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a heartfelt acknowledgment for many discussions about mathematics daily in our

shared office.

Through my years of graduate school, my wife Sarah has been incredibly patient,

constantly offering her love and support. This thesis is dedicated to her, my brilliant
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Notation

IRd set of real vectors with dimension d.

Mn×m set of n×m matrices with real entries.

| · | Eucledean norm in IRd.

‖ · ‖ Norm in Mn×m.

C1 set of continuously differentiable functions.

dS(x) distance from point x to set S.

projS(x) set of projections of point x to the set S.

co S convex hull of set S.

Br closed ball with radius r and center in origin.

Sr sphere with radius r and center in origin.

BK([0, T ]) set of Borel measures defined on [0, T ] with values in set K.

S closure of the set S.

L1
1([0, T ]) set of all real valued measurable functions on [0, T ].

distH(A1, A2) Hausdorff distance between sets A1 and A2.
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Abstract

Impulsive systems arise when dynamics produce discontinuous trajectories. Dis-

continuties occur when movements of states happen over a small interval that

resembles a point-mass measure. We adopt the formalism in which the controlled

dynamic inclusion is the sum of a slow and a fast time velocities belonging to two

distinct vector fields. Fast time velocities are controlled by a vector valued Borel

measure.

The trajectory of impulsive systems is a function of bounded variation. To give

a definition of solutions, a notion of graph completion of the control measure is

needed. In the nonimpulsive case, a solution can be defined as a limit of a sequence

of approximate arcs which converge to an absolutely continuous arc. Even in simple

cases it shows that this is not a good way to define solutions of the impulsive

systems. The key point is that the approximate controls converge to two different

graph completions.

Introduction contains examples in which we discuss the need for the impulsive

systems, their relation to the hybrid systems. A paradox related to the convergence

of approximate arcs is illustrated. Chapter 1 contains preliminary results in nonim-

pulsive systems and mathematical analysis in general. Chapter 2 precisely defines

impulsive systems, discusses two different solution concepts and proves properties

of graph completions.

Chapter 3 is entirely dedicated to adaptation of the Euler approximating schemes

to the impulsive system. Two different schemes are offered. For one of them a

measure which drives the system needs to be specified. We used it to show that

v



the approximate trajectories graph-converge to a solution. The other sampling

technique constructs a measure along with the solution. We use it in Chapter 4.

Chapter 4 deals with issues when a trajectory remains within a closed set. This

property is called invariance. Notions of weak and strong invariance for the impul-

sive systems are introduced and proximal characterizations are proved. In the case

of weak invariance, two proofs are offered: one based on a sampling technique from

Chapter 3 and other based on selections theory.

The final chapter of this thesis discusses directions in future research.

vi



Introduction

Many problems in physics, geometry and mechanics throughout history, have in-

volved finding an extremum of a function or functional. The interest in such prob-

lems has further increased in recent years due to the demands in technology and

economics. Typically, one wants to minimize a certain function by controlling a

space vector via dynamical systems. The following is a formulation that captures

this need.

min
u

∫ T

0

L0

(
t, x(t), u(t)

)
dt (1)

ẋ(t) = f
(
t, x(t), u(t)

)
.

We require the control function u(·) to live in a certain subset U of IRm, u ∈ U ⊆

IRm. The data L0 : [0, T ] × IRn × IRm → IR, and f : [0, T ] × IRn × IRm → IRn are

given.

An important issue is the class of functions over which to minimize. The following

is a simple example which does not have a continuously differentiable solution and

motivates us to extend the search for solution beyond C1.

Example 1. Consider the following problem in calculus of variations.

min

∫ 1

0

(1 − ẋ2)2dt,

x(0) = 0, x(1) = 0.

By inspection, the minimum of the cost function is zero and it is attained for

functions such that |ẋ| = 1 almost everywhere. They form a zig zag pattern going

from x(0) = 0 to x(1) = 0 switching slopes from 1 to −1. If we were looking for

continuously differentiable solutions, the value of the cost function could approach

zero infinitely close, but it would never attain zero.
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Moreover, the following example illustrates that there are simple systems which

fail to have solutions in class of absolutely continuous functions. This is a motiva-

tion to allow the state vector to be a function of bounded variation.

Example 2.

min

∫ 1

0

t2ẋ2(t)dt

x(0) = 0, x(1) = 1

The following sequence of continuous trajectories minimize the given problem.

xn(t) =





0, 0 ≤ t ≤ 1 − 1/n

1 + n(t− 1), 1 − 1/n < t ≤ 1.

Indeed,

∫ 1

0

t2ẋ2
n(t)dt =

∫ 1

1−1/n

n2t2dt =
n2t3

3

∣∣∣∣
1

1−1/n

=
1

3n
−→ 0 (n→ ∞).

Sequence xn(·) converges pointwise everywhere to x = 0 except in t = 1. However,

function x = 0 does not satisfy the end point conditions. The following function

represents the solution of this example. It is not absolutely continuous but it has

a bounded variation.

x∗(t) =





0, 0 ≤ t < 1

1, 1.

This function has a jump discontinuity of size 1 at t = 1.

Systems in which we allow “jumps”, like in the previous example, we call im-

pulsive systems. They arise in a variety of applications where states can move

at different time scales. Optimality conditions can induce optimal strategy with

impulsive nature. The “slow” movement can be thought of as the usual time pro-

gression infinitesimally incremented by dt, and the “fast” movement occurs over a

small interval that resembles the effect of a point-mass measure.
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This mixture of continuous and discontinuous dynamics has been considered by

many researchers. In particular, there is a vast literature on the hybrid systems

with many different solution concepts. Let us consider the formulation of hybrid

systems from [13, 14]. There, hybrid systems are given by two dynamical equations,

one defined on each interval of continuity,

ẋ = f
(
x
)
, x ∈ C

and the other, discontinuous dynamics at jump times determined by x ∈ D, relat-

ing to x(·) through

x+ = g
(
x
)
. (2)

Here f(·) and g(·) are upper semicontinuous functions with linear growth and C

and D are closed subsets of Rn. A notion of hybrid time domain is introduced as

a subset of [0,+∞) × IN 0, given as a union of finitely or infinitely many intervals

[tj, tj+1] × {j}, where the numbers tj represent jump times. In this framework, a

solution to the hybrid system is a function defined on a hybrid time domain such

that

ẋ(t, j) = f
(
x(t, j)

)
and x(t, j) ∈ C on (tj, tj+1) and

∀j, x(tj+1, j + 1) = g
(
x(tj+1, j)

)
, and x(tj+1, j) ∈ D.

This notion of solution is well defined even in in the case of infinite number of

jumps. However, in that case, hybrid time domain blows up even if its first com-

ponent is bounded. Such behavior of trajectory is known as Zeno behavior. To

illustrate this behavior, let us look at the following example.

Example 3. Behavior of a ball bouncing on a hard floor in presence of gravity

is modeled by the following two dimensional hybrid system, with x1 being the

ball’s height above the floor and x2 being the ball’s velocity (γ is a constant which

3



FIGURE 1. Trajectory of a bouncing ball. The figure on the left represents height as

a function of time and the figure on the right represents velocity as a function of time.

The green line on the right figure is here to visualize how velocities converge to 0 at a

finite time.

represents acceleration due to gravity):

ẋ =



x2

−γ


 =: f(x), (3)

whenever x ∈ C := {x1 > 0, or x1 = 0 and x2 > 0}. When x ∈ D := {x1 =

0 and x2 ≤ 0}, the flow is described by the jump equation

x+
2 = −µx2. (4)

Function g(·) from (2) is in this case

g(x) := (x1,−µx2).

Figure 1 represents a sample trajectory for x1(0) = 0 m, x2(0) = 70/8 m/s, Earth’s

gravity γ = 9.80665 m/s2 and µ = 7/8. The trajectories tend to origin and even-

tually vanish. For sample trajectory presented in Figure 1, trajectories vanish at

time

T :=
2x2(0)

(1 − µ)γ
≈ 14.28.

Therefore, this is a model of Zeno behavior. As both velocity and height of the

ball reach a constant zero position at finite time (after infinitely many jumps), it
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is desirable to be able to continue this model after time t = T . In the solution

concept for hybrid systems, it is not possible to do so as the hybrid time domain

actually blows up.

However, the setting introduced in this thesis is able to handle this situation, as

shown in the Chapter 2. The way the time reparameterization is chosen and ability

of controls to take continuous singularities in the setting of impulsive systems

makes an essential difference. The next example is another illustration of the role

of singular continuous dynamics. In this example the optimality condition force

continuous singular decisions.

Example 4. Suppose that we wish to minimize the same integral as in Example 2,

with the same end point conditions. However, let us make another invariance-type

condition. Suppose that we wish the trajectory to remain in closed set C ⊂ IR2,

C :=
{

(t, x)
∣∣ t ≤ x ≤

√
1 − (1 − t)2, t ∈ [0, 1]

}
.

Again, the minimum value of the given problem is achieved when ẋ(t) = 0 almost

everywhere. As we saw in the previous example, absolutely continuous solutions

that give the minimum value does not exist. Moreover, solutions with jumps or

which stay constant for a positive time in the neighborhood of times t = 0 and

t = 1 are also not acceptable, because in the “corners” of set C there is “no

room” such behavior. At time t = 0 and t = 1, the only option is to travel along a

strictly increasing singularly continuous trajectory such as the Riesz-Nagy function

described in [15] on page 278. Figure 2 shows the set C and an approximation

of the singular-continuous trajectory for this example. On this figure, the entire

trajectory is singular-continuous, although once we moved away from the corners of

set C, we could have a trajectory with discontinuous singularities and continuous

piecewise-horizontal graph.
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FIGURE 2. Optimality conditions forced singular continuous solutions in Example 4.

This trajectory in particular is entirely singular continuous.

In this thesis, the considered dynamical system is the sum of a slow-time ve-

locity belonging to a set F (x) and a fast-time contribution coming from another

set G(x)dµ, where µ is a vector-valued measure. Additionally, dynamics are repre-

sented with a differential inclusion, rather than a differential equation.

In particular, the following differential form describes the impulsive systems

considered in this thesis




dx ∈ F
(
x(t)

)
dt+G

(
x(t)

)
dµ(dt)

x(0−) = x0.

Here, measure µ belongs to the set of vector-valued Borel measures defined on the

interval [0, T ] ⊂ IR with values in a closed convex cone K ⊆ IRm. Multifunctions

F : IRn
⇒ IRn and G : IRn

⇒ Mn×m (where Mn×m denotes the n×m dimensional

matrices with real entries) are with closed graph and convex values, and satisfy

the linear growth condition.
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Issues arise to the nature of a “solution” in nonlinear systems when the fast

dynamic velocities are affected by multiplicative state dependence (i.e. G depends

nontrivially on x), and that the solution concept will only be well defined if a real-

ization of the measure is also prescribed through a graph completion. We illustrate

this problem on a concrete example, which is borrowed from [3]. Although the

method of approximate non-impulsive trajectories did produce a unique solution

in Example 2, the following example shows that this procedure yields ambiguous

trajectories in general.

Example 5. Consider the impulsive system on IR2:

(ẋ1, ẋ2) =




1 0

0 x1






u̇1

u̇2


 .

x(0) = (0, 0).

Consider the discontinuous control function u : [0, 2] → IR2:

(u1, u2) =






(0, 0) if t < 1,

(1, 1) if t > 1.

The control u(·) can be approximated by the sequence of continuous, piecewise

linear functions vn(·):

(v
(n)
1 , v

(n)
2 )(t) =





(0, 0) if t ∈ [0, 1 − 1/n],

(0, 1 + n(t− 1)) if t ∈ [1 − 1/n, 1],

(n(t− 1), 1) if t ∈ [1, 1 + 1/n],

(1, 1) if t ∈ [1 + 1/n, 2].

The corresponding approximate solutions are

(x
(n)
1 , x

(n)
2 )(t) =






(0, 0) if t ∈ [0, 1],

(n(t− 1), 0) if t ∈ [1, 1 + 1/n],

(1, 0) if t ∈ [1 + 1/n, 2].
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As n→ ∞, xn converges to

(x1, x2)(t) =






(0, 0) if t < 1,

(1, 0) if t > 1.
(5)

Now, consider another approximating sequence wn(·)

(w
(n)
1 , w

(n)
2 )(t) =





(0, 0) if t ∈ [0, 1 − 1/n],

(1 + n(t− 1), 0) if t ∈ [1 − 1/n, 1],

(1, n(t− 1)) if t ∈ [1, 1 + 1/n],

(1, 1) if t ∈ [1 + 1/n, 2].

For these control, we have a new sequence of approximate solutions:

(x
(n)
1 , x

(n)
2 )(t) =





(0, 0) if t ∈ [0, 1],

(1 + n(t− 1), 0) if t ∈ [1 − 1/n, 1],

(1, n(t− 1)) if t ∈ [1, 1 + 1/n],

(1, 1) if t ∈ [1 + 1/n, 2].

As n→ ∞, xn(·) converges to

(x1, x2)(t) =





(0, 0) if t < 1,

(1, 1) if t > 1.

Although both sequences of approximate controls v(n)(·) and w(n)(·) converge to the

same control function u(·), the key difference between them is that they converge

to two different graphs of u(·). Indeed, the limiting graph of the sequence v(n)(·)

connects points u(1−) and u(1+) first along the second component, keeping the

first one constant at value u1(1−) = 0, and then approximates the first component,

keeping the second one at u2(1+) = 1. The limiting graph of w(n)(·) connects u(1−)

and u(1+) first along the second component until u2(1+) is reached, keeping the

first fixed, and then it approximates along the first component until u1(1+) is

8



reached. Italian mathematician Bressan and Rampazzo showed [3, 4, 5, 17] that

the method of approximate trajectories produces a unique solution only when the

dimension m is equal to 1 and when columns of matrix G commute as vector fields.

Monograph by Miller and Rubinovich [16] overviews optimal control problems

with impulsive controls. This book is related to the work of Rishel [20]. Systems

considered in this book have a similar form to what is presented in this thesis,

but the notion of solution is fundamentaly different. Namely, systems there are

limited to those in which approximate trajectories give unique solutions. Authors

also show that it is possible to consider the hybrid setting as a special case of

impulsive systems and they also discuss problems such as the Zeno behavior that

we described earlier in this introduction.

In this thesis a new solution concept is proposed to an impulsive system which

is defined in the original time, rather than the time reparameterization. This novel

concept requires a direct correlation respectively of the absolutely continuous, con-

tinuous singular, and atomic parts of the bounded variation solution and the given

measure. However, the main result is a sampling method that is analogous to the

classical Euler one-step method for the non-impulsive systems. In addition to the

sampling method, this thesis also offers a modified method of approximate trajec-

tories that actually covers the general case.

New solution concept and new sampling technique is foundation to other research

results presented in this thesis. These results are related to the proximal theory,

in particular weak and strong invariance properties.
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Chapter 1

Preliminaries

This thesis uses tools of nonsmooth analysis and differential inclusions. In this pre-

liminary chapter, we offer an overview of these tools which represents foundations

of this thesis. Moreover, a few facts from real analysis are also covered. Here, we

will just state the standard definitions and theorems often without proofs, encour-

aging the reader to seek them in more detail in sources such as [1, 6, 7, 12, 15, 22,

26, 27, 29, 30, 31].

1.1 Proximal Normal Cone

In this section we offer a definition of proximal normal cone, which represents a

generalization of tangential normals for nonsmooth functions. This object plays an

important role in characterization of invariance properties. Let us first illustrate

the proximal normal cone less formally.

Suppose that a nonempty set S ⊂ IRn is given. For all x ∈ IRn we can define the

distance function form set S, dS : IRn → IR as

dS(x) := inf{|x− s| : s ∈ S}, for all x ∈ R
n.

For a point x /∈ S, let us consider a set of all points s ∈ S whose distance dS(x)

to x is minimal. Since S is a closed set, such points exist. The point s is called a

projection of x onto S. The set of all such closest points is denoted by projS(x):

projS(x) = {s ∈ S | dS(x) = |x− s|}.

Vectors x − s form a proximal normal direction to S at x. A proximal normal to

S at s, ζ = t(x − s), t ≥ 0, is any nonnegative multiple of x − s. The set of all

10



proximal normals is called the proximal normal cone to S, denoted NP
S (s). We use

the following formula to precisely define the proximal normal cone:

NP
S (s) :=

{
ζ | ∃t > 0 so that dS(s+ tζ) = t|ζ|}.

The proximal normal inequality (Proposition 1.5 in [7]) is a useful characterization

of proximal normals: a vector ζ belongs to NP
S (s) if and only if there exists σ =

σ(ζ, s) ≥ 0 such that

〈ζ, s′ − s〉 ≤ σ|s′ − s|2 for all s′ ∈ S.

Moreover, for any ε > 0, we have ζ ∈ NP
S (s) if and only if there exists σ = σ(ζ, s) ≥

0 such that

〈ζ, s′ − s〉 ≤ σ|s′ − s|2 for all s′ ∈ S ∩ (s+ εB),

where B is a unit ball.

Let us finish this section by defining two important objects. A set K ⊂ IRn is

called a conus (with vertex at the origin) if it is closed with respect to multiplication

with a positive scalar. That is, for all k ∈ K and all λ > 0, λk ∈ K as well.

