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ABSTRACT 

Resistant starch (RS) is fermentable dietary fiber. It has been shown that inclusion 

of resistant starch in the diet causes decreased body fat accumulation and altered gut 

hormone profile.  Gut hormone has complex effect on neuropeptides’ expression in the 

brain hypothalamic area which is regarded as key factors in regulation of energy 

homeostasis.  In this project, thereby, it is proposed that 1) the hypothalamic 

neuropeptide Y (NPY), agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) 

mRNA expression may be altered by RS feeding; 2) afferent vagal nerves might be 

involved in this process.  

Animal experiment was conducted to investigate the hypothesis. The rats were 

injected intraperitoneally with capsaicin to destroy unmyelinated small vagal afferent 

nerve fibers. The cholecystokinin food suppression test was performed to validate the 

effectiveness of the capsaicin treatment.  Then, capsaicin treated rats and vehicle treated 

rats were subdivided into a control diet or a resistant starch diet group, and fed the 

corresponding diet for 65 days.  At the end of study, body fat, food intake, plasma peptide 

YY (PYY) and glucagon-like peptide -1 (GLP-1), and hypothalamic pro-

opiomelanocortin, neuropeptide Y, agouti-related peptide  gene expressions were 

measured. 

 Resistant starch fed rats had decreased body fat, increased POMC expression in 

the hypothalamic arcuate nucleus, and elevated plasma PYY and GLP-1 in both the 

capsaicin and vehicle treated rats. Hypothalamic NPY, AgRP gene expressions and food 

intake were not changed by resistant starch or capsaicin.  Therefore, destruction of the 

capsaicin sensitive afferent nerves did not alter the response to resistant starch in rats. 

The conclusion is that dietary resistant starch might reduce body fat through increasing 

http://www.wrongdiagnosis.com/medical/intraperitoneal_injection.htm
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the hypothalamic POMC expression and vagal afferent nerves are not involved in this 

process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 1

CHAPTER 1 

INTRODUCTION 

The worldwide prevalence of obesity has risen dramatically during the past two 

decades, especially in the United States. The 1998-2002 National Health and Nutrition 

Examination Survey (NHANES) showed 65.1% of the U.S. adults aged at least 20 years 

are over the normal weight, among which 29.8% were overweight, 30.4% were obese and 

4.9% were extremely obese (NHANES 2002). Obesity, as a chronic disease per se, has a 

profound impact on human health and lifespan. It leads to the increased morbidity, 

decreased life quality and shortened life span. Obesity is also a risk factor for many other 

diseases. Current evidence show that excess weight gain may be responsible for 65-75% 

of the risk for essential hypertension and cardiovascular disorders (Hall et al.2003) 

Moreover, obesity is considered as one of the main causes of type 2 diabetes (Mokdad et 

al. 2003). Obesity and its related diseases are costly; in 2003, the cost of obesity related 

diseases reached $75 billion in USA and continued going up (CDC, 2004). Therefore, it 

is important and urgent to find effective ways to treat obesity.  

Resistant starches are non-digestible fermentable dietary fibers that resist 

digestion in the small intestine, but are fermented in the large intestine. It has been shown 

that adding resistant starch to diets produces several health benefits, including lower body 

fat storage (Brown, 2004; Higgins, 2004). However, the current understanding of the 

mechanism of decreased body fat by resistant starch is incomplete. In addition to the 

conventional effects as dietary fiber, such as diluting the energy density of the diet and 

causing discomfort in the gut,  resistant starch fed animals were also found having 

significantly higher levels of peptide YY (PYY) and glucagon-like peptide -1 (GLP-1) 

( Keenan, et al. 2006; Zhou et al. 2006).  PYY and GLP-1 are gut satiety hormones and 
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candidates for anti-obesity drugs (Murphy et al. 2006;Young 2006).  These two hormones 

reduce food intake and body weight by sending signals from the gut to the brain, and 

changing hypothalamic neuropeptide expression ( Wren et al. 2007).  

There are two different sets of neurons: neuropeptide Y/agouti-related peptide 

(NPY/AgRP) and pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the 

hypothalamus. These are the key factors in modulating energy homeostasis. Activation of 

POMC neurons increases energy expenditure, and activation of NPY/AgRP neurons 

increases food intake (Schwartz et al. 2004; Cone et al. 2001). Studies show PYY and 

GLP-1 affect the activities of hypothalamic NPY/AgRP and POMC neurons (Riediger et 

al. 2004; Acuna-Goycolea et al. 2005; Larsen et al.1997; Ghamari-Langroudi  et al. 2005). 

Peripheral injection of PYY decreases NPY mRNA (Batterham et al. 2002; Challis et al. 

2003) and increases POMC mRNA in the hypothalamus (Challis et al. 2003).  The 

modulation of NPY/AgRP and POMC neurons by PYY or GLP-1 can be directly or 

through vagal nerves (Abbott et al.2005; Koda et al. 2005; Osaka et al.2005). The 

modulation of brain neuropeptides, NPY, AgRP and POMC, by resistant starch is 

unknown, except the most recent report showing that resistant starch fed mice have high 

activity in hypothalamus measured by neuronal magnetic resonance imaging (MRI) ( So 

et al. 2007).     

This study investigates the role of hypothalamic neuropeptides and vagal nerves 

on decreasing body fat by resistant starch. The hypothesis for this work is that 1) the 

hypothalamic NPY/AgRP and POMC mRNA expression are altered in resistant starch 

fed rats; and 2) afferent vagal nerves are involved in this process. To test the hypothesis, 

rats’ visceral afferent nerves were destroyed with a neurotoxin, capsaicin to examine 

whether the effect of resistant starch would be abolished.  NPY, AgRP, and POMC 
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mRNA expressions in arcuate nucleus of hypothalamus were measured in rats fed 

resistant starch and control diets. 
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CHAPTER 2 

REVIEW OF LITERATURE 

Resistant Starch  

The term  resistant starch (RS), first  coined in 1982 (Ritter et al. 1989), refers to a 

sum of starch that resists digestion by amylase in the small intestine and mainly reaches 

the large intestine where the undigested starch is fermented by the microflora to produce 

short chain fatty acids. RS is divided into four subcategories: RS1, RS2, RS3, and RS4. 

