1971

Energy Bands of Ferromagnetic Nickel.

Julius Patrick Langlinais

Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://repository.lsu.edu/gradschool_disstheses

Recommended Citation
https://repository.lsu.edu/gradschool_disstheses/2067

This Dissertation is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Scholarly Repository. For more information, please contact gradetd@lsu.edu.
LANGLINAIS, Julius Patrick, 1945-
ENERGY BANDS OF FERROMAGNETIC NICKEL.

The Louisiana State University and Agricultural
and Mechanical College, Ph.D., 1971
Physics, solid state

University Microfilms, A XEROX Company, Ann Arbor, Michigan

THIS DISSERTATION HAS BEEN MICROFLIMED EXACTLY AS RECEIVED
Energy Bands of Ferromagnetic Nickel

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and
Agricultural and Mechanical College
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

in

The Department of Physics and Astronomy

by

Julius Patrick Langlinais
B.S., University of Southwestern Louisiana
August, 1971
PLEASE NOTE:

Some pages have small and indistinct print. Filmed as received.

UNIVERSITY MICROFILMS.
ACKNOWLEDGEMENT

The author is greatly indebted to Professor Joseph Callaway for his guidance during the course of this investigation. He also wishes to express his appreciation to Professor John Fry for his valuable advice and help in overcoming many of the difficulties in this calculation. The author is also indebted to the Computer Research Center since this work could not have been carried out without the use of the facilities and assistance provided by them.

A financial assistance pertinent to the publication of this dissertation from the "Dr. Charles E. Coates Memorial Fund of the LSU Foundation donated by George H. Coates" is gratefully acknowledged.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>ii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. THE TIGHT BINDING METHOD</td>
<td>6</td>
</tr>
<tr>
<td>III. THE CRYSTAL POTENTIAL</td>
<td>18</td>
</tr>
<tr>
<td>IV. SELF CONSISTENCY</td>
<td>26</td>
</tr>
<tr>
<td>V. RESULTS</td>
<td>31</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>39</td>
</tr>
<tr>
<td>TABLES AND FIGURES</td>
<td>42</td>
</tr>
<tr>
<td>APPENDICES</td>
<td></td>
</tr>
<tr>
<td>A. Integral expressions</td>
<td>65</td>
</tr>
<tr>
<td>B. Computer programs</td>
<td></td>
</tr>
<tr>
<td>1. d-d matrix integrals</td>
<td>75</td>
</tr>
<tr>
<td>2. Band program</td>
<td>94</td>
</tr>
<tr>
<td>3. Self-consistency program</td>
<td>116</td>
</tr>
<tr>
<td>VITA</td>
<td>128</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table I. Listing of the Fourier coefficients of the Coulomb, paramagnetic exchange, up-spin exchange and down-spin exchange potentials. 42

Table II. d-d matrix elements with total d wave functions for Coulomb potential plus kinetic energy, paramagnetic exchange ($\alpha = 1$), and overlap. 50

Table III. Some characteristic energy differences for majority and minority spin states. 52

Table IV. Some characteristic spin splittings. 53

Table V. $L_2'(\uparrow)$ neck and $X(\psi)$ hole pocket areas. 54

Table VI. Comparison of two center integrals. 55
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The convergence of the 4s-3s ordinary Coulomb potential integral for first neighbor as a function of 1/N, where N is the number of independent reciprocal lattice vectors.</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>The convergence of the direct lattice sum is shown for certain matrix elements.</td>
<td>57</td>
</tr>
<tr>
<td>3</td>
<td>Band structure for majority spin states along certain symmetry directions.</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>Band structure for minority spin states along certain symmetry directions.</td>
<td>59</td>
</tr>
<tr>
<td>5</td>
<td>Density of states for majority spin.</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>Density of states for minority spin.</td>
<td>61</td>
</tr>
<tr>
<td>7</td>
<td>Total density of states.</td>
<td>62</td>
</tr>
<tr>
<td>8</td>
<td>Fermi surface contours for states of majority spin in certain planes.</td>
<td>63</td>
</tr>
<tr>
<td>9</td>
<td>Fermi surface contours for states of minority spin in certain planes. Bands are labeled according to their order at X.</td>
<td>64</td>
</tr>
</tbody>
</table>
ABSTRACT

The tight binding method has been employed to calculate energy bands in ferromagnetic nickel. The basis set consisted of atomic wave functions for the 1s, 2s, 3s, 4s, 2p, 3p, and 4p states, expressed as linear combinations of Gaussian orbitals, and five individual Gaussian orbitals for each 3d state. The Coulomb part of the crystal potential was constructed from a superposition of overlapping neutral atom charge densities, the atoms being in the $3d^94s^1$ configuration. The "X" method of Slater et al was used to construct an exchange potential. Energy levels were calculated at 1505 points in $1/48^{th}$ of the Brillouin zone. The results are generally in good agreement with those obtained from other first principles calculations. The properties of several positions of the Fermi surface are determined and compared with experiment. The spin splitting of the d bands is calculated to be about 0.8 ev.
CHAPTER I

Introduction

The relation between band structure and ferromagnetism has long presented a challenge to the theory of solids. The study of the properties of nickel has been of considerable importance for the theory of ferromagnetism, since it appears to be the simplest of the 3d elemental ferromagnets. However, due to the complexity of band structure investigations, it is necessary to make certain approximations to overcome the mathematical difficulties involved.

One approximation is energy band theory, also called the one electron model. Here, one considers the energy states of a single electron in a rigid, infinite, periodic lattice. The basic problem is to solve the one electron Schrödinger equation

\[\mathcal{H} \psi_{\mathbf{k}} = E_{\mathbf{k}} \psi_{\mathbf{k}} \]

(1.1)

where \(\mathcal{H} \) is the Hamiltonian operator, and the wave functions \(\psi_{\mathbf{k}} \) are assumed to obey the Bloch condition. This condition is that

\[\psi_{\mathbf{k}}(\mathbf{r} + \mathbf{R}_m) = e^{-i\mathbf{k} \cdot \mathbf{R}_m} \psi_{\mathbf{k}}(\mathbf{r}) \]

(1.2)

where \(\mathbf{R}_m \) is a direct lattice vector and \(\mathbf{k} \) is a reciprocal lattice vector (Bloch, 1928). Within this approximation, many techniques have been developed to obtain energy
bands. These various methods attack the problem by expanding the wave function in terms of some known set of functions, such as plane waves, spherical waves, Hartree-Fock atomic wave functions, or combinations of these.

Some of the more important calculations of the band structure of nickel used the Augmented Plane Wave (APW) method (Hanus, 1962; Mattheiss, 1964; Snow et al, 1966; Connolly, 1967; Zornberg, 1970), the Green's function method (Yamashita et al, 1963; Wakoh and Yamashita, 1964; Wakoh, 1965), or the combined interpolation scheme (Hodges et al, 1966; Mueller, 1967; Ruvalds and Falicov, 1968; Zornberg, 1970; Tyler, Norwood, and Fry, 1970; Callaway and Zhang, 1970). These calculations have either been semi-empirical in nature, or have used a "muffin-tin" form of crystal potential. The "muffin-tin" potential consists of a spherically symmetric potential of some radius R_0, placed on each atomic site, and a constant potential between these spheres. The adequacy of approaches based on approximations in which the crystal potential at each atomic site is spherically symmetric in applications to d bands is questionable. These methods also neglect crystal field effects which are small but not entirely negligible (Callaway and Edwards, 1960). Specifically, predictions of the Fermi surface in nickel depend sensitively on the position of the levels X_5 and X_2 at the center of a square face of the
Brillouin zone. The separation of these levels will be influenced by the presence of a term in the crystal potential around each atom having cubic, rather than spherical symmetry as found in the "muffin-tin" potential.

The present work applies the tight binding method to the band structure of nickel. Some preliminary work using the tight binding method has been done by Fletcher and Wohlfarth (1951), Yamashita et al (1963), and Callaway et al (1971). We have decided to apply the tight binding method as improved by Lafon and Lin (1966) in which they have eliminated the three center integrals normally encountered in tight binding by expressing the crystal potential in the form of a Fourier series over the reciprocal lattice vectors. The specific techniques will be dealt with in detail in later sections of this dissertation. In its present form, the method seems to be as accurate as other methods, and in addition does not necessarily incorporate restrictive assumptions about the symmetry of the crystal potential.

The elements of the Hamiltonian and overlap matrices are only dependent on the reciprocal lattice vector, \(\mathbf{k} \), so that all the energy values can be found by a standard diagonalization procedure for each \(\mathbf{k} \). The size of the matrices which must be considered is small enough (here 38 x 38) so that energies can be obtained at a moderate number of general points in the Brillouin zone without an unduly large expenditure of computer time. In fact,
the present calculation determined energy levels at 1505 points in $1/48$'th of the Brillouin zone in each of the calculations for the up-spin and down-spin band structures of nickel.

This investigation was based on an assumed crystal potential constructed from a superposition of overlapping neutral atom charge densities, the atoms being in the $3d^94s^1$ configuration and placed on the sites of a face-centered cubic lattice. The exchange potential was included according to the "$Xe\alpha$" method of Slater et al (1969) with a spin dependent charge density. This prescription was also used to consider the exchange splitting of the energy bands in the ferromagnetic state by assigning a predetermined electron occupation to the spin dependent charge densities. However, spin orbit coupling was neglected in this work.

The results obtained are compared with those of other methods and with available experimental data. Cross sectional areas are presented for significant sections of the Fermi surface. In general, the results demonstrate that the tight binding method can yield a band structure for a transition metal at least comparable in accuracy to those obtained by other methods of band structure calculations. The agreement with experiment is satisfactory, although not as good as can be obtained by semi-empirical interpolation schemes which have been designed
to enable an accurate fit to experimental data. At this point, one must keep in mind the fact that this work is a first principles calculation and does not have a fit to experimental data built in. The characteristics of the present form of the tight binding method are classified by this investigation and the requirements for successful application become apparent.
CHAPTER II
The Tight Binding Method

The tight binding or LCAO (Linear Combination of Atomic Orbitals) was first proposed by Bloch in 1928. Until recently, however, use of the method had largely been restricted either to calculations of a highly empirical nature or to ones in which it serves as an interpolation scheme after energy bands have been calculated at symmetry points by other methods. The technique has been improved recently by Lafon and Lin (1966) and this, together with the increased efficiency of modern computers has made the tight binding approximation an effective tool for calculating energy bands.

We begin with a set of localized basis functions $u_j(r)$, which, for convenience, will be assumed normalized, but need not be orthogonal. In conventional descriptions of the tight binding method, the u_j's are chosen to be the one-electron wave functions for each of the electronic states of the free atom of which the crystal is composed. For nickel, $j = 1s, 2s, 3s, 4s, 2p, 3p, 4p,$ and $3d$. This procedure is not necessary and may be too restrictive. In this work, some of the u_j's will be atomic functions, others will be individual localized (Gaussian type) orbitals.

In the first step, the one-electron wave functions, $\varphi_j(k,r)$, of the electron in the crystal are constructed
by taking linear combinations of the \(u_j(r) \). These wave functions must satisfy Bloch's theorem for wave vector \(\mathbf{k} \) and are written as

\[
\phi_j(\mathbf{k}, \mathbf{r}) = \frac{1}{\sqrt{N}} \sum_{\mu} e^{i\mathbf{k} \cdot \mathbf{R}_\mu} u_j(\mathbf{r} - \mathbf{R}_\mu) \quad (2.1)
\]

where \(N \) is the number of atoms in the crystal and \(\mathbf{k} \) is a reciprocal lattice vector.

For convenience, we restrict our attention to a crystal with one atom per unit cell, the direct lattice vectors being denoted by \(\mathbf{R}_\mu \). These Bloch functions will be the basis set required in the Hamiltonian and overlap matrices. The set consisting of only the atomic states does not form a complete set, so an expansion of the wave functions using this set as a basis does not lead to an exact solution of the Schrödinger equation. However, the inclusion of all the bound states and excited states can be expected to yield a good approximation to the actual wave function. Since atomic states on different atoms are not orthogonal, the secular determinant has the form

\[
\left| H_{ij}(\mathbf{k}) - E_{\mathbf{k}} S_{ij}(\mathbf{k}) \right| = 0 \quad (2.2)
\]

where \(H_{ij} \) and \(S_{ij} \) are the matrix elements of the Hamiltonian and of unity with respect to the basis of Bloch functions formed from atomic functions having symmetry properties \(i \) and \(j \), respectively.

The present approach differs from more conventional
applications of the tight binding method in the treatment of the Hamiltonian. If the crystal potential $V_c(r)$ is expressed as the sum of individual atomic potentials $V_a(r - R_\mu)$, one finds it necessary to compute three center integrals of the form

$$\int u_x(z) \frac{d^3 r}{6\pi} \frac{d^3 x}{6\pi} \left. \frac{d^3 r}{6\pi} \right).$$ \hspace{1cm} (2.3)

The computation of integrals of this type has been a major obstacle to quantitative development of the tight binding method. Instead of expressing the crystal potential as a sum of atomic potentials, we will use a Fourier representation

$$V_c(r) = \sum_s V(k_s) e^{-i \cdot k \cdot r}. \hspace{1cm} (2.4)$$

in which the k_s are reciprocal lattice vectors. We note that each term in the sum, as well as the complete potential, is unchanged by displacement through a direct lattice vector. For this reason, three center integrals do not appear.

Let T denote the kinetic energy term in the Hamiltonian. The matrix elements of the Hamiltonian are

$$H_{j n}^{(k)} = \sum_{\mu} \Phi_j(k, \alpha) \left[T + V_c(r) \right] \Phi_m(k, \alpha) d^3 z$$

$$= \sum_{\mu} e^{-i k \cdot R_{\mu}} \left[T(k, \alpha) + \sum_s V(k_s) S_{j n}(k, k_s) \right]. \hspace{1cm} (2.5)$$
The $S_{jn}(k, k_s)$ can be expressed as

$$S_{jn}(k, k_s) = \sum \sum e^{i \vec{k} \cdot \vec{R}_\mu} S_{jn}(k_s, \vec{R}_\mu) \tag{2.6}$$

in which

$$S_{jn}(k_s, \vec{R}_\mu) = \int \psi_j(\vec{r}) e^{-i \vec{k}_s \cdot \vec{r}} \psi_n(\vec{r} - \vec{R}_\mu) d^3 r \tag{2.7}$$

The elements of the overlap matrix can be determined from (2.6) simply by setting $K=0$. The quantity $T_{jn}(k_s)$ is a matrix element of the kinetic energy operator. In a crystal with a center of inversion, it is sufficient to consider integrals of the form (2.7) with $\cos(\vec{k}_s \cdot \vec{r})$ replacing $e^{i \vec{k}_s \cdot \vec{r}}$. The analytical expressions for $S_{ij}(K, R)$ are given in Appendix A. Once these expressions are evaluated, the summation over \vec{R}_μ indicated in equation (2.5) and the diagonalization of the secular equation (2.2) is performed by the computer program listed in Appendix B.

Equation (2.5) may be written in an alternative manner

$$H_{ij}(k_s) = \sum \sum e^{i \vec{k} \cdot \vec{R}_\mu} E_{ij}(k_s) \tag{2.8}$$

in which

$$E_{ij}(k_s) = T_{ij}(k_s) + V_{ij}(k_s) \tag{2.9}$$
The fundamental computational problem in the present approach to the tight binding method is the calculation of the type \(S_{ij}(K, R) \) appearing in (2.6). A printout of the computer program which computes the d-d symmetry integrals is given in Appendix B. A very large number of such integrals are required (of the order \(10^7 \)). For this reason, it is essential to simplify the determination of these quantities as much as possible. To this end, we have decided to work with Gaussian type orbitals (GTO) as suggested by Chaney et al (1970). Gaussian type orbitals are of the form \(\varphi_{nl^i} \). Radial components of atomic wave functions formed by linear combinations of GTO's are written as

\[
R_{nl^i}(r) = \sum_{j} C_{nl^i, j} R_{ij} r^{l-1} e^{-\alpha_{ij} r^2}
\]

(2.11)

where \(n \) is the principle quantum number, and \(l \) is the symmetry type (s,p,d). The index \(i \) indicates the numbers of GTO's used for each electronic state (14 for s, 11 for p, and 5 for d). The value of \(C_{nl^i, j} \) and \(\alpha_{ij} \) of these one-electron wave functions are given by Wachters (1970). The \(N_{14} \) is a constant which normalizes each GTO and is given as
\[N_{l_s} = \left[\sqrt{\frac{2}{\pi}} \frac{2^{2l+1} \alpha_s^{l+\frac{1}{2}}}{(2l+1)!} \right]^{\frac{1}{2}} \quad (2.12) \]

where \(l = 1, 2, 3 \) (s, p, d). The advantage of such orbitals is that analytic expressions can be obtained for all of the \(S_{jn}(k, R) \).

For example, if \(j \) and \(n \) both denote s-type symmetry, then the expression (2.7) can be written

\[S_{jn}(k, R) = \left< \frac{1}{S(A)} \right| \cos(k \cdot r_c) \left| S(B) \right> \quad (2.13) \]

where \(1s(A) \) denotes an s-type orbital on lattice site A (usually taken as the origin as in (2.7)), \(1s(B) \) denotes an orbital on site B, and \(r_c \) is the radial vector measured from any given lattice site of the crystal. Hence one can write

\[\left< \frac{1}{S(A)} \right| \cos(k \cdot r_c) \left| S(B) \right> = \int e^{-\left(\frac{\alpha_A^2 + \alpha_B^2}{2} \right)} \cos(k \cdot r_c) d\tau \quad (2.14) \]

where \(\tau \) denotes all space and \(r_A = (r - R_A) \). The product of two Gaussian orbitals situated at centers A and B is proportional to a third Gaussian orbital situated at a point D along the line AB, that is,

\[e^{-\left(\frac{\alpha_A^2 + \alpha_B^2}{2} \right)} = e^{-\left(\frac{\alpha_A^2 + \alpha_B^2}{2 \alpha_D^2} \right)} e^{-\left(\alpha_A + \alpha_B \right) \alpha_D^2} \quad (2.15) \]

where \(r_{AB} \) is the distance between the two centers, and \(r_D \) is the radius vector originated from D. The coordinates of D are related to those of A and B as

\[\alpha_D^i = \frac{\alpha_A^i + \alpha_B^i}{\alpha_A + \alpha_B}; \quad i = x, y, \text{ or } z. \quad (2.16) \]
If we write

$$\mathcal{C}_c = \mathcal{C}_D + \mathcal{C}_{cD},$$

we can perform the spatial integration as

$$\langle S(\mathcal{A}) | \cos(k \cdot \mathcal{B}) | S(\mathcal{B}) \rangle = \mathcal{C}^{-\left(\frac{x_1 \cdot x_2 \cdot R_{cD}}{x_1 + x_2}\right)} \left\{ \cos(k \cdot \mathcal{R}_{cD}) \right\}$$

$$\times \int e^{-(x_1 + x_2) \mathcal{R}_D^2} \cos(k \cdot \mathcal{R}_D) \, d\mathcal{R}$$

$$- \sin(k \cdot \mathcal{R}_{cD}) \int e^{-(x_1 + x_2) \mathcal{R}_D^2} \sin(k \cdot \mathcal{R}_D) \, d\mathcal{R} \right\}$$

$$= \left[\frac{\pi}{x_1 + x_2}\right]^{\frac{3}{2}} e^{-\left(\frac{x_1 \cdot x_2 \cdot R_{cD}^2}{x_1 + x_2}\right)} \cos(k \cdot \mathcal{R}_{cD}) C^{-\left(\frac{R_{cD}^2}{x_1 \cdot x_2}\right)}.$$ \hspace{1cm} (2.17)

This is the expression for the s-s integral given in Appendix A. Expressions for other symmetry pairs are given in Appendix A along with expressions for the kinetic energy integrals given by eq. (2.5).

The use of GTO's is open to the criticism that the representation of an atomic wave function in terms of such orbitals is more cumbersome than with Slater type orbitals (STO). More GTO's than STO's must be included to obtain a similar degree of accuracy. This criticism is justified, but it is outweighed by the superior ease of calculation with GTO's. Analytic expressions for the S_{jn} are not known on an STO basis; instead a rather intricate numerical integration must be performed. This work was first undertaken using STO's. However, the summation of the Fourier coefficients of the potential could only be carried out to approximately 28 rotation-
ally independent reciprocal lattice vectors in a reason-
able amount of computer time. It will be shown later how
incorrect this was. On this basis, an accurate tight
binding calculation for a crystal composed of atoms with
as many electrons as nickel is not practical with a basis
set of STO's.

The following specific set of basis functions were
used in this calculation. Wave functions for all atomic
states except 3d (1s, 2s, 3s, 4s, 2p, 3p, and \(^{3}p \)) were
represented by the linear combinations of Gaussian
orbitals determined from a free atom self consistent field
calculation by Wachters (1970). Inclusion of core wave
functions is necessary (just as in the OPW method) in
order to avoid convergence difficulties associated with
the lack of orthogonality of wave functions on different
atoms. The accuracy of the representation of the 4s and
4p states in terms of atomic functions is perhaps
questionable; however work by Lafon and Lin (1966) and
Chaney et al (1970) show that excellent results can be
obtained for s and p bands in alkali metals by this
procedure.

On the other hand, we have seen some evidence In a
preliminary calculation (Callaway et al, 1971) that the
d electron wave functions in a solid may be appreciably
different from those existing in the free atom. In order
to allow for this possibility we used a set of five
separate radial GTO's in the construction of the \(\phi_j(k,r) \).
One can think of this as constructing the basis set with five different 3d one-electron wave functions, each consisting of a single GTO. Since the d state has five different angular types, this contributes twenty-five functions to our basis set. The orbital exponents used in defining these functions were the same as used by Wachters (1970).

With this choice of basis functions, we obtain a 38 x 38 matrix problem at a general point of the Brillouin zone. The d-d portion is 25 x 25, s-s is 4 x 4, and p-p is 9 x 9. With matrices of this size, it is possible to obtain energy levels at a reasonably large number of general points in the Brillouin zone.

The computation of the matrix elements H_{ij} involves a double summation over both the direct lattice and reciprocal lattice vectors, and convergence must be achieved in both. The degree of difficulty depends on the orbitals involved. Terms of s-s and s-p types present the greatest difficulty. Near a nucleus, s like wave functions are sharply peaked and p like functions have a large gradient. As a result, the summation over reciprocal lattice vectors require many terms. For example, approximately 8100 rotationally independent lattice vectors were included in sums for the s-s elements for the first five neighbors. As the results were still not entirely converged, the remainder of the sum was replaced by an integral, which was evaluated using
Filon's rule. Figure 1 shows the convergence for the first neighbor 4s-3s integral. The results of summing N terms and the values obtained by graphical extrapolation and by integrating the Fourier series are shown. Much more rapid convergence was obtained for elements involving d functions.

The 4s and 4p wave functions are highly extended in space. It was necessary to include forty shells of neighbors (rotationally independent vectors R^μ) in order to obtain convergence. There is, unfortunately, substantial cancellation in the computation of certain matrix elements. The d-d matrix elements converged much more rapidly. Only five shells of neighbors were required in this case. Figure 2 shows the R convergence of certain matrix elements.

A straight forward calculation of H yields some elements which are imaginary. The matrix described earlier is labeled as follows

\[
\begin{array}{ccc}
 d & s & p \\
 d & & \\
 s & & \\
 p & & \\
\end{array}
\]

This matrix is Hermitian, that is,

\[
\hat{H}^\ast_{ij} = \hat{H}^{-}_{ij}.
\] \hspace{1cm} (2.18)
For tight binding matrix elements, we have
\[H_{ij}^* = \sum \mu e^{-i \mathbf{k} \cdot \mathbf{R}_\mu} E_{ij}^*(\mathbf{R}) \]
(2.18)
so that
\[H_{ji}^* = \sum \mu e^{-i \mathbf{k} \cdot \mathbf{R}_\mu} E_{ji}^*(\mathbf{R}) = H_{ji}^* \]
(2.19)
But, the \(E_{ij}(R) \) are all real quantities, and for a cubic crystal with inversion symmetry we have that for each \(R \) there exist a vector \(-R\). Sums over \(R \) are identical to sums over \(-R\). Now \(E_{ij}(R) = -E_{ij}(-R) \) if \(i \) and \(j \) have different parity (s-p or p-d), but \(E_{ij}(R) = E_{ij}(-R) \) if \(i \) and \(j \) have the same parity (s-s, p-p, d-d, and s-d).
Thus, eq. (2.19) can be written
\[H_{ij}^* = H_{ji} = (-1)^{l_i + l_j} H_{ij} \]
(2.20)
where \(l_1 = 1, 2, 3(s, p, d) \). Thus, for \(i \) and \(j \) of different parity, \(H_{ij} = -H_{ij} \), which means that \(H_{ij} \) is pure imaginary.
We label the matrix elements as follows, indicating explicity the imaginary factors
\[
H_{ij}^* = \begin{pmatrix}
H_{dd} & H_{sd} & iH_{dp} \\
H_{sd} & H_{ss} & iH_{sp} \\
-iH_{dp} & -iH_{sp} & H_{pp}
\end{pmatrix}.
\]
(2.21)
We can make a unitary transformation, $H' = \hat{U} H \hat{U}^{-1}$, where

$$\hat{U} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -i \end{pmatrix} \quad \text{and} \quad \hat{U}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -i \end{pmatrix}$$

which gives

$$H'_{ij} = \begin{pmatrix} H_{dd} & H_{sd} & H_{dp} \\ H_{sd} & H_{ss} & H_{sp} \\ H_{dp} & H_{sp} & H_{pp} \end{pmatrix}$$

(2.23)

Here H'_{ij} is explicitly real and symmetric but the d-p and s-p blocks must be calculated with care to avoid an error of a negative sign on one of the blocks. Since the expression given is for $\langle P(A) | \hat{\theta} | S(B) \rangle$, one can extract $\langle S(A) | \hat{\theta} | P(B) \rangle$ simply by negation or by interchanging the values of A and B in the first equation from that used in the evaluation of the other expressions. Thus, H'_{ij} is the Hamiltonian matrix which appears in the secular eq. (2.2).
CHAPTER III
The Crystal Potential

The crystal potential was constructed as follows: It was assumed that the charge density of electrons in the crystal could be represented as a superposition of partially overlapping charge densities for individual nickel atoms in a $3d^9s^1$ configuration. The individual atomic charge densities were chosen to be spherically symmetric; however, the superposed density has only cubic symmetry about any lattice site. The wave functions used in forming the charge density were taken from the Hartree-Fock self consistent field calculation of Clementi (1965) for the free nickel atom in the $3d^8s^2(3p)$ configuration. These wave functions were linear combinations of Slater type Orbitals, which are given by Clementi (1965).

