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Abstract

This dissertation studies two different techniques for analyzing control systems
whose dynamics include impulses, or more specifically, are measure-driven. In such
systems, the state trajectories will have discontinuities corresponding to the atoms
of the Borel measure driving the dynamics, and these discontinuities require further
definition in order for the control system to be treated with the broad range of
results available to non-impulsive systems. Both techniques considered involve a
reparameterization of the system variables including state, time, and controls.

The first method is that of the graph completion, which provides an explicit
reparameterization of the time and state variables. The reparameterization is con-
tinuous, which allows for the analysis of the system within classical control theory,
yet it retains enough information about the discontinuous, or impulsive, trajectories
that the results of such analyses may be interpreted for the original impulsive sys-
tem. We utilize this reparameterization to formulate equivalent solution concepts
between impulsive differential inclusions and impulsive differential equations. We
also demonstrate that the graph completion is generally equivalent to a solution
concept established for a neural spiking model, and make use of a specific such
model as a numerical example.

The second method considered is similar to the graph completion but differs in
that it utilizes implicit reparameterizations of all variables considered as families
of functions which meet continuity and other requirements. This is particularly
beneficial to optimal control problems as the choices of controls, impulsive and
non-impulsive, may be varied within the optimization problem and analysis thereof.
Necessary conditions for optimal control problems of Mayer form with fixed end
time have been established under this reparameterization technique, and we extend
these necessary conditions in a general context to a Mayer problem with free end
time. Corollary to this, we deduce necessary conditions for a Bolza problem and
a minimum time problem for impulsive control systems. Much of these results are
obtained through reformulation techniques.

vi



Chapter 1
Introduction

What happens when a ball tracing a smooth trajectory through the air is impacted
by a racquet, or when a relay on an electronic control board is instantaneously
engaged or disengaged? In what way are the population dynamics of a school of
fish affected when a fraction of their population has been swiftly netted?

The theory of control is at this point a fully-developed field of mathematics,
capable of providing insight and modelling to many types of problems which occur
throughout nearly all of science and engineering, but these questions represent one
of the many boundaries of this body of knowledge. Impulsive control theory is an
active area of research seeking to provide fuller descriptions or more accurate math-
ematical models of phenomena involving shocks like those described above. One
popular way of doing so is to reformulate a problem with impulses as one without,
perform the analyses already available to non-impulsive control systems, and then
translate these results back to the impulsive case. This and similar reformulations
will be the paradigm of the present work.

The next chapter will introduce the general control system and provide some
of the basic definitions from real, functional, and non-smooth analysis. It will also
outline the classical cases of the optimal control problems studied later within the
impulsive context.

We introduce in the third chapter a technique for handling impulses in control
dynamics via time reparameterizations, called graph completions. This concept has
its originations in the work [17] where the impulses enter the system as the product
of a Radon measure with a state-independent term of the dynamics. The analysis
of this case relies on the novel idea of a time reparameterization. An extension of
this work was made in [13] to handle impulses that manifest as a product of a
Radon measure and a state-dependent term via the concept of graph completions.
Observe that it is not immediately clear how to define the product between the
measure and state variable at an atom of the measure since the atom induces
a jump discontinuity in the state at that point, and this definition is precisely
what the graph completion introduced in [13] provides. Further work on graph
completions is made in [5, 6] where different assumptions on the vector fields for
impulsive systems are exploited.

The results of this dissertation in Chapter 3 also include the verification of a
solution to an impulsive control differential inclusion as a solution to an impulsive
control differential equation. This result hinges on a selection assumption similar to
that provided by the Filippov Lemma. The differential inclusion solution concept
used is that defined in [23]. An application of the graph completion to a neural
spiking model provides a general result on defining solutions to such a model along
with specific examples of this application.
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Chapter 4 studies the necessary conditions for optimal control problems estab-
lished in [2], and extends these results from a Mayer problem of fixed end-time
to one of free end-time. Also, necessary conditions for a Bolza problem and a
minimum time problem are deduced.

We conclude the dissertation in Chapter 5 with a summary of novel contributions
and suggestions for future work ranging from immediate to remote.

2



Chapter 2
Preliminaries

In this chapter we introduce the basic concept of a control system without impulses,
referred to throughout as the classical case or a general control system. We also
study optimization problems of non-impulsive control systems and the Calculus of
Variations and examine necessary conditions for each in the form of a Pontryagin
Maximum Principle. This chapter should serve as background and motivation for
the following chapters, but it is merely a summary and references are provided for
further exploration of the topics described.

2.1 The control system
The central object to the theory of control is the system

ẋ(t) = f(t, x(t), u(t)), x(0) = x̄, (2.1)

where t is the scalar-valued time ranging on some interval [0, T ], x is the vector-
valued state of the system, and u is the vector-valued control. It is common to
refer to the function f as the dynamics or right-hand side of the system and to the
second equality as the initial condition. As a whole, (2.1) is called a control system.
By considering a control system whose right-hand side is independent of u, we get
f(t, x, u) = f(t, x), the right-hand side of a dynamical system, which suggests that
in a general sense the theory of control subsumes the theory of dynamical systems.

What is more useful, is to realize that once a control function u(·) has been
chosen, (2.1) is simply a differential equation and therefore more or less amenable
to the extensive theory available in that subject. We sometimes refer to this differ-
ential equation and initial condition as a Cauchy problem. Remaining informal, we
recall from the theory of differential equations that a solution or trajectory of (2.1)
is a function x(·) which satisfies the Cauchy problem. This immediately raises
questions of existence and uniqueness of such solutions, which have satisfactory
answers within existing theory. In all that follows, the assumptions taken on the
dynamics of systems under consideration will be sufficient to guarantee whatever
degree of existence and uniqueness is appropriate for the problem, and these issues
will be considered settled despite being unmentioned. Corresponding to each sys-
tem considered there will be at least one solution definition. For more on solutions
of ordinary differential equations we suggest [22], and for more on existence and
uniqueness of trajectories for control systems we suggest [4] and [20].

It is informative, at least intuitively, to view the system (2.1) as the integral

x(t) = x̄+

∫ t

0

f(τ, x(τ), u(τ))dτ (2.2)
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for time t ∈ [0, T ] and a chosen control function u(·). In this light, the fundamental
theorem of calculus for Lebesgue integrals (cf. [14]) suggests what regularity the
dynamics should have, namely that the composition of functions f(t, x(·), u(·)) be
at least measurable, if not integrable. It is desirable in practical applications to
take control functions which are measurable, often even piecewise continuous, and
having values in some compact set, so in order for the integrand of (2.2) to be
measurable it is sufficient to take f to be Lebesgue measurable in t and continuous
in u. Partly for existence and uniqueness purposes, it is common to take f to be
Lipschitz continuous in x, and altogether this is enough to imply that the integral
of (2.2) exists. With this existence, the fundamental theorem of calculus yields
absolute continuity of the function x(·); recall that the set of absolutely continuous
functions is the most general set of functions satisfying the fundamental theorem.
This is why it is common in classical control problems to consider solutions from
the class of absolutely continuous functions. We sometimes refer to an absolutely
continuous function which satisfies the Cauchy problem (2.1) almost everywhere
as a Caratheodory solution.

Thus, the integral equation indicates needed regularity assumptions for the con-
trol system dynamics, and it indicates the class of functions in which solutions to
the system will be found. In what follows, this integral perspective will play a key
role in generalizing the notion of system and solution beyond that of the form (2.1)
and its described solution.

2.2 Differential inclusions and nonsmooth

analysis
It is convenient to consider the system (2.1) under a set of control functions u
having values in a compact set U ⊂ Rm as the differential inclusion

ẋ(t) ∈ F (t, x(t)), a.e. t ∈ [0, T ], (2.3)

with

x(0) = x̄,

where the object F : R × Rn ⇒ Rn is a multifunction, a map from R × Rn into
subsets of Rn. The right hand side of (2.3) may be thought of as the set of possible
velocities of the control system (2.1) and written as

F (t, x) = {v : v = f(t, x, u) for some u ∈ U}.

Multifunctions in their own right, have a rich theory, cf. [3]. We will only be
concerned with their basic forms of regularity, which can be referred to without
providing exact definitions. It is obvious that a solution x(·) to the system (2.1),
for a measurable control u ∈ U , satisfies the differential inclusion

ẋ(t) ∈ {f(t, x(t), u(t))}, for a.e. t ∈ [0, T ]
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with x(0) = x̄. Thus, we see that a trajectory of a control system provides a
trajectory to a corresponding differential inclusion. For the reverse to be true, a
trajectory of a differential inclusion to be a trajectory to a corresponding differen-
tial equation, an issue of selecting a measurable control u must be resolved. The
well-known Filippov Lemma (cf. [10, 12]) provides that for a measurable multifunc-
tion F and a solution x of the differential inclusion (2.3), there exists a measurable
û such that x satisfies (2.1) with right-hand side f(t, x(t), û(t)). One of the results
of this paper will be to provide this latter direction in the context of impulsive
systems under graph completions.

Differential inclusions are particularly critical in optimal control problems, where
it is generally true that problems with smooth objective functions can have non-
smooth solutions (cf. [12]). This lack of conventional differentiability and the prac-
tical desire to consider a broad class of optimal control problems necessitates the
theory of nonsmooth analysis. We investigate the fundamental concepts of two
separate but comparable theories which are required in the present work.

Clarke normal cones. We use the following definitions and facts regarding
Clarke normal cones.

Definition 2.1. Let S ⊂ Rn be nonempty and closed, and take x ∈ S. A vector
ζ ∈ Rn is a proximal normal to the set S at the point x if and only if there
exists σ = σ(x, ζ) ≥ 0 such that

〈ζ, u− x〉 ≤ σ|u− x|2 ∀u ∈ S (2.4)

The set NP
S (x) of all such ζ defines the proximal normal cone to S at x.

Definition 2.2. We define the limiting normal cone NL
S (x) to S at x by means

of a closure operation applied to NP
S :

NL
S (x) = {ζ = lim

i→∞
ζi : ζi ∈ NP

S (xi), xi → x, xi ∈ S}. (2.5)

Recall that epi{f}, the epigraph of f , is the set {(x, η) : f(x) ≤ η}.
Definition 2.3. Given a lower semicontinuous function f : Rk → R∪ {+∞} and
a point x ∈ Rk such that f(x) <∞, we define the limiting subdifferential of f
at x, written ∂f(x), to be

∂f(x) := {ξ : (−1, ξ) ∈ Nepi{f}(f(x), x)}. (2.6)

We note that if f is Lipschitz continuous in a neighborhood of x, co∂{f(x)}
coincides with the generalized gradient of f at x, where co is the convex hull
operation. A direct definition of the generalized gradient, a proof of the equivalence
claimed, and further details regarding nonsmooth analysis can be found in [10, 11,
12] among others.

Mordukhovich normal cones. The second and comparable theory we refer
to involves the Mordukhovich normal cone. As our definition of the Mordukhovich
normal cone for finite-dimensional space, we will take the characterization given
by Theorem 1.6 in [16].

5



Definition 2.4. For a closed set K in a finite-dimensional space X, we define the
Euclidean projector of x on P as

PK(x) = {w ∈ K : |x− w| = dist(x,K)},

where dist(x,K) := inf
y∈K
|x−y|. The Mordukovhich normal cone at x̄ ∈ K is defined

by

NK(x̄) := lim sup cone(x− PK(x)) :=
⋂
ε>0

cl

[ ⋃
x∈x̄+BX

cone(x− PK(x))

]
,

where cl and cone denote the closure and conic hull respectively. As a convention,
we take NK(x) = ∅ if x /∈ K.

Two more facts from [16] will be useful. First from proposition 1.5, the Mor-
dukhovich normal cone of a convex subset K of a finite-dimensional space X is

NK(x̄) = {y ∈ Rm|〈y, x− x̄〉 ≤ 0 ∀x ∈ K}. (2.7)

And second from proposition 1.3, if x̄ = (x̄1, x̄2) ∈ K1 ×K2 ⊂ X1 ×X2, then

NK1×K2(x̄) = NK1(x̄1)×NK2(x̄2). (2.8)

Let K be a convex subset of the finite-dimensional space X and take a scalar
α > 0. If for some v ∈ X and x̄ ∈ K we have α · v ∈ NK(x̄), then (2.7) implies for
all x ∈ K

〈α · v, x− x̄〉 ≤ 0

which by homogeneity of the inner product is equivalent to

〈v, x− x̄〉 ≤ 0.

Thus,
α · v ∈ NK(x̄)⇔ v ∈ NK(x̄), whenever α > 0. (2.9)

Also, it is a simple exercise to work out that N{x̄}(x) 6= ∅ if and only if x = x̄,
and

N{x̄}(x̄) = X. (2.10)

There is quite a bit of overlap between the theories of Mordukhovich and Clarke,
which we need not consider. For more on the comparison between the two see [16].

2.3 Classical optimal control theory and

calculus of variations
This section provides an outline of classical optimal control, by which we mean
optimal control problems with impulse-free dynamics and continuous trajectories.
Closely related to these problems is the well-known calculus of variations, which

6



we reference here again as a body of problems and techniques precluding impulses.
We follow [4] in presenting the Pontryagin Maximum Principle for the Mayer prob-
lem, fixed and free end time, and then deriving from this maximum principles for
the Bolza problem, minimum time problem, and the calculus of variations. This
suggests that in a sense, the necessary conditions of optimal control are a general-
ization of that of the calculus of variations problem. In fact, the proof of the first
theorem we present below on the Mayer problem uses a construction known as a
“needle variation” which is analogous to the variations studied in the Calculus of
Variations.

Of particular note, this section serves as an outline and classical guide to the
main results presented below in the chapter on optimal control of impulsive systems
via measure-adjoint functions.

2.3.1 The Mayer problem with fixed end time and with
free end time

We consider the optimal control problem in Mayer form

max
u∈U

φ0(x(T, u)) (2.11)

subject to

ẋ = f(t, x(t), u(t)), x(0) = x̄. (2.12)

For a given set U ⊂ Rm, the family of admissible controls is defined as

U = {u : [0, T ]→ U ;u measurable}. (2.13)

In this case the terminal time T is fixed, and we put further constraints on the
problem by requiring that the terminal state x(T ) satisfies

x(T ) ∈ S = {x ∈ Rn : φi(x) = 0, i = 1, ..., k}. (2.14)

We make the following assumptions for the classical case:

(H) The set Ω ⊂ R × Rn is open, the function f = f(t, x, u) is continuous on
Ω×U and continuously differentiable with respect to x. The functions φ0, φ1, ..., φk :
Rn → R are all continuously differentiable.

To an admissible control u(·) there corresponds a trajectory x(·) of (2.12), and
the pair (x(·), u(·)) is referred to as a process. A process (x∗(·), u∗(·)) is called a
maximizing process, or more generally an optimal process, if x∗(·) satisfies the max-
imality condition (2.11). Finding such an optimal process is a non-trivial problem,
and there are a few techniques available to obtain such a process. In the present
work we consider the use of necessary conditions in the form of the Pontryagin
Maximum Principle to identify or narrow down the search for an optimal process.

7



Theorem 2.5. Consider the optimal control problem (2.11)-(2.14), under the as-
sumptions (H). Let (x∗(·), u∗(·)) be an optimal process, and assume the gradients
∇φ0, ...,∇φk are linearly independent at the terminal point x∗(T ). Then there exists
a nontrivial, absolutely continuous vector function p : [0, T ] → Rn which satisfies
the equations

ṗ(t) = −p(t) ·Dxf(t, x∗(t), u∗(t)), (2.15)

p(t) · f(t, x∗(t), u∗(t)) = max
ω∈U
{p(t) · f(t, x∗(t), ω)} (2.16)

for almost every time t ∈ [0, T ], together with the terminal conditions

p(T ) =
k∑
i=0

λi∇φi(x∗(T )) (2.17)

for some constants λ0, ..., λk, with λ0 ≥ 0.

We do not prove the theorem, but refer to [4] for a thorough treatment of the
matter. Of more interest to our present consideration, is the extension of the Pon-
tryagin Maximum Principle (PMP) for the given Mayer problem with terminal
constraints and fixed end time to a Mayer problem with terminal constraints but
a free or variable end time. The statement of such a problem is

max
u∈U

φ0(T, x(T, u)) (2.18)

for the control system described by

ẋ(t) = f(t, x(t), u(t)), x(0) = (x̄), u(t) ∈ U a.e., (2.19)

where the terminal time and the terminal point are subject to the constraints

φi(T, x(T, u)) = 0, i = 1, ..., k. (2.20)

Note that an optimal policy of (2.18)-(2.20) is now a pair (T ∗, u∗), where u∗ :
[0, T ∗]→ U is measurable and the corresponding trajectory x∗(·) yields the maxi-
mum in (2.18) among all those satisfying (2.20). Here is the PMP for this problem.

Theorem 2.6. Consider the optimal control problem (2.18)-(2.20), under the
assumptions (H). Let (x∗(·), u∗(·)) be an optimal process for the problem where
u∗ : [0, T ∗] → U is a bounded control for the problem. Assume that f is con-
tinuously differentiable with respect to both t and x, and that the vectors ∇φi =
(∂φi
∂t
, ∂φi
∂x1
, ..., ∂φi

∂xn
), i = 1, ..., k are linearly independent at the point (T ∗, x∗(T ∗)).