RS1 represents starch in whole grains that are in a physically inaccessible form. RS2 is a 

type of starch, such as ungelatinized starch, which is tightly packed in a radial pattern and 

resists digestion. The high amylose cornstarch used in the current study is an example of 

a RS2.  RS3 is the type of starch that is most resistant to digestion. The starch fitting in 

this category is mainly retrograded amylose formed in the process of cooling the 

gelatinized starch and can escape the digestion of pancreatic amylase almost totally. RS4 

includes structurally modified starch by chemical treatment linking amylose strands. In 

our study, the starch used is composed of 60% amylose and 56%RS.  

Adding resistant starch to diets produces several health benefits, including lower 

body fat storage ( Brown, 2004; Higgins, 2004).  Some human studies claim that diets 

containing resistant starch increase satiety and decrease food intake (Achour  et al. 1997; 

Liljeberg  et al. 1999; Raben et al. 1994) and the opposite result has also been reported 

( de Roos et al.1995).  These equivocal results are due to the lack of direct comparisons 

in these studies, as dietary texture and energy content used in those studies are different.  

In contrast to human studies, our previous works show that body fat is consistently lower 

in resistant starch fed animals compared to control animals fed the same dietary texture 

and energy density diet (Garcia et al. 2003; Hegsted et al. 2003; Keenan et al.2006). Thus, 
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resistant starch might be an alternative dietary carbohydrate for developing weight 

control diets. 

The mechanism of decreased body fat by resistant starch is not completely 

understood. As a part of the diet, RS potentially has three major effects (Keenan et 

al.2006): metabolizable energy dilution, a bulking effect and fermentation to produce 

short-chain fatty acids and increase PYY and GLP-1 through nutrient-gene interactions.  

Resistant starch dilutes the energy density of the diet, which previously was considered 

the main mechanism for decreased body fat by resistant starch.  However, in our previous 

studies, we balanced the energy density in the two diets, RS and EC, to exclude the 

effects of energy dilution, and still obtained the similar outcome.  Another assumption is 

that fermentation of resistant starch causes discomfort in the gut, which leads to 

decreased food intake and body weight. Nevertheless, resistant starch fed animals eat the 

same or more food than controls ( Keenan et al.2006), which indicates at most only minor 

effects of gut discomfort in decreased body fat. Thus, the bulking effect of fiber, which 

induces the decrease of food intake on account of the distension of the GI tract, might be 

considered not as a major factor on RS reducing body fat.  

It is reported that resistant starch fed animals have significantly higher levels of 

peptide YY (PYY) and glucagon-like peptide -1 (GLP-1) ( Keenan, et al. 2006; Zhou et 

al. 2006).  PYY and GLP-1 are gut secreted hormones and candidates for anti-obesity 

drugs ( Murphy et al. 2006;Young 2006).  Administration of GLP-1 or PYY reduces food 

intake and body weight in animals and humans ( Batterham et al. 2002; Drucker et al. 

2006; Neary et al. 2005). These two hormones alter energy balance by sending signals 

from the gut to the brain, and result in brain neuropeptide expression changes ( Wren et al. 
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2007).  Therefore, the mechanism of decreased body fat by resistant starch might also 

relate to the similar gut-brain connection and the regulation of brain neuropeptides.   

Glucagon-like Peptide-1 (GLP-1)     
 

 GLP-1 is a satiety peptide yielded from the preproglucagon gene product in the L 

cell of the distal intestine (Badman and Fliter. 2005) 

GLP-1 has several forms in the circulation. The inactive forms, GLP-11-36 and 

GLP-11-37   , are cleaved from preproglucagon , depending on whether the C-terminal 

glycine is present. Further N-terminal truncation is required to produce the biologically 

active forms, GLP-17-36  and GLP-17-37 (Mojsov et al. 1986).  

GLP-1 is released into the circulation in a biphasic manner in proportion to the 

calories ingested (Orskov et al. 1994). The early phase release seems to be mediated by a 

neuroendocrine reflex, whereas the latter is a result of the presence of nutrients directly 

with L-cells.  

The action of GLP-1,   as a potent incretin, including mediating glucose-dependent 

insulinotropic effects  (Holst et al. 1987), inhibiting gastric acid secretion and delaying 

gastric emptying, as well as promoting an increase in pancreatic β-cell mass (Tolessa et al. 

1998; Naslund et al. 1999). Like other gut peptides, GLP-1 also functions within the 

central nervous system (CNS) as a neurotransmitter. It has been confirmed that GLP-1 

receptors are distributed in a number of areas of the brain. These include the Arcuate 

nucleus (ARC), the paraventricular nucleus (PVN) and the supraoptic nucleus (SON) of 

the hypothalamus and the area postrema of the brainstem (Wei et al.1995; Shughrue et al. 

1996), most of which are important in appetite control. A high density of GLP-1 

receptors is localized in the ARC. 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16815798#bib160
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16815798#bib188
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16815798#bib104
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16815798#bib230
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16815798#bib230
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16815798#bib177
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16815798#bib245
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16815798#bib220
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16815798#bib220
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Both CNS-injected and peripherally administered GLP-1 inhibit food intake in 

rodents. Turton et al. ICV administered GLP-1 to rats and demonstrated a significant 

inhibition of food intake. The feeding effect was inhibited by the presence of exendin9-39, 

a competitive antagonist to GLP-1(Turton et al. 1996).  

Similar data were obtained from human studies. GLP-1 decreases appetite and 

caloric intake in lean and obese humans in a dose-dependent manner (Gutzwiller et al. 

1999a). Exendin-4, a potent agonist at GLP-1 receptors, also reduced food intake in 

healthy volunteers (Edwards et al. 2001). In a recent meta-analysis of seven studies, a 

significant dose-dependent decrease in appetite and caloric intake by GLP-1 infusion was 

shown both in lean and obese subjects (Verdich et al. 2001). 

Peptide YY (PYY) 

PYY is secreted by L-cells located in the gastrointestinal tract, especially in ileum, 

colon and rectum. There are two main forms of PYY in the circulation: PYY1–36; 

PYY3–36 (Batterham et al. 2002). The truncated form, PYY3-36, is created by cleavage 

of the N-terminal residues by dipeptidyl peptidase IV (DPP-IV (Grandt et al. 1994). 