For reasons already discussed, we are interested in expanding this crystal potential in a Fourier series. The Fourier coefficients are given by

$$V(k) = \frac{1}{N \Omega_o} \int V(r) e^{-i \frac{k \cdot r}{\hbar}} d^3r$$

$$= \frac{1}{N \Omega_o} \sum_\mu \int e^{-i \frac{k \cdot r}{\hbar}} V(\mathbf{r} - \mathbf{\rho}_\mu) d^3r$$

(3.1)

where Ω_o is the unit cell volume and N is the number of unit cells. Now, make a change of variables from
\(V(k) = \frac{1}{N\Omega_0} \sum_{\mu} e^{-i \mathbf{k} \cdot \mathbf{R}_\mu} \left[\int \mathcal{V}_\mu(r) e^{-i \mathbf{k} \cdot \mathbf{r}} \, d\mathbf{r} \right] \). (3.2)

One makes use of the fact that

\[
\sum_{\mu} e^{-i \mathbf{k} \cdot \mathbf{R}_\mu} = N \sum_k \delta_{k, k_n}
\]

where \(k_n \) is a reciprocal lattice vector, and we have

\[
V(k_n) = \frac{1}{N\Omega_0} \int \mathcal{V}_\mu(r) e^{-i \mathbf{k}_n \cdot \mathbf{r}} \, d\mathbf{r}.
\] (3.3)

Each of the atomic potentials has the form

\[
V(r_2) = -\frac{2Z}{\mathbf{r}_2} + 2 \int \frac{\rho(r_1)}{\mathbf{r}_1 \mathbf{r}_2} \, d\mathbf{r}_1.
\] (3.5)

where \(Z \) is the atomic number and \(\rho(r) \) is the electron charge density. The factors of 2 converts the energy into Rydbergs (atomic units with energies in rydbergs are used throughout this paper). The charge density is given by

\[
\rho(r) = \sum_i a_i |\psi_i|^2
\]

\[
= 2|\psi_{1s}|^2 + 2|\psi_{2s}|^2 + 6|\psi_{2p}|^2 + 2|\psi_{3s}|^2
\]

\[
+ 6|\psi_{3p}|^2 + 9|\psi_{3d}|^2 + |\psi_{5s}|^2
\] (3.6)
where the \(a_i \) is the occupation number of the \(i \)-th state. Thus, the Fourier coefficients are given as

\[
V(\mathbf{k}) = \frac{-2 \pi^2}{\Omega_0} \int \frac{e^{i \mathbf{k} \cdot \mathbf{r}_2}}{r_2^2} \, d^3 \mathbf{r}_2 + \frac{2 \pi}{\Omega_0} \int \frac{\rho(\mathbf{r}_1)}{L_{ij}} e^{-i \mathbf{k} \cdot \mathbf{r}_2} \, d^3 \mathbf{r}_1 \, d^3 \mathbf{r}_2 .
\] (3.7)

Using the identity

\[
\int \frac{e^{-i \mathbf{k} \cdot \mathbf{r}_2}}{r_2^2} \, d^3 \mathbf{r}_2 = \frac{4 \pi}{k^2} e^{-i \mathbf{k} \cdot \mathbf{r}_2}
\] (3.8)

and performing the simple integrals remaining, we obtain the final result

\[
V(\mathbf{k}) = \frac{-8 \pi^2}{\Omega_0 k^2} + \frac{32 \pi^2}{\Omega_0 k^2} \int_0^\infty \rho(\mathbf{r}_1) \sin(k \mathbf{r}_1) \, d\mathbf{r}_1 .
\] (3.9)

Now the charge density is spherically averaged as

\[
\rho(\mathbf{r}) = \frac{1}{4 \pi} \sum_i a_i |u_i|^2
\] (3.10)

where \(u_i \) is the radial part of the wave function, that is, replace \(\mathbf{r}_i \) by \(u_i \times \mathbf{r}_0 \) (\(\mathbf{\phi}, \mathbf{\phi} \)) in \((3.6)\).

The expression \((3.9)\) is not valid for \(K=0 \). However, expanding the sine term and taking the limit \(V(K) \) as \(K \to 0 \), we have

\[
V(0) = \lim_{k \to 0} \left[\frac{-8 \pi^2}{k^2} + \frac{32 \pi^2}{\Omega_0 k^2} \sum_i a_i |u_i(\mathbf{r}_1)|^2 \left[k \mathbf{r}_1 - \frac{(k \mathbf{r}_1)^2}{3} - \cdots \right] \, d\mathbf{r}_1 \right]
\]

\[
= \frac{-8 \pi^2}{\Omega_0 k^2} + \frac{8 \pi^2}{\Omega_0 k^2} - \frac{32 \pi^2}{3 \Omega_0 k^2} \sum_i a_i |u_i(\mathbf{r}_1)|^2 \, r_1^3 \, d\mathbf{r}_1 .
\]
These expressions can be readily evaluated analytically.

The validity of our approximation in the formulation of the Coulomb and exchange potentials used in the Hamiltonian above was first shown by Slater (1951). The Hartree-Fock equations (Slater, 1930) furnish the best set of one-electron wave functions for use in describing the motion of electrons in the field of atomic nuclei. However, they are so complicated to use, specifically the exchange term, that they have not been employed except in relatively simple cases. The Hartree-Fock equations can be written in the form

\[
H_1 u_i(x_i) + \sum_{\alpha=1}^{n} \left[\frac{e^2}{\epsilon |x_2|} \int d|x_2| \right] u_{\alpha}^*(x_2) u_{\alpha}^*(x_2) \frac{e^2}{\epsilon |x_2|} \right] u_i^*(x_i) = E_i u_i(x_i)
\]

(3.12)

where \(H_1\) is the kinetic energy operator, \(u_i(x)\) are the one-electron wave functions, and \(n\) is the number of one-electron states associated with the atom. The second term is the Coulomb potential energy and the third term is the exchange potential energy. Taking the summation in the Coulomb term inside the integral, we have the charge density as given in eq. (3.6). However, the
exchange term cannot be computed as shown; therefore, we make use of the Hartree-Fock-Slater approximation (Slater, 1951) described below.

A local exchange potential for an electron of spin σ was constructed using the "Xα" method of Slater et al (1969) which is

$$ V_{\text{ex}}(\mathbf{r}) = -6\alpha \left[\frac{3 \rho(\mathbf{r})}{\pi \rho^2} \right]^{1/3} $$

(3.13)

where α is an empirical constant ranging from $2/3$ to 1.

In this expression $\rho(\mathbf{r})$ is the total charge density of electrons of spin σ. This charge density was constructed by adding the overlapping distributions produced by neutral atoms in the configuration mentioned above placed on the face center cubic lattice sites. Again, we are interested in obtaining the Fourier coefficients of the exchange potential, which are given by

$$ V_{\text{ex}}(k) = \frac{\alpha}{\Omega_0} \frac{4\pi}{k_0} \int -6 \left[\frac{3 \rho(\mathbf{r})}{\pi \rho^2} \right]^{1/3} \sin(k \cdot r) r \, dr. $$

(3.14)

The charge density $\rho(\mathbf{r})$ is given just as (3.10), that is,

$$ \rho(\mathbf{r}) = \frac{1}{\Omega} \sum_{i} \frac{\alpha_i \sigma}{\mu_i} / \mathbf{u}_i^2 $$

(3.15)

where the α_i's now depend on the spin orientation. The charge density for the crystal was found at selected points within spheres centered about each nickel atom and having radii equal to half the nearest neighbor...
distance. These points were chosen to be values of \(r \) ranging from 0 to the radius of the sphere. Then, using this numerical charge density, a 96 point Gaussian formula for numerical integration was used to calculate all the Fourier coefficients \(\frac{1}{r^n} \) (Norwood, 1970). The charge density was found by summing contributions from atomic charge densities out through nine sets of neighbors.

The Slater approximation for an effective exchange potential can be used to investigate the band structure of a ferromagnetic metal. The exchange potential for an electron of given spin is determined by the electron distribution for the spin. When the numbers of electrons in states of up and down spin are different, the exchange potential will tend to cause a splitting of the band structure. This approach was first applied in a study of energy bands in ferromagnetic iron by Callaway (1955), and has subsequently been employed by Wakoh (1965) and Connolly (1967) in studies of nickel.

Dannan et al (1968) have measured the magneton number (the difference in the number of electrons occupying the up spin and down spin states) to be 0.56 electrons per atom, and due to d electrons only. In order to use the same basis set of functions in the secular equation, we need Fourier coefficients of the exchange potential calculated from a common set of wave functions for both up and down spins. This is accomplished by fixing the occupation of each electron state in the 3d\(^9\)4s\(^1\)
configuration and calculating a spin dependent charge density. Thus, we have artificially introduced a spin dependent exchange potential to effect a spin splitting. Specifically, the occupation numbers appearing in (3.10) were

\[1s \ 2s \ 3s \ 4s \ 2p \ 3p \ 3d \]

\[\text{up spin:} \ 1 \ 1 \ 1 \ .5 \ 3 \ 3 \ 4.78 \]

\[\text{down spin:} \ 1 \ 1 \ 1 \ .5 \ 3 \ 3 \ 4.22 \]

The original Slater exchange potential (1951) has \(\alpha = 1 \); the Kohn-Sham-Gasper potential (1965) has \(\alpha = 2/3 \). In the present calculation, we investigated the effects of the variation of \(\alpha \) between these limits. The results appeared to be more satisfactory when \(\alpha \) was close to unity. The parameter \(\alpha \) was chosen in the following way: It was observed that the relative position of the p and d like levels at the Brillouin zone point L was quite sensitive to the value of \(\alpha \). This occurs because the d band level \(L_2 \) varies considerably more rapidly with \(\alpha \) than p like state \(L_2' \). There is experimental evidence indicating that \(L_2'(\uparrow) \) should be about 0.4 ev below the Fermi energy. This is achieved for \(\alpha \approx 0.972 \), which was the value adopted.

This procedure has been criticized by Herring (1966) and others who argue that an electron in a ferromagnetic metal cannot be regarded as experiencing an average exchange potential originating from atoms, all of which are
in the same average configuration. Alternate procedures based on an approximate treatment of electron correlation in narrow bands have been employed (Hodges et al, 1966; Callaway and Zhang, 1970). In view of the criticisms of Slater's procedure, it may be surprising that the results, at least in the case of nickel, are in fair agreement with other approaches by Hodges et al (1966) and Callaway and Zhang (1970) and with experiment. For example, Connolly (1967) obtains a magneton number of 0.62 (in comparison with the experimental value of 0.56). Our result of 0.69 is not greatly different.
CHAPTER X V
Self Consistency

For some time, the tight binding method has been regarded as suitable only for a simple first approximation to a complex band structure. However, Lin and Lafon (1966) have shown that the method is quite powerful in quantitative calculations from first principles. In this chapter, we will describe a procedure by which self consistent band calculations may be performed using the tight binding method. The practicality of this technique is seen in the fact that iterated Fourier coefficients of the potential can be obtained from the matrix elements of the Hamiltonian. Thus, for a fixed set of basis functions, these integrals need only be computed once. A printout of the computer program which performs this self consistent calculation is listed in Appendix B.

The fundamental problem is to determine an iterated potential after a given band structure calculation has been completed. Hence, one has a definite set of energy bands $E_n(k)$ and Bloch functions $\psi_n(k, \mathbf{r})$ which have been obtained by diagonalization of the Hamiltonian and overlap matrices resulting from some assumed set of wave functions. The Bloch functions are

$$\psi_n(k, \mathbf{r}) = \sum_i a_{ni}(k) \phi_i(k, \mathbf{r}) \quad (4.1)$$

where the $a_{ni}(k)$ are the eigenvectors of the diagonal-
The quantization process and the $\phi_i(\mathbf{k},\mathbf{r})$ are the tight binding functions for wave vector \mathbf{k}:

$$\phi_i(\mathbf{k},\mathbf{r}) = \frac{1}{\sqrt{N}} \sum_{\mu} e^{i\mathbf{k} \cdot \mathbf{R}_\mu} \psi_i(\mathbf{r} - \mathbf{R}_\mu)$$

(4.2)

where the summation runs over all N lattice sites, \mathbf{R}_μ.

Since all that is required in the method used are the Fourier coefficients of the potential, the iterated values of $V(K)$ are all that is needed. For $K \neq 0$, the coefficients of the Coulomb potential are related to the charge density by (Callaway, 1964)

$$\sqrt{v(K)} = -8\pi \frac{\rho(K)}{K^2}$$

(4.3)

(in atomic units, with energies in Rydbergs). The Fourier coefficients of $\rho(K)$ are given by

$$\rho(K) = \frac{1}{N \Omega_0} \int \rho(\mathbf{r}) e^{-i\mathbf{K} \cdot \mathbf{r}} d^3 r$$

(4.4)

where Ω_0 is the volume of the unit cell and

$$\rho(\mathbf{r}) = \frac{1}{N} \left| \sum_{n,\mathbf{k}} \psi_n(\mathbf{k},\mathbf{r}) \right|^2$$

(4.5)

with the summation over only occupied states. Substituting and converting the sum on \mathbf{k} to an integral, we have

$$\rho(K) = \frac{1}{(2\pi)^3} \sum_{n, i, j} \int d^3 k \bar{a}_{mi}^*(\mathbf{k}) \bar{a}_{nj}(\mathbf{k})$$

(4.6)

where the integral is over only that portion of the Brillouin zone in which band n is occupied. The quant-
The integrals appearing in (4.7) are exactly those which are required in the computation of the matrix elements of the Hamiltonian on the basis of the functions \(\phi_x(k, r) \).

Specifically, we have

\[
\int \phi_x^*(k, r) V(r) \phi_y(k, r) \, d^3r = \sum_{S_j} V(k_5) \sum_{S_j} \phi_x^*(k, r) \phi_y(k, r) \, d^3r
\]

\[
= \sum_{S_j} V(k_5) S_{ij}(k, -k_5)
\]

(4.8)

in which \(V(r) \) is the periodic crystal potential. If a fixed set of basis functions is employed, the quantities \(S_{ij} \) need be computed only once.

To simplify these computations, we can write

\[
H_{ij}(k) = H^{\alpha}_{ij}(k) + \sum_k (\Delta V(k) + \Delta V(k)) S_{ij}(k, k)
\]

(4.9)

where the \(\Delta \) implies the change in the Fourier coefficients from one iteration to the next. With this, we need matrices of the type

\[
\Theta_{ij} = \sum_{S_j} e^{i k \cdot \rho} \int \phi_x^*(r) \Theta \phi_y(r - \rho) \, d^3r
\]

(4.10)

where \(\Theta \) is one of the quantities; kinetic energy, overlap, potential, or \(r^2 \). Hence, \(H^{\alpha}_{ij}(k) \) is merely the sum of the kinetic, Coulomb potential, and exchange potential energies.
In the case of $k = 0$, the Fourier coefficient of the Coulomb potential is determined by a limiting process

$$V(0) = -\frac{\rho(k)}{k^2}.$$ \hspace{1cm} (4.11)

The limit exists, and is expressed as

$$V(0) = \frac{\rho(0)}{6\pi^2} \sum_{n, i, j} \int \frac{d^3 r}{\mathbb{R}} \frac{S_{ij}^{(2)}(k)}{r^3} \rho_i \rho_j.$$\hspace{1cm} (4.12)

where

$$S_{ij}^{(2)}(k) = \sum_{n} \int \frac{d^3 r}{\mathbb{R}} \int \frac{d^3 r}{\mathbb{R}} \rho_i \rho_j (r - r', r'' - r') d^3 r.$$\hspace{1cm} (4.13)

In the Slater "Xc" approach, the exchange potential is then proportional to $\rho^n(r)$. If one assumes that the changes in the Fourier coefficients are small in subsequent steps, we can proceed as follows: Let $\rho^n(r)$ be the cube root of the charge density at the present stage of iteration, and let $\rho^n_{o}(r)$ be the same quantity at the preceding stage. We write

$$\rho^n(r) = \rho^n_{o}(r) + \Delta(r).$$ \hspace{1cm} (4.14)

$\Delta(r)$ is expanded in a Fourier series,

$$\Delta(r) = \sum_{k} \Delta(k) e^{ik \cdot r}.$$ \hspace{1cm} (4.15)

from which we obtain the Fourier transform of the change in charge density, $\Delta(k_{0})$ by expansion

$$\Delta(k) = \frac{1}{3} \left(\frac{\Omega}{m_e} \right)^{\frac{2}{3}} \left\{ \rho(k) - \rho_{o}(k) - \sum_{r \neq 0} \rho(k, r) \rho(k - k_{r}) \right\} - \rho(k_{r}) \rho_{o}(k - k_{r})$$ \hspace{1cm} (4.16)
where only second order terms have been retained. The quantity \(n_e \) is the number of electrons in the cell.

In the case \(K = 0 \), we use a consequence of the use of normalized Bloch functions that

\[
\rho(\theta) = \frac{n_e}{\Omega_n} \tag{4.17}
\]

at each stage of the iteration. Consequently,

\[
\Delta(\theta) = -\frac{2}{\Omega_n} \left(\frac{n_e}{\Omega_n} \right) \sum_k \left[\rho(st_k)\rho(-st_k) - \rho_{0}(st_k)\rho_{0}(-st_k) \right] \tag{4.18}
\]

The use of these approximate formulas \(\Delta(K) \) is dependent on the assumption that the changes in the Fourier coefficients of \(\rho \) are small.
CHAPTER V

Results

Energy levels for both the up and down spins were obtained at 1505 independent points in 1/48' th of the Brillouin zone. The points chosen may be characterized by integer values, \((n_x, n_y, n_z)\), representing the coordinate \((K_x, K_y, K_z) = \frac{2\pi}{24a} (n_x, n_y, n_z)\) such that \(n_x \geq n_y \geq n_z\) and the symmetry point X has the coordinate \(\frac{2\pi}{24a} (24, 0, 0)\), where \(a\) is the lattice constant. Also, we have the restriction that \(n_x + n_y + n_z \leq 36\) such that the coordinates remain in the 1/48' th partition of interest. Portions of the band structures along certain symmetry directions for majority (up) and minority (down) spins are shown in figure (3) and (4) respectively. The results are qualitatively similar to those obtained by Connolly (1967) and others. The band structure shows the characteristic interlacing d bands, partially hybridized with an overlapping broad band. A p state, \(L_{2}^{1}\), enters the d band region at the center of a hexagonal zone face.

Certain characteristic energy differences between states are listed in Table III. The \(X_5-X_1\) separation is a rough measure of the d band width, while \(\Gamma_1-X_{44}'\) gives the width of the overlapping s-p band. We obtain a d band width of 0.324 ry for both spins while Connolly (1967) obtains 0.33 ry for up spin and 0.36 ry for down
spin and Zornberg (1970) obtains a separation of approximately 0.38 ry. Comparison of the s-p band width shows Connolly (1967) with a separation of 0.84 ry, Zornberg with a separation of approximately 0.87 ry, and our work with a separation of 0.81 ry for each spin. Hence these theoretical calculations agree moderately well, especially when one considers that each was done by a different method using different crystal potentials.

A significant feature of the band structure of nickel is the very flat highest d band, connecting the states X5 and W1'. If only nearest neighbor interactions were considered, this band would be absolutely flat. Second neighbor and higher order interactions produce a slight deviation of the energy of this band from constancy, but this is quite small: the energy variation between these states is only 4×10^{-5} ry.

Some values for the energy differences between states of up and down spin are specified in Table IV. It can be seen from this table that while the splitting of d like states is not constant, it does not vary very much, remaining in the neighborhood of 0.06 ry or 0.8 ev. On the other hand, the splitting of predominately s and p like states tends to be smaller by a factor of approximately three. The present results for the spin splitting of d like states are in reasonable agreement with those obtained in a previous calculation using t matrix techniques (Callaway and Zhang, 1970), and also with those
obtained by others using the Slater procedure such as Wakoh (1965) and Connolly (1967). Our result is, however, larger by a factor of approximately two than values considered by Zornberg (1970) as giving reasonable agreement with optical measurements. Specifically, we obtain spin splitting of 0.06 ry for $\Delta \Gamma_{25}'$ and 0.022 ry for $\Delta \Gamma_1$. Connolly has $\Delta \Gamma_{25}' = 0.07$ ry and $\Delta \Gamma_1 = 0.016$ ry.

Experimental results are available from some optical measurements such as those by Stoll (1970) and Krinchik et al (1968). Stoll (1970) suggests that the L_5 level must be situated approximately 0.22 ry above the Fermi level. We have L_5 at 0.27 ry above the Fermi energy, indicating that our Fermi energy is well situated with respect to the s-p bands. He further indicates that the d band spin splitting ($\Delta \Gamma_{25}'$) should be of the order of 0.026 ry, hence the factor of two mentioned earlier. However, our splitting of the p level L_4^+ is three times larger than Stoll's (1970) values of 0.008 ry. Krinchik et al (1968) agree with our relative position of L_2^+, that is, L_2^+ below L_{32} for the down spin with the Fermi energy between them, and L_2^+ above L_{32} in the up spin with the Fermi energy above L_2^+. However, they indicate that $L_2^+ (\uparrow) - L_2^+ (\downarrow)$ should be approximately 0.005 ry; whereas, we obtained 0.002 ry. They also obtained $L_{32} (\uparrow) - L_{32} (\downarrow) = 0.032$ ry in comparison to 0.065 ry in our calculation. This data further substantiates the fact that this calculation has the spin splitting too
large by approximately a factor of two.

A rough density of states was obtained by simple state counting techniques. The subroutine which calculates the density of states is included in the band program listed in Appendix B. Results for majority, minority, and total densities are presented in figures (5), (6), and (7). The densities are nearly the same except for a shift in energy corresponding to the spin splitting.

The Fermi energy was determined from the density of states and was found to be approximately \(-0.493\) ry for the \(\alpha = 0.972\) used in this calculation. The magneton number, which is the difference between the number of occupied states of majority spin, and the number of occupied minority spin states, was found to be 0.69. This is somewhat larger than the experimental value of 0.56 given by Dannan et al (1968). The total density of states at the Fermi energy is 24 electron states/atom-ry.

Determination of the Fermi energy makes possible the investigation of the Fermi surface. Certain cross sections of the predicted Fermi surface are shown in figures (8) and (9) which refer to majority and minority spins, respectively. Some properties of the Fermi surface are listed in Table V.

The majority spin portion of the Fermi surface lies entirely in the upper (s-p) band 6. Qualitatively, it is similar to the Fermi surface of copper: a distorted
sphere with necks making contact with the Brillouin zone boundary around L. The neck areas given in the table are somewhat larger than implied by the experimental results of Tsui (1967). For example, we obtained 0.0093 a. u. compared to 0.0072 a. u. from Tsui (1967). It is probable that the L_2' level has been placed slightly too far below the Fermi energy.

The minority spin portion of the Fermi surface is considerably more complicated. In the first place, we find the hole pockets at X which have been observed in the de-Haas van Alphen effect measurements. Our results for the size of this pocket, which is associated with the X_5 level, are in rather good agreement with the experimental measurements. This calculation found a second pocket of minority spin holes (3d band) near X, associated with the X_2 level. Such holes have not been observed experimentally, although they have been predicted by other first principle calculations as well (Connolly, 1967). If there are, in fact, no such holes, the discrepancy in this calculation could be explained by a slightly too low placement of the Fermi level; the actual position of the Fermi level would then come between X_5 and X_2.

There are large portions of the minority spin Fermi surface which have not yet been observed: that associated with band 5 holes presumably responsible for the ferromagnetism and the band 6 electrons. Measurement of the properties of these portions of the Fermi surface would
be of considerable importance in testing band calculations.

For general interest, we present here numerical values for integrals of importance for conventional tight binding calculations for d bands. These quantities are the matrix elements $S_{ij}(\mathbf{K}, \mathbf{R})$ discussed in Chapter II, in which i and j denote d states, given for central cell, first, and second neighbors ($\mathbf{R} = (0,0,0)$, $a/2(1,1,0)$, and $a/2(0,0,2)$). These values are given in Table II for the sum of kinetic energy and ordinary (Coulomb) potential energy, the exchange energy (full Slater for the paramagnetic state), and overlap integrals. These integrals were determined using the d-d integral computer program listed in Appendix B with the d state atomic wave functions of Wachters (1970). In the calculations described in the main text of this paper, we used Bloch functions formed from individual Gaussian orbitals rather than complete atomic wave functions; however, integrals based on atomic wave functions are interesting for purposes of comparison with values obtained by various interpolation schemes.

Many authors have considered the so-called two center approximation (Slater and Koster, 1954), in which three center integrals occurring in the usual form of the tight binding method are neglected. There are several different combinations of the integrals E_{ij} which can be used to determine values of the independent d type two center integrals, denoted as $(dd\sigma)$, $(dd\pi)$, and $(dd\delta)$.
In fact, Slater and Koster (1954) list the integrals E_{ij} in terms of the two center integrals. These results would agree exactly if the two center approximations were accurate. These expressions can be solved to give the two center integrals in terms of E_{ij}. There are eight independent expressions for $(dd\eta)$, six independent expressions for $(dd\sigma)$, and twelve independent expressions for $(dd\delta)$. An example of each is

$$(dd\eta) = E_{k_y, x_y}^{(101)} + E_{k_y, x_y}^{(011)}$$

$$(dd\sigma) = \frac{3}{2} E_{k_y, x_y}^{(110)} - \frac{1}{2} E_{3, z^2 - \rho^2, z^2 - \rho^2}^{(110)}$$

$$(dd\delta) = E_{k_y, x_y}^{(110)} + \sqrt{3} E_{k_y, 3, z^2 - \rho^2}^{(110)}$$

Numerical values for these two center integrals are compared in Table VI with those obtained by other authors. Only mean values for the nearest neighbor two center parameters obtained from Table II are presented. The spread is not large except in the case of the integral of smallest magnitude, $(dd\delta)$. There is some measure of agreement with the values obtained by fits to APW calculations. The discrepancies with the values of Fletcher and Wohlfarth (1951) would be substantially reduced if the contribution from the exchange potential to our values was deleted, since they did not include exchange in their calculations.
As a closing note, the self consistency procedure described in Chapter IV will be discussed briefly. A computer program, which is listed in Appendix B, has been written to perform this calculation. However, final results have not been obtained at this time, but should be available in the near future. This work is to be continued by members of the Solid State Physics group at Louisiana State University. Enough work has been done thus far to clearly indicate that the spin splitting will decrease with self consistency.
BIBLIOGRAPHY

TABLE I

In this table, the Fourier coefficients of the Coulomb, paramagnetic exchange, up-spin exchange, and down-spin exchange potentials are presented. Only the first 100 unique shells are shown since 8184 were actually used and cannot be presented here.

