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ABSTRACT 

Aquaculture has grown rapidly as the world’s wild-caught fisheries approach their 

sustainable limits. Feed conversion in aquaculture is more efficient than in terrestrial 

animals. Thus with a growing world population, seafood produced through aquaculture 

can provide a high quality source of protein. Aquaculture systems rely on high stocking 

densities and commercial feeds to increase production and profitability, which increase 

animal stress and susceptibility to disease. Veterinary drugs are commonly used to 

prevent and treat disease outbreaks. Several of these drugs are banned for use in 

shrimp farming in the United States. These drugs can be toxic to humans, with side 

effects that can be fatal. There is also an increased risk of developing antibiotic resistant 

strains of human pathogens, including Bacillus and Vibrio species. The Food and Drug 

Administration is responsible for the safety of all fish and fishery products entering the 

United States, but funding for testing is limited. Examples of drugs with high 

enforcement priority include chloramphenicol, nitrofurans, fluoroquinolones and 

quinolones, malachite green, and steroid hormones. State testing has repeatedly 

resulted in the detection of banned drugs. The objective of this study was to quantify 

veterinary drug residues in commercially available frozen shrimp.  

Imported, farm-raised shrimp samples were purchased from local supermarkets 

and include shrimp from seven brands and six different countries. A preliminary 

screening was done using rapid ELISA kits to test for chloramphenicol, malachite green, 

nitrofurans, and fluoroquinolones. Samples tested positive for malachite green and 

fluoroquinolones; all samples tested negative for chloramphenicol and nitrofurans. 

ELISA results were confirmed using liquid chromatography with tandem mass 
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spectrometry. Drug residues in shrimp samples were confirmed for chloramphenicol at 

concentrations ranging from 0.30 to 0.49 ppb, and enrofloxacin from 1.22 to 5.95 ppb. 

Results suggest that current testing by the FDA may not be adequately addressing 

imported seafood safety. Concurrently analyzed wild-caught shrimp from the US tested 

negative for all veterinary drugs considered.	
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CHAPTER 1. LITERATURE REVIEW 

1.1 Introduction 

Aquaculture has grown rapidly as the world’s fisheries have reached their 

sustainable limits. Aquaculture systems rely on high stocking densities and commercial 

feeds to increase production and profitability, which increases animal stress and 

susceptibility to disease. Veterinary drugs, including those that are known to cause 

adverse human health effects, are commonly used to prevent and treat disease 

outbreaks, making routine testing essential. 

Several veterinary drugs are illegal for use in food-producing animals in the United 

States because of their toxicity to humans, their linkage to fatal diseases, and antibiotic 

resistance in human pathogens including Bacillus and Vibrio species. The Food and 

Drug Administration is responsible for the safety of all fish and fishery products entering 

the United States, but funding for testing is limited. State testing has repeatedly resulted 

in the detection of banned veterinary drugs. Current testing and enforcement may be 

insufficient. Contaminated product is still entering the country because exporting 

countries often don’t have sufficient resources for alternative means of combating 

disease.  

Previous studies have focused on the use of veterinary drugs in aquaculture, 

including the history of their use, their impacts on the environment and human health, 

the toxicity of historically used antimicrobials, and alternatives to unsafe veterinary 

drugs. Methods have been developed for the rapid screening of animal and food 

samples using enzyme-linked immunosorbent assays (ELISA), and several methods 

have been developed for the detection of veterinary drug residues. The best and most 
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sensitive method is high-pressure liquid chromatography (HPLC) with tandem mass 

spectrometry (MS/MS). The instrument significantly reduces background signal and 

allows measurement at very low levels. 

The purpose of this study was to screen for and confirm the presence of illegal 

veterinary drug residues in shrimp. Commercially available frozen shrimp samples were 

tested for chloramphenicol, fluoroquinolones, malachite green, and nitrofurans, which 

are drugs that have high enforcement priority in the United States due to their adverse 

health affects. The methods used to confirm the presence of residues were procedures 

preferred by FDA laboratories for the detection of drug and chemical residues in food. 

In this thesis, we describe a series of experiments to screen for the four 

aforementioned veterinary drugs using ELISA and confirm positive results using LC-

MS/MS. A review of related literature, description of methods used, results, and a 

discussion of the results follow.  

1.2 Shrimp Aquaculture 

Aquaculture is the farming of aquatic organisms, including both plants and 

animals, with the implication of some form of intervention in the rearing process, such 

as regular stocking, feeding, or protection from predators. The primary purpose of 

aquaculture is for food production, but it is also used for recreation, stock restoration, 

and biofuel production. Information about the early history of aquaculture is unclear; 

however, there is evidence of commercial fish farming in Egypt as early as 2500 BC and 

detailed records of aquaculture in China from 1100 BC 1. Early aquaculture production 

was characterized by low stocking densities and utilized minimal inputs in the form of 

land, water, feed, fertilizers, and energy. 
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Interest in the culture of shrimp was prompted by an increased market demand 

and the inability of capture fisheries to meet that demand 2. The shrimp farming industry 

experienced rapid growth and diversification in the 1980s 1with market expansion 

occurring in economically advanced countries 2. The export market and opportunity to 

earn foreign exchange attracted support from individual governments and international 

assistance agencies and investment by private industry 2. Developing countries were 

provided financial assistance from the World Bank system, beginning as capital 

investment and expanding to include extension, research, training, and technology 

development, with the primary recipients being China and India 1.  

The rapid growth in population during the 20th century contributed to an 

increased demand for seafood. As capture fisheries reached their maximum sustainable 

limits at 90 million metric tons per year, the aquaculture industry has grown at an 

accelerated rate to become a major contributor to the world fish supply 3. Over the last 

five decades, the world fish food supply has grown dramatically due to steady growth in 

fish production and improved distribution channels. Between 1980 and 2010, world food 

fish production by aquaculture grew by nearly 12 times. In 2011, annual global 

aquaculture production accounted for 41% of total world fisheries production by weight4. 

In 2012, more than 91% of the total supply of edible fishery products in the United 

States was from imports, and shrimp imports, valued at $4.5 billion, accounted for 27 

percent of the value of total edible imports 5.  

Protein-energy malnutrition is a leading contributor to the global burden of 

disease 6. Almost 20% of the world population’s consumption of animal protein intake is 

from finfish and shellfish 4. Seafood production from aquaculture provides an essential 
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source of protein for the growing human population3, thus making aquaculture an 

important animal food-producing sector and important cash crop in both developed and 

developing countries7. In 2012, the major exporters of shrimp to the US (by volume) 

were Thailand, Ecuador, Indonesia, India, Viet Nam, and China 5. The contribution of 

aquaculture to the world’s production of seafood is expected to increase. Aquaculture is 

a viable option in developing nations because it offers opportunities to alleviate poverty 

by increasing employment and community development and reduces the 

overexploitation of natural resources 8. Seafood is a more efficient protein source 

compared to other major commercial species; the feed conversion ratio (FCR) for fish is 

lower, meaning that fish requires less feed mass input to produce the same amount of 

body mass output. Fish do not expend energy to maintain body temperature, they use 

less energy to maintain their position, and lose less energy in protein catabolism and 

excretion of nitrogen.  