Peripheral administration of PYY has several actions, including delaying gastric 

emptying and gastric secretion, and increasing ileum absorption. It has also been reported 

that peripheral administration of PYY3–36 or injection directly into the ARC inhibit food 

intake and reduce weight gain in rodents (Batterham et al. 2002).  However, when 

injected into the cerebroventricular system, PYY3-36 increases the food intake (Kanatani 

et al. 2000). But in Y1 and Y5 knockout mice, this effect is weakened. PYY3-36 exhibits 

relative specificity for the Y2 receptor. When it crosses the blood brain barrier, it 

probably exerts its actions via the presynaptic Y2 receptor of NPY neurons in the ARC, 

reducing NPY expression and consequently inhibiting feeding (Challis et al. 2003). It is 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16815798#bib235
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16815798#bib95
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16815798#bib95
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16815798#bib65
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consistence with the discovery that the inhibitory Y2 autoreceptor is highly expressed on 

NPY neurons in the ARC (Broberger et al. 1997), whereas Y1 and Y5 receptors are 

localized in areas such as the PVN.  Therefore, it also has been suggested that the 

orexigenic effects of ICV-administered PYY and PYY3-36 are mediated through Y1 and 

Y5 receptors. The ARC, with a relative lack of blood–brain barrier, is more exposed to 

circulating PYY3-36 than other areas of the hypothalamus. It has been suggested that the 

melanocortin system may not be essential for the mediation of the inhibitory effects of 

PYY3-36 on energy intake (Challis et al. 2004). 

An alternative mechanism through which the anorectic effects of PYY3-36 are 

mediated has been proposed. Y2 receptor mRNA is also found expressed in the NTS and 

the nodose ganglion of the vagus nerve (Koda et al.2005). Therefore, it suggests that 

PYY3-36 may inhibit feeding via the vagus. Abbott et al performed bilateral 

subdiaphragmatic vagotomy and transectioning of the brainstem–hypothalamic neuronal 

pathways. The anorectic effects of peripheral PYY3-36 was abolished in rats underwent 

either of these two procedures as well as c-fos in the ARC in response to PYY3-36 

(Abbott et al. 2005). 

It has been reported that PYY3-36 can affect POMC neuron activity (Challis et al. 

2003). Two studies suggested that PYY 3-36 can stimulate POMC neuron activity 

( Batterham et al. 2002; Challis et al. 2003).  However, it still remains controversial for 

the effect of PYY3-36 on POMC neuron activity: other groups have shown that PYY3-36  

inhibits rather than activates hypothalamic POMC neurons ( Acuna-Goycolea et al. 2005; 

Ghamari-Langroudi et al. 2005).  Moreover, peripheral PYY injection still induces a 

normal anorectic response in POMC knockout mice (Challis et al. 2004). Therefore, it 

still remains unclear on this issue.  
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Neuropeptides in Hypothalamic Arcuate Nucleus 

Arcuate nucleus, locating around the third ventricle and above the median 

eminence, is the chief hypothalamic area involved in the control of food intake. Therefore, 

it is also considered as the ‘master hypothalamic centre’ for feeding control. Its location 

where the blood brain barrier is relatively deficient allows the entry of various peptides 

from circulation, like PYY and leptin, and modifying the activity of two populations of 

neuron within the ARC (Woods et al. 2003). 

There are two distinct but interconnected groups of neurons in the ARC. One set 

of neurons distributing in the ventromedial part of the ARC release orexigenic 

neuropeptide Y and agouti-related peptide( Broberger et al. 1998). The other population 

of neurons which situate in the ventrolateral part of ARC expresses anorexigenic products 

of pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript (Elias et al. 

1998). 

These neurons expressing NPY and AgRP mostly project to the paraventricular 

nucleus. (Hahn et al. 1998), whereas the other set of neurons projects more broadly 

within the central nervous system (CNS) to hypothalamic nuclei such as the dorsomedial 

hypothalamic nucleus, the lateral hypothalamic area (LHA) and the PVN. Thus, 

AgRP/NPY and CART/POMC neurons act as the primary hypothalamic site of action of 

peripheral hormones. Hypothalamic nuclei, such as the PVN and the LHA, which the 

ARC neurons project to, act as the second order neurons. 

Neuropeptide Y (NPY) 

NPY is a thirty-six-amino acid peptide and is the most powerful central enhancer 

of appetite. It is widely distributed in the CNS with a predominant expression in ARC 

(Håkansson-Ovesjö et al. 2000). 90% of NPY neurons co-express AgRP (Peyron et 

http://journals.cambridge.org/action/displayFulltext?type=6&fid=731368&jid=&volumeId=&issueId=01&aid=731364&fulltextType=RA&fileId=S0029665107005368#ref400#ref400
http://journals.cambridge.org/action/displayFulltext?type=6&fid=731368&jid=&volumeId=&issueId=01&aid=731364&fulltextType=RA&fileId=S0029665107005368#ref042#ref042
http://journals.cambridge.org/action/displayFulltext?type=6&fid=731368&jid=&volumeId=&issueId=01&aid=731364&fulltextType=RA&fileId=S0029665107005368#ref101#ref101
http://journals.cambridge.org/action/displayFulltext?type=6&fid=731368&jid=&volumeId=&issueId=01&aid=731364&fulltextType=RA&fileId=S0029665107005368#ref156#ref156
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al.2000). NPY mRNA levels and NPY release in the ARC are enhanced in the conditions 

such as low leptin levels, negative energy balance, and hypoglycemia (Swart et al. 2002). 

Central administration of NPY alters the energy balance through reducing energy 

expenditure, inducing striking hyperphagia and promoting adipogenesis in rats (Pinto et 

al. 2004).  

Although NPY is a potent orexigenic neuronpeptide, NPY-knock-out mice show 

normal body weight and adiposity (Erickson et al. 1996). That is probably due to a 

compensatory and redundant mechanism in the orexigenic pathways. This is supported by 

the observation that adult mice underwent selective ablation of AgRP/NPY neurons 

became hypophagia and leanness (Gropp et al. 2005; Luquet et al. 2005). 

NPY receptors are G-protein-coupled receptors. To date, six have been isolated, 

named Y1–Y6. (Kalra et al.1999). Most of these receptors are present in rat brain, except 

Y6, which is absent in rats and only found active in mice (Inui, 1999). Y1 and Y5 seem 

to be involved in mediating the NPY orexigenic effects (Stanley et al., 2005). Now their 

antagonists are under investigation as antiobesity agents. 