<table>
<thead>
<tr>
<th>KX</th>
<th>KY</th>
<th>KZ</th>
<th>COULOMB</th>
<th>PARAMAGNETIC</th>
<th>UP-SPIN</th>
<th>DOWN-SPIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-0.160747E 01</td>
<td>-0.130430E 01</td>
<td>-0.131756E 01</td>
<td>-0.129074E 01</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-0.873536E 00</td>
<td>-0.273472E 00</td>
<td>-0.276379E 00</td>
<td>-0.270497E 00</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>-0.787361E 00</td>
<td>-0.150984E 00</td>
<td>-0.152479E 00</td>
<td>-0.149455E 00</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>-0.583833E 00</td>
<td>-0.415256E-01</td>
<td>-0.413557E-01</td>
<td>-0.417091E-01</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-0.493872E 00</td>
<td>-0.576511E-01</td>
<td>-0.575919E-01</td>
<td>-0.577223E-01</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-0.469955E 00</td>
<td>-0.598546E-01</td>
<td>-0.598548E-01</td>
<td>-0.598643E-01</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>-0.393727E 00</td>
<td>-0.440740E-01</td>
<td>-0.441719E-01</td>
<td>-0.439786E-01</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-0.350809E 00</td>
<td>-0.210042E-01</td>
<td>-0.210504E-01</td>
<td>-0.209576E-01</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0</td>
<td>-0.338451E 00</td>
<td>-0.140305E-01</td>
<td>-0.140511E-01</td>
<td>-0.140091E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 2 2</td>
<td>-0.296406E00</td>
<td>0.323680E-02</td>
<td>0.329997E-02</td>
<td>0.317480E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 1 1</td>
<td>-0.270933E00</td>
<td>0.449103E-02</td>
<td>0.457269E-02</td>
<td>0.441029E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 3 3</td>
<td>-0.270933E00</td>
<td>0.449103E-02</td>
<td>0.457269E-02</td>
<td>0.441029E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 4 0</td>
<td>-0.236721E00</td>
<td>-0.553755E-02</td>
<td>-0.549152E-02</td>
<td>-0.558315E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 3 1</td>
<td>-0.219934E00</td>
<td>-0.120664E-01</td>
<td>-0.120511E-01</td>
<td>-0.120815E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 4 2</td>
<td>-0.214840E00</td>
<td>-0.136827E-01</td>
<td>-0.136757E-01</td>
<td>-0.136897E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 0 0</td>
<td>-0.214840E00</td>
<td>-0.136827E-01</td>
<td>-0.136757E-01</td>
<td>-0.136897E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 2 0</td>
<td>-0.196575E00</td>
<td>-0.163211E-01</td>
<td>-0.163294E-01</td>
<td>-0.163131E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 3 3</td>
<td>-0.184757E00</td>
<td>-0.145423E-01</td>
<td>-0.145430E-01</td>
<td>-0.145423E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 2 2</td>
<td>-0.181123E00</td>
<td>-0.134229E-01</td>
<td>-0.134180E-01</td>
<td>-0.134283E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 4 4</td>
<td>-0.167900E00</td>
<td>-0.767398E-02</td>
<td>-0.763952E-02</td>
<td>-0.770957E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 1 1</td>
<td>-0.159180E00</td>
<td>-0.339408E-02</td>
<td>-0.333650E-02</td>
<td>-0.345307E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 5 1</td>
<td>-0.159180E00</td>
<td>-0.339408E-02</td>
<td>-0.333650E-02</td>
<td>-0.345307E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 4 0</td>
<td>-0.156471E00</td>
<td>-0.218545E-02</td>
<td>-0.212120E-02</td>
<td>-0.225118E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 4 2</td>
<td>-0.146506E00</td>
<td>0.954338E-03</td>
<td>0.103634E-02</td>
<td>0.870686E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 3 1</td>
<td>-0.139837E 00</td>
<td>0.134884E-02</td>
<td>0.143327E-02</td>
<td>0.126277E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 5 3</td>
<td>-0.139837E 00</td>
<td>0.134884E-02</td>
<td>0.143327E-02</td>
<td>0.126277E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 0 0</td>
<td>-0.129999E 00</td>
<td>-0.104061E-02</td>
<td>-0.970101E-03</td>
<td>-0.111250E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 3 3</td>
<td>-0.124750E 00</td>
<td>-0.347169E-02</td>
<td>-0.341599E-02</td>
<td>-0.352856E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 4 4</td>
<td>-0.123097E 00</td>
<td>-0.432039E-02</td>
<td>-0.426999E-02</td>
<td>-0.437189E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 2 0</td>
<td>-0.123097E 00</td>
<td>-0.432039E-02</td>
<td>-0.426999E-02</td>
<td>-0.437189E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 2 2</td>
<td>-0.116913E 00</td>
<td>-0.740486E-02</td>
<td>-0.737451E-02</td>
<td>-0.743600E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 6 0</td>
<td>-0.116913E 00</td>
<td>-0.740486E-02</td>
<td>-0.737451E-02</td>
<td>-0.743600E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 5 1</td>
<td>-0.112684E 00</td>
<td>-0.900239E-02</td>
<td>-0.898354E-02</td>
<td>-0.902189E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 5 5</td>
<td>-0.112684E 00</td>
<td>-0.900239E-02</td>
<td>-0.898354E-02</td>
<td>-0.902189E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 6 2</td>
<td>-0.111344E 00</td>
<td>-0.935004E-02</td>
<td>-0.933402E-02</td>
<td>-0.936656E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 4 0</td>
<td>-0.106304E 00</td>
<td>-0.974808E-02</td>
<td>-0.973786E-02</td>
<td>-0.975880E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 1 1</td>
<td>-0.102828E 00</td>
<td>-0.907934E-02</td>
<td>-0.906788E-02</td>
<td>-0.909128E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 5 3</td>
<td>-0.102828E 00</td>
<td>-0.907934E-02</td>
<td>-0.906788E-02</td>
<td>-0.909128E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 4 2</td>
<td>-0.101723E 00</td>
<td>-0.870450E-02</td>
<td>-0.869172E-02</td>
<td>-0.871778E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>4</td>
<td>-0.975401E-01</td>
<td>-0.668598E-02</td>
<td>-0.666467E-02</td>
<td>-0.670786E-02</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>1</td>
<td>-0.946351E-01</td>
<td>-0.490830E-02</td>
<td>-0.487875E-02</td>
<td>-0.493850E-02</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>4</td>
<td>-0.901821E-01</td>
<td>-0.219834E-02</td>
<td>-0.215593E-02</td>
<td>-0.224154E-02</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>3</td>
<td>-0.877186E-01</td>
<td>-0.104081E-02</td>
<td>-0.993109E-03</td>
<td>-0.108934E-02</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>1</td>
<td>-0.877186E-01</td>
<td>-0.104081E-02</td>
<td>-0.993109E-03</td>
<td>-0.108934E-02</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>5</td>
<td>-0.877186E-01</td>
<td>-0.104081E-02</td>
<td>-0.993109E-03</td>
<td>-0.108934E-02</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>0</td>
<td>-0.869291E-01</td>
<td>-0.760850E-03</td>
<td>-0.711971E-03</td>
<td>-0.810580E-03</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>-0.869291E-01</td>
<td>-0.760850E-03</td>
<td>-0.711971E-03</td>
<td>-0.810580E-03</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>0</td>
<td>-0.839179E-01</td>
<td>-0.213472E-03</td>
<td>-0.163104E-03</td>
<td>-0.264696E-03</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>2</td>
<td>-0.839179E-01</td>
<td>-0.213472E-03</td>
<td>-0.163104E-03</td>
<td>-0.264696E-03</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>1</td>
<td>-0.818021E-01</td>
<td>-0.382826E-03</td>
<td>-0.334692E-03</td>
<td>-0.431780E-03</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>3</td>
<td>-0.818021E-01</td>
<td>-0.382826E-03</td>
<td>-0.334692E-03</td>
<td>-0.431780E-03</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>-0.811221E-01</td>
<td>-0.536859E-03</td>
<td>-0.490045E-03</td>
<td>-0.584472E-03</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>2</td>
<td>-0.811221E-01</td>
<td>-0.536859E-03</td>
<td>-0.490045E-03</td>
<td>-0.584472E-03</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>3</td>
<td>-0.766822E-01</td>
<td>-0.253794E-02</td>
<td>-0.250603E-02</td>
<td>-0.257044E-02</td>
</tr>
</tbody>
</table>
TABLE I (CONTINUED)

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>0</th>
<th>-0.760901E-01</th>
<th>-0.289457E-02</th>
<th>-0.286525E-02</th>
<th>-0.292444E-02</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>6</td>
<td>4</td>
<td>-0.760901E-01</td>
<td>-0.289457E-02</td>
<td>-0.286525E-02</td>
<td>-0.292444E-02</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>2</td>
<td>-0.738171E-01</td>
<td>-0.429212E-02</td>
<td>-0.427314E-02</td>
<td>-0.431152E-02</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
<td>-0.722060E-01</td>
<td>-0.518511E-02</td>
<td>-0.517308E-02</td>
<td>-0.519745E-02</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>5</td>
<td>-0.722060E-01</td>
<td>-0.518511E-02</td>
<td>-0.517308E-02</td>
<td>-0.519745E-02</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0</td>
<td>-0.696824E-01</td>
<td>-0.611490E-02</td>
<td>-0.611135E-02</td>
<td>-0.611863E-02</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>1</td>
<td>-0.682572E-01</td>
<td>-0.626327E-02</td>
<td>-0.626242E-02</td>
<td>-0.626424E-02</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>1</td>
<td>-0.682572E-01</td>
<td>-0.626327E-02</td>
<td>-0.626242E-02</td>
<td>-0.626424E-02</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>5</td>
<td>-0.682572E-01</td>
<td>-0.626327E-02</td>
<td>-0.626242E-02</td>
<td>-0.626424E-02</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>4</td>
<td>-0.677959E-01</td>
<td>-0.624222E-02</td>
<td>-0.624187E-02</td>
<td>-0.624269E-02</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>2</td>
<td>-0.677959E-01</td>
<td>-0.624222E-02</td>
<td>-0.624187E-02</td>
<td>-0.624269E-02</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>6</td>
<td>-0.660161E-01</td>
<td>-0.583009E-02</td>
<td>-0.582970E-02</td>
<td>-0.583058E-02</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>-0.660161E-01</td>
<td>-0.583009E-02</td>
<td>-0.582970E-02</td>
<td>-0.583058E-02</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>3</td>
<td>-0.647456E-01</td>
<td>-0.522709E-02</td>
<td>-0.522485E-02</td>
<td>-0.522943E-02</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>3</td>
<td>-0.647456E-01</td>
<td>-0.522709E-02</td>
<td>-0.522485E-02</td>
<td>-0.522943E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>2</td>
<td>-0.643337E-01</td>
<td>-0.498267E-02</td>
<td>-0.497954E-02</td>
<td>-0.498591E-02</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>4</td>
<td>-0.627407E-01</td>
<td>-0.386321E-02</td>
<td>-0.385554E-02</td>
<td>-0.387101E-02</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>-0.627407E-01</td>
<td>-0.386321E-02</td>
<td>-0.385554E-02</td>
<td>-0.387101E-02</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>1</td>
<td>-0.616004E-01</td>
<td>-0.295799E-02</td>
<td>-0.294639E-02</td>
<td>-0.296976E-02</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>-0.616004E-01</td>
<td>-0.295799E-02</td>
<td>-0.294639E-02</td>
<td>-0.296976E-02</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>0</td>
<td>-0.612301E-01</td>
<td>-0.265934E-02</td>
<td>-0.264641E-02</td>
<td>-0.267244E-02</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>2</td>
<td>-0.597952E-01</td>
<td>-0.155045E-02</td>
<td>-0.153261E-02</td>
<td>-0.156851E-02</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>4</td>
<td>-0.597952E-01</td>
<td>-0.155045E-02</td>
<td>-0.153261E-02</td>
<td>-0.156851E-02</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>3</td>
<td>-0.587653E-01</td>
<td>-0.870205E-03</td>
<td>-0.849443E-03</td>
<td>-0.891216E-03</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>5</td>
<td>-0.587653E-01</td>
<td>-0.870205E-03</td>
<td>-0.849443E-03</td>
<td>-0.891216E-03</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>0</td>
<td>-0.571302E-01</td>
<td>-0.146727E-03</td>
<td>-0.123311E-03</td>
<td>-0.170410E-03</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1</td>
<td>-0.561948E-01</td>
<td>0.114995E-04</td>
<td>0.349677E-04</td>
<td>-0.122294E-04</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>6</td>
<td>-0.558902E-01</td>
<td>0.182656E-04</td>
<td>0.414898E-04</td>
<td>-0.521427E-05</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>0</td>
<td>-0.558902E-01</td>
<td>0.182656E-04</td>
<td>0.414898E-04</td>
<td>-0.521427E-05</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>2</td>
<td>-0.558902E-01</td>
<td>0.182656E-04</td>
<td>0.414898E-04</td>
<td>-0.521427E-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>2</td>
<td>-0.547061E-01</td>
<td>-0.166972E-03</td>
<td>-0.145947E-03</td>
<td>-0.188219E-03</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>3</td>
<td>-0.538523E-01</td>
<td>-0.497642E-03</td>
<td>-0.479384E-03</td>
<td>-0.516082E-03</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>5</td>
<td>-0.538523E-01</td>
<td>-0.497642E-03</td>
<td>-0.479384E-03</td>
<td>-0.516082E-03</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>1</td>
<td>-0.538523E-01</td>
<td>-0.497642E-03</td>
<td>-0.479384E-03</td>
<td>-0.516082E-03</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
<td>-0.538523E-01</td>
<td>-0.497642E-03</td>
<td>-0.479384E-03</td>
<td>-0.516082E-03</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>6</td>
<td>-0.535739E-01</td>
<td>-0.636891E-03</td>
<td>-0.619728E-03</td>
<td>-0.654222E-03</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>4</td>
<td>-0.524902E-01</td>
<td>-0.129452E-02</td>
<td>-0.128235E-02</td>
<td>-0.130680E-02</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>1</td>
<td>-0.517073E-01</td>
<td>-0.184375E-02</td>
<td>-0.183567E-02</td>
<td>-0.185189E-02</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>3</td>
<td>-0.517073E-01</td>
<td>-0.184375E-02</td>
<td>-0.183567E-02</td>
<td>-0.185189E-02</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>7</td>
<td>-0.517073E-01</td>
<td>-0.184375E-02</td>
<td>-0.183567E-02</td>
<td>-0.185189E-02</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>4</td>
<td>-0.514518E-01</td>
<td>-0.202804E-02</td>
<td>-0.202133E-02</td>
<td>-0.203478E-02</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>-0.514518E-01</td>
<td>-0.202804E-02</td>
<td>-0.202133E-02</td>
<td>-0.203478E-02</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>-0.504557E-01</td>
<td>-0.272692E-02</td>
<td>-0.272551E-02</td>
<td>-0.272829E-02</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>3</td>
<td>-0.497349E-01</td>
<td>-0.317008E-02</td>
<td>-0.317219E-02</td>
<td>-0.316788E-02</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>5</td>
<td>-0.497349E-01</td>
<td>-0.317008E-02</td>
<td>-0.317219E-02</td>
<td>-0.316788E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(-0.485803E-01)</td>
<td>(-0.366436E-02)</td>
<td>(-0.367090E-02)</td>
<td>(-0.365766E-02)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>8</td>
<td>(-0.479141E-01)</td>
<td>(-0.378455E-02)</td>
<td>(-0.379271E-02)</td>
<td>(-0.377621E-02)</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>5</td>
<td>(-0.479141E-01)</td>
<td>(-0.378455E-02)</td>
<td>(-0.379271E-02)</td>
<td>(-0.377621E-02)</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>1</td>
<td>(-0.479141E-01)</td>
<td>(-0.378455E-02)</td>
<td>(-0.379271E-02)</td>
<td>(-0.377621E-02)</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>4</td>
<td>(-0.479141E-01)</td>
<td>(-0.378455E-02)</td>
<td>(-0.380195E-02)</td>
<td>(-0.378475E-02)</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
<td>(-0.479141E-01)</td>
<td>(-0.378455E-02)</td>
<td>(-0.380195E-02)</td>
<td>(-0.378475E-02)</td>
</tr>
</tbody>
</table>
In this table we give some d-d matrix elements used in our calculation. They are given for the sum of the potential energy and kinetic energy, paramagnetic exchange, and overlap. The integrals are given for the central cell, first neighbor, and second neighbor interactions with only the non-zero ones listed. Short abbreviations are used, such as \(x^2 \) for \((x^2-y^2)\) and \(z^2 \) for \((3z^2-r^2)\).

<table>
<thead>
<tr>
<th>Integral</th>
<th>KE+PE (Ry)</th>
<th>Exchange (Ry)</th>
<th>Overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Cell (000)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z^2, z^2)</td>
<td>3.098</td>
<td>-3.784</td>
<td>1.000</td>
</tr>
<tr>
<td>(x^2, x^2)</td>
<td>3.098</td>
<td>-3.784</td>
<td>1.000</td>
</tr>
<tr>
<td>(xy, xy)</td>
<td>3.096</td>
<td>-3.784</td>
<td>1.000</td>
</tr>
<tr>
<td>(yz, yz)</td>
<td>3.096</td>
<td>-3.784</td>
<td>1.000</td>
</tr>
<tr>
<td>(xz, xz)</td>
<td>3.096</td>
<td>-3.784</td>
<td>1.000</td>
</tr>
<tr>
<td>(yz, xz)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>(xy, z^2)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1st Neighbor (110)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z^2, z^2)</td>
<td>-0.006663</td>
<td>-0.005573</td>
<td>0.004558</td>
</tr>
<tr>
<td>(x^2, x^2)</td>
<td>0.01234</td>
<td>0.005775</td>
<td>-0.005819</td>
</tr>
<tr>
<td>(xy, xy)</td>
<td>-0.01681</td>
<td>-0.01608</td>
<td>0.01254</td>
</tr>
<tr>
<td>(yz, yz)</td>
<td>0.005401</td>
<td>0.002811</td>
<td>-0.002626</td>
</tr>
<tr>
<td>(xz, xz)</td>
<td>0.005401</td>
<td>0.002811</td>
<td>-0.002626</td>
</tr>
<tr>
<td>(yz, xz)</td>
<td>0.007073</td>
<td>0.003399</td>
<td>-0.003194</td>
</tr>
<tr>
<td></td>
<td>0.008725</td>
<td>0.008919</td>
<td>-0.006911</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>xy,z^2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z^2,z^2</td>
<td>-0.001685</td>
<td>-0.0001589</td>
<td>0.0003084</td>
</tr>
<tr>
<td>x^2,x^2</td>
<td>-0.00001974</td>
<td>-0.00000306</td>
<td>0.000002427</td>
</tr>
<tr>
<td>xy,xy</td>
<td>-0.00001857</td>
<td>-0.000002352</td>
<td>0.000002427</td>
</tr>
<tr>
<td>yz,yz</td>
<td>0.0003332</td>
<td>0.0000437</td>
<td>-0.00004984</td>
</tr>
<tr>
<td>xz,xz</td>
<td>0.0003332</td>
<td>0.0000437</td>
<td>-0.00004984</td>
</tr>
<tr>
<td>yz,xz</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>xy,z^2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

TABLE III

Some Characteristic Energy Differences (Ry)

<table>
<thead>
<tr>
<th></th>
<th>Majority Spin</th>
<th>Minority Spin</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma_{25}-\Gamma_1$</td>
<td>0.506</td>
<td>0.544</td>
</tr>
<tr>
<td>$\Gamma_{12}-\Gamma_{25}$</td>
<td>0.084</td>
<td>0.087</td>
</tr>
<tr>
<td>x_5-x_1</td>
<td>0.324</td>
<td>0.324</td>
</tr>
<tr>
<td>x_5-x_2</td>
<td>0.016</td>
<td>0.017</td>
</tr>
<tr>
<td>$x_{4'}-x_5$</td>
<td>0.144</td>
<td>0.101</td>
</tr>
<tr>
<td>$L_2'-L_{32}$</td>
<td>0.016</td>
<td>-0.029</td>
</tr>
<tr>
<td>$x_{4'}-1$</td>
<td>0.807</td>
<td>0.808</td>
</tr>
<tr>
<td>$w_{1'}-w_1$</td>
<td>0.074</td>
<td>0.078</td>
</tr>
<tr>
<td>$w_{1'}-x_5$</td>
<td>$\sim 4 \times 10^{-5}$</td>
<td>$\sim 4 \times 10^{-5}$</td>
</tr>
</tbody>
</table>
TABLE IV

Some Characteristic Spin Splittings (Ry)

<table>
<thead>
<tr>
<th>Expression</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma_1(\downarrow) - \Gamma_1(\uparrow)$</td>
<td>0.022</td>
</tr>
<tr>
<td>$\Gamma_{25}'(\downarrow) - \Gamma_{25}'(\uparrow)$</td>
<td>0.060</td>
</tr>
<tr>
<td>$\Gamma_{12}(\downarrow) - \Gamma_{12}(\uparrow)$</td>
<td>0.063</td>
</tr>
<tr>
<td>$X_1(\downarrow) - X_1(\uparrow)$</td>
<td>0.054</td>
</tr>
<tr>
<td>$X_5(\downarrow) - X_5(\uparrow)$</td>
<td>0.066</td>
</tr>
<tr>
<td>$L_{32}(\downarrow) - L_{32}(\uparrow)$</td>
<td>0.065</td>
</tr>
<tr>
<td>$L_2'(\downarrow) - L_2'(\uparrow)$</td>
<td>0.020</td>
</tr>
<tr>
<td>$X_4'(\downarrow) - X_4'(\uparrow)$</td>
<td>0.023</td>
</tr>
<tr>
<td>Symmetry</td>
<td>Extremal Area (A. U.)</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>$L_2'(\uparrow)$ neck</td>
<td>(111) 0.0093</td>
</tr>
<tr>
<td>$X_5(\psi)$ hole pocket</td>
<td>(100) 0.020</td>
</tr>
<tr>
<td>$\Gamma X W$ plane</td>
<td>0.055</td>
</tr>
<tr>
<td>$X_2(\sqrt{3})$ hole pocket</td>
<td>(100) 0.061</td>
</tr>
<tr>
<td>$\Gamma X W$ plane</td>
<td>0.096</td>
</tr>
</tbody>
</table>
TABLE VI

Comparison of Two Center Integrals (Ry)

<table>
<thead>
<tr>
<th>Type</th>
<th>Present Results ($\alpha=1$)</th>
<th>Fletcher and Wohlfarth (a)</th>
<th>Hodges and Ehrenreich (b)</th>
<th>Zornberg (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$dd\sigma$</td>
<td>-0.0428</td>
<td>-0.0248</td>
<td>-0.0384</td>
<td>-0.038</td>
</tr>
<tr>
<td>$dd\pi$</td>
<td>0.0186</td>
<td>0.0134</td>
<td>0.0228</td>
<td>0.017</td>
</tr>
<tr>
<td>$dd\delta$</td>
<td>-0.0022</td>
<td>-0.0019</td>
<td>0.0056</td>
<td>-0.0017</td>
</tr>
</tbody>
</table>

(a) (1951)

(b) From three center fit to APW calculation (1968).

(c) From two center fit to APW calculation (1970).
4s–3s, 1st neighbor

Filon’s integration = 0.3525
straight line extrapolation = 0.3513
summation result = 0.3478
FIG. 3

ENERGY (RYDBERGS)

MAJORITY SPIN

-1.2
-1.0
-0.8
-0.6
-0.4
-0.2
-0.0

\(E_F \)
MINORITY SPIN

ENERGY (RYDBERGS)

FIG. 4
FIG. 8

SPIN BAND

X U

Γ K

Γ K

W X
FIG. 9
APPENDIX A

Below are the integral expressions used in the computation of the expectation value of 1 for the overlap, $-\frac{1}{2} \nabla^2$ for the kinetic energy, r^2, and $\cos(K \cdot r_{CD})$, where the wavefunctions are linear combinations of Gaussian-type orbitals, that is, $\exp(-a_1 r^2)$. Only the independent expressions are given. The others can be obtained by cyclic permutations of $x, y,$ and z. We make use of the notation

$$\langle s|s \rangle = \langle G^s(a_1, r-A) | G^s(a_2, r-B) \rangle,$$

and using the definitions

$$\frac{d}{dA} \cos(K \cdot r_{CD}) = -K_x u \sin(K \cdot r_{CD})$$

$$\frac{d}{dB} \cos(K \cdot r_{CD}) = -K_x (1-u) \sin(K \cdot r_{CD})$$

$$\frac{d}{dA} \exp(-LR^2) = 2 LX$$

$$\frac{d}{dB} \exp(-LR^2) = -2 LX$$

we can derive the expressions. The symbols used are defined as

$$u = \frac{a_1}{a_1 + a_2}$$

$$E = \exp(\frac{K^2}{4(a_1 + a_2)})$$

$$L = \frac{a_1 a_2}{a_1 + a_2}$$

$$W = \frac{1}{a_1 + a_2}$$

$$D = \left[\frac{7T}{a_1 + a_2} \right]^{3/2}$$

$$T = \exp(-LR^2)$$

$$X = B_x - A_x$$

$$Y = B_y - A_y$$

$$Z = B_z - A_z$$

$$R^2 = X^2 + Y^2 + Z^2$$

$$\cos = \cos(K \cdot r_{CD})$$

$$\sin = \sin(K \cdot r_{CD})$$
The constants below are the numerical factors involved in the spherical harmonics associated with the electron state wavefunctions.

\[
\begin{align*}
C_1 &= 0.07957747 & C_2 &= 0.13783228 \\
C_3 &= 0.23873262 & C_6 &= 0.08897035 \\
C_5 &= 0.15410117 & C_4 &= 0.30820235 \\
C_9 &= 0.15410111 & C_8 &= 0.26691118 \\
C_7 &= 0.53382235 & C_{15} &= 0.09947184 \\
C_{14} &= 0.17229028 & C_{13} &= 0.34458056 \\
C_{12} &= 0.29841552 & C_{11} &= 0.59683104 \\
C_{10} &= 1.19366207
\end{align*}
\]

