
Louisiana State University Louisiana State University

LSU Scholarly Repository LSU Scholarly Repository

LSU Doctoral Dissertations Graduate School

2006

Ontology-based methodology for error detection in software Ontology-based methodology for error detection in software

design design

Allyson M. Hoss
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://repository.lsu.edu/gradschool_dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Hoss, Allyson M., "Ontology-based methodology for error detection in software design" (2006). LSU
Doctoral Dissertations. 1891.
https://repository.lsu.edu/gradschool_dissertations/1891

This Dissertation is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It
has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU
Scholarly Repository. For more information, please contactgradetd@lsu.edu.

https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_dissertations
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_dissertations?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F1891&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F1891&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_dissertations/1891?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F1891&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

ONTOLOGY-BASED

METHODOLOGY

FOR

ERROR DETECTION

IN

SOFTWARE DESIGN

A Dissertation

Submitted to the Graduate Faculty of the

Louisiana State University and

Agricultural and Mechanical College

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

The Department of Computer Science

by

Allyson M. Hoss

B.S., State University of New York at Albany, 1983

M.S.C.S., University of Texas at Arlington, 1988

August 2006

ii

Acknowledgements

There are several people whom I would like to acknowledge for their support during the development

of this dissertation. To Dr. Doris L. Carver, my supervising professor, I express my sincere gratitude

for her guidance throughout my graduate studies. She helped me to stay focused, to continually

move forward toward my goals, as well as improve my literary writing and presentation skills. She

provided invaluable advice with regard to conference and journal paper submissions. She also

encouraged me at those critical times when I questioned my own abilities and became the most

frustrated. To my committee members, Dr. Donald H. Kraft, Dr. Jianhua Chen, Dr. Young H. Chun,

Dr. Earnest Mendrela, and Dr. Xiaoyue Jiang, I am thankful for the time and effort spent reviewing

my research and the helpful comments that contributed to the success of this dissertation. To the

members of my software engineering group, I appreciate the helpful suggestions given during my

practice presentations. To my parents, Rai K. Schmalz and Guy C. Schmalz, I am thankful for their

guidance and wisdom through the years that enabled me to develop the emotional and educational

background that has helped me to progress this far in life. To my husband, James W. Hoss, and my

children, Erik and Emma, I am forever grateful for the steadfast love, support, and inspiration they

have given me each and every day. Their continual belief that I would one day finish this dissertation

became the rock that saved me many a time from drifting off into the endless void of never ending

research. Lastly, I would like to acknowledge the financial support of this research via a Louisiana

State University Internal Grant.