The intersection of all convex sets containing a set S ∈ IRn, is called the convex

hull of S. We also use notation co S.

1.2 Multifunctions and Measurable Selections

In our research, a dynamical system is represented by a differential inclusion, a

generalization of differential equation, and in the next section of the preliminary

chapter we briefly give foundations of the differential inclusion theory. Objects of

crucial interest will be measurable multifunctions and their measurable selections.

In this section we spend time defining and characterizing these mathematical ob-

jects. A multifunction F : S ⇒ R
n is a mapping from S ⊂ R

m to the subsets of

11



R
n. A multifunction is measurable if sets

{x ∈ S : F (x) ∩ C 6= ∅},

are Lebesgue measurable for any closed set C in R
n. A multifunction F is close-

valued (or just closed) if all sets F (x) are closed sets. A multifunction F is non-

empty if all sets F (x) are not empty.

Several important sets are defined as:

domF = {s ∈ S | F (s) 6= ∅}, domain of multifunction F ,

graphF = {(s, x) | x ∈ F (s)}, graph of multifunction F and

F (T ) = ∪s∈TF (s) where T ⊂ S

The inverse multifunction F−1 : X ⇒ S is the multifunction obtained by revers-

ing the pairs in F so that

F−1(x) = {s ∈ S | x ∈ F (s)},

F−1(C) = ∪x∈CF
−1(x) = {s ∈ S | F (s) ∩ C 6= ∅}.

Our definition of measurable multifunction is now equivalent to the following: for

each closed set C ⊂ R
n the set F−1(C) is measurable.

We next give some practical tests for the measurability of a multifunction.

Proposition 1.2.1. For a closed-valued multifunction F : S ⇒ R
n, the following

properties are equivalent:

(a) F is measurable;

(b) F−1(C) is measurable for all open sets C;

(c) F−1(C) is measurable for all compact sets C;

(d) dF (s)(ζ)) is a measurable function of s ∈ S for each ζ ∈ R
n.
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Proof. (a) ⇒ (b). Let C be open. Then C = ∪∞
k=1Ck, where each Ck is a closed

ball. Thus

F−1(C) = ∪∞
k=1F

−1(Ck).

holds with F−1(Ck) measurable, and we conclude F−1(C) is measurable.

(b) ⇒ (c). Given a compact set C, let

Ck = {z ∈ R
n | dC(ζ) < k−1} for k = 1, 2, ...

Then Ck is open, cl Ck is compact, and Ck ⊃ cl Ck+1. We have F (s) ∩ Ck 6= ∅ for

all k if and only if F (s) ∩ cl Ck 6= ∅ for all k. Since F (s) is closed, the latter is

equivalent by compactness to

∅ 6= ∩∞
k=1F (s) ∩ cl Ck = F (s) ∩ C.

Therefore

F−1(C) = ∩∞
k=1F

−1(Ck),

and since each F−1(Ck) is measurable by assumption, it follows that F−1(C) is

measurable.

(c) ⇒ (a). Let C be any closed set in R
n. Then C = ∪∞

k=1Ck, where each Ck is

compact, and hence

F−1(C) = ∪∞
k=1F

−1(Ck).

We have each F−1(Ck) measurable, hence so is F−1(C).

(b) ⇔ (d). We have dF (s)(ζ) ≤ α iff F (s) meets the ball ζ + αB1 (B1 - closed

unit ball, α > 0). Thus

{s | dF (s)(ζ) ≤ α} = {s | F (s) ∩ [ζ + αB1] 6= ∅} = F−1(ζ + αB1\S1). (1.1)

Condition (d) means that all the sets of the form on the left in (1.1) are measurable,

while (b) means all those on the right are measurable.
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We will see now how we can find a measurable function which lives in a measur-

able multifunction. Selection of such function is an essential tool throughout the

thesis.

Theorem 1.2.2. (Measurable Selection Theorem.) Let F be measurable,

closed and nonempty multifunction on S. Then there exists a measurable function

f : S → R
n such that f(x) ∈ F (x) for all x ∈ S.

Proof. This is a proof by construction. We will construct f(s) as a pointwise limit

of measurable functions fi(s). For that matter, let {ζi} be a countable dense subset

of R
n. For s ∈ S, let us define:

f0(s) = ζi s.t. dF (s)(ζi) ≤ 1 dF (s)(ζj) > 1 for j = 1, ..., i− 1.

Recall, the function s 7→ dF (s)(ζ) is measurable by Theorem 1.2.1. The function

s 7→ f0(s) is measurable because

{s | f0(s) = ζi} =

i−1⋂

j=1

{s | dF (s)(ζj) > 1} ∩ {s | dF (s)(ζi) ≤ 1}.

We now define the sequence fi, i =0, 1, 2,... by induction. Define fi+1(s) to be

the first ζj such that

|ζj − ζi| ≤
2

3
dF (s)(fi(s)) and dF (s)(ζj) ≤

2

3
dF (s)(ζi).

Such an fi+1 is measurable.

Suppose that fk(s) is measurable for all k =0, ..., i. Then

{s | dF (s)(fk(s)) > α} =
⋃

j∈N

[{s | fk(s) = ζj} ∩ {s | dF (s)(ζj) > α}],

and we conclude that also s 7→ dF (s)(f0(s)) is measurable for all k =0, ..., i.
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Now let us prove that fk+1 is a measurable function. By definition of fj+1(s) we

have

{
s

∣∣ fj+1(s) = ζj
}

=
j−1⋂

k=1

[{
s | dF (s)(fi(s)) <

3

2
|ζk − fi(s)|

}
∪

{
s | dF (s)(fi(s)) <

3

2
dF (s)(ζk)

}]
∩

∩

{
s | dF (s)(fi(s)) ≥

3

2
|ζj − fi(s)|

}
∩

{
s | dF (s)(fi(s)) ≥

3

2
dF (s)(ζj)

}
.

Since the right hand side represents a countable intersection of measurable sets, we

conclude that {s | fj+1(s) = ζj} is also measurable. Hence, fi+1(s) is a measurable

function.

Also,

dF (s)(fi+1(s)) ≤

(
2

3

)i

dF (s)(f0(s)) ≤

(
2

3

)i

,

and

|fi+1(s) − fi(s)| ≤

(
2

3

)i+1

.

So, fi(s) is a Cauchy sequence converging to a value f(s) for each s, a measurable

selection for F .

1.3 Differential Inclusions

Let us now define basic properties of differential inclusions, which will be used in

this thesis. Refer to [2] and [26] for more detailed presentation on this vast topic.

Given a multifunction F mapping IRn to the subsets of IRn, and a time interval

[0, T ], the differential inclusion is

ẋ(t) ∈ F
(
x(t)

)
a.e. t ∈ [0, T )

x(0) = x0.

A solution (also referred to as trajectory) x(·) of the differential inclusion is an

absolutely continuous function x : [0, T ] 7→ IRn which satisfies (1.3). This is what
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is sometimes referred to as a solution in Carathéodory sense. This solution concept

already represents the first difficulty in properly defining the impulsive systems, as

we already hinted in the introduction. In general, we allow impulsive systems to

have solutions of bounded variation.

Differential inclusions are clearly differential equations when the multifunction

F (·) is single valued, F (x) = {f(x)}. The real value that the differential inclusions

bring is their relation to control systems. The famous Filippov’s Lemma (see for

example [7] 3.7.20) shows it, and we will illustrate this connection here. Namely,

consider a control system given by

ẋ(t) = f
(
x(t), u(t)

)
, (1.2)

where f : IRn × IRm 7→ IRn, and where the control u(·) takes values in a certain set

U ⊂ IRm. One can consider F (x) = f(x,U) and Filippov’s Lemma implies that an

arc x(·) satisfies (1.3) if and only if there is a measurable selection u(·) of U such

that (1.2) holds.

Let us assume that the following standard hypotheses are satisfied:

(a) for every x, F (x) is a nonempty, compact and convex set,

(b) the multifunction F (·) is closed,

(c) there exists a positive constant c, such that the linear growth condition holds:

f ∈ F (x) ⇒ |f | ≤ c(1 + |x|).

We shall see that similar assumptions will be hypothesized for the right-hand side

of the impulsive dynamics.

The linear growth condition is essential in establishing a priori boundaries of

solutions for differential inclusions, just like it is in the case of differential equations.
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The a priori bounds are achieved by using the Gronwall’s inequality. We state it

here in its continuous and discrete version, as we use both in the following chapters.

Lemma 1.3.1. (Gronwall’s lemma) Let x(·) : [0, T ] → IRn be an absolutely

continuous function defined on [0, T ] satisfying

|ẋ(t)| ≤ γ|x(t)| + c(t), a.e. t ∈ [0, T ]

for γ ≥ 0 and c(·) ∈ L1
1[0, T ]. Then for all t ∈ [0, T ], the following inequality holds

|x(t) − x(0)| ≤ (eγt − 1)|x(0)| +

∫ t

0

eγ(t−s)c(s) ds.

A proof of Gronwall’s lemma can be found in [7], Proposition 4.1.4, page 179

- thus it will be omitted here. However, the following discrete version and its

corollary which is used in Chapter 3 of this thesis, are not so frequently seen in

literature and we offer these statements together with their proofs.

Lemma 1.3.2. (Discrete Gronwall’s lemma) Suppose x0, x1,...xN are ele-

ments in IRn so that

|xj+1| ≤ γ|xj| + c, (1.3)

where γ and c are scalars. Then,

|xN | ≤ c
1 − γN

1 − γ
+ γN |x0|. (1.4)

Proof. The proof is by mathematical induction. Note that for j = 1, from (1.3),

inequality (1.4) follows immediately. Indeed,

|x1| ≤ c+ γ|x0|.

Now, suppose

|xj| ≤ c
1 − γj

1 − γ
+ γj|x0|
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holds for j < N . Combining the latter with (1.3), one obtains

|xj+1| ≤ c+ cγ
1 − γj

1 − γ
+ γj+1|x0|

=
c

1 − γ

(
1 − γ + γ(1 − γj)

)
+ γj+1|x0|

=
c

1 − γ
(1 − γj+1) + γj+1|x0|,

which completes the proof.

The following is a simple corollary of the discrete Gronwall’s inequality.

Corollary 1.3.3. If in Lemma 1.3.2, γ = 1 + α
N

and c = α
N

, then inequality (1.4)

is

|xN | ≤ eα(1 + |x0|) − 1.

Proof. The result follows immediately because c = γ − 1 and

γN = (1 +
α

N
)N ≤ eα.

Suppose now that a selection f(x) ∈ F (x) is taken for all x. Solutions of differen-

tial equation ẋ = f(x) will not satisfy (1.3) in the general case. The main problem

is that a selection with required regularity properties (continuity, for example),

may not exist. However, the Euler iterative scheme from the ordinary differential

equations comes in handy.

For N ∈ IN , let

π = {t0, t1, ..., tN−1, tN}

be a partition of [0, T ] where t0 = 0, t1 = T/N , t2 = t1 + T/N ,..., tN−1 = tN−2 +

T/N , tN = T . A piecewise affine arc xN (·), called the Euler polygonal arc, is defined
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by the nodes x0, x1,..., xN−1 from the following sampling scheme:

ẋ(t) = f(x0) x(t0) = x0 on [t0, t1], x1 := x(t1)

ẋ(t) = f(x1) x(t1) = x1 on [t1, t2], x2 := x(t2)

...

ẋ(t) = f(xi−1) x(ti−1) = xi−1 on [ti−1, ti], xi := x(ti)

...

ẋ(t) = f(xN−1) x(tN−1) = xN−1 on [tN−1, tN ].

An Euler solution to ẋ = f(x) is any uniform limit x(·) of Euler polygonal arcs

xN (·) as N → 0.

The following sequential compactness of trajectories property guarantees the

existence of a solution of (1.3) under the standard hypotheses.

Theorem 1.3.4. Let {xi} be a sequence of arcs on [0, T ] such that the set {xi(0)}

is bounded, and satisfying

ẋi(t) ∈ F (xi(t) + yi(t)) + ri(t)B a.e. ,

where {yi} and {ri} are sequences of measurable functions on [0, T ] such that yi(·)

converges to 0 in L2 and ri(t) ≥ 0 converges to 0 in L2. Then there is a subsequence

of {xi} which converges uniformly to an arc x which is a trajectory of F , and whose

derivatives converge weakly to ẋ.

Please refer to [7] for the proof. Here, we will just state that the previous theorem

guarantees existence of a solution by taking a selection f of F and letting the limit

of sampled arcs (the so-called Euler arcs) to be an Euler solution of ẋ = f(x),

x(0) = x0. Again, this will be essentially different for the impulsive case, which

was already illustrated in the introduction.

The following result is known as the Filippov’s Theorem. We will be using it

in Chapter 3 of this thesis, when we introduce our sampling technique for the
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impulsive systems. Filippov’s Theorem requires the multifunction F (·) to be locally

Lipschitz.

Theorem 1.3.5. Suppose ε > 0 is given. If y(·) is an arc on [0, T ] such that

ẏ(t) ∈ F
(
y(t) + εB

)
a.e. ,

and if ρF (y) < ε/K, for some K > 0, then there exists a trajectory x(·) for (1.3)

with x(0) = y(0) and

max{|x(t) − y(t)| | t ∈ [0, T ]} ≤

∫ T

0

|ẋ(t) − ẏ(t)|dt ≤ KρF (y) < ε.

Here

ρF (y) :=

∫ T

0

inf{|y(t) − ẏ(t)| | y ∈ F (x)}.

Details of this theorem one can find for example in [9] on page 114.

1.4 Invariance Properties

In this section of the preliminary chapter, we offer definitions and characterizations

for both weakly and strongly invariant systems of form (1.3). The final chapter of

this thesis is dedicated to the same properties, but this time for the impulsive

systems. Invariance properties deal with conditions under which a solution starts

and remains in a given closed set C.

Definition 1.4.1. The system (1.3) is said to be weakly invariant in set C provided

that for all x0 ∈ C, there exists a trajectory x(·) on [0,∞) such that

x(0) = x0, x(t) ∈ C ∀t ≥ 0.

Definition 1.4.2. The system (1.3) is strongly invariant in set C provided that

for all x0 ∈ C, all trajectories x(·) on [0,∞) with x(0) = x0 satisfy

x(t) ∈ C ∀t ≥ 0.
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The following theorem characterizes the weak invariance property.

Theorem 1.4.1. The system (1.3) is weakly invariant if and only if for all x ∈ C

and ζ ∈ NP
C (x), there exists a v ∈ F (x) such that

〈v, ζ〉 ≤ 0.

If we assume, in addition to the standard hypotheses, that the multifunction

F (·) is also locally Lipschitz, one shows the similar characterization for the strong

invariance.

Definition 1.4.3. We say that the multifunction F (·) is locally Lipschitz if for

every point x there is a neighborhood U = U(x) and a positive constant L = L(x)

such that

x1, x2 ∈ U ⇒ F (x2) ⊆ F (x1) + L|x1 − x2|B1.

The number L is called in that case the Lipschitz rank of F (·) on the set U .

Theorem 1.4.2. The system (1.3) is strongly invariant if and only if all x ∈ C,

all ζ ∈ NP
C (x) and all v ∈ F (x) are such that

〈v, ζ〉 ≤ 0.

1.5 Change of Variable

The closing section in the preliminary chapter is a modification of well known

Lebesgue-Radon-Nikodým Theorem of real analysis. We use it to justify the change

of variable in Chapter 2. This section is borrowed from [15]. We begin by defining

so called N-functions, which map sets of measure zero to sets of measure zero. This

concept is due to N.N. Luzin (1915), and it is also referred to in literature as a

“null condition”. Lebesgue measure on IR1 is denoted by m(·).
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Definition 1.5.1. Let g(·) be a function with domain [a, b] ⊂ IR and range [α, β] ⊂

IR. If m(E) = 0 implies m(g(E)) for all E ⊂ [a, b], then g(·) is said to be an N-

function.

Theorem 1.5.1. (Banach) Let g(·) be a continuous function of bounded variation

with domain [a, b] ⊂ IR and range [α, β] ⊂ IR. Then, g(·) is an N-function if and

only if g(·) is absolutely continuous.

The original Banach’s proof of this theorem is in [15], page 288 and we will skip

it here. This characterization shows that the time component of what we will call

a graph completion is an N-function.

The following theorems are an application of Lebesgue-Radon-Nikodým Theo-

rem ([15], page 315). The first theorem we just quote (Corollary 20.5 in [15]), and

the other one we state and prove for the vector-valued case.

Theorem 1.5.2. Let g(·) be a monotone continuous N-function with domain [a, b]

and range [α, β] ⊂ IR. Then g(·) is absolutely continuous and for an m-integrable

function z(·) : [α, β] → IRn, we have (z ◦ g)(·)ġ(·) is m-integrable and

∫ β

α

z(t)dt =

∫ b

a

z(g(s))ġ(s)ds.

Theorem 1.5.3. Let ν be a measure. Suppose that g(·) : [a, b] 7→ [α, β] is such

that

ν(g(E)) = 0 for all E ⊂ [a, b] such that m(E) = 0.