We can derive all subsequent integrals from \(\langle s|0|s\rangle\), where 0 is one of the operators, \(-\frac{1}{2} \nabla^2\) or \(\cos K \cdot ECD\). Some are shown as follows:

\[
\begin{align*}
\langle P_x | 0 | s \rangle &= \frac{1}{2a_1} \frac{d}{dA_x} \langle s | 0 | s \rangle \\
\langle P_x | 0 | P_x \rangle &= \frac{1}{2a_2} \frac{d}{dB_x} \langle P_x | 0 | s \rangle = \frac{1}{2a_1} \frac{d}{dA_x} \frac{1}{2a_2} \frac{d}{dB_x} \langle s | 0 | s \rangle \\
d_{xy} 0 s &= \frac{1}{2a_1} \frac{d}{dA_y} \langle P_x | 0 | s \rangle = \frac{1}{2a_1} \frac{d}{dA_y} \frac{1}{2a_2} \frac{d}{dB_x} \langle s | 0 | s \rangle \\
\langle d(x^2 - y^2) | 0 | s \rangle &= \frac{1}{2a_1} \frac{d}{dA_x} \langle P_x | 0 | s \rangle - \frac{1}{2a_1} \frac{d}{dA_y} \langle P_y | 0 | s \rangle \\
\langle d(3z^2 - r^2) | 0 | s \rangle &= \langle d(2x^2 - x^2 - y^2) | 0 | s \rangle \\
&= \frac{1}{a_1} \frac{d}{dA_z} \langle P_z | 0 | s \rangle - \frac{1}{2a_1} \frac{d}{dA_x} \langle P_x | 0 | s \rangle - \frac{1}{2a_1} \frac{d}{dA_y} \langle P_y | 0 | s \rangle
\end{align*}
\]
KINETIC ENERGY INTEGRALS

\[\langle s | -\nabla^2 | s \rangle = 2C_1 DTW(3-2LR^2) \]
\[\langle P_x | -\nabla^2 | s \rangle = 2C_2 DTW a_1 X(5-2LR^2) \]
\[\langle P_x | -\nabla^2 | P_x \rangle = 2C_3 DTW(2.5-7LX^2-LR^2+2L^2X^2R^2) \]
\[\langle P_x | -\nabla^2 | P_y \rangle = 2C_3 DTW X(2LR^2-7) \]
\[\langle d_{xy} | -\nabla^2 | s \rangle = 2C_4 DTW a_2^2 XY(7-2LR^2) \]
\[\langle d_{(x^2-y^2)} | -\nabla^2 | s \rangle = 2C_5 DTW a_2^2 (X^2-Y^2)(7-2LR^2) \]
\[\langle d_{(3z^2-r^2)} | -\nabla^2 | s \rangle = 2C_6 DTW a_2^2 (2z^2-X^2-Y^2)(7-2LR^2) \]
\[\langle d_{xy} | -\nabla^2 | P_x \rangle = 2C_7 DTW a_1 Y(3.5-9LX^2-LR^2+2L^2X^2R^2) \]
\[\langle d_{xy} | -\nabla^2 | P_z \rangle = 2C_7 DTW a_1^2 XYZ(2 R^2-9) \]
\[\langle d_{(x^2-y^2)} | -\nabla^2 | P_x \rangle = 2C_8 DTW a_2 X(7-2LR^2) \]
\[+ (Y^2-X^2)(9L-2L^2R^2) \]
\[\langle d_{(x^2-y^2)} | -\nabla^2 | P_y \rangle = 2C_8 DTW a_2 Y(-7+2LR^2) \]
\[+ (Y^2-X^2)(9L-2L^2R^2) \]
\[\langle d_{(x^2-y^2)} | -\nabla^2 | P_z \rangle = 2C_8 DTW a_2 Z(9L-2L^2R^2) \]
\[\langle d_{(3z^2-r^2)} | -\nabla^2 | P_x \rangle = 2C_9 DTW a_2 X(2LR^2-7) \]
\[+ (X^2+Y^2-2Z^2)(9L-2L^2R^2) \]
\[\langle d_{(3z^2-r^2)} | -\nabla^2 | P_z \rangle = 2C_9 DTW a_2 Z(2LR^2-7) \]
\[+ (X^2+Y^2-2Z^2)(9L-2L^2R^2) \]
\[\langle d_{xy} | -\nabla^2 | d_{xy} \rangle = 2C_{10} DTW^2 ((3.5-9LY^2)(1-2LX^2) \]
\[+ (2L^2Y^2-L)(2X^2+R^2-2L^2X^2R^2) \]
\[\langle d_{yz} | -\nabla^2 | d_{xy} \rangle = 2C_{10} DTW^2 (-4.5+11LY^2-LR^2-2L^2Y^2R^2) \]
\[\langle d_{yz} | -\nabla^2 | d_{yz} \rangle = 2C_{10} DTW^2 ((3.5-9LY^2)(1-2L^2) \]
\[+ (2L^2Y^2-L)(2Z^2+R^2-2L^2Z^2R^2) \]
\[
\begin{align*}
\langle d_{zx} | \mathbf{-V}^2 | d_{xy} \rangle &= 2C_{10} DT L_2 W^2 Y Z (11L^2 - 4.5 + L R^2 - 2L^2 X^2 R^2) \\
\langle d_{zx} | \mathbf{-V}^2 | d_{yz} \rangle &= 2C_{10} DT L_2 W^2 X Y (11L^2 - 4.5 + L R^2 - 2L^2 Z^2 R^2) \\
\langle d_{zx} | \mathbf{-V}^2 | d_{zx} \rangle &= 2C_{10} DT L_2 (3.5 - 9L^2) (1 - 2L^2 X^2) \\
&\quad \quad + (2L^2 Z^2 - L) (2X^2 + R^2 - 2L X^2 R^2)) \\
\langle d(x^2 - y^2) | \mathbf{-V}^2 | d_{xy} \rangle &= 2C_{11} DT L_3 W^2 X Y (X^2 - Y^2) (11 - 2L R^2) \\
\langle d(x^2 - y^2) | \mathbf{-V}^2 | d_{yz} \rangle &= 2C_{11} DT L_2 W^2 X Z (9 - 2L R^2) \\
&\quad \quad + (X^2 - Y^2) (11L - 2L^2 R^2)) \\
\langle d(x^2 - y^2) | \mathbf{-V}^2 | d_{zx} \rangle &= 2C_{11} DT L_2 W^2 X Z (-9 + 2L R^2) \\
&\quad \quad + (X^2 - Y^2) (11L - 2L^2 R^2)) \\
\langle d(x^2 - y^2) | \mathbf{-V}^2 | d(x^2 - y^2) \rangle &= 2C_{12} DT L_2 W^2 (7 \\
&\quad \quad + (X^2 + Y^2) (11L^2 - 2L^3 R) - 2L R) \\
&\quad \quad + (X^2 + Y^2) (4L^2 R - 18L) \\
&\quad \quad + X^4 Y^2 (4L^3 R - 22L^2)) \\
\langle d(3z^2 - r^2) | \mathbf{-V}^2 | d_{xy} \rangle &= 2C_{13} DT L_2 W^2 X Y (18 - 4L R^2) \\
&\quad \quad + (X^2 + Y^2 - 2Z^2) (2L^2 R^2 - 11L)) \\
\langle d(3z^2 - r^2) | \mathbf{-V}^2 | d_{yz} \rangle &= 2C_{13} DT L_2 W^2 X Z (-9 + 2L R^2) \\
&\quad \quad + (X^2 + Y^2 - 2Z^2) (2L^2 R^2 - 11L)) \\
\langle d(3z^2 - r^2) | \mathbf{-V}^2 | d(x^2 - y^2) \rangle &= 2C_{14} DT L_2 W^2 (X^2 - Y^2) \\
&\quad \quad ((X^2 + Y^2 - 2Z^2) (2L^2 R^2 - 11L) \\
&\quad \quad - 2(9 - 2L^2 R^2)) \\
\langle d(3z^2 - r^2) | \mathbf{-V}^2 | d(3z^2 - r^2) \rangle &= 2C_{15} DT L_2 W^2 (21 - 6L R^2) \\
&\quad \quad - 2(9L - 2L^2 R^2) (X^2 + Y^2 + 4Z^2) \\
&\quad \quad + (X^2 + Y^2 - 2Z^2) (2L^2 R^2 - 11L^2 - 2L^3 R^2))
\end{align*}
\]
\[r^2 \text{ Integrals} \]

\[\langle s | r^2 | s \rangle = DTW(1.5 + a_2^2WR^2) \]

\[\langle P_x | r^2 | s \rangle = DTW^2a_2(2.5 + a_2^2WR^2) \]

\[\langle P_x | r^2 | P_x \rangle = DTW^2((\frac{1}{2} - LX^2)(2.5 + a_2^2WR^2) + a_2^2WX^2) \]

\[\langle P_x | r^2 | P_y \rangle = DTWLXY(1.5 + a_2^2WR^2 + a_2W(2u-1)) \]

\[\langle d_{xy} | r^2 | s \rangle = DTW3a_2^2XY(3.5 + a_2^2WR^2) \]

\[\langle d(x^2 - y^2) | r^2 | s \rangle = DTW^3a_2^2(X^2 - Y^2)(3.5 + a_2^2WR^2) \]

\[\langle d(z^2 - r^2) | r^2 | s \rangle = DTW^3a_2^2(3Z^2 - R^2)(3.5 + a_2^2WR^2) \]

\[\langle d_{xy} | r^2 | P_x \rangle = \frac{1}{2}DTW^3a_2^2(W(Y/L - 2X^2Y)(3.5a_1 - a_2 + a_1a_2^2WR^2) + Y/a_1) \]

\[\langle d_{xy} | r^2 | P_z \rangle = DTW^4a_2^2XYZ(a_2 - 3.5a_1 - a_1a_2^2WR^2) \]

\[\langle d(x^2 - y^2) | r^2 | P_x \rangle = DTW^3a_2^2WX(X^2 - Y^2) \]

\[\langle d(x_2 - y^2) | r^2 | P_x \rangle = \frac{1}{2}DTW^4a_2^2z(X^2 - Y^2)(3.5a_1 - a_2 + a_1a_2^2WR^2) \]

\[\langle d(z^2 - r^2) | r^2 | P_x \rangle = DTW^3a_2^2((L(X^2 - Y^2 - 2Z^2) - x) \]

\[\quad \quad (3.5 + a_2^2WR^2 - a_2^2W(X^2 + Y^2 - 2Z^2)) \]

\[\langle d(z^2 - r^2) | r^2 | P_z \rangle = DTW^3a_2^2((2 + L(X^2 + Y^2 - 2Z^2))(3.5 + a_2^2WR^2) \]

\[\quad \quad - 2Wa_2^2(X^2 + Y^2 - 2Z^2)) \]

\[\langle d_{xy} | r^2 | d_{xy} \rangle = \frac{1}{2}DTW^4a_2^2((1 - 2LY^2)(1/ - 2X^2)(3.5a_1 - a_2 + a_1a_2^2WR^2) \]

\[\quad \quad + a_2^2W(1/ - 2X^2Y^2)) \]

\[\langle d_{xy} | r^2 | d_xz \rangle = \frac{1}{2}DTW^4a_2^2(YZ(2LX^2 - 1))(3.5a_1 - a_2 + a_1a_2^2WR^2) \]

\[\quad \quad - 2a_2^2Wa_2^2X^2YZ) \]
\[\langle d_{yz} | r^2 | d_{(x^2-y^2)} \rangle = DTW^4 a_2 ((1+LYZ(x^2-y^2))(3.5a_1-a_2+a_1a_2^2WR^2) - a_1a_2^2WYZ(x^2-y^2)) \]

\[\langle d_{xy} | r^2 | d_{(x^2-y^2)} \rangle = DTW^5 a_1a_2^2XY(x^2-y^2)(a_1(3.5+a_2^2WR^2)-2a_2) \]

\[\langle d_{xz} | r^2 | d_{(3z^2-r^2)} \rangle = DTW^4a_2XZ((1+L(x^2+y^2-2z^2)) \]

\[(a_2-3.5a_1-a_1a_2^2WR^2)+a_1a_2^2W(x^2+y^2-2z^2)) \]

\[\langle d_{xy} | r^2 | d_{(3z^2-r^2)} \rangle = DTW^4a_2XY((2- (x^2+y^2-2z^2)) \]

\[(3.5a_1-a_2+a_1a_2^2WR^2)+a_1a_2^2W(x^2+y^2-2z^2)) \]

\[\langle d_{(x^2-y^2)} | r^2 | d_{(x^2-y^2)} \rangle = DTW^3((1-2L(x^2+y^2)+L^2(x^2-y^2)^2) \]

\[(3.5+a_2^2WR^2)+2a_2^2W(x^2+y^2-L(x^2-y^2)^2)) \]

\[\langle d_{(x^2-y^2)} | r^2 | d_{(3z^2-r^2)} \rangle = DTW^4a_2(x^2-y^2)((2-L(x^2+y^2-2z^2) \]

\[(3.5a_1-a_2+a_1a_2^2WR^2) \]

\[+ a_1a_2^2W(x^2+y^2-2z^2)) \]

\[\langle d_{(3z^2-r^2)} | r^2 | d_{(3z^2-r^2)} \rangle = DTW^4a_2(12/L-8(4z^2+x^2+y^2) \]

\[+ 4L(x^2+y^2-2z^2)(x^2+y^2-2z^2)) \]

\[(3.5a_1-a_2+a_1a_2^2WR^2) \]

\[+ a_1a_2^2W(12/L^2-4(x^2+y^2-2z^2) \]

\[(x^2+y^2-2z^2)) \]
\(\langle s | \cos | s \rangle = C_1 \Delta T E \cos \)

\(\langle P_x | \cos | P_x \rangle = C_2 \Delta T E W (a_2 \cos - \frac{1}{2} K_x \sin) \)

\(\langle P_x | \cos | P_y \rangle = C_3 \Delta T E W (\frac{1}{2} (a_1 K_y X - a_2 K_y Y) \sin) + \frac{1}{2} K_x X (2u - 1) \sin) \)

\(\langle P_x | \cos | P_y \rangle = C_4 \Delta T E W (a_2 (X_2 - Y_2) \cos) - \frac{1}{2} a_2 (Y K_x + X K_y) \sin) \)

\(\langle d(x^2 - y^2) | \cos | s \rangle = C_5 \Delta T E W (a_2 (X^2 - Y^2) - \frac{1}{2} (K_x^2 - K_y^2)) \cos \)

\(- \frac{1}{2} a_2 (Y K_x + X K_y) \sin) \)

\(\langle d(3z^2 - r^2) | \cos | s \rangle = C_6 \Delta T E W (\cos (a_2 (2Z^2 - X^2 - Y^2)) \)

\(- \frac{1}{2} (2K_z^2 - K_x^2 - K_y^2)) \cos \)

\(\langle d(x^2 - y^2) | \cos | P_x \rangle = C_7 \Delta T E W (\frac{1}{2} a_2 K^2 - \frac{1}{2} a_2 Y \sin) \)

\(- \frac{1}{2} a_2 K^2 - \frac{1}{2} a_2 Y \sin) \)

\(\langle d(x^2 - y^2) | \cos | P_y \rangle = C_7 \Delta T E W (\cos (a_1 X (X_2 - Y_2 - \frac{1}{2} a_1 Y) \sin) \)

\(- \frac{1}{2} a_2 X (X_2 - Y_2 - \frac{1}{2} a_1 Y) \sin) \)

\(\langle d(x^2 - y^2) | \cos | P_z \rangle = C_7 \Delta T E W (\cos (a_1 X (X_2 - Y_2 - \frac{1}{2} a_1 Y) \sin) \)

\(- \frac{1}{2} a_2 X (X_2 - Y_2 - \frac{1}{2} a_1 Y) \sin) \)
\[\langle d(x^2-y^2) | \cos | P_z \rangle = C_9 DTEW^3(\cos(\frac{\alpha_1}{\alpha_2}(K_x^2-K_y^2) - \frac{a_2^2}{\alpha_2}(x^2-y^2)) - \frac{a_2^2}{\alpha_2}K_z(XX_x - YY_y)) \]
\[\quad - \sin(\frac{\alpha_1}{\alpha_2}(a_2^2(x^2-y^2) - \frac{\alpha_1}{\alpha_2}(K_x^2-K_y^2))) - \frac{a_2^2}{\alpha_2}K_z(XX_x - YY_y)) \]
\[\langle d(3z^2-r^2) | \cos | P_x \rangle = C_9 DTEW^3(\cos(\frac{\alpha_1}{\alpha_2}(2K_z^2-K_x^2-K_y^2) - \frac{a_2^2}{\alpha_2}K_x(2Z^2-x^2) - \frac{a_2^2}{\alpha_2}K_y(2Z^2-y^2)) \]
\[\quad - \frac{1}{\alpha_2}K_z(2Z^2-x^2-y^2) - \frac{1}{\alpha_2}K_x(2Z^2-x^2) - \frac{1}{\alpha_2}K_y(2Z^2-y^2) - \frac{a_2^2}{\alpha_2}K_z(2Z^2-x^2-y^2) - \frac{a_2^2}{\alpha_2}K_x(2Z^2-x^2) - \frac{a_2^2}{\alpha_2}K_y(2Z^2-y^2) \]
\[\langle d(3z^2-r^2) | \cos | P_z \rangle = C_9 DTEW^3(\frac{\alpha_1}{\alpha_2}(2K_z^2-K_x^2-K_y^2) - \frac{a_2^2}{\alpha_2}K_x(2Z^2-x^2) - \frac{a_2^2}{\alpha_2}K_y(2Z^2-y^2)) \]
\[\quad + \frac{1}{\alpha_2}K_z(2Z^2-x^2-y^2) - \frac{1}{\alpha_2}K_x(2Z^2-x^2) - \frac{1}{\alpha_2}K_y(2Z^2-y^2) - \frac{a_2^2}{\alpha_2}K_z(2Z^2-x^2-y^2) - \frac{a_2^2}{\alpha_2}K_x(2Z^2-x^2) - \frac{a_2^2}{\alpha_2}K_y(2Z^2-y^2) \]
\[\langle d_{xy} | \cos | d_{xy} \rangle = C_{10} DTEW^3(\cos(\alpha_1 \alpha_2 Lx^2+y^2 + \frac{1}{\alpha_2}(L^2x^2+y^2))) \]
\[\quad - \frac{1}{\alpha_2}(a_1-a_2)^2XxXyK_y - (K_x^2+K_y^2)/8 \]
\[\quad - \frac{1}{\alpha_2}a_2^2(X^2+y^2) + K_x^2K_y^2/16 + 1/4W \]
\[\quad + \frac{1}{\alpha_2}(a_2-a_1) \sin((XX_x+YY_y)(LXY+\frac{1}{\alpha_2}WK_xK_y) \]
\[\quad - \frac{1}{\alpha_2}(XX_x+YY_y)) \]
\[\langle d_{zx} | \cos | d_{xy} \rangle = C_{10} DTEW^3(\cos(\alpha_1 \alpha_2 Lx^2yz + \frac{1}{\alpha_2}(L^2x^2+y^2+z^2))) \]
\[\quad + \frac{1}{\alpha_2}(1-2u)(XX_x(2ZK_y-a_1YK_z) - KyK_z/8 \]
\[\quad - \frac{1}{\alpha_2}a_2^2 YZ + K_x^2K_yK_z/16) \]
\[\quad + \sin(\frac{1}{\alpha_2}(a_2-a_1)(XX_xYZ + a_2KYXZ) \]
\[\quad - a_1X^2K_z) + \frac{1}{\alpha_2}(a_1KY_z-a_2ZK_y)(\frac{1}{\alpha_2}-\frac{1}{\alpha_2}WK_x^2) \]
\[\quad + W(a_2-a_1)(XX_xK_yK_z/8)) \]
\[\langle d_{xy} \mid \cos \mid d_{(x^2-y^2)} \rangle = C_{11} DTEW^3(\cos(a_1(x^2-y^2))(a_2 LXY + \frac{1}{16}W(a_2-a_1)K_xK_y) + W(K_x^2-K_y^2)(K_xK_y) + \frac{1}{8}a_2(a_1-a_2)XY) + \sin((a_2 LXY - a_1 WK_x K_y)(XK_x-YK_y) + (a_2 W(K_x^2-K_y^2)/8 - a_1 L(X^2-Y^2))(XK_y + YK_x) + \frac{1}{8}(a_1+a_2)(XX_y-YK_x))) \]

\[\langle d_{zx} \mid \cos \mid d_{(x^2-y^2)} \rangle = C_{11} DTEW^3(\cos(a_1a_2 XZ)(x^2-y^2)-1) \]

\[\langle d_{zx} \mid \cos \mid d_{(x^2-y^2)} \rangle = C_{13} DTEW^3(\cos(-a_1a_2 XZ-1)K_xK_z + (2Z^2-X^2-Y^2)(a_1a_2 XZL-\frac{1}{8}a_1^2 WK_x K_z) + \frac{1}{8}W(2K_z^2-K_x^2-K_y^2)(\frac{1}{8}K_xK_z-a_1^2 XZ) + \frac{1}{8}L(XK_z+ZK_x)(2ZK_z-XK_x-YK_y) + \sin(\frac{1}{8}W(a_2 XK_z+ZK_x)(\frac{1}{8}(2K_z^2-K_x^2-K_y^2) - a_1^2(2Z^2-X^2-Y^2)-(a_2+a_1)XK_z + (a_1+a_2)ZK_x+2ZK_z-XK_x-YK_y) (a_2 Lxz-\frac{1}{8}Wa_1 K_z K_z))) \]
This program calculates the 2-D 3-centered integrals and 2-centered integrals necessary in the band program. The code includes declarations for various arrays and variables and reads vector coefficients, defining parameters, reciprocal lattice vectors, direct lattice vectors, positive permutations of reciprocal lattice vectors, and compares digital exponents. The code also reads and normalizes vector coefficients.
READ(:,J)ALD(J),CD(J)
AA=4.0*ALD(J)/DSQ(T(15,DO)*(8.0*ALD(J)**3/PI)**.25
10 CD(J)=C(J)*AAA
3 FORMAT(F8.6,E16.8)
NRC=0
C READ X,Y,Z COMPONENTS OF 3 CENTERS. FOR EXAMPLE, 1 1 0 0 0 0 0 0
C INDICATES FIRST NEIGHBOR SEPARATION, WITH SECOND WAVEFUNCTION
C SITUATED AT THE ORIGIN AND THE POTENTIAL SITUATED ON THE ORIGIN
60 READ(5,4)IAX,IAY,IAZ,IBX,IBY,IBZ,ICX,ICY,ICZ
4 FORMAT(915)
 AX=IAX*QA
 AY=IAY*QA
 AZ=IAZ*QA
 BX=IBX*QA
 BY=IBY*QA
 BZ=IBZ*QA
 CX=ICX*QA
 CY=ICY*QA
 CZ=ICZ*QA
NRC=NRC+1
DO 398 J=1,15
RSQ(J)=0.0
SOLUP(J)=0.0
SULDN(J)=0.0
SS(J)=0.0
EK(J)=0.0
SOL(J)=0.0
398 SOLD(J)=0.0
 CON1=RX-AX
 CON2=BY-AY
 CON3=AZ-AZ
 CON4=CON1**2
 CON5=CON2**2
 CON6=CON3**2
C DO LOOPS OVER 5-D ORBITALS PERFORMS THE INTEGRAL OF
C (ORBITAL(I) * H * ORBITAL (J) D3R)
DJ 4C L=1.5
DJ 4C K=1.5
CDC=CD(L)*CD(K)
ALPHA1=ALD(L)
ALPHA2=ALD(K)
RAB=DQRT(CON4+CON5+CON6)
DJ 100 J=1,15
SS(J)=0.0
SUM1(J)=0.0
SUMUP/J)=0.0
SUMDN(J)=0.0
100 SUM(J)=0.0
C DEFINE APPROPRIATE PARAMETERS FROM LAFON AND LIN
ALAMDA=ALPHA1*ALPHA2/(ALPHA1+ALPHA2)
ADELTA=PI/(ALPHA1+ALPHA2)
ADELT=DQRT(ADELTA)
ADELTA=ADELTA*ADELTA
EXPA=ALAMDA*RAB**2
IF(EXPA.GT.75.0)AZETA=0.0
IF(EXPA.LE.75.0)AZETA=DEXP(-EXPA)
U=ALPHA1/(ALPHA1+ALPHA2)
C PERFORM SUM OVER RECIPROCAL LATTICE VECTORS
DJ 500 J=1,JJJJ
N=IQU(J)
AI=PI/QA*GB(J)
AJ=PI/QA*GC(J)
AK=PI/QA*GD(J)
SK=DQRT(AI#AI+AJ#AJ+AK#AK)
RS=SK#SK
C D3INT CALCULATES ACTUAL 3-CENTER INTEGRAL
CALL D3INT
DJ 140 N=1,15
IF(J.NE.1)GO TO 149
SS(N)=SS(N)+S(N)*CDC

77
145 SUM1(N) = SUM1(N) + GPK(J) * S(N)
SUMUP(N) = SUMUP(N) + GPKUP(J) * S(N)
SUMDN(N) = SUMDN(N) + GPKDN(J) * S(N)
SUM(N) = SUM(N) + GVK(J) * S(N)
146 CONTINUE
500 CONTINUE

CALL R2
CALL KINE
C RSQ IS SQUARED INTEGRALS, SOLUP IS UP-SPIN EXCHANGE, SOLDN IS
C DOWN-SPIN EXCHANGE, EK IS KINETIC ENERGY, SOL1 IS PARAMAGNETIC
C EXCHANGE, AND SOLD IS THE COULOMB POTENTIAL INTEGRAL.
DO 408 J = 1, 15
 RSQ(J) = RSQ(J) + RSOU(J) * CDC
 SOLUP(J) = SOLUP(J) + SUMUP(J) * CDC
 SOLDN(J) = SOLDN(J) + SUMDN(J) * CDC
 EK(J) = EK(J) + EKS(J) * CDC
 SOL1(J) = SOL1(J) + SUM1(J) * CDC
408 ! J = J + 1

C SETS UP 25 X 25 MATRIX FOR INTEGRALS NEEDED, IE, INDIVIDUAL ORBITALS
C FROM 15 INDEPENDENT INTEGRALS
DO 8071 J = 1, 15
 GO TO (3051, 8052, 8053, 8054, 8055, 8056, 8057, 8058, 8059, 8060, 8061,
 18062, 8063, 8064, 8065), J
8070 ! * CDC/CDD1
 S2L25+L,K25+K) = SUM(J) * CDC/CDD1
 SR2L25+L,K25+K) = RSOU(J) * CDC/CDD1
 SEXUP(L25+L,K25+K) = SUMUP(J) * CDC/CDD1
 SEXDN(L25+L,K25+K) = SUMDN(J) * CDC/CDD1
 SEXC(L25+L,K25+K) = SUM1(J) * CDC/CDD1
 SKEL25+L,K25+K) = EKS(J) * CDC/CDD1
 SOLVLPL25+L,K25+K) = SS(J) / CDD1
8071 CONTINUE
40 CONTINUE
GO TO 9030
PARAMETERS BELOW UNDER THE INDEPENDENT INTEGRALS ACCORDING TO
25 x 25 MATRIX, IN ORDER D1 TO D3 FOR XY, D1 TO D5 FOR YZ,
D1 TO D5 FOR XZ, D1 TO D5 FOR (x*z, y-z, y*z), AND D1 TO D5 FOR
C

8051 L25=20
K25=20
GO TO (7070,8070,9070),N100
8052 L25=0
K25=0
GO TO (7070,8070,9070),N100
8053 L25=10
K25=10
GO TO (7070,8070,9070),N100
8054 L25=5
K25=5
GO TO (7070,8070,9070),N100
8055 L25=15
K25=15
GO TO (7070,8070,9070),N100
8056 L25=5
K25=10
GO TO (7070,8070,9070),N100
8057 L25=15
K25=20
GO TO (7070,8070,9070),N100
8058 L25=0
K25=10
GO TO (7070,8070,9070),N100
8059 L25=0
K25=15
GO TO (7070,8070,9070),N100
8060 L25=5
K25=20
GO TO (7070,8070,9070),N100
8061 L25=10
K25=20
 GO TO (7070,8070,9070),N10C
8062 L25=0
 K25=20
 GO TO (7070,8070,9070),N10C
9063 L25=0
 K25=5
 GO TO (7070,8070,9070),N10C
8064 L25=5
 K25=15
 GO TO (7070,8070,9070),N10C
8065 L25=10
 K25=15
 GO TO (7070,8070,9070),N10C
9090 CONTINUE
D) 8075 J=1,15
DO 8075 K1=1,J
SR2(J,K1)=SR2(K1,J)
SEXUP(J,K1)=SEXUP(K1,J)
SEXDN(J,K1)=SEXDN(K1,J)
SPOT(J,K1)=SPOT(K1,J)
SKE(J,K1)=SKE(K1,J)
SEXC(J,K1)=SEXC(K1,J)
8075 SGVLP(J,K1)=SGVLP(K1,J)
WRITE(6,2) AX,AY,AZ
WRITE(6,2) BX,BY,BZ
WRITE(6,2) CX,CY,CZ
2 FORMAT(3F10.6)
C RESUM TO RECLAIM THE TOTAL D WAVEFUNCTION INTEGRALS
DO 8082 J=1,15
RSO(J)=0.0
SLUP(J)=0.0
SLDN(J)=0.0
SULD(J)=0.0
SDL1(J)=0.0