iii

Table of Contents

Acknowledgements………………………………………………………………………………...….ii

Abstract…………..……………………………………….…...…………………………………...…vi

Chapter 1 Introduction….………..…………………………………………………………………….1

 1.1 Software Design……….……………………………………………………………………......1

 1.2 Software Design Consistency…………………………………………………………………..2

 1.3 Object-Oriented versus Agent-Oriented Software Development………………………………4

 1.4 Problem Statement and Approach………….…………………………………….…………......8

 1.5 Dissertation Overview………………………………………….……………………….……..10

Chapter 2 Review of Literature………………………………………………………………………11

 2.1 Related Research Areas………………………………………………………………...….….11

 2.1.1 Ontologies………………………………………………………………………...….….11

 2.1.2 Requirements Specification………………………………………………………….….12

 2.1.3 Software Design…………………………………………………………………….…...12

 2.1.4 Consistency Management…………………………………………………………….....12

 2.1.5 Knowledge Integration…………………………………………………………………..12

 2.1.6 Tool Integration………………………………………………………………………....12

 2.1.7 Agents…………………………………………………………………………………...12

 2.2 Related Research Comparison………………………………………………………………...13

 2.2.1 Ontology Research……………………………………………………………………....13

 2.2.2 UML and Model Checking Research…………………………………………………...15

 2.2.3 Semantic Web Languages Research…………………………………………………….15

 2.2.4 Tool Integration Research……………………………………………………………….16

 2.2.5 Integrating Objects and Agents Research……………………………………………….17

 2.2.6 Consistency Management Research…………………………………………………….17

 2.2.7 Summary…………………………………………………………………………….…..20

Chapter 3 Components for Integration…………………………………………………………….....21

 3.1 Overview…………………………………………………………………………………..…..21

 3.2 Ontologies……………………………………………………………………………………..21

 3.2.1 Introduction……………………………………………………………………………...21

 3.2.2 Ontology Development…….…………………………………………………………....21

 3.2.3 Ontology Language……………………………………………………………………...22

 3.2.3.1 Introduction…………………………………………………………………......22

 3.2.3.2 OWL…………………………………………………………………………….23

 3.3 UML and OCL………………………………………………………………………………...24

 3.4 KAOS………………………………………………………………………………………….25

Chapter 4 Methodology for Objects to Agents (MOA) ……………………………………………...30

 4.1 Introduction…………………………………………………………………………………....30

 4.2 OSSD Model…………………………………………………………………………………..30

 4.3 MOA…………………………………………………………………………………………...33

 4.3.1 Overview…………………………………………………………………………….…..33

 4.3.2 Lexical and Semantic Analysis………………………………………………………….34

iv

 4.3.3 Goal Thesaurus and Behavior Thesaurus………………………………………………..36

 4.3.4 UML to OSSD Transformation………………………………………………………….37

 4.3.4.1 Overview…………………………………………..…………………………….37

 4.3.4.2 High-level Algorithms…………………………………………………………..39

 4.3.4.3 Detailed Algorithms……………………………………………………………..44

 4.3.4.4 Summary of UML to OSSD Model Transformation……………………………58

 4.3.5 MOA Consistency Checking…………………………………………………………….60

 4.3.5.1 Overview………………………………………………………………………...60

 4.3.5.2 Consistency Checking of OSSD Model Constructs…………………………….60

 4.3.5.3 Consistency Checking of Source Language Views……………………………..61

 4.3.5.4 Consistency Checking Algorithms……………………………………………...63

 4.3.6 OSSD Model to KAOS Transformation……………………………………………..…..63

 4.3.6.1 Overview………………………………………………………………………...63

 4.3.6.2 OSSD Model to KAOS Transformation Algorithm…………………………….63

 4.4 Summary………………………………………………………………………………………65

Chapter 5 Elevator Case Study……………………………………………………………………….66

 5.1 Introduction……………………………………………………………………………………66

 5.2 UML Representation of the Elevator System………………………………………………....66

 5.3 Applying MOA to the Elevator System Case Study…………………………………………..73

 5.3.1 UML Design to OSSD Model…………………………………………………………...73

 5.3.2 OSSD Model…………………………………………………………………………….77

 5.3.2.1 OSSD Model of the Elevator System…………………………………………...77

 5.3.2.2 OSSD Model in OWL Notation…………………………………………………78

 5.3.3 Consistency Checking………………………………………………………….………..81

 5.4 KAOS………………………………………………………………………………………….81

Chapter 6 Evaluation of Methodology………………………………………………………………..85

 6.1 Introduction……………………………………………………………………………….……85

 6.2 Ontological Evaluation of the OSSD Model…………………………………………………..85

 6.2.1 Introduction……………………………...……………………………………………85

 6.2.2 BWW Model………………………………………………………………………….86

 6.2.3 BWW Model Evaluation of the OSSD Model……………………………………….89

 6.2.3.1 Representation Mapping Evaluation………………………………………....89

 6.2.3.2 Interpretation Mapping Evaluation…………………………………………..93

 6.3 Error Detection………………………………………………………………………………...96

 6.3.1 Introduction……………………………………………………………………………...96

 6.3.2 Representative Consistency Rules……………………………………………………….97

 6.3.3 Representation of Consistency Rules……………………………………………………97

 6.3.4 Application of Consistency Rules……………………………………………………….99

 6.4 Transformation……………………………………………………………………………….100

 6.4.1 Introduction…………………………………………………………………………….100

 6.4.2 Set of Semantically Significant Features……………………………………………….101

 6.4.3 Evaluation of UML to OSSD to KAOS Transformation………………………………104

 6.5 Summary……………………………………………………………………………………..104

Chapter 7 Summary…………………………………………………………………………………106

 7.1 Dissertation Summary………………………………………………………………………..106

v

 7.2 Contributions…………………………………………………………………………………107