Then there exists a nonnegative, Borel measurable function h : [a, b] → IRm so that

whenever z(·) : [α, β] → Mn×m is ν-integrable, then (z ◦ g)(·)h(·) is m-integrable

on [a, b], and satisfies

∫

[α,β]

z(t) dν(t) =

∫ S

0

z
(
g(s)

)
h(s) ds.
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Proof. When m = 1, this Theorem is the known case from [15], Theorem 20.3,

page 342. When m > 1, we can write columns of z(·) as

z(·) = [z1(·) z2(·) · · · zm(·)],

where for each i ∈ {1, ..., m}, zi : [α, β] → IRn is a ν-integrable function. For each

zi(·), by the scalar case, there exists a nonnegative, Borel measurable function

hi : [a, b] 7→ IR so that

∫

[α,β]

zi(t) dν(t) =

∫ S

0

zi

(
g(s)

)
hi(s) ds.

The result is obtained by letting h(·) = [h1(·) h2(·) · · · hm(·)]T .

We end the preliminaries with another result from the real analysis, called Ego-

roff’s Theorem. We use it in Chapter 3. Once again, we offer only the statement

of this theorem. Deeper study of this property can be found in [15], page 158 or in

[12], page 60.

Theorem 1.5.4. (Egoroff’s Theorem) Let f(·) : [0, T ] → IRn and {fj(·)}

with fj : [0, T ] → IRn, be measurable functions that are defined and finite almost

everywhere on [0, T ]. Suppose that fj → f almost everywhere on [0, T ]. Then for

each ε > 0 there exists a set A ⊂ [0, T ] such that their measure is less than ε and

fj → f uniformly on [0, T ]\A.
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Chapter 2

Impulsive Systems Defined

Impulsive systems are precisely defined in Section 2.2. A new solution concept to

an impulsive system is introduced in 2.4, and it is shown that it agrees with the

(appropriate modification) of the Bressan-Rampazzo solution. The new concept

requires a direct correlation of respectively the absolutely continuous, continuous

singular, and atomic parts of the bounded variation solution and the given measure.

2.1 Introduction

Impulsive systems arise in a variety of applications where states can move at dif-

ferent time scales. The “slow” movement can be thought of as the usual time

progression infinitesimally incremented by dt, and the “fast” movement occurs

over a small interval that resembles the effect of a point-mass measure. We adopt

the mathematical formalism introduced in [25, 24, 28], in which the controlled dy-

namic inclusion is the sum of a slow time velocity belonging to a set F (x) and a

fast time contribution coming from another set G(x)dµ, where µ is a vector-valued

measure.

Bressan and Rampazzo [5] emphasized that issues arise to the nature of a “solu-

tion” in nonlinear systems when the fast dynamic velocities are affected by multi-

plicative state dependence (i.e. G depends nontrivially on x), and that the solution

concept will only be well-defined if a realization of the measure is also prescribed

through a graph completion. Murray [18] made an independent and similar dis-

covery by extending integral functionals of generalized variational problems from

absolutely continuous functions to ones of bounded variation, where the dynam-
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ics are encoded through infinite penalization. An earlier work on measure driven

dynamical systems and graph completion can also be found in works of Rishel [20].

Throughout the paper, the following data with accompanying assumptions are

given:

(H1) A closed convex cone K ⊆ IRm;

(H2) A multifunction F : IRn
⇒ IRn with closed graph and convex values, and

satisfying

f ∈ F (x) =⇒ |f | ≤ c(1 + |x|) ∀x ∈ IRn.

(where c > 0 is a given constant);

(H3) A multifunction G : IRn
⇒ Mn×m (where Mn×m denotes the n×m dimen-

sional matrices with real entries) with closed graph and closed convex values,

and satisfying

g ∈ G(x) =⇒ ‖g‖ ≤ c(1 + |x|) ∀x ∈ IRn.

The set of vector-valued Borel measures defined on the interval [0, T ] ⊂ IR with

values in K is denoted by BK([0, T ]).

2.2 Impulsive Systems and Their Trajectories

Suppose µ ∈ BK([0, T ]) is given. The impulsive system considered in this paper

is described by a differential inclusion (see [2, 26, 9, 7] basic theory of differential

inclusions) of the form




dx ∈ F
(
x(t)

)
dt+G

(
x(t)

)
dµ(dt)

x(0−) = x0.
(2.1)

The trajectory x(·) is a function of bounded variation, however further information

is required to frame an unambiguous solution concept. Recall that the (right con-
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tinuous) distribution function u(·) : [0, T ] → IRm of µ is given by u(t) = µ([0, t]).

Following [5, 3], the following is a definition of a graph completion.

Definition 2.2.1. Graph completion of distribution function u(·) : [0, T ] → IRm

of measure µ, is a Lipschitz continuous map (ψ0, ψ) : [0, S] → [0, T ] × IRm so that

(a) ψ0(·) is non-decreasing,

(b) for every t ∈ [0, T ] there exists s ∈ [0, S] so that
(
ψ0(s), ψ(s)

)
=

(
t, u(t)

)
and

(c) ψ̇(s) ∈ K, for almost all s ∈ [0, S].

The role of the graph completion is to pin down the behavior of the trajectory

x(·) during the “jumps” of u(·) so that multiplication by G(x) during this fast time

movement is unambiguous. The function ψ0 is a reparameterized time variable.

Since ψ(·) is a Lipschitz function by definition, there exists a positive number r

such that

|ψ̇(s)| ≤ r. (2.2)

Thus, the requirement (c) of the previous definition implies

ψ̇(s) ∈ K ∩Br.

This property is called the cone adherence. We point out here that r must be

greater or equal to 1, as

s+
i − s−i =

∣∣∣∣∣

∫ s+
i

s−i

ψ̇(s′)ds′

∣∣∣∣∣ ≤
∫ s+

i

s−i

|ψ̇(s′)|ds′ ≤ r(s+
i − s−i ).

Suppose we are now given µ ∈ BK([0, T ]) and let I be an at most countable

index set of atoms T := {ti}i∈I . Consider a three-tuple

Xµ :=

(
x(·),

(
ψ0(·), ψ(·)

)
, {yi(·)}i∈I

)
(2.3)
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with the following constituents: x(·) : [0, T ] → IRn is of bounded variation with

its points of discontinuity equal to the set T of µ’s atoms,
(
ψ0(·), ψ(·)

)
: [0, S] →

[0, T ] × IRm is a graph completion of µ’s distribution function u(·), and {yi(·)}i∈I

is a collection of Lipschitz functions, each defined on the nondegenerate interval

Ii := [s−i , s
+
i ] := ψ−1

0 (ti) and satisfying yi(s
±
i ) = x(ti±).

The following is a slight modification of a definition given in [5, 3].

Definition 2.2.2 (Bressan-Rampazzo (B-R)). Consider a three-tuple Xµ as

in (2.9), and let

y(s) =





x(t) if s /∈ ∪i∈IIi, t = ψ0(s)

yi(s) if s ∈ Ii.

(2.4)

Then Xµ is a Bressan-Rampazzo (B-R) solution of (2.1) provided y(·) is Lipschitz

on [0, S] and satisfies





ẏ(s) ∈ F
(
y(s)

)
ψ̇0(s) +G

(
y(s)

)
ψ̇(s) a.e. s ∈ [0, S].

y(0) = x0.
(2.5)

One may observe that y(·) defined by (2.4) is a graph completion of the vector-

valued function x(·).

We next introduce a solution concept with the same data structure as in (2.9),

but which requires properties stated directly in the original timeframe. Recall that

an arc x(·) of bounded variation induces a measure dx that can be decomposed into

absolutely continuous, continuous singular, and discrete (that is, purely atomic)

parts, and so can be written as

dx = ẋ(t) dt+ dxσ + dxD,

where dxσ is a singular continuous measure and dxD :=
∑

i∈I δ
x
ti

is the discrete

part with δx
ti

denoting the point mass jump of the vector x(ti+)−x(ti−). If 0 is an
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atom, then the initial point of the jump is denoted by x(0−). Likewise, the measure

µ ∈ BK([0, T ]) decomposes into µ = u̇(t) dt+ µσ + µD where µD =
∑

i∈I δ
u
ti
.

Definition 2.2.3. The three-tuple Xµ in (2.9) is a solution of (2.1) provided

(i) for almost all t ∈ [0, T ],





ẋ(t) ∈ F
(
x(t)

)
+G

(
x(t)

)
u̇(t),

x(0−) = x0;

(ii) there exists a bounded µσ-measurable selection γ(t) ∈ G
(
x(t)

)
with

dxσ = γ(t)µσ (as measures on [0, T ]); and

(iii) the set of atoms of dx is T = {ti}i∈I, and for each i ∈ I, yi(s
−
i ) = x(ti−),

yi(s
+
i ) = x(ti+), and

ẏi(s) ∈ G
(
yi(s)

)
ψ̇(s) a.e. s ∈ Ii.

The two notions of solution of 2.1 are equivalent, and we will show that in

Section 2.4. The fundamental role played by the graph completion in this definition

surfaces in the differential inclusions stated in (iii), and in effect circumscribes the

fast velocities that are available during that jump in t time. A simple concrete

example where different graph completions give different reachable sets is given in

the introduction of this thesis and it can also be found in [3].

2.3 Properties of Graph Completions

Perhaps the most natural example of a graph completion is the following canonical

graph completion. In fact, we will see that we can replace any graph completion

by the canonical graph completion without changing the solution.
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Definition 2.3.1. For a given µ ∈ BK

(
[0, T ]

)
, a Lipschitz pair (φ0(·), φ(·)) :

[0, S̄] → [0, T ] is the canonical graph completion if

(GC1) φ0(·) is a filled-in inverse of η(t) := t + |µ|([0, t]).

(GC2) for every t ∈ [0, T ] there exists s ∈ [0, S̄] so that
(
φ0(s), φ(s)

)
=

(
t, u(t)

)
and

(GC3) φ̇(s) ∈ K, for all s ∈ [0, S].

Note, this definition can be obtained from Definition 2.2.1 by replacing condition

(a) with (GC1). The gain is that in Definition 2.3.1, the choice for the temporal

component is fixed. Condition (CG1) means

φ0(s) = t ⇔ η(t−) ≤ s ≤ η(t+), (2.6)

where η(t−) and η(t+) respectively denote the lefthand limit limt↗t0 η(t) and right-

hand limit limt↘t0 η(t). These left and righthand limits are equal if and only if t is

not an atom of µ. If 0 is an atom of µ, then η(0−) = 0 by convention.

Obviously, since φ0(·) is a non-decreasing Lipschitz continuous function, the

canonical graph completion is indeed a graph completion. The following lemma

shows even more − all graph completions can be rescaled to the canonical graph

completion without changing the solution.

Lemma 2.3.1. Suppose measure µ ∈ BK

(
[0, T ]

)
is given and a three tuple

Xµ :=

(
x(·),

(
ψ0(·), ψ(·)

)
, {yi(·)}i∈I

)

is a Bressan-Rampazzo solution, where the pair (φ0, φ) : [0, T ] 7→ [0, S] × IRm is

a graph completion (Definition 2.2.1). Then, there exists S̄ > 0 and an absolutely

continuous function Ψ : [0, S̄] 7→ [0, S] such that the pair (φ0, φ) : [0, T ] × [0, S̄] ×

IRm,

(φ0, φ)(s) := (ψ0, ψ)(Ψ(s)) (2.7)
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is the canonical graph completion and there exists a Bressan-Rampazzo solution

X̄µ :=

(
x̄(·),

(
φ0(·), φ(·)

)
, {ȳi(·)}i∈I

)

is such that x̄(t) = x(t) and ȳi(s) = yi(Ψ(s)).

Proof. Let begin the proof by defining an “inverse” Υ : [0, T ] 7→ [0, S] of ψ0(·) as

Υ(t) = ψ0(t+). Moreover, let φ0(·) satisfy condition (GC1), and let Īi := [s̄−i , s̄
+
i ] :=

φ−1
0 (ti) for all ti ∈ T . Mapping Ψ : [0, S̄] 7→ [0, S] so that the (2.7) holds is

constructed in the following way;

Ψ(s) :=






Φi(s), for s ∈ Īi, i ∈ I,

(Υ ◦ φ0)(s), for s /∈ ∪iĪi,

where for all i ∈ I, Φi(·) maps linearly [s̄−i , s̄
+
i ] to [s−i , s

+
i ]:

Φi(s) = s+
i

s− s̄−i
s̄+

i − s̄−i
+ s−i

s̄+
i − s

s̄+
i − s̄−i

.

Indeed,

φ0(s) = ti = ψ0(Ψ(s)), for s ∈ Īi, and

ψ0(Ψ(s)) = ψ0(Υ(φ0(s))) = φ0(ψ
−1
0 (φ0(s))) = φ(s), for s /∈ ∪iĪi,

and, finally, (2.7) is obtained by defining

φ(s) := ψ(Ψ(s)).

To show that pair
(
φ0(·), φ(·)

)
is the canonical graph completion we only need to

show that (GC3) holds, as (GC1) and (CG2) immediately follow by definition of

φ0(·) and φ(·). Condition (GC3) holds almost everywhere on [0, S] because

φ̇(s) = ψ̇(Ψ(s))Ψ̇(s) ∈ K.
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From inclusion (2.5), there exist measurable selections f(s) ∈ F (y(s)) and g(s) ∈

G(y(s)) so that, on [0, S]

ẏ(s) = f(s)ψ̇0(s) + g(s)ψ̇(s). (2.8)

For all s ∈ [0, S̄], let ȳ(s) := y(Ψ(s)), let x̄(t) = ȳ(η(t)) on [0, T ] and for all i ∈ I,

let ȳi(s) = ȳ(s) on Īi. Also let f̄(s) = f(Ψ(s)) and ḡ(s) = g(Ψ(s)). The proof is

now completed because,

˙̄y(s) = ẏ(Ψ(s))Ψ̇(s) (from definition of ȳ)

= f(Ψ(s))ψ̇0(Ψ(s))Ψ̇(s) + g(Ψ(s))ψ̇(Ψ(s))Ψ̇(s) (2.8)

= f̄(s)φ̇0(s) + ḡ(s)φ̇(Ψ(s)) (from definition of φ0)

∈ F (ȳ(s))φ̇0(s) +G(ȳ(s))φ̇(s).

Previous Lemma gives us the luxury to always specify our graph completion to

be canonical, that is (ψ0, ψ) = (φ0, φ), and to take the three tuple

Xµ :=
(
x(·), φ(·), {yi(·)}i∈I

)
(2.9)

satisfying Definition 2.2.2 as a solution to (2.1), without the loss of generality.

Through the remainder of this Chapter and in the Chapter 3, whenever we mention

“graph completion”, we will always consider the canonical graph completion. Note

that r = 1 in (2.2) implies a straight line completion. This is a completion where

the jump from u(ti−) to u(ti+) is bridged directly with a smooth straight line

of slope 1. However, when r is allowed to take values greater than 1, then the

second component of graph completion (φ0, φ)(·) is not uniquely determined. In

general, various φ(·) produce various solutions of (2.1) even if F (·) and G(·) are

single valued [3].
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We continue by recording two technical results that will be used in the sequel.

We also use the following notation. Let supp µσ ⊆ [0, T ] denote the closed support

of µσ. Define

Γ := η
(
supp µσ

)
⊆ [0, S], (2.10)

which has Lebesgue measure ‖µσ‖, and set

Γ̃ := Γ
⋃

(∪i∈IIi) . (2.11)

Then φ̇0(s) = 0 a.e. s ∈ Γ̃ and φ̇0(s) > 0 a.e. s ∈ [0, S] \ Γ̃. Lebesgue measure on

IR1 is denoted by m(·), and η(·) and φ0(·) are as in Definition 2.3.1.

Lemma 2.3.2. Let ν be either the measure m or µσ.

(a) If A ⊆ [0, S] with m(A) = 0, then ν
(
φ0(A)

)
= 0.

(b) If z(·) : [0, S] → IRd is ν-measurable, then (z ◦ η)(·) : [0, T ] → IRd is ν-

measurable.

Proof. Since η(·) is strictly increasing, part (a) is immediate. For part (b), if O ⊆

IRd is open, then z−1(O) is ν-measurable and so differs from a Borel set by a set of

ν-measure zero. Now φ0(·) is nondecreasing, and so in particular maps Borel sets

onto Borel sets. We have by part (a) that η−1
(
z−1(O)

)
= φ0

(
z−1(O)

)
differs from

a Borel set by a set of ν-measure zero, and therefore is ν-measurable.

The following are “Change of Variable” formulas.

Lemma 2.3.3.

(a) If z(·) : [0, T ] → IRd is m-integrable, then z ◦ η is m-integrable on [0, S], and

satisfies
∫ T

0

z(t) dt =

∫ S

0

z
(
φ0(s)

)
φ̇0(s) ds.
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(b) There exists a Borel measurable function ψ(·) : [0, S] → IRm so that whenever

z(·) : [0, T ] → Mn×m is µσ-integrable, then (z ◦ φ0)(·)ψ(·) is m-integrable on

[0, S], and satisfies

∫

[0,T ]

z(t) dµσ(t) =

∫ S

0

z
(
φ0(s)

)
ψ(s) ds.

Remark: number d in the previous statement is either m or n.

Proof. Part (a) is given in [15], Corollary 20.5; part (b) is the vector-valued case

of [15], Theorem 20.3 (page 342); The hypotheses of the cited results are satisfied

due to Lemma 2.3.2(a).