EK(J) = 0.0
SS(J) = 0.0
1001 N = 1
1002 DO 7071 J = 1, 15
1003 GO TO (8051, 8052, 8053, 8054, 8055, 8056, 8057, 8058, 8059, 8060, 8065, 18052, 3064, 8065, J)
1004 7070 L20 = L25 + 1
1005 K20 = K25 + 1
1006 L26 = L25 + 5
1007 K26 = K25 + 5
1008 DO 7080 L = L20, L26
1009 DO 7080 K = K20, K26
1010 CDD1 = CDD1(L-L25) * CD1(K-K25)
1011 RSQ(J) = RSQ(J) + SR2(L, K) * CDD1
1012 SOLUP(J) = SOLUP(J) + SEXUP(L, K) * CDD1
1013 SOLDN(J) = SOLDN(J) + SEXDN(L, K) * CDD1
1014 SLDN(J) = SLDN(J) + SPOT(L, K) * CDD1
1015 SOL1(J) = SOL1(J) + SEXC(L, K) * CDD1
1016 EK(J) = EK(J) + SKE(L, K) * CDD1
1017 7080 5S(J) = SS(J) + SOLUP(L, K) * CDD1
1018 7071 CONTINUE
1019 WRITE(6, 8005)
1020 8005 FORMAT(1X, "FOLLOWING IS TO CHECK MATRIX ELEMENTS")
1021 DO 8003 J = 1, 15
1022 JJ = 2 * J - 1
1023 IF LRULE(6, 8) GRT JJ, JJ + 1 THEN
1024 WRITE(6, 8) GER(JJ), GER(JJ + 1)
1025 WRITE(6, 1) SOLD(J), SOL1(J), SOLUP(J), SOLDN(J), EK(J), SS(J), RSQ(J)
1026 1 FORMAT(1X, "P = *, E16.8", X = *, E16.8, U = *, E15.8, DN = *, E16.8, K = *
1027 1E16.8, UV = *, E16.8, R = *, E16.8)
1028 8 FORMAT(2A3)
1029 WRITE OUT INTEGRALS FOR GIVEN VALUE OF DIRECT LATTICE VECTOR, C
1030 *WITH IDENTIFYING INTEGERS FOR NEAREST NEIGHBOUR, AND POSITION IN MATRIX
1031 DO 8010 I2 = 1, 12
1032 DO 8010 I3 = 1, 12
1033 G1 = SPOT(I2, I3)
SUBROUTINE D31NT
C this subroutine performs 3-center integrals
IMPLICIT REAL*8(A-F,H,O-Z)
DIMENSION S(20),EKS(20),RSQU(15)
COMMON CON1,CON2,CONJ,CON4,CONS,CON6,RSQU,EKS,RAB,ALPHA1,
1ALPHA2,R5,ALP,AK,AX,AY,AZ,BX,BY,BZ,CX,CY,CZ,ALAMDA,ADELTA,
2AZETA,U,PI,N
DO 150 J=1,15
150 S(J)=0.0
IF(AZETA.EQ.0.0) GO TO 5C
C CON IS A MULTIPLICATIVE CONSTANT DEPENDENT ON POSITIVE
C PERMUTATIONS OF THE RECIPROCAL LATTICE VECTORS WHICH WERE READ IN.
C N=4 FOR (000), N=3 FOR (A,0,0) TYPE, N=2 FOR (A,A,0) OR (A,B,0) TYPE,
C AND N=1 FOR ALL OTHER TYPES.
GO TO (10,11,12,15),N
15 CON=1.00
GJ TO 200
10 CON=3.00
GJ TO 206
11 CON=4.00
GJ TO 200
12 CON=2.00

8010 WRITE(12)NRC,I2,I3,G1,G2,G3,G4,G5,G6,G7
GJ TO 60
7070 CONTINUE
8 FORMAT(2A3)
9070 WRITE(6,9999)
9999 FORMAT(1X,'REACHED 9G70 ILLEGALLY')
END
204 CONTINUE
EXP3=RS/(4*0*(ALPHA1+ALPHA2))
IF (EXP3.GT.75.0) GO TO 5
ADEL=DEXP(-EXP3)
GO TO 6
5 ADEL=0.0
GO TO 50
6 CONTINUE
C DEFINES COS (<, RCD) PARAMETERS
DX=AX*U+BX*(1.00-U)
DY=AY*U+3Y*(1.00-U)
DZ=AZ*U+BZ*(1.00-U)
RCDX=DX-CX
RCDY=DY-CY
RCDZ=DZ-CZ
S1=DSIN(A1*RCDX)
S2=DSIN(A2*RCDY)
S3=DSIN(AK*RCDZ)
C1=DCOS(A1*RCDX)
C2=DCOS(A2*RCDY)
C3=DCOS(AK*RCDZ)
SA=S1*C2*C3*CUN
SB=C1*S2*C3*CUN
SC=C1*C2*C3*CUN
SD=-S1*S2*S3*CUN
CE=C1*C2*C3*CUN
CC=-S1*S2*C3*CUN
CA=-C1*S2*S3*CUN
A0=1.1936267
A1=0.3952435/9.00
A2=0.2984155
A3=C3/16670.0/3.00
A4=C3/9683104
A5=1.03374103/3.00
A6=AL AMJA = 3 * AELTA * AOEL * AZTA / (4 * DC * ALPHA1 * 3 * ALPHA2 * 2)
A7=A 2 * ALAMDA
A8=O * 570 / (ALPHA1 * ALPHA2)
A9=O * 250 / (ALPHA1 * ALPHA2 * 2)
A10=(2 * DC * U-1 * DC) / ALAMDA
A11=O * 570 / (ALAMDA * ALPHA2)
A12=(1 * D0-U) * (2 * D0 * U-1 * D0)
A13=2 * DC * ALAMDA
A14=1 * D0 / ALAMDA
A15=(2 * D0 * U-1 * DC)
A16=(1 * DC-U)
A17=1 * D0 / (2 * D0 * ALPHA2 * 2)
A18=1 * D0 / (2 * D0 * ALPHA1 * 2)
A19=AI * AI-AJ* AJ
A20=CUN4-CUNS

C XY-XZ INTEGRAL
S(2)=A6*AI*AI*(13*CON1*AI*(A3 * CON2 * AK * CB * CON3 * AJ * CC * A17)
1-1*(1,D0-A13*CON4)*(2*D0*CON2*CON3*CO+A8*AJ*AK*CA)+AI*AI*
3ALPHA2-AK*CB*CON2*ALPHA1)+AI*AI*AE*AK*SC*CON2*AB-AJ*SB*CON3*A17)
+AI*AI*ALCON1*(2*DC*CON2*CON3*SA+AJ*AK*SD*AB)-A13*CON1*(AI*SA
S*CON2*CON3/ALPHA2-A11-AJ*AK*SD*AB)+A13*CON4*CON3*AJ*SB/6ALPHA2-AK*SC*CON2*ALPHA1)

C XY-YZ INTEGRAL
S(13)=A6*AC*(A3*CON1*CON2*(AJ*AK*CA*CON1*AB-ALJA*CC*A17*CON3)-(1*DC-
1A13*CON5)*(2*D0*CON1*CON3*CO*AI*AK*CB*A3)+AJ*AJ*AE*(1*DC*CON1*9
3ALPHA1)+AJ*AI*A16*(AJ*AK*SC*CON1*AB-ALJA*SA*CON3*A17)*CON2*AJ*AI*AE*
4(2*D0*CON1*CON3*SB*AI*AK*SD*AB)-A13*CON2*(AI*AJ*AK*SD*AB+AJ*SB*
5C0N1*CN3/ALPHA2)+((D-C-A13*CN5)*(A1*SA*CON3/ALPHA2-8*SC*CON1/
6A_PHA1))
C
XZ-X7 INTEGRAL
S(3)=A6*A0*((1*D-C-A13*CN6)*(A14-2*D0*CN4-AI*AI*A8)+AK*A<AK*A16*
I(A1*AI*A9+CON4/ALPHA2-A11))*CO-AK*AK*CD4-A14*CON1*AI*S*AI15
2-CON1*AI*SA*AI0*(A13*CN6-1*D0)-A13*CN3*AK*SC@(A1*AI*A9+CN4/
3ALPHA2-A11)-CON3*AK*SC*A16*(A14-2*D0*CN4-AI*AI*A8)-CON1*AI*SA*
4AK*AK*AI11*A12)
C
YZ-YZ INTEGRAL
S(4)=Ak*AG*((1*D0-A13*CN5)*(A14-2*D0*CN5-A1*AI*A9)+AK*A16*
1AK*(A1*AJ*AJ*A9+CN5/ALPHA2-A11))*CO-AK*AJ*CA*A14*CON2*CN1*AI*
2-CON2*AJ*SB*A15*AI4*(A13*CN6-1*D0)-A13*CN3*AK*AJ*SC*A9+AK*
3CN5/ALPHA2*SC-AK*SC*A11)-CON3*AK*SC*A16*(A14-2*D0*CN5-AJ*AJ*
4AB)-CON2*AK*AK*AJ*SB*AI11*A12).
C
YZ-XZ INTEGRAL
S(6)=AG*AC*(A13*CN3*/CN2*AI*AK*CB*AB-C0N1*AJ*AK*AI7*CA)-(1*D0-
1A13*CN6)*((2*D0*CN1*CON2*CO+AJ*AI*CC*AB)+AK*AK*A16*CON1*CN2/
2ALPHA2*CO+AI*AJ*CC*A9)+CN3*AK*A16*(CON1*AJ*CA/ALPHA2-CN2*AI*CB/
3ALPHA1)+AK*AK*A16*(A1*CON2*AB*SA-AJ*SB*CON1*A17)+AK*A16*CON3*
4((2*D0*CN1*CON2*SC+AJ*AJ*SD*AB)-A13*CN3*(AK*SC*CN1*CON2/ALPHA2
5+AI*AJ*AK*SD*A9)+(1*D-C-A13*CN6)*(CON1*AJ*SB/ALPHA2-AI*SA*CON2/
6ALPHA1))
X2C=(1.0*D0*U-1.0)
X21=(1.0*D0*U-2.0)
C
XY-(X**2-Y**2) INTEGRAL
S(9)=Ac*A4*((X20*AI*ALPHA1*CN1*CON2+2*D0*A13*A20*CO1*CON42
1)*CC*AI*AJ*CC*(-X21*20/ALPHA2+AI*16*A9)-
2X21*2.0*CN1*CON2 *(A1*SA*CN1-AJ*SB*CON2)+2.0/DAMDA*(AJ*SB*
3CN1-A1*SA*CN2-X*20*AB *AI*AJ*(AI*SB*CON1-AJ*SB*CON2)
4*ALAMDA*A*ALPHA1*(CON2*AI*J*SA-C0N1*AJ*3*SB)-A13/ALPHA2*(AJ*SB
5*CON4*CN1-AI*SA*CON*CN2))
Dc=0.2*D0/(ALPHA1+ALPHA2)**2
D1=AI*AJ*AI7*0.5DC
D2=1.0*D-C-A13*CN6
D3=ADELTA*ADEL*AZETA*A18*C.5DC
\[S(15) = A4 \oplus A6 \oplus (31 + 63 - 52 - 84) \]
\[Z1 = CN4 + CN5 - 2 \cdot DC \oplus CN6 \]
\[Z2 = AI \oplus AJ \oplus AJ - 2 \cdot DC \oplus AK \oplus AK \]
\[Z3 = CON1 \oplus AI \oplus SA \oplus CON2 \oplus AJ \oplus SA - 2 \cdot D0 \cdot CON3 \oplus AK \oplus SC \]
\[X - Z(3 \cdot 2 - 2) \Text{ INTEGRAL} \]
\[S(11) = A6 \oplus A5 \oplus (-4 \cdot D0 \oplus D0 \cdot CO - 2 \cdot DC \oplus AI \oplus AK \oplus CB \oplus A3 + Z1 \oplus (AI \oplus AK \oplus CB \oplus A16 \oplus ALPHA1 - 1) - (2 \cdot D0 \oplus D0 \cdot CO) + Z2 * (U \oplus D0 \oplus ALPHA2 - A15 \oplus AI \oplus AK \oplus CB) - 2 \cdot D0 \oplus A16 / 2 \cdot D0 \cdot CON3 \oplus AK \oplus SC) \]
\[3 \cdot Z2 * (U \oplus D0 / ALPHA2 \oplus CO - AI \oplus AJ \oplus A9 \oplus CC \oplus A8) + 4 \cdot D0 \oplus CON2 \oplus AJ \oplus SA + 2 \cdot D0 \oplus (CON1 \oplus AI \oplus SC / 7 \cdot ALPHA1 \oplus CON3 \oplus AI \oplus SA / ALPHA2) \]
\[X - Y(3 \cdot 2 - 2) \Text{ INTEGRAL} \]
\[S(12) = A5 \oplus A6 \oplus (8 \cdot DC \oplus 4 \cdot CO + 4 \cdot D0 \oplus A8 \oplus DC \oplus CC + Z1 * (AI \oplus AJ \oplus A16 \oplus CC / ALPHA1 - 12) - (2 \cdot D0 \oplus A16) \oplus ALPHA2 + (CON1 \oplus AI \oplus CON2 \oplus CON3 \oplus AI \oplus AJ \oplus CC) - 2 \cdot D0 \oplus A16 / 2 \cdot D0 \cdot CON3 \oplus AK \oplus SC) \]
\[3 \cdot Z2 * (U \oplus D0 / ALPHA2 \oplus CO - AI \oplus AJ \oplus A9 \oplus CC \oplus A8) + 4 \cdot D0 \oplus CON2 \oplus AJ \oplus SA + 2 \cdot D0 \oplus (CON1 \oplus AI \oplus SB / CON2 \oplus AJ \oplus SA) \]
\[5 \cdot 4 \cdot D0 \oplus U \oplus D0 \oplus Z3 - AI \oplus AJ \oplus A16 - 2 \cdot D0 \oplus A8 - (CON1 \oplus AI \oplus SB + 2 \cdot D0 \oplus CON3 \oplus AK \oplus SD) \]
\[Y - Z(3 \cdot 2 - 2) \Text{ INTEGRAL} \]
\[S(10) = A6 \oplus A5 \oplus (-4 \cdot D0 \oplus D0 \cdot CO - 2 \cdot DC \oplus AI \oplus AK \oplus CA \oplus A8 + Z1 * (AJ \oplus AK \oplus CA \oplus A16 \oplus ALPHA1 - 1) - (2 \cdot D0 \oplus D0 \cdot CO) + Z2 * (U \oplus D0 \oplus ALPHA2 - A15 \oplus AJ \oplus AK \oplus CA - 2 \cdot D0 \oplus A16 / 2 \cdot D0 \cdot CON3 \oplus AK \oplus SC) \]
\[3 \cdot Z2 * (U \oplus D0 / ALPHA2 \oplus CO - AI \oplus AJ \oplus A9 \oplus CC \oplus A8) + 4 \cdot D0 \oplus CON2 \oplus AJ \oplus SB / ALPHA1 + U \oplus A8 \oplus Z2 * (CON3 \oplus AJ \oplus SB + CON2 \oplus AK \oplus SC) \]
\[5 \cdot 2 \cdot D0 \oplus A15 \oplus Z1 * (CON1 \oplus AJ \oplus SB + CON2 \oplus AK \oplus SC) + 4 \cdot D0 \oplus U \oplus D0 \oplus Z3 - A16 + 2 \cdot D0 \oplus A8 + 6 \cdot AJ \oplus AK \oplus CON1 \oplus AI \oplus SB + CON2 \oplus AJ \oplus SA - 2 \cdot D0 \oplus 6 \cdot CON3 \oplus AK \oplus SD) \]
\[B1 = (4 \cdot D0 - 4 \cdot D0 \oplus A13 * (CON4 \oplus CON5) + A13 + A13 + A20 + 2 - (CON4 \oplus CON5) * A19 * \]
\[1 * U + U \oplus A15 + A8 \oplus ALMA + A19 * 2 - 2 \cdot D0 \oplus A13 + A8 + (AI \oplus AI \oplus AJ \oplus AJ) \]
\[2 * CO + 4 \cdot D0 * U * A13 * (CON4 \oplus CON5) * A19 * (AI \oplus AI \oplus AJ \oplus AJ) * CO - 2 \cdot D0 \oplus D0 \oplus 4 \oplus D0 \oplus 5 \oplus CC \]
\[B2 = 4 \cdot D0 \oplus A13 * (CON1 \oplus AI \oplus SA + CON2 \oplus AJ \oplus SB) + (CON1 \oplus AI \oplus SA - CON2 \oplus AJ \oplus SB) \]
1*(A19*(A10*A10/ALPHA2-U/U/ALPHA1)-A15*A*D*ALAMDA*A20)
 (X**2-Y**2)-(X**2-Y**2) INTEGRAL
S(S)=A7*A2*(B1+B2)
D14=AI*AI+AJ*AJ-2*D0*AK*AK
D15=CONS-2*D0*CONS
D31=CONS-CONS
B1=(O15*(A15/ALPHA1*A19-2*D0*A13*A20)+D14*(U/ALPHA2*A20-A15*A9*
1A19)+4*D0*A0*A19+8*D0*A20)*CONS-4*D0/U/ALPHA1*(CONS+CONS)*CONS*
2+CONS*CONS*CONS*CONS*CONS*CONS*CONS*CONS*CONS*CONS*CONS*CONS*
3CONS*CONS*CONS*CONS*CONS*CONS*CONS*CONS*CONS*CONS*CONS*CONS*
B2=(CONS+CONS)*CONS*CONS*CONS*CONS*CONS*CONS*CONS*CONS*CONS*CONS*
1ALPHA1*AK*AK)*CONS+D14*U/U/ALPHA2*CONS+CONS+8*D0*A15*CONS*CONS*
Z10=CONS+CONS
Z11=AI*AI+AJ*AJ
B3=(2*D0*A0*A0-4*D0-A16/ALPHA1-Z11)*D15+D14*(A17*2*D0-U/ALPHA2
1*A16*A9*Z11)-4*D0*A0*Z11+4*D0*A14-9*D0*Z10)*CONS+4*D0/U/ALPHA1*
2(CONS+CONS)+CONS+CONS+CONS+CONS+CONS+CONS+CONS+CONS+CONS+CONS*
3(CONS+CONS+CONS+CONS+CONS+CONS+CONS+CONS+CONS+CONS+CONS+CONS*
B4=(CONS+CONS)*CONS+CONS+CONS+CONS+CONS+CONS+CONS+CONS+CONS+CONS*
1A14)+Z3*(4*D0*ALPHA2*2*D0*A16*A8*Z11-4*D0*U/Z10)
C (3Z**2-R**2)-(3Z**2-R**2) INTEGRAL
S(1)=A1*A1*(2*D0/ALAMDA*(B1+B2)+(B3+B4))
SC CONTINUE
RETURN
END
SUBROUTINE KINE
C THIS SUBROUTINE CALCULATES THE KINETIC ENERGY INTEGRALS
IMPLICIT REAL*(A-F,H,O-Z)
DIMENSION S(20),EKS(20),KSU(15)
COMMON CON1,CON2,CON3,CON4,CON5,CON6,5,RSQU,EKS,RAB,ALPHA1,
1ALPHA2,RS,AI,AJ,AK,AX,AZ,BX,BY,BZ,CX,CY,CZ,ALAMDA,DELTA,
2AZETA,UP,PI,N
15C EKS(J)=0.0
15C IF(AZETA*E0.0,0)GO TO 5C
A1=1.19366267*2.00
A2=1.03374168*2.00/3.00
A3=0.59683104*2.00
A4=0.51687084*2.00/3.00
A5=0.29841552*2.00
A6=0.89524655*2.00/9.00
A7=ALAMDA**3*0.500*DELTA*AZETA/(ALPHA1**2*ALPHA2**2)
A8=2.00*A7*ALAMDA
A9=A8*ALAMDA
A10=CON4+CON5-2.00*CON6
A11=9.00-2.00*ALAMDA*RAB**2
A12=ALAMDA*(2.00*ALAMDA*RAB**2-11.00)
RA=RAB**2
A13=ALAMDA**2
C
(3Z**2-R**2)-(3Z**2-R**2) INTEGRAL
EKS(1)=2.00*A7*A6*(21.00-6.00*ALAMDA*RA-2.00*(9.00*ALAMDA-2.00*DC*RA
1*ALAMDA**2)*(CON4+CON5+4.00*DC*CON6)+A10*A10*A13*(11.00-2.00*ALAMDA
2*RA))
C
XY-XY INTEGRAL
EKS(2)=A7*A1*((3.00*DC-9.00*ALAMDA*CON5)*(1.00-2.00*DC*CON4*ALAMDA)
1+(2.00*DC*A13*CON5-ALAMDA)*((2.00*CON4+RA-2.00*DC*ALAMDA*CON4*RA))
C
XZ-XZ INTEGRAL
EKS(3)=A7*A1*((3.00*DC-9.00*ALAMDA*CON5)*(1.00-2.00*DC*CON4*ALAMDA)
1+(2.00*DC*A13*CON5-ALAMDA)*((2.00*CON4+RA-2.00*DC*ALAMDA*CON4*RA))
C
YZ-YZ INTEGRAL
EKS(4)=A7*A1*((3.00*DC-9.00*ALAMDA*CON5)*(1.00-2.00*DC*ALAMDA*CON6)
1+(2.00*DC*A13*CON5-ALAMDA)*((2.00*CON6+RA-2.00*DC*ALAMDA*CON6*RA))
C (X**2-Y**2)-(X**2+Y**2) INTEGRAL
EKS(5)=A5*A7*2.*D0*(7.*D0+(CON4+CON5)*(4.*D0*A13*RA-18.*DCA_LAM)/
12.*D0*A13*ALAMDA*RA-22.*D0*A13)+(CON4**2+CON5**2)*(211.*D0*A13-2.*D0*
C YZ-XZ INTEGRAL
EKS(6)=A8*A1*CON1*CON2*(-4.5)*C+ALAMDA*(11.*D0*CON6/
1+RA)-2.*D0*A13*CON6*RA)
C (X**2-Y**2)-(3Z**2-R**2) INTEGRAL
EKS(7)=A4*A8*(CON5-CON4)*(A10*(11.*D0-2.*D0*ALAMDA*RA)*ALAMDA-2.*D0*
1*(9.*D0-2.*D0*ALAMDA*RA))
C XY-XZ INTEGRAL
EKS(8)=A8*A1*CON3*CON2*(-4.5)*D0+ALAMDA*(11.*D0*CON4+RA)-2.*D0*A13*CON/
14*RA)
C XY-(X**2-Y**2) INTEGRAL
EKS(9)=A9*A3*CON1*CON2*(CON4-CON5)*(11.*D0-2.*D0*ALAMDA*RA))
C YZ-(3Z**2-R**2) INTEGRAL
EKS(10)=A3*A2*CON2*CON3*(-A11+A10*(2.*D0*A13*RA-11.*D0/
1+ALAMDA))
C XZ-(3Z**2-R**2) INTEGRAL
EKS(11)=A3*A2*CON1*CON3*(-A11+A10*(2.*D0*A13*RA-11.*D0*ALAMDA)
C XY-(3Z**2-R**2) INTEGRAL
EKS(12)=A3*A2*CON1*CON2*(18.*D0-11.*D0*ALAMDA*A10-4.*D0*ALAMDA*RA
1+2.*D0*A13*RA*A10)
C XY-YZ INTEGRAL
EKS(13)=A8*A1*CON1*CON3*(-C5*D0*A11+11.*D0*CON5*ALAMDA-2.*D0*
1*A13*CON5*RA)
C YZ-(X**2-Y**2) INTEGRAL
EKS(14)=A8*A3*CON2*CON3*(A11+(CON4-CON5)*(9.*D0*ALAMDA-
12.*D0*A13*RA)+2.*D0*ALAMDA*(CON4-CON5))
C XZ-(X**2-Y**2) INTEGRAL
EKS(15)=A8*A3*CON1*CON3*(-A11+(CON4-CON5)*(9.*D0*ALAMDA-
12.*D0*A13*RA)+2.*D0*ALAMDA*(CON4-CON5))
5C CONTINUE
RETURN
END
SUBROUTINE P2
THIS SUBROUTINE CALCULATES THE P**2 INTEGRALS
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION S(2C),KS(20),RSQU(15)
COMMON CON1,CON2,CON3,CON4,CON5,CON6,S,RSQU,KS,RA,B,ALPHA1,
1ALPHA2,RS,SA,JA,AK,AX,AY,AZ,BX,BY,BZ,CX,CY,CZ,ALAMDA,ADelta,
2AZETA,U,PI,N
A1=1.19366207
A2=1.43374168/3.00
A3=0.59683104
A4=0.51687004/3.00
A5=0.29841552
A6=0.89245655/9.00
W=1.00/(ALPHA1+ALPHA2)
A7=ADelta*AZETA**3
A8=ALPHA2*W*A7
A9=3.500+ALPHA2**2*W*PB**2
B1=CON4-CON5
B2=CON4+CON5
B3=A**2*ALPHA1-ALPHA2
B4=2.00*ALAMDA
B5=CON4+CON5-2.00*CON6
B6=4.00*H-8.00*CON6
B7=ALPHA2**2*W
B8=2.00*ALAMDA**2
C
(Z**2-R**2)-(3Z**2-R**2) INTEGRAL
RSQU(1)=0.2500*RA*AB*(12.00/ALAMDA-8.00*(CON4+CON5+4.00*CON6)
1+ALAMDA**4)*JO*(65**2)*B3+ALPHA1*37*(12.00/ALAMDA**2-4.00*B5**2))
C
XY-XY INTEGRAL
RSQU(2)=C.500*AB*AI*(B3*(1.00-4.00*CON5)*(1.00/ALAMDA-2.00*CON4)
1+7*(1.00/ALAMDA**2-4.00*CON4*CON5))
C
XZ-XZ INTEGRAL
RSQU(3)=C.500*AB*AI*(B3*(1.00-4.00*CON6)*(1.00/ALAMDA-2.00*CON4)
1+7*(1.00/ALAMDA**2-4.00*CON4*CON6))
C
YZ-YZ INTEGRAL
RSCQ(4) = C * 500 * A8 * A1 * (B3 * (1.0 - D4 * CON5) * (1.0 / ALAMDA) - 2.0 * C * CON5)
1 + 7 * (1.0 / ALAMDA) * 2 - 4.0 * D * CON5 * CON6))
C
(x**2 - Y**2) - (x**2 - Y**2) INTEGRAL
RSCQ(5) = A7 * A5 * ((1.0 - H4 * B2 + C * 500 * B8 * B1 * X**2) * A9
1 + 2.0 * B7 * (C2 - ALAMDA) * A1 ** 2)
C
YZ-YX INTEGRAL
RSCQ(6) = C * 500 * A8 * A1 * (CON1 * CON2 + (1.0 - CON5) * B3
1 + 2.0 * D0 * ALPHA1 * CON1 * CON2 * CON6)
C
(x**2 - Y**2) - (3Z**2 - H**2) INTEGRAL
RSCQ(7) = A8 * A4 * B1 * (B3 * (2.0 - ALAMDA) * B5 + ALPHA1 * B7 * B5)
C
XY-XZ INTEGRAL
RSCQ(8) = C * 500 * A8 * A1 * (CON2 * CON3 * (B4 + CON4 - 1.0) * B3
1 - 2.0 * D0 * ALPHA1 * B7 * CON2 * CON3 * CON4)
C
XY-(X**2 - Y**2) INTEGRAL
RSCQ(9) = ALPHA1 * ALPHA2 * A1 * (B3 * W * CON1 * CON2 * B1 * (ALPHA1 * A9
1 - 2.0 * D0 * ALPHA2)
C
YZ-(3Z**2 - R**2) INTEGRAL
RSCQ(10) = B3 * A2 * CON2 * CON3 + (1.0 - D0 - B5 * ALAMDA) * B3 + ALPHA1 * B7 * B5
C
XZ-(3Z**2 - R**2) INTEGRAL
RSCQ(11) = A8 * A2 * CON1 * CON3 + (1.0 - D0 - B5 * ALAMDA) * B3 + ALPHA1 * B7 * B5
C
XY-(3Z**2 - R**2) INTEGRAL
RSCQ(12) = A8 * A2 * CON1 * CON2 + (2.0 - ALAMDA) * B3 + ALPHA1 * B7 * B5
C
XY-YZ INTEGRAL
RSCQ(13) = C * 500 * A8 * A1 * (CON1 * CON3 + (1.0 + B4 * CON5) * B3
1 - 2.0 * D0 * ALPHA1 * R7 * CON1 * CON3 * CON5)
C
YZ-(X**2 - Y**2) INTEGRAL
RSCQ(14) = A8 * A3 * ((1.0 + D0 * ALAMDA)) * B3 - ALPHA1 * B7 * B1 * CON2 * CON3
C
XZ-(X**2 - Y**2) INTEGRAL
RSCQ(15) = A8 * A3 * ((1.0 + D0 * ALAMDA) * B3 - ALPHA1 * B7 * B1) * CON1 * CON3
RETURN
END