Then there exists a nontrivial, absolutely continuous row-vector p(·) such that

ṗ(t) = −p(t) ·Dxf(t, x∗(t), u∗(t)), (2.21)

p(t) · f(t, x∗(t), u∗(t)) = max
ω∈U
{p(t) · f(t, x∗(t), ω)} (2.22)

8



at almost every time t ∈ [0, T ∗]. Moreover, there exist constants λ0, ..., λk with
λ0 ≥ 0 such that

(p1, ..., pn)(T ∗) =
k∑
i=0

λi(
∂φi
∂x1

, ...,
∂φi
∂xn

)(T ∗, x∗(T ∗)) 6= (0, ..., 0), (2.23)

max
ω∈U

p(T ∗) · f(T ∗, x∗(T ∗), ω) = −
k∑
i=0

λi
∂φi
∂t

(T ∗, x∗(T ∗)). (2.24)

Finally, the function t 7→ p(t) · ẋ∗(t) in (2.22) coincides a.e. with an absolutely
continuous function satisfying

d

dt
{p(t) · f(t, x∗(t), u∗(t))} = p(t) ·Dtf(t, x∗(t), u∗(t)). (2.25)

This theorem is proved essentially by forming an auxiliary optimization problem
in which an additional state, representing a reparameterization of time, is added
to the problem statement and the previous fixed end time PMP is applied to this
auxiliary problem. We sketch the proof here, and refer to [4] for a full proof.

We intend to apply Theorem 2.5 to an auxiliary problem in n+1 space variables
with fixed terminal time T ∗. Set x = (x0, x) ∈ Rn+1, u = (u0, u) ∈ Rm+1 and
consider the problem

max
u

φ0(x(T ∗,u), (2.26)

for the (n+ 1)-dimensional system{
ẋ0(τ) = u0(τ)

ẋ(τ) = u0(τ)f(x0(τ), x(τ), u(τ)),
(2.27)

(x0, x)(0) = (0, x̄) (2.28)

subject to the constraints

φi(x(T ∗)) = 0, i = 1, ..., k, (2.29)

u0(τ) ∈
[

1

2
, 2

]
, u(τ) ∈ U for a.e. τ ∈ [0, T ∗]. (2.30)

From the chain rule, we get dx
dx0

= dx
dτ

dτ
dx0

= f(x0, x, u), so x0 plays the role of t
from the original dynamics. It can also be shown that if u∗ : [0, T ∗]→ U is optimal
for the original problem (2.18)-(2.20), then u∗ = (1, u∗) is optimal for (2.26)-
(2.30). This relies on the strict monotonicity, and thus invertibility, of x0 implied
by ẋ0(τ) = u0(τ) ∈ [1/2, 2], which allows construction of an optimal control for
the original problem based on an optimal control of the auxiliary problem. Details
of this argument are in [4].
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We now apply Theorem 2.5 to the optimal control u∗ = (1, u∗) for the problem
(2.18)-(2.20), and recalling that x0 = t, we obtain the existence of an absolutely
continuous adjoint vector p = (p0, p) with the properties{

ṗ0(t) = −p(t) ·Dtf(t, x∗(t), u∗(t)),

ṗ(t) = −p(t) ·Dxf(t, x∗(t), u∗(t)),
(2.31)

p0(t) · 1 + p(t) · f(t, x∗(t), u∗(t)) = max
1
2
≤ω0≤2, ω∈U

{p0(t)ω0 + p(t) · ω0f(t, x∗(t), ω)},

(2.32)

(p0(T ∗), ..., pn(T ∗)) =
k∑
i=0

λi

(
∂φi
∂t

,
∂φi
∂x1

, ...,
∂φi
∂xn

)
(T ∗, x∗(T ∗)), (2.33)

for some constants λ0, ..., λk with λ0 ≥ 0. Since the maximum in (2.32) is attained
when ω0 ≡ 1 and ω = u∗(t), we must have

d

dω0

∣∣∣∣
(ω0,ω)=(1,u∗(t))

[p0(t)ω0 + p(t) · ω0f(t, x∗(t), ω)] = 0, (2.34)

which implies
p0(t) = −p(t) · f(t, x∗(t), u∗(t)) a.e. (2.35)

Since p0 is absolutely continuous, from (2.35) and then from the first equation
in (2.31), we derive

d

dt
{p(t) · f(t, x∗(t), u∗(t))} =

d

dt
{−p0(t)} = p(t) ·Dtf(t, x∗(t), u∗(t)), (2.36)

which yields (2.25).
The adjoint linear equation (2.21) follows from (2.31).
The maximality condition (2.22) follows from (2.32).
The terminal condition (2.23) follows from (2.33).
The identities (2.35) and (2.22) each hold almost everywhere and together imply

−p0(t) = max
ω∈U

p(t) · f(t, x∗(t), ω) ∀t ∈ [0, T ∗],

since the two sides are continuous. Taking this identity with that of (2.33), at
t = T ∗ yields (2.24), and thus completes the sketch of the proof.

2.3.2 The minimum time problem, Bolza problem, and
calculus of variations

With the aid of the last theorem, we can establish maximum principles for other
optimization problems.

Minimum time problem. If we take the function φ0(T, x) = −T as the payoff
function in problem (2.18)-(2.20) and define the target set as

S(T ) := {x : φi(T, x) = 0, i = 1, ..., k},
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then we obtain the minimum time problem, which in words is the problem of
reaching the set S in a minimal amount of time. Thus, the minimum time problem
is a special case of the free end-time Mayer problem, and the maximum principle
of Theorem 2.6 may be applied to it.

Notice the fact max−φ0 = −minφ0 has been used here. It is a common pro-
cedure to treat a minimization problem as a maximization problem through this
reformulation, and more importantly it implies that the Pontryagin Maximum
Principle is applicable to both types of problems. In the present work, discussions
of necessary conditions for optimality will implicitly use this reformulation.

Bolza problem. The Bolza problem is given by

min
u∈U

∫ T

0

L(t, x(t), u(t))dt (2.37)

subject to

ẋ(t) = f(t, x(t), u(t)), x(0) = (x̄), u(t) ∈ U a.e., (2.38)

with terminal constraints

φi(T, x(T, u)) = 0, i = 1, ..., k. (2.39)

The scalar-valued function L, commonly called the Lagrangian, is assumed to
be continuous in all variables and continuously differentiable with respect to t, x.
With this assumption, we can define the auxiliary variable

xn+1(t) =

∫ t

0

L(s, x(s), u(s))ds,

and thereby reformulate the Bolza problem as a Mayer problem. Indeed, the cost
(2.37) is now given by

min
u∈U

xn+1(T ),

subject to the terminal constraints (2.39) and the n+ 1-dimensional dynamics{
ẋi(t) = fi(t, x(t), u(t)) i = 1, ..., n

ẋn+1(t) = L(t, x(t), u(t))

with initial condition (x1, ..., xn, xn+1) = (x̄1, ..., x̄n, 0).
An application of Theorem (2.6) to this problem establishes the PMP for the

Bolza problem which is described in the following theorem.

Theorem 2.7. Let f and L be continuous in all variables and continuously differ-
entiable with respect to t, x. Let the bounded control u∗ : [0, T ∗]→ U be optimal for
the problem (2.37)-(2.39) and assume that the vectors (∂φi

∂t
, ∂φi
∂x1
, ... ∂φi

∂xn
)(T ∗, x∗(T ∗)), i =

1, ..., k, are linearly independent. Then there exist a nontrivial adjoint vector p =
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(p1, ..., pn) and constants λ0, ..., λk with λ0 ≥ 0 such that, for almost every t ∈
[0, T ∗],

ṗ(t) = −p(t) ·Dxf(t, x∗(t), u∗(t))− λ0∇xL(t, x∗(t), u∗(t)),

p(t)·f(t, x∗(t), u∗(t)) + λ0L(t, x∗(t), u∗(t)) =

min
u∈U
{p(t) · f(t, x∗(t), u) + λ0L(t, x∗(t), u)},

d

dt
{p(t)·f(t, x∗, u∗) + λ0L(t, x∗, u∗)} =

p(t) · ∂f(t, x∗, u∗)

∂t
+ λ0

∂L(t, x∗, u∗)

∂t
,

(p1, ..., pn)(T ∗) =
k∑
i=1

λi(
∂φi
∂x1

(T ∗, x∗(T ∗)), ...,
∂φi
∂xn

(T ∗, x∗(T ∗))),

min
u∈U
{p(T ∗) · f(T ∗, x∗(T ∗), u) + λ0L(T ∗, x∗(T ∗), u)}

= −
k∑
i=1

λi
∂φi
∂t

(T ∗, x∗(T ∗)).

Calculus of Variations problem. The last classical problem we consider is
the standard problem in the calculus of variations. It is given by

min
x(·)

∫ T

0

L(t, x(t), ẋ(t))dt, (2.40)

subject to
x(0) = x̄, x(T ) = ȳ, (2.41)

for x̄, ȳ ∈ Rn.
The first order necessary conditions for this problem, called the Euler-Lagrange

and Weierstrass necessary conditions, can be derived from Theorem 2.7, and are
given in the following theorem.

Theorem 2.8. Assume that L is continuously differentiable in all variables t, x, ẋ.
Let x∗(·) be a Lipschitz continuous function which attains the minimum for the
problem (2.40)-(2.41). Then

• The function t 7→ ∂L
∂ẋ

(t, x∗(t), ẋ∗(t)) coincides a.e. with an absolutely contin-
uous function, such that

d

dt

[
∂L

∂ẋ
(t, x∗, ẋ∗)

]
=
∂L

∂x
(t, x∗, ẋ∗).

• The function t 7→ L(t, x∗(t), ẋ∗(t))− ∂L
∂ẋ

(t, x∗(t), ẋ∗(t)) · ẋ∗i coincides a.e. with
an absolutely continuous function such that

d

dt

[
L(t, x∗, ẋ∗)−

n∑
i=1

∂L

∂ẋi
(t, x∗, ẋ∗) · ẋ∗i

]
=
∂L

∂t
(t, x∗, ẋ∗).
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• For almost every t ∈ [0, T ] and every ω ∈ Rn,

L(t, x∗(t), ω) ≥ L(t, x∗(t), ẋ∗(t)) +
∂L(t, x∗(t), ẋ∗(t))

∂ẋ
· (ω − ẋ∗(t)).

2.4 Fundamental definitions and results
We provide notation and basic definitions and facts to be used throughout the
following.

2.4.1 Notation and definitions
Let us list here notations and conventions to be used.
C([a, b],Rn) denotes the vector space of continuous Rn-valued functions on [a, b]

with supremeum norm, and C∗([a, b],Rn) its topological dual.
Cm([a, b],Rn) denotes the collection of Rn-valued functions on [a, b] which have

continuous mth derivative.
C+([a, b],Rn) ⊂ C∗([a, b],Rn) is the cone of functionals taking nonnegative val-

ues on nonnegative functions.
AC([a, b],Rn) is the space of absolutely continuous Rn-valued functions on [a, b].
BV +([a, b],Rn) denotes the vector space of Rn-valued functions on [a, b], of

bounded variation, which are continuous from the right on (a, b). The Borel mea-
sure associated with some x ∈ BV +([a, b],Rn) is denoted dx. We use a similar
notation for BV −([a, b],Rn), the class of functions of bounded variation which are
left-continuous. It will sometimes be necessary to restrict either of these classes
further to being right continuous at 0.

The weak∗ topology on BV +([a, b],Rn) refers to the weak∗ topology on (Rn ×
C([a, b],Rn))∗ under the isomorphism

x→ (x(0), dx). (2.42)

Consequently, “xi → x (weakly∗)” means that xi(0)→ x(0) and dxi → dx (weakly∗

in C∗([a, b],Rn)).
L denotes the Lebesgue subsets of [a, b], B the Borel subsets in Rk, and L × B

the product σ-field. The notation B([a, b]) may in places be used to denote the
collection of Borel subsets of [a, b]; clarification will be provided when necessary.

2.4.2 Functions of bounded variation and regular Borel
measures

Here we recall some important properties of functions of bounded variation and
introduce the associated notation.

Definition 2.9. A function u : [0, T ] → Rm is said to be of bounded total vari-
ation or just bounded variation on the subinterval [a, b] ⊆ [0, T ] if there exists a
constant C ≥ 0 such that, for each finite set of points t0, ..., tk satisfying

a = t0 < t1 < ... < tk = b,
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the inequality
k∑
j=1

|u(tj)− u(tj−1)| ≤ C

holds, where | · | denotes the Euclidean norm. The least C which satisfies the above
condition is called the variation of u on [a, b], and it is denoted by V b

a (u). The
number V T

0 (u) will be called the total variation of u.

As it will be used throughout the following, we mention that the left and right
hand limits of a function u at a point t will be written as u(t−) = lim

s→t−
u(s) and

u(t+) = lim
s→t+

u(s), respectively.

In order to simplify the analysis to follow, we will in places work with the subset
of functions of bounded total variation which are one-side continuous. For instance,
recall BV −([0, T ],Rm) defined above as the set of all functions of bounded vari-
ation on [0, T ] taking values in Rm which are left continuous on (0, T ] and right
continuous at 0. Recall that functions which have bounded variation on an inter-
val [a, b] have only jump-type discontinuities on that interval and their one-sided
limits exist at all points in the interval [14, 15], so the results which follow these
restrictions can be extended with proper modifications to the broader class of func-
tions of bounded total variation. This is shown below. Let us point out that this
choice is arbitrary and in the present work and other literature, [19, 23, 24] for
example, the subset of right continuous functions in BV ([0, T ],Rm) is sometimes
chosen instead.

Recall that for every u ∈ BV ([0, T ],Rm) the distributional derivative u̇ is an
Rm-valued, regular Borel measure on (0, T ). If u ∈ BV −([0, T ],Rm), then u̇ is
characterized by the equality

u̇([t1, t2)) = u(t2)− u(t1)

for every subinterval [t1, t2) ⊆ (0, T ). For every t ∈ (0, T ),

u̇({t}) = 4u(t) := u(t+)− u(t−).

The integral of a function f : [0, T ]→ R with respect to the measure u̇ on a Borel
subset E of (0, T ) may be denoted by∫

E

fu̇,

or by ∫
E

fdu,

where du is as defined in section 2.4.1.
Lastly, recall that if u ∈ BV −([0, T ],Rm), then, for every subinterval [t1, t2) ⊆

(0, T ), we have
|u̇|([t1, t2)) = V t2

t1 (u),
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where |u̇| is the total variation of the measure u̇. Furthermore,

|u̇|((0, T )) = V T
0 (u),

for every u ∈ BV −([0, T ],Rm).
Since we can associate the map u ∈ BV ([0, T ],Rm) with the left continuous map

u− ∈ BV −([0, T ],Rm) defined by

u−(t) = u(t−), t ∈ (0, T ], u−(0) = u(0+)

and show that u− = u almost everywhere, we have that u̇− = u̇ as measures on
(0, T ). Thus, our choice of left continuous functions does not result in a loss of
generality.
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Chapter 3
Graph completion methods for impulsive
control problems

The theory of graph completions has its origins in the work [17], where a time
reparameterization is used to handle impulses. Further development of this concept
was made in the work [13], where the time reparameterization concept is extended
to control dynamics which involve the multiplication of a state-dependent term
with a vector-valued impulse. The key insight in this step is the concept of a
graph completion which we will consider below. Other developments of the graph
completion occur in [5, 6], where the cases of commutative and noncommutative
vector fields for impulsive systems are considered separately. A solution concept for
impulsive differential inclusions is set forth in [18], of which the companion paper
[19] established a maximum principle for a fixed end-time Mayer problem. An
equivalent solution concept for the impulsive inclusion is provided by [23], which
the current work uses to provide a relationship between solutions of impulsive
differential inclusions and those of impulsive differential equations analogous to
the discussion in section 2.2.

As an example and a source of new results, we apply graph completion solution
techniques to the neural spiking model of [8].

3.1 Impulsive control differential equations
Consider the Cauchy problem{

ẋ(t) = f(x(t)) +
∑m

i=1 gi(x(t))u̇i(t), t ∈ [0, T ],

x(0) = x̄,
(3.1)

where the m+1 vector fields f, g1, ..., gm from Rn into Rn are assumed to be globally
bounded and continuously differentiable on Rn and the control u = (u1, ..., um) :
[0, T ] → Rm is vector-valued. Notice u enters into the equation only through its
derivative u̇. If u is absolutely continuous on [0, T ], then (3.1) admits a unique
absolutely continuous solution in the sense of Caratheodory.