In shrimp culture there are differences among various species with respect to 

environmental requirements, feeding, behavior, and compatibility with other species 2. 

Considerations to take into account include water salinity (10-40 ppt), temperature 

tolerance (18-33 °C), the character of soil in the culture facilities, feed quality, and 

response to high-density culture 2. The compatibility of different penaeid species in 

polyculture is highly dependent upon these factors, but rotational production of different 

species can be done according to seasonal changes of salinity and temperature 2. The 

most common species of aquacultured shrimp are the white leg (Penaeus vannamei) 

and black tiger (Peneaus monodon) species. P. vannamei originate from the eastern 

Pacific Ocean, from Sonora, Mexico to Peru, and are ideal for farming because of their 
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ability to grow in very shallow water 9. These shrimp grow up to 230 mm in length and 

have a maximum carapace length of 90 mm. P. vannamei is a highly euryhaline species 

that can tolerate salinities ranging from 0-50 ppt and temperatures from 22-32 °C 2. P. 

monodon are native to the western Indo-Pacific, from southeast Africa to Pakistan and 

Japan 9. The maximum length of these shrimp is 336 mm and they weigh from 60 to 

130 grams 9. P. monodon is euryhaline and can withstand almost fresh-water 

conditions, although 10-25 ppt is considered optimum, and their temperature tolerance 

ranges from 12-37.5 °C 2.  

Shrimp culture is mainly carried out using traditional pond systems. While 

traditional systems utilized natural stocking through the intake of tidal water carrying 

large numbers of shrimp larvae, hatchery units and nursery ponds are now used to grow 

larvae to an advanced juvenile stage before transfer to production ponds. Although 

earthen ponds are the predominate system in shrimp aquaculture, farms with semi-

intensive culture systems often have nurseries and rearing ponds with concrete dikes 2. 

Recirculating aquaculture tank production systems are generally used for intensive 

shrimp and prawn culture, where water is continually exchanged and recycled to 

maintain dissolved oxygen levels and remove metabolic waste products. Biological 

filtration using nitrifying bacteria and solids removal are important components of 

recirculating systems. Certain species can be produced using raceway systems, in 

which water is exchanged multiple times daily 2.  

1.3 Veterinary Drug use in Shrimp Aquaculture 

Worldwide, aquaculture systems continue to increase in number and intensity in 

response to the rising demand for aquaculture products. 3. The tremendous increase in 
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aquaculture production has been accompanied by potentially detrimental health effects 

in human and animals associated with the dissemination of considerable quantities of 

veterinary drugs into the environment 10. As has occurred in other types of animal 

husbandry, the expansion and intensification of commercial aquaculture has increased 

stressors under which fish are being raised, resulted in the prevalence of pathogens in 

both culture systems and the natural aquatic environment, and made imperative the use 

of veterinary medicines to maintain healthy stocks, prevent and treat disease outbreaks, 

and maximize yield 8,11. The intensification of culture methods is accomplished through 

high stocking densities, the use of medicated feeds, and the heavy application of 

pesticides. 3. The types of medication used to treat aquatic species include vaccines, 

antibiotics, antiparasitics, antifungal agents, and immunostimulants 12. The use of these 

products, with the intent to improve health management and biosecurity within 

aquaculture, has made it possible to achieve great advances in aquaculture production 

capacity 8.  

In developing countries, the use of a veterinary drugs is prevalent in intensive 

marine shrimp farming to achieve sustainable production. Important issues that effect 

drug use in the aquaculture industry include the integrity of the environment, the safety 

of target animals and humans who consume them, and the safety of persons who 

administer the compounds. There are three primary ways in which antibiotics are used 

in aquaculture: 1) therapeutically, to treat existing disease, 2) prophylactically, at 

subtherapeutic concentrations, and 3) subtherapeutically, for production 

enhancement13. Antibiotics are typically administered in the water, often as components 

of fish feed, and are occasionally injected 13.  
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1.4 Impact on the Environment and Human Health 

Using large amounts of a variety of antibiotics, including non-biodegradable 

antibiotics and those that are important for use in human medicine, ensures that they 

remain in the aquatic environment and exert selective pressure for long periods of 

time10. Veterinary drugs are deposited in the environment in the form of uneaten food 

and fish waste. Thus, they can penetrate into the sediment, be carried by currents to be 

dispersed over a wide area, and be ingested by wild fish and shellfish 10. Veterinary 

drug use in aquaculture can result in a reduction in mortality during disease events and 

an overall better survival rate 14; however, it is important to consider the potential 

negative impacts, including environmental degradation, the development of 

antimicrobial resistance among bacterial pathogens, and toxicological effects on non-

target organisms. 

1.4.1 Environmental Impacts 

The benefits of shrimp aquaculture are numerous, but adequate environmental 

safeguards must be in place to prevent environmental degradation. The main 

environmental effects of marine aquaculture are caused by the introduction of invasive 

species that threaten biodiversity, organic pollution and eutrophication, chemical 

pollution, and habitat modification 15. The presence of unconsumed fish feed and 

metabolic waste increases the input of nitrogen, carbon, and phosphorous into the 

aquaculture environment and results in eutrophication 10. Furthermore, aquaculture 

environments and the fish and shellfish harvested from them can have elevated levels 

of antibiotic residues, antibiotic-resistant bacteria, and organic pollutants compared to 

their wild counterparts 3.  



	
  

	
  
	
  

8 

The existence of large amounts of antibiotics in the water and sediment can 

affect the flora and plankton in culture systems, causing shifts in the diversity of the 

microbial communities and affecting the structure and activity of microbiota 16. Several 

groups of veterinary drugs are known to be of environmental concern because of their 

historical, measurable impacts on the environment 17. The heavy use of antibiotics 

inhibits the microbiota at the base trophic level in the water and sediment from 

performing important metabolic functions, promoting algal blooms and anoxic conditions 

that could potentially lead to impacts on fish and human health 10. 

1.4.2 Antimicrobial Resistance 

Antibiotics are important for human therapy as well as disease management in 

aquaculture, but their prudent and responsible use is essential because of their ability to 

pollute the environment and challenge microbial populations. The widespread use of 

antimicrobial agents in shrimp culture has led to accumulation of residues in the water 

and sediment and the emergence of antimicrobial resistance in in environmental 

bacteria 18. It has also resulted in an increase of antimicrobial resistance in shrimp 

pathogens and the transfer of resistance determinants to terrestrial bacteria and human 

pathogens 19,20. Antimicrobial resistance is a major public health concern and is widely 

recognized as a priority issue for the aquaculture industry. Antibiotic residues and 

resistant bacteria, including resistant strains of Vibrio and Bacillus species, have been 

detected in Vietnamese shrimp ponds 19. The extent of antimicrobial resistance resulting 

from antimicrobial use in aquaculture is yet to be determined 21.  
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There are two types of hazards associated with antimicrobial resistance, as 

identified by the 1996 Joint FAO/OIE/WHO Expert Consultation on Antimicrobial Use in 

Aquaculture and Antimicrobial Resistance: the development of acquired resistance in 

aquatic bacteria that can infect humans, and the development of acquired resistance in 

bacteria in aquatic environments whereby such resistant bacteria can act as a reservoir 

of resistant genes that can be further disseminated and ultimately end up in human 

pathogens 22. The human health consequences of antimicrobial resistance in bacteria 

include an increased frequency of treatment failures and an increased severity of 

infection, which can lead to longer illness duration, increased frequency of bloodstream 

infections, and higher mortality 22. High-risk populations include individuals working in 

aquaculture facilities, populations living around aquaculture facilities, and consumers 

who regularly eat aquaculture products 3. Although there are no documented cases of 

human infections from antimicrobial resistant bacteria from aquaculture products 14, 

there is a need for better information about the potential for human exposure to 

contaminants and human health risks 3. 

