕ (λ− ρ) = ϕ1 (λ).

So ϕ1 ∈ PWr (b
∗
C)

W . By Proposition 6.15 there are collection of pj ∈ S (b)W and
φj ∈ PWr (h

∗
C)

W (h), such that

ϕ1 = p1 (φ1

∣∣
b∗
C

) + · · ·+ pk (φk

∣∣
b∗
C

).

By Theorem 4.5 there are Dj ∈ Dl such that

pj (λ) = γl (D∗
j , λ), ∀λ ∈ b∗C.

By Weyl dimension formula, µ 7→ d (µ) extends to a polynomials on h∗C and satisfies
for w ∈ W (h),

d (w (λ+ ρ (h))− ρ (h)) =
̟ (w (λ+ ρ (h)))

̟ (ρ (h))

=
det (w)̟ (λ+ ρ (h))

̟ (ρ (h))

= det (w) d (λ).
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Define Φj on h∗C by
Φj (λ) = d (λ)φj (λ+ ρ (h)).

Then Φj is of exponential type r because φj is so, and satisfies

Φj (w (λ+ ρ (h))− ρ (h)) = d (w (λ+ ρ (h))− ρ (h))φj (w (λ+ ρ (h)))

= det (w) d (λ)φj (λ+ ρ (h))

= det (w)Φj (λ),

where we use the fact that φj is W (h)-invariant. Thus

Φj ∈ PWρ (h)
r (h∗C)

W (h).

By Theorem 6.10, there are Fj ∈ C∞
r (U)U such that F̂j (µ) = Φj (µ) for all µ ∈ Λ+

l .
Let

fj (u) =

∫

K

χl (k)Fj (u k) dk.

By Lemma 6.12 and Lemma 6.13, fj ∈ C∞
r (U//K, χl), so that

supp (fj) ⊂ K exp Br (0) K.

Define f =
∑

j Dj fj. The construction of f makes sense, and f ∈ C∞
r (U//K, χl).

This is because differentiation does not increase the support, whence

supp (f) ⊂ supp (fj) ⊂ K exp Br (0) K.

It follows that

f̃l (µ) = (f, ψµ, l) =
∑

(Dj fj, ψµ, l) =
∑

(fj , D
∗
j ψµ, l)

(Proposition 4.10) =
∑

(fj, γl (D
∗
j , µ+ ρ)ψµ, l)

=
∑

γl (D∗
j , µ+ ρ) f̃j (µ)

(Lemma 6.12) =
∑

γl (D
∗
j , µ+ ρ) d (µ)−1 F̂j

∣∣∣
b∗
C

(µ)

=
∑

γl (D
∗
j , µ+ ρ) d (µ)−1 Φj

∣∣∣
b∗
C

(µ)

=
∑

pj (µ+ ρ)φj

∣∣
b∗
C

(µ+ ρ)

= ϕ1 (µ+ ρ) = ϕ (µ).

where we use the relation ρ (h) |b = ρ (recall (2.5)) and whence

Φj

∣∣
b∗
C

(µ) = d (µ)φj

∣∣
b∗
C

(µ+ ρ (h) |b) = d (µ)φj

∣∣
b∗
C

(µ+ ρ).

This proves that f 7→ Sl (f)|Λ+
l
is surjective.

The uniqueness of such a f is clear. If there exist f, g ∈ C∞
r (U//K, χl) such

that f̃l (µ) = g̃l (µ) = ϕ (µ), then Sl (f − g) (µ) = 0. By the property of the Fourier
transform, we must have f−g ≡ 0. Therefore, f 7→ Sl (f)|Λ+

l
is injective and hence

bijective.
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6.4.3 Unique Extension of Sl
The (extended) χl-spherical Fourier transform

Sl : C∞
r (U//K, χl) −→ PWr (b

∗
C),

is a bijection means for any ϕ ∈ PWr (b
∗
C) there is a unique f ∈ C∞

r (U//K, χl)
such that Sl (f) (λ) = ϕ (λ) for all λ ∈ b∗C. The injectivity of Sl is obvious. If
Sl (f) (λ) = 0 for all λ ∈ b∗C, then Sl (f) (µ) = 0 for all µ ∈ Λ+

l which implies f = 0
immediately from the property of Fourier transform (see Proposition 3.25).