Allowing u to be a function of bounded variation on [0, T ] and such that u is
continuous at 0 and T has the effect of introducing impulsive dynamics into (3.1)
as the term u̇ must then be interpreted as a distributional derivative or a measure
which potentially has atoms t ∈ (0, T ). This will in general cause trajectories of
the system to have jumps. The main difficulty faced in [13] is handling, and in
particular defining, the multiplication of u̇i and gi at an atom t of u̇i when gi
depends on the state variable x. The authors there introduce a solution concept in
the sense of measure to (3.1) which includes a rule for evolving gi along the jumps
produced by atoms of u̇i and thereby defines their product in a natural way. Then
an auxiliary system is formed in the augmented state variable y through the use
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of a function ϕ, called a graph completion, which connects or fills in the jumps
of the function u in a Lipschitz continuous manner. This auxiliary system turns
out to have a unique absolutely continuous solution in the sense of Caratheodory,
and moreover, this solution equals that of the measure equation for almost every
t ∈ [0, T ] through the inverse, or psuedo-inverse, of the time component ϕ0 of the
graph completion, that is, x = y(ϕ−1

0 ).
In what follows, we provide the details to the above summary stating needed

results of [13] but leaving the proofs to be consulted therein.

3.1.1 A solution in the sense of measure
We now define a solution to (3.1) in the sense of measure. The first task is to
handle the multiplication of gi and u̇i at the atoms of u̇i.

Let (z, p) ∈ Rn×Rm. For every i = 1, ...,m, define the function g̃i : Rn×Rm → Rn

as

g̃i(z, p) =

∫ 1

0

gi(exp(σ
m∑
j=1

pjgj)z) dσ, (3.2)

where exp(σ
∑m

j=1 p
jgj)z denotes the value at time s = σ of the solution to the

Cauchy problem

dw

ds
=

m∑
j=1

pjgj(w(s)), w(0) = z. (3.3)

Now observe

m∑
i=1

pig̃i(z, p) =

∫ 1

0

m∑
i=1

pigi(exp(σ
m∑
j=1

pjgj)z) dσ

= exp(σ
m∑
i=1

pigi)z

∣∣∣∣∣
1

0

= exp(
m∑
i=1

pigi)z − z

by definition (3.2), then by the fact that exp(·) solves (3.3), and lastly by evalua-
tion. Thus we have

m∑
i=1

pig̃i(z, p) = exp(
m∑
i=1

pigi)z − z, (3.4)

which will be a useful fact in what follows.
Now consider for t ∈ (0, T ) the Cauchy problem,

ẋ = f(x) +
m∑
i=1

g̃i(x(t−), u̇({t}))u̇i, x(0+) = x̄, (3.5)
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and observe that (3.5) admits a Caratheodory solution if the measure u̇ has no
atoms. We can now define a solution to this problem.

Definition 3.1. Let u ∈ BV −([0, T ],Rm). A solution of (3.5) is a map x ∈
BV −([0, T ],Rn) which satisfies (3.5) in the sense of measures on (0, T ). That is,
x satisfies ∫

B

ẋ =

∫
B

f(x(t))dt+
m∑
i=1

∫
B

g̃i(x(t−), u̇({t}))u̇i

for every Borel subset B of (0, T ).

3.1.2 Solutions via graph completions
We can view the problem given by (3.1) from a different perspective by associating
with it the n+ 1-dimensional Cauchy problem{

dy0(s)
ds

= dϕ0(s)
ds

, y0(0) = 0, s ∈ [0, 1]
dy(s)
ds

= f(y(s))dϕ0(s)
ds

+
∑m

i=1 gi(y(s))dϕi(s)
ds

, y(0) = x̄,
(3.6)

where ỹ = (y0, y) : [0, 1]→ [0, T ]×Rn, ϕ0 is a non-decreasing map from [0, 1] onto
[0, T ], and ϕ = (ϕ1, ..., ϕm) is an m-dimensional control from [0, 1] into Rm.

For u ∈ C1([0, T ],Rm), (3.1) has a unique solution on [0, T ]. If ϕ : [0, 1] → Rm

is any C1 reparametrization of the graph of u, meaning ϕ0 ∈ C1([0, 1]), ϕ0(0) = 0,
ϕ0(1) = T , dϕ0(s)/ds ≥ 0, and ui(ϕ0(s)) = ϕi(s) for every s ∈ [0, 1], then it is
simple to show that the solution ỹ = (y0, y) of (3.6) corresponding to ϕ satisfies
x(ϕ0(s)) = y(s) for every s ∈ [0, 1]. Thus

x(t) = y(ϕ−1
0 (t)) ∀t ∈ [0, T ],

so long as ϕ0 is strictly increasing.
If u does not possess this regularity, say we let u be a function of bounded to-

tal variation on [0, T ], then the above argument no longer suffices. Nonetheless, it
serves as guidance and motivation for the construction of a Lipschitz continuous
function, ϕ in the above, which reparametrizes the graph of u in such a way that
(3.6) has classical solutions. Moreover, this graph completion will allow us to es-
tablish a relationship between these classical solutions and the solutions of (3.5).
We begin with the precise definition of a graph completion.

Definition 3.2. (Graph Completion). Consider any function u : [0, T ] → Rm. A
Lipschitz continuous path ϕ = (ϕ0, ϕ1, ..., ϕm) : [0, S] → [0, T ] × Rm is a graph
completion of u if

• ϕ(0) = (0, u(0)), ϕ(S) = (T, u(T )),

• ϕ0(s1) ≤ ϕ0(s2) for all 0 ≤ s1 ≤ s2 ≤ S,

• for each t ∈ [0, T ] there exists some s such that ϕ(s) = (t, u(t)).
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Notice that in the above definition and in other places the notation for the graph
completion (ϕ0, ϕ) may be compressed as ϕ = (ϕ0, ..., ϕm) for convenience. It will
be apparent when this is the case, and unless otherwise indicated ϕ should be
assumed to be only the m-vector portion of the graph completion.

The path ϕ must provide a continuous parameterization of the graph of u, and
in particular, it must form an arc across any jump discontinuities that u may
have. The lemma below, from [4], indicates the class of functions for which a graph
completion can be constructed.

Lemma 3.3. A graph completion of u exists if and only if u has bounded total
variation.

Proof. Step 1. Let ϕ = (ϕ0, ..., ϕm) be a graph completion of u. For any finite
sequence 0 = t0 < t1 < ... < tk = T we can choose parameter values 0 = s0 < s1 <
... < sk = S such that ϕ0(sj) = tj. We then have

∑
j

|u(tj)− u(tj−1)| ≤
∑
j

|ϕ(sj)− ϕ(sj−1)| ≤
∫ S

0

|ϕ̇(s)| ds.

Taking the supremum over all increasing sequences t0 < t1 < ... < tk, k ≥ 1, we
obtain

V T
0 (u) ≤

∫ S

0

|ϕ̇(s)|ds <∞

since ϕ is Lipschitz continuous.
Step 2. Conversely, assume that the control function u(·) has bounded total

variation. This means u is continuous almost everywhere with at most countably
many points of jump discontinuities (cf. [15]). Moreover, it admits left and right
limits u(τ−), u(τ+) at every time τ . We will construct a graph-completion of u by
bridging each of its jumps with a straight segment. For each τ ∈ [0, T ], consider
the total variation of u restricted to the subinterval [0, τ ]

V τ
0 (u) = sup

0≤t0<t1<...<tN≤τ

N∑
j=1

|u(tj)− u(tj−1)|.

Set S = T + V T
0 (u) and define the path ϕ : [0, S]→ [0, T ]× Rm as follows.

The map t 7→ t+V t
0 (u) is strictly increasing, given s ∈ [0, S] there exists exactly

one τ ∈ [0, T ] such that τ + V τ−
0 (u) ≤ s ≤ τ + V τ+

0 (u). We consider the following
cases:

• If s = τ + V τ
0 (u), set ϕ(s) = (τ, u(τ)). This happens if u is continuous at τ .

• If τ + V τ−
0 (u) ≤ s ≤ τ + V τ

0 (u), say s = θ[τ + V τ
0 (u)] + (1 − θ)[τ + V τ−

0 (u)]
for some θ ∈ [0, 1], set

ϕ(s) = (τ, θu(τ) + (1− θ)u(τ−)).
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• If τ + V τ
0 (u) ≤ s ≤ τ + V τ+

0 (u), say s = θ[τ + V τ+

0 (u)] + (1 − θ)[τ + V τ
0 (u)]

for some θ ∈ [0, 1], set

ϕ(s) = (τ, θu(τ+) + (1− θ)u(τ)).

It is simple to check that the above contruction satisfies all conditions required
by the definition of graph completion. In particular, observe that the map s 7→ ϕ(s)
is Lipschitz continuous with constant L = 1.

It is important to notice that trajectories of the auxiliary system (3.6) deter-
mined by a given graph completion ϕ of u will depend on the path by which ϕ
connects the graph of u and that distinct graph completions will yield distinct
trajectories. However, the trajectory determined by a given graph completion is
independent of the time parametrization (cf. [4]). The dependence of trajectories
on graph completions permits some degree of freedom in deciding the behavior of
trajectories at jumps. It is our purpose to establish solutions of (3.6) which coin-
cide through the inverse of ϕ0 (at least where this inverse exists) with solutions of
(3.5), so we introduce the canonical graph completion.

Definition 3.4. (Canonical Graph Completion). Let u belong to BV −([0, T ],Rm),
and set

η(t) :=
t+ V t

0 (u)

T + V T
0 (u)

, t ∈ [0, T ], (3.7)

where V t
0 (u) is the total variation of the function u on the interval [0, t]. Call η the

reparameterization function. The canonical graph completion ϕ of u is defined by

ϕ(s) :=

{
(t, u(t)) if s = η(t),

(t, u(t) + s−η(t)
4η(t)

4u(t)) if s ∈ (η(t), η(t+)),
(3.8)

where 4u(t) := u(t+)− u(t−).

The canonical graph completion ϕ of u is the Lipschitz continuous map which
reparametrizes the graph of u by connecting each jump in the graph with the
shortest line segment connecting the points on either side of the jump. Some easily
verified properties of ϕ which will later be useful are as follows:

• 4η(t) = |4u(t)|
T+V T0 (u)

;

• dϕ
ds

(s) = (0, 4u(t)
4η(t)

), ∀s ∈ (η(t), η(t+));

• ϕ is Lipschitz continuous with constant T + V T
0 (u).
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We now state without proof one of the main results Theorem 2.2 of [13], which
provides the link between solutions of the system (3.5) and solutions of the auxiliary
system (3.6). The proof of this theorem is in the mentioned article, and it is worth
noting that part of this proof will be extended to the proof of Theorem 3.11 of the
present work.

Theorem 3.5. Let u belong to BV −([0, T ],Rm). Then a map x ∈ BV ([0, T ],Rn)
is a solution of (3.5) if and only if there exists a solution ỹ = (y0, y) of (3.6)
corresponding to the canonical graph completion ϕ such that

x(t) = y(η(t)) (3.9)

for almost every t ∈ (0, T ).

The proof of this theorem requires the use of Volpert’s averaged superposition
along with a related theorem, which we state for later use in our own analysis. For
more on this concept see [21], and for the proof of the theorem see [1].

Let A : Rp → Rq be a bounded Borel function, and let v belong to BV ([0, T ],Rp).
The function Â(v) : [0, T ]→ Rq defined by

Â(v)(t) :=

∫ 1

0

A(v(t−) + σ(v(t+)− v(t−))dσ =

∫ 1

0

A(σv(t+) + (1− σ)v(t−))dσ

is called the average superposition of A and v.
Observe that Â(v)(t) = A(v(t)) for each t at which v is continuous.

Theorem 3.6. Let ψ : [0, 1] → Rn be a Lipschitz continuous function and let
z ∈ BV ([0, T ], [0, 1]). If the map α is defined by

α(t) := ψ(z(t)) ∀t ∈ [0, T ],

then

• α ∈ BV ([0, T ],Rn);

• the identity of measures α̇ = ψ̂∗(z)ż holds, where ψ∗ denotes any Borel func-
tion coinciding with the derivative dψ/ds almost everywhere with respect to
Lebesgue measure.

3.1.3 Example: A one-dimensional system with impulse
We consider a one dimensional impulsive differential equation and determine its so-
lution via the canonical graph completion technique described above. The equation
with initial value is

dx

dt
= cxδ(t− t∗), x(0) = x0, (3.10)

where c > 0, t ∈ [0, T ], and t∗ ∈ (0, T ). This is the initial value problem first
considered in [8] with the time interval here being finite, a necessity for the graph
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completion, and with state variable x replacing the variable u. We will see that
the finiteness of the time interval will ultimately make no difference in the solution
established through the graph completion.

Recall that the Dirac δ-function is the generalized function with the following
properties:

δ(t) =

{
+∞ t = 0,

0 t 6= 0,

and ∫ t

−∞
δ(τ)dτ =

{
0 t ≤ 0,

1 t > 0.
(3.11)

We have chosen δ to have a left-continuous integral to be congruent with the
class of impulse functions already considered, but again this is merely a matter
of choice and right-continuity could be chosen just as well. The right hand side of
(3.11) is often denoted

H(t) :=

{
0 t ≤ 0,

1 t > 0,
(3.12)

which is the left-continuous version of the Heaviside function.
For the impulse function used in [8], δ(t− t∗) for t∗ ∈ (0, T ), we derive the graph

completion

ϕ(s) = (ϕ0(s), ϕ1(s)) =


(s(T + 1), 0) if 0 ≤ s ≤ t∗

T+1
,

( t∗
T+1

, (T + 1)s− t∗) if t∗
T+1

< s < t∗+1
T+1

,

(s(T + 1)− 1, 1) if t∗+1
T+1
≤ s ≤ 1,

(3.13)

which has derivative

ϕ̇(s) = (ϕ̇0(s), ϕ̇1(s)) =


(T + 1, 0) if 0 ≤ s ≤ t∗

T+1
,

(0, T + 1) if t∗
T+1

< s < t∗+1
T+1

,

(T + 1, 0) if t∗+1
T+1
≤ s ≤ 1.

(3.14)

We form the auxiliary system for this problem according to (3.6) to get

{
ẏ0(s) = ϕ̇0(s)

ẏ(s) = cy(s)ϕ̇1(s), s ∈ [0, 1]
(3.15)

with initial condition
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(y0(0), y(0)) = (0, x0).

This initial value problem has solution

(y0(s), y(s)) =


((T + 1)s, x0) 0 ≤ s ≤ t∗

T+1

(t∗, x0e
c(T+1)(s− t∗

T+1
)) t∗

T+1
≤ s ≤ t∗+1

T+1

((T + 1)s− 1, x0e
c) t∗+1

T+1
≤ s ≤ 1.

According to Theorem 3.5, we regain a solution x of bounded variation to (3.10)
in the sense of measure from the relation x(t) = y(η(t)). Hence,

x(t) =

{
x0, t ∈ [0, t∗]

x0e
c, t ∈ (t∗, T ],

(3.16)

which matches the solution to the example considered in [8] by letting the final
time T be arbitrarily large.

3.2 Application to a neural spiking model
We turn our attention to the neural spiking model presented by [8]. Electrochem-
ical signals are passed between two neurons at a junction called a synapse in the
form of chemical neurotransmitters which cross the synapse from the presynaptic
neuron to the postsynaptic neuron. The neurotransmitter is stored in vesicles, and
when the presynaptic neuron fires, some of the vesicles filled with neurotransmit-
ter move to the edge of the neuron to release neurotransmitter into the synapse.
The model considers the vesicles to be in one of three states: available, active, and
recovering with population fractions denoted by x, y, and z, respectively. There is
a phenomenon whereby impulses sent in sufficiently rapid succession actually facil-
itate a series of spikes each with a signal or voltage spike larger than the previous
one. This effect will be represented by the state variable u. The full model is given
as the following system of impulsive ODEs:

dx

dt
=

z

τrec

− δ(t− t∗)xu,

dy

dt
= − y

τin

+ δ(t− t∗)xu,

dz

dt
=

y

τin

− z

τrec

,

du

dt
= − u

τfacil

+ δ(t− t∗)k(1− u).

(3.17)

This system is analyzed in [8] through the use of a sequence of continuous func-
tions which converge to the δ function. Plots of the active vesicle state are given for
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some specific parameter values along with a plot of a numerical solution to the sys-
tem for certain parameter values. We establish comparable results through the use
of the graph completion techniques described above and provide the corresponding
plots obtained from our analysis. The authors in [8] first consider the decoupled
equation for u, so we follow the same steps to establish a thorough comparison.

3.2.1 Result: A solution to the model via the canonical
graph completion

Facilitated state. We first consider the fourth equation in the system of differ-
ential equations given above, taking the parameter τfacil = 1. Observe that this
equation decouples from the remaining system, and as we will show yields an ex-
plicit solution which may then be substituted back into the whole system. The
initial value problem is

{
du
dt

= −u+ k(1− u)δ(t− t∗)
u(0) = ū, t ∈ [0, T ].

(3.18)

We use the canonical graph completion ϕ of δ along with the auxiliary system
formulation given by (3.6) to write


U̇0(s) = ϕ̇0(s)

U̇(s) = −U(s)ϕ̇0(s) + k(1− U(s))ϕ̇1(s)

(U0, U)(0) = (0, ū), s ∈ [0, 1],

(3.19)

which, with the explicit values of ϕ̇ from (3.14), is

(U̇0(s), U̇(s)) =


(T + 1,−(T + 1)U(s)) s ∈ [0, t∗

T+1
]

(0, k(T + 1)(1− U(s))) s ∈ [ t∗
T+1

, t∗+1
T+1

]

(T + 1,−(T + 1)U(s)) s ∈ [ t∗+1
T+1

, 1].