Melanocortins 

Melanocortin system is critical for the regulation of energy homeostasis: the 

defects in MC4 are responsible for up to 6% of monogenetic obesity in humans 

(MacKenzie, 2006).  The melanocortin system includes neurons expressing pro-

opiomelanocortin (POMC) in arcuate nucleus and nucleus of the solitary tract (NTS), 

NPY/AGRP neurons originating in ARC and downstream targets of these neurons 

expressing melanocortin receptor3 and 4 (Cone, 2005). 

Among the products of cleavage of POMC is α-melanocyte-stimulating hormone, 

a peptide which can bind melanocortin receptor 4 (MC4) and promote energy expenditure 

http://journals.cambridge.org/action/displayFulltext?type=6&fid=731368&jid=&volumeId=&issueId=01&aid=731364&fulltextType=RA&fileId=S0029665107005368#ref357#ref357
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B7MFR-4R8M0T1-1&_user=884346&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000047322&_version=1&_urlVersion=0&_userid=884346&md5=e2e2ebde295bbd777a909a3630ba2ee9#bib49#bib49
http://journals.cambridge.org/action/displayFulltext?type=6&fid=731368&jid=&volumeId=&issueId=01&aid=731364&fulltextType=RA&fileId=S0029665107005368#ref109#ref109
http://journals.cambridge.org/action/displayFulltext?type=6&fid=731368&jid=&volumeId=&issueId=01&aid=731364&fulltextType=RA&fileId=S0029665107005368#ref149#ref149
http://journals.cambridge.org/action/displayFulltext?type=6&fid=731368&jid=&volumeId=&issueId=01&aid=731364&fulltextType=RA&fileId=S0029665107005368#ref244#ref244
http://journals.cambridge.org/action/displayFulltext?type=6&fid=731368&jid=&volumeId=&issueId=01&aid=731364&fulltextType=RA&fileId=S0029665107005368#ref194#ref194
http://journals.cambridge.org/action/displayFulltext?type=6&fid=731368&jid=&volumeId=&issueId=01&aid=731364&fulltextType=RA&fileId=S0029665107005368#ref190#ref190
http://journals.cambridge.org/action/displayFulltext?type=6&fid=731368&jid=&volumeId=&issueId=01&aid=731364&fulltextType=RA&fileId=S0029665107005368#ref344#ref344
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(Cone, 2006). Thereby Pro-opiomelanocortin (POMC) neurons are suggested to be 

primarily anorexigenic neurons. On the contrary to the POMC derived peptides, AgRP is 

an endogenous melanocortin receptor antagonist which leads to energy excess (Bagnol, 

1999). Overexpression of AgRP blocks MC4 and results in obesity. AgRP is exclusively 

co-expressed in the NPY-containing neurons of the arcuate nucleus. 

MC3R mRNA was found coexpressed in both AGRP and POMC neurons in the 

ARC; however, neither AGRP nor POMC cells displayed MC4R mRNA (Bagnol  et 

al.,1999). Expression of the MC3R by POMC neurons provides a potential circuit for 

amplification of AGRP-mediated signals, whereas the expression of the MC3R by AGRP 

neurons provides a potential circuit for negative autoregulation of POMC-mediated 

signals. Together with other evidence such as, MC3R specific agonist inhibiting 

spontaneous firing of POMC neurons(Cowley  et al., 2001) and increasing food intake by 

peripheral administration of a MC3-R selected agonist (Marks  et al., 2006), MC3-R is 

now regarded as an inhibitory auto-receptor on the ARC melanocortin circuit. 

 MC4R shows intense distribution in the hypothalamic nuclei including the PVN, 

the DMH and the LHA (Liu et al., 2003). MC4R-overexpression in the PVN and 

amygdala, hyperphagia is completely reversed, whereas reduced energy expenditure is 

unaffected, suggesting that MC4R in the PVN specifically regulates food intake, while 

MC4R in other regions mainly controls energy expenditure (Balthasar et al. 2005). 

 Overall, the current view on hypothalamic control of energy homeostasis is that it 

is regulated via the balance between orexigenic NPY/AGRP neurons and anorexigenic 

POMC neurons. 

Capsaicin 

          Capsaicin is the active ingredient in hot chilli peppers. It is present in large 
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 quantities in the white pith tissue which holds the seeds. However, the seeds do not 

contain any capsaicin. 

Capsaicin binds to a receptor called the vanilloid receptor subtype 1 (VR1), an ion 

channel-type receptor (winter et al., 1995).  When this receptor is activated, it increases 

membrane permeability to cations, like calcium and sodium, allowing them to pass 

through the cell membrane and into the cell from outside. The capsaicin caused 

"depolarization" of the neuron stimulates it to signal the brain and produces a burning and 

painful feeling similar as that excessive heat would (Dray, 1992). But for prolonged 

periods of application, capsaicin would cause irreversible toxic effects resulting in the 

loss of sensory neurons. Although the mechanisms are unclear, it has been shown that the 

increase in calcium concentration may activate some calcium-dependent proteases and 

leads to cell death (Chard et al., 1995). 

Capsaicin binds to and activates the thinly myelinated A primary sensory neurons 

and unmyelinated C-fibers. Intraperitoneal capsiacin destroys vagal (also some non-vagal, 

like trigeminal) sensory fibers (winter et al., 1995). Systemic injection with large dose of 

capsaicin can degenerate targeted C-fiber terminals as well as those beyond the area of 

interest.  It also brings some adverse effects, for example, the pulmonary chemoreflex 

and reflex bronchoconstriction caused by the activation of the pulmonary C fibre VR1 

(Nault et al., 1999) and cardiac dysfunction (Zvara et al., 2006). Perivagal application of 

capsaicin needs very small dose of capsaicin and isn’t accompanied with systemic 

adverse effect (Cakir et al., 2007).  However, it was observed that, with localized 

application of capsaicin, c-fiber degenerated distally and extensive axonal sprouting 

could be seen from the proximal nerve (winter et al., 1995).  