0.2738 0.14559 0.36418 0.40418 0.33318
THIS PROGRAM COMPUTES THE TIGHT-BINDING MATRIX ELEMENTS, EIGENVALUES, EIGENVECTORS, DENSITY OF STATES, AND FERMI ENERGY FOR A FACE-CENTERED CUBIC LATTICE

REAL * 8 H,OV, XL, XIX, CCV, CIV, C2V, C3V, SSV, SIV, S2V, S3V, CV, C1V, C2V, C3V, XK, YK, ZK, RMA TX, T(750)
REAL * 8 P, CON, Q, PR, PSI, HCC

DIMENSION HCC(4,46)
DIMENSION V(38,38,2), CON(74)
DIMENSION IX(74), IY(74), IZ(74), ID(74)
DIMENSION H(38,38), OV(38,38), XL(38), XI(38,38)
DIMENSION CCV(6), C3V(6), C2V(6), C1V(6), SSV(6),
 S3V(6), S2V(6), SIV(6)

COMMON/LCS/DD(325,5,2), PD(2,40,25,9), PP(45,40,2),
 SD(2,40,4,9), SS(10,40,2), SW(8,1500), EN(1500)

COMMON HCC, V, CON, CCV, C1V, C2V, C3V, SSV, SIV, S2V, S3V,
 Q, J, IDD, ISS, IPP, IPD, ISD, ISP

EQUIVALENCE (V(l,l,1), H(l,l)), (V(l,l,2), OV(l,l))

** IS THE EXCHANGE PARAMETER

** = 0.9718
** = 2.0/3.0

MM15 IS 1 FOR PARA., 2 FOR UP, AND 3 FOR DOWN EXCH

MM15 = 1
MM15 = 2
MM15 = 3

KMX IS THE KX COORDINATE AT SYMMETRY POINT X

KMX = 0
RHO = 5.0
RHO = 4.72
RHO = 5.28

GO TO (23456, 34567, 45678), MM15

23456 WRITE(6, 65432) Q
65432 FORMAT(1X, 'PARAMAGNETIC NICKEL', 5X, 'Q=', E16.8)

GO TO 56789

34567 WRITE(6, 76543) Q
76543 FORMAT(1X, 'UP SPIN EXCHANGE ', 5X, 'Q=', E16.8)

GO TO 56789

45678 WRITE(6, 87654) Q
87654 FORMAT(1X, 'DOWN SPIN EXCHANGE ', 5X, 'Q=', E16.8)

56789 CONTINUE

PARAMETERS BELOW INDICATE THE NO. OF NEIGHBORS

IDD = 5
ISS = 40
IPP = 40
ISD = 40
ISP = 40
IPD = 30

SET UP FOR ENERGY BINS TO CALCULATE THE DENSITY OF STATES, WITH LOWER LIMIT OF EMIN, AT DEN INTERVALS, WITH TOTAL NO. OF BINS EQUAL TO NEN. EIGENVALUES OF INTEREST ARE NB1 TO NB2. SW(I,1500) HAS DENSITY...
C OF STATES FOR EACH OF SIX BANDS FOR I=1 TO 6, TOTAL DENSITY OF STATES IN I=7, AND NO. OF ELECTRONS I=8

EMIN=-1.25
DEN=0.00055
NEN=1500
SUM=((FLOAT(KMX))**3)/12.
NB1=24
NB2=29
XQ=EMIN-0.001
DO 2010 I=1,NEN
EN(I)=XQ

2010 XQ=XQ+DEN
DO 2011 I=1,8
DO 2011 J=1,NEN
SW(I,J)=0.0
A=1.0D-10

C READ DIRECT LATTICE VECTORS
READ(5,4080) (IX(J),J=1,74)
READ(5,4080) (IY(J),J=1,74)
READ(5,4080) (IZ(J),J=1,74)
4080 FORMAT(2012/2012/2012/1412)
9980 FORMAT(15I2)
DO 4021 I15=1,4
DO 4021 I16=1,46
4021 HCC(I15,I16)=0.0

C READ CENTRAL CELL (R=0) INTEGRALS
DO 4020 I11=1,4
NEND=46
IF(I11.GE.3) NEND=31
DO 4001 I10=1,NEND
4001 READ(5,4000) HCC(I11,I10)
4020 CONTINUE
4000 FORMAT(E15.7)
PQR=10.0D-12

C READ R=1, ETC INTEGRALS IN READBD
CALL READBD(MM15)

C SET UP CONSTANTS CON WHICH ARE (OCCUPATION OF SHELL) / 6.
DO 101 J=1,74
NPR=0
NO=0
IF(IX(J).EQ.0)NO=NO+1
IF(IY(J).EQ.0)NO=NO+1
IF(IZ(J).EQ.0)NO=NO+1
IF(IX(J).EQ.IY(J))NPR=NPR+1
IF(IX(J).EQ.IZ(J).OR.IY(J).EQ.IZ(J))NPR=NPR+1
PR=4.0D0*NPR-2.0D0
IF(NPR.EQ.0) PR=1.0D0
CONTINUE
101 J=8,DO/(2.0D0**NO*PR)
CONTINUE
NM=0
NA=0

C SET UP DO-LOOPS OVER K-SPACE, BOUNDED TO THE
IRREDUCIBLE 1/48 TH OF THE BRILLOUIN ZONE
FOR 89 POINTS, IE, X IS (0, 0, 0)
DO 120 I1 = 1, 9
DO 120 I2 = 1, 11
DO 120 I3 = 1, 12
KX = I1 - 1
KY = I2 - 1
KZ = I3 - 1
LMN = KX + KY + KZ
IF (LMN * GT * 12) GO TO 120
NM = NM + 1
XK = KX
YK = KY
ZK = KZ
WRITE (6, 222) XK, YK, ZK, NM
222 FORMAT (30X, 3HK = (, 3F6.2), 1H), 5X, 'NM=', I5)
WRITE (6, 221)
XK = 3.141592653589793 * XK / 4.0
YK = 3.141592653589793 * YK / 4.0
ZK = 3.141592653589793 * ZK / 4.0
DO 150 J = 1, 38
DO 150 K = 1, 38
DO 150 L = 1, 38
V(K, L, J) = 0.0
START BY PLACING CENTRAL CELL INTEGRALS IN V(
DO 4002 I11 = 1, 3
N = 1
P5 = 1.0
IF (I11 .EQ. 2) P5 = 0
4002 CALL CENT(N, P5, I11)
N = 2
P5 = 1.0
CALL CENT(N, P5, 4)
PERFORM SUM OVER DIRECT LATTICE (RI, I = 1, 40)
DO 200 J = 1, 40
FIRST CALCULATE ALL ANGULAR PARAMETERS NEEDED
C1 = IX(J)
C2 = IY(J)
C3 = IZ(J)
C1 = C1 / 2.0
C2 = C2 / 2.0
C3 = C3 / 2.0
C1XK = DCOS(C1 * XK)
C3XK = DCOS(C3 * XK)
C2XK = DCOS(C2 * XK)
C1YK = DCOS(C1 * YK)
C2YK = DCOS(C2 * YK)
C3YK = DCOS(C3 * YK)
C1ZK = DCOS(C1 * ZK)
C2ZK = DCOS(C2 * ZK)
C3ZK = DCOS(C3 * ZK)
S1XK = DSIN(C1 * XK)
S2XK = DSIN(C2 * XK)
\[S_3XK = D \sin(C_3 \cdot XK) \]
\[S_1YK = D \sin(C_1 \cdot YK) \]
\[S_2YK = D \sin(C_2 \cdot YK) \]
\[S_3YK = D \sin(C_3 \cdot YK) \]
\[S_1ZK = D \sin(C_1 \cdot ZK) \]
\[S_2ZK = D \sin(C_2 \cdot ZK) \]
\[S_3ZK = D \sin(C_3 \cdot ZK) \]
\[CCV(1) = C_1XK \cdot C_2YK \cdot C_3ZK \]
\[CCV(2) = C_1XK \cdot C_3YK \cdot C_2ZK \]
\[CCV(3) = C_3XK \cdot C_2YK \cdot C_1ZK \]
\[CCV(4) = C_3XK \cdot C_1YK \cdot C_2ZK \]
\[CCV(5) = C_2XK \cdot C_1YK \cdot C_3ZK \]
\[CCV(6) = C_2XK \cdot C_3YK \cdot C_1ZK \]
\[C1V(1) = C_1XK \cdot S_2YK \cdot S_3ZK \]
\[C1V(2) = C_1XK \cdot S_3YK \cdot S_2ZK \]
\[C1V(3) = C_3XK \cdot S_2YK \cdot S_1ZK \]
\[C1V(4) = C_3XK \cdot S_1YK \cdot S_2ZK \]
\[C1V(5) = C_2XK \cdot S_1YK \cdot S_3ZK \]
\[C1V(6) = C_2XK \cdot S_3YK \cdot S_1ZK \]
\[C2V(1) = S_1XK \cdot C_2YK \cdot S_3ZK \]
\[C2V(2) = S_1XK \cdot C_3YK \cdot S_2ZK \]
\[C2V(3) = S_3XK \cdot C_2YK \cdot S_1ZK \]
\[C2V(4) = S_3XK \cdot C_1YK \cdot S_2ZK \]
\[C2V(5) = S_2XK \cdot C_1YK \cdot S_3ZK \]
\[C2V(6) = S_2XK \cdot C_3YK \cdot S_1ZK \]
\[C3V(1) = S_1XK \cdot S_2YK \cdot C_3ZK \]
\[C3V(2) = S_1XK \cdot S_3YK \cdot S_2ZK \]
\[C3V(3) = S_3XK \cdot S_2YK \cdot C_1ZK \]
\[C3V(4) = S_3XK \cdot S_1YK \cdot C_2ZK \]
\[C3V(5) = S_2XK \cdot S_1YK \cdot C_3ZK \]
\[C3V(6) = S_2XK \cdot S_3YK \cdot C_1ZK \]
\[S3V(1) = S_1XK \cdot S_2YK \cdot S_3ZK \]
\[S3V(2) = S_1XK \cdot S_3YK \cdot S_2ZK \]
\[S3V(3) = S_3XK \cdot S_2YK \cdot S_1ZK \]
\[S3V(4) = S_3XK \cdot S_1YK \cdot S_2ZK \]
\[S3V(5) = S_2XK \cdot S_1YK \cdot S_3ZK \]
\[S3V(6) = S_2XK \cdot S_3YK \cdot S_1ZK \]
\[S2V(1) = C_1XK \cdot C_2YK \cdot S_3ZK \]
\[S2V(2) = C_1XK \cdot S_2YK \cdot C_3ZK \]
\[S2V(3) = C_3XK \cdot C_2YK \cdot S_1ZK \]
\[S2V(4) = C_3XK \cdot S_1YK \cdot C_2ZK \]
\[S2V(5) = C_2XK \cdot S_1YK \cdot C_3ZK \]
\[S2V(6) = C_2XK \cdot S_3YK \cdot C_1ZK \]
\[S1V(1) = S_1XK \cdot C_2YK \cdot C_3ZK \]
\[S1V(2) = S_1XK \cdot C_3YK \cdot C_2ZK \]
\[S1V(3) = S_3XK \cdot C_2YK \cdot C_1ZK \]
\[S1V(4) = S_3XK \cdot C_1YK \cdot C_2ZK \]
SIV(5) = S2XK*C1YK*C3ZK
SIV(6) = S2XK*C3YK*C1ZK

C SUBROUTINE MATRIX PERFORMS SUM

199 CALL MATRIX

200 CONTINUE

DO 246 J = 1, 2
DO 246 K = 1, 38
DO 246 L = 1, 38
B = V(K, L, J)
IF (ABS(B) GT PQR) GO TO 246
V(K, L, J) = 0.0

246 CONTINUE

FROM HERE TO 7151, PERFORM DIAGONALIZATION OF SECULAR EQUATION, DET/H(K) - E S(K) = 0 YIELDING THE ENERGY EIGENVALUES E. PROCESS IS SERIES OF IBM SCIENTIFIC SUBROUTINES DMFSD, DMTDS, AND DIGEN. DIGEN IS DOUBLE PRECISION VERSION OF EIGEN.

DO 7052 I = 1, 38
DO 7052 J = 1, I
IJ = I* (I-1)/2 + J

7052 T(IJ) = O(V(J, I))
CALL DMFSD(T, 38, A, IER)
IF (IER .NE. 0) GO TO 7200
CALL DMTDS(H, 38, 38, T, -1, IER)
IF (IER .NE. 0) GO TO 7201
CALL DMTDS(H, 38, 38, T, 2, IER)
IF (IER .NE. 0) GO TO 7202
GO TO 7053

7200 WRITE(6, 7301)
STOP 5
7201 WRITE(6, 7302)
STOP 5
7202 WRITE(6, 7303).
STOP 5

7301 FORMAT(1X, *IER NE 0 IN DMFSD*)
7302 FORMAT(1X, *IER NE 0 IN MMTDS, 1 ST RUN*)
7303 FORMAT(1X, *IER NE 0 IN MMTDS, 2 ST RUN*)

7053 CONTINUE

DO 7150 I = 1, 38
DO 7150 J = 1, I
IJ = I* (I-1)/2 + J

7150 T(IJ) = H(J, I)
CALL DIGEN(T, X1, 38, 0)
DO 7151 I = 1, 38
IJ = I* (I-1)/2 + I

7151 XL(I) = T(IJ)
CALL DENS(NM, XL, XX, KY, KZ, KMX, WT, SUM, SW, EN, NEN, 1, DEN, NB1, NB2)
WRITE(6, 235)(XL(J), J = 1, 10)

235 FORMAT(1X, 10F13.7)
WRITE(6, 235)(XL(J), J = 11, 20)
WRITE(6,235) (XL(J),J=21,30)
WRITE(6,235) (XL(J),J=31,38)
WRITE(6,221)
221 FORMAT(1H)
120 CONTINUE
CALL FERMI(SW,EN,RHO,NE,NB1,NB2,DEN,EF)
WRITE(6,11911) EF,RHO
11911 FORMAT(1X,*EF=*,E16.8,*RHO=*,E16.8)
DO 11335 I=1,1500
11335 WRITE(6,11336) EN(I),(SW(I,J),J=2,12)
11336 FORMAT(1X,9F10.6)
9999 STOP
END
SUBROUTINE CENT(N,P,M)
C THIS SUBROUTINE INSERTS CENTRAL CELL INTEGRALS
C IN THE HAMILTONIAN H, AND OVERLAP S.
REAL * 8 H,OV,XL,X1,CCV,C1V,C2V,C3V,SSV,S1V,S2V,
S3V,vCl,C2,C3,XK,YK,ZK,CON,HCC,Q,P,PT4,PT6,X,Y
DIMENSION HCC(4,46),V(38,38),
DIMENSION CON(74)
DIMENSION CCV(6),C1V(6),C2V(6),C3V(6),SSV(6),
S1V(6),S2V(6),S3V(6),
COMMON/LCS/DD(325,5,2),P D(2,40,25,9),PP(45,40,2),
SD(2,40,25,4),
* SP(2,40,4,9),SS(10,40,2),SW(8,1500),EN(1500)
COMMON HCC,v,CCV,C1V,C2V,C3V,SSV,S1V,S2V,S3V,
Q,J,IDD,ISS,IPP,IPD,ISD,ISP
PT4=0.4D0
PT6=0.6D0
K=1
DO 1 I=1,5
DO 1 J=1,5
L=31+K
C X,Y ARE X-STAL FIELD SPLITTING IN D-D INTEGRALS
X=HCC(M,K)*P+PT4*HCC(N,L)*P
IA=I+5
JA=J+5
IB=I+10
JB=J+10
IC=I+15
JC=J+15
ID=I+20
JD=J+20
V(I,J,N)=X+V(I,J,N)
V(IA,JA,N)=X+V(IA,JA,N)
V(IB,JB,N)=X+V(IB,JB,N)
Y=HCC(M,K)*P-PT6*HCC(M,L)*P
V(IC,JC,N)=Y+V(IC,JC,N)
V(ID,JD,N)=Y+V(ID,JD,N)
1 K=K+1
DO 2 I=26,29
DO 2 J=1,29
V(I,J,N)=V(I,J,N)+HCC(M,K)*P
DO 3 I=1,3
DO 3 J=1,3
IA=27+3*I
JA=27+3*J
IB=IA+1
JB=JA+1
IC=IB+1
JC=JB+1
V(IA,JA,N)=V(IA,JA,N)+HCC(M,K)*P
V(IB,JB,N)=V(IB,JB,N)+HCC(M,K)*P
V(IC,JC,N)=V(IC,JC,N)+HCC(M,K)*P
3 K=K+1
DO 250 L=1,38
DO 250 L5=L,38
250 V(L5,L,I)=V(L,L5,I)
RETURN
END
SUBROUTINE MATRIX
C MATRIX PERFORMS SUM OVER DIRECT LATTICE VECTORS
REAL * 8 H,OV,XL,X1,CCV,C1V,C2V,C3V,SSV,SV1,S2V,
1 S3V,V,C1,V,C2,V,C3,V,XK,YK,ZK,RMATX,Q,CON,OC,PT25,
2 PT75,PT5,HCC
DIMENSION V(38,38,2),CON(74),HCC(4,46)
DIMENSION C1V(6),C2V(6),C3V(6),SSV(6),
1 SSV(6),S2V(6),S1V(6)
COMMON HCC,V,CON,CCV,C1V,C2V,C3V,SSV,SV1,S2V,S3V,
1 Q,J,IDD,ISS,IPP,IPD,ISD,ISP
COMMON/LCS/DD(325,5,2),PD(150,25,9),PP(45,40,2),
1 SD(35,25,4),
*SP(240,49),SS(150,2),SW(1500),EN(1500)
C THE BASIS SET OF THE MATRIX IS D1 TO D5 XY, D1
C TO D5 YZ, D1 TO D5 XZ, D1 TO D5 (X**2-Y**2), D1 TO
C D5 (3Z**2-R**2), 1S, 2S, 3S, 4S, 2PX, 2PY, 2PZ,
C 3PX, 3PY, 3PZ, 4PX, 4PY, 4PZ, D1 TO D5 IMPLIES
C 5 INDIVIDUAL D-TYPE ORBITALS USED.
P=DSQRT(3.D0)
PT25=0.25D0
PT75=0.75D0
PT5=0.5D0
OC=CON(J)
C PERFORM SUM FOR H AND S
DO210 I=1,2
IF(J.GT.IDD) GO TO 9010
C D-D BLOCK HAS INDIVIDUAL ORBITALS, INTEGRALS STORED
C IN TRIANGULAR PART OF 25 X 25 BLOCK
DO 1000 M=1,5
DO 1000 N=1,5
NM=M*(M-1)/2+N
NM5=(M+5)*(M+4)/2+N
NM10=(M+10)*(M+9)/2+N
NM15 = (M+15)*(M+14)/2 + N
NM20 = (M+20)*(M+19)/2 + N
NM5 = (M+5)*(M+4)/2 + (N+5)
N1OM10 = (M+10)*(M+9)/2 + (N+10)
N15M15 = (M+15)*(M+14)/2 + (N+15)
N20M20 = (M+20)*(M+19)/2 + (N+20)
N5M10 = (M+10)*(M+9)/2 + (N+5)
N5M15 = (M+15)*(M+14)/2 + (N+5)
N5M20 = (M+20)*(M+19)/2 + (N+5)
N1OM15 = (M+15)*(M+14)/2 + (N+10)
N1OM20 = (M+20)*(M+19)/2 + (N+10)
N15M20 = (M+20)*(M+19)/2 + (N+15)

IF (M.LT.N) GO TO 15

C XY - XY

V(N,M,I) = V(N,M,I) + OC*(DD(NM,J,I))*(CCV(1))
1 + CCV(5) + DD(N5M,J,I) + (CCV(3) + CCV(6))
2 + DD(N10M10,J,I) *(CCV(2)+CCV(4)))

C YZ - YZ

V(N+5,M+5,I) = V(N+5,M+5,I) + OC*(DD(N5M,J,I))
1*(CCV(1)+CCV(2)) + DD(NM,J,I) *(CCV(3) +
2CCV(4)) + DD(N10M10,J,I) *(CCV(5)+CCV(6)))

C XZ - XZ

V(N+10,M+10,I) = V(N+10,M+10,I) + OC*(DD(N10M10,J,I))
1*(CCV(1)+CCV(3)) + DD(N5M,J,I) *(CCV(5) +
2CCV(4)) + DD(NM,J,I) *(CCV(6)+CCV(2)))

C (X**2-Y**2)-(X**2-Y**2)

V(N+15,M+15,I) = V(N+15,M+15,I) + OC*(DD(N15M15,J,I))
1*(CCV(1)+CCV(5)+PT25*(CCV(3)+CCV(6))+CCV(4))
2 + CCV(2)) *(0.7500*DD(N20M20,J,I) + 0.5000*
3P*DD(N15M10,J,I) + (CCV(3)+CCV(2)) +
1CCV(4)+CCV(6))*P*DD(N15M20,J,I) *(CCV(2)+CCV(4)))

C (3Z**2-R**2)-(3Z**2-R**2)

V(N+20,M+20,I) = V(N+20,M+20,I) + OC*(DD(N20M20,J,I))
1*(CCV(1)+CCV(5)+PT25*(CCV(3)+CCV(6))+PT25*
2CCV(4)+PT25*CCV(2))+CON(J)*DD(N15M15,J,I)
3*PT75*(CCV(3)+CCV(6))+CCV(2)+CCV(4)) + CON(J)
4*P*PT5*DD(N15M20,J,I) *(CCV(2)+CCV(4))
5 + CCV(4)+CCV(2))

C (X**2-Y**2)-(3Z**2-R**2)

V(N+15,M+20,I) = V(N+15,M+20,I) + OC*(DD(N15M20,J,I))
1*(CCV(1)-CCV(5)+PT5*CCV(2)-PT5*CCV(4))
2 + PT5*CCV(3)-PT5*CCV(6)) + P*PT25*(DD(N20M20,J,I))
3 - DD(N15M15,J,I)))*(CCV(2)-CCV(4)+CCV(6))
4 - CCV(3)))

V(M+15,N+20,I) = V(N+15,M+20,I)

15 CONTINUE

C XY - YZ

V(N,M+5,I) = V(N,M+5,I) - OC*(DD(NM5,J,I))*(C2V(1))
1 + C2V(3) + DD(NM10,J,I) *(C2V(5)+C2V(4))
2 + DD(N5M10,J,I) *(C2V(2)+C2V(6)))

C XY - XZ

V(N,M+10,I) = V(N,M+10,I) - OC*(DD(NM10,J,I))
1*(C1V(1)+C1V(2)) + DD(N5M10,J,I) *(C1V(4))
2+CIV(3)+DD(NM5,J,I)*(CIV(5)+CIV(6))
C
XY-(X**2-Y**2)
V(N*M+15,1)=V(N*M+15,1)+OC*(DD(NM15,J,I))
1*(-C3V(1)+C3V(5))+PT5*(DD(NM20,J,I))
2+DD(NM15,J,I)*)*(-C3V(3)+C3V(6))
3+PT5*(P*DD(N10M20,J,I)-DD(N10M15,J,I))
4*(C3V(2)-C3V(4))
C
XY-(Z**2-R**2)
V(N*M+20,1)=V(N*M+20,1)+OC*(DD(NM20,J,I))
1*(-C3V(1)-C3V(5))+PT5*(DD(NM20,J,I))
2-P*DD(NM15,J,I)*)*(C3V(3)+C3V(6))
3+PT5*(DD(N10M20,J,I)+P*DD(N10M15,J,I))
4*(C3V(4)+C3V(2))
C
YZ-XZ
V(N+5*M+10,1)=V(N+5*M+10,1)+OC*(DD(N5M10,J,I))
1*(-CIV(1)-CIV(5))-DD(NM5,J,I)*)*(CIV(2)
2+CIV(4))+DD(NM10,J,I)*)*(CIV(3)+C3V(6))
C
YZ-(X**2-Y**2)
V(N+5*M+20,1)=V(N+5*M+20,1)+OC*(DD(N5M20,J,I))
1*(-CIV(1)-CIV(5))-DD(N10M20,J,I)
2*(CIV(5)+PT5+CIV(6))-PT5*DD(NM20,J,I)
3*(CIV(3)+CIV(4))-PT5*DD(NM15,J,I)
4*(CIV(3)-CIV(4))+P*PT5*(DD(N10M20,J,I)
5*CIV(6)+DD(N5M20,J,I)*)*(CIV(2))
C
YZ-(Z**2-R**2)
V(N+5*M+20,1)=V(N+5*M+20,1)+OC*(DD(N5M20,J,I))
1*(-CIV(1)-CIV(5))-DD(N10M20,J,I)
2*DD(NM5,J,I)*)*(CIV(3)+CIV(5)+PT5*(DD(NM20,J,I)-P*
3*DD(NM5,J,I)))*CIV(6)+PT5*(DD(N5M20,J,I)+P*DD(N5M15,
4,J,I)))*CIV(2)+PT5*(DD(NM20,J,I)+P*DD(NM15,J,I))
5*CIV(4))
C
XZ-(X**2-Y**2)
V(N+10*M+15,1)=V(N+10*M+15,1)+OC*(DD(N10M15,J,I))
1*(-C2V(1)-PT5+C2V(3))+DD(N5M15,J,I)
2*P*PT5+C2V(4))+PT5*DD(N10M20,J,I)
3*C2V(3)-PT5*C2V(4)+PT5*DD(N5M20,J,I)
4+P*PT5*DD(NM20,J,I)*)*(C2V(6)+C2V(2))
5+PT5*DD(NM15,J,I)*)*(C2V(6)-C2V(2))
C
XZ-(Z**2-R**2)
V(N+10*M+20,1)=V(N+10*M+20,1)+OC*(DD(N10M20,J,I))
1*(-C2V(1)+PT5+C2V(3))-DD(N5M20,J,I)
2*P*PT5+C2V(4))+PT5*DD(NM20,J,I)
3*(C2V(2)+C2V(6)))+P*PT5*DD(N5M15,J,I)
4*C2V(4)-P*PT5*DD(N10M15,J,I)*C2V(3)
5+P*PT5*DD(NM15,J,I)*)*(C2V(2)-C2V(6))
1000 CONTINUE
9010 CONTINUE
IF(J.GT.IPD) GO TO 77877
C PD BLOCK HAS H AND S, 40 NEIGHBORS, AND 25 X 9
C MATRIX BLOCK, 9 COMES FROM 2P, 3P, 4P, EACH WITH
C X, Y, Z SYMMETRY, KK=1 2P, KK=2 3P, AND KK=3 4P
DD 4050 KK=1,7,3
DD 4050 L=1,5
5*PD(I,J,L+20,KK)-PD(I,J,L+15,KK))*S2V(4))

5*PD(I,J,L+20,KK)-PD(I,J,L+15,KK))*S2V(4))

C

5*PD(I,J,L+20,KK)-PD(I,J,L+15,KK))*S2V(4))

4050 CONTINUE

77877 CONTINUE

IF(J.GT.ISD) GO TO 77977

SD HAS H AND S. 40 NEIGHBORS, AND 25 X 4 BLOCK.