(3.20)

This system has solution

(U0(s), U(s)) =


((T + 1)s, ūe−(T+1)s) s ∈ [0, t∗

T+1
]

(t∗, 1 + e−k((T+1)s−t∗)(ūe−t∗ − 1)) s ∈ [ t∗
T+1

, t∗+1
T+1

]

((T + 1)s− 1, e(t∗+1)−(T+1)s(1 + (ūe−t∗ − 1)e−k)) s ∈ [ t∗+1
T+1

, 1].

Once again we use the rule u(t) = U(η(t)) to recover, for the original system in
u, the solution

u(t) =

{
ūe−t∗ t ≤ t∗

(1− (1− ūe−t∗)e−k)e−(t−t∗) t > t∗.
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By letting T be arbitrarily large, this solution matches the solution given in [8],
and it follows that the same jump condition u(t+∗ ) = u(t−∗ ) + (1− e−k)(1− u(t−∗ ))
is obtained from this solution.

Full model. Again taking ϕ to be the canonical graph completion of δ and
appealing to the formulation of (3.6), we obtain for (3.17) the auxiliary system

dX0

ds
= ϕ̇0(s)

dX

ds
=
Z(s)

τrec

ϕ̇0(s)−X(s)U(s)ϕ̇1(s)

dY

ds
= −Y (s)

τin

ϕ̇0(s) +X(s)U(s)ϕ̇1(s)

dZ

ds
=

(
Y (s)

τin

− Z(s)

τrec

)
ϕ̇0(s)

dU

ds
=
−U(s)

τfacil

ϕ̇0(s) + k(1− U(s))ϕ̇1(s).

(3.21)

The values of (ϕ̇0, ϕ̇)(s) may be substituted into (3.21), and the resulting system
may be solved numerically. From this we recover the numerical solution to the
original system in time t through the rule x(t) = X(η(t)). Figure 3.1 is a plot of
this numerical solution for the original system in time t.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.2
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1

time

FIGURE 3.1. A plot of the solution to the neural spiking model (3.17) in the original
states x, y, z, u and time t regained from the numerical solution to the reparameterized
system (3.21). The dotted and dashed line is x, the solid line is y, the dashed line is z,
and the dotted line is u. Parameter values are τin = 0.01,τrec = 0.1,τfacil = 1.0, and
k = 0.3.
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Thus, we see the flexibility of the reparameterization technique, for we have
considered at least one case where the canonical graph completion is applied to
a system to yield an analytical solution and a case where the canonical graph
completion is applied to a system to yield a numerical solution.

3.2.2 Result: The canonical graph completion solution as
a solution to the general jump-specified impulsive
system

Consider the problem{
dx
dt

= f(t, x) + g(t, x)δ(t− t∗), t ∈ [0, T ],

x(0) = x̄,
(3.22)

where t∗ ∈ (0, T ), f and g are continuously differentiable functions with g(t∗, ·)
nowhere zero, and the first line is interpreted as an equality between measures.

The result Proposition 5.1 of [8] demonstrates that this system, when viewed as a
perturbation theory problem through the use of continuous δε sequences converging
to δ as ε→ 0, can be equivalently recast in the jump-specified form of an impulsive
differential equation as

dx

dt
= f(t, x), t 6= t∗, (3.23)

with the implicit jump condition

G∗(x(t+∗ ))−G∗(x(t−∗ )) = 1, (3.24)

where

G∗(x) =

∫
dx

g(t∗, x)
.

It is natural to consider whether the reparameterization methods from [13] and
described above also yield a solution satisfying this jump-specified form, and thus
provide an alternate means of obtaining such a solution. It turns out that this is the
case if we consider the auxiliary system formed by the canonical graph completion
corresponding to the δ distribution.

In order to apply these techniques, we must first remove the explicit time de-
pendence of f and g by adding the new state variable x0 = t and the equation
ẋ0(t) = 1 with x0(0) = 0. Then (3.22) becomes{

ẋ0(t) = 1, (x0(0), x(0)) = (0, x̄),

ẋ(t) = f(x0(t), x(t)) + g(x0(t), x(t))δ(t− t∗),
(3.25)

which by (3.14) and (3.6) has auxiliary system

(ẏ0(s), ẏ(s)) =


(T + 1, (T + 1)f(y0(s), y(s))) s ∈ [0, t∗

T+1
]

(0, (T + 1)g(y0(s), y(s))) s ∈ ( t∗
T+1

, t∗+1
T+1

)

(T + 1, (T + 1)f(y0(s), y(s))) s ∈ [ t∗+1
T+1

, 1].

(3.26)
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Note that the reparameterized equation for the state x0 coincides with that of
the reparameterized time state y0, so to simiplify notation the redundant equation
is not listed above and the state y0 will act as both the reparameterization of the
state x0 and the reparameterized time state y0. Also note that the auxiliary system
decouples and we immediately obtain y0(s) explicitly as

y0(s) =


(T + 1)s, s ∈ [0, t∗

T+1
]

t∗, s ∈ ( t∗
T+1

, t∗+1
T+1

)

(T + 1)s− 1, s ∈ [ t∗+1
T+1

, 1],

(3.27)

so (3.26) becomes

(ẏ0(s), ẏ(s)) =


(T + 1, (T + 1)f((T + 1)s, y(s))) s ∈ [0, t∗

T+1
]

(0, (T + 1)g(t∗, y(s))) s ∈ ( t∗
T+1

, t∗+1
T+1

)

(T + 1, (T + 1)f((T + 1)s− 1, y(s))) s ∈ [ t∗+1
T+1

, 1].

(3.28)

We can now state a proposition relating a solution of (3.28) to a solution of
(3.23), (3.24). (The details of the initial condition at x̄ are omitted for simplicity
in the following but can easily be verified within the proof.)

Proposition 3.7. If the function y(·) is a solution to the y-component of the
system (3.28), then the function x(t) := y(η(t)) satisfies the conditions of the jump-
specified form of the impulsive differential equation given by (3.23) and (3.24),
where η(t) is as defined in (3.7).

Proof. Let y(·) be a solution to the second state component of (3.28), so

ẏ(s) =


(T + 1)f((T + 1)s, y(s)) s ∈ [0, t∗

T+1
]

(T + 1)g(t∗, y(s)) s ∈ ( t∗
T+1

, t∗+1
T+1

)

(T + 1)f((T + 1)s− 1, y(s)) s ∈ [ t∗+1
T+1

, 1].

(3.29)

Define x(t) := y(η(t), and observe in this case that

η(t) =

{
t

T+1
, t ≤ t∗

t+1
T+1

, t > t∗.
(3.30)

Thus, η has derivative η̇(t) = 1
T+1

for t 6= t∗. The reparameterized times s ∈
[0, t∗

T+1
] and s ∈ [ t∗+1

T+1
, 1] correspond to the non-impulsive times t < t∗ and t > t∗,

respectively, and s = η(t) for these times. Therefore,

ẋ(t) = ẏ(η(t))η̇(t)

=
1

T + 1
ẏ(η(t)),

for which (3.29) and (3.30) give

ẋ(t) =

{
f(t, y( t

T+1
)) , t < t∗

f(t, y( t+1
T+1

)) , t > t∗.
(3.31)
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But with (3.30) and the definition of x(t) we may rewrite (3.31) as

ẋ(t) = f(t, x(t)) t 6= t∗,

which satisfies (3.23).
Now we consider the time t = t∗, which has corresponding reparameterized

times s ∈ ( t∗
T+1

, t∗+1
T+1

) with y( t∗
T+1

) = x(t−∗ ) and y( t∗+1
T+1

) = x(t+∗ ) as can be seen from
(3.27). For these times, (3.28) gives

dy

ds
= (T + 1)g(t∗, y). (3.32)

Hence ∫ x(t∗+)

x(t∗−)

dx

g(t∗, x)
=

∫ y( t∗+1
T+1

)

y( t∗
T+1

)

dy

g(t∗, y)

=

∫ t∗+1
T+1

t∗
T+1

(T + 1)ds

= 1,

which is equivalent to (3.24), so the proof is complete.

Remark 3.8. The canonical graph completion is used and explicitly mentioned
in the above, but in such a case where the impulsive measure is scalar-valued the
canonical graph completion provides the unique path by which the graph of the
measure’s distribution function is reparameterized as a Lipschitz function. Note
once more that a trajectory of the auxiliary system formed with a given graph
completion depends only on this path and not on the way the path is parame-
terized. The canonical graph completion simply provides a convenient method for
constructing and handling graph completions.

3.3 Impulsive control differential inclusions
As in [23], we consider the measure driven differential inclusion{

dx ∈ F (x(t))dt+G(x(t))µ(dt),

x(0−) = x̄, t ∈ [0, T ]
(3.33)

for µ a vector-valued, regular Borel measure taking values in the compact set
K ⊂ Rm on [0, T ]. We let c > 0 and make the following assumptions on the mul-
tifunctions F and G in accordance with [23]

(H1) The multifunction F has closed graph and convex values, and satisfies

f ∈ F (x)→ |f | ≤ c(1 + |x|) ∀x ∈ Rn.
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(H2) The multifunction G has closed graph and closed, convex values, and sat-
isfies

g ∈ G(x)→ ||g|| ≤ c(1 + |x|) ∀x ∈ Rn.

Observe that if µ is absolutely continuous with respect to Lebesgue measure,
then (3.33) reduces to an ordinary differential inclusion which has an extensive
theory. If we are to allow the trajectory x(·) to be a function of bounded variation,
then we will need to provide additional framework similar to that provided in the
differential equations case above.

Recall that the distribution function u(·) : [0, T ] → Rm of µ is given by u(t) =
µ([0, t]). Just as above, we can construct the canonical graph completion (ϕ0, ϕ) of
u, so for every t ∈ [0, T ] there exists an s ∈ [0, 1] such that (ϕ0(s), ϕ(s)) = (t, u(t)).
Note that the total variation in the sense of measure of µ is equal to the total
variation in the function sense of its distribution function u. Hence, we may use
either of these values to compute the graph completion. For more on using the
total variation of the measure µ for the graph completion see [18, 19]. Observe
that

ϕ0(s) = t ⇔ η(t−) ≤ s ≤ η(t+),

where η is the reparameterization function from (3.7). The left and righthand
limits η(t−) and η(t+) are equal if and only if t is not an atom of µ. Let Ds(µ)
be the set of atoms of µ, and let I be the at most countable index set of Ds(µ).
Let Ii := [s−i , s

+
i ] := ϕ−1

0 (ti) be the time consumed during the jump. Since ϕ0 is
Lipschitz continuous, it is differentiable almost everywhere on [0, 1]. Let supp µσ ⊆
[0, T ] denote the closed support of µσ, the continuous singular component of the
decomposition of the measure µ (for more on this decomposition see [14]). Define
Γ := η(supp µσ) ⊆ [0, 1], and set Γ̃ := Γ ∪ (

⋃
i∈I Ii).

For the regular Borel measure µ from above, we can consider the three-tuple

Xµ := (x(·), ϕ(·), {yi(·)}i∈I) (3.34)

with the following constituents: x(·) : [0, T ] → Rn is of bounded variation with
its points of discontinuity a subset of µ’s atoms Ds(µ), ϕ(·) : [0, 1] → Rm is
the canonical graph completion of µ’s distribution function u(·), and {yi(·)}i∈I
is a collection of Lipschitz functions, each defined on the nondegenerate interval
Ii := [s−i , s

+
i ] and satisfying yi(s

±
i ) = x(t±i ).

In [23], a modification to differential inclusions of the Bressan-Rampazzo defini-
tion of solutions to controlled differential equations is provided. We can now state
that definition.

Definition 3.9. Consider a three-tuple Xµ as in (3.34), and let

y(s) =

{
x(t) s /∈

⋃
i∈I Ii, t = ϕ0(s)

yi(s) s ∈ Ii.
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Then Xµ is a reparameterized solution of (3.33) provided y(·) is Lipschitz on [0, 1]
and satisfies {

ẏ(s) ∈ F (y(s))ϕ̇0(s) +G(y(s))ϕ̇(s) a.e. s ∈ [0, 1]

y(0) = x̄.
(3.35)

It will now be our purpose to show that this reparameterized solution to the
differential inclusion (3.33) coincides with the reparameterized solution to an ap-
propriately modified system of differential equations of a form similar to (3.1).
In other words, we will provide a link between solutions of impulsive differential
inclusions and that of impulsive differential equations which parallels the link for
the non-impulsive, classic case.

3.4 Result: obtaining a system of impulsive

differential equations from an impulsive

differential inclusion
Before we can establish the link between the differential inclusion and the differen-
tial equation we must extend the generality of equation (3.1) to make it comparable
to the inclusion (3.33). Namely, consider the system{

ẋ(t) = f((x(t), v(t)) +
∑m

i=1 gi(x(t), w(t)) · u̇i(t),
x(0) = x̄, t ∈ [0, T ],

(3.36)

where the maps f : Rn×Rm → Rn and g : Rn×Rm → Rn are continuously differ-
entiable and globally bounded, u ∈ BV −([0, T ],Rm), and v, w are each measurable
functions on [0, T ] taking values in the compact set U ⊂ Rm.

Note that the term
∑m

i=1 gi ·u̇i in the differential equation (3.36) can be expressed
as the matrix product

m∑
i=1

gi · u̇i =


g1,1 g1,2 · · · g1,m

g2,1 g2,2 · · · g2,m
...

...
. . .

...
gn,1 gn,2 · · · gn,m



u̇1

u̇2

...
u̇m

 ,
where the arguments of the functions have been disregarded for neatness. Moreover,
we note that the term G · dµ appearing in the above differential inclusions is an
analogous matrix product with the only difference being that the elements of G
are subsets of R. This remark should be sufficient to allow transition clearly from
one notation to the other in what follows.

We adapt the procedure shown in section 3.1.1 above to define a solution in the
sense of measure. Let (z, w, p) ∈ Rn × Rm × Rm. For every i = 1, ...,m, define the
function g̃i : Rn × Rm × Rm → Rn as
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g̃i(z, w; p) =

∫ 1

0

gi(exp(σ
m∑
j=1

pjgj)(z, w)) dσ, (3.37)

where exp(σ
∑m

j=1 p
jgj)(z, w) denotes the value at time s = σ of the solution to

the Cauchy problem

dω

ds
=

m∑
j=1

pjgj(ω(s)), ω(0) = (z, w). (3.38)

Extending the identity (3.4), we have for every (z, w, p) ∈ Rn × Rm × Rm, the
identity

m∑
i=1

pig̃i(z, w; p) = exp(
m∑
i=1

pigi)(z, w)− (z, w). (3.39)

We now have, corresponding to the system (3.36), the Cauchy problem

ẋ = f(x, v) +
m∑
i=1

g̃i(x(t−), w(t−); u̇({t}))u̇i, x(0+) = x̄, (3.40)

on (0, T ) and for which we can define a solution in the sense of measure.

Definition 3.10. Let u ∈ BV −([0, T ],Rm). A solution of (3.40) is a map x ∈
BV −([0, T ],Rn) which satisfies (3.40) in the sense of measures on (0, T ). That is,
x satisfies ∫

B

ẋ =

∫
B

f(x(t), v(t))dt+
m∑
i=1

∫
B

g̃i(x(t−), w(t−); u̇({t}))u̇i

for every Borel subset B of (0, T ).

We turn our attention to the differential inclusion (3.33) and its reparametrized
counterpart (3.35) to mention that the latter inclusion, having a Lipschitz con-
tinuous solution y, is eligible to have a selection theorem like Filippov’s lemma,
mentioned in section 2.2, applied to it after obvious modification (in particular,
viewing the sum of two multifunctions as a single multifunction). Such a selection
theorem will provide for the existence of a pair of functions (v, w) : [0, 1]→ U ×U ,
called selections and whose regularity depends on the regularity of the multifunc-
tions F and G. In some sense, the selection inherits the regularity of the multi-
function. We do not investigate the minimal regularity of the given multifunctions
which guarantees the needed regularity of (v, w), but accept that such regularity
is attainable for a sufficiently regular choice of multifunction. We do note that the
pair (v, w) must be measurable functions and that in light of (3.40), w must have
a well-defined left-hand limit at all s ∈ [0, 1]. Measurability of the multifunction
will induce measurability of the selection. As for a well-defined left-hand limit of
w, it is sufficient, though not necessary, to take a continuous w having values in
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the compact set U ⊂ Rn to meet this criterion. Such a continuous selection is guar-
anteed if the multifunction under consideration is continuous, but as the theory
of multifunctions is rich it may well be possible to guarantee a one-sided continu-
ous selection from a less regular multifunction. For more details on regularity and
selections of multifunctions see [3] and [9].

Theorem 3.11. Let µ be a regular Borel measure with distribution function u
an element of BV −([0, T ],Rm), and let ϕ be the canonical graph completion of u
with reparameterization function η as defined in (3.7). Assume the three-tuple Xµ

from (3.34) yields a reparameterized solution y(·) of (3.33), and that there exists
a measurable selection (v, w) : [0, 1] → U × U such that w(s−) is well-defined for
all s ∈ [0, 1] and such that the map y(·) satisfies

dy(s)

ds
= f((y(s), v(s))

dϕ0(s)

ds
+

m∑
i=1

gi(y(s), w(s))
dϕi(s)

ds
, y(0) = x̄. (3.41)

Then the function x(t) := y(η(t)) is a solution of (3.40) under the controls v(η(·))
and w(η(·)).