Suppose Xµ =
(
x(·), φ(·), {yi(·)}i∈I

)
is as in (2.9), and y(·) is defined as in (2.4).

Let ua(·), uσ(·), and uD(·) be the distribution functions of u̇(t)dt, µσ, and µD,

respectively, and let xa(·), xσ(·), and xD(·) denote the distributions associated to

the decomposition of dx. That is,

ua(t) =
∫ t

0
u̇(t′) dt′, xa(t) = x0 +

∫ t

0
ẋ(t′) dt′,

uσ(t) = µσ

(
[0, t]

)
, xσ(t) = dxσ

(
[0, t]

)
,

uD(t) =
∑

ti∈T , ti≤t µ
(
{ti}

)
, xD(t) = dxD

(
[0, t]

)
.

for t ∈ [0, T ]. Recall Γ = η
(
supp µσ

)
⊆ [0, S] and Γ̃ = Γ

⋃
(∪i∈IIi). The following

related decompositions for φ(·) and y(·) are defined on [0, S] by

φa(s) =
∫
[0,s]\Γ̃

φ̇(s′) ds′, ya(s) = x0 +
∫
[0,s]\Γ̃

ẏ(s′) ds′,

φσ(s) =
∫
[0,s]∩Γ

φ̇(s′) ds′, yσ(s) =
∫
[0,s]∩Γ

ẏ(s′) ds′,

φD(s) =
∫
[0,s]

⋂
(∪i∈IIi)

φ̇(s′) ds′, yD(s) =
∫
[0,s]

⋂
(∪i∈IIi)

ẏ(s′) ds′.

It is clear that φ = φa +φσ +φD and y = ya + yσ + yD on [0, S]. We next show the

corresponding parts of the two decompositions match up after composition with

η.
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Lemma 2.3.4. If t /∈ T , then

(a) (φD ◦ η)(t) = uD(t) and (yD ◦ η)(t) = xD(t).

For each t ∈ [0, T ], we have

(b) (φa ◦ η)(t) = ua(t) and (ya ◦ η)(t) = xa(t), and

(c) (φσ ◦ η)(t) = uσ(t) and (yσ ◦ η)(t) = xσ(t).

Proof. We only write in detail the proof involving φ(·) and u(·), since the corre-

sponding argument involving y(·) and x(·) is the same.

Part (a) is clear from the definitions, since both functions equal
∑

ti<t

[
u(ti+)−

u(ti−)
]

whenever t /∈ T . The definition of a graph completion says that (φ◦η)(t) =

u(t) for these t also, and therefore

(φa ◦ η)(t) = ua(t) + uσ(t) − (φσ ◦ η)(t). (2.12)

The equality in (2.12) actually holds for all t ∈ [0, T ] since every function there is

continuous. Now recall supp µσ is a closed set of measure zero. If 0 ≤ t1 < t2 ≤ T

and [t1, t2] ∩ supp µσ = ∅, then η
(
[t1, t2]

)
∩ Γ = ∅, and hence t 7→ (φσ ◦ η)(t) is

constant on [t1, t2]. This implies d
dt

(φσ ◦ η)(t) = 0 for almost every t ∈ [0, T ]. It

follows by differentiating (2.12) at all these t ∈ [0, T ] that

d

dt
(φa ◦ η)(t) =

d

dt
ua(t) = u̇(t).

Part (b) now follows by integration. Finally, part (c) is an immediate consequence

of part (b) and (2.12).

Corollary 2.3.5. We have

(a) φ̇(s) = u̇
(
φ0(s)

)
φ̇0(s) a.e. s ∈ [0, S] \ Γ̃, and
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(b) ẏ(s) = ẋ
(
φ0(s)

)
φ̇0(s) a.e. s ∈ [0, S] \ Γ̃.

Proof. We have by Lemma 2.3.4(b) and Lemma 2.3.3(a) that

φa(s) = ua

(
φ0(s)

)
=

∫ φ0(s)

0

u̇a(t) dt =

∫ s

0

u̇a

(
φ0(s)

)
φ̇0(s) ds.

The conclusion (a) follows from the definition of φa and the differentiation theorem.

A similar argument proves (b).

Let us now define another graph completion which will be heavily used in the

Chapter 4 of this thesis.

Definition 2.3.2. For a given measure µ ∈ BK([0, T ]), normalized graph comple-

tion is a Lipschitz continuous map (ψ0, ψ) : [0, S̄] → [0, T ] × IRm so that

(NC1) 0 ≤ ψ̇0(s) ≤ 1 almost everywhere on [0, S̄]

(NC2) for every t ∈ [0, T ] there exists s ∈ [0, S̄] so that
(
ψ0(s), ψ(s)

)
=

(
t, u(t)

)
,

(NC3) ψ̇(s) =
(
1 − ψ̇0(s)

)
k(s), for almost all s ∈ [0, S̄], where k(s) ∈ K1 := K ∩ S1.

Using the Lemma 2.3.1, normalized graph completion can be rescaled to the

canonical graph completion. Moreover, the following lemma holds:

Lemma 2.3.6. Suppose measure µ ∈ BK([0, T ]) is given. Suppose the pair (φ0, φ)(·)

is a canonical graph completion and Xµ is a solution of (2.1) corresponding to µ

and pair (φ0, φ)(·). Then there exists an absolutely continuous non-decreasing func-

tion R : [0, S] 7→ [0, S̄] such that the pair

(ψ0, ψ)(s) := (φ0, φ)(R−1(s)) (2.13)

is the normalized graph completion and there exists a Bressan-Rampazzo solution

X̄µ :=

(
x̄(·),

(
ψ0(·), ψ(·)

)
, {ȳi(·)}i∈I

)

is such that x̄(t) = x(t) and ȳi(s) = yi(R
−1(s)).
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Proof. Suppose that (φ0, φ)(·) is a canonical graph completion. Define

k̄(s) :=





φ̇(s)

1−φ̇0(s)
when φ̇0(s) 6= 1,

φ̇(s)

|φ̇(s)|
when φ̇0(s) = 1.

Note that when s belongs to an interval I on which φ̇0(s) = 1, then on interval

φ0(I), measure µ is inactive and its distribution is constant, thus φ̇(s) = 0 on I.

Therefore, for s ∈ I, 0 = φ̇(s) = k̄(s)(1− φ̇0(s)) trivially holds. Using the definition

of k̄(·) we conclude φ̇(s) = k̄(s)(1 − φ̇0(s)) almost everywhere on [0, S].

Note, µ(t) = φ̇(η(t)) for t /∈ T . For almost all s ∈ [0, S]\Γ̃, φ̇0(s) > 0 and

s− φ0(s) = |µ|([0, φ0(s)]) =

∫ s

0

|φ̇(s′)|ds′,

which is 1 − φ̇0(s) = |φ̇(s)| after differentiation. This implies

|k̄(s)| =
|φ̇(s)|

1 − φ̇0(s)
= 1. (2.14)

Moreover, for almost all s ∈ [0, S]\Γ̃, φ̇(s) belongs to the cone K and

k̄(s) =
φ̇(s)

(1 − φ̇0(s))
∈ K. (2.15)

For almost all s ∈ Γ̃, φ̇0(s) = 0 and

k̄(s) = φ̇(s) ∈ Br\B1. (2.16)

Define on [0, S] the function

r(s) =





1 s /∈ ∪iIi

|φ̇(s)| s ∈ ∪iIi.

and let R : [0, S] 7→ [0, S̄] be

R(s) =

∫ s

0

r(s′)ds′.
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Define

k(s) =
k̄(R−1(s))

|k̄(R−1(s))|
,

ψ0(s) := φ0(R
−1(s)) and ψ(s) := φ(R−1(s)). Almost everywhere on [0, S],

ψ̇0(s) = φ̇0(R
−1(s))

dR−1(s)

ds
=

φ̇0(R
−1(s))

|φ̇0(R−1(s))|
.

Now, for almost all s /∈ ∪iĪi, where Īi := ψ−1
0 (ti), ti ∈ T ,

ψ̇0(s) = φ̇0(R
−1(s)), and

ψ̇(s) = φ̇(R−1(s))
dR−1(s)

ds
=

φ̇(R−1(s))

|φ̇(R−1(s))|
.

Now, for almost all s /∈ ∪iIi, using (2.14) and (2.15),

ψ̇(s) = φ̇(R−1(s)) = (1 − φ̇0(R
−1(s)))k(R−1(s)) = (1 − ψ̇0(s))k(s).

For almost all s ∈ ∪iIi, using (2.16),

ψ̇(s) = φ̇(R−1(s)) =
φ̇0(R

−1(s))

|φ̇0(R−1(s))|
=

k̄(R−1(s))

|k̄(R−1(s))|
= k(s).

Therefore, the pair (ψ0, ψ)(·) is the normalized graph completion.

From inclusion (2.5), there exist measurable selections f(s) ∈ F (y(s)) and g(s) ∈

G(y(s)) so that, on [0, S]

ẏ(s) = f(s)ψ̇0(s) + g(s)ψ̇(s). (2.17)

For all s ∈ [0, S̄], let ȳ(s) := y(R−1(s)), let x̄(t) = ȳ(η(t)) on [0, T ] and for all

i ∈ I, let ȳi(s) = ȳ(s) on Īi. Moreover, let f̄(s) = f(R−1(s)) and ḡ(s) = g(R−1(s)).

The proof is now completed because,

˙̄y(s) = ẏ(R−1(s))dR−1(s)
ds

(from definition of ȳ)

= f̄(s)ψ̇0(s) + ḡ(s)ψ̇(s),

f̄(s) ∈ F (ȳ(s)) and ḡ(s) ∈ G(ȳ(s))
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2.4 Equivalence of the Solution Concepts

This section is devoted to proving the following equivalence theorem.

Theorem 2.4.1. Suppose µ ∈ BK([0, T ]) and Xµ is as in (2.9). Then Xµ is a B-R

solution of (2.1) if and only if Xµ is a solution of (2.1).

Proof. Suppose the 3-tuple Xµ =
(
x(·), φ(·), {yi(·)}i∈I

)
is a B-R solution as given

in Definition 2.2.2. Thus y(·) as defined in (2.4) satisfies (2.5). We will show that

Xµ satisfies the conditions of Definition 2.2.3. The initial condition x(0−) = x0 is

immediate, as well as the requirement in Definition 2.2.3(iii).

Since y(·) satisfies (2.5), there exist measurable selections f(·), g(·) of F
(
y(·)

)
,

G
(
y(·)

)
, respectively, that satisfy

ẏ(s) = f(s)φ̇0(s) + g(s)φ̇(s) a.e. s ∈ [0, S]. (2.18)

Let domf̄ consist of those t ∈ [0, T ] \ T for which f is defined at s = η(t) and

satisfies f(s) ∈ F
(
y(s)

)
, and similarly define domḡ. Both sets have full measure in

[0, T ]. Define f̄ on domf̄ and ḡ on domḡ by

f̄(t) = (f ◦ η)(t) and ḡ(t) = (g ◦ η)(t).

The fact that f̄(·) and ḡ(·) are both Lebesgue measurable on [0, T ] is a consequence

of Lemma 2.3.2(b). Moreover, x(t) = (y ◦ η)(t) for all t /∈ T , and so we have that

f̄(t) = (f ◦η)(t) ∈ F
(
(y ◦η)(t)

)
= F

(
x(t)

)
for all t ∈ domf̄ . Similar considerations

apply to ḡ(·). Hence we have shown

f̄(t) ∈ F
(
x(t)

)
and ḡ(t) ∈ G

(
x(t)

)
a.e. t ∈ [0, T ]. (2.19)

The change of variables formula in Lemma 2.3.3(a) says that

xa(t) = x0 +

∫ t

0

ẋ(t′) dt′ = x0 +

∫ η(t)

0

ẋ
(
φ0(s

′)
)
φ̇0(s

′) ds′, (2.20)
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and we also have by definition of ya(·) and (2.18) that

(ya ◦ η)(t) = x0 +

∫

[0,η(t)]\Γ̃

ẏ(s′) ds′ (2.21)

= x0 +

∫

[0,η(t)]\Γ̃

f(s′)φ̇0(s
′) + g(s′)φ̇(s′) ds′

= x0 +

∫

[0,η(t)]\Γ̃

f(s′)φ̇0(s
′) + g(s′)u̇a

(
φ0(s

′)
)
φ̇0(s

′) ds′,

where the last equality is valid by Corollary 2.3.5(a). Lemma 2.3.4(b) says that

(2.20) and (2.21) are equal, and since φ̇0(s) = 0 on Γ̃, we have

∫

[0,s]\Γ̃

ẋ
(
φ0(s

′)
)
φ̇0(s

′) ds′ =

∫

[0,s]\Γ̃

f(s′)φ̇0(s
′) + g(s′)u̇a

(
φ0(s

′)
)
φ̇0(s

′) ds′,

for all s ∈ [0, S]. We deduce by differentiating with respect to s that

ẋ
(
φ0(s)

)
φ̇0(s) = f(s)φ̇0(s) + g(s)u̇a

(
φ0(s)

)
φ̇0(s) a.e. s ∈ [0, S] \ Γ̃.

Recall φ̇0(s) > 0 for almost all s ∈ [0, S] \ Γ̃, and so

ẋ
(
φ0(s)

)
= f(s) + g(s)u̇a

(
φ0(s)

)
a.e. s ∈ [0, S] \ Γ̃ (2.22)

holds by dividing the previous line by φ̇0(s). We next switch over to the t-variable

by substituting into (2.22) those t = φ0(s) that belong to

domf̄ ∩ domḡ ∩ φ0

(
[0, S] \ Γ̃

)
,

which is a set of t that constitutes a set of full measure. The conclusion is that

ẋ(t) = f̄(t) + ḡ(t)u̇a(t) a.e. t ∈ [0, T ], (2.23)

which, in conjunction with (2.19), verifies Definition 2.2.3(a).

Now consider the condition in Definition 2.2.3(ii). Let us first note that the

measurable function ψ(·) given in Lemma 2.3.3(b) is none other than φ̇(·)χΓ(·),
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where χΓ(·) is the characteristic function of Γ. Indeed, for s ∈ [0, S], let z(·) equal

χ[0,s](·). Then Lemma 2.3.4(c) and Lemma 2.3.3(b) say that

φσ(s) = uσ(φ0(s)) = µσ

(
[0, φ0(s)]

)
=

∫ s

0

ψ(s′) ds′

It follows by differentiation that ψ(s) = φ̇(s)χΓ(s) for almost all s ∈ [0, S].

Lemma 2.3.3(b) now reads as

∫

[0,T ]

z(t) dµσ(t) =

∫

[0,S]∩Γ

z
(
φ0(s)

)
φ̇(s) ds (2.24)

for all µσ-integrable functions z(·) defined from [0, T ] into Mn×m.

If A ⊆ supp µσ is such that |µσ|(A) > 0, then η(A) has positive Lebesgue

measure in Γ, and therefore contains points of η(domḡ). It follows that domḡ ∩

supp µσ has full µσ-measure in supp µσ. We let γ(·) : [0, T ] → Mm×n be ḡ(·)

restricted to supp µσ and 0 elsewhere; in other words,

γ(t) :=





(g ◦ η)(t) if t ∈ domḡ ∩ supp µσ,

0 otherwise.

Then γ(·) is µσ-measurable by Lemma 2.3.2(b), and we have for s ∈ [0, S] and

t = φ0(s) that

xσ(t) = yσ(s) (Lemma 2.3.4(c))

=

∫

[0,s]∩Γ

ẏ(s′) ds′ (Definition of yσ(·))

=

∫

[0,s]∩Γ

g(s′)φ̇(s′) ds′ (by (2.18) and since φ̇0(s) = 0 on Γ)

=

∫

[0,t]

γ(t′) dµσ(t
′). (by (2.24))

This shows that the distribution function of γ(t)dµσ is xσ, and hence Defini-

tion 2.2.3(ii) holds. The proof that a B-R solution satisfies the requirements of

Definition 2.2.3 is now complete.
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To prove the converse, again suppose Xµ is as in (2.9). It is immediate that y(·)

defined by (2.4) is Lipschitz. It is also clear that ẏ(s) ∈ G
(
y(s)

)
φ̇(s) for s ∈ ∪i∈IIi,

since this is Definition 2.2.3(iii). Recall that y(s) = x
(
φ0(s)

)
for all other s. For

almost all s ∈ [0, S] \ Γ̃, we have

ẏ(s) = ẋ
(
φ0(s)

)
φ̇0(s) (Corollary 2.3.5(b))

∈ F
(
x(φ0(s))

)
φ̇0(s) +G

(
x(φ0(s))

)
u̇
(
φ0(s)

)
φ̇0(s) (Definition 2.2.3(a))

= F
(
y(s)

)
φ̇0(s) +G

(
y(s)

)
φ̇(s), (Corollary 2.3.5(a))

which shows (2.5) holds for these s. The final case to consider is whenever s ∈ Γ,

in which case we have

yσ(s) = xσ

(
φ0(s)

)
(Lemma 2.3.4(c))

=

∫

[0,φ0(s)]

γ(t) dµσ(t) (Definition 2.2.3(ii))

=

∫ s

0

γ
(
φ0(s

′)
)
φ̇(s′) ds′ (by (2.24)).