DO 3010 K=1,5

DO 3010 L=I*4

C

XY-Z

V(L+20,K+2,I)=V(L+20,K+1,I)+CON(J)*(PD(I,J,L+20,KK)

1+1)*S2V(1)+PD(I,J,L+20,KK)*S2V(5)-PT5*

2*PD(I,J,L+20,KK+1)-P*PD(I,J,L+15,KK+1))*S2V(3)

3-PT5*(PD(I,J,L+20,KK+2)-P*PD(I,J,L+15,KK+2))

4*PD(V(6))-PT5*(PD(I,J,L+20,KK+2)+P*PD(I,J,L+15.

* KK+2))*S2V(2)-PT5*

5(PD(I,J,L+20,KK)+P*PD(I,J,L+15,KK))*S2V(4))

C

XY-Z

V(L+K+2,I)=V(L+K+2,I)-CON(J)*(PD(I,J,L,KK+2)

1*(SSV(1)+SSV(5))+PD(I,J,L+5,KK+5)(*SSV(2)+SSV(4)))

C

YZ-Z

V(L+5,K+2,I)=V(L+5,K+2,I)+CON(J)*(PD(I,J,L+5,KK+2)

1*S2V(1)+PD(I,J,L+10,KK+2)*S2V(5)

2*PD(I,J,L,KK)*S2V(3)+PD(I,J,L+10,KK)*S2V(6)

3+PD(I,J,L+5,KK+1)*S2V(2)+PD(I,J,L,KK+1)*S2V(4))

C

XY-Z

V(L+15,K+2,I)=V(L+15,K+2,I)-CON(J)*(PD(I,J,L+15,KK

1+2)*S3V(1)-S3V(5))+PT5*(PD(I,J,L+20,KK)*P

2*PD(I,J,L+15,KK)*S3V(3)-S3V(6)))+PT5*(-P*PD(I,J,L

1+20,KK+1)+PD(I,J,L+15,KK+1))*(S3V(2)-S3V(4)))

C

XY-Z

V(L+20,K+2,I)=V(L+20,K+2,I)-CON(J)*(PD(I,J,L+20,KK

1+2)*S3V(1)+S3V(5))+PT5*(P*PD(I,J,L+15,KK)

2*PD(I,J,L+20,KK)*(S3V(3)+S3V(6))-PT5*(PD(I,J,L

4L+20,KK+1)*P*PD(I,J,L+15,KK+1))=(S3V(2)+S3V(4)))

4050 CONTINUE

77877 CONTINUE

IF(J.GT.ISD) GO TO 77977
$2 + SD(I, J, K, L) \times (C2V(2) + C2V(6))$
$3 + SD(I, J, K+5, L) \times (C2V(5) + C2V(4))$

C

\[(X \times 2 - Y \times 2) - 5\]

$V(K+15, L+25, I) = V(K+15, L+25, I) + CON(J) \times (SD(I, J, K+15, L))$
$1 \times (CCV(1) + CCV(5)) + (P \times SD(I, J, K+15, L)) +$
$2 \times SD(I, J, K+15, L) \times PT5 \times (CCV(3) - CCV(6)) - (P \times SD(I, J, K+15, L))$

C

\[(3 \times 2 - 2 \times 2) - 5\]

$V(K+20, L+25, I) = V(K+20, L+25, I) + CON(J) \times (SD(I, J, K+20, L) \times (CCV(1) + CCV(5)) - PT5 \times (CCV(3) + CCV(6)) - PT5 \times (CCV(2) + 3 \times CCV(4)) + SD(I, J, K+15, L) \times P \times PT5 \times (CCV(3) + CCV(6))$
$4 - CCV(2) - CCV(4)$

3010 CONTINUE

77977 CONTINUE

IF(J \times GT \times ISS) GO TO 3001

C SS IS 4 X 4 BLOCK STORED IN TRIANGULAR MODE

DO 3000 K=26, 29
DO 3000 L=26, K
KL=K-29
LK=L-25
IJ=KL*(KL-1)/2+LK
3000 V(L, K, I) = V(L, K, I) + CON(J) \times SS(I, J, L, K)
1 \times (CCV(1) + CCV(2) + CCV(3) + CCV(4) + CCV(5) + CCV(6))

3001 CONTINUE

IF(J \times GT \times ISP) GO TO 3050

C SP HAS H AND S, 40 NEIGHBORS, AND A 4 X 9 BLOCK

DO 4000 K=1, 7, 3
KK=K+29
DO 4000 L=1, 4
LL=L+29
C S-X

V(LL, KK, I) = V(LL, KK, I) + CON(J) \times SP(I, J, L, K)
1 \times (SIV(1) + SIV(2)) + SP(I, J, K, L) +
2 \times (SIV(3) + SIV(4)) + SP(I, J, L, K+1) \times (SIV(5) + SIV(6))

C S-Y

V(LL, KK+1, I) = V(LL, KK+1, I) + CON(J)
1 \times (SP(I, J, L, K+1) \times S2V(1) + S2V(3))
2 \times SP(I, J, K, L) \times (S2V(5) + S2V(4))
3 \times SP(I, J, L, K+2) \times (S2V(2) + S2V(6))

C S-Z

V(LL, KK+2, I) = V(LL, KK+2, I) + CON(J)
1 \times (SP(I, J, L, K+2) \times (S3V(1) + S3V(5))
2 \times SP(I, J, L, K+1) \times (S3V(4) + S3V(2))
3 \times SP(I, J, L, K) \times (S3V(6) + S3V(3))

4000 CONTINUE

3050 CONTINUE

IF(J \times GT \times IPP) GO TO 77677

C PP IS 9 X 9 BLOCK STORED IN TRIANGULAR MODE

DO 7000 K=1, 7, 3
DO 7000 L=1, K, 3
LL=L+29
KK=K+29
LK=K*(K-1)/2+LK

4000 CONTINUE
L2K2 = (K+2)*(K+1)/2 + (L+2)
L1K1 = (K+1)*K)/2 + (L+1)
LK2 = (K+2)*(K+1)/2 + L
L1K2 = (K+2)*(K+1)/2 + L+1
L1K1 = (K+1)*K)/2 + L

C X-X
V(LL+1,KK+1,I) = V(LL+1,KK+1,I) + CON(J)*(PP(L1K1,J,I)*CCV(1) + CCV(2)) + PP(L2K2,J,I)*CCV(3) + CCV(4))
2 + PP(L1K1,J,I)*CCV(5) + CCV(6))

C Y-Y
V(L1+1*KK+1,I) = V(L1+1,KK+1,I) + CON(J)*(PP(L1K1,J,I)*CCV(1) + CCV(2)) + PP(L2K2,J,I)*CCV(3) + CCV(4))
2 + PP(L2K2,J,I)*CCV(5) + CCV(6))

C Z-Z
V(LL+2,KK+2,I) = V(LL+2,KK+2,I) + CON(J)*(PP(L1K1,J,I)*CCV(1) + CCV(2)) + PP(L2K2,J,I)*CCV(3) + CCV(4))
2 + PP(L1K1,J,I)*CCV(5) + CCV(6))

C K EQ L IMPLIES A DIAGONAL SUBBLOCK SUCH AS 2P-2P.
THEREFORE ONLY NEED X-Y AND NOT X-Y PLUS Y-X
IF(K.EQ.L) GO TO 10
L1K = K*(K-1)/2 + L+1
L2K = K*(K-1)/2 + L+2
L2K1 = K*(K+1)/2 + L+2

C X-Y
V(LL+1,KK+1,I) = V(LL+1,KK+1,I) - CON(J)*(PP(L1K1,J,I)*CCV(1) + PP(LK2,J,I)*CCV(2)) + PP(L1K2,J,I)*CCV(3) + CCV(4))
2 + PP(L1K1,J,I)*CCV(5) + CCV(6))

C Y-Z
V(LL+1,KK+2,I) = V(LL+1,KK+2,I) - CON(J)*(PP(L1K2,J,I)*CCV(1) + PP(L2K1,J,I)*CCV(2)) + PP(L1K2,J,I)*CCV(3) + CCV(4))
2 + PP(L1K1,J,I)*CCV(5) + CCV(6))

C Z-X
V(LL+2,KK+1,I) = V(LL+2,KK+1,I) - CON(J)*(PP(L1K2,J,I)*CCV(1) + PP(L2K1,J,I)*CCV(2)) + PP(L1K2,J,I)*CCV(3) + CCV(4))
2 + PP(L1K1,J,I)*CCV(5) + CCV(6))

C Z-Y
V(LL+2,KK+1,I) = V(LL+2,KK+1,I) - CON(J)*(PP(L1K2,J,I)*CCV(1) + PP(L2K1,J,I)*CCV(2)) + PP(L1K2,J,I)*CCV(3) + CCV(4))
2 + PP(L1K1,J,I)*CCV(5) + CCV(6))

GO TO 11
10 CONTINUE
C X-Y
V(LL+1,KK+1,I) = V(LL+1,KK+1,I) - CON(J)*(PP(L1K1,J,I)
1*(C3V(1)+C3V(5))+PP(LK2*J*1)*(C3V(3)+C3V(6))
2+PP(LK2*J*1)*(C3V(2)+C3V(4))
C
X-Z
2+PP(LK2*J*I)*(C2V(2)+C2V(6))
C
Y-Z
1*(C1V(1)+C1V(2))+PP(LK2*J*I)*(C1V(6)+C1V(5))
2+PP(LK2*J*I)*(C1V(4)+C1V(3))
11 CONTINUE
7000 CONTINUE
77677 CONTINUE
DO 250 L=1,38
DO 250 M=L,38
250 V(M,L,I)=V(L,M,I)
210 CONTINUE
RETURN
END
SUBROUTINE DENS(XL,KX,KY,KZ,KM,WT,SW,E,
1 NE,DE,NB1,NB2)
C
THIS SUBROUTINE CALCULATES THE WEIGHT OF EACH K
C
POINT AND THE DENSITY OF STATES OF EACH BAND
REAL *8 XL
DIMENSION SW(8,1500),E(1500),XL(38)
KMA=3*KM/2
IF(KX+KY+KZ-12 >17,23,23
17 WT=1.
IF(KX.EQ.KM)GOTO21
IF(KZ.NE.0)GOTO19
WT=WT*.5
IF(KY.NE.0)GOTO18
WT=WT*.25
IF(KX.NE.0)GOTO28
WT=WT*.16666667
GOTO28
18 IF(KX.NE.KY)GOTO28
WT=WT*.5
GOTO28
19 IF(KY.NE.KZ)GOTO20
WT=WT*.5
IF(KX.NE.KY)GOTO28
WT=WT*.33333333
GOTO28
20 IF(KX.NE.KY)GOTO28
WT=WT*.5
GOTO28
21 WT=WT*.5
IF(KZ.NE.0)GOTO22
WT=WT*.5
IF(KY.NE.0)GOTO28
WT=WT*.25
GOTO28
SUBROUTINE FERMISW, EDEL, NEI, NB1, NB2, DE, EF

THIS SUBROUTINE SUMS THE DENSITY OF STATES FOR EACH BAND TO THE TOTAL DENSITY OF STATES AND CALCULATES THE FERMI ENERGY BY COUNTING ELECTRONS IN EACH ENERGY BIN.

DIMENSION SW(8,1500), E(1500)

Q=0.0
DO 39 J=1, NEI
 QA=0.0
 DO 38 I=1, 6
 QA=QA+SW(I, J)
 SW(7, J)=QA
 Q=Q+QA*DE
39 SW(8, J)=Q
 DO 41 J=2, NEI
 K=J-1
 IF(SW(8, K)<DE AND SW(8, J)>=DE) GOTO 40
 CONTINUE
RETURN
END
SUBROUTINE READBD(MM)

C THIS SUBROUTINE READS ALL THE INTEGRALS NECESSARY
C
REAL * 8 HOX,XL,X1,CCV,C1V,C2V,C3V,SSV,S1V,S2V,
1S3V,V1,C2,C3,XK,YK,ZK,CON,Q,PR,P5,HCC
DIMENSION CCV(6),C3V(6),C2V(6),C1V(6),SSV(6),
1S3V(6),S2V(6),S1V(6)
DIMENSION HCC(4,46),V(38,38),CON(74)
COMMON HCC,CON,CCV,C1V,C2V,C3V,SSV,S1V,S2V,S3V,
1Q,J,IDD,ISS,IPP,IPD,ISP
COMMON/LCS/DD(325,5,2),PD(2,40,25,9),PP(45,40,2)
1SD(2,40,25,4),*SP(2,40,25,4),SS(10,40,2),SW(8,1500),EN(1500)
P=0.0SQRT(3.D0)
THE PARAMETER MM IS 1 FOR PARAMAGNETIC, 2 FOR
C UP-SPIN, AND 3 FOR DOWN-SPIN EXCHANGE
DO 4052 II=1,IDD
DO 4052 JJ=1,325
GO TO (11,12,13),MM
11 READ(1) I,J,K,PO,EXCH,UP,ON,EK,OL,R2
GO TO 14
12 READ(1) I,J,K,PO,EXC,EXCH,DN,EK,OL,R2
GO TO 14
13 READ(1) I,J,K,PO,EXC,UP,EXCH,EK,OL,R2
GO TO 14
14 CONTINUE
IF(ABS(PO)*LT.10*D-15) PD=0.0
IF(ABS(EXCH)*LT.10*D-15) EXCH=0.0
IF(ABS(EK)*LT.10*D-15) EK=0.0
IF(ABS(OL)*LT.10*D-15) OL=0.0
JK=J*(J-1)/2+K
DD(JK*I*1)=PD+EK+EXCH*Q
4052 DD(JK*I*2)=OL
4068 DO 4062 II=1,ISS
DO 4062 JJ=1,10
GO TO (21,22,23),MM
21 READ(2) I,J,K,PO,EXCH,UP,ON,EK,OL,R2
GO TO 24
22 READ(2) I,J,K,PO,EXC,EXCH,DN,EK,OL,R2
GO TO 24
23 READ(2) I,J,K,PO,EXC,UP,EXCH,EK,OL,R2
GO TO 24
24 CONTINUE
IF(ABS(PO)*LT.10*D-15) PD=0.0
IF(ABS(EXCH)*LT.10*D-15) EXCH=0.0
IF(ABS(EK)*LT.10*D-15) EK=0.0
IF(ABS(OL)*LT.10*D-15) OL=0.0
J=J-25
K=K-25
JK=J*(J-1)/2+K
SS(JK,1,1) = PO + EK + EXCH * Q

4062 SS(JK,1,2) = OL

4066 DO 4054 II = 1, I+P
 DO 4054 JJ = 1, J+5
 GO TO (31, 32, 33), MM
 31 READ(3) I, J, K, PO, EXCH, UP, DN, EK, OL, R2
 GO TO 34
 32 READ(3) I, J, K, PO, EXC, EXCH, DN, EK, OL, R2
 GO TO 34
 33 READ(3) I, J, K, PO, EXC, UP, EXCH, EK, OL, R2
 CONTINUE

 IF(ABS(P0) .LT. 10.0 .D-15) P0 = 0.0
 IF(ABS(EXCH) .LT. 10.0 .D-15) EXCH = 0.0
 IF(ABS(EK) .LT. 10.0 .D-15) EK = 0.0
 IF(ABS(OL) .LT. 10.0 .D-15) OL = 0.0
 J = J - 29
 K = K - 29
 JK = J * (J-1) / 2 + K
 PP(JK,1,1) = PO + EK + EXCH * Q

4054 PP(JK,1,2) = OL

4067 DO 4056 II = 1, I+D
 DO 4056 JJ = 1, J+25
 GO TO (81, 82, 83), MM
 41 READ(4) I, J, K, PO, EXCH, UP, DN, EK, OL, R2
 GO TO 44
 42 READ(4) I, J, K, PO, EXC, EXCH, DN, EK, OL, R2
 GO TO 44
 43 READ(4) I, J, K, PO, EXC, UP, EXCH, EK, OL, R2
 CONTINUE

 IF(ABS(P0) .LT. 10.0 .D-15) P0 = 0.0
 IF(ABS(EXCH) .LT. 10.0 .D-15) EXCH = 0.0
 IF(ABS(EK) .LT. 10.0 .D-15) EK = 0.0
 IF(ABS(OL) .LT. 10.0 .D-15) OL = 0.0
 J = J - 29
 PD(1,1,K,J) = PO + EK + EXCH * Q

4056 PD(2,1,K,J) = OL

4065 DO 4060 II = 1, I+S
 DO 4060 JJ = 1, J+100
 GO TO (81, 82, 83), MM
 81 READ(8) I, J, K, PO, EXCH, UP, DN, EK, OL, R2
 GO TO 84
 82 READ(8) I, J, K, PO, EXC, EXCH, DN, EK, OL, R2
 GO TO 84
 83 READ(8) I, J, K, PO, EXC, UP, EXCH, EK, OL, R2
 CONTINUE

 IF(ABS(P0) .LT. 10.0 .D-15) P0 = 0.0
 IF(ABS(EXCH) .LT. 10.0 .D-15) EXCH = 0.0
 IF(ABS(EK) .LT. 10.0 .D-15) EK = 0.0
 IF(ABS(OL) .LT. 10.0 .D-15) OL = 0.0
 J = J - 25
 SD(1,1,K,J) = PO + EK + EXCH * Q

4060 SD(2,1,K,J) = OL
 DO 4058 II = 1, I+55
DO 4058 JJ=1,36
GO TO (91,92,93), MM
91 READ(9) I,J,K,PO,EXCH,UP,DOWN,EK,OL,R2
GO TO 94
92 READ(9) I,J,K,PO,EXCH,UP,DOWN,EK,OL,R2
GO TO 94
93 READ(9) I,J,K,PO,EXCH,UP,DOWN,EK,OL,R2
94 CONTINUE
IF(ABS(PO).LT.10.D-15) PO=0.0
IF(ABS(EXCH).LT.10.D-15) EXCH=0.0
IF(ABS(EK).LT.10.D-15) EK=0.0
IF(ABS(OL).LT.10.D-15) OL=0.0
J=J-29
K=K-25
SP(1,I,K,J)=PO+EK+EXCH*Q
4058 SP(2,I,K,J)=OL
RETURN
END

C IN THE CENTRAL CELL DATA BELOW, THE INTEGER ON
C THE RIGHT IS 1 FOR COULOMB, 2 FOR EXCHANGE, 3 FOR
C KINETIC ENERGY, AND 4 FOR OVERLAP. THE SECOND
C INTEGER HAS 1 FOR S-, 2 FOR P-, AND 3 FOR D-SYMMETRY
C AND 4 FOR D-FIELD SPLITTING. THE LAST TWO INTEGER
C INDICATE SYMMETRY SUCH AS D1-D1, 1S-1S, ETC. THE
C EXCHANGE BELOW IS DOWN, AFTER // IS UP-SPIN EXCH.

\begin{verbatim}
1 0 1 2 3 2 3 0 1 3 4 3 2 4 5 5 4 3 5 4
0 5 1 6 5 2 6 4 7 5 5 6 7 5 3 6 7 6 7 0
1 7 5 8 4 6 6 2 7 8 7 6 7 8 9 3 8 9 7 5
6 9 8 7 9 7 4 7 9 8 0 8 1 7
1 0 1 2 1 2 0 1 3 2 3 2 1 2 4 3 3 4
0 3 1 2 4 2 3 4 1 5 4 4 2 5 3 4 3 5 3 0
1 4 5 2 4 5 6 2 5 3 4 6 5 4 1 3 4 2 6 5
6 3 5 5 3 6 4 7 4 5 0 6 1 7
0 2 2 0 0 2 1 4 4 0 0 2 4 1 0 1 0 4 0 2
6 2 6 0 1 6 1 4 0 0 3 0 1 2 6 2 0 1 2 8
8 1 4 0 6 3 0 8 0 1 3 2 2 0 0 8 2 1 1 6
4 0 1 4 2 3 8 0 1 3 1 0 0 1 0 2 2
\end{verbatim}

\begin{verbatim}
-0.1875212E 03 1 3 1 1
-0.6897548E 02 1 3 1 2
-0.1584713E 02 1 3 1 3
-0.2803761E 01 1 3 1 4
-0.3809201E 00 1 3 1 5
-0.6833014E 02 1 3 2 2
-0.2902950E 02 1 3 2 3
-0.6955805E 01 1 3 2 4
-0.1070871E 01 1 3 2 5
-0.2348073E 02 1 3 3 3
-0.9001555E 01 1 3 3 4
-0.1774529E 01 1 3 3 5
-0.5990677E 01 1 3 4 4
\end{verbatim}
-0.1870434E 01
-0.3630292E 00
-0.4759300E 01
0.4989812E 00
-0.1229700E 01
-0.1262800E 02
0.1860759E 01
0.2734389E 00
-0.4582089E 01
0.3963283E 00
-0.1243871E 01
-0.7452117E-05
-0.2362560E-07
0.8546952E-08
-0.5239320E-09
-0.8008053E-10
0.1084096E-06
-0.3500996E-07
-0.4408488E-07
-0.2602018E-08
-0.1866422E-07
-0.9622980E-08
-0.1321858E-08
-0.1153855E-04
-0.4458933E-03
-0.3597734E-01
0.3425818E 03
0.7716226E 02
0.7917941E 01
0.5283887E 00
0.2305401E-01
0.9601842E 02
0.2971268E 02
0.3461064E 01
0.1908482E 00
0.3247658E 02
0.1010240E 02
0.9501989E 00
0.1102031E 02
0.2936960E 01
0.3404865E 01
0.7571653E 03
-0.2770015E 03
0.1006100E 03
-0.2043947E 02
0.1427883E 03
-0.5842676E 02
0.1164197E 02
0.3040955E 02
-0.6690024E 01
0.1788424E 01
0.1401428E 03
-0.4648447E 02
THIS PROGRAM OBTAINS THE SELF-CONSISTENT ENERGY BANDS OF FERROMAGNETIC NICKEL. THIS PROGRAM SUMS SIJ OVER THE RECIPROCAL LATTICE AND COMPUTES EIGENVALUES AND EIGENVECTORS FOR A FACE-CENTERED CUBIC CRYSTAL.

REAL*8 H,OV,VL,VI,T
DIMENSION VK(51),RK(741),QVR(741),T(741),
1 H(38,38),XL(38),XI(38,38),DK(51),RSQ(741),NK(21),
2 OV(38,38),XR(51),EVAL(10,38),POTE(741),EXCHE(741),
3 CON(620)
DIMENSION DUM1(51)
DIMENSION EXC(741),HUP(741),HDN(741),DKUP(51),
1 DKDN(51),XRUP(51),XDND(51),RKUP(51),RKDN(51),
2 VX0UP(51)
COMMON/LCS/SIJ(51,741),VK0(620),VXO(620),VM(200),
1 SW(8,3000),EN(3000),SWUP(8,3000),RHO0U(51),
1 RHO0D(51),VM0(800),
2 VMW(200),IX(620),IY(620),IZ(620),IMAX,KKMAX

EF IS THE FERMI ENERGY AND FACT IS A PARAMETER TO ACCELERATE CONVERGENCE
EF=-1.021
FACT=0.25
RHO=5.0
WRITE(6,22991) EF
22991 FORMAT(1X,'EF=',F8.4)

EMIN IS MINIMUM OF DENSITY OF STATES GRID (DESCRIBED IN BAND PROGRAM ABOVE)
EMIN=-2.08
DEN=0.00055
KMX=4
NEN=3000
SUM=((FL3AT(KMX))**3)/12.0
NB1=24
NB2=29
A=1.0D-10
READ(5,10000) NITER,IT,IOU,Q
NK ARE THE 20 POINTS OF THE 89 USED
READ(5,8001) (NK(J),J=1,21)
8001 FORMAT(2I12)

ITER=1
KNMAX=51

NITER IS NO. OF ITERATIONS IT AND IOU ARE DUMMY VARIABLES, AND Q IS THE EXCHANGE PARAMETER, KNMAX IS THE NO. OF RECIPROCAL LATTICE VECTORS TO CHANGE
WRITE(6,10000) NITER,IT,KNMAX,Q,FACT
10000 FORMAT(3I5,2F9.5)

KKMAX=619
IMAX=193
ACONST=6.644
IX(1)=0
IY(1)=0
IZ(1)=0
CUN(1)=1.
DO 380 IRLV=1 KNMAX
RKUP(IRLV)=0.0
WKDN(IRLV)=0.0
XRUP(IRLV)=0.0
XRDN(IRLV)=0.0
RK(IRLV)=0.
VK(IRLV)=0.
XR(IRLV)=0.0
380 DK(IRLV)=0.
C RHOU AND RHOOD ARE THE FOURIER COEF OF THE COULOMB
C POTENTIAL WHICH WILL BE USED TO GET CHARGE DENSITIES
C FOR UP AND DOWN SPIN AT ZEROth ITERATION
DO 8002 I=1,51
8002 READ(5,8003) RHOU(I)
DO 8004 I=1,51
8004 READ(5,8003) RHOOD(I)
8003 FORMAT(1X,E16.8)
C READ IN CHANGES IN FOURIER COEF. FOR NEXT ITERATION
C (AT FIRST ITERATION, READ 27 BLANK CARDS)
READ(5,236)(DK(IRLV),IRLV=1,KNMAX)
READ(5,236)(XRUPI(IRLV),IRLV=1,KNMAX)
READ(5,236)(XRDN(IRLV),IRLV=1,KNMAX)
236 FORMAT(6F13.7)
C READ IN KNMAX FOURIER COEF.
DO 3712 J=1,KNMAX
C VKO IS COULOMB, VXOUP IS UP-SPIN AND VXO IS DOWN-SPIN
READ(3) VKO(J),DUMMY,VXOUP(J),VX0(J),B,C,D,IOU
393 FORMAT(1X,4E16.8,3F6.2,I5)
K=B+.01
L=C+.01
M=D+.01
ASQ=39.478418*(B*B+C*C+D*D)/ACONST**2
C SUBTRACT OUT NUCLEAR TERMS
IF(J.EQ.1)GO TO 3712
ASQQ=25.132741*28.0/ASQ*4./ACONST**3
RHOOU(J)=RHOOU(J)+ASQQ
RHOOD(J)=RHOOD(J)+ASQQ
VK0(J)=VK0(J)+ASQQ
C CONVERT FROM V(K) TO RHO(K)
ASQQ=-ASQ/25.132741
RHOOU(J)=ASQQ*RHOOU(J)
RHOOD(J)=ASQQ*RHOOD(J)
VK0(J)=ASQQ*VK0(J)
C SORT ASSURES K.GE.L*GE.M
CALL SORT(K,L,M)
IX(J)=K
IY(J)=L
IZ(J)=M
II=K**2+L**2+M**2+1
VM0(II)=VK0(J)
IF (J .LE. KNMAX) VM(I) = VM0(I) - ASQ/25.132741 * DK(J)

IOU IS THE OCCUPATION NO. OF RL.V. IN UNIQUE SHELL

CON(J) = IOU
C CON(J) = 1. / CON(J)

CONTINUE

KSMA X = II

PQR=10.0**(-13)
VM0(1) = VK0(1)
VM(1) = VK0(1)

READ FOURIER COEFFICIENTS FROM LAST ITERATION

DO 382 IRLV=1, KNMAX
VK(IRLV) = DK(IRLV)
RKUP(IRLV) = RKUP(IRLV) + XRUP(IRLV)
RKDN(IRLV) = RKDN(IRLV) + XRDN(IRLV)
XR(IRLV) = 0.
DKUP(IRLV) = 0.
DKDN(IRLV) = 0.
XRUP(IRLV) = 0.
XRDN(IRLV) = 0.