Proof. By definition, y is a solution of the integral equation

y(s) =

∫ s

0

(f(y(ξ), v(ξ))ϕ0
∗(ξ) +

m∑
i=1

gi(y(ξ), w(ξ))ϕi∗) dξ,

where ϕ0
∗ and ϕi∗ are Borel functions coinciding with the derivatives dϕ0/ds and

dϕi/ds almost everywhere with respect to Lebesgue measure. Since f and the func-
tions gi are bounded, and the canonical graph completion ϕ is Lipschitz continu-
ous, y is also Lipschitz continuous. Note that η is an element of BV −([0, T ], [0, 1]).
Hence, Theorem 3.6 implies

ẋ = ŷ∗(η)η̇, (3.42)

where

y∗(s) = f(y(s), v(s))ϕ0
∗(s) +

m∑
i=1

gi(y(s), w(s))ϕi∗(s).

Recall Ds(µ) is the set of atoms of µ so [0, T ]\Ds(µ) is the set of points at which
the distribution function u (hence η) is continuous. Let A ⊂ [0, T ]\Ds(µ). We have
the identity of measures

ẋ(A) =

∫
A

ŷ∗(η)η̇,

and, by the continuity of η at every t ∈ A,

ŷ∗(η)(t) = y∗(η(t)) = f(y(η(t)), v(η(t)))ϕ0
∗(η(t)) +

m∑
i=1

gi(y(η(t)), w(η(t)))ϕi∗(η(t)).
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Then

ẋ(A) =

∫
A

f(y(η), v(η))ϕ0
∗(η)η̇ +

m∑
i=1

∫
A

gi(y(η), w(η))ϕi∗(η)η̇.

Since ϕ0(η(t)) = t for every t ∈ A, Theorem 3.6 implies that ϕ0
∗(η)η̇ coincides

with Lebesgue measure dt on A. Similarly, since ϕi(η(t)) = ui(t), we have ϕi∗(η)η̇ =
u̇i as measures on A, for i = 1, ...,m. Therefore,∫

A

ẋ =

∫
A

f(x(t), v(η(t))) +
m∑
i=1

∫
A

gi(x,w)u̇i.

Note for every t ∈ [0, T ]\Ds(µ) and for all i = 1, ...,m we have gi(x(t), w(η(t)) ≡
g̃i(x(t−), w(η(t−)); 0) = g̃i(x(t), w(η(t)); u̇({t})), where g̃ is as above. Thus, the
above equality can be written in the form∫

A

ẋ =

∫
A

f(x(t), v(η(t))) dt+
m∑
i=1

∫
A

g̃i(x,w(η), u̇({t}))u̇i. (3.43)

Now let t ∈ Ds(µ), and observe that (3.42) gives

ẋ({t}) = ŷ∗(η)(t)η̇({t}). (3.44)

Recall from the canonical graph completion discussion that ϕ̇(s) = (0, ∆u(t)
∆η(t)

) for

every s ∈ (η(t), η(t+)), which with equation (3.41) implies for every σ ∈ (0, η̇({t}))

y(η(t) + σ) = exp(σ
m∑
i=1

u̇i({t})
η̇({t})

gi)y(η(t)). (3.45)

Therefore

ŷ∗(η)(t) =

∫ 1

0

dy

ds
(η(t) + ση̇({t})) dσ

=
1

η̇({t})

∫ η(t)+η̇(t)

η(t)

dy

ds
(s) ds

=
1

η̇({t})
[exp

(
m∑
i=1

u̇i({t})gi

)
y(η(t))− y(η(t))].

This equation with (3.44) and the fact that y(η(t)) = x(t) gives∫
{t}
ẋ = exp

(
m∑
i=1

u̇i({t})gi

)
x(t)− x(t).

By (3.39), the right-hand side coincides with the vector

m∑
i=1

g̃i(x(t), w(t); u̇({t}))u̇i({t}).
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Furthermore,
∫
{t} f(x(t), v(η(t)) dt = 0, so

∫
{t}
ẋ =

∫
{t}
f(x(t), v(η(t))) dt+

m∑
i=1

∫
{t}
g̃i(x(t), w(η(t)); u̇({t}))u̇i. (3.46)

Since we have (3.43) and (3.46) for every A ⊂ [0, T ]\Ds(µ) and for every t ∈
Ds(µ), respectively, the map x(t) = y(η(t)) is a solution of (3.40) according to
Definition 3.10.
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Chapter 4
Necessary conditions for optimal control
problems with impulses

In this chapter we examine necessary conditions in the form of the Pontryagin
Maximum Principle for optimal impulsive control problems. We begin with the
maximum principle derived in [18] where the system considered is driven by an
impulsive measure which is nonnegative and scalar-valued and the optimization is
of fixed end-time Mayer form. Furthermore, the function g of the product g ·µ(dt),
which provides the impulsive portion of the dynamics, may only depend on the time
and state t, x. However, we will see that this maximum principle accommodates
nonsmooth dynamics.

The second maximum principle we study, from [2], will be in regard to a fixed
end-time Mayer problem subject to dynamics whose impulsive term is vector-
valued and generally has values in Rk, that is, it may have negative components.
Moreover, the function g of the impulsive dynamics may generally depend on the
control u, this being made possible by a more sophisticated definition of the impul-
sive control which, among other things, provides for a continuous evolution along
system jumps similar to that described in section 3.1.1. The results of [2] are pre-
ceded by the results of [18], so such extensions of generality are expected. However,
the maximum principle, and possibly the solution definition, of the second prob-
lem does not necessarily accommodate nonsmooth dynamics like the first. Such an
extension of generality can be noted as a point of future work.

In what follows, we make a comparison between the necessary conditions men-
tioned above. We extend the necessary conditions of the fixed end-time Mayer
problem given by [2] to those of a free end-time Mayer problem, a Bolza problem,
and a minimum time problem. Such extensions are made in the existing litera-
ture on case-to-case basis, whereas the present work provides these extensions in
full generality. We comment on the challenges and possibility of extending these
conditions to an impulsive Calculus of Variations problem. Such an extension is a
desirable link in the reformulation of optimal control problems as Calculus of Vari-
ations problems (and vice versa) since techniques for solving each problem may
then be interchanged. This is discussed for the nonimpulsive case in [10].
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4.1 Necessary conditions for the optimal

impulsive control problem via graph

completions
We now turn our attention to the problem

(P)


Minimize h(x(0), x(1))

subject to dx(t) = f(t, x(t), u(t))dt+ g(t, x(t))µ(dt), t ∈ [0, 1],

(x(0), x(1)) ∈ C,
u(t) ∈ Ut, L − a.e. t ∈ [0, 1], and µ ≥ 0,

(4.1)

Necessary conditions for this problem are established in [19], while the compan-
ion paper [18] provides the background concerning the solution definitions of this
possibly impulsive system along with the development of the reparameterization
techniques utilized. The authors of these papers extend the notions of solutions
and reparameterizations of impulsive systems of control differential equations given
in [13] to those involving differential inclusions. The outstanding advantage of the
differential inclusion formulation lies in its ability to handle the nonsmooth dy-
namics often present in optimization problems, which in turn provides a means of
finding, or at least narrowing searches for, optimal processes for a wider range of
problems.

In regard to the problem (P), we adopt for this section the definitions and
notation used in [19] in order to summarize the results provided by that work. Let
h : Rn × Rn → R, f : [0, 1] × Rn × Rm → Rn, and g : [0, 1] × Rn → Rn be given
functions. U is a Borel subset of [0, 1]×Rm, Ut denotes the section {x : (t, x) ∈ U},
and C is a closed subset of Rn×Rn. We will take a control policy to be a pair (u, µ),
where the conventional control component u is a Lebesgue measurable function
satisfying u(t) ∈ Ut a.e. with respect to Lebesgue measure and the impulsive
control µ is a scalar-valued, nonnegative, regular Borel measure. Thus, a process
in this context will be a triple (x, u, µ), where x is the state trajectory resulting
from the choice of control policy (u, µ).

4.1.1 Change of variables
Similar to the reparameterization set forth in [13], the authors of [18, 19] address
the distribution function F for a given measure µ ∈ C+((0, 1),R) through the
relationship

F (t) :=

{∫
[0,t]

µ(ds), t ∈ (0, 1]

0 if t = 0.
(4.2)

Define the reparameterization function η corresponding to µ as

η(t) :=

{
(t+

∫
[0,t]

µ(dτ))/(1 + µ([0, 1])), t ∈ (0, 1]

0, t = 0.
(4.3)
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Clearly η is a strictly increasing BV +((0, 1),R) function. Define the continuous,
nondecreasing function ϕ0 : [0, 1]→ [0, 1] to be

ϕ0(s) := sup{t ∈ [0, 1] : η(t) ≥ s} ∀s ∈ [0, 1]. (4.4)

Let {ti} be an enumeration of Ds(µ), the set of µ’s atoms, and let Si = [σ′i, σ
′′
i ]

be the subintervals Si := θ−1({ti}) for i = 1, 2, ... Now we may define the function
ϕ : [0, 1]→ R+ to be

ϕ(s) :=

{
F (ϕ0(s)) if s ∈ [0, 1] \

⋃∞
i=1 Si

F (t−i ) +
s−σ′i
σ′′i −σ′i

(F (ti)− F (t−i )) if s ∈ Si, i = 1, 2, ...
(4.5)

If ti = 0 for some i, then F (t−i ) and F (ti) are interpreted in the above formula as
F (0) and F (0+), respectively.

It can be shown that the function (ϕ0, ϕ) : [0, 1]→ [0, 1]×R+ thus constructed,
is the canonical graph completion of the measure µ. Therefore, it has the proper-
ties listed below Definition 3.2. We see some of these conditions and more in the
following proposition from [18].

Proposition 4.1. Let (ϕ0, ϕ) be the graph completion of µ ∈ C+((0, 1),R). Then

• ϕ0 and ϕ are Lipschitz continuous, nonnegative, nondecreasing functions and

ϕ̇0(s) + ϕ̇(s) = 1 + µ([0, 1]) L − a.e.

• For any Borel measurable function h which is µ integrable and any Borel set
T ⊂ [0, 1] we have ∫

ϕ−1
0 (T )

h(ϕ0(s))ϕ̇(s)ds =

∫
T

h(τ)µ(dτ).

• For any L-integrable function g and Borel set S ⊂ [0, 1], ϕ0(S) is also a
Borel set and ∫

S

g(ϕ0(s))ϕ̇0(s)ds =

∫
ϕ0(S)

g(τ)dτ. (4.6)

• Let {µi} be a sequence of elements in C+((0, 1),R), and let {(ϕi0, ϕi)} be
the corresponding graph completions. Suppose that µi → µ weakly∗. Then
(ϕi0, ϕi)→ (ϕ0, ϕ) uniformly and (ϕ̇i0, ϕ̇i)→ (ϕ̇0, ϕ̇) weakly in L1.

4.1.2 Measure-driven differential inclusions
In order to study the necessary conditions of [19], we must make precise the notion
of robust solutions of measure-driven differential inclusions of the form{

dx(t) ∈ F1(t, x(t))dt+ F2(t, x(t))µ(dt), t ∈ [0, 1]

x(0) = x̄
(4.7)
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where F1 : [0, 1]×Rn ⇒ Rn and F2 : [0, 1]×Rn ⇒ Rn are multifunctions mapping
points in [0, 1]× Rn to subsets of Rn.

The multifunction F̃2 : [0, 1] × Rn × [0,∞) ⇒ Rn will be used in the definition
of robust solution and is defined as

F̃2(t, v;α) := {α−1[ξ(1)− ξ(0)] : ξ ∈ AC((0, 1),Rn), ξ̇(σ) ∈ αF2(t, ξ(σ)) a.e.,

and ξ(0) = v}

whenever α > 0, and F̃2(t, v; 0) := F2(t, v).

Definition 4.2. We say that a function x ∈ BV +((0, 1),Rn) is a robust solution
to (4.7) if there exist an L-integrable function φ1 and µ-integrable function φ2 such
that

φ1 ∈ F1(t, x(t)), L-a.e., (4.8)

φ2 ∈ F̃2(t, x(t−);µ({t})), µ-a.e. (4.9)

and

x(t) = x(0) +

∫ t

0

φ1(τ)dτ +

∫
[0,t]

φ2(τ)µ(dτ) ∀ t ∈ (0, 1].

The reparameterization of µ by means of the graph completion (ϕ0(·), ϕ(·)) and
reparameterization function η results in a conventional differential inclusion. The
following proposition, stated and proved in [19], describes this.

Proposition 4.3. Suppose that the data for the measure-driven differential inclu-
sion (4.7) satisfies the following:

• F1 has values-closed sets and is L × B measurable and

• F2 has values-closed sets and is Borel measurable.

Fix a measure µ ∈ C+((0, 1),R) and an initial state x̄. We have the following:
(i) Suppose that x(·) ∈ BV +([0, 1],Rn) is a robust solution to (4.7). Then there

exists a solution y(·) ∈ AC([0, 1],Rn) to

{
ẏ(s) = F1(ϕ0(s), y(s))ϕ̇0(s) + F2(ϕ0(s), y(s))ϕ̇(s), s ∈ [0, 1]

y(0) = x̄
(4.10)

for which
x(t) = y(η(t)) ∀t ∈ [0, 1]. (4.11)

Conversely,
(ii) suppose that y ∈ AC([0, 1],Rn) is a solution to (4.10). Then there exists a

robust solution x(·) ∈ BV +([0, 1],Rn) to (4.7) for which (4.11) is satisfied.

This proposition is the measure-driven differential inclusion analogue of Theorem
3.5.
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4.1.3 Necessary conditions: a maximum principle for the
Mayer problem with fixed end time

In order to obtain the optimality conditions derived in [18] for problem (P), the
following hypotheses are required:

(H1) There exists a constant Kf (·) ∈ L1 such that

|f(t, x, u)− f(t, y, u)| ≤ Kf (t)|x− y| for (x, u) ∈ Rn × Rm and t ∈ [0, 1].

(H2) f(·, x, ·) is L × B-measurable.
(H3) g(·, ·) is continuous and there exists a constant Kg such that

|g(t, x)− g(t, y)| ≤ Kg|x− y| ∀x, y ∈ Rn, t ∈ [0, 1].

(H4) U ∈ R1+m is a Borel set.
After an intermediate theorem regarding processes (x, u, µ) which generate

boundary points of some reachable set of the system with dynamics given in (P),
the authors of [18] establish the following maximum principle for (P).

Theorem 4.4. Let (x̄(·), ū(·), µ̄(·)) be a minimizing process for (P). Assume that
h is locally Lipschitz continuous, that C is a closed subset, and that hypotheses
(H1)-(H4) are satisfied. Then there exist λ ≥ 0 and p ∈ BV +([0, 1],Rn) such that
||p(·)||L∞ + λ > 0 and (x̄(·), p(·)) is a robust solution of the MDI

d

[
x̄(t)
p(t)

]
∈
[

f(t, x̄(t), ū(t))
−p(t) · co∂xf(t, x̄(t), ū(t))

]
dt+

[
g(t, x̄(t))

−p(t) · ∂xg(t, x̄(t))

]
µ̄(dt).

Furthermore,

(p(0),−p(1)) ∈ NC(x̄(0), x̄(1)) + λ∂h(x̄(0), x̄(1)), (4.12)

p(t) · f(t, x̄(t), ū(t)) = max
u∈Ut
{p(t) · f(t, x̄(t), u)} a.e. t ∈ [0, 1], (4.13)

p(t) · g(t, x̄(t)) ≤ 0 ∀t ∈ [0, 1], (4.14)

p(t) · g(t, x̄(t)) = 0 µ− a.e. on [0, 1]. (4.15)

Corresponding to every atom t of µ̄, there exists a solution

[
ξt(·)
αt(·)

]
to[

ξ̇t(s)
α̇t(s)

]
∈ µ̄({t})

[
g(t, ξt(s))

−αt(s) · ∂xg(t, ξt(s))

]
on [0, 1] (4.16)

which satisfies

(ξt(0), αt(0)) = (x̄(t−), p(t−)), (ξt(1), αt(1)) = (x̄(t), p(t)), (4.17)

αt(s) · g(t, ξt(s)) ≥ 0 ∀s ∈ [0, 1]. (4.18)

We defer to [18] for the proof of this theorem. Note that the end time for the
problem (P) is the fixed time t = 1, so that (P) represents a fixed end time problem.
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4.2 Necessary conditions for the optimal

impulsive control problem via

measure-adjoint functions
More recent work in optimal impulsive control problems, [2], has established max-
imum conditions for problems whose jump dynamics include a dependence on a
conventional control u and whose jumps are induced by a vector-valued measure
µ. It is also of interest to note that the authors of the referenced paper are able
to suppress the notational burden of the auxiliary system used in past papers,
[19, 18, 13, 5, 6, 23, 24], by establishing the necessary conditions via integrals,
as we will see in what follows. We will see that this suppression of the auxiliary
system has advantages and disadvantages.