 
 

http://www.experiencefestival.com/a/Capsaicin_-_Mechanism_of_action/id/622617
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CHAPTER 3 
 

DIETARY RESISTANT STARCH INCREASES HYPOTHALAMIC POMC 
EXPRESSION INDEPENDENT OF CAPSAICIN-SENSITIVE NEURONS IN 

RATS 
Introduction 

Resistant starches (RS) are non-digestible, fermentable fibers that have potential 

to treat obesity and related disease. Our previous research showed that RS reduced body 

fat in rodents (Keenan et al. 2006). Also, we found RS feeding increased the gene 

expression and plasma  concentration of peptide YY (PYY) and glucagon-like peptide -1 

(GLP-1) (Zhou et al. 2006). PYY and GLP-1 are two satiety hormones that are released 

from the gut and signal the brain to alter the energy balance by affecting activities of two 

sets of neurons in the hypothalamus, NPY/AGRP and POMC. Although the essential role 

of NPY/AGRP and POMC in energy homeostasis is well established, it is not clear that 

how PYY and GLP-1 affect NPY/AGRP and POMC neurons. Some studies have shown 

that the effect of these two hormones could be attenuated by ablation of the vagal trunk 

(Abbott et al. 2005; Koda et al. 2005), while another study did not observe this effect 

(Osaka et al. 2005). Because RS fed animals had reduced body fat and increased 

expression of PYY and GLP-1 (Zhou et al. 2006), we hypothesize that 1) the 

hypothalamic NPY/AGRP and POMC mRNA expression may be altered by RS feeding; 

2) afferent vagal nerves are involved in this process. In this study, therefore, we measured 

the impact of RS feeding on mRNA expression of three neuropeptides in the arcuate 

nucleus of the hypothalamus to investigate the mechanism of RS on reducing body fat. 

Additionally, we   destroyed visceral afferent nerves with a neurotoxin, capsaicin, to 

examine whether the effect of RS would be abolished.  
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Methods and Materials 

       Animals and Diet 

Fifty-two male Sprague-Dawley rats aged 7~8 weeks and weighing 150~200g at 

the beginning of the study, were obtained from Harlan Industries (Indianapolis, IN). They 

were housed individually in hanging wire-mesh cages in a temperature-controlled room 

(22±1 oC) on a 12 h/12 h light/dark cycle with the light on at 7am. Rats were acclimated 

for 1 week to a powdered diet and to the cages. Water and assigned diet were available ad 

libitum during the experiment except as noted. The protocols were approved by 

Pennington Biomedical Research Institutional Animal Care and Use Committee. 

The composition of the two experimental diets used in this study is listed in Table 

1. The resistant starch (RS) diet contained 30% (weight/weight) resistant starch (Hi-

Maize® cornstarch; National Starch & Chemical Co., Bridgewater, NJ).  The equal 

energy density control (EC) diet had 100% amylopectin cornstarch (Amioca®; National 

Starch and Chemical Co.) as the carbohydrate source and equal energy density as RS diet 

(3.3kcal/g) by using non-fermentable cellulose (Dyets, Bethlehem, PA) to dilute the 

energy density.  

Capsaicin Treatment 

After one week of acclimation, rats were grouped according to weight with a 

randomized block design. Two groups of rats were injected intraperitoneally with either 

capsaicin or vehicle under inhalation anesthesia (isoflurane). The total capsaicin dose 

(117.5mg/kg; Sigma Chemical) was administered as a series of injections on three 

consecutive days in increasing doses (12.5, 30, and 75mg/kg) ( Kelly et al. 2000). 

Capsaicin was dissolved in a mixed solution of 10% ethanol, 10% Tween 80 and 80% 

 



Table 1. Experimental Diet Composition 

 

 

Ingredients                                Control                                             RS                

                                     grams             kcal                  grams               kcal     

 

100% amylopectin       424.5           1485.8                   0                      0 

High amylose starch                                                                          

60% amylose/                 0                 0                       530.7                 1486 

40%amylopectin 

Sucrose                       100               400                       100                   400 

Casein                         200               716                       200                   716 

Soybean oil                  70               591.5                     70                   591.5 

Cellulose                   156.2                0                         50                       0 

Mineral mix                 35               30.8                       35                    30.8 

Vitamin mix                10                38.7                       10                    38.7 

Choline chloride         1.3                 0                          1.3                     0 

L-cystine                     3.0               12                          3.0                   12 

                            1000 g/kg        3.3kcal/g                 1000 g/kg        3.3kcal /g         
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sterile saline. During the injection of capsaicin, artificial ventilation and chest massage 

were provided to all rats who exhibited respiratory arrest, which typically occurred in the  

first few minutes after the injection. The survival rate during the capsaicin treatment was 

70%. 

The effectiveness of the capsaicin treatment was validated using the 

cholecystokinin (CCK) feeding-suppression test, a capsaicin-sensitive vagal nerve 

dependent response ( Kelly et al. 2000). 

CCK Feeding- Suppression Test 

Four days after the last capsaicin or vehicle injection, all rats were injected 

intraperitoneally with either CCK or saline after an overnight fasting.  Half of the 

capsaicin and vehicle treated rats received CCK (6ug/kg), and the other half received the 

same volume of saline five minutes prior to given access to food. Then food intake was 

measured for the following 30 minutes. Three days later, the same test was repeated 

except that the rats receiving CCK previously were injected with saline, and the rats that 

received saline previously were injected with CCK.   In the vehicle-treated rats, the 

administration of CCK significantly suppressed 30 minute food intakes in overnight 

fasted rats (5.22±0.14 vs. 2.86±0.17; p<0.001).  But all capsaicin treated rats failed to 

respond to CCK and did not reduce food intake (4.63±0.19 vs. 4.18±0.15; p=0.12). 

Experimental Design 

Nine days after the capsaicin treatment, both capsaicin and vehicle-treated rats 

were divided into two diet treatment groups, resistant starch and energy control, by 

randomized block design based on their weight. The four groups of rats were fed their 

assigned diets for 65 days. Food intake and body weight were measured three times per 
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week throughout the experiment. After 65 days, the animals were sacrificed via 

decapitation. Different fat pads (epididymal fat, perirenal fat, and remaining fat in the 

abdominal area, defined as abdominal fat) were removed and weighed.  Total body fat 

used for body fat calculation was the sum of epididymal fat, perirenal fat, and abdominal 

fat.  The gastrointestinal (GI) tract was removed and weighed after removal of mesenteric 

fat. Disemboweled weight was calculated by subtracting GI weight from body weight.   