 7.3 Future Work………………………………………………………………………………….108

References……………………………………………………………………………….…………..110

Appendix

A. London Ambulance Service Computer Aided Dispatch Case Study………………………….....127

B. Additional Data for the Elevator Case Study………………………………………………….…135

Vita…………………………………………………………………………………………………..141

vi

Abstract

Improving the quality of a software design with the goal of producing a high quality software product

continues to grow in importance due to the costs that result from poorly designed software. It is

commonly accepted that multiple design views are required in order to clearly specify the required

functionality of software. There is universal agreement as to the importance of identifying

inconsistencies early in the software design process, but the challenge is how to reconcile the

representations of the diverse views to ensure consistency. To address the problem of inconsistencies

that occur across multiple design views, this research introduces the Methodology for Objects to

Agents (MOA). MOA utilizes a new ontology, the Ontology for Software Specification and Design

(OSSD), as a common information model to integrate specification knowledge and design knowledge

in order to facilitate the interoperability of formal requirements modeling tools and design tools, with

the end goal of detecting inconsistency errors in a design. The methodology, which transforms

designs represented using the Unified Modeling Language (UML) into representations written in

formal agent-oriented modeling languages, integrates object-oriented concepts and agent-oriented

concepts in order to take advantage of the benefits that both approaches can provide. The OSSD

model is a hierarchical decomposition of software development concepts, including ontological

constructs of objects, attributes, behavior, relations, states, transitions, goals, constraints, and plans.

The methodology includes a consistency checking process that defines a consistency framework and

an Inter-View Inconsistency Detection technique. MOA enhances software design quality by

integrating multiple software design views, integrating object-oriented and agent-oriented concepts,

and defining an error detection method that associates rules with ontological properties.

Keywords: agent-oriented, consistency, error detection, knowledge integration, object-oriented,

ontology, software design, KAOS, UML

1

1 Introduction

1.1 Software Design

Most software development projects include the basic software engineering activities of analysis,

specification, design, coding, testing and maintenance. The techniques used to actually implement

these activities vary greatly as is evident in the variety of approaches including the traditional

Waterfall Model, Spiral Model, Controlled-Iteration Model, and Prototyping Model. Software

product development usually starts with analysis of the problem to be solved and creation of a

requirements specification. Requirements specify the needs and desires of the customer while

specifications detail how the software product will fulfill those needs and desires. Creating a

requirements specification requires frequent interaction with the anticipated end-users of the software

product and results in a document detailing the objectives, requirements, alternatives, and constraints

of the product being developed as well as the environment in which the product will exist. Software

design follows specification and focuses on decomposing and detailing the architecture of the

software product, including the interfaces among its internal and external interfaces, and the behavior

of the software product. The goal of software design is to produce a complete, consistent,

unambiguous software design in a high-level design language. Common design methodologies

include object-oriented, function-oriented, and agent-oriented. Whatever the methodology followed,

critical issues addressed in software design include concurrency, data control, flow control, error

handling, exception handling, performance, and quality.

Improving software quality continues to be a critical issue in software development. The most recent

report by the Standish Group shows that 74% of software development projects do not deliver what

the customer wants, on time and within budget and 94% of software development projects undergo

project restarts [Frantzen]. Some studies have shown that 80% of software development effort is

expended to debug and redevelop, and that more than 50% of the reasons for the rework is due to

inadequate, inconsistent and imprecise requirements specifications [Davis]. Incorporating

formalization techniques into software development can increase the success rate of software

development projects; however, many software development practitioners are reluctant to adopt

formal software specification techniques due to difficulties such as poor tool feedback; cost; poor

guidance; isolation from other software products and processes; the low level of abstraction; and

limited scope [vanLamsweerde3]. Most software today is developed using informal specification

methodologies that lack formalized verification techniques.