1.4.3 Residues of Food Safety Concern 

In addition to posing environmental problems and creating antimicrobial 

resistance, the use of veterinary drugs or their residues in commercialized shrimp 

products can cause serious toxicity. Acute and chronic toxicities have been evaluated 

and are well documented in literature 13. In most cases, the amount of drug residues 

ingested by an individual who consumes contaminated animal tissues will be 

considerably less than that consumed as a primary drug 23. The lack of documented 

cases of direct toxicity from antibiotics and their metabolites in animal tissue indicates 
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that the probability of occurrence is extremely low 24,25. There is exception in 

chloramphenicol, a drug that causes dose-independent aplastic anemia 13. 

The United States Food and Drug Administration’s Center for Veterinary 

Medicine (CVM) is responsible for setting enforcement priorities for drug use in shellfish 

for human consumption. Enforcement priorities are based on the safety status of the 

compound, user safety, environmental safety, and the extent of data available for 

enforcement priority determination. Known or suspected carcinogens and known 

serious toxicological hazards are high priority compounds. Examples of drugs with high 

enforcement priority include chloramphenicol, nitrofurans, fluoroquinolones and 

quinolones, malachite green, and steroid hormones 26. 

1.4.4 Chloramphenicol 

Chloramphenicol 

 
Figure 1.1: Chemical structure of chloramphenicol 

Introduced in 1949, chloramphenicol was the first broad-spectrum antibiotic 27. It 

was isolated from Streptomyces venezuelae in soil from Venezuela and was widely 

used because of its high efficacy against a wide range of organisms, low cost, and ease 

of synthesis and administration 28. In the early 1950s, serious toxicities related to 

chloramphenicol administration were reported in adults and children, and its use began 

to decline. Two types of chloramphenicol toxicity are potentially fatal: idiosyncratic 
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aplastic anemia and dose-dependent gray baby syndrome. The most common toxicity is 

reversible, dose-dependent bone marrow suppression which occurs due to inhibition of 

mitochondrial membranous protein synthesis and results in immune system 

impairment29. Grey baby syndrome is a potentially fatal disease that can occur in 

children as well as adults and is characterized by abdominal distension, vomiting, 

metabolic acidosis, progressive pallid cyanosis, irregular respiration, hypothermia, 

hypotension, and vasomotor collapse 28. Using the recommended reduced dosage of 

chloramphenicol for infants and neonates can prevent gray baby syndrome 27. The 

development of aplastic anemia after oral administration of chloramphenicol occurs in 

genetically predisposed individuals and is well-established, but must be taken into 

perspective; while fatal aplastic anemia is estimated to occur in one of 24,500 – 40,800 

cases 30, fatal anaphylaxis occurs in one of 67,000 patients treated with penicillin.  

Chloramphenicol is widely used in veterinary medicine for both food and 

companion animals because of its activity against the main veterinary pathogens. While 

it has never been approved for use in food-producing animals in the United States, it is 

used extensively in other countries to treat bacterial infections 28. 

1.4.5 Fluoroquinolones 

               

Figure 1.2: Chemical structures of enrofloxacin and primary metabolite ciprofloxacin 

Enrofloxacin Ciprofloxacin 
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Fluoroquinolones are broad-spectrum antibiotics that are used to treat bacterial 

diseases in aquaculture and have been associated with multiple, severe toxicities, 

including hemolysis, renal failure, thrombocytopenia, and cardiac arrhythmia 31. The 

most commonly observed adverse affects during therapy with fluoroquinolones are 

reactions of the gastrointestinal tract and central nervous system. The development of 

quinolone drugs began with the non-fluorinated drug nalidixic acid in the early 1960s 

and continued in the 1980s with the first 6-fluorinated derivatives, which have enhanced 

activity against Gram-negative bacteria31. 

1.4.6 Malachite Green  

        

Figure 1.3: Chemical structures of malachite green and primary metabolite 
leucomalachite green 

Malachite Green is most commonly known for its use in the dye industry and as a 

therapeutic agent for fish 32. It has been widely used all over the world in the fish 

farming industry as a fungicide, ectoparasiticide, and disinfectant. However, it is highly 

cytotoxic to mammalian cells, with the ability to induce cell transformation and lipid 

peroxidation, thereby acting as a liver tumor enhancing agent 33. Human exposure to 

malachite green occurs most notably through its use as an antifungal agent in 

aquaculture systems. Malachite green is metabolized to leucomalachite green upon 

Malachite  
Green 

	
  

Leucomalachite  
Green 
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absorption into the tissue, thus the method of analysis must be capable of determining 

both compounds to detect its presence in seafood products 32.  

The discovery of toxic health effects of malachite green led to the prohibition of 

its use in food production by the US FDA, but because it is effective, readily available, 

and relatively inexpensive, it has been used in aquaculture since the early 1930s and is 

considered the most effective antifungal agent by many in the fish industry 34. Therefore, 

consumers of farmed fish and workers in the aquaculture industry are at risk for 

exposure to malachite green 32. Malachite green is structurally similar to other 

triphenylmethane dyes, such as gentian violet, which are known to be carcinogenic 35. 

Studies indicate that malachite green causes reproductive abnormalities in rabbits and 

fish 36 and enhances the formation of hepatic tumors in rats 8. Concern over exposure to 

malachite green is attributable to studies suggesting it may cause adverse effects, but 

there is inadequate evidence to evaluate carcinogenicity or determine the risk of 

exposure to the dye 32. 

1.4.7 Nitrofurans 

             

                 Furaltadone         AMOZ 

Figure 1.4: Chemical structures of furaltadone and primary metabolite 3-amino-5-
morpholinomethyl-2-oxazolidinone (AMOZ)  

Nitrofurans are a group of synthetic, broad-spectrum antibiotics characterized by 

the 5-nitrofuran ring in their structure and by their effectiveness against bacteria. The 
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most widely used nitrofurans are furazolidone, furaltadone, nitrofurazone, and 

nitrofurantoin. In the tissue, these compounds metabolize to 3-amino-2-oxazolidinone 

(AOZ), 3-amino-5-methylmorpholino-2-oxazolidinone (AMOZ), semicarbazide (SEM), 

and 1-aminohydantoin (AHD). Detection of nitrofurans is based on the determination of 

the metabolites. Due to concerns about potential carcinogenicity of the drug residues 

and their potential to cause harmful effects on human health, the FDA banned their use 

in food-producing animals in 2002, but residues continue to be found in imported shrimp 

because of their ready availability for veterinary therapy. Animal studies have resulted in 

tumor production from dietary exposure to nitrofurans 37. 