It follows that for almost all s ∈ Γ, we have ẏ(s) = ẏσ(s) = γ
(
φ0(s)

)
φ̇(s). Since

φ̇0(s) = 0 and γ
(
φ0(s)

)
∈ G

(
y(s)

)
for almost s ∈ Γ, then (2.5) holds for these s

as well. We conclude that (2.5) holds for almost all s ∈ [0, S], and so Xµ is a B-R

solution.

2.5 Bouncing Ball Model

In the final section of this chapter we return to the bouncing ball model from

Example 3. We will reformulate this model from the hybrid systems setting to the

impulsive system setting given by Definition 2.2.3. Moreover, we will see that with

an appropriately chosen measure µ and its graph completion, it is not difficult to

continue trajectories after Zeno behavior. Suppose that the solution of system (3,

4) is known, T is the time when trajectory vanishes and jumps occur in times

T := {t1, t2, t3, ..., tj, ...} (those are the times when x1(ti) = 0). We will show
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that the trajectory is also a solution (with an appropriate measure and graph

completions attached to the measure and x(·)) of the impulsive system

dx ∈ F (x)dt+G(x)dµ, (2.25)

where F (x) = f(x) and

G(x) =




0 0

0 µ+ 1


 .

Most importantly, this solution will not be difficult to continue after the Zeno

behavior.

Take the measure whose distribution is

u(t) =






0 when 0 ≤ t < t1

−
∑i

j=1 x2(tj−) when ti ≤ t < ti+1.

This is also the total variation of this measure since the measure is taking only

positive real values. Note that u(T ) is not a finite number, so η(t) = t+u(t) blows

up as t goes to T . In this case, we can consider

η̄(t) =






t when 0 ≤ t < t1

t+
∑i

j=1 µ
j when ti ≤ t < ti+1.

Now, S := η̄(T ) < ∞. Define the graph completion φ0 : [0, S] → [0, T ] to be the

graph filled inverse of η̄(·), and let φ : [0, S] → IR be as follows

φ(s) :=






0 on [0, s−1 ],

−x2(t1−)
µ

(s− s−1 ) on [s−1 , s
+
1 ],

−
∑i−1

j=1 x2(tj−) on [s+
i−1, s

−
i ], i ≥ 2,

−
∑i−1

j=1 x2(tj−) − x2(ti−)
µi (s− s−i ) on Ii, i ≥ 2

Note,

s+
i − s−i = µi
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and

φ̇0(s) =






0 on Ii, ∀i ∈ I

1 otherwise,
φ̇(s) =






−x2(ti−)
µi on Ii, ∀i ∈ I

0 otherwise.

Also, note that on [0, S]

u(φ0(s)) = φ(s),

therefore the pair (φ0, φ)(·) is indeed a graph completion for the measure generated

by distribution u(·).

One inspects that u̇ = 0 and µσ = 0 because µ is entirely contained in atoms.

Therefore, inclusion (ii) of Definition 2.2.3 becomes obsolete in this case, inclusion

(i) of Definition 2.2.3 becomes

ẋ(t) = F (x(t) = f(x(t)) a.e. t ∈ [0, T ],

(here the trajectory x(·) is the one that solves (3,4) and inclusion (iii) becomes

ẏi(s) = g
(
yi(s)

)
φ̇(s) =






(
0,−µ+1

µi x2(ti−)

)
a.e. s ∈ Ii

(0, 0) otherwise

.

After integrating, the velocity component of yi at point s+
i becomes

x2(ti−) − (µ+ 1)x2(ti−) = −µx2(ti−).

Therefore,

yi(s
−
i ) = (0, x2(ti−)), yi(s

+
i ) = (0,−µx2(ti+),

which confirms that

Xµ̄ =

(
x(·),

(
φ0, φ

)
(·), {yi(·)}

)
.

is solution to (2.25). (Here we denoted by µ̄ the measure generated by u(·).) Once

again, the advantage is that S is finite, which allows the continuation of this Zeno

behavior if needed.
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Chapter 3

Sampling Impulsive Systems

In this chapter we introduce a sampling method that is analogous to the classical

Euler one-step method. The discretization essentially takes place in the reparam-

eterized time space but is brought back to the original time; it is shown in Section

3.1 that a limit of the graphs of the sampled trajectories converge to the graph of

a solution. The third goal is to approximate impulsive systems by ordinary ones,

and relate the corresponding solutions. In the Section 3.2, we show that if ab-

solutely continuous measures “graph converge” to a graph completion of µ, then

corresponding trajectories converge, and moreover, under additional Lipschitz hy-

potheses of the data, all such solutions can be obtained this way. In the final section

of this chapter, we introduce another sampling technique, in which the measure is

not specified, but rather constructed along with solution. This sampling technique

is used in the Chapter 4, as a tool in solving an invariance problem. Most of the

results from Chapter 2 and Chapter 3 are gathered in the journal paper [32].

3.1 A Sampling Method

In this section, an Euler-type discretization procedure is introduced that produces

approximate discrete solutions (called sampled trajectories) when the measure µ

and a graph completion are given (see Section 1.3 for the non-impulsive case). The

limit of a subsequence of approximations will be shown to graph-converge in the

Hausdorff metric to some solution Xµ of (2.1). A sampling method that produces

the measure and graph completion together, is presented in Section 3.2.
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With Xµ as in (2.9), its graph is defined as the set

gr Xµ := {(t, x(t)) : t ∈ [0, T ]} ∪ {(ti, yi(s)) : s ∈ Ii, i ∈ I}.

The idea is to discretize the ordinary trajectory y(·) that is defined in (2.4), where

the “compactness of trajectories” is known to hold, and to project it down into

t-space.

Let N be a positive integer, and let h := S
N

be the step-size parameter. Let

s0 = 0 = t0, and for each j = 1, . . . , N , let sj = jh, tj = φ0(sj), and λj = tj − tj−1.

Sampled points {xj}
N
j=1 are defined and “velocity” data are selected as follows (the

parameter N is suppressed in this notation):

x0 = x0 f0 ∈ F (x0) g0 ∈ G(x0)

x1 = x0 + λ1f0 + g0

(
φ(s1) − φ(s0)

)
f1 ∈ F (x1) g1 ∈ G(x1)

...
...

...

xj+1 = xj + λjfj + gj

(
φ(sj) − φ(sj−1)

)
fj+1 ∈ F (xj+1) gj+1 ∈ G(xj+1)

...
...

...

xN = xN−1 + λNfN−1 + gN−1

(
φ(sN) − φ(sN−1)

)

We denote by ΩN the graph of a sampled trajectory:

ΩN :=
{
(tj, xj) : j = 0, . . . , N

}
. (3.1)

Recall that the Hausdorff distance distH(A1, A2) between two compact subsets

A1, A2 of IRn is defined by

distH(A1, A2) = min
{
δ ≥ 0 : A1 ⊆ A2 + δB1 and A2 ⊆ A1 + δB1},

and that any multifunction M : IRn
⇒ IRm with compact values is locally Lipschitz

if for every bounded set C ⊂ IRn, there exists a constant c so that

distH

(
M(x), M(y)

)
≤ c|x− y| for all x, y ∈ C.
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The main result of this section follows.

Theorem 3.1.1. Suppose µ ∈ BK([0, T ]) and a graph completion φ(·) are given.

(a) For every sequence {ΩN}N of graphs of sampled trajectories, there is a solu-

tion Xµ of (2.1) and a subsequence {ΩNk}k of {ΩN}N such that

distH
(
ΩNk , gr Xµ

)
→ 0 as k → ∞.

(b) Assume F and G are locally Lipschitz. For every solution Xµ of (2.1), there

exists a sequence {ΩN}N of graphs of sampled trajectories so that

distH
(
ΩN , gr Xµ

)
→ 0 as N → ∞.

Proof. Suppose the sequences {fj}, {gj}, {xj} are constructed by the sampling

method described above. We first show there exists a constant c1 independent of

N so that

max
j

{
|xj|, |fj|, ‖gj‖

}
≤ c1 (3.2)

for all j and N ∈ IN . Indeed, with r as in (GC3), Definition 2.3.1 (which is the

Lipschitz constant of φ(·)) and c as in (H2) and (H3), we have

|xj+1| ≤ |xj| + h|fj| + ‖gj‖rh

≤ |xj| +
[
c(1 + |xj|) + c(1 + |xj|r)

]
h

= hα +
[
1 + hα

]
|xj|,

where α := c(1 + r). It follows from the discrete Gronwall inequality (Corollary

1.3.3) that

|xj| ≤ eαS(1 + |x0|) − 1,

and that then (3.2) holds by (H2) and (H3) with c1 := c[eαS(1 + |x0|)].
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Define the multifunction M : [0, S] × IRn
⇒ IRn by

M(s, y) = F (y)φ̇0(s) +G(y)φ̇(s), (3.3)

which is L × B measurable, has nonempty compact convex values, and has linear

growth. Moreover, M(s, ·) has closed graph for almost all s ∈ [0, S]. For each

N ∈ N, let Ω̃N be the sampled trajectory in s-time:

Ω̃N :=
{
(sj, xj) : j = 0, . . . , N

}
. (3.4)

Also consider its related polygonal arc yN(·) defined on [0, S] given by

yN(s) := xj +
s− sj

h
(xj+1 − xj) for s ∈ [sj, sj+1]. (3.5)

Note for later use that

distH

(
Ω̃N , gr yN(·)

)
≤ max

{
h, c1(1 + r)h

}
. (3.6)

We claim there exist the following sequences of

• positive numbers δN and rN so that δN → 0 and rN → 0, and

• measurable sets AN ⊆ [0, S] so that m(AN ) → 0

where the limits are as N → ∞, and that satisfy

inf
{
|ẏN(s) − v| : v ∈M

(
s, yN(s) + δNIB

)}
≤ rN a.e. s ∈ AN . (3.7)

To see this, let δN = S
N
c1(1 + r) where c1 is as in (3.2). Note for each j =

1, 2, . . . , N − 1 and s ∈ [sj−1, sj] that

∣∣yN(s) − xj| ≤
∣∣xj+1 − xj

∣∣

=
∣∣λj+1fj + gj

(
φ(sj+1) − φ(sj)

)∣∣

≤ h
[
|fj| + ‖gj‖r

]

≤ δN .
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Next, for s ∈ [0, S − h], define

ΦN
0 (s) :=

1

h

∫ s+h

s

φ̇0(s
′)ds′ and ΦN (s) :=

1

h

∫ s+h

s

φ̇(s′)ds′,

and recall that ΦN
0 (s) → φ̇0(s) and ΦN

0 (s) → φ̇(s) for almost all s ∈ [0, S] as

N → ∞. By Egoroff’s Theorem, there exist measurable sets AN ⊆ [0, S] with

m(AN ) → 0 (and for notational simplicity, we may assume [S − h, S] ⊆ AN) and

satisfying

rN := c1 max
s∈[0,S]\AN

{∣∣ΦN
0 (s) − φ̇0(s)

∣∣,
∣∣ΦN (s) − φ̇(s)

∣∣
}
→ 0

as N → ∞. Now let

vN(s) := fjφ̇0(s) + gjφ̇(s) for s ∈ [sj, sj+1],

and note that vN(s) ∈ M(s, xj) for almost all s ∈ [sj, sj+1]. Recall that ẏN(s) =

ΦN
0 (sj)fj + gjΦ

N (sj), and thus

max
s∈[0,S]\AN

∣∣ẏN(s)−vN(s)
∣∣ ≤ max

j=1,...,N

s∈[sj ,sj+1]\AN

∣∣∣∣
(
ΦN

0 (s)−φ̇0(s)
)
fj+gj

(
ΦN (s)−φ̇(s)

)∣∣∣∣ ≤ rN .

We have shown that (3.7) holds.

From the compactness of trajectories theorem [7, Theorem 4.1.11], there exists

a trajectory y(·) of M and a subsequence (we label as {yNk(·)}k) of {yN(·)}N so

that yNk(·) → y(·) uniformly on [0, S]. One sees easily that this means

distH

(
gr yNk(·), gr y(·)

)
→ 0 (3.8)

as k → ∞. We define the components of a solution Xµ to (2.1) as follows. Let

x(·) : [0, T ] → IRn be given by x(t) = y
(
η(t)

)
, and define the functions yi(·) (for

each i ∈ I) as the restriction of y(·) to Ii.

Now recall ΩN as in (3.1) and Ω̃N as in (3.4), and observe the second coordinates

are the same for each j = 1, . . . , N . Similarly, the second coordinates of gr Xµ and
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gr y(·) :=
{(
s, y(s)

)
: s ∈ [0, S]

}
are the same for each t /∈ T , t = φ0(s); and

when t ∈ T , the set of projections onto the second coordinate are the same. Thus

the difference between the Hausdorff distances of ΩN and gr Xµ on the one hand,

and Ω̃N and gr y(·) on the other is affected by only the first coordinate. It follows

that

distH

(
ΩN , gr Xµ

)
≤ distH

(
Ω̃N , gr y(·)

)
, (3.9)

where the righthand is at most h larger than the left side. By the triangle inequality,

one has

distH

(
Ω̃N , gr y(·)

)
≤ distH

(
Ω̃N , gr yN(·)

)
+ distH

(
gr yN(·), gr y(·)

)
(3.10)

Finally, passing to the subsequence {Nk} and starting from (3.9), it follows from

(3.10), (3.6), and (3.8) that

distH

(
ΩNk , gr Xµ

)
→ 0

which finishes the proof of part (a).

To prove part (b), assume now that F and G are locally Lipschitz, and Xµ is as

in (2.9) and is a solution of (2.1). Let y(·) be defined as in (2.4), and so there exist

measurable selections f(·) and g(·) of F
(
y(·)

)
and G

(
y(·)

)
respectively so that

ẏ(s) = f(s)φ̇0(s) + g(s)φ̇(s) a.e. s ∈ [0, S].

In a manner similar to proving the discrete bound (3.2), one can show there exists a

constant c2 so that |y(s)| ≤ c2. Indeed, having in mind the linear growth properties

of F (·) and G(·) (see (H2) and (H3)), note that f(s) ∈ F
(
y(s)

)
and g(s) ∈ G

(
y(s)

)

imply

|f(s)| ≤ c
(
1 + |y(s)|

)
, and

‖g(s)‖ ≤ c
(
1 + |y(s)|

)
, on [0, S].
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Also, for almost all s ∈ [0, S],

|ẏ(s)| ≤ |f(s)| |φ̇0s| + ‖g(s)‖ |φ̇(s)|

≤ c
(
1 + |y(s)|

)
+ cr

(
1 + |y(s)|

)

= c(1 + r)
(
1 + |y(s)|

)

= c(1 + r)|y(s)|+ c(1 + r).

Now by Gronwall’s inequality (Lemma 1.3.1),

|y(s)| ≤ ec(1+r) +

∫ s

0

c(1 + r)ec(1+r)(s−s′)ds′

≤ ec(1+r) + eSc(1+r).

Taking c2 := ec(1+r) + eSc(1+r) one obtains |y(s)| ≤ c2 almost everywhere on [0, S].

Observe that for 0 ≤ s̄ < ŝ ≤ S, one has

∣∣y(ŝ) − y(s̄)
∣∣ ≤

∫ ŝ

s̄

|ẏ(s)| ds ≤ (1 + c2)(1 + r)(ŝ− s̄) =: c3(ŝ− s̄). (3.11)

Let L > 0 be the Lipschitz constant for F and G on c2IB, and denote by

projF (y)(f) the projection of f into F (y) (which is unique since F (y) is convex).

If |yj| ≤ c2 (j = 1, 2) and f ∈ F (y1), then |f − projF (y2)(f)| ≤ L|y1 − y2|. Similar

considerations hold with F replaced by G.

We use the notation of the sampling method, and will show there exists a se-

quence {ΩN} that graph converges to gr Xµ.
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Let f0 = 1
h

∫ s1

0
projF (x0)

(
f(s)

)
ds, g0 = 1

h

∫ s1

0
projG(x0)

(
g(s)

)
ds, and x1 defined

as in the sampling method. We observe

x1 − y(s1) =
φ0(s1) − φ0(0)

h

∫ s1

0

[
projF (x0)

(
f(s)

)
− f(s)

]
ds

+

∫ s1

0

[
projG(x0)

(
g(s)

)
− g(s)

](
φ(s1) − φ(0)

h

)
ds

+

∫ s1

0

(
φ0(s1) − φ0(0)

h
− φ̇0(s)

)
f(s) ds

+

∫ s1

0

g(s)

(
φ(s1) − φ(0)

h
− φ̇(s)

)
ds

=: I + II + III + IV.

Recall φ0(·) is Lipschitz of rank 1, and so by the Lipschitz property of F , we have

|I| ≤ L

∫ s1

0

∣∣y(s) − x0

∣∣ ds ≤ Lc3

∫ s1

0

s ds =
Lc3
2
h2,

where the second inequality follows from (3.11). In the same way, one can show

|II| ≤
Lc3r

2
h2

since φ(·) is Lipschitz of rank r. To estimate III and IV , we re-use earlier notation

to redefine ΦN (·) on [0, S] by setting

ΦN (s) := max

{∣∣∣∣
φ0(sj+1) − φ0(sj)

h
− φ̇0(s)

∣∣∣∣ ,
∣∣∣∣
φ(sj+1) − φ(sj)

h
− φ̇(s)

∣∣∣∣
}

whenever s ∈ [sj, sj+1]. Then it follows that both |III| and |IV | are bounded above

by c(1 + c2)
∫ s1

0
ΦN(s) ds. Putting all this together, we have

|x1 − y(s1)| ≤
Lc3(1 + r)

2
h2 + 2c(1 + c2)

∫ s1

0

ΦN(s) ds.