Plasma Assays 

Blood was collected in EDTA tubes with final EDTA concentration 1.8mg/ml 

blood and centrifuged at 4000 X g for 20 minutes to extract plasma. Plasma PYY and 

GLP-1 were measured by radioimmunoassay with RIA kits from Linco Research Inc. (St. 

Louis, MO).  

To make the standard curve for PYY, 100 ul of the six standards (15.6-500pg/ml) 

was mixed with 100ul PYY antibody, and 300ul assay buffer in tubes to incubate 

overnight at 4 oC. On the second day, 100 ul 125I-Rat PYY was added into the mixture 

and incubated overnight at 4 oC. On day three, 10 ul Rabbit Carrier and 1.0 cold 

precipitating Reagent were pipetted into the tubes in turn. After following incubation and 

centrifugation, supernatant was decanted from the tubes and radiation counts were 

determined with gamma counter. The counts were regressed on the PYY standard 

concentration to obtain the standard curve. For the sample measurement, the same 

procedure was performed. The PYY concentration in each sample was calculated using 

the standard curve, expressed in pg/m. 

To make the standard curve for GLP-1, 100 ul of the seven standards (10-1000pM) 

was mixed with 100ul GLP-1 antibody and 400ul assay buffer in tubes to incubate 
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overnight at 4 oC. On the second day, 100 ul 125I-Rat GLP-1 was added into the mixture 

and incubated overnight at 4 oC. On day three, 10 ul Rabbit Carrier and 1.0 cold 

precipitating Reagent were pipetted into the tubes in turn. After following incubation and 

centrifugation, supernatant was decanted from the tubes and radiation counts were 

determined with gamma counter. The counts were regressed on the GLP-1 standard 

concentration to obtain the standard curve. For the sample measurement, the same 

procedure was performed. The GLP-1 concentration in each sample was calculated using 

the standard curve, expressed in pM. 

Microdissection of Arcuate Nucleus (ARC) in Hypothalamus 

Brains from decapitated rats were quickly removed, frozen on dry ice and stored 

at -70 oC. The middle brain was dissected using a cryostat. Microdissection of the ARC 

was performed using the procedure described by Palkovits ( Palkovits, 1988).  Five 

continuous coronal sections were collected starting from Bregman -2.12mm to -3.4mm 

for the ARC micropunch. The thicknesses of sections were 300um each. The micropunch 

was performed bilaterally under a microscope, using a needle (Stoelting, Chicago, IL) 

with an inner diameter of 0.51mm. Immediately after each punch, the tissue was put into 

100 ul of ice-cold 2- mecaptoethanol-lysis buffer (ratio is 0.7:100), and vortex until the 

sample was homogenized. Then equal volumes of cold 70% ethanol were added to the 

lysate and mixed thoroughly for 10seconds. The mixture was then stored at -70 oC until 

we began to perform the RNA extraction.  

Measurements of NPY, AGRP and POMC mRNA Expression 

RNA was extracted from micro-punched tissue using Absolutely RNA microprep 

kit from Stratagene (La Jolla, CA). The ethanol-lysate mixtures from one rat was 
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vortexed again for 5 sec, transferred to a RNA-binding cup that was sat on a 2-ml 

collection tube, and centrifuged for 1 min at 18,000 x g at 4 oC. All the following spin 

condition is 18,000 x g at 4 oC. The filtrate was discarded and 600 ul of low-salt wash 

buffer was added to the cup, followed by 1 min centrifuge. After discarding the filtrate, 

and spinning the cup for another 2 min to dry the fiber matrix, 30 ul of RNase-free DNase 

I solution was pipetted directly onto the fiber matrix. Then the cup was incubated in a 37 

oC water bath for 15 min. The RNA was washed with 500 ul of high-salt, 600 ul and 300 

ul of low-salt wash buffer respectively; one-minute spin was applied after each wash. 

Following the final wash the cup was spun for 2 min to dry the fiber matrix. Then the cup 

was moved to a 1.5-ml collection tube, and 20 ul of elution buffer was added directly 

onto the fiber matrix. After a 2-min incubation at room temperature, the cup was spun for 

1 min. For RNA quantification, 1.5 ul of sample RNA was used to detect the optical 

density (OD) 260 and OD280 using a nanodrop.  

The gene transcription for AgRP, NPY, and POMC in the ARC of the 

hypothalamus was determined using real-time reverse transcriptase polymerase chain 

reaction, and results were expressed as a ratio to the expression of the constitutive gene 

cyclophilin. The sequences of the primers and probes for rat cyclophilin, NPY and AGRP 

were listed in Table 2. The probe and primers for POMC (assay identification no. 

Rn00595020_ml) were purchased from Applied Biosystems(Foster City, CA).Real time 

RT-PCR reaction mixture was 10 ul of total volume, including 9ng of sample RNA, 1 ul 

of 10 X Tagman buffer, 5.5mM MgCl2, dATP, dCTP, dUTP and dGTP each 0.3 mM, 

500 nM forward primers, 500 nM reverse primers, 200 nMTaqman probes, 7.5 U RNase 

inhibitor, 5 U MuLV reverse transcriptase, 0.3 U AmpliTaq Gold DNA polymerase and  
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Table 2. The sequences of primers and probes for real time RT-PCR. F: forward primer, 
R: reverse primer, P: Taqman probe, CYC: cyclophilin, NPY, neuropeptide Y, AgRP: 
agouti-related peptide.  
 
 
 

 

Gene                          Sequence                                                          Genebank                                             

Rat CYC             F:   5'CCCACCGTGTTCTTCGACAT3'              M15933  
                                    R:  5'TGCAAACAGCTCGAAGCAGA 3' 
                                    P:  5'CAAGGGCTCGCCATCAGCCG 3'  
------------------------------------------------------------------------------------------------------------ 
Rat NPY                      F: 5' TCTGCCTGTCCCACCAATG 3'                M20373 
                                    R:  5' CAACGACAACAAGGGAAATGG3' 
                                    P:  5' CCACCACCAGGCTGGATTCCGA 3'  
----------------------------------------------------------------------------------------------------------- 
Rat AGRP                   F: 5' TTGGCAGAGGTGCTAGATCCA 3'         AF206017 
                                    R:  5' AGGACTCGTGCAGCCTTACAC 3' 
                                    P:  5' CGAGTCTCGTTCTCCGCGTCGC 3'  
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RNase-free H2O. Each sample was tested in duplicate. The one-step real-time reverse 

transcriptase polymerase chain reaction condition is 48 oC for 30 min, 95oC for 10 min for 

one cycle, 95 oC for 15 sec and 60 oC for 1 min for 40 cycles.  