Software quality attributes include characteristics such as correctness, completeness, robustness,

maintainability, portability, testability, traceability, security, and quality [Abran et al.]. Most

software engineers consider quality to be the most important part of software design. Ensuring both

correctness and completeness is critical to ensuring quality. Analysis of software development

projects shows that the cost and difficulty of fixing errors increases significantly as the project

progresses. The earlier in the development life cycle that errors are discovered, the less time, effort,

and cost are required to fix them. Errors detected later in the development life cycle usually result in

not completing a project on time or within budget. Undetected errors in a product delivered to the

customer can cause problems ranging from simple annoyances such as restarting a computer to

serious accidents affecting human lives, as well as loss of customers, decreased sales, and increased

repair costs [Torres-Pomales]. Common design errors include incompleteness, inconsistency, and

redundancy. This research focuses on error detection in software design with an emphasis on designs

represented in the Unified Modeling Language (UML) [OMG1]. We define the Methodology for

Object to Agents (MOA) that integrates multiple design views including both object-oriented and

agent-oriented concepts to facilitate the detection of software design errors.

2

1.2 Software Design Consistency

One aspect of error detection is ensuring consistency among the multiple views of a design that are

required to understand system functionality from various perspectives. Inconsistencies are one of the

most common, and most elusive, errors in software design. Although most researchers have a

general understanding of the meaning of consistency, few agree on a specific definition of this term

with regards to software design. The following definitions are just a few of the definitions given for

consistency in software requirements and design:

• “any situation in which two parts of a specification do not obey some relationship that

should hold between them” [Easterbrook & Nuseibeh];

• “no conflicting requirements and no (unintentional) non-determinism” [Pap et al.];

• “Different submodels of a model are called consistent if they can be integrated into a

single model with a proper semantics….consistency of submodels ensures the existence of

an implementation: if consistency is ensured, an implementation of submodels is obtained

by implementing the integrated model” [Engels3 et al.]; and

• “…the use of constraints, algorithms, and tools to check that information described in one

deliverable … is not contradicted by information described in another deliverable”

[Paige1].

Some research on consistency in software design attempts to define consistency by defining

inconsistency. Such definitions range from simply “contradictory design decisions” [Lange et al.]

to more complex definitions such as:

• “any situation in which two parts of a specification do not obey some relationship that

should hold between them” [Easterbrook & Nuseibeh];

• “a design is inconsistent if the design conveys conflicting information about the system,

and/or violates predefined constraints” [Liu];

• “an inconsistency occurs whenever some relationship that should hold (of a model) has

been violated” [Easterbrook]; and

• “the simultaneous assertion of a fact ά and its negation ¬ά” [Hunter & Nuseibeh].

It is critical to specify the term “consistency” in a precise and formal method and that there exists an

automated mechanism for verifying consistency [Engels2 et al.]. However, “The consistency

conditions depend on the diagrams involved, the development process employed, and the current

stage of the development” [Engels2 et al.]. Some approaches to addressing inconsistency problems in

UML define consistency in highly detailed terminologies that are specific to the associated

specification languages [Astesiano & Reggio]. A different classification scheme for design

inconsistencies, given in [Liu], presents three classes of design description inconsistencies:

redundancy, conformance to constraints and standards, and change. A framework for UML

consistency, given in [Derrick et al.], analyzes the problem of consistency in UML from a viewpoints

(partial specification) perspective.

In this research, inconsistency means that either there exists a conflict, disagreement or variation

within a single fact, behavior or constraint, or there exists a conflict, disagreement or variation among

a set of facts, behaviors or constraints. General examples of inconsistency include: references to one

fact, behavior or constraint by more than one name (a.k.a. aliasing); contradictions between

descriptions of a behavior, fact or constraint; or inaccurate descriptions of behaviors, facts or

constraints. A consistent design does not violate predefined rules and constraints of syntax and

semantics of its associated model. However, because UML is by its very nature a collection of

3

various modeling notations that is specifically designed to encourage considerable freedom of

specification, it does not have a precisely unified semantics with which to clearly specify and verify

consistency and completeness issues.