4.2.1 Necessary conditions for the impulsive Mayer
problem with fixed end time

Consider the problem:

(P )


minϕ(x(0), x(T ))

dx = f(t, x, u)dt+ g(t, x, u)dϑ, t ∈ [0, T ],

p = (x(0), x(T )) ∈ S,

where

• [0, T ] is a fixed time interval,

• S is a closed subset of R2n,

• ϕ(·, ·) is the objective function to be minimized,

• ϑ = (µ, ν, {uτ , vτ}) is referred to as the impulsive control.

Let us point out that the problem above does not include mixed constraints
as the problem considered in [2] does and that the necessary conditions we cite
from this work will reflect this lack of mixed constraints. The mixed constraints
considered in [2] are given by R(t, x, u) ∈ C for t ∈ [0, T ] and some closed, convex
subset C of Rr. By taking C = Rr and R ≡ 0 ∈ Rr, these constraints are trivially
met by the dynamics of (P ), and we are then able to deduce the simplifications
which yield the maximum principle we present below.

The impulsive control ϑ is a new object consisting of three components, together
comprising implicit information about the jumps. This object eliminates the need
for an explicit graph completion in the analysis of necessary conditions for problems
with vector-valued measures and whose dynamics during jumps may depend on
conventional controls. The first component µ is a vector-valued Borel measure with
range a closed, convex cone K ⊂ Rk. The second component ν is the variation of
the impulsive control ϑ, which is defined as a scalar-valued Borel measure such that
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ν ≥ |µ|, where |µ| denotes the total variation of µ. Recall that the total variation of
a vector-valued measure µ is the sum of the total variations of all the components,
|µ| =

∑k
i=1 |µi|. We may also refer to the variation of the impulsive control as |ϑ|, so

|ϑ| = ν. The third component {uτ , vτ} consists of an infinite family of measurable
functions defined on [0, 1] and depending on the real parameter τ ∈ [0, T ]. We
provide the exact properties of this family, the definition of the impulsive control,
and the solution concept for the dynamics of (P ) later in this section.

The function u : R → Rm is the conventional control, or usual control, and it
is assumed to be measurable and essentially bounded with respect to the usual
Lebesgue measure l and with respect to the Lebesgue-Stieltjes measure |ϑ|. Addi-
tionally, for the compact set U ⊂ Rm, we require that an admissible control u have
values in U almost everywhere. Let U be the set of admissible controls so described.
We clarify as in [2] that the term “Lebesgue-Stieltjes” refers to the fact that the
Borel measure |ϑ| is completed up to sets of measure zero, and any Borel measure
µ on the σ-algebra B([0, T ]) of Borel subsets of [0, T ] can be uniquely extended by
the Lebesgue extension of measure [14]. This extension is itself complete, and it is
the Lebesgue-Stieltjes measure generated by µ. Also, a set A is measurable with
respect to both the measures l and |ϑ| if and only if it is measurable with respect
to the Lebesgue-Stieltjes measure l + |ϑ|, since A can be represented as the union
of Borel and zero measure sets. From this, we deduce that u(·) is measurable with
respect to l + |ϑ|.

The functions in (P ) have the forms

ϕ : R2n → R1,

f : R1 × Rn × Rm → Rn,

g : R1 × Rn × Rm → Rn × Rk,

and satisfy the following hypotheses:

(H) The function f and its partial derivatives in (x, u) are measurable in t for
each (x, u) with respect to Lebesgue measure and are continuously differentiable in
(x, u) for almost all t uniformly in t. The function g is assumed to be continuous,
and it is continuously differentiable in (x, u). Both functions f and g, as well as
their partials in (x, u) are bounded on any bounded set. The function ϕ is assumed
to be continuously differentiable.

We can now provide the concepts of solution and impulsive control to (P ).
Take K a nonempty closed convex cone in Rk, and consider a Borel vector-valued
measure µ such that range(µ) ⊂ K. Define V (µ) to be the set of scalar-valued
nonnegative Borel measures ν such that ∃µi : range(µi) ⊂ K and (µi, |µi|)

w→ (µ, ν).
The convergence

w→ means convergence of each component of µi in the weak∗

topology C∗([0, T ]), the space dual to the space of continuous functions C([0, T ]).
For example, if K is conained in one of the orthants, then V (µ) = {|µ|} a singleton.
If K is a half-space or the whole space, then V (µ) = {ν ∈ C∗([0, T ]) : ν ≥ |µ|}.

41



Observe that |µ| ∈ V (µ), so V (µ) 6= ∅ and also ν ≥ |µ| ∀ν ∈ V (µ). Now consider an
arbitrary scalar-valued measure ν ∈ V (µ), a number τ ∈ [0, T ], and a measurable
vector-valued function vτ : [0, 1]→ K such that

•
∑k

i=1 |vjτ (s)| = ν({τ}) a.e. s ∈ [0, 1];

•
∫ 1

0
vjτ (s)ds = µj({τ}), j = 1, ..., k.

Observe that µ({τ}) is a vector in K which is only nonzero whenever τ is an atom
of µ. A family of vector-valued functions {vτ} depending on the real parameter τ
is said to be adjoint to a vector-valued measure (µ, ν) if, for every τ , conditions 1.
and 2. hold.

Definition 4.5. The impulsive control of problem (P ) is a triple
ϑ = (µ, ν, {uτ , vτ}), where ν ∈ V (µ), vτ is a family of functions adjoint to (µ, ν)
and {uτ} is any essentially bounded family of measurable vector-valued functions
defined on the closed interval [0, 1] and taking values in Rm. The measure ν is the
variation of the impulsive control ϑ and is denoted by |ϑ|.

Now for a given τ ∈ [0, T ], we consider the impulsive control ϑ = (µ, ν, {uτ , vτ})
and a given vector x ∈ Rn. Denote by χτ (·) = χτ (·, x) the solution to the system{

χ̇τ (s) = g(τ, χτ (s), uτ (s))vτ (s), s ∈ [0, 1],

χτ (0) = x.
(4.19)

A solution to the differential equation of (P ) corresponding to the coupled con-
trol (u, ϑ) with u, uτ ∈ U for all τ ∈ Ds(ϑ) and initial point x̄, is a function x(t) of
bounded variation on the interval [0, T ] satisfying x(0) = x̄ and, for every t ∈ (0, T ],

x(t) = x̄+

∫ t

0

f(τ, x(τ), u(τ))dτ +

∫
[0,t]

g(τ, x(τ), u(τ))dµc.p.

+
∑
τ≤t

[χτ (1, x(τ−))− x(τ−)].
(4.20)

Observe that the term for the jump dynamics, g · dµ, splits into the continuous
part µc.p. and the discrete part of the measure which corresponds to the summation
over the countably many atoms of µ, Ds(ϑ).

Denote by H the Hamiltonian function

H(t, x, u, ψ) := 〈f(t, x, u, ), ψ〉,

and by Q the vector-valued function Q(t, x, u, ψ) := gTr(t, x, u)ψ, where gTr is the
transpose of the matrix g. We are now ready to state the necessary conditions
derived in [2].

Theorem 4.6. Let (x̂, û, ϑ̂) be an optimal process for problem (P ), and let hy-
pothesis (H) hold. Then there exist a number λ ≥ 0, a vector-valued function ψ
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of bounded variation, and, for every point τ ∈ Ds(ϑ̂), there exists an absolutely
continuous vector-valued function στ defined on the closed interval [0, 1] such that

λ+ |ψ(t)| 6= 0 ∀ t ∈ [0, T ],

λ+ |στ (s)| 6= 0 ∀s ∈ [0, 1], ∀τ ∈ Ds(ϑ̂);
(4.21)

ψ(t) = ψ(0)−
∫ t

0

∂H

∂x
(τ, x̂(τ), û(τ), ψ(τ))dτ

−
∫

[0,t]

∂

∂x
〈Q(τ, x̂(τ), û(τ), ψ(τ)), dµ̂c.p.〉

+
∑

τ∈Ds(ϑ̂):τ≤t

[στ (1)− ψ(τ−)], ∀t ∈ (0, T ];

(4.22)


dχ̂τ (s)
ds

= g(τ, χ̂τ (s), ûτ (s))v̂τ (s)
dστ (s)
ds

= − ∂
∂x
〈Q(τ, χ̂τ (s), ûτ (s), στ (s)), v̂τ (s)〉

χ̂τ (0) = x̂(τ−), στ (0) = ψ(τ−), s ∈ [0, 1];

(4.23)

(ψ(0),−ψ(T )) ∈ λ∂ϕ
∂p

(p̂) +NS(p̂), (4.24)

max
u∈U

H(t, x̂(t), u, ψ(t)) = H(t, x̂(t), û(t), ψ(t)) a.e. t ∈ [0, T ]; (4.25)



max
u∈U

Q(t, x̂(t), u, ψ(t)) ∈ NK(0) ∀t ∈ [0, T ]

max
u∈U

Q(τ, χ̂τ (s), u, στ (s)) ∈ NK(0) ∀s ∈ [0, 1], ∀τ ∈ Ds(ϑ̂),∫
[0,T ]

〈gTr(t, x̂(t), û(t))ψ(t)), d ˆµc.p.〉+

∑
τ∈Ds(ϑ)

∫
[0,1]

〈gTr(s, x̂(s), û(s))στ (s)), v̂τ (s)〉 ≥ 0.

(4.26)

Let us review the formulas of the above theorem. The conditions of (4.21) rep-
resent the non-triviality condition. The equation (4.22) is the adjoint equation for
the regular, non-impulsive portion of the trajectory with ψ being the adjoint arc.
The conditions of (4.23) represent the adjoint equations of the impulsive portion
of the trajectory with the family στ being the adjoint arcs along the jump evolu-
tions. The transversality condition is given by (4.24). The maximum condition for
the non-impulsive portion of the trajectory is given by (4.25), and the maximum
condition of the impulsive part of the trajectory is given by (4.26).

Remark 4.7. Omitting arguments here for convenience, we discuss the terms ∂H
∂x

and ∂
∂x
〈Q, dµc.p.〉 of the above theorem. These terms may be rewritten by definition

as ∂
∂x
〈f, ψ〉 and ∂

∂x
〈gTr ·ψ, dµc.p.〉, respectively. In the present case, such a notation
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is appropriate as it allows for the matrix and vector products to be written in a
well-defined manner, and its clarity rests on the fact that only the functions f and
g depend on x. However, the theorem of the next section will involve a partial with
respect to time t of f and g, which with the present convention would introduce
some ambiguity as other functions in the product depend on t. We set forth here the
alternate notation fx to be the vector whose components are the partial derivative
with respect to the one-dimensional variable x of each corresponding component
of the vector function f , and similarly, gx to be the matrix whose components are
the partial derivative of each corresponding component of the matrix function g.

4.2.2 Main result: necessary conditions for the impulsive
Mayer problem with free end time

We now turn our attention to a Mayer problem whose terminal time T is unfixed
or allowed to vary according to what is optimal for the problem. The necessary
conditions we derive for this problem are established by reformulating the free end
time problem as a fixed end time problem and applying Theorem 4.6. The resulting
theorem and its corollaries constitute the main results of this work.

The free end time problem under consideration is

(Pv)


minϕ(T, x(T ), x(0))

dx(t) = f(t, x(t), u(t))dt+ g(t, x(t), u(t))dϑ, t ∈ [0, T ],

p = (x(T ), x(0)) ∈ Cf × Cin,

where Cf ×Cin ∈ Rn ×Rn is closed, u ∈ U is the conventional control, and ϑ is
the impulsive control. Note U and ϑ are as described in the previous section. The
value function ϕ now depends on the variable terminal time T , so a process for
this problem is denoted x(T, u, ϑ) where x(·) is the trajectory resulting from the
policy (T, u, ϑ) and (u, ϑ) are admissible controls applied to the problem for times
t ∈ [0, T ].

As in the previous section, the impulsive control ϑ is of the form (µ, ν, {uτ , vτ})
where the measures µ and ν are assumed to be regular Borel measures with µ
taking values in some non-empty closed convex cone K ⊂ Rk, uτ is a family of
measurable essentially bounded functions on [0, 1] taking values in Rm, and vτ is a
family of vector-valued functions adjoint to (µ, ν). In the fixed end time problem it
was tacitly assumed that the measure µ was a regular Borel measure on the interval
[0, T ] for a fixed T . We are presently faced with the technical choice of assuming
that the measure µ has values in K and is a regular Borel measure on R1. Another
option, more appropriate for actual application of the maximum principle, is to
assume that µ satisfies this criteria on an interval [0, TF ] such that the optimal T of
(Pv) lies in (0, TF ]. Observe that either of these options are feasible in the context
of measure adjoint functions, whereas the dependence of the graph completion on
a known end time T , apparent in the formula for the reparameterization function
(3.7), restricts the graph completion option to the latter option.
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The data of this problem are the same as for problem (P ), although we require
a slightly stronger hypothesis:

(Hv) The functions f , g, and ϕ are continuously differentiable in all arguments.

This stronger hypothesis essentially guarantees more regularity of the functions
in the time variable which is intuitively acceptable in light of the fact that problem
(Pv) depends on a final time T which is varying rather than fixed.

Theorem 4.8. Let hypothesis (Hv) be satisfied and let x̂(T̂ , û, ϑ̂) be an optimal
process for (Pv). Then there exists a number λ ≥ 0, a vector-valued function ψ
of bounded variation, and for every point τ ∈Ds(ϑ̂), there exists an absolutely
continuous vector-valued function στ defined on the interval [0, 1] such that

ψ(t) = ψ(0)−
∫ t

0

∂H

∂x
(τ, x̂(τ), û(τ), ψ(τ))dτ

−
∫

[0,t]

∂

∂x
〈Q(τ, x̂(τ), û(τ), ψ(τ)), dµ̂c.p.〉

+
∑

τ∈Ds(ϑ̂):τ≤t

[στ (1)− ψ(τ−)], ∀t ∈ (0, T̂ ];

(4.27)


dχ̂τ (s)
ds

= g(τ, χ̂τ (s), ûτ (s))v̂τ (s)
dστ (s)
ds

= − ∂
∂x
〈g(τ, χ̂τ (s), ûτ (s))στ (s)), v̂τ (s)〉

χ̂τ (0) = x̂(τ−), στ (0) = ψ(τ−), s ∈ [0, 1];

(4.28)

(−ψ(T̂ ), ψ(0̂)) ∈ λ∂ϕ
∂p

(T̂ , p̂) +NCf×Cin(p̂) (4.29)

max
u∈U

H(t, x̂(t), u, ψ(t)) = H(t, x̂(t), û(t), ψ(t)) a.e. t ∈ [0, T̂ ]; (4.30)



max
u∈U

Q(t, x̂(t), u, ψ(t)) ∈ NK(0) ∀t ∈ [0, T̂ ]

max
u∈U

Q(τ, χ̂τ (s), u, στ (s)) ∈ NK(0) ∀s ∈ [0, 1], ∀τ ∈ Ds(ϑ̂),∫
[0,T̂ ]

〈gTr(τ, x̂(τ), û(τ))ψ(τ), dµ̂c.p.〉+

∑
τ∈Ds(ϑ)

∫
[0,1]

〈gTr(τ, χ̂τ (ξ), ûτ (ξ))στ (ξ), v̂τ (ξ)〉 ≥ 0;

(4.31)
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ψ(t) · f(t, x̂(t), û(t)) =

∫ t

0

〈ft(τ, x̂(τ), û(τ)), ψ(τ)〉dτ

+

∫
[0,t]

〈gTrt (τ, x̂(τ), û(τ))στ (τ), dµc.p.〉

+
∑

τ∈Ds(ϑ̂):τ≤t

∫
[0,1]

〈gTrt (τ, χ̂τ (s), ûτ (s))στ (s), v̂τ (s)〉ds,

a.e. t ∈ [0, T̂ ].
(4.32)

Furthermore, if T̂ /∈ Ds(ϑ), then we also have

λ
∂ϕ

∂t
(p̂) = 〈f(T̂ , x̂(T̂ ), û(T̂ )), ψ(T̂ )〉. (4.33)

Notice that we have used the partial derivative notation of Remark 4.7 for con-
dition (4.32).

Proof. The theorem is proved by reformulating problem (Pv) as a fixed end time
problem resembling problem (P ) of this section, relating a maximum of (Pv) to
that of (P ), and applying the maximum principle of Theorem 4.6 and simplifying
the results.

Step 1. Let us form the augmented state variable x = (x0, x) ∈ R1+n and the
augmented conventional control u = (u0, u) ∈ R1+m. The impulsive control ϑ =
(µ, ν, {uτ , vτ}) will only require its jump-time family of conventional controls uτ to
be augmented to uτ = (u0

τ , uτ ) ∈ R1+m, which then forms the augmented impulsive
control ϑ = (µ, ν, {uτ , vτ}).