In the United States and Europe, any confirmed concentration of nitrofuran 

residues in edible animal tissues is prohibited, although the European Commission has 

established a maximum residue performance limit (MRPL) of 1µg/kg for nitrofuran 

metabolites 37. Nitrofuran antibiotics are cheap and effective for the promotion of growth 

and prevention of disease and are therefore still used in some countries. This 

necessitates sampling and monitoring procedures in order to ensure consumer safety37. 

Studies on the stability of nitrofuran metabolites have demonstrated that 67-100% of 

residues remain after storage and cooking by a variety of methods 38. 

1.5 Alternatives to Antibiotics in Aquaculture Disease Management  

The need to minimize the use of antibiotics in aquaculture disease management 

is widely recognized by the aquaculture industry and academia, and research has 

focused on methods to reduce the impact of disease in aquaculture 39. The aquaculture 

industry has experienced major losses caused by disease outbreaks, relying on non-

selective chemotherapeutic agents or antimicrobials that not only target the pathogen, 
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but also affect normal flora. Alternatives to antimicrobial agents for the management of 

disease in aquaculture systems include vaccination, immunostimulants, probiotics, 

bioremediators, bacteriophage therapy, and holistic approaches 14. 

Good aquaculture practices (or best aquaculture practices) are essential for the 

reduction of stress and promotion of animal health. The establishment of these 

procedures can substantially reduce issues associated with disease and the need for 

chemotherapeutic intervention 40. Vaccination has proven successful for bacterial 

disease prevention in salmonid aquaculture, but there are few vaccines available for 

shrimp because of the poorly developed immune systems of invertebrates 39. 

Immunostimulants have been used to modulate immune responses in finfish and 

shellfish aquaculture and have the potential to improve resistance against a wide range 

of pathogens 39. Probiotics such as Bacillus, Vibrio, and Pseudomonas spp. are widely 

used in shrimp aquaculture in order to enhance the populations of beneficial 

microorganisms, improve water and sediment quality, suppress pathogenic bacteria, 

stimulate the immune system, and improve digestion 41. The use of bioremediators such 

as nitrifying and photosynthetic bacteria to manage the environment are promising 

alternatives for disease prevention and outbreak management 39. Bacteriophage 

therapy is now being explored in the medical field for treatment of antibacterial-resistant 

pathogens and has potential application in aquaculture. Bacteriophages only lyse target 

bacteria, unlike antibiotics, and would not suppress the beneficial flora 39. 

There are a number of alternative options available for health and disease 

management in aquaculture to reduce reliance upon antimicrobial agents 39. Healthy 

seed supply, probiotic use, optimum water quality maintenance, and lower stocking 
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densities are suggested for the control of disease in shrimp farming 42. The use of 

alternatives to antimicrobial agents in aquaculture is critical for the protection of human 

and animal health and experience in other sectors of animal husbandry has 

demonstrated that these changes can be made without detrimental financial effects 10. 

1.6 Laws and Regulations for Veterinary Drug Use in Aquaculture  

1.6.1 International Regulations 

The issue of antimicrobial resistance among bacterial pathogens caused by the 

use of antimicrobial drugs in aquaculture has been deliberated for a considerable length 

of time, but improved laboratory methods for detecting drug residues around 2001 led to 

heightened concern associated with the use of drugs in aquaculture and disruptions of 

trade in aquaculture products 14. The World Trade Organization’s Agreement on the 

Application of Sanitary and Phytosanitary Measures (SPS Agreement) sets the basic 

rules for food safety and gives countries the right to set their own standards to protect 

the health of their citizens, using whatever measures and inspection methods they 

determine to be appropriate for their consumers. The regulations must be based on 

available scientific evidence and should not be used to favor domestic industry 14.  

At the international level, the Codex Alimentarius Commission (CAC) is 

responsible for providing advice on risk management concerning veterinary drug 

residues. The Joint FAO/WHO Expert Committee on Food Additives (JECFA) provides 

independent scientific advice for risk assessment through the evaluation of available 

data 14. The risk assessment process is used to establish acceptable daily intake (ADI) 

and maximum residue limits (MRLs) to protect the health of consumers and ensure fair 

trade of foods 7. Veterinary drugs with toxic or carcinogenic potential, such as 
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chloramphenicol and nitrofurans, are not evaluated and, therefore, no ADI or MRL is 

established. These drugs are banned for use in food-producing animals in most 

countries 14. Regulatory authorities generally adopt a zero tolerance approach for 

veterinary drugs without an established ADI/MRL, and the major veterinary drugs 

involved are chloramphenicol, nitrofuran metabolites and malachite green 14. 

1.6.2 United States Regulations 

The United States of America is a member of the Codex Alimentarius 

Commission. The United States Food and Drug Administration (FDA) has jurisdiction 

over veterinary drugs and farmed shrimp in the United States. The legal marketing and 

use of veterinary drugs in the US is determined by the Federal Food, Drug, and 

Cosmetic Act (FFDCA) and its amendments 7. Approvals are for specific products and 

include evaluation of human food safety, target animal safety and effectiveness, 

environmental safety, and user safety 43. The agency works with individual states to 

ensure the safety of seafood products, approve drugs and feed additives, monitor 

manufacturing, distribution, and use of fish drugs, provide technical assistance and 

training, and provide the necessary oversight required to ensure fish food products are 

safe, wholesome, and properly labeled 53. 

The US FDA’s Center for Veterinary Medicine (FDA-CVM) animal drugs and 

animal feed and therefore has a critical role in protecting human and animal health in 

the United States. The agency ensures the safety and effectiveness of animal drugs 

and is responsible for the safety of treated seafood products in the US. The CVM 

recognizes that antimicrobial resistance is an important public health issue and 

addresses potential risks associated with the use of antimicrobials in animals through 
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the new animal drug approval process, post-approval monitoring, and surveillance 7. A 

new animal drug is considered to be unsafe and in violation of the law if its use does not 

conform to its FDA approved, conditionally approved, or indexed indications. The 

agency may deny approval if the proposed use of a drug fails to meet FDA’s reasonable 

certainty of no harm standard 7. 

The FDA prohibits the extra-label use of certain drugs or classes of drugs in 

food-producing animals that pose a risk to public health. The following drugs (both 

animal and human formulations), families of drugs, and substances are prohibited for 

extra-label uses in food-producing animals:  

• Chloramphenicol 

• Clenbuterol 

• Diethylstillbestrol 

• Ipronidazole 

• Other nitroimidazoles 

• Furazolidone, Nitrofurazone, other nitrofurans 

• Sulfonamide drugs in lactating dairy cattle 

• Fluoroquinolones 

• Glycopeptides7.  

Typically, the FDA pulls samples randomly from various importers and tests them in 

their own laboratories. If positives are found, an import alert is issued against the foreign 

supplier and all products coming into the country from that supplier must have testing 

done by a private laboratory until multiple shipments pass the specifications for 

antibiotics. 
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CHAPTER 2. MATERIALS AND METHODS 

2.1 Sample Procurement 

Twenty-seven frozen samples of imported, farm-raised shrimp were obtained 

from five retail grocery stores in Baton Rouge, Louisiana. Samples included shrimp from 

Thailand, India, Indonesia, Vietnam, China, Ecuador, Vietnam-Thailand, and India-

Indonesia. Fourteen frozen samples of domestic, wild-caught shrimp were obtained 

from six retail grocery stores in Baton Rouge, LA. Frozen samples were transported to 

the Department of Food Science at Louisiana State University Agricultural and 

Mechanical College in Baton Rouge, LA and were stored at -80°C until further 

processing.  