Consistency can be viewed from two perspectives:

• intra-consistency: (a.k.a. horizontal consistency [Engels2 et al.]) consistency between two

or more diagrams within a specific model; typically, these diagrams are at different levels

of abstraction; for example, consistency between two different UML sequence diagrams

of the same system that arise between the initial version of an UML class diagram and an

enhanced version of that same UML class diagram that has includes such modification as

additional features, deleted features or error corrections; and

• inter-consistency: (a.k.a. vertical consistency [Engels2 et al.]) consistency between two or

more models within a specific system; typically these diagrams are at the same level of

abstraction; for example, consistency between a UML class diagram and a UML sequence

diagram of the same system.

This research addresses both intra-consistency and inter-consistency problems among the UML

subset consisting of class, object, sequence, collaboration and statechart diagrams.

A two-dimensional classification of inconsistencies divides inconsistencies into structural or

behavioral based upon analysis of UML class, statechart and sequence diagrams [Wagemann]. This

classification does not include inconsistencies that arise due to violations of UML well-formedness

rules because this type of syntactic (or static semantic) inconsistencies is typically enforced via the

use of Object Constraint Language (OCL) [OCL] well-formed rules and detected by existing UML

CASE tools such as xlinkit [Nentwich1 et al] and [Nentwich2 et al], Argi.YNK [Robbins et al.]

[Robbins & Redmiles], and Rational Rose [Rational].

A behavioral inconsistency describes system behavior that is “incomplete, incompatible or

inconsistent with respect to existing behavior or definitions” [Wagemann]. Behavioral

inconsistencies are sub-divided into model-instance conflicts (such as incompatible definitions that

affect multiplicity, navigation and abstract objects) and instance-instance conflicts (such as invocable,

observable and incompatible behavior conflicts). A structural inconsistency describes situations

where the system structure is “incomplete, incompatible or inconsistent with respect to existing

behavior or definitions [Wagemann]. Structural conflicts are sub-divided into model-model conflicts

(such as inherited association conflicts and dangling (type) references), model-instance conflicts

(such as missing instance definitions), and instance-instance conflicts (such as disconnected models).

The definition of consistency utilized in this research is based on the classification, detection and

resolution techniques for inconsistencies in requirements presented in Knowledge Acquisition in

autOmated Specification (KAOS), a goal-oriented approach to requirements engineering [Van

Lamsweerde8], [KAOS] (see Chapter 3 for more background on KAOS). The general definition of

inconsistent given in this approach is “a set of descriptions is inconsistent if there is no way to satisfy

those descriptions all together” [Van Lamsweerde8]. A more detailed definition defines

inconsistency as the “presence of unresolved conflict among goals” and “agents not able to perform

their responsibilities” [Ponsard]. KAOS also defines incompleteness as the “presence of hidden

assumptions”, “goals not operationalized,” and “lack of responsibility assignment for some

constraints” [Ponsard].

4

Inconsistencies arise in software design for various reasons. Significant contributing factors include

the incremental and distributed nature of software development, the definition of multiple views of a

software system, and interactions among numerous stakeholders including customers, users,

designers, and developers. Each type of stakeholder can view the system models from different

perspectives due to varying levels of experience and responsibilities as well as different goals. Often,

the initial software specifications are not complete and/or evolve as the software development

lifecycle progresses. Lack of information, mistakes, and uncertainty also contribute to both

inconsistencies and incompleteness in software design.

Inconsistencies can result in misinterpretations and/or multiple interpretations of critical design

issues. Inconsistencies in software development models can also lead to various other problems

including: difficulties in proving properties of the system such as reliability and safety; schedule

delays; cost increases; and maintenance difficulties.