Statistical Analysis 

Data are presented as means ±SEM. Statistical analyses were performed using the 

Statistical Analysis System (SAS 9.1).  A factorial arrangement of the treatments (two-

way ANOVA) was used to examine the influence of the two main effects of diet and 

capsaicin/vehicle treatment on all measurements. Subgroup means were compared by 

Tukey’s method.  

Results  

POMC, NPY, and AgRP mRNA expression in arcuate nucleus of hypothalamus 

POMC expression in the ARC (Figure 1) was significantly up-regulated by 

dietary resistant starch (p<0.05).   Capsaicin treatment did not affect the influence of 

resistant starch on POMC expression (p>0.05).  There were no effects of dietary resistant 

starch or capsaicin injection on expression of NPY and AgRP (Figure 1).  

Fat Pads Weights 

Compared with rats fed the control diet, dietary resistant starch significantly 

decreased total body fat and fat/disemboweled weight in both the vehicle and capsaicin 

groups. There was no interaction between diet and treatment (p> 0.05), although both diet 

and treatment had an effect on these two measures (diet p<0.001, treatment p<0.01) 

(Figures 2).  

Plasma PYY and GLP-1 Concentrations  

Capsaicin treatment did not affect the increase of plasma PYY and GLP-1 
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Figure 1. Dietary resistant starch increases POMC (a), but not NPY (b) and AgRP (c) 
mRNA expressions in arcuate nucleus of resistant starch fed rats treated with vehicle or 
capsaicin. Data are mean ± SEM for group of 7-9 rats.  For POMC mRNA expression, 
diet: P<0.05, capsaicin: P>0.05, Interaction: P>0.05 by two way ANOVA.  For NPY and 
AgRP, there were no significant effects on diet, capsaicin, and interaction.  * P<0.05 vs. 
controls within the same treatment (vehicle or capsaicin). 
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 Figure 2.Total body fat (a) and percentage of body fat/ disemboweled body weight (b) 
were decreased in resistant starch fed rats treated with vehicle or capsaicin.  Data are 
mean ± SEM for group of 10-11 rats. Two way ANOVA analysis indicates there were 
significant diet (p < 0.001) and a significant capsaicin treatment effects (p < 0.01), with 
no interaction effect.  * P<0.05 vs. controls within the same treatment (vehicle or 
capsaicin) 
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concentrations (treatment p>0.05, diet p<0.001) induced by RS feeding. (Figures 3) 

Food intake and disemboweled weight  

There were no statistical differences of food intake between control and RS 

fed rats. It demonstrated no or minimal discomfort with the consumption of resistant 

starch at the levels in their diet. Because RS fed rats had significantly heavier GI contents, 

the disemboweled body weight was used to exclude GI contents from body weight.  

There was no significant difference for disemboweled body weight between control and 

RS fed rats within capsaicin or vehicle treatment groups. (Table 3) 

Discussion 
 
 In this study, we investigate the mechanism of decreased body fat by dietary 

resistant starch.  We demonstrate that dietary resistant starch increases hypothalamic 

POMC expression independent of capsaicin-sensitive neurons in rats.  Specifically, we 

measured mRNA expressions of POMC, NPY and AgRP in the arcuate nucleus in the 

context of resistant starch feeding and capsaicin treatment.  To our knowledge, our 

finding provides the first direct evidence that dietary resistant starch alters brain 

neuropeptide expression in rats.   

Feeding resistant starch significantly up-regulated the expression of POMC, but 

had no effect on the expressions of NPY and AgRP in rats.  These results are consistent 

with the observation that food intake is similar between control and RS fed rats in our 

study.  Actually, RS fed rats have a tendency to eat more food.  Although studies 

showing that resistant starch fed animals decreased energy intake compared to the control 

diet fed animals, we noticed that the control diet used in those studies had higher energy 

density than the RS diet ( So et al. 2007). In human subjects, there are uncertain and  
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Figure 3． Plasma total PYY (a) and total GLP-1 (b) concentrations were increased in 
rats fed resistant starch. Data are mean ± SEM for group of 10-11 rats.  For both 3(a) and 
3(b), there was a significant diet effect (p < 0.001) but not a capsaicin treatment effect (p 
>0.05) and no interaction effect (p >0.05).  * P<0.05 vs. controls within the same 
treatment (vehicle or capsaicin). 
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Table 3 Food intakes and body weight in resistant starch fed rats treated with capsaicin or 
vehicle.   
 
Group                Cumulative food intake (g)       Disemboweled body weight (g)                                        

Vehicle-C              1256.6±9.0                           391.3±7.22 
Vehicle –RS               1302.6±9.8                               379.1±9.6 
Capsaicin-C                1380.5±15.6                             377.75±7.53 
Capsaicin-RS              1403.9±9.8                              360.3±11.7 
Vehicle-C:  vehicle treated rats fed control diet 
Vehicle-RS: vehicle treated rats fed resistant starch diet 
Capsaicin-C:  capsaicin treated rats fed control diet 
Capsaicin-RS: capsaicin treated rats fed resistant starch diet 
There were no significant difference in food intake and disemboweled body weight 
between control and RS fed rats. However, rats treated with capsaicin had lower 
disemboweled body weights compare to vehicle-treated rats.  Data are mean ± SEM for 
group of 10-11 rats 
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contradictive reports on the satiety effects of RS ( Higgins et al. 2004), but fatty acid 

oxidation is significantly increased after consumption of resistant starch ( Higgins et al. 

2004). 

Thus, the decreased body fat in RS fed rats is most likely the result of increased 

energy expenditure and activation of POMC neurons, rather than from decreased food 

intake via altering NPY/AgRP neurons.   

The increased POMC and decreased body fat in RS fed rats are independent of 

capsaicin sensitive vagal nerves because the capsaicin treatment did not block any 

resistant starch effects tested in the present study.  In vehicle treated rats, dietary resistant 

starch decreased body fat and increased plasma PYY and GLP-1 levels, which is 

consistent with our previous publications (Keenan et al. 2006; Zhou et al. 2006).  