Inductively, one proceeds by setting

fj =
1

h

∫ sj+1

sj

projF (xj)

(
f(s)

)
ds and
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gj =
1

h

∫ sj+1

sj

projG(xj)

(
g(s)

)
ds,

and letting xj+1 be as in the sampling method construction. The same argument

used above can operate at each iteration, and inductively, one has the following

estimate:

|xj − y(sj)| ≤
Lc3(1 + r)

2
jh2 + 2c(1 + c2)

∫ sj

0

ΦN(s) ds.

Since ΦN (s) is bounded above and converges to 0 almost everywhere, it follows

that Ω̃N := {(sj, xj) : j = 1, . . . , N} satisfies distH

(
Ω̃N , gr y(·)

)
→ 0 as N → ∞.

The bound in (3.9) is still valid here, and the conclusion of (b) readily follows.

3.2 Approximate Controls

The original and perhaps most natural approach to defining solutions to the im-

pulsive inclusion (2.1) is to consider limits of a sequence of solutions xN (·) of an

approximate control problem of the form

ẋN (t) ∈ F
(
x(t)

)
φ̇0(t) +G

(
x(t)

)
u̇N(t), (3.12)

where dµN = u̇N(·)dt are absolutely continuous measures that approximate µ in

some sense. See, for example, the discussion in [3, 16]. We introduce in this section

a concept of “graph convergence” of measures that is appropriate to carry out such

an analysis. Graph convergence as defined below is perhaps considerably stronger

than would be desirable, but we mention that even when the solutions of (3.12)

are unique, (which happens, for example, in the singleton case F (x) = {f(x)} and

G(x) = {g(x)} with f(·) and g(·) smooth functions), the limit arc may not be

unique if the measures converge in some weaker sense.

Suppose we are given the following: a measure µ ∈ BK([0, T ]), an associated

graph completion φ(·) : [0, S] → IRn that is Lipschitz of rank r, and a sequence
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{µN} of absolutely continuous Borel measures belonging to BK([0, T ]) whose as-

sociated distribution functions uN(t) := µN
(
[0, t]

)
are Lipschitz.

Definition 3.2.1. The sequence {µN}N of absolutely continuous measures graph-

converges to (µ, φ) provided

(i) there exist numbers SN > 0 such that SN → S;

(ii) for each N , there exists a strictly increasing function φN
0 (·) : [0, SN ] → [0, T ]

that is onto and Lipschitz of rank at most one, and such that

∫ min{S,SN}

0

∣∣φ̇N
0 (s) − φ̇0(s)

∣∣ ds→ 0 as N → ∞; and

(iii) for each N , the sequence of functions defined by φN(s) :=
(
uN ◦ φN

0

)
(s) are

Lipschitz with lim supN→∞ ‖φ̇N(·)‖∞ ≤ r, and satisfy

∫ min{S,SN}

0

∣∣φ̇N(s) − φ̇(s)
∣∣ ds→ 0 as N → ∞.

The main result in this section follows.

Theorem 3.2.1. Suppose the measure µ ∈ BK([0, T ]) and an associated graph

completion φ(·) : [0, S] → IRn are given.

(a) Suppose {µN} is a sequence of absolutely continuous measures that graph-

converges to
(
µ, φ(·)

)
, and {xN(·)} is a sequence of absolutely continuous

arcs satisfying

ẋN(t) ∈ F
(
xN(t)

)
+G

(
xN(t)

)
u̇N(t). (3.13)

Then there exists a solution Xµ of (2.1) and a subsequence {xNk(·)} of

{xN(·)} such that

distH
(
gr xNk(·), gr Xµ

)
→ 0 as k → ∞.
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(b) Conversely, suppose F and G are locally Lipschitz multifunctions and Xµ :=

(
x(·), φ(·), {yi(·)}i∈I

)
is a solution of (2.1). Then there is a sequence {µN}

of absolutely continuous measures that graph converge to
(
µ, φ(·)

)
, and a

sequence xN (·) of solutions to (3.13) so that

distH
(
gr xN (·), gr Xµ

)
→ 0 as N → ∞.

Proof. Suppose we are given the measures dµN = u̇N(t)dt, the functions φN
0 (·)

and φN(·) satisfying Definition 3.2.1, and solutions xN (·) of (3.13). Set S̄N :=

min{S, SN}. Let yN(s) = (xN ◦ φN
0 )(s), which for almost all s ∈ [0, S̄N ] satisfies

ẏN(s) = ẋN
(
φN

0 (s)
)
φ̇N

0 (s)

∈ F
(
yN(s)

)
φ̇N

0 (s) +G
(
yN(s)

)
u̇N

(
φN

0 (s)
)
φ̇N

0 (s)

= F
(
yN(s)

)
φ̇N

0 (s) +G
(
yN(s)

)
φ̇N(s),

where the last equality follows since φ̇N(s) = u̇N(φN
0 (s)

)
φ̇N

0 (s) almost everywhere.

It follows that there exist measurable selections fN(s) ∈ F
(
yN(s)

)
and gN(s) ∈

G
(
yN(s)

)
so that

ẏN(s) = fN(s)φ̇N
0 (s) + gN(s)φ̇N(s).

Recall Definition 3.2.1 imposes a priori bounds on the Lipschitz rank of φN
0 (·) and

φN(·), and that F (·) and G(·) satisfy linear growth assumptions. A standard argu-

ment involving Gronwall’s inequality implies there exists a constant c4 independent

of N that is an upper bound of both ‖fN(·)‖∞ and ‖gN(·)‖∞.

Let M : [0, S]×IRn
⇒ IRn be defined as in (3.3), and define żN (·) : [0, S̄N ] → IRn

by

żN (s) := fN(s)φ̇0(s) + gN(s)φ̇(s),
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and define zN (·) : [0, S̄N ] → IRn by zN (s) := x0 +
∫ s

0
żN (s′) ds′. It is clear from the

definitions that

żN (s) ∈M
(
s, yN(s)

)
a.e. s ∈ [0, S̄N ]. (3.14)

Furthermore, it is readily seen that

sup
s∈[0,S̄N ]

∣∣zN (s) − yN(s)
∣∣ ≤ c4

{
‖φ̇N

0 − φ̇0‖1 + ‖φ̇N − φ̇‖1

}

which implies via the assumption of the graph convergence of the measures that

yN − zN approaches zero uniformly. In view of (3.14) and the compactness of

trajectories theorem [7, Theorem 4.1.11], there exists y(·) : [0, S] → IRn that is a

trajectory of M and to which a subsequence of {zN (·)}, and hence also of {yN(·)},

converges uniformly. That is, there exists a subsequence Nk for which

distH

(
gr yNk(·), gr y(·)

)
→ 0 as k → ∞. (3.15)

We now define Xµ as before - see the paragraph containing (3.8) in the previous sec-

tion. Similar reasoning as employed there shows also that distH

(
gr xNk(·), gr Xµ

)

is bounded above by

distH

(
gr yNk(·), gr y(·)

)
+ sup

s∈[0,S̄Nk ]

|φNk

0 (s) − φ0(s)|

which goes to zero as k → ∞ by (3.15) and the assumption contained in Defini-

tion 3.2.1(ii). This finishes the proof of part (a).

We turn to part (b). Suppose F and G are now locally Lipschitz and Xµ is a

solution to (2.1). For N = 1, . . . , we proceed to construct the absolutely continuous

measures µN and solutions xN (·) of (3.13) that will converge in graph to Xµ. Fix

N > 0 and set h = S
N

, and for j = 1, . . . , N , set sj = jh and tj = φ0(sj). We will

first introduce a new partition {t̄j} of [0, T ] consisting of N distinct points that

resembles the partition {tj} but has repeated nodes “pulled apart” and indexed
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accordingly. To this end, let J N
0 be those indices j for which tj−1 < tj < tj+1 (to

treat the endpoints, by convention, we take t−1 < t0 and tN+1 > tN ; thus t0 ∈ J N
0

if t0 < t1 and tN ∈ J N
0 if tN−1 < tN ). We set t̄j = tj whenever j ∈ J N

0 . Let J N

be those indices j for which tj−1 < tj = tj+1 (by convention, then, t0 ∈ J N if

t0 = t1 and tN cannot belong to J N). For these latter j, let kj ≥ 1 be such that

tj = tj+1 = · · · = tj+kj
< tj+kj+1, and

λj :=
1

2
min

{
h2, tj − tj−1, tj+kj+1 − tj

}
.

(if 0 ∈ J N , then λ0 := min{h2,
tj+kj+1−tj

2
}). If j /∈ J N

0 , then j = j̄ + k where there

exists precisely one pair (j̄, k) with j̄ ∈ J N and 0 ≤ k ≤ kj̄. In this case t̄j is

defined by

t̄j :=





tj +
[

2k
kj

− 1
]
λj if j 6= 0

k
k0
λ0 if j = 0.

Thus a new partition {t̄j} of [0, T ] has been constructed consisting of N distinct

points, and which satisfy

|t̄j − tj| ≤ h2 for all j. (3.16)

Next, we define φN
0 (·) : [0, S] → [0, T ] by

φN
0 (s) = t̄j +

s− sj

h
(t̄j+1 − t̄j) whenever s ∈ [sj, sj+1]

which is onto and Lipschitz of rank at most 1. We claim that φ̇N
0 (·) converges to

φ̇0(·) in L1[0, S]. Indeed, let φ̃N
0 (·) : [0, S] → [0, T ] be given by

φ̃N
0 (s) = tj +

s− sj

h
(tj+1 − tj) whenever s ∈ [sj, sj+1].

The difference between the linear interpolations φN
0 (·) and φ̃N

0 (·) is that φN
0 (·) maps

sj to t̄j, whereas φ̃N
0 (·) maps sj to tj. For s ∈ [sj, sj+1], we have

∣∣φ̇N
0 (s) − ˙̃φN

0 (s)
∣∣ =

1

h
|t̄j+1 − t̄j − tj+1 + tj| ≤ 2h, (3.17)
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where the inequality is justified by (3.16). The Lebesgue differentiation Theorem

says that
˙̃
φN

0 (s) → φ̇0(s) as N → ∞ for almost all s ∈ [0, S], and since these

functions are bounded above by 1, the Dominated Convergence Theorem implies

that
˙̃
φN

0 (·) → φ̇0(·) in L1[0, S]. It follows from this and (3.17) that φ̇N
0 (·) → φ̇0(·)

in L1[0, S] as claimed.

Now define uN(·) : [0, T ] → IRn as the piecewise linear interpolation satisfying

uN(t̄j) = φ(sj); that is,

uN(t) = φ(sj) +
t− t̄j

t̄j+1 − t̄j

(
φ(sj+1) − φ(sj)

)
whenever t ∈ [t̄j, t̄j+1],

Let φN(·) := (uN ◦ φN
0 )(·), and note φN(sj) = φ(sj) for all j and for s ∈ [sj, sj+1]

that

φ̇N(s) = u̇N
(
φN

0 (s)
)
φ̇N

0 (s) =
φ(sj+1) − φ(sj)

t̄j+1 − t̄j

t̄j+1 − t̄j
h

=
φ(sj+1) − φ(sj)

h
.

Since φ(·) is Lipschitz of rank r, it follows that each of φN(·) are also of rank at

most r. Completely analogous to the proof above showing φ̇N
0 (·) → φ̇0(·) in L1[0, S]

as N → ∞, one has that φ̇N(·) → φ̇(·) in L1[0, S] as N → ∞. Therefore, with

µN the absolutely continuous measure satisfying dµN = u̇N(t)dt, we have shown

that µN graph converges to (µ, φ(·)) as N → ∞ (where SN = S for all N in

Definition 3.2.1).

We now turn to approximating a given a solution Xµ by a solution of (3.13).

By Theorem 3.1.1(b), there exists a sequence of sampled trajectories whose graphs

converge to gr Xµ. Denote these graphs by

ΩN := {(tj, xj) | j = 1, ..., N},

where xj+1 = xj +(tj+1− tj)fj +(gj)
(
φ(sj+1)−φ(sj)

)
, fj ∈ F (xj), and gj ∈ G(xj),

and they satisfy

distH

(
ΩN , gr Xµ

)
→ 0 as N → ∞. (3.18)
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For simplicity of notation, the dependence of xj, fj, and gj on N has been sup-

pressed. A new sampled set of points {x̄j} is defined by replacing the partition

{tj} by {t̄j} and “tracking” the given sampled data. This is done as follows. Let

f̄0 = f0 and ḡ0 = g0 and define

x̄1 = x̄0 + (t̄1 − t̄0)f̄0 +
(
ḡ0)

(
φ(s1) − φ(s0)

)

Having chosen the data at stage j− i, inductively let f̄j ∈ F (x̄j) and ḡj ∈ G(x̄j) be

the projections of fj and gj onto F (x̄j) and G(x̄j), respectively. That is, f̄j ∈ F (x̄j)

and satisfies

|f̄j − fj| = inf
f∈F (x̄j)

|f − fj|,

and similarly for ḡj. Define the next node by

x̄j+1 = x̄j + (t̄j+1 − t̄j)f̄j +
(
ḡj)

(
φ(sj+1) − φ(sj)

)
.

The linear growth assumptions on F and G guarantee that all of the sampled data

remains in a bounded set, and let c1 be as in (3.2) but which also bounds the newly

sampled data. With L a Lipschitz constant for both F and G on c1B1, one has

|f̄j − fj| ≤ L|x̄j − xj|, and ‖ḡj − gj‖ ≤ L|x̄j − xj|. (3.19)

The estimate between the nodes xj and x̄j is calculated by

∣∣x̄j+1 − xj+1

∣∣ ≤
∣∣x̄j − xj| + |tj+1 − tj − t̄j+1 + t̄j| |fj|

+|t̄j+1 − t̄j| |f̄j − fj| + ‖ḡj − gj‖ |φ(sj+1) − φ(sj)|

≤ |x̄j − xj| + 2h2c1 + hL|x̄j − xj| + hLr|x̄j − xj|

= 2h2c1 + (1 + hL + hLr)|x̄j − xj|,

where (3.16), (3.19), and that φ(·) is Lipschitz of rank r were invoked to deduce

the second inequality. Gronwall’s inequality implies

|x̄j − xj| ≤ 2hc1
eLS(1+r) − 1

L(1 + r)
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for each j = 0, 1, . . . , N , and in particular implies that

distH(ΩN , Ω̄N) → 0, as N → ∞ (3.20)

where Ω̄N is the newly sampled graph:

Ω̄N := {(t̄j, x̄j) | j = 1, ..., N}.

Next, let x̄N (·) be the piecewise linear arc interpolating the points in Ω̄N (·), which

specifically means

x̄N (t) = x̄j + (t− t̄j)f̄j + (t− t̄j)ḡj
φ(sj+1) − φ(sj)

t̄j+1 − t̄j
and

˙̄xN (t) = f̄j + ḡju̇
N(t) ∈ F (x̄j) +G(x̄j)u̇

N(t) whenever t ∈ (t̄j, t̄j+1).(3.21)

Let ΓN(·) : [0, T ] × IRn
⇒ IRn be given by ΓN(t, x) := F (x) +G(x)u̇N(t), which is

the multifunction appearing in (3.13). It has convex compact values, is measurably

Lipschitz (see [9]), and has linear growth in x. We will find a trajectory xN (·) of

ΓN that is close to x̄N (·). Following the notation in [9], we have

ρΓ

(
x̄N (·)

)
:=

∫ T

0

dist

(
˙̄xN (t),ΓN

(
t, x̄N (t)

))
dt

=
N−1∑

j=0

∫ tj+1

tj

dist

(
˙̄xN (t),ΓN

(
t, x̄N (t)

))
dt

≤
N−1∑

j=0

∫ tj+1

tj

distH

(
ΓN

(
t, x̄j

)
,ΓN

(
t, x̄N (t)

))
dt

≤ L

N−1∑

j=0

∫ tj+1

tj

(
1 + |u̇N(t)|

)∣∣x̄N (t) − x̄j

∣∣ dt, (3.22)

where (3.21) was used in the first inequality, and the Lipschitz property of F and

G in the second. For t ∈ [t̄j, t̄j+1], one has

∣∣ ˙̄xN(t) − x̄j| ≤
t− t̄j

t̄j+1 − t̄j

∣∣x̄j+1 − x̄j

∣∣

≤
t− t̄j

t̄j+1 − t̄j

[
(t̄j+1 − t̄j)|f̄j| + ‖ḡj‖ |φ(sj+1) − φ(sj)|

≤ c1

[
1 +

rh

t̄j+1 − t̄j

]
(t− t̄j)
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and

|u̇N(t)| =

∣∣∣∣
φ(sj+1) − φ(sj)

t̄j+1 − t̄j

∣∣∣∣ ≤
rh

t̄j+1 − t̄j
.