DO 382 DK(IRLV) = 0.
XQ = EMIN - 0.001
DO 2010 I = 1, NEN
EN(I) = XQ
2010 XQ = XQ + DEN
DO 2011 I = 1, 8
DO 2011 J = 1, NEN
SWUP(I, J) = 0.

CONTINUE

ATQ = 0.
SUMW = 0.
NM = 0

THE FOLLOWING SET OF DO LOOPS ASSUMES THE
COORDINATES OF X TO BE 2*PI /(ICOR*A) * (ICOR, 0, 0)
DO LOOPS COVER 89 POINTS IN 1/48 TH OF THE B.Z.

BZU = 0.0
BZD = 0.0
BZ = 0.0
ICT = 1
ICOR = 8
NUT = ICOR/2 + 1
MUT = 3*ICOR/4 + 1
LUT = ICOR + 1
DO 120 LU = 1, LUT
DO 120 MU = 1, LU
DO 120 NU = 1, MU
KX = LU - 1
KY = MU - 1
KZ = NU - 1
LMN = KX + KY + KZ
IF (LMN .GT. 3*ICOR/2) GO TO 120
NM = NM + 1
NL = NM
XK = KX
YK=KY
ZK=KZ
C NEED MATRICES SUMMED OVER R FOR COULOMB POTENTIAL.
C KINETIC ENERGY, OVERLAP, R SQUARED, AND EXCHANGE
C POTENTIAL FOR UP-SPIN AND DOWN-SPIN
DO 370 IBZ=1,741
READ(1,9905) EK(IBZ),OVR(IBZ)
READ(2,9905) POTE(IBZ),RSQ(IBZ)
C READ EXCHANGE FOR UP AND DOWN
READ(8,9905) EXC(IBZ),EXCHE(IBZ)
9905 FORMAT(2A4)
HUP(IBZ)=EK(IBZ)+POTE(IBZ)+Q*EXC(IBZ)
HDN(IBZ)=EK(IBZ)+POTE(IBZ)+Q*EXCHE(IBZ)
370 CONTINUE
NL=NK(ICT)
C READ SIJ BELOW ONLY FOR 20 K POINTS DONE
IF(NM.NE.NL) GO TO 120
ICT=ICT+1
C WEIG FINDS WEIGHT OF EACH K POINT
CALL WEIG(KX,KY,KZ,ICOR,WT)
SUMW=SUMW+WT
WRITE(6,222) KX,YK,ZK,NM,WT
222 FORMAT(30X,'K=',5.3F6.2,*H*,NM=',I5,*WT=',F8.5)
XK=XK*3.14159265*2./ICOR
YK=YK*3.14159265*2./ICOR
ZK=ZK*3.14159265*2./ICOR
DO 300 IRLV=1,KNMAX
DO 300 I=1,741
300 READ(4,9) SIJ(IRLV,I)
9 FORMAT(A4)
DO 120 IUD=1,2
DO 733 IR=1,38
DO 733 JR=I,IR
IJ=JR+(IR*IR-IR)/2
733 OVR(IR,JR)=OVR(IJ)
DO 327 I=1,38
DO 327 J=1,I
IJ=J+(I*I-I)/2
GO TO (160,161,IUD)
C ONLY ADD IN CHANGE IN FOURIER COEFFICIENTS*SIJ
C TO ZEROTH ORDER
160 HI(I,J)=HI(I,J)+(VK(KN)+RKUP(KN)*Q)*SIJ(KN,IJ)
GO TO 162
161 HI(I,J)=HI(I,J)+(VK(KN)+RKDN(KN)*Q)*SIJ(KN,IJ)
162 CONTINUE
390 CONTINUE
DO 391 I=1,38
DO 391 J=1,I
IJ=J+(I*I-I)/2
GO TO (150,151),IUD
150 H(I,J)=H(I,J)+HUP(IJ)
 GO TO 152
151 H(I,J)=H(I,J)+HDN(IJ)
152 OV(J,I)=OV(I,J)
391 H(J,I)=H(I,J)
 J=38
C TECHNIQUE BELOW TO DIAGONALIZE A MATRIX IS SAME
C AS DESCRIBED IN BAND PROGRAM
121 M=38
 A=10.***(-9)
 DO 7052 I=1,M
 DO 7052 J=1,I
 IJ=I*(I-1)/2+J
 7052 T(IJ)=DV (<J,1)
 CALL DMFSD(T, M,A,IER)
 IF(IER NE 0) GO TO 7200
 CALL DMTDS(M, M,M,T,-1,IER)
 IF(IER NE 0) GO TO 7201
 CALL DMTDS(M, M,M,T,2,IER)
 IF(IER NE 0) GO TO 7202
 GO TO 7053
7200 WRITE(6,7301)
 STOP 5
7201 WRITE(6,7302)
 STOP 5
7202 WRITE(6,7303)
 STOP 5
7301 FORMAT(1X,IER NE 0 IN MFSD*)
7302 FORMAT(1X,IER NE 0 IN MTD$ 1 ST RUN*)
7303 FORMAT(1X,IER NE 0 IN MTD$ 2 ST RUN*)
7053 CONTINUE
 DO 7150 I=1,M
 DO 7150 J=1,I
 IJ=I*(I-1)/2+J
 7150 T(IJ)=H(J,I)
 CALL DIGEN(T, X1,M,0)
 DO 7151 I=1,M
 IJ=I*(I-1)/2+I
 7151 XL(I)=T(IJ)
 DO 500 IR=1,M
 DO 500 JR=1,IR
 IJ=(IR*IR-IR)/2+JR
 OV(IR,JR)=OV(IJ)
 500 OV(JR,IR)=OV(IR,JR)
 IF(NM*EQ,1) EMIN=XL(29)-0.05
 DO 502 L=1,M
 QN=0.
 DO 501 IR=1,M
 DO 501 JR=1,M
 QN=QN+X1(IR,L)*OV(IR,JR)*X1(JR,L)
 501 DO 502 IR=1,M
 IF(ITER GT 10)GO TO 502
IF(NM.NE.1)GO TO 502
EVAL(ITER,IR)=XL(1R)

502 X1(1R,L)=X1(1R,L)/SQRT(QN)

123 WRITE(6,221)
WRITE(6,235) (XL(J),J=1,38)

235 FORMAT(1X,10F13.7)

221 FORMAT(1H)
WRITE(6,221)
WRITE(6,221)

122 MN=(M*M+M)/2
M=38
GO TO (153,154),IUD

C DENS IS SAME AS IN BAND PROGRAM (NOT LISTED BELOW)
153 CALL DENS(XL,KX,KY,KZ,KMX,WT,SUM,SWUP,EN,NEN,
1 DEN,NB1,NB2)

C PINT OBTAINS NEW COULOMB FOURIER COEF
CALL PINT(X1,XL,RSQ,DKUP,KNMAX,M,H,MN,WT,BZU,EF)
GO TO 155

154 CALL DENS(XL,KX,KY,KZ,KMX,WT,SUM,SW,EN,NEN,
1 DEN,NB1,NB2)

CALL PINT(X1,XL,RSQ,DKDN,KNMAX,M,H,MN,WT,BZD,EF)

155 CONTINUE

120 CONTINUE

RH0=5.28

C FERMI SAME AS IN BAND PGM. ! NOT LISTED BELOW)
CALL FERMI(SWUP,EN,RHO,NEN,NB1,NB2,DEN,EF)

RHO=4.72

C DO 156 IUD=1,1500
DO 156 IUD=1000,3000

156 WRITE(6,157) EN(IUD),SWUP(7,IUD),SWUP(8,IUD),

157 FORMAT(1X,F13.7,10X,2F13.7,10X,2F13.7)

C CALCULATE THE ITERATED CHARGE DENSITY COEFFICIENT

BZ=BZU+BZD

DO 378 KN=1,KNMAX

DK(KN)=DKUP(KN)+DKDN(KN)

CADS=-4.0*CON(KN)*ACONST**3/SUMW

DK(KN)=DK(KN)*CADS

DKUP(KN)=DKUP(KN)*CADS

DKDN(KN)=DKDN(KN)*CADS

II=IX(KN)**2+IY(KN)**2+IZ(KN)**2+1

IF(KN.NE.1) GO TO 66266

C CALCULATE RH0(0) WHICH IS NO. OF ELECTRONS IN

CRYSTAL/OMEGA, THEN OBTAIN NO. OF ELECTRONS

BZ IS CHANGE IN K=0,0,0) COULOMB POT. FOURIER COEF

BZ=-16.0/3.0*CON(1)/ACONST**3*BZ/SUMW*3.14159265

1 -VK0(1)

WRITE(6,9995) DK(1)

9995 FORMAT(1X,*RHO(0)=*,E16.8)

C BZ IS CHANGE IN K=0,0,0) COULOMB POT. FOURIER COEF

BZ=-16.0/3.0*CON(1)/ACONST**3*BZ/SUMW*3.14159265

1 -VK0(1)

WRITE(6,9967) BZ

9967 FJRMAT(1X,*DK(1)=*,E16.8)
DK(1)=DZ
GO TO 378

66266 CONTINUE

C ACCELERATE CONVERGENCE BE TAKING SMALL CHANGE IN RHO
DKUP(KN)=DKUP(KN)*FACT+(1.0-FACT)*RHOOU(KN)
DKDN(KN)=DKDN(KN)*FACT+(1.0-FACT)*RHOOD(KN)
DK(KN)=FACT*DK(KN)+(1,-FACT)*VM(II)

378 CONTINUE

C XINT OBTAINS CHANGE IN EXCHANGE COEF IN XRUP AND
C XRDN FOR NEXT ITERATION
CALL XINT(DKUP,XRUP,CON,KNMAX,ACONST,1)
CALL XINT(DKDN,XRDN,CON,KNMAX,ACONST,2)
AT0=VK0(1)
AT1=VK(1)
C CONVERT FROM RHO(K) TO V(K)
WRITE(6,223)

1111 CONTINUE
WRITE(6,32211)

32211 FORMAT(6X,'NUCLEAR*',3X,'EX UP*',6X,'EX DN*',3X,
1' RHOOU*',3X,'RHOOD',
5X,'ELE',15X,'DK(KN)**,13X,'DVUP*',13X,'DVDN')
DO 379 KN=1,KNMAX
I=IX(KN)*IX(KN)+IY(KN)*IY(KN)+IZ(KN)*IZ(KN)
K=IX(KN)
ASQ=II
II=II+1
VM(II)=DK(KN)
ASQ=ASQ*39.478418/ACONST**2
IF(KN.EQ.1)GO TO 379
DK(KN)=-25.132741*(DK(KN)-VK0(KN))/ASQ
ATQ=-25.132741/ASQ*28.0*4./ACONST**3
AT0=-25.132741/ASQ*VK0(KN)
AT1=VK(KN)
ATU=-25.132741/ASQ*RHOOU(KN)
ATD=-25.132741/ASQ*RHOOD(KN)
XRRKU=XRUP(KN)+RKUP(KN)
XRRKD=XRDN(KN)+RKDN(KN)
379 WRITE(6,100) IX(KN),IY(KN),IZ(KN),ATQ,VX0UP(KN),
1 VX0(KN),ATU,ATD,AT0,AT1,DK(KN),RKUP(KN),
2 XRUP(KN),RKDN(KN),XRDN(KN),XRRKU,XRRKD
100 FORMAT(1X,12,2I1,14F9.5)
WRITE(6,223)

223 FORMAT(1H1,*ITERATED COEFFICIENTS*)
ITER=ITER+1
REWIND 4
REWIND 1
REWIND 2
REWIND 8
WRITE(7,236)(OK(IRLV),IRLV=1,KNMAX)
DO 9992 I=1,KNMAX
9992 DUM1(I)=XRUP(I)+RKUP(I)
WRITE(7,236)(DUM1(I),I=1,KNMAX)
DO 9991 I=1,KNMAX
SUBROUTINE PINT(XI,XL,RSQ,RH0,KNMAX,MM,H,MN,WT,BZ,FE
C THIS SUBROUTINE OBTAINS COULOMB POT. FOURIER COEF
REAL * 8 H,XI,XL
DIMENSION XL(MM)
DIMENSION XI(MM,MM),RHO(KNMAX),H(MM,MM),RSQ(MN)
COMMON/LCS/SIJ(51,741),VK0(620),VX0(620),VM(200),
* SW(8,3000),EN(3000),SWUP(8,3000),RHO0U(51),
1 RHO0D(51),VM0(800),
1 VW(200),IX(620),IY(620),IZ(620),IMAX,KKMAX
DO 121 IRLV=1,KNMAX
ERQ=0.
DO 123 1=1,MM
DO 123 J=1,1
IJ=(I*I-I)/2+J
H(I,J)=SIJ(IRLV,IJ)
C IF(IRLV.EQ.1)H(I,J)=RSQ(IJ)
123 H(J,I)=H(I,J)
DO 125 IN=21,38
C SUM ONLY OVER ENERGY EIGENVALUES BELOW FERMI ENERGY
IF(XL(IN).GT.FERMIE) GO TO 125
DO 122 11=1,38
DO 122 12=1,38
122 ERO=ERO+XI(I1,IN)*H(I1,I2)*X1(I2,IN)
125 CONTINUE
121 RHO(IRLV)=RHO(IRLV)+WT*ERO
ERO=0.0
C OBTAIN NO. OF ELECTRONS IN CRYSTAL/OMEGA FROM R**2
DO 23 I=1,MM
DO 23 J=1,1
IJ=I*(I-1)/2+J
H(I,J)=RSQ(IJ)
23 H(J,I)=H(I,J)
DO 25 IN=21,38
IF(XL(IN).GT.FERMIE) GO TO 25
DO 22 I1=1,38
DO 22 I2=1,38
22 ERO=ERO+X1(I1,IN)*H(I1,I2)*X1(I2,IN)
25 CONTINUE
21 BZ=BZ+WT*ERO
RETURN
END

SUBROUTINE SORT(K,L,M)
C THIS SUBROUTINE ASSURES K.GE.L.GE.M
IF(L.GE.M)GO TO 401
KK=L
L=M
M=KK
401 IF(K.GE.M)GO TO 402
KK=K
K=L
L=M
M=KK
402 IF(K.GE.L)GO TO 403
KK=K
K=L
L=KK
403 RETURN
END

SUBROUTINE WEIG(KA,KB, KC,KM,W)
C COMPUTES LATTICE WEIGHTS
KN = 3*KM/2
IF (KA) 1,1,2
1 W = 0.020833333
GO TO 50
2 W = 1.
IF (KA-KM) 6,3,3
3 W = W*.5
KD = KA+KB+KC
IF (KD-KN) 9,4,4
4 W = W*.5
GO TO 9
6 KD = KA+KB+KC
IF (KD-KN) 9,7,7
7 W = W*.5
9 IF (KC) 10,10,14
10 W = W*.5
IF (KB) 11,11,12
11 W = W*.25
GO TO 50
12 IF (KA-KB) 13,13,50
13 W =W*.5
GO TO 50
14 IF (KB-KC) 15,15,17
15 W=W*.5
IF (KA-KB) 16,16,50
16 W = W*.33333333
GO TO 50
17 IF (KA-KB) 18,18,50
18 W = W*.5
50 CONTINUE
RETURN
END
SUBROUTINE XINT(VK,RK,CON,KNMAX,ACONST,NUD)
C THIS SUBROUTINE FINDS CHANGE IN EXCHANGE COEF.
DIMENSION VK(1),RK(1),CON(1)
COMMON/LCS/SIJ(51,741),VK0(620),VX0(620),VM(200),*
 SW(8,3000),EN(3000),SWUP(9,3000),RHO0U(51),*
 RH0D(51),VMO(800),
 VW(200),IX(620),IY(620),IZ(620),IMAX,KKMAX
C SIXPI = -6.*((3/4 PI)** 1/3
SIXPI=-6.0*(3.0/(4.0*3.14159265))**3.3333333
VOL=ACONST**3/4.
ELEC=28.0
C=VOL/ELEC
DH=0.
DO 1 KN=2,KNMAX
 I=IX(KN)
 J=IY(KN)
 K=IZ(KN)
 II=I*I+J*J+K*K+1
 GO TO (3,4),NUD
3 DH=DH+VK(KN)**2-RHOOU(KN)**2
 GO TO 5
4 DH=DH+VK(KN)**2-RH0D(KN)**2
5 CONTINUE
 RHO=0.
2 CONTINUE
 RHO=2./3.*C*RHO
 GO TO (6,7),NUD
6 RHO=VK(KN)-RHOOU(KN)-RHO
 GO TO 8
7 RHO=VK(KN)-RHOOD(KN)-RHO
8 CONTINUE
 RHO=C**.6666667*RHO/3.
 RHO=SIXPI*RHO
1 RK(KN)=RHO
 RK(1)=-2.*0/9.0*C**1.66666666*DH*SIXPI
RETURN
END
<table>
<thead>
<tr>
<th>0.33400583E 00</th>
<th>5.00</th>
<th>1.00</th>
<th>1.00</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.28594154E 00</td>
<td>4.00</td>
<td>4.00</td>
<td>0.0</td>
<td>2</td>
</tr>
<tr>
<td>0.26321119E 00</td>
<td>5.00</td>
<td>3.00</td>
<td>1.00</td>
<td>1</td>
</tr>
<tr>
<td>0.25641245E 00</td>
<td>6.00</td>
<td>0.0</td>
<td>0.0</td>
<td>3</td>
</tr>
<tr>
<td>0.25641245E 00</td>
<td>4.00</td>
<td>4.00</td>
<td>2.00</td>
<td>1</td>
</tr>
<tr>
<td>0.23240036E 00</td>
<td>6.00</td>
<td>2.00</td>
<td>0.0</td>
<td>2</td>
</tr>
<tr>
<td>0.21715814E 00</td>
<td>5.00</td>
<td>3.00</td>
<td>3.00</td>
<td>1</td>
</tr>
<tr>
<td>0.21250826E 00</td>
<td>6.00</td>
<td>2.00</td>
<td>2.00</td>
<td>1</td>
</tr>
<tr>
<td>0.19574744E 00</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
<td>1</td>
</tr>
<tr>
<td>0.18481606E 00</td>
<td>5.00</td>
<td>5.00</td>
<td>1.00</td>
<td>1</td>
</tr>
<tr>
<td>0.18481606E 00</td>
<td>7.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1</td>
</tr>
<tr>
<td>0.18143946E 00</td>
<td>6.00</td>
<td>4.00</td>
<td>0.0</td>
<td>2</td>
</tr>
<tr>
<td>0.16908926E 00</td>
<td>6.00</td>
<td>4.00</td>
<td>2.00</td>
<td>1</td>
</tr>
<tr>
<td>0.16088361E 00</td>
<td>7.00</td>
<td>3.00</td>
<td>1.00</td>
<td>1</td>
</tr>
<tr>
<td>0.16088361E 00</td>
<td>5.00</td>
<td>5.00</td>
<td>3.00</td>
<td>1</td>
</tr>
<tr>
<td>0.14886010E 00</td>
<td>8.00</td>
<td>0.0</td>
<td>0.0</td>
<td>3</td>
</tr>
<tr>
<td>0.14248145E 00</td>
<td>7.00</td>
<td>3.00</td>
<td>3.00</td>
<td>1</td>
</tr>
<tr>
<td>0.14047658E 00</td>
<td>8.00</td>
<td>2.00</td>
<td>0.0</td>
<td>2</td>
</tr>
<tr>
<td>0.14047658E 00</td>
<td>6.00</td>
<td>4.00</td>
<td>4.00</td>
<td>1</td>
</tr>
<tr>
<td>0.13300311E 00</td>
<td>8.00</td>
<td>2.00</td>
<td>2.00</td>
<td>1</td>
</tr>
<tr>
<td>0.13300311E 00</td>
<td>6.00</td>
<td>6.00</td>
<td>0.0</td>
<td>2</td>
</tr>
<tr>
<td>0.12790388E 00</td>
<td>7.00</td>
<td>5.00</td>
<td>1.00</td>
<td>1</td>
</tr>
<tr>
<td>0.12790388E 00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>1</td>
</tr>
<tr>
<td>0.12629265E 00</td>
<td>6.00</td>
<td>6.00</td>
<td>2.00</td>
<td>1</td>
</tr>
<tr>
<td>0.12024146E 00</td>
<td>8.00</td>
<td>4.00</td>
<td>0.0</td>
<td>2</td>
</tr>
<tr>
<td>0.11607844E 00</td>
<td>7.00</td>
<td>5.00</td>
<td>3.00</td>
<td>1</td>
</tr>
<tr>
<td>0.11607844E 00</td>
<td>9.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1</td>
</tr>
<tr>
<td>0.11475563E 00</td>
<td>8.00</td>
<td>4.00</td>
<td>2.00</td>
<td>1</td>
</tr>
<tr>
<td>0.10975969E 00</td>
<td>6.00</td>
<td>6.00</td>
<td>4.00</td>
<td>1</td>
</tr>
<tr>
<td>0.10629624E 00</td>
<td>9.00</td>
<td>3.00</td>
<td>1.00</td>
<td>1</td>
</tr>
<tr>
<td>0.10099751E 00</td>
<td>8.00</td>
<td>4.00</td>
<td>4.00</td>
<td>1</td>
</tr>
<tr>
<td>0.98071277E-01</td>
<td>9.00</td>
<td>3.00</td>
<td>3.00</td>
<td>1</td>
</tr>
<tr>
<td>0.98071277E-01</td>
<td>7.00</td>
<td>7.00</td>
<td>1.00</td>
<td>1</td>
</tr>
<tr>
<td>0.98071277E-01</td>
<td>7.00</td>
<td>5.00</td>
<td>5.00</td>
<td>1</td>
</tr>
<tr>
<td>0.97134292E-01</td>
<td>8.00</td>
<td>6.00</td>
<td>0.0</td>
<td>2</td>
</tr>
<tr>
<td>0.97134292E-01</td>
<td>10.00</td>
<td>0.0</td>
<td>0.0</td>
<td>3</td>
</tr>
<tr>
<td>0.93563914E-01</td>
<td>10.00</td>
<td>2.00</td>
<td>0.0</td>
<td>2</td>
</tr>
<tr>
<td>0.93563914E-01</td>
<td>8.00</td>
<td>6.00</td>
<td>2.00</td>
<td>1</td>
</tr>
<tr>
<td>0.91058910E-01</td>
<td>7.00</td>
<td>7.00</td>
<td>3.00</td>
<td>1</td>
</tr>
<tr>
<td>0.91058910E-01</td>
<td>9.00</td>
<td>5.00</td>
<td>1.00</td>
<td>1</td>
</tr>
<tr>
<td>0.78407812E 00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4</td>
</tr>
<tr>
<td>0.22474966E 01</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1</td>
</tr>
<tr>
<td>0.17495632E 01</td>
<td>2.00</td>
<td>0.0</td>
<td>0.0</td>
<td>3</td>
</tr>
<tr>
<td>0.96699965E 00</td>
<td>2.00</td>
<td>2.00</td>
<td>0.0</td>
<td>2</td>
</tr>
<tr>
<td>0.73698688E 00</td>
<td>3.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1</td>
</tr>
<tr>
<td>0.68397599E 00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>1</td>
</tr>
<tr>
<td>0.53312743E 00</td>
<td>4.00</td>
<td>0.0</td>
<td>0.0</td>
<td>3</td>
</tr>
<tr>
<td>0.45363683E 00</td>
<td>3.00</td>
<td>3.00</td>
<td>1.00</td>
<td>1</td>
</tr>
<tr>
<td>0.43798751E 00</td>
<td>4.00</td>
<td>2.00</td>
<td>0.0</td>
<td>2</td>
</tr>
<tr>
<td>0.37202871E 00</td>
<td>4.00</td>
<td>2.00</td>
<td>2.00</td>
<td>1</td>
</tr>
<tr>
<td>0.33435315E 00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>1</td>
</tr>
<tr>
<td>0.33435315E 00</td>
<td>5.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1</td>
</tr>
<tr>
<td>0.28610069E 00</td>
<td>4.00</td>
<td>4.00</td>
<td>0.0</td>
<td>2</td>
</tr>
</tbody>
</table>
VITA

Julius Patrick Langlinais was born on September 5, 1945 in New Iberia, Louisiana. He graduated from New Iberia High School in 1963. He received the degree of Bachelor of Science in Physics from the University of Southwestern Louisiana, Lafayette, Louisiana, in 1967. He received the degree of Master of Science from Louisiana State University, Baton Rouge, Louisiana, in 1970 in the field of Physics. He is now a candidate for the degree of Doctor of Philosophy in the Department of Physics and Astronomy.
EXAMINATION AND THESIS REPORT

Candidate: Julius Patrick Langlinais

Major Field: Physics

Title of Thesis: Energy Bands of Ferromagnetic Nickel

Approved:

[Signature]

Major Professor and Chairman

[Signature]

Dean of the Graduate School

EXAMINING COMMITTEE:

[Signatures]

Date of Examination:

[Signature] July 16, 1971