Handling inconsistencies in software design has been a widely discussed and debated issue for many

years. While tolerating inconsistencies is sometimes beneficial and/or necessary, it is critical to

identify and manage such inconsistencies early in the software design process. Most researchers and

practitioners agree that detecting inconsistencies early in the software design process can improve the

quality of software design with the ultimate goal of improving the resulting software product.

Although it is necessary to allow some inconsistencies to exist, it is important to be able to clearly

identify them. “It is undetected inconsistency that causes the most problems…known inconsistencies

can be tolerated, provided they are managed carefully” [Nuseibeh]. It may even be detrimental to

force consistency at all times during the development lifetime in order to “maximize design freedom,

to prevent premature commitment to design decisions, and to ensure all stakeholder views are taken

into account.” [Nuseibeh & Easterbrook]. Additionally, “rather than seeking to build a single

consistent model, software designers need to reason about the inconsistencies and dependencies

between a set of inter-related partial models” [Easterbrook].

1.3 Object-Oriented versus Agent-Oriented Software Development

Two common paradigms for software development are the object-oriented (OO) and agent-oriented

(AO) methodologies. These two paradigms share many similarities, primarily due to the fact that the

AO methodology evolved from the OO methodology. OO software development itself evolved from

structured programming in the early 1960’s but did not become commonly used until the mid 1980’s.

The basic concepts of OO software development include organizing a software representation of the

world into a sets of discrete hierarchically arranged objects that contain structure and behavior, and

associating with each object four characteristics: identity, classification, polymorphism, and

inheritance [Rumbaugh et al]. OO software development also introduced the concepts of

encapsulation (information hiding) and data abstraction. Within the OO paradigm, objects interact

with each other, via messages exchanged with other objects, based on the objects’ internal state(s)

and behavior. The AO methodology evolved in the late 1990’s via a merging of concepts derived

from the OO methodology and artificial intelligence. Both objects and agents have identity, state,

and behavior; in addition, they both communicate via interfaces. However, there exist several

significant differences between objects and agents especially with regard to behavior. First, there is

general agreement that a software object is a representation of a real-world object or concept that has

one or more states, maintained via its variables, and behavior, implemented via its methods or

operations. However, numerous definitions exist for the use of the word “agent” in software design

with no generally agreed upon single definition. Most definitions do agree that three characteristics

are common to a software agent: autonomy, situatedness and flexibility [Jennings et al.]. For an

agent to be considered autonomous it must be able to control it own actions and internal state without

any direct intervention from people or other agents. A simple object is considered passive, while an

5

agent is considered active. An agent is situated if that agent can receive from its environment sensory

input and act upon that input which then causes an environmental change. An agent is flexible if it

recognizes and reacts to changes in its environment within a reasonable period of time, exhibits goal-

directed behavior, and can interact with other agents and people to complete its operations. Agents

contain additional structures to represent and act upon the more complex concepts of goals, beliefs,

and plans. Agents communicate with each other either directly via a high-level meta-language,

referred to as an agent communication language (ACL), or indirectly via “blackboards” or

“whiteboards”, shared communication areas, rather than using the simple message passing of OO.

Other significant differences between objects and agents are the languages used to describe them

[Huhns]. Object-oriented languages utilize the class structure as the basic abstraction, the object as

the basic building block, methods/messages as the basic computation model, interaction patterns as

the design paradigm and encapsulation, inheritance, polymorphism as the basic architecture. Agent-

oriented languages use agent type as the basic abstraction, the agent as the basic building block, the

processes of perception, reasoning and action as the basic computation model, the

goal/belief/intention triumvirate as the basic design paradigm, and the manager/peer architecture. To

summarize, “agent-based computing promotes designing and developing applications in terms of

autonomous software entities (agent), situated in an environment, and that can flexibly achieve their

goals by interacting with one another in terms of high-level protocols and languages [Zambonelli].