We thus have

∫ tj+1

tj

(
1 + |u̇N(t)|

)∣∣x̄N (t) − x̄j

∣∣ dt

≤

[
1 +

rh

t̄j+1 − t̄j

]
c1

[
1 +

rh

t̄j+1 − t̄j

]∫ tj+1

tj

(t− t̄j) dt

= c1

[
1 +

rh

t̄j+1 − t̄j

]2
(t̄j+1 − t̄j)

2

2

≤ c6h
2

for some constant c6. Combining with (3.22), this estimate yields that

ρΓ

(
x̄N (·)

)
≤ LSc6h,

and so by Filippov’s Theorem (see [9], Theorem 3.1.6. page 115), for each N there

exists a trajectory xN (·) of ΓN such that xN(0) = x0 and for which

distH

(
gr xN (·), gr x̄N (·)

)
→ 0 (3.23)

as N → ∞. Finally, we have by the triangular inequality

distH

(
gr xN (·), gr Xµ

)
≤ distH

(
gr xN (·), gr x̄N(·)

)
+ distH

(
gr x̄N(·), Ω̄N

)

+ distH

(
Ω̄N ,ΩN

)
+ distH

(
ΩN , gr Xµ

)

which approaches 0 as N → ∞ by (3.23), (3.20), and (3.18). This finishes the

proof.

3.3 Constructing Measure Via Sampling

In this section another Euler-type discretization procedure is introduced. This sam-

pling technique produces approximate discrete solutions along with the measure µ
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and a graph completion, given only a positive number S, multifunctions F (·) and

G(·) satisfying the standing hypotheses and a closed cone K ⊂ IRm. The limit of a

subsequence of approximations proves to graph-converge to a solution Xµ of (2.1).

Like in section (3.1), the idea is to discretize the ordinary trajectory y(·) that is

defined in (2.4). In the reparameterized time, the “compactness of trajectories” is

known to hold, and the result is obtained be projecting it down into original time.

This sampling technique will be used in the following section to prove the weak

invariance result.

Again, let N > 0 be an integer and let h := S
N

be the step size. Let s0 = 0 and

for each j = 1, ..., N , let sj = jh. Let us now define the sampled points {xj}
N
j=1 as

follow:

x0 := x0 λ0 ∈ [0, 1] f0 ∈ F (x0) k0 ∈ K1 g0 ∈ G(x0)

x1 := x0 + λ0hf0 + (1 − λ0)hg0k0

λ1 ∈ [0, 1] f1 ∈ F (x1) k1 ∈ K1 g1 ∈ G(x1)

...
...

...
...

...

xj+1 := xj + λjhfj + (1 − λj)hgjkj

λj+1 ∈ [0, 1] fj+1 ∈ F (xj+1) kj+1 ∈ K1 gj+1 ∈ G(xj+1)

...
...

...
...

...

xN := xN−1 + λN−1hfN−1 + (1 − λN−1)hgN−1kN−1,

where K1 = K ∩ S1.

We reuse the notation of ΩN , this time as a graph of a sampled trajectory where

the first component takes values in the set {s0, s1, ...}:

ΩN :=
{
(sj, xj) : j = 0, . . . , N

}
. (3.24)

We will show not that the given scheme converges to a solution.

61



Theorem 3.3.1. Suppose that S > 0 is given. For every sequence {ΩN}N of graphs

of sampled trajectories, there is a measure µ ∈ BK([0, T ], solution Xµ of (2.1) and

a subsequence {ΩNk}k of {ΩN}N such that

distH
(
ΩNk , gr y

)
→ 0 as k → ∞,

where y(·) is defined as in (2.4).

Proof. We first show part (a). Suppose the sequences {fj}, {gj}, {xj} are con-

structed by the sampling method described above. Similar to the procedure that

lead to the bound 3.2 in Theorem 3.1.1, we also find a bound for the sequences

involved in this theorem. There exists a constant c1 independent of N so that

max
j

{
|xj|, |fj|, ‖gj‖

}
≤ c1 (3.25)

for all j and N ∈ IN . Indeed, with c as in (H2) and (H3), we have

|xj+1| ≤ |xj| + h|fj| + ‖gj‖h

≤ |xj| + 2c(1 + |xj|)h

= hα +
[
1 + hα

]
|xj|,

where α := 2c. It follows from the discrete Gronwall inequality that

|xj| ≤ eαS(1 + |x0|) − 1,

and that then (3.25) holds by (H2) and (H3) with c1 := c[eαS(1 + |x0|)].

Define λN(·) and kN(·) on [0, S] so that

λN(s) := λj and kN(s) := kj on [sj, sj+1].

Let λ(·) be any uniform limit of {λN(·)}N and let k(·) be any uniform limit of

{kN(·)}N . These limits exist because both the sequence {λN(·)}N and the sequence
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{|kN(·)|}N are uniformly by 1. Define the multifunction M : [0, S]× IRn
⇒ IRn by

M(s, y) := F (y)λ(s) +
(
1 − λ(s)

)
G(y)k(s), (3.26)

which is L × B measurable, has nonempty compact convex values, and has linear

growth. Moreover, M(s, ·) has closed graph for almost all s ∈ [0, S]. For each

N ∈ IN , consider a polygonal arc yN(·) defined on [0, S] related to ΩN given by

yN(s) := xj +
s− sj

h
(xj+1 − xj) for s ∈ [sj, sj+1]. (3.27)

Note for later use that

distH

(
ΩN , gr yN(·)

)
≤ max

{
h, 2c1h

}
. (3.28)

We claim there exist the sequences of positive numbers δN and rN so that δN → 0

and rN → 0 where the limits are as N → ∞, that satisfy

inf
{
|ẏN(s) − v| : v ∈M

(
s, yN(s) + δNB1

)}
≤ rN a.e. s ∈ [0, S]. (3.29)

To see this, let δN = 2 S
N
c1 where c1 is as in (3.25). Note for each j = 1, 2, . . . , N−1

and s ∈ [sj−1, sj] that

∣∣yN(s) − xj| ≤
∣∣xj+1 − xj

∣∣

=
∣∣λjhfj + (1 − λj)hgjkj

∣∣

≤ h
[
|fj| + ‖gj‖

]

≤ δN .

By definition of λ(·) and k(·),

rN := c1 max
s∈[0,S]

{∣∣λN(s) − λ(s)
∣∣,

∣∣(1 − λN (s)
)
kN(s) −

(
1 − λ(s)

)
k(s)

∣∣
}

→ 0.

as N → ∞. Now let

vN(s) := λ(s)fj +
(
1 − λ(s)

)
gjk(s).
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and note that vN(s) ∈ M(s, xj) for almost all s ∈ [sj, sj+1]. Recall that for all

s ∈ [sj, sj+1],

ẏN(s) = λjfj + (1 − λj)gjkj = λN(s)fj + (1 − λN (s))gjk
N(s),

and thus

maxs∈[0,S]

∣∣ẏN(s) − vN(s)
∣∣

≤ max j=1,...,N

s∈[sj ,sj+1]

∣∣∣∣(λ(s) − λN(s))fj + gj

((
1 − λ(s)

)
k(s) −

(
1 − λN(s)

)
kN (s)

)∣∣∣∣

≤ rN .

We have shown that (3.29) holds.

From the compactness of trajectories theorem [7, Theorem 4.1.11], there exists

a trajectory y(·) of M and a subsequence (we label as {yNk(·)}k) of {yN(·)}N so

that yNk(·) → y(·) uniformly on [0, S]. One sees easily that this means

distH

(
gr yNk(·), gr y(·)

)
→ 0 (3.30)

as k → ∞.

Note that λ(s) ∈ [0, 1] and k(s) ∈ K1. Define pair (ψ0, ψ)(s) : [0, S] → [0, T ] ×

IRm as

ψ0(s) :=

∫ s

0

λ(s′)ds′, ψ(s) :=

∫ s

0

k(s′)(1 − λ(s′))ds′.

and functions η̄ : [0, T ] → [0, S] and u : [0, T ] → IRm as

η̄(t) := φ−1
0 (t+), u(t) := φ

(
η̄(t)

)
.

Also, let µ ∈ BK [0, T ] be such that u(·) is its distribution. The pair (ψ0(s), ψ(s))(·)

is a normalized graph completion of measure µ (see Definition 2.3.2).

We define other components of a solution Xµ to (2.1), as follows. Let x(·) :

[0, T ] → IRn be given by x(t) = y
(
η(t)

)
, and define the functions yi(·) (for each

i ∈ I) as the restriction of y(·) to Ii.

64



Now recall ΩN as in (3.24). By the triangle inequality, one has

distH

(
ΩN , gr y(·)

)
≤ distH

(
ΩN , gr yN(·)

)
+ distH

(
gr yN(·), gr y(·)

)
(3.31)

Finally, passing to the subsequence {Nk} the statement of the theorem follows

from (3.31), (3.28), and (3.30).
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Chapter 4

Invariance Conditions for Impulsive
Systems

The preliminary chapter presented an overview of the non-impulsive invariance

theory. In this chapter, notions of the weak and strong invariance are extended to

the impulsive systems.

4.1 Weak Invariance

We now consider the problem of characterizing invariance properties of trajectories

associated to the system (2.1) on a closed set C ⊆ R
n. Definition of weak invariance,

which is introduced here, requires the existence of a trajectory to lie in C over all

slow and fast times. Precisely:

Definition 4.1.1. The system is weak invariant on C if for every x0 ∈ C and

S > 0, there exists a time 0 ≤ T ≤ S, a measure µ ∈ BK [0, T ], and a three-tuple

solution Xµ of (2.1), x(t±) ∈ C for all t ∈ [0, T ] and each fast time arc {yi(·)}

satisfies yi(s) ∈ C for all s ∈ Ii.

Notice that the definition does not require the trajectory to exist for arbitrarily

large slow times, but rather for arbitrarily large sums of slow and fast times, the

latter size being proportioned according to the total variation of the measure µ.

The following is a proximal characterization of weak invariance for impulsive

systems. Here we use notation K1 := K ∩ S1.

Theorem 4.1.1. The system (2.1) is weak invariant on a closed set C if and only

if for each x ∈ C and ζ ∈ NP
C (x) (= the proximal normal cone to C at x), there

exists λ ∈ [0, 1], and v ∈
[
λF (x) + (1 − λ)G(x)K1

]
so that

〈v, ζ〉 ≤ 0.
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Proof. We begin the proof by utilizing the sampling result in Section 3.3.1 to show,

that the condition

∀x ∈ C, ∀ζ ∈ NP
C (x) ⇒

∃λ ∈ [0, 1] and ∃v ∈ [λF (x) + (1 − λ)G(x)K1] s.t. 〈v, ζ〉 ≤ 0
(4.1)

implies weak invariance of the system (2.1) on closed set C.

Let S > 0, x0 ∈ C and N ∈ IN . Let h and {sj} be as in the sampling scheme

in Section 3.3.1. The condition (4.1) guarantees existence of {λj},{kj}, {fj} and

{gj} from the sampling scheme so that for a c(xj) ∈ projC(xj)

〈λjhfj + (1 − λj)hgjkj, xj − c(xj)〉 ≤ 0. (4.2)

By Theorem 3.3.1, there exists a measure µ ∈ BK([0, T ]) and solution Xµ of (2.1)

so that graph of sampled trajectories converge to the graph of y(·) in Hausdorff

metric. We claim that y(s) ∈ C for all s ∈ [0, S], where y(·) is defined as in 2.4.

Because x0 ∈ C,

dC(x1) ≤ |x1 − x0| ≤ λ0h|f0| + (1 − λ0)h‖g0‖ |k0| ≤ 2hc1.

where c1 is from (3.2). Moreover,

d2
C(x2) ≤ |x2 − c(x1)|

2 (recall, c(x1) ∈ C)

= |x2 − x1|
2 + |x1 − c(x1)|

2 + 2〈x2 − x1, x1 − c(x1)〉

≤ 4h2c21 + d2
C(x1) + 2

∫ s2

s1

〈ẏN(s), x1 − c(x1)〉ds

≤ 8h2c21 + 2

∫ s2

s1

〈λ1hf1 + (1 − λ1)hg1, x1 − c(x1)〉ds

≤ 8h2c21,

where the last inequality is justified by (4.2). For general j,

d2
C(xj) ≤ j4h2c21 ≤ 4hc21.
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It follows that when N → ∞ (that is h → 0), the nodes {xj} of the sampling

scheme converge to C. This implies y(s) ∈ C on [0, S]. This direction of the proof

is completed.

Let us now find λ and v from the statement assuming that the system (2.1) is

weak invariant on C.

Let x0 ∈ C, and let the three-tuple Xµ as in (2.9) be a solution that lies in C with

x(0) = x0 and where measure µ is completed by a normalized graph completion

(φ0, φ)(·). For ζ ∈ NP
C (x0) there is a σ > 0 with

〈ζ, x− x0〉 ≤ σ|x− x0|
2, (4.3)

for all x ∈ C by Proposition 1.1.5. in [7].

Since 0 ≤ φ̇0(s) ≤ 1, we have φ0(s) ≤ s, so there exists a sequence sj ↘ 0 and

such that the following limit exists:

λ := lim
j→+∞

φ0(sj)

sj
= φ̇0(0).

If time t = 0 is an atom with η(0+) = a > 0 then λ = 0 and for a large j, sj ∈

φ−1
0 (0) = [0, a]. Using the Definition 2.2.2, any trajectory y(·) of (2.5) corresponding

to the solution Xµ satisfies ẏ(s) ∈ G(y(s))φ̇(s) and φ̇(s) ∈ K1 almost everywhere

on [0, a]. Moreover,

y(sj) − x0

sj
=

1

sj

∫ sj

0

ẏ(s)ds ∈
1

sj

∫ sj

0

G(y(s))φ̇(s)ds ∈ G(x0)K1 +O(j),

where O(j) → 0 as j → ∞. Thus,
{

y(sj)−x0

sj

}
has at least one cluster point v as

j ∈ ∞ and by passing to a subsequence we can assume it is the only cluster point.

Furthermore, it belongs to G(x0)K1. Since y(s) ∈ C on [0, η(T )], using (4.3),

〈ζ, v〉 = limj→∞

〈
ζ,

y(sj)−x0

sj

〉

≤ limj→∞
σ
sj
|y(sj) − x0|

2 = 0,
(4.4)
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because trajectory y(·) is Lipschitz and y(sj) → x0 as j → ∞.

Suppose now that time t = 0 is not an atom and let tj := φ0(sj). For all j any

trajectory y(·) of (2.5) corresponding to solution Xµ satisfies

y(sj) − x0

sj

=
1

sj

∫ sj

0

f(s)φ̇0(s)ds+
1

sj

∫ sj

0

g(s)φ̇(s)ds

=
φ0(sj)

sj

1

tj

∫ tj

0

f̄(t)dt+
1

sj

∫ sj

0

g(s)φ̇(s)ds,

where f(s) ∈ F (y(s)) and g(s) ∈ G(y(s)) are selections and f̄(t) = f(η(t+)) on

[0, tj]. A property of normalized graph completion is that φ̇(s) = k(s)(1 − φ̇0(s))

with k(s) ∈ K1. Since,

1

sj

∫ sj

0

g(s)φ̇(s)ds =
sj − φ0(sj)

sj

1

sj − φ0(sj)

∫ sj

0

g(s)φ̇(s)ds

=
sj − φ0(sj)

sj

1

sj − φ0(sj)

∫ sj

0

g(s)k(s)d(s− φ0(s)),

we get

y(sj) − x0

sj
=

φ0(sj)

sj

1

tj

∫ tj

0

f̄(t)dt +

+
sj − φ0(sj)

sj

1

sj − φ0(sj)

∫ sj

0

g(s)k(s)d(s− φ0(s)).

Since

1

tj

∫ tj

0

f̄(t)dt ∈ F (x0) +O(j), and

1

sj − φ0(sj)

∫ sj

0

g(s)k(s)d(s− φ0(s)) ∈ G(x0)K1 +O(j),

we find clustering points for both

{
1

tj

∫ tj

0

f̄(t)dt

}
and

{
1

sj − φ0(sj)

∫ sj

0

g(s)k(s)d(s− φ0(s))

}

belonging to F (x0) and G(x0)K1 respectively. Passing to subsequences we have

v := lim
j→+∞

y(sj) − x0

sj

∈ [λF (x0) + (1 − λ)G(x0)K1],
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since,

lim
j→+∞

sj − φ0(sj)

sj
= 1 − λ.

Knowing that y(s) ∈ C is Lipschitz on [0, η(T )] with y(sj) → x0 when j → ∞, we

again get (4.4). This completes the proof.

4.2 Weak Invariance - Alternative Proof

In the previous section we showed that the condition 4.1 implies weak invariance

using the sampling technique defined in Section 3.3. Now, we show the Theorem

4.1.1 again, this time with an alternative proof based on selections, which does not

use results from the Section 3.3.

Alternative proof to Theorem 4.1.1. We show again that the condition (4.1) im-

plies weak invariance of the system (2.1) on closed set C.

Let S > 0 and x0 ∈ C. Suppose y ∈ IRn and let π ∈ projC(y). By condition (4.1)

there exist λπ ∈ [0, 1] and

v ∈ [λπF (π) + (1 − λπ)G(π)K1] so that 〈v, ζ〉 ≤ 0.