2.2 ELISA Screening 

ELISA test kits were purchased from Bioo Scientific Corporation (Austin, Texas) 

to screen for four aquaculture drug residues: MaxSignal Chloramphenicol ELISA Test 

Kit (1020-03A), MaxSignal Fluoroquinolone ELISA Test Kit (1024-01), MaxSignal 

Malachite Green/Leucomalachite Green Test Kit (1019-06A), and MaxSignal 

Furaltadone (AMOZ) ELISA Test Kit (1020-03A). The kit components were stored at 

8°C, according to the manufacturer’s instructions. Frozen shrimp samples were 

prepared and analyzed according to the protocols provided with the test kits. Shrimp 

samples were homogenized using a food processor (Kitchen Aid Contour Silver 7 Cup – 

Model #KFP0711CU). Optical densities of samples were measured using a Model 680 

Microplate Reader (Bio-Rad Laboratories, Hercules, CA). Standard curves were 

constructed by plotting the mean relative absorbance (%) obtained from each reference 

standard against its concentration in ng/mL on a logarithmic curve. The mean relative 
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absorbance values for each sample were used to determine the corresponding 

concentration of the tested drug in ppb. 

2.2.1 Chloramphenicol 

 Three grams of the homogenized sample was weighed into 15 mL centrifuge 

tubes, mixed with 6 mL of ethyl acetate, then vortexed for 3 minutes at maximum speed. 

The sample was centrifuged for 5 minutes at 4,000 x g at room temperature and 4 mL of 

the ethyl acetate supernatant was transferred into a new 15 mL centrifuge tube. The 

sample was dried at 60°C using a centrifugal solvent evaporator. The dried residue was 

dissolved in 2 mL of n-hexane and 1 mL of Sample Extraction Buffer was added and 

mixed by vortexing at maximum speed for 2 minutes. The sample was centrifuged for 

10 minutes at 4,000 x g at room temperature and the upper hexane layer was 

discarded. One hundred microliters of the lower aqueous layer was used per well for the 

assay (dilution factor = 5). 

 One hundred microliters of each CAP standard and each sample was added in 

duplicate into different wells. 50 µL of CAP-HRP conjugate was added and the plate 

was incubated for 1 hour at room temperature in the dark. The plate was washed 3 

times with 250 µL of Wash Solution. One hundred microliters of TMB substrate was 

added and the plate was incubated for 20 minutes at room temperature. After 

incubation, 100 µL of Stop Buffer was added to stop the enzyme reaction and the plate 

was read immediately at 450 nm wavelength. 

2.2.2 Fluoroquinolones 

 Fat was not removed from the sample, as per the manufacturer’s instruction. One 

gram of the homogenized sample was weighed into 15 mL centrifuge. Four milliliters of 
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70% methanol was added and vortexed for 10 minutes at maximum speed. The sample 

was centrifuged for 5 minutes at 4,000 x g at room temperature and 0.5 mL of the 

supernatant was transferred to a new 15 mL centrifuge tube. 0.5 mL of Sample 

Extraction Buffer was added and mixed well. Fifty microliters was used for the assay 

(dilution factor = 10). 

 Fifty microliters of each enrofloxacin standard and each sample was added in 

duplicate into different wells. One hundred microliters of Antibody #1 was added and the 

plate was incubated for 30 minutes at room temperature. The plate was washed 3 times 

with 250 µL of Wash Solution. One hundred microliters of TMB substrate was added 

and the plate was incubated for 15 minutes at room temperature. After incubation, 100 

µL of Stop Buffer was added to stop the enzyme reaction and the plate was read 

immediately following the addition of Stop Buffer on a microplate reader at 450 nm 

wavelength. 

2.2.3 Malachite Green 

Two grams of the homogenized sample was weighed into 15 mL centrifuge 

tubes. One milliliter of Sample Extraction Buffer A, 0.4 mL of Sample Extraction Buffer B 

and 6.0 mL of acetonitrile were added and vortexed for 4 minutes at maximum speed. 

The sample was centrifuged for 10 minutes at 4,000 x g and 2 mL of the upper organic 

layer was transferred to a new 15 mL centrifuge tube containing 300 mg of MG Clean 

Up Mix. The sample was vortexed for 1 minute at maximum speed and left at room 

temperature for 10 minutes then centrifuged for 10 minutes at 4,000 x g. One milliliter of 

the supernatant was transferred to a 2 mL microcentrifuge tube and dried. One hundred 

microliters of Oxidant Solution was added to the dried sample and vortexed vigorously 
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for 1 minute, centrifuged for 10 seconds, and left at room temperature for 15 minutes. 

Four hundred microliters of Sample Extraction Buffer C and 650 µL of n-hexane were 

added to the sample and vortexed vigorously for 1 minute. The sample was centrifuged 

at 4,000 x g for 5 minutes and the upper organic layer was discarded. Ninety microliters 

of the lower aqueous layer was used for the assay (dilution factor = 1.5). 

Ninety microliters of each MG standard and each sample was added in duplicate 

into different wells. Thirty microliters of MG-Biotin Conjugate was added and the plate 

was incubated for 30 minutes at room temperature in the dark. The plate was washed 3 

times with 250 µL of Wash Solution. One hundred microliters of TMB substrate was 

added and the plate was incubated for 15 minutes at room temperature. After 

incubation, 100 µL of Stop Buffer was added to stop the enzyme reaction and the plate 

was read immediately at 450 nm wavelength. 

2.2.4 Nitrofurans 

One gram of the homogenized sample was weighed into 15 mL centrifuge tubes. 

0.5 mL of Sample Extraction Buffer, 3.5 mL of distilled water, 0.5 mL of 1 M hydrochloric 

acid (HCl), and 20 µL of 50 mM 2-Nitrobenzaldehyde were added and vortexed for 30 

seconds at maximum speed. The sample were incubated for 3 hours at 50°C and 

vortexed for 5 seconds every hour during the incubation. Five milliliters of 0.1 M 

dipotassium phosphate (K2HPO4), 0.4 mL of sodium hydroxide (NaOH), and 6 mL of 

ethyl acetate were added and vortexed for 30 seconds. The sample was centrifuged at 

4,000 x g for 10 minutes at room temperature and 3.0 mL of the ethyl acetate 

supernatant (corresponding to 0.5 g of the original sample) was transferred into a new 

15 mL centrifuge tube. A centrifugal solvent evaporator was used to dry the sample at 



	
  

	
  
	
  

23 

60°C under reduced pressure. The dried residue was dissolved in 1 mL of n-hexane 

and 1 mL of Sample Extraction Buffer was added and vortexed for 2 minutes. The 

sample was centrifuged at 4,000 x g for 10 minutes at room temperature and 100 µL of 

the lower aqueous layer was used per well for the assay (dilution factor = 2). 