Now consider the problem

(P ′v)



minϕ(x(T̂ ),x(0)) subject to

dx0(s) = u0(s)ds

dx(s) = f(x0(s), x(s), u(x0(s)))u0(s)ds

+ g(x0(s), x(s), u(x0(s)))u0(s)dϑ,

p = (x(T̂ ),x(0)) ∈ ([0, 2T̂ ]× Cf )× ({0} × Cin), s ∈ [0, T̂ ],

where u0 is taken to be measurable with respect to Lebesgue measure l and the
measure |ϑ| and such that u0(s) ∈ [1/2, 2] for a.e. s ∈ [0, T̂ ]. Also, u and uτ are
supposed to take values in the compact set U ⊂ Rm. Observe the first measure
differential equation of the dynamics has right hand side u0(s)ds, an l-measurable
function against Lebesgue measure. Thus, the function x0(t) =

∫ t
0
u0(s)ds is abso-

lutely continuous, and furthermore given that 1/2 ≤ u0(s) ≤ 2 for a.e. s ∈ [0, T̂ ],
x0 is an increasing function, and therefore invertible, which takes values in a closed
subset of [0, 2T̂ ]. The latter deduction is consistent with the endpoint condition on

46



x(T ) in (P ′v). The fact that x0 has an inverse will be used below in the second step
of the proof.

We point out that the value function ϕ of (P ′v) resembles that of problem (P ) in
that it depends only on the final and initial values of the state x. The set used to
define the endpoint conditions ([0, 2T̂ ]×Cf )× ({0}×Cin) is closed since Cf ×Cin
is closed in accordance with the statement of problem (Pv).

In conjunction with the augmented states, we define the functions f : R×Rn+1×
Rm+1 → Rn+1 and g : R× Rn+1 × Rm+1 → Rn+1 × Rk as

f(x(s),u(s)) =

[
u0(s)

u0(s)f(x0(s), x(s), u(x0(s))

]
and

g(x(s),u(s)) =

[
~0

u0(s)g(x0(s), x(s), u(x0(s))

]
,

where we note that f is an (n+ 1)-vector and g is an (n+ 1)× k-matrix whose
top row is all zeros. Observe that since f and g are each continuously differentiable
in all arguments, as functions of the augmented variables, f and g are readily seen
to be continuously differentiable in all augmented variables. Thus, hypothesis (Hv)
is met by the dynamics of (P ′v). The functions H and Q defined in the previous
section are analogously extended to the augmented functions H and Q taking
arguments among x, u, uτ ψ, and στ .

We may now express, in terms of the augmented functions and variables defined,
the dynamics of (P ′v) as the single equation

dx(s) = f(x(s),u(s))ds+ g(x(s),u(s))dϑ s ∈ [0, T̂ ], (4.34)

which demonstrates that the augmented system is indeed in the form of the dy-
namics of problem (P ).

Lastly, observe that x0 in the dynamics of (P ′v) plays the role of the time variable,
similar to what was shown in the sketch of the proof of Theorem 2.6.

Step 2. Let (T̂ , û, ϑ̂) be a minimizing policy for (Pv). We show that the augmented
policy (û, ϑ̂) = ((1, û), (µ̂, ν̂, {(1, ûτ ), v̂τ})), where u0 ≡ 1 and uτ,0 ≡ 1, is optimal
for problem (P ′v). Suppose for contradiction, that

(w,ω) := ((w0, w), (µω, νω, {(w0
τ , wτ ), zτ}))

is another admissible control such that

ϕ(x(T̂ ,w,ω),x(0,w,ω)) < ϕ(T̂ , x(T̂ , û, ϑ̂), x(0, û, ϑ̂)). (4.35)

Since x0 is invertible, we may take its inverse function τ(t) and construct the
control

(u#, ϑ#)(t) = (v, ω)(τ(t)),

where the notation (u, ϑ)(t) is shorthand for applying a conventional control u and
an impulsive control ϑ to the dynamics of (Pv) for time t.
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Applying this control to the dynamics of (Pv) with terminal time T = x0(T̂ ), we
obtain by (4.35)

ϕ(T, x(T, u#, ϑ#), x(0, u#, ϑ#)) < ϕ(T̂ , x(T̂ , û, ϑ̂), x(0, û, ϑ̂)),

which violates the optimality of (T̂ , û, ϑ̂).
Step 3. We are now in a position to apply Theorem 4.6 to problem (P ′v) for the

optimal process (x̂, û, ϑ̂). Before doing so, we point out some important facts and
notational conventions to simplify the analysis.

• We state the implied conditions of the theorem in terms of (n + 1)-vectors
with the 0th-component expanded from the original n-vectors of (Pv). In
some places, it is more convenient to leave the expressions in the augmented
or bold form, in which case the terms will be expanded upon investigation.

• We will use the partial derivative notation introduced in Remark 4.7 wherever
such clarity is needed.

• Since û0 ≡ 1, the optimal trajectory of the reparameterized time x0 is the
identity function x̂0(s) = s, which reduces the reparameterized time scale
[0, x0(T )] back to the original time scale [0, T ]. This being the case, some
statements will initially involve x̂0(·) to show the immediate implication of
Theorem 4.6, whereas other statements may be immediately reduced to t.
This is done in order to provide sufficient details without cluttering the proof,
and ultimately all instances of x̂0(·) will be reduced to t.

The theorem implies the existence of a number λ ≥ 0, a vector-valued function
ψ = (ψ0, ψ) ∈ R1+n of bounded variation, and for every τ ∈ Ds(ϑ̂) an absolutely
continuous vector-valued function στ = (σ0

τ , στ ) ∈ R1+n defined on [0, 1] such that

[
ψ0(s)
ψ(s)

]
=

[
ψ0(0)
ψ(0)

]
−
∫ s

0

[
∂H
∂x0

(x̂(τ), û(τ),ψ(τ))
∂H
∂x

(x̂(τ), û(τ),ψ(τ))

]
dτ

−
∫

[0,s]

[
∂
∂x0
〈Q(x̂(τ), û(τ),ψ(τ)), dµ̂c.p.〉

∂
∂x
〈Q(x̂(τ), û(τ),ψ(τ)), dµ̂c.p.〉

]
+

∑
τ∈Ds(ϑ̂):τ≤x̂0(s)

[
σ0
τ (1)− ψ0(τ−)
στ (1)− ψ(τ−)

]
, ∀s ∈ (0, T̂ ];

(4.36)



d
dξ

[
χ̂0
τ (ξ)

χ̂τ (ξ)

]
=

[
0

g(τ, χ̂τ (ξ), ûτ (ξ)) · v̂τ (ξ)

]
d
dξ

[
σ0
τ (ξ)

στ (ξ)

]
=

[
− ∂
∂x0
〈Q(τ, χ̂τ (ξ), ûτ (ξ),στ (ξ)), v̂τ (ξ)〉

− ∂
∂x
〈Q(τ, χ̂τ (ξ), ûτ (ξ),στ (ξ)), v̂τ (ξ)〉

]
[
χ̂0
τ (0)

χ̂τ (0)

]
=

[
x̂0(τ−)

x̂(τ−)

]
,

[
σ0
τ (0)

στ (0)

]
=

[
ψ0(τ−)

ψ(τ−)

]
, ξ ∈ [0, 1];

(4.37)
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([
−ψ0(T̂ )

−ψ(T̂ )

]
,

[
ψ0(0)
ψ(0)

])
∈ λ

[
∂ϕ
∂p0

(p̂)
∂ϕ
∂p

(p̂)

]
+

[
N[0,2T̂ ]×{0}(p̂0)

NCf×Cin(p̂)

]
, (4.38)

max
u∈[ 1

2
,2]×U

〈[
u0

u0 · f(x̂0(s), x̂(s), u)

]
,

[
ψ0(s)
ψ(s)

]〉
=

〈[
1

f(x̂0(s), x̂(s), u(s))

]
,

[
ψ0(s)
ψ(s)

]〉
a.e. s ∈ [0, T̂ ];

(4.39)



max
u∈[ 1

2
,2]×U

[
0 u0 · gTr(x̂0(s), x̂(s), u)

] [ψ0(s)

ψ(s)

]
∈ NK(0) ∀s ∈ [0, T̂ ]

max
u∈[ 1

2
,2]×U

[
0 u0 · gTr(τ, χ̂(ξ), u)

] [σ0
τ (ξ)

στ (ξ)

]
∈ NK(0) ∀ξ ∈ [0, 1], ∀τ ∈ Ds(ϑ̂),∫

[0,T̂ ]

〈gTr(x̂0(s), x̂(s), û(s))ψ(s), d ˆµc.p.〉+

∑
τ∈Ds(ϑ)

∫
[0,1]

〈gTr(τ, x̂(ξ), û(ξ))στ (ξ), v̂τ (ξ)〉 ≥ 0.

(4.40)
We first expand the ψ0 component of the non-jump adjoint equation represented

by (4.36) to get for all s ∈ (0, T̂ ]

ψ0(s) = ψ0(0)−
∫ s

0

∂

∂x0

〈[
1

f(τ, x̂(τ), û(τ))

]
,

[
ψ0(τ)
ψ(τ)

]〉
dτ

−
∫

[0,s]

∂

∂x0

〈[
0 gTr(τ, x̂(τ), û(τ))

] [ψ0(τ)
ψ(τ)

]
, dµc.p.

〉
+

∑
τ∈Ds(ϑ̂):τ≤x̂0(s)

σ0
τ (1)− ψ0(τ−),

which, taking into account that ∂
∂x0

[1] = ∂
∂x0

[0] = 0, simplifies to

ψ0(s) = ψ0(0)−
∫ s

0

∂

∂x0

〈f(τ, x̂(τ), û(τ)), ψ(τ)〉 dτ

−
∫

[0,s]

∂

∂x0

〈
gTr(τ, x̂(τ), û(τ))ψ(τ), dµc.p.

〉
+

∑
τ∈Ds(ϑ̂):τ≤x̂0(s)

σ0
τ (1)− ψ0(τ−).

(4.41)

The term
[
0 gTr(τ, x̂(τ), û(τ))

]
appearing in the second integral of each equa-

tion is the k× (n+ 1)-matrix whose first column is all zeros and whose remaining
columns are formed by the k × n-matrix gTr.
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We do the same for the n-vector, ψ, of (4.36) to get

ψ(s) = ψ(0)−
∫ s

0

∂

∂x
〈f(τ, x̂(τ), û(τ)), ψ(τ)〉 dτ

−
∫

[0,s]

∂

∂x

〈
gTr(τ, x̂(τ), û(τ))ψ(τ), dµc.p.

〉
+

∑
τ∈Ds(ϑ̂):τ≤x̂0(s)

στ (1)− ψ(τ−).

(4.42)

Recalling the definitions of the functions H and Q and replacing the dummy
variable s with t, we see that (4.42) yields condition (4.27) of the theorem.

Similarly, we expand the adjoint equations of the jump dynamics represented by
(4.37) to get for all ξ ∈ [0, 1]

dχ̂0
τ (ξ)

dξ
= 0 (4.43)

for the χ0
τ component,

dχ̂τ (ξ)

dξ
= g(χ̂0

τ (τ), χ̂τ (ξ), ûτ (ξ)) · v̂τ (ξ) (4.44)

for the χτ vector,

dσ0
τ (ξ)

dξ
= − ∂

∂x0

〈
[
0 gTr(χ̂0(ξ), χ̂τ (ξ), ûτ (ξ))

] [σ0
τ (ξ))
στ (ξ))

]
, v̂τ (ξ)〉

= − ∂

∂x0

〈gTr(χ̂0(ξ), χ̂τ (ξ), ûτ (ξ)) · στ (ξ)), v̂τ (ξ)〉 (4.45)

for the 0th-component σ0
τ , and

dστ (ξ)

dξ
= − ∂

∂x
〈
[
0 gTr(χ̂0(ξ), χ̂τ (ξ), ûτ (ξ))

] [σ0
τ (ξ))
στ (ξ))

]
, v̂τ (ξ)〉

= − ∂

∂x
〈gTr(χ̂0(ξ), χ̂τ (ξ), ûτ (ξ)) · στ (ξ)), v̂τ (ξ)〉 (4.46)

for the n-vector στ .
According to the initial conditions of (4.37) and the differential equation (4.43),

for each τ ∈ Ds(ϑ), we see that χ̂0
τ is the constant function χ̂0

τ ≡ x̂0(τ−). Since x̂0 is
the identity function, we have χ̂0

τ = x̂0(τ−) = τ . Using this fact in equations (4.44)
and (4.46) yields the two differential equations of (4.28), and the initial conditions
corresponding to each of these equations in (4.37) provide the initial conditions of
(4.28).

Next we rewrite the maximum condition given by (4.39) as

max
u∈[ 1

2
,2]×U
{u0 · ψ0(s) + 〈u0 · f(x̂0(s), x̂(s), u), ψ(s)〉}

= 1 · ψ0(s) + 〈f(x̂0(s), x̂(s), û(s)), ψ(s)〉 a.e. s ∈ [0, T̂ ].
(4.47)
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This equation tells us û0 ≡ 1 and û(·) are maximal for the function u0 · ψ0(s) +
〈u0 · f(x̂0(s), x̂(s), u), ψ(s)〉, so the derivative with respect to u0 of this function
evaluated at (u0, u(·)) = (1, û(·)) must be zero. This implies

ψ0(t) = −〈f(t, x̂(t), û(t)), ψ(t)〉, for a.e. t ∈ [0, T̂ ] (4.48)

after reducing x̂0(s) to the original t time.
Observe that integrating (4.45) and applying the initial condition σ0

τ (0) = ψ0(τ−)
provides

σ0
τ (s) = ψ0(τ−)−

∫
[0,s]

〈gTr(χ̂0(ξ), χ̂τ (ξ), ûτ (ξ)) · στ (ξ)), v̂τ (ξ)〉. (4.49)

Reducing the time in equation (4.41) back to t, combining this with equation (4.48)
and substituting σ0

τ with the right hand side of (4.49) yields condition (4.32) of
the theorem. Also, reducing the time in (4.47) back to t implies condition (4.30).

Observe that simplifying the multiplication with the 0 vector in each of the first
two conditions of (4.40) gives

max
u∈[ 1

2
,2]×U

u0 · gTr(t, x̂(t), u)ψ(t) ∈ NK(0) ∀t ∈ [0, T̂ ] (4.50)

and

max
u∈[ 1

2
,2]×U

u0 · gTr(τ, χ̂(ξ), u)στ (ξ) ∈ NK(0) ∀ξ ∈ [0, 1], ∀τ ∈ Ds(ϑ̂), (4.51)

where in the former inclusion we have again reduced x̂0 to time t. Since each of
the above maximums are taken over a u0 > 0, we may apply (2.9) to each and by
definition of Q get both maximum conditions of (4.31). Note that the multiplication
by zero in the inequality of (4.40) was implicitly simplified in writing it, and by
reducing x̂0 back to original time t, we obtain the inequality of (4.31).

Using (2.8), we may consider the n-vector component, ψ, of the inclusion (4.38)
and obtain condition (4.29)

(−ψ(T̂ ), ψ(0)) ∈ ∂ϕ
∂p

(T̂ , p̂) +NCf×Cin(p̂),

since

ϕ(p̂) = ϕ(x̂0(T ), x̂(T ), x̂0(0), x̂(0))

= ϕ(T̂ , x̂(T ), x̂(0))

= ϕ(T̂ , p̂).

Note in the above that the second equality is due to ϕ’s independence of the
variable xin0 , and that this independence also yields ∂ϕ

∂xin0
(p̂) = 0.
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With another appeal to (2.8) and arguing similarly, the 0-components of the
transversality condition (4.38) can be expressed as

−ψ0(T̂ ) = λ
∂ϕ

∂xf0
(T̂ , p̂) +N[0,2T̂ ](x̂0(T̂ ))

and

ψ0(0)) = λ
∂ϕ

∂xin0
(T̂ , p̂) +N{0}(x̂0(0)).

Observe that the variable xf0 is just the end-time variable T . Recall that x̂0(T̂ ) =
T̂ and x̂0(0) = 0, and use (2.7) to get N[0,2T̂ ](x̂0(T̂ )) = ∅ and (2.10) to get
N{0}(x̂0(0)) = R. Thus, the above inclusions yield respectively

−ψ0(T̂ ) = λ
∂ϕ

∂t
(p̂) (4.52)

and
ψ0(0) ∈ R. (4.53)

Observe that (4.41) implies that ψ0 is continuous at points t /∈ Ds(ϑ). Thus, if
T̂ /∈ Ds(ϑ), then (4.48) holds at T̂ which with (4.52) gives

λ
∂ϕ

∂t
(p̂) = 〈f(T̂ , x̂(T̂ ), û(T̂ )), ψ(T̂ )〉.

Thus, we have condition (4.33).

Remark 4.9. Observe that the technique in the above proof of letting x0 repre-
sent a new time scale which depends on u0 is possible since the function g in the
measure-adjoint minimization problem may depend on the control u and subse-
quently g may depend on (u0, u). On the other hand, the function g of the graph
completion minimization problem in section 4.1 may not depend on u, so another
technique or deeper analysis is required to extend this PMP of the graph comple-
tion problem to one with a free end-time.