To acquire a perspective of the interrelationships between object-oriented and agent-oriented

languages, as well as their relationship with formal requirements modeling languages, Figure 1 shows

the relationships among a sub-set of these languages (derived from similar methodology genealogies

[Sudeikat et al.], [Henderson-Sellers & Gorton]). Over 50 different object-oriented languages and

techniques contributed to the development of UP/RUP and eventually UML. From this object-

oriented (OO) pool also emerged agent-oriented languages such as AUML [Bauer et al.], Australian

AI Institute (AAII) [Kinny et al.], MESSAGE, MaSE and MAS Common KADS [Iglesias et al.].

Formal requirements were developed on the foundation of Requirements Engineering (RE) from

which emerged numerous Requirements Specification Languages (RSLs). These RSLs can be

loosely grouped into Goal-Oriented (such as KAOS and TROPOS), Algebraic (such as Larch [Guttag

& Horning] and OBJ [Goguen & Winkler]), State-based (such as VDM [Woodman & Heal], Z

[Spivey], SLABS [Zhu]), and Operational (such as LISP [McCarthy], Prolog [Clocksin & Mellish]

and Smalltalk [Tomek]. Of particular interest to the research in this research is the KAOS RSL

OO

State-based

UML

UP/RUP

OMT, Booch, OOSE, OOA, ...

AUML

MESSAGE

AAII

MaSE

Algebraic

Goal-Oriented

Larch OBJ VDM Z

KAOS TROPOS

Operational

Lisp Prolog Smalltalk

i*

MAS Common
KADS

RE

Formal

Requirements

KE

ML

SLABS

Figure 1: OO, AO and Formal Requirements Language Development

6

because it draws upon not only Requirements Engineering but also Knowledge Engineering (KE) and

Machine Learning (ML).

The OO software paradigm has several advantages: it is a mature software development paradigm; a

wide variety of applications have been developed using it; there exists numerous object-oriented

based tools, operating systems, programming languages, and databases; the OO paradigm’s concepts

of encapsulation, polymorphism, and inheritance facilitates modular software development, reuse,

and independent modular development respectively [Huhns]; a recent empirical study shows that

94% of the companies surveyed indicate that they use OO in the development of large-scale, complex

information systems; 92% believe its reuse capabilities beneficial, and 70% considered its quality

better than that of traditional system development [Paetau]. Weaknesses of the OO software

development include: insufficient abstraction and support for object interaction [Huhns]; and the

focus on objects tends to result in a bottom-up approach to design that result in the creation of large,

generic libraries that are “hardly more useful that the massive procedure libraries they made

obsolete” [Coggins]. Additionally, a recent empirical study shows that 65% of the companies

surveyed found it difficult to acquire experienced OO software developers and 49% encounter

efficiency problems [Paetau].

The AO software paradigm has significant advantages over the OO software paradigm. Agents are

well-suited to handling complex systems because they are able to autonomously “engage in flexible,

high-level interactions”…”self-awareness reduces control complexity since the system’s control

know-how is taken from a centralised repository and localised inside each individual problem solving

component” [Jennings]. Agents can participate in multiple interactions via multiple threads. In order

to exchange message in OO, an object must know the address and receiving method of the receiving

object whereas in AO, agents communicate using an agent communication language, with common

semantics, that does not requiring knowledge of the receiving agent’s address or methods which

facilitates interoperability at a level higher than OO message passing. Disadvantages of AO include:

unpredictable interaction behavior, patterns, outcomes [Jennings] and insufficient off-the-shelf,

mature agent-oriented methodologies [Shehory].

While AO software development has steadily gained converts in recent years, numerous software

developers are using an OO approach to software development. Many are yet to be convinced that

agents are not merely complex objects in disguise. Additionally, some software products, such as

small systems and performance constrained systems, will continue to be developed using object-

oriented concepts because they can not justify and/or tolerate the higher overhead required by agent-

oriented processing nor its potentially unpredictable behavior. However, “agent-based computing

has the potential to significantly improve our ability to model, design and build complex, distributed

software systems” [Jennings et al.]. It appears that object-oriented and agent-oriented software

development will continue to coexist for the foreseeable future. Referring to agents and objects, the

Object Management Group acknowledges that “there is a very real need for these two related

technologies to co-exist, and even more, to become better integrated, so agents can interact with

objects and vice versa” [Odell]. Lastly, numerous legacy systems exist, based on object-oriented

design or that have object-oriented interfaces that will eventually need to interact with newer agent-

oriented software systems. It is, therefore, critical that future software development address the

integration of these two worlds.