One hundred microliters of each AMOZ standard and each sample was added in 

duplicate into different wells. Fifty microliters of AMOZ-HRP Conjugate was added and 

the plate was incubated for 30 minutes at room temperature. The plate was washed 3 

times with 250 µL of Wash Solution. One hundred microliters of TMB substrate was 

added and the plate was incubated for 20 minutes at room temperature. After 

incubation, 100 µL of Stop Buffer was added to stop the enzyme reaction and the plate 

was read immediately at 450 nm wavelength. 

2.3 Liquid Chromatographic–Mass Spectrometric Confirmation of Residues 

Quantitation of chloramphenicol and fluoroquinolone residues was accomplished 

using a modification of AOAC Official Method 995.09 44. Malachite green was quantified 

using a modified method for the quantitative determination of triphenylmethane dyes in 

aquaculture products 45. Standards, internal standards, and all other chemicals were of 

analytical or HPLC grade and purchased from Sigma Aldrich Co. (St. Louis, MO).  

2.3.1 Chloramphenicol and Enrofloxacin Quantitation 

 Chloramphenicol and enrofloxacin were extracted from tissue with pH 4 buffer. 

Filtered extract was cleaned up on C18 solid-phase extraction column. Compounds 

were separated by liquid chromatography using a C8 column and measured using a 

triple quadrupole mass spectrometer. Results were corrected for recovery of each 

analyte for each analytical run. 
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 Five grams ± 0.05 g of shrimp tissue homogenate was weighed into 50 mL 

polypropylene centrifuge tubes and fortified with 0.5 µg/mL analyte. Twenty milliliters 

McIlvaine buffer-EDTA solution was added to each sample and blended for 30 seconds 

with a homogenizer, rinsing the probe twice with 2 mL McIlvaine buffer-EDTA solution 

into each tube. Tubes were shaken for 10 minutes using a flat-bed shaker at high speed 

then centrifuged for 10 minutes at 2500 x g. The supernatant was transferred to a new 

centrifuge tube and the extraction was repeated twice using 10 mL McIlvaine buffer-

EDTA solution. The combined supernatants were centrifuged for 20 minutes at 2500 x 

g. The extract was filtered through glass microfiber filter paper, grade GF/B, 5.5 cm 

using a Büchner funnel into 125 mL sidearm flask by applying gentle vacuum to 

sidearm. The centrifuge tube was rinsed twice with 2 mL McIlvaine buffer-EDTA solution 

and filtered into the sidearm flask. SPE cartridges (6 mL, 500 mg C18) were conditioned 

with 20 mL methanol followed by 20 mL H2O. The extract was applied to SPE cartridge 

with 75 mL reservoir attached; the sidearm flask was rinsed twice with 2 mL McIlvaine 

buffer-EDTA and washings were added to the reservoir. When test extract was loaded, 

the SPE cartridge was washed using 20 mL H2O from rinsing the sidearm flask. The 

cartridge was allowed to run dry following H2O wash and air was drawn through for at 

least 2 more minutes. Compounds were eluted from the cartridge into 10 mL volumetric 

flasks using 6 mL methanolic oxalic acid. Vacuum was increased to maximum at the 

end of elution to remove residual solvent from the cartridge. Eluate was diluted to 10 mL 

with H2O. The test solution was filtered through 13 mm, 0.45 µm filtration cartridges into 

LC vials for analysis. 
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 Chloramphenicol and enrofloxacin concentrations were determined using a 

Waters Acquity ultra performance liquid chromatography (UPLC) system (Milford, MA) 

coupled to a XEVO triple quadrupole mass spectrometer. The columns used were a 

Phenomenex Kinetex C-18 column (Torrance, CA) with 2.6 µm particle size and 

dimensions of 2.1 millimeter (mm) X 50 mm and a Phenomenex C18 guard column (2.1 

mm X 5 mm, µm particle size). The mobile phase consisted of water with 0.1% formic 

acid (mobile phase A for enrofloxacin, positive ion mode), water with 0.1% acetic acid 

(mobile phase A for chloramphenicol, negative ion mode), and methanol (mobile phase 

B).  The initial percentage of A was 88%, which was reduced to 40% at 5 minutes, and 

ramped back up to 88% at 6.5 minutes, with 0.7 mL/min constant flow rate. 

2.3.2 Malachite Green Quantitation 

Leucomalachite green was isolated from the matrix by liquid-liquid extraction with 

acetonitrile. Determination was performed using LC-MS/MS with positive electrospray 

ionization. Deuterated internal standards were used to improve quantitation. The 

method has been validated according to the EU criteria of Commission Decision 

2002/657/EC in accordance with the minimum required performance limit (MRPL) set at 

2 µg/kg-1 for the sum of MG and LMG. 

Shrimp tissue homogenate was fortified with 2 µg/mL internal standard (D5-

leucomalachite green). Five hundred microliters of hydroxylamine solution was added, 

the sample was mixed, then allowed to stand for 10 minutes in the dark. Eight milliliters 

of acetonitrile and 1 g (±0.1 g) of anhydrous magnesium sulfate were added and the 

tube was vortexed vigorously for 1 minute at maximum speed, then shaken for 10 

minutes with a rotative stirrer at 100 x g. The tube was centrifuged at 2000 x g for 5 



	
  

	
  
	
  

26 

minutes at 4 °C. The supernatant was transferred to a new clean tube and evaporated 

to dryness at 50 °C under nitrogen. The dried residue was reconstituted in 800 µL of 

acetonitrile/ascorbic acid (100/1; v/v). The extract was transferred to an Eppendorf tube 

and centrifuged at 20,000 x g for 5 minutes then filtered through a 0.45 µm PVDF filter 

into an LC vial prior to LC-MS/MS analysis. 
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CHAPTER 3: RESULTS AND DISCUSSION 

3.1 Detection and Confirmation of Drug Residues 

ELISA kits were used to rapidly screen shrimp samples to determine which drug 

residues were present. Chloramphenicol, fluoroquinolones, malachite green, and 

nitrofurans were the drugs chosen for screening because of their ability to cause severe 

adverse effects in humans and their high enforcement priority status. The four 

veterinary drugs analyzed, the detection limits for all methods, and current FDA 

detection levels in parts per billion are listed in Table 3.1. ELISA (Enzyme Linked 

Immnosorbent Assay) has become a favorable option for portable and high throughput 

screening for drug residues in animal products because of its advantages over 

conventional methods, which can be extremely expensive and time-consuming. 

Commercial ELISA kits are simple, rapid, sensitive, cost-effective, and have shorter 

processing times. These advantages enable government agencies, seafood processors, 

and quality assurance organizations to detect drug residues in fish and shrimp matrices 

at the required sensitivities without complicated clean up steps.  

Table 3.1. Veterinary drugs analyzed, detection limits of methods used (ppb), and 
current FDA detection levels (ppb) 

Analyte Detection Limit Current FDA 
Detection Levels ELISA LC-MS/MS 

Chloramphenicol 0.025 0.3 0.3 
Fluoroquinolones 0.2 1 5 
Malachite green 0.1 0.4 1 
Nitrofurans 0.05 NT 1 

LC-MS/MS = liquid chromatography coupled with tandem mass spectrometry detection; 
NT = not tested 

 



	
  

	
  
	
  

28 

Rapid assay kits from Bioo Scientific Corporation (Austin, Texas) were used to 

determine if drug residues were present in shrimp samples. The methods are based on 

competitive colorimetric ELISA assays. The drug antibody has been coated in the plate 

wells. During the analysis, sample is added along with an enzyme-conjugated antibody, 

tagged with a peroxidase enzyme, that targets the drug antibody coated on the plate 

wells. If the target is present in the sample, it will compete for the drug antibody, thereby 

preventing the enzyme-conjugated antibody from binding. The resulting color intensity, 

after addition of substrate, has an inverse relationship with the target concentration in 

the sample.  