Interestingly, the effect of RS was retained in rats when their vagal nerves were destroyed 

by capsaicin, implying the signals generated from the gut act directly on the brain, not via 

the vagal nerve.  Still, there is a small chance that non-capsaicin sensitive vagal nerves 

can convey signals from the gut  to the brain, because capsaicin only destroys small, 

unmyelinated primary sensory vagal afferent nerves ( Ritter et al. 1989).  Regardless, our 

results indicate that the effects of resistant starch on body fat and hypothalamic POMC 

gene expression do not rely on the involvement of capsaicin sensitive nerves. 

Our results bring an interesting question: what causes the increased POMC 

expression in resistant starch fed rats?  Resistant starch potentially has three major effects 

as a part of the diet: metabolizable energy dilution, a bulking effect, and fermentation to 

produce short-chain fatty acids and increase PYY and GLP-1 (Keenan et al. 2006).  In 

our study, control and resistant starch diets have the same energy density, so the energy 
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dilution effect can be excluded.  The bulking effect is due to the high fiber content in 

resistant starch diet.  If the bulking causes the changes in POMC, destroying vagal 

afferent nerves should prevent the changes, as distension signals from the gut to the brain 

are vagal afferent nerve dependent (Phillips et al. 2000).  But our results indicate 

otherwise.  Thus, the mechanism of increased POMC was narrowed down to the 

fermentation of resistant starch and the subsequent increases of PYY and GLP-1.  Further 

studies are needed for a conclusive determination for the cause of increased POMC in 

resistant starch fed animals.   

Another question raised from our results is why RS fed rats do not decrease food 

intake despite having higher PYY and GLP-1?  Our previous unpublished results indicate 

a broader gut-secreted hormone profile is changed by dietary resistant starch.  We suspect 

that the other hormones/factors modulated by resistant starch may oppose the effects of 

PYY and GLP-1 on food intake.  Additionally, both PYY and GLP-1 have active and 

inactive forms (Wren et al. 2007; Baggio et al. 2007).  Total PYY and GLP-1 were 

increased in our study, while PYY and GLP-1 reduction of food intake is based on 

injecting active forms of PYY and GLP-1 ( Neary et al. 2005; Batterham et al. 2003).   

PYY has two forms: PYY 1-36 and PYY 3-36. When PYY1-36 is released from L-cells 

of the ileum and large intestine, it is quickly converted to PYY3-36 by the enzyme 

dipeptidyl peptidase-IV (DPP-IV) (Wren et al. 2007).  PYY 1-36 and PYY 3-36 have 

counteracting effects on food intake.  PYY3-36 has been shown to inhibit appetite and 

decrease food intake by binding to Y2-receptors and exerting a negative impact on the 

NPY neuron (Batterham et al. 2002).  In contrast, central injection of PYY 1-36 prompts 

food intake through an Y1-receptor mediated action ( Ballantyne, 2006).  Our 
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unpublished data have showed that the consistent higher plasma total PYY was observed 

over 24 hours in RS fed rats, suggesting a continuously-released pattern for PYY in RS 

fed rats.  This release pattern is different from meal-stimulated PYY releases.  Thus, the 

ratio of PYY1-36 and PYY3-36 may be high in RS fed animals and the counteracting effects 

of these two peptides would account for the lack of food intake differences between RS 

fed rats and controls.    

PYY3-36 and GLP-1 can also directly affect POMC neuron activity ( Challis et al. 

2003; Ma et al. 2007). Two studies suggested that PYY 3-36 can stimulate POMC neuron 

activity (Batterham et al. 2002; Challis et al. 2003).  However, it still remains 

controversial for the effect of PYY3-36 on POMC neuron activity: other groups have 

shown that PYY3-36  inhibits rather than activates hypothalamic POMC neurons ( Acuna-

Goycolea et al. 2005; Ghamari-Langroudi et al. 2005).  Moreover, peripheral PYY 

injection still induces a normal anorectic response in POMC knockout mice (Challis et al. 

2004).  Therefore, effects of resistant starch on stimulating POMC expression are more 

likely explained by elevated GLP-1 in RS fed animals.  This deduction is based on a 

combination of our results and the following evidence. First, GLP-1 receptors are found 

located in the ARC where they overlap hypothalamic POMC neurons’ residency 

( Merchenthaler et al. 1999).  Second, GLP-1 excites POMC neurons postsynaptically via 

interaction with GLP-1 receptors in POMC cells from mouse ARC brain slices ( Ma et al. 

2007). Third, our RS fed rats had decreased body fat without reduced energy intake 

compared to controls.  This indicates that there was increased energy expenditure in RS 

fed rats, and GLP-1 increased energy expenditure (Osaka et al. 2005). Further studies are 
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needed to block the GLP-1 action to determine if changes on POMC in RS fed rats could 

also be blocked.  

 In conclusion, the mechanism of decreased body fat by resistant starch is linked to 

increased neuropeptide POMC gene expression in the hypothalamus and such an effect is 

independent of involvement of visceral afferent capsaicin-sensitive neurons.  Our 

findings provide a further understanding of how resistant starch works as a dietary 

ingredient to reduce body fat. 
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CHAPTER 4 
 

CONCLUSIONS 
 

The work in this thesis focuses on the role of hypothalamic neuropeptides and 

vagal nerves on decreasing body fat by resistant starch. We measured mRNA expressions 

of POMC, NPY and AgRP in the arcuate nucleus in the context of resistant starch feeding 

and capsaicin treatment.  We showed that Feeding resistant starch significantly up-

regulated the expression of POMC, but had no effect on the expressions of NPY and 

AgRP in rats. We further demonstrated that the capsaicin treated rats had a similar 

decreased body fat and elevated plasma PYY and GLP-1 levels as vehicle treated rats.  

We provide evidence to indicate that the mechanism of decreased body fat by 

resistant starch is linked to increased neuropeptide POMC gene expression in the 

hypothalamus and such an effect is independent of involvement of visceral afferent 

capsaicin-sensitive neurons. Further work is needed to verify whether dietary resistant 

starch reduce body fat by increasing energy expenditure; the role of PYY and GLP-1 in 

resistant starch’s effect; and the application to human.       
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