We have shown in the previous section that there is a unique f ∈ C∞
r (U//K, χl)

such that Sl (f) (µ) = ϕ (µ) for all µ ∈ Λ+
l . By part 1 of Theorem 6.6, the function

µ 7→ Sl (f) (µ) extends holomorphically to a function in PWr (b
∗
C), given by the

same formula λ 7→ Sl (f) (λ). So far we know both Sl (f) ∈ PWr (b
∗
C) and ϕ ∈

PWr (b
∗
C) are holomorphic in b∗C, and they agree with each other on the subset

Λ+
l ⊂ b∗C. It remains to show they match on all of b∗C. In other words, we need

make sure the holomorphic extension to b∗C of µ 7→ Sl (f) (µ) is unique. This is
what we present in part 3 of Theorem 6.6. This part is intended to complete the
proof of surjectivity of f 7→ Sl (f).
Therefore we want to show for any ϕ ∈ PWr (b

∗
C) with ϕ (µ) = 0 for all µ ∈ Λ+

l ,
then ϕ = 0.

Let ϕ0 (λ) := ϕ (λ+ 2|l| ρs) for all λ ∈ b∗C. Then ϕ0 ∈ PWr (b
∗
C) and

ϕ0 (µ) = ϕ (µ+ 2|l| ρs) = 0, ∀µ ∈ Λ+
0 .

because µ + 2|l| ρs ∈ Λ+
l for µ ∈ Λ+

0 . Based on a generalization of Carlson’s
theorem2, [22, §7] proved ϕ0 = 0 if r < π/(max ‖ωj‖) where {ωj} are the funda-
mental weights given by (2.3). So ϕ = 0 if r satisfies the same condition. Hence, if
S ≤ π/(max ‖ωj‖) and 0 < r < S, then Sl is surjective and hence bijective.

2The generalization of Carlson’s theorem in [22] states: Let f : Cn → C be holomorphic. Assume (1) there are
a constant c < π and for each z ∈ Cn a constant C such that |f (z + ζ ej)| ≤ C ec |ζ| for all ζ ∈ C, j = 1, . . . , n;
(2) f (k) = 0 for all k ∈ (Z)n. Then f = 0.
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Chapter 7

Rank One Compact Symmetric Spaces

The rank one case corresponds to n = 1, that is, b is one-dimensional. From
Table 1, we see that the only rank one symmetric spaces U/K for which K is not
semisimple are

SU (p+ 1)/U(p), p ≥ 1.

These are the spaces of complex lines in Cp+1, known as the Grassmann manifolds
of one-dimensional subspaces of Cp+1. The root system Σ = {±α, ± 2α} of type
BC1, and we fix Σ+ = {α, 2α}. Then P+ = 2Z+ α. Set k1 = mα and k2 = m2α.
From Table 2, we have k1 = 2 (p − 1), p ≥ 1, and k2 = 1. We identify b and i b∗

with iR, and bC and b∗C with C. So B = exp b ∼= T. The Weyl group W = {± 1}
acting on iR and C by multiplication. The χl-spherical Fourier transform becomes,
up to a constant,

f̃l (λ) =

∫

T+

f (x) ηl (x)F (λ+ ρ, m(l); x) δ (x) d x

where d x is the invariant measures on the torus T.

It is well-known that C [P ] = C [x, x−1] with x = e2α, and C [x, x−1]W = C [s]
with s = 1

2
(x+ x−1). The weight measure δ (x) d x becomes

2p (1− s)p−1 ds,

where ds is the invariant measure on R. Since f |B isW -invariant and f has compact

support in Br (0) ∩ b+ ⊂ (Ω/2) ∩ b+, it reduces f̃l (λ) to an integral with respect
to s over 0 ≤ s ≤ 1.

We give an alternative method to get the exponential growth of f̃l. Recall that
Proposition 6.1 in [27] gives an estimate of the hypergeometric function F , but
requires all multiplicity parameters in F are positive. In our case, the multiplicity
parameter m(l) in F (λ + ρ, m(l); · ) might be negative. With the help of shift
operators (cf. Chapter 3 in [18]), we can shift up or down certain multiplicities as
needed. Applying a suitable shift operator to F we can move multiplicities from
negative to positive so that we are free to use that estimate. For rank one case,
the shift operator we use has a simple form, derived from [18, (3.3.5)],

E− = (s− 1)
d

d s
+ C, C = k1 + k2 − 1.

This is a first order differential operator. Using integration by parts, followed by
Proposition 6.1 in [27], gives the desired exponential growth of f̃l.
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Remark 7.1. Let u be a rank n (n > 1) Lie algebra associates with the multiplicity
(ms, mm, 1) with mm even. Let uj be rank one Lie algebras with (ms, 0, 1), j =
1, . . . , n. Then b = b1 ⊕ · · · ⊕ bn where bj ⊂ qj is maximal abelian, and qj is the
−1-eigenspace of uj. So

B = B1 × B2 × · · · × Bn, Bj = exp bj .

Let f ∈ C∞
r (U//K, χl). Using a shift operator to move mm down to 0, we can

then write f̃l (λ) as a n-fold iterated integral of rank one cases with which we have

done. This is a different proof of an exponential growth of f̃l, but only for the case
mm is even.
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