Of the 27 samples analyzed in this study, 25 were found to contain detectable 

levels of veterinary drug residues and 20 contained more than one detectable residue. 

Two of the four analytes monitored in this study were detected using ELISA. 

Fluoroquinolones and malachite green were detected and the results are presented in 

Table 3.2. Nitrofurans were not detected in any of the samples tested. The most 

frequently observed residue was malachite green, followed by fluoroquinolones. To 

confirm ELISA results, samples that tested positive for both of the drugs using ELISA 

(fluoroquinolones and malachite green) were sent to an external laboratory for analysis. 

Although no samples were positive for chloramphenicol, it was also analyzed using 

confirmatory testing because of its severe adverse health effects, notably its ability to 

cause fatal aplastic anemia, and because even the spiked samples analyzed using 

ELISA were negative, suggesting that the extraction procedure was unsuccessful.  
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Table 3.2. Concentration of veterinary drugs (ppb) in shrimp as detected by ELISA 

Country of Origin Fluoroquinolone 
Concentration 

Malachite Green 
Concentration 

Thailand ND 2.776 ± 0.00 
ND 1.432 ± 0.02 
ND 1.438 ± 0.03 
1.312 ± 0.05 1.311 ± 0.00 
ND 3.031 ± 0.02 
1.798 ± 0.07 3.757 ± 0.00 
1.262 ± 0.07 1.567 ± 0.02 
1.735 ± 0.11 1.306 ± 0.01 
1.979 ± 0.10 1.800 ± 0.01 
1.316 ± 0.01 0.936 ± 0.01 
ND 3.151 ± 0.02 
4.174 ± 0.09 1.883 ± 0.02 
1.647 ± 0.10 1.144 ± 0.04 
2.361 ± 0.03 1.910 ± 0.00 
1.701 ± 0.12 1.986 ± 0.01 

Indonesia 1.468 ± 0.09 2.077 ± 0.03 
1.636 ± 0.07 0.723 ± 0.04 
1.442 ± 0.06 0.676 ± 0.02 
ND ND 
ND ND 

India 2.220 ± 0.02 1.037 ± 0.03 
1.536 ± 0.00 0.354 ± 0.63 

Vietnam 1.792 ± 0.03 2.181 ± 0.01 
China 1.594 ± 0.07 1.902 ± 0.00 
Ecuador 2.174 ± 0.01 1.041 ± 0.02 
Vietnam-Thailand 2.837 ± 0.11 1.111 ± 0.03 
India-Indonesia 1.378 ± 0.08 1.151 ± 0.02 
United States ND ND 

Values are expressed as mean±SD 

3.2.1 Chloramphenicol  

The detection limit for the chloramphenicol ELISA was 0.025 ppb in fish and 

shrimp. The antibody is 100% cross-reactive with chloramphenicol and exhibits 76.8% 

cross-reactivity with the main metabolite chloramphenicol glucuronide (Table 3.3). No 

samples tested positive for chloramphenicol residues. The average variability in 
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absorbance between duplicate samples was 4.5%, where 25% was considered 

acceptable. This was determined as follows:  

2(𝑥 − 𝑦)
𝑥 + 𝑦 ∗ 100 

Table 3.3: Cross-reactivity profile for chloramphenicol ELISA 

Analytes Cross-reactivity (%) 

Chloramphenicol 100 

Chloramphenicol Glucuronide 100 

Chloramphenicol base 90 

Thiamphenicol 45 

Tetracyclines 36 

Gentamicin 31 

Ampicillin 21 

Florfenicol 10 

 
Using LC-MS/MS, chloramphenicol residues were detected in three of the five 

samples that were tested. The concentrations ranged from 0.30 to 0.49 ppb. Samples 1, 

2, and 4 had detectable levels of chloramphenicol, despite the negative ELISA results 

for those samples. The multiple reaction monitoring (MRM) extracted ion chromatogram 

(XIC) for chloramphenicol in samples 1, 2, and 4 are presented in figures 3.1, 3.2, and 

3.3, respectively. Published reports have demonstrated that fish and shrimp purchased 

at the retail level may contain veterinary drug residues that are banned for use in food-

producing animals in the United States 46. An analysis of veterinary drug residues in fish 

in shrimp samples collected in Canada between 1993 and 2004 resulted in the 

detection of drug residues in nine of the 30 samples analyzed, with four containing more 

than one detectable residue 46. A survey of animal products in China detected 

chloramphenicol residues in 23 out of 28 aquacultured fish samples in 2013 47. 
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Figure 3.1: Extracted ion chromatogram for chloramphenicol in sample 1 
 

 
Figure 3.2: Extracted ion chromatogram for chloramphenicol in sample 2 
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Figure 3.3: Extracted ion chromatogram for chloramphenicol in sample 4 

3.2.2 Fluoroquinolones 

The fluoroquinolone ELISA had a detection limit of 0.2 ppb in fish and shrimp and 

is 100% cross-reactive with both enrofloxacin and its primary metabolite ciprofloxacin. 

The antibody also displays substantial cross-reactivity with several other antimicrobial 

drugs (Table 3.4). Twenty samples tested positive for fluoroquinolone residues, with 

concentrations ranging from 1.31 to 4.17 ppb. The average variability in absorbance 

between duplicate samples was 5.03%. 
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Table 3.4: Cross-reactivity profile for fluoroquinolone ELISA  

Analytes Cross-reactivity (%) 

Enrofloxacin 100 

Ciprofloxain 100 

Danofloxacin 90 

Norfloxacin 45 

Enofloxacin 36 

Pipemidic acid 31 

Ofloxacin 21 

Benofloxacin 10 

Flumequin 8 

Oxolin acid 7 

 

Using LC-MS/MS, enrofloxacin residues were confirmed in two of the five 

samples that were positive using ELISA. Mass spectrometric analysis of samples 2 and 

3 detected 5.95 and 1.22 ppb enrofloxacin, respectively. The confirmed concentration 

for sample 2 was higher than the concentration detected in that sample using ELISA, 

and the confirmed concentration for sample 3 was lower than the ELISA concentration 

for that sample. The multiple reaction monitoring (MRM) extracted ion chromatogram 

(XIC) for enrofloxacin in samples 2 and 3 are presented in figures 3.4 and 3.5, 

respectively. In a study published in 2007, the fluoroquinolone enrofloxacin was 

detected in three out of 30 samples of farm-raised seafood in the United Kingdom in 

1994 to 1995 46. 
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Figure 3.4: Extracted ion chromatogram for enrofloxacin in sample 2 
 

 

Figure 3.5: Extracted ion chromatogram for enrofloxacin in sample 3 
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3.2.3 Malachite Green  

The detection limit for the malachite green ELISA was 0.1 ppb in shrimp. The 

antibody exhibits cross-reactivity of 100% with both malachite green and its primary 

metabolite, leucomalachite green. The antibody is also considerably cross-reactive with 

crystal violet, another triphenylmethane dye that is commonly used in aquaculture, at 

42% (Table 3.5). Twenty-five samples tested positive for malachite green residues, with 

concentrations ranging from 0.35 to 3.76 ppb. The average variability in absorbance 

between duplicate samples was 14.6%. Five positive ELISA samples were analyzed for 

leucomalachite green using LC-MS/MS, and residues were not confirmed in any of the 

five samples.  