Moreover, there exists a kπ ∈ K1, f ∈ F (π) and g ∈ G(π) such that

v = λπf + (1 − λπ)gkπ.

Let w ∈ [λπF (π) + (1 − λπ)G(π)kπ] minimize over [λπF (π) + (1− λπ)G(π)kπ] the

map

w 7→ 〈w, y − π〉,

and define mapping fP : IRn → [λπF (π) + (1 − λπ)G(π)kπ] by fP (y) := w. This

mapping inherits the linear growth condition from F and G. Indeed, from the

linear growth property of F (·) and G(·),

|f | ≤ c
(
1 + |π|

)
, and ‖g| ≤ c

(
1 + |π|

)
. (4.5)
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Since, fP (y) = λπf + (1 − λπ)gkπ,

|fP (y)| ≤ λπc(1 + |π|) + (1 − λπ)c(1 + |π|)kπ (4.5)

≤ c(1 + |π|) + c(1 + |π|)r (bounds on λπ and kπ)

≤ c(1 + r)(1 + |π|)

and the linear growth of fP (·) is obtained.

By Proposition 4.2.1 in [7], we have that the Euler solution defined by

ẏ = fP (y), y(0) = x0 ∈ C

necessarily lie in C on [0, S].

Let us define

F̄C(y) := co
{
[λπF (π) + (1 − λπ)G(π)kπ]

∣∣ π ∈ projC(y)
}
.

Since fP is a selection for the multifunction F̄C , we have that ẏ(s) ∈ F̄C a.e. on

[0, S]. Since for π ∈ C the set F̄C(π) is equal to the set λπF (π) + (1− λπ)G(π)kπ,

and since y(s) ∈ C on [0, S], we have

ẏ(s) ∈
[
λ(s)F (y) +

(
1 − λ(s)

)
G(y)K1

]
,

where λ(s) is a measurable selection in [0, 1].

We can take a measurable selections k(s) ∈ K1, f(s) ∈ F
(
y(s)

)
, and g(s) ∈

G
(
y(s)

)
so that

ẏ(s) = λ(s)f(s) +
(
1 − λ(s)

)
g(s)k(s). (4.6)

Define now

φ0(s) :=

∫ s

0

λ(s′)ds′, on [0, S] and

φ(s) :=

∫ s

0

(
1 − λ(s′)

)
k(s′)ds′, also on [0, S].

Note φ̇0(s) = λ(s) and

φ̇(s) =
(
1 − λ(s)

)
k(s) (4.7)
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almost everywhere on [0, S]. This means,

0 ≤ φ̇0(s) ≤ 1, a.e. ∀s ∈ [0, S]. (4.8)

If we define, T := φ0(S),

η(t) := φ−1
0 (t+), u(t) := φ

(
η(t)

)
on [0, T ],

then we have 0 ≤ T ≤ S (since φ0(·) is nondecreasing, being with a nonnegative

derivative). Moreover, from definition of η(·) and u(·), for all t ∈ [0, T ] there exists

s = η(t) ∈ [0, S] so that

φ(s) =
(
φ0(s), φ(s)

)
=

(
t, u(t)

)
. (4.9)

Now, taking a Borel measure µ ∈ BK([0, T ]) so that u(·) is its distribution, equa-

tions (4.9), (4.8) and (4.7) imply that the conditions of Lemma 2.3.6 are satisfied

for the pair (φ0, φ)(·), and therefore that pair is a normalized graph completion of

measure µ.

Let us define x(t) := y(η(t)) on [0, T ] and, ∀i ∈ I, let yi(s) := y(s) on when

s ∈ Ii := φ−1
0 (ti). The three-tuple X :=

(
x(·), φ(·),

{
yi(·)

}
i∈I

)
is a solution of (2.1)

by Definition 2.2.2 on [0, T ], because (4.6) implies

ẏ(s) ∈ F (y)φ̇0(s) +G(y)φ̇(s).

Moreover, x(t±) ∈ C for all t ∈ [0, T ] and each arc {yi(·)} satisfies yi(s) ∈ C for

all s ∈ Ii because arc y(·) remains in C on [0, S].

Example 6. We finish this section with an example which illustrates how tra-

jectory must remain within a closed set for both slow and fast times in order to

have the invariance as defined in this Chapter. Moreover, we will see how not just

the size of the jump, but also the choice of graph completion keeps the trajectory

within a specified set.
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Let K := IR+×IR+. Consider the following problem of finding the Borel measure

measure µ ∈ BK([0,∞)), graph completion (ψ0, ψ)(·) : [0,∞) → [0,∞) and a

solution Xµ of the system







ẋ1(t)

ẋ2(t)


 = F (x1, x2), a.e. on t ∈ [0,∞)

µσ = 0

ẏ1

i (s)

ẏ2
i (s)


 = G(x1, x2)ψ̇(s) a.e. s ∈ Ii ∀i ∈ I

(y1
i , y

2
i )(s

±
i ) = (x1, x2)(ti±) ∀i ∈ I

(x1, x2)(0−) = (0, 0).

(4.10)

so that the trajectory remains in set

C :=
{
(0, x2) | x2 ∈ [0, 1]

}
∪

{
(x1, 1) | x1 ≥ 0

}
.

Functions F (·) and G(·) are taken as

F (x1, x2) :=








1

0


 when x2 ≤ x1,




1 + x1 − x2

−x1 + x2


 elsewhere,

G(x1, x2) :=




1 0

0 1


 (identity matrix)

Note, the problem (4.10) is of the form of Definition 2.2.3, with additional as-

sumption that the measure µ can only take discontinuous singularities. This is a
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mixture of dynamics often seen in hybrid system. It is clear that a jump control

needs to be applied at time t0 := 0, because (ẋ1, ẋ2)(0, 0) = (1, 0) pushes trajectory

outside of set C. Therefore, the control measure is realized through an atomic part

at t0 = 0 of a certain size. Let that size be denoted by k̄ = (k̄1, k̄2) ∈ K, where

k̄1 ≥ 0 and k̄2 ≥ 0. Let us reparematerize the time of this jump with

ψ0(s) = 0, s ∈ [0, 2].

Note that the shape of set C admits only movement on the second component

of the trajectory (y1
0, y

2
0)(·), therefore it must be

y1
0(s) = 0

on a certain neighborhood around time s = 0, which means

ẏ1
0(s) = 0,

almost everywhere in a open neighborhood around time s = 0. This rules out the

straight line completion, because then

ψ(s) =
s

2
(k̄1, k̄2)

has a non-zero derivative in the second component at s = 0.

We will find (k̄1, k̄2) and the corresponding graph completion that solves this

invariance problem by using the sampling method introduced in Section 3.3. Note

that

NP
C (0, 0) = {(x1, x2) | x2 ≤ 0}.

Let S = 2 and h = 1. We take y0 = (0, 0). If ζ ∈ NP
C (0, 0), then it must be v2 ≥ 0

and v1 = 0 in order to assure 〈v, ζ〉 ≤ 0, where v = (v1, v2). Such choice for

v ∈ λF (y0) + (1 − λ)G(x)K1
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is available for taking k1 = (0, 1) ∈ K1 and λ = 0. Sampling method in Section 3.3

gives us y1 = (1, 0). Proximal normal cone on set C at point (1, 0) is

NP
C (1, 0) = {(x1, x2) | x1 ≤ 0, x2 ≥ 0}.

We again need to assure 〈v, ζ〉 ≤ 0 for ζ ∈ NP
C (1, 0) and v ∈ G(x)K1. If k2 =

(k1
2, k

2
2) ∈ K1, then both k1

2 and k2
2 must be greater or equal to 0, because K1 =

(IR+ × IR+) ∩ S1. This leaves only one option the velocity in this step: v = (1, 0).

We now find y2 = (1, 1) by using the sampling method in Section 3.3.

For this example, we may stop our iterative process as we have already found a

solution to our invariance problem. Indeed, control measure at time t = 0 jumps

from (0, 0) to k̄ := k1 + k2 = (1, 1). The jump is realized via the completion

obtained as the linear interpolation of points

{(
0, (0, 0)

)
,
(
1, k1

)
,
(
2, k1 + k2

)}
=

{(
0, (0, 0)

)
,
(
1, (1, 0)

)
,
(
2, (1, 1)

)}
i.e

ψ0(s) = 0, s ∈ [0, 2],

ψ(s) =





(0, s) s ∈ [0, 1]

(s− 1, 1) ∈ [1, 2]

The latter implies,

ψ̇0(s) = 0, s ∈ [0, 2],

ψ̇(s) =





(0, 1) s ∈ [0, 1]

(1, 0) ∈ [1, 2]

On the other hand, the linear interpolation (y1
0, y

2
0)(·) of points

{(
0, (0, 0)

)
,
(
1, y1

)
,
(
2, y2

)}
=

{(
0, (0, 0)

)
,
(
1, (1, 0)

)
,
(
2, (1, 1)

)}

happens to coincide with ψ(·) on [0, 2] in this example, and therefore


ẏ1

i (s)

ẏ2
i (s)


 = ψ̇(s) = G(x)ψ̇(s). a.e. s ∈ [0, 2].
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Thus, it represents the trajectory of our problem during the jump period at time

t = 0. We proceed now with non-impulsive dynamics,



ẋ1(t)

ẋ2(t)


 =




1

0


 , a.e. on t ∈ [0,∞),

(x1, x2)(0) = (1, 1),

and obtain a trajectory that remains in set C. Solution

((
x1, x2

)
(·),

(
ψ0, ψ

)
(·),

(
y1

0, y
2
0

)
(·)

)

is an impulsive solution to the invariance problem (4.10).

4.3 Strong Invariance

The property that all solutions of (2.1) remain in a given closed set C for all fast

and slow times is called strong invariance. Important assumption is that both F

and G are locally Lipschitz with respect to the Hausdorff distance. Precisely:

Definition 4.3.1. We say that the system is strongly invariant on C if for every

x0 ∈ C and any T > 0, all measures µ ∈ BK [0, T ] and all corresponding three-tuple

solutions Xµ of (2.1) with x(0) = x0, are such that, x(t±) ∈ C for all t ∈ [0, T ]

and each fast time arc {yi(·)} satisfies yi(s) ∈ C for all s ∈ Ii.

We proceed with the following proximal characterization of strong invariance.

Theorem 4.3.1. The system (2.1) is strong invariant on a closed set C if and

only if for each x ∈ C and ζ ∈ NP
C (x) we have

〈v, ζ〉 ≤ 0 (4.11)

for all λ ∈ [0, 1] and every v ∈
[
λF (x) + (1 − λ)G(x)K1

]
.
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Notice that this theorem is in complete consistency with the non-impulsive case.

Indeed, in that case G(x) = 0, and we get that the condition (4.11) holds for every

λ ∈ [0, 1] and every v ∈ λF (x). For v ∈ λF (x), v = λf , where f ∈ F (x) and

0 ≤ λ ≤ 1. We get

〈v, ζ〉 = 〈λf, ζ〉 ≤ 〈f, ζ〉 ≤ 0,

which is a known condition for the non-impulsive case. Moreover, if the we have

〈f, ζ〉 ≤ 0 for arbitrary f ∈ F (x), then multiplying that inequality with any

λ ∈ [0, 1], we get the condition (4.11). Let us now proceed with the proof of

Theorem 4.3.1. It is a careful modification of the non-impulsive case found in [7].

Proof. Suppose that the system (2.1) is strong invariant on a closed set C. any arc

y(·) from Definition 2.2.2 corresponding to solution Xµ which satisfies

ẏ(s) ∈ F
(
y(s)

)
φ̇0(s) +G

(
y(s)

)
φ̇(s), (4.12)

remains within the set C, where pair (φ0, φ)(·) is a normalized graph completion of

an arbitrary measure µ ∈ BK

(
[0, T ]

)
. Let x ∈ C, let λ be any number in [0, 1] and

let v be arbitrary element in λF (x) + (1 − λ)G(x)K1. Then v = λf + (1 − λ)gk,

where f ∈ F (x), g ∈ G(x) and k ∈ K1.

For any y, let us define ν̄(y) to be the closest point to v := λf + (1 − λ)gk in

λF (y)+ (1−λ)G(y)k. Notice, ν̄(x) = v. Since both F and G are locally Lipschitz,

multifunction λF + (1− λ)Gk is also locally Lipschitz. This implies that the mul-

tifunction V(y) = {ν̄(y)} is with close graph and convex values with linear growth

properties inherited from F and G. For S = 1, consider measure µ ∈ BK([0, λ])

to be such that the pair φ0(s) := λs and φ(s) := (1 − λ)ks represents a normal-

ized graph completion of this measure on [0, 1]. For such choice of measure µ, the

system (4.12) becomes a strongly invariant system

ẏ ∈ λF + (1 − λ)Gk.
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Any strongly invariant system is also weakly invariant, hence the previous system

is also weakly invariant. Moreover, since function ν̄(y) is a continuous selection of

λF (y)+(1−λ)G(y)k (see Exercise 4.3.3 in [7]), the system ẏ ∈ V(y) is also weakly

invariant. That is for our x ∈ C, and v = ν̄(x) ∈ V(x) we have

〈v, ζ〉 ≤ 0, for all ζ ∈ NP
C (x). (4.13)

Let us show now that if condition (4.11) holds, then the system (2.1) is strong

invariant on C. Let x0 ∈ C and let the three tuple Xµ as in (2.9) be a solution of

(2.1) with x(0−) = x0. Condition (4.11) implies that for all y ∈ C,

max
λ∈[0,1],

v∈λF (y)+(1−λ)G(y)K1

〈v, ζ〉 ≤ 0, ∀ζ ∈ NP
C (y). (4.14)

Now, let T ≥ 0 and let µ ∈ BK([0, T ]) be arbitrary. For any solution Xµ of (2.1)

with x(0−) ∈ C, we have

ẏ(s) ∈ F (y(s))φ̇0(s) +G(y(s))φ̇(s), (4.15)

where y(·) is the one from Definition 2.2.2. Since φ̇0(s) ∈ [0, 1] and φ̇(s) ∈ K1,

by the strong invariance theorem for the non-impulsive systems [7], the system

(4.15) is strong invariant. The usage of strong invariance characterization for non-

impulsive systems is justified by the condition (4.14). By necessity,

y(s) ∈ C on [0, S],

where S := φ−1
0 (T+). This in turn means that x(t±) ∈ C for all t ∈ [0, T ] and each

fast time arc {yi(·)} satisfies yi(s) ∈ C for all s ∈ Ii. Since T and µ are arbitrarily

chosen, the proof is completed.
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Chapter 5

Conclusions and Open Problems

This thesis extends the classical existence, sampling theory and invariance proper-

ties to the impulsive systems. Having the invariance theory set in Chapter 4, the

next thing is to consider the Hamilton-Jacobi theory and the minimal time func-

tion for the impulsive systems. This has already been done for the non-impulsive

systems [35]. The minimal time control problem consists of a given closed set

C ⊂ IRn, and a control system in which the goal is to steer an initial point of

the system so that a trajectory of the system reaches the target set in minimal

time. Precisely, given a non-impulsive system (1.3), the minimum time function is

TC : IRn → [0,∞]

TC(s) := inf{T | ∃x(·) satisfying (1.3)

with x(0) = x0 and x(T ) ∈ C}.

By convention, if set C can not be reached for any of the trajectories, minimum

time function then takes the value ∞.

Having in mind the notion of solution to the impulsive system, which depends

on the time raparameterization, it is clear that the notion of minimum time needs

to be modified. Namely, during the jump, reparameterized time streams as the

original time does not move, and it is not immediately clear if one should consider

minimum of the reparameterized time or the minimum of the original time. Just

like in invariance results, when it was required that both the slow and the fast time

trajectories remain in a given closed set, perhaps reparameterized time should be

considered for the minimum time function problem as well. The following function
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is of interest: EC : IRn → [0,∞]

EC(x) := inf{S | ∃Xµ a solution of (2.1)

with x(0−) = x

and x(φ0(S)) ∈ C or yi(S) ∈ C for some i ∈ I},

where the infimum is taken over all µ ∈ BK([0, T ]). This function can hardly be

called not the “minimum time” function as it is expressed in the reparameterized

time. Perhaps “minimum time and energy” function is a better name for it. Indeed,

the infimum of interest is the one of all original times and energies spent during

the jumps. In fact, scaling the importance of the energy component of this function

might also give new insights: for λ ∈ [0, 1] consider

Eλ
C(x) := inf{T + λS | ∃Xµ a solution of (2.1)

with x(0−) = x and x(φ0(T )) ∈ C

where S =
∑

T>tj∈T
[η(tj+) + η(tj−)]},

In any case, a proximal characterization of the minimum time and energy function

will follow by applying the non-impulsive minimum time function characterization

[35] to the system (2.5).

Another problem worth considering is relaxing conditions on dynamics F (·) and

G(·) from Lipschitz to dissipative Lipschitz conditions for theorems on strong in-

variance. In [10, 11, 21] invariance theory for non-impulsive systems is extended to

the class of dissipative Lipschitz dynamics. It is of interest to extend these results

to the impulsive case as well.

Furthermore, more examples that link impulsive systems to hybrid systems and

systems with singular peturbations need investigation.
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