The integration of objects and agents is an active research area. Some research suggests that an

object can be transformed into an agent by [Wagner2]: “treating its information items as its beliefs or

knowledge”; “adding further mental components such as perceptions (in the form of incoming

messages) and commitments”; and “providing support for agent-to agent communication on the basis

of a standard agent communication language”. Additionally, objects are slowly adopting agent-

7

oriented concepts such as partial autonomy and situatedness via active objects versus passive objects,

independent threads of execution, cooperating autonomous processes, and reactive components

[Zambonelli & Omicini].

One benefit of integrating objects and agents is the enhancement of software interoperability. A

commonly used definition of interoperability is “the ability of two or more systems or components to

exchange information and to use the information that has been exchanged” [IEEE1]. Given that this

definition is only a general defintion, researchers and practitioners developed several frameworks to

further define levels of software interoperability. One such framework models software

interoperability at different abstraction levels [Howie, Kunz & Law]: physical interoperability (byte

stream), data-type interoperability (simple data types), specification-level interoperability (abstract

data types), and semantic interoperability (logic and rules). One distinction between integration and

interoperability in software development focuses on data source versus software system; specifically,

six levels of software construct interoperability (object, component, application, system, enterprise,

and community) versus three levels of data integration (syntactic, structural, and semantic) [Obrst].

Software developers typically achieve interoperability either by standardizing the interfaces between

applications and/or implementing software wrappers. Two methods commonly used to standardize

interfaces between applications include the Object Management’s Group Common Object Request

Broker Architecture (CORBA) [OMG2] and extensible Markup Language (XML) based [XML].

Using the CORBA Interface Definition Language, software engineers define object interfaces to

access procedures within any object, via a request sent to that object, regardless of that object’s

location within a distributed environment, the programming language, or the implementation

platform utilized to create that object. CORBA is an application middleware for distributed object-

oriented applications. It does not address agent-oriented concepts or the integration of agents and

objects.

XML is an application independent and human-readable markup language that facilitates syntactic

interoperability via the standardization of document and data structure as well as metadata syntax.

Tags surround data elements to provide some semantic meaning. A schema language, such as

Document Type Definition (DTD) or XML Schema, defines the document specific vocabulary and

hierarchical structures for specific XML documents (a.k.a a common grammar). XML simulates

semantic interoperability only if the data is exchanged within the same domain, so that both sender

and receiver agree on the semantics of that data. However, XML cannot provide true semantic

interoperability because it focuses on structural relationships in a document and cannot interpret the

data within that document with regards to different domains. The meaning of the data is implicitly

understood or specified in documentation accompanying the DTD. It is possible to map between to

two different DTDs via extensible Style Language (XSL) Transformation stylesheets. But, this

requires potentially high overhead if several different DTDs exist. XML alone cannot handle the

integration of agent-oriented and object-oriented concepts.

Wrapping software consists of code extensions that facilitate access and modification to internal data

structures through abstract interfaces. It is possible to create agent wrappers around object-oriented

software to facilitate interactions between agents and objects. Unfortunately, the creation,

maintenance, and performance of such wrappers is costly; a unique wrapper must be developed for

each non-agent-oriented system; any changes to the such system interfaces require updates to these

wrappers; and, system performance often degrades due to wrapper execution.

There is a need for a conceptually higher level, less costly, and more comprehensive method to

integrate objects and agents.

8

1.4 Problem Statement and Approach

This research addresses the problem of poorly designed software by developing a methodology to

detect errors resulting from multiple views of a software design. MOA integrates software

specification knowledge with software design knowledge, as well as object-oriented concepts with