4.2.3 Corollaries: necessary conditions for additional
optimization problems containing impulses

We now use the free end-time Mayer problem to derive necessary conditions for a
Bolza problem with impulsive dynamics and impulsive Lagrangian. In turn, we will
use the necessary conditions of the Bolza problem to derive necessary conditions
for the minimum time problem whose objective function may involve penalties on
the impulses of the system. Such a penalization is important for the minimum time
problem in order to preclude trivial optimal processes which attain T = 0 as the
minimum time by evolving only along jump dynamics. Last, we comment on the
basic problem of the Calculus of Variations within the impulsive context. All of
these derivations are described in classical form in section 2.3.2 above.
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The Bolza problem. Consider the Bolza problem of the form

(PB)


min
u∈U

∫ T
0
L(t, x(t), u(t))dt+

∫
[0,T ]
〈I(t, x(t), u(t)), dϑ〉

subject to

dx(t) = f(t, x(t), u(t))dt+ g(t, x(t), u(t))dϑ, for a.e. t ∈ [0, T ]

p = (x(T ), x(0)) ∈ Cf × Cin,

(4.54)

where the functions f and g, the sets Cf × Cin and U , and the impulsive con-
trol ϑ satisfy all definitions and assumptions of section 4.2.2. The scalar-valued
Lagrangian L is assumed to be continuous in all variables and continuously dif-
ferentiable with respect to t, x. The end time T is variable, and the function
I : R × Rn × Rm → Rk × R is assumed to be continuously differentiable in all
variables.

We follow the reformulation suggested in section 2.3.2 and construct the variable

xn+1(t) =

∫ t

0

L(τ, x(τ), u(τ))dτ +

∫
[0,T ]

〈I(t, x(t), u(t)), dϑ〉

to form the auxiliary minimization problem

minxn+1(T ) (4.55)

over u ∈ U and admissible impulsive controls ϑ, subject to the auxiliary system{
dx(t) = f(t, x(t), u(t))dt+ g(t, x(t), u(t))dϑ

dxn+1(t) = L(t, x(t), u(t))dt+ 〈I(t, x(t), u(t)), dϑ〉,
(4.56)

for almost every t ∈ [0, T ]. The initial condition of the auxiliary system will be

p = (x(T ),x(0)) ∈ (Cf × R)× (Cin × {0}), (4.57)

where we adopt the bold notation of the previous section as the augmented (n+1)-
dimensional state variable x = (x, xn+1). It is straightforward to verify that the
dynamics of the augmented system inherit the regularity of the functions f , g,
L, and I as demonstrated for equation (4.34) in the above proof. Thus, we may
apply the maximum principle of Theorem 4.8 to obtain the necessary conditions
for problem (4.55)-(4.57) in the form of the next corollary.

Corollary 4.10. Let (T̂ , û, ϑ̂) be an optimal policy for the problem (PB) with cor-
responding optimal trajectory x̂. Let (Hv) be satisfied, and let the Lagrangian L
be continuous in all variables and continuously differentiable with respect to t, x,
and let I be continuously differentiable in all variables. Then there exists a number
λ ≥ 0, a vector-valued function ψ of bounded variation, and for every point in
τ ∈Ds(ϑ̂), there exists an absolutely continuous vector-valued function στ defined
on the interval [0, 1] such that
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ψ(t) = ψ(0)−
∫ t

0

∂

∂x
〈f(τ, x̂(τ), û(τ)), ψ(τ)〉+ λLx(τ, x̂(τ), û(τ)) dτ

−
∫

[0,t]

∂

∂x
〈gTr(τ, x̂(τ), û(τ))ψ(τ) + λI(τ, x̂(τ), û(τ)), dµc.p.〉

+
∑

τ∈Ds(ϑ):τ≤t

[στ (1)− ψ(τ−)] ∀t ∈ (0, T̂ ];

(4.58)


dχ̂τ (s)
ds

= g(τ, χ̂τ (s), ûτ (s))v̂τ (s)
dστ (s)
ds

= − ∂
∂x
〈gTr(τ, χ̂τ (s), ûτ (s))στ (s) + λI(τ, χ̂τ (s), ûτ (s)), v̂τ (s)〉

(χ̂τ (0) = x(τ−), στ (0) = ψτ (τ
−), s ∈ [0, 1];

(4.59)

(−ψ(T̂ ), ψ(0)) ∈ NCf×Cin(p̂); (4.60)

max
u∈U
{〈f(t, x̂(t), u), ψ(t)〉+ λL(t, x̂(t), u)} =

〈f(t, x̂(t), û(t)), ψ(t)〉+ λL(t, x̂(t), û(t))

a.e. t ∈ [0, T̂ ];

(4.61)



max
u∈U

gTr(t, x̂(t), u)ψ(t) + λI(t, x̂(t), u) ∈ NK(0) ∀t ∈ [0, T̂ ],

max
u∈U

gTr(τ, χ̂τ (s), u)στ (s) + λI(τ, χ̂τ (s), u) ∈ NK(0) ∀s ∈ [0, 1], ∀τ ∈ Ds(ϑ),∫
[0,T̂ ]
〈gTr(τ, x̂(τ), û(τ))ψ(τ) + λI(τ, x̂(τ), û(τ)), dµ̂c.p.〉+∑

τ∈Ds(ϑ̂)

∫
[0,1]
〈gTr(τ, χ̂τ (s), ûτ (s))στ (s) + λI(τ, χ̂τ (s), ûτ (s)), v̂τ (s)〉ds ≥ 0;

(4.62)

ψ(t) · f(t, x̂(t), û(t)) + λL(t, x̂(t), û(t)) =∫ t

0

〈ft(τ, x̂(τ), û(τ)), ψ(τ)〉+ λLt(τ, x̂(τ), û(τ))dτ

+

∫
[0,t]

〈gTrt (τ, x̂(τ), û(τ))ψ(τ) + λIt(τ, x̂(τ), û(τ)), dµc.p.〉

+
∑

τ∈Ds(ϑ̂):τ≤t

∫
[0,1]

〈gTrt (τ, χ̂τ (s), ûτ (s))στ (s) + λIt(τ, χ̂τ (s), ûτ (s)), v̂τ (s)〉ds,

a.e. t ∈ [0, T̂ ].
(4.63)

Furthermore, if T̂ /∈ Ds(ϑ̂), then

λ

∫ T̂

0

Lt(t, x̂(t), û(t))dt+ λ

∫
[0,T̂ ]

〈It(t, x̂(t), û(t)), dϑ̂〉 = 〈f(T̂ , x̂(T̂ ), û(T̂ )), ψ(T̂ )〉,

(4.64)
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where Lt is the partial derivative of L with respect to t and likewise for It.

Proof. The reformulation (4.55)-(4.57) satisfies the conditions of Theorem 4.8,
which implies there exist a number λ ≥ 0, a vector-valued function of bounded vari-
ation (ψ, ψn+1), and for every τ ∈ Ds(ϑ) an absolutely continuous, vector-valued
function (στ , σ

n+1
τ ) such that

ψ(t) = ψ(0)−
∫ t

0

∂

∂x
〈f(τ, x̂(τ), û(τ)), ψ(τ)〉+ Lx(τ, x̂(τ), û(τ))ψn+1(τ) dτ

−
∫

[0,t]

∂

∂x
〈gTr(τ, x̂(τ), û(τ))ψ(τ) + I(τ, x̂(τ), û(τ))ψn+1(τ), dµc.p.〉

+
∑

τ∈Ds(ϑ):τ≤t

[στ (1)− ψ(τ−)],

ψn+1(t) =ψn+1(0) +
∑

τ∈Ds(ϑ):τ≤t

[σn+1
τ (1)− ψn+1(τ−)], ∀t ∈ (0, T̂ ];

(4.65)



dχ̂τ (s)
ds

= g(τ, χ̂τ (s), ûτ (s))v̂τ (s)
dχ̂n+1
τ (s)
ds

= 〈I(τ, χ̂τ (s), ûτ (s)), v̂τ (s)〉
dστ (s)
ds

= − ∂
∂x
〈gTr(τ, χ̂τ (s), ûτ (s))στ (s) + I(τ, χ̂τ (s), ûτ (s))σ

n+1
τ (s), v̂τ (s)〉

dσn+1
τ (s)
ds

= −〈gTrxn+1
(τ, χ̂τ (s), ûτ (s))στ (s) + Ixn+1(τ, χ̂τ (s), ûτ (s))σ

n+1
τ (s), v̂τ (s)〉 = 0

(χ̂τ (0), χ̂n+1
τ (0)) = (x(τ−), xn+1(τ−))

(στ (0), σn+1
τ (0)) = (ψ(τ−), ψn+1(τ−)), s ∈ [0, 1];

(4.66)

(−ψ(T̂ ), ψ(0)) ∈ λ∂ϕ
∂p

(p̂) +NCf×Cin(p̂)

(−ψn+1(T̂ ), ψn+1(0)) ∈ ∂ϕ

∂pn+1

(p̂) +NR×{0}(p̂n+1); (4.67)

max
u∈U
{〈f(t, x̂(t), u), ψ(t)〉+ L(t, x̂(t), u)ψn+1(t)} =

〈f(t, x̂(t), û(t)), ψ(t)〉+ L(t, x̂(t), û(t))ψn+1(t)

for a.e. t ∈ [0, T̂ ];

(4.68)
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max
u∈U

gTr(t, x̂(t), u)ψ(t) + I(t, x̂(t), u)ψn+1(t) ∈ NK(0) ∀t ∈ [0, T̂ ],

max
u∈U

gTr(τ, χ̂τ (s), u)στ (s) + I(τ, χ̂τ (s), u)σn+1
τ (s) ∈ NK(0) ∀s ∈ [0, 1],

∀τ ∈ Ds(ϑ),∫
[0,T̂ ]
〈gTr(τ, x̂(τ), û(τ))ψ(τ) + I(τ, x̂(τ), û(τ))ψn+1(τ), dµ̂c.p.〉+∑

τ∈Ds(ϑ̂)

∫
[0,1]
〈gTr(τ, χ̂τ (s), ûτ (s))στ (s) + I(τ, χ̂τ (s), ûτ (s))σ

n+1
τ (s), v̂τ (s)〉ds ≥ 0;

(4.69)

ψ(t) · f(t, x̂(t), û(t)) + ψn+1(t)L(t, x̂(t), û(t)) =∫ t

0

〈ft(τ, x̂(τ), û(τ)), ψ(τ)〉+ ψn+1(τ)Lt(τ, x̂(τ), û(τ))dτ

+

∫
[0,t]

〈gTr
t (τ, x̂(τ), û(τ))ψ(τ) + It(τ, x̂(τ), û(τ))ψn+1(τ), dµc.p.〉

+
∑

τ∈Ds(ϑ̂):τ≤t

∫
[0,1]

〈gTrt (τ, χ̂τ (s), ûτ (s))στ (s) + It(τ, χ̂τ (s), ûτ (s))σ
n+1
τ (s), v̂τ (s)〉ds,

a.e. t ∈ [0, T̂ ].
(4.70)

Observe that the conditions have been listed as (n+1)-vectors with the (n+1)st

component written separately, as in the proof of Theorem 4.8. The notation Lx in
condition (4.65) is taken to be the vector of partials Lx = [Lx1 , ..., Lxn ]Tr; otherwise,
the partial notation of Remark 4.7 is in effect. We see that the equation for ψn+1 in
(4.65) has been simplified due to the fact that the functions f and g are independent
of the variable xn+1 and therefore fxn+1 ≡ 0 and gxn+1 ≡ 0. This comment also
verifies the value of 0 on the right hand side of the fourth equation of (4.66).

For each τ ∈ Ds(ϑ̂), condition (4.66) implies that the component σn+1
τ of the

jump adjoint arc is constant. In particular,

σn+1
τ ≡ ψn+1(τ−), ∀τ ∈ Ds(ϑ̂). (4.71)

Therefore, the sum in the second equation of the adjoint equation (4.65) is 0, so

ψn+1(t) = ψn+1(0), ∀t ∈ (0, T̂ ]. (4.72)

Note that the value function for the problem formulation (4.55)-(4.57) is given by
ϕ(p) = xn+1(T ), so ϕ depends only on the variable endpoint xn+1(T ) and partials
with respect to all other variables are 0. The transversality conditions (4.67) can
thus be split via (2.8) and written as

(−ψ(T̂ ), ψ(0)) ∈ λ · 0 +NCf×Cin(p̂),

ψn+1(0) ∈ λ · 0 +N{0}(0) = R,
−ψn+1(T̂ ) ∈ λ · 1 +NR(x̂n+1(T̂ )) = λ+ ∅,
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and further simplified to

(−ψ(T̂ ), ψ(0)) ∈ NCf×Cin(p̂),

ψn+1(0) ∈ R,
−ψn+1(T̂ ) = λ.

(4.73)

The second inclusion is a vacuous condition on ψn+1, but the equation of the
third line and (4.72) imply that ψn+1 is the constant function

ψn+1(t) = λ, ∀t ∈ (0, T̂ ]. (4.74)

In turn, the identities (4.71) and (4.74) yield

σn+1
τ (s) = λ, ∀s ∈ [0, 1], ∀τ ∈ Ds(ϑ̂). (4.75)

The adjoint equation (4.58), the maximum condition (4.61), and the condition
(4.70), follow from applying the substitutions given by (4.74) and (4.75) to (4.65),
(4.68), and (4.70), respectively.

The jump adjoint equation (4.59) follows from (4.75) and the non-(n+ 1) com-
ponents of (4.66).

The transversality condition (4.60) is given directly by the first inclusion of
(4.73).

The jump maximum conditions (4.62) are derived from (4.69) via (4.74) and
(4.75).

Finally, suppose T̂ /∈ Ds(ϑ). Then Theorem 4.8 implies

λ
∂ϕ

∂t
(p̂) = 〈f(T̂ , x̂(T̂ ), û(T̂ )), ψ(T̂ )〉,

which by the definitions of ϕ and xn+1, is equivalent to

λ

∫ T̂

0

Lt(t, x̂(t), û(t))dt+ λ

∫
[0,T̂ ]

〈It(t, x̂(t), û(t)), dϑ̂〉 = 〈f(T̂ , x̂(T̂ ), û(T̂ )), ψ(T̂ )〉.

This last equation is condition (4.64).

The Minimum Time problem. To form the minimal time problem, take
L ≡ 1 for the non-impulsive portion of the Lagrangian in problem (PB). We let
I be a continuously differentiable function to be chosen as a penalty function for
jumps in the dynamics. The impulsive minimum time problem is then given by

min

∫ T

0

dt+

∫
[0,T ]

〈I(t, x(t), u(t)), dϑ〉 (4.76)

subject to

dx(t) = f(t, x(t), u(t))dt+ g(t, x(t), u(t))dϑ, for a.e. t ∈ [0, T ] (4.77)
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and
p = (x(T ), x(0)) ∈ Cf × Cin, (4.78)

where Cf is the target set. Necessary conditions for this problem may readily be
obtained by the maximum principle of Corollary 4.10.

The Calculus of Variations problem. Similarly to section 2.3.2, we consider
the Calculus of Variations problem

min
x(·)

∫ T

0

L(t, x(t), ẋ(t))dt+

∫
[0,T ]

〈I(t, x(t), ẋ(t)), dϑ〉, (4.79)

subject to
x(0) = x̄, x(T ) = ȳ, (4.80)

for x̄, ȳ ∈ Rn. The functions of the Lagrangian depend on the derivative ẋ. How-
ever,in order for the problem to allow impulses we must allow x to be a function
in BV ([0, T ],Rn), which raises the problem of a definition for ẋ.

In the context of the present work, this problem rests between two possible ap-
proaches. The first would be to consider the PMP of the graph completion method
given in section 4.1.3, which provides an auxiliary system with an absolutely con-
tinuous trajectory y whose derivative is well-defined almost everywhere. However,
we would need to extend the PMP for the fixed end-time Mayer problem to the free
end-time Mayer problem and in turn the Bolza problem. Remark 4.9 points out the
challenges associated with this task. The second approach points out a weakness
in the maximum principles associated with the measure-adjoint problems, namely
the lack of a graph completion to form an auxiliary system whose trajectory has
a well-defined derivative. Both of these approaches are future problems resulting
from the present work, with the measure-adjoint approach being preferred as it
will allow for vector-valued impulses.
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Chapter 5
Conclusions and future work

We have made a survey of the theory of impulsive control systems and made con-
nections between problem formulations, as in the solution equivalence of impulsive
differential inclusions and impulsive differential equations. The application of the
graph completion and reparameterization to a neural spiking model provides a new
type of analysis for such models which was shown to be generally equivalent to
a technique in use. A comparison between Pontryagin-type maximum principles
for optimal impulsive control problems was made, and the more recent maximum
principle for the fixed end-time Mayer problem was extended generally to a free
end-time Mayer problem, a Bolza problem, and a minimum time problem.

Future work ranges from immediate details to more remote topics including:

• Establish a nontriviality condition for the maximum principle of the free end-
time Mayer problem, or describe the assumptions to guarantee nontriviality.

• Complete an extension of the PMP for the impulsive Bolza problem to an
impulsive Calculus of Variations problem.

• Form a precise comparison between the maximum principles of the two impul-
sive fixed end-time Mayer problems and extend the measure-adjoint solution
concept to accommodate nonsmooth dynamics.

• Apply the maximum principle of the impulsive Bolza problem to the neural
spiking model to optimize impulse trains, and therefore nerve signal strength,
over the parameters of the model.

• Investigate the Hamilton-Jacobi theory and other sufficient conditions for
the impulsive optimal control problems studied in the present work.
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