Table 3.5: Cross-reactivity profile for malachite green ELISA 

Analytes Cross-reactivity (%) 

Malachite Green 100 

Leucomalachite Green 100 

Crystal Violet 42 

Leucocrystal Violet <0.01 

Diethylstilbestrol <0.01 

Sulfumethazine <0.01 

Chloramphenicol <0.01 

Furazolidone <0.01 

 

A study published in 2003 reported the malachite green metabolite 

leucomalachite green was detected in 13 out of 18 trout samples purchased from 

markets in the Netherlands at concentrations ranging from 1.3 to 14.9 ng g-1 48. 

Leucomalachite green was also detected in eight out of 12 trout samples purchased 
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from markets in the United Kingdom in 1994 to 1995 at concentrations ranging from 

<0.5 to 96 ng g-1 49 

3.2.4 Nitrofurans  

The detection limit for the nitrofuran ELISA was 0.05 ppb for fish and shrimp. The 

antibody exhibits 100% cross-reactivity with the primary metabolite of furaltadone,        

3-amino-5-methylmorpholino-2-oxazolidinone (AMOZ) and negligible cross-reactivity 

with other compounds. No samples tested positive for nitrofuran residues. The average 

variability in absorbance between duplicate samples was 2.27%. Although no nitrofuran 

residues were detected in this study, their presence in shrimp has been documented in 

literature. Nitrofuran metabolites were detected in Thai-originating shrimp sampled been 

2000 and 2003 in the European Union 46,50. A Swiss study published in 2003 detected 

nitrofuran residues in shrimp from Asian countries in 54 out of 157 samples at 0.2–150 

ng g-1 51. 

The results from the ELISA screening and LC-MS/MS confirmation of drug 

residues in imported shrimp samples are presented in Table 3.6. Four of the five shrimp 

samples analyzed using mass spectrometry were found to contain detectable levels of 

veterinary drug residues, with one sample containing multiple residues. 

Chloramphenicol and fluoroquinolones were detected using confirmatory methods. The 

most frequently observed residue by LC-MS/MS detection was chloramphenicol, 

followed by fluoroquinolones. Malachite green was not present in any of the five 

samples, although it was detected using ELISA. 
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Table 3.6. Concentration of veterinary drugs (ppb) in shrimp as detected by ELISA                           
and confirmed using LC-MS/MS 

Sample Analyte ELISA Confirmation 
1 Chloramphenicol ND 0.43 

Enrofloxacin 1.47 ND 
Leucomalachite green 2.08 ND 

      
2 Chloramphenicol ND 0.49 

Enrofloxacin 1.64 5.95 
Leucomalachite green 0.72 ND 

      
3 Chloramphenicol ND ND 

Enrofloxacin 2.22 1.22 
Leucomalachite green 1.04 ND 

      
4 Chloramphenicol ND 0.30 

Enrofloxacin 1.79 ND 
Leucomalachite green 2.18 ND 

      
5 Chloramphenicol ND ND 

Enrofloxacin 1.59 ND 
Leucomalachite green 1.90 ND 

ND = none detected 

The correlation between residue concentrations from ELISA screening and 

confirmatory testing is generally poor 52; however, drug residue kits can be useful for 

qualitative screening of the compounds in shrimp tissue. The discrepancies between 

detected concentrations in ELISA and confirmatory methods are thought to be due to 

cross-reactivity with other compounds, matrix effects, differences in detection limits of 

the two methods, or contamination of ELISA samples. 

  Biological matrices are extremely complex, making the analysis of biological 

samples challenging. High levels of interfering factors can lead to unexpected ELISA 

results. Analysis is often hampered by the presence of endogenous compounds in the 

sample; the interferences are often present in higher concentrations than that of the 
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target analytes and thus may mask their presence. Sample preparation is an important 

aspect of bioanalytical estimation because biological samples are comprised of many 

components that can interfere with good separations and or good mass spectrometer 

signals. 

 In addition to matrix effects, the presence of interfering compounds from the 

same group as the analyte can affect the correlation between ELISA and 

chromatographic results. Enrofloxacin, the main target drug of the fluoroquinolone 

ELISA, was chosen for confirmatory testing. The fluoroquinolone ELISA was highly 

cross-reactive with several fluoroquinolones that are commonly used in aquaculture but 

were not analyzed chromatographically, thereby possibly contributing to the failure to 

detect enrofloxacin using LC-MS/MS. The malachite green ELISA was cross-reactive 

with gentian violet, another triphenylmethane dye that is toxic to humans and frequently 

used in aquaculture, but gentian violet was not analyzed chromatographically. 

Contamination of ELISA samples was a possibility owing to the sensitivity of 

immunoassays.  The failure to detect chloramphenicol using ELISA, even in spiked 

samples and despite having a good standard curve, suggests the extraction procedure 

or extraction buffers may have been inadequate. The results of this study emphasize 

why ELISA results have to be confirmed quantitatively. 
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CHAPTER 4. SUMMARY AND CONCLUSIONS 

The objective of this research was to quantify veterinary drug residues in 

imported, farm-raised shrimp and make this information available to the general public 

in order evaluate the effectiveness of current imported seafood testing, thus contributing 

to the collective data on the topic. The use of unapproved veterinary drugs to treat 

shrimp in aquaculture systems results in the accumulation of drug residues in the edible 

tissues of the shrimp. These illegal drug residues can negatively impact human health, 

making routine testing imperative in order to protect consumers.  

The results of this study confirm the presence of illegal veterinary drug residues 

in shrimp sold at the retail level in the United States. Ninety-two percent of imported, 

farm-raised shrimp samples tested positive for at least one drug that is banned for use 

in food-producing animals in the United States. Two of the four drugs considered in this 

study were detected using ELISA: fluoroquinolones and malachite green. The 

fluoroquinolone enrofloxacin was confirmed in two out of five samples using LC-MS/MS. 

Malachite green could not be detected using confirmatory methods. Chloramphenicol 

was not detected using ELISA, but was detected in three out of five samples using LC-

MS/MS.  

The residue concentrations detected in this study are within the ranges described 

in the few published reports regarding veterinary drug residues in fish and shrimp 

purchased at the retail level. Considering the above, ELISA can be a useful tool for the 

qualitative screening of shrimp muscle tissue for drug residues, but the results of this 

study suggest that more evaluation of commercial kits is necessary. Further testing is 

needed to investigate the safety of other imported, farm-raised aquaculture species and 
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to determine the extent of imported seafood contamination. Wild-caught shrimp from the 

United States tested negative for all veterinary drugs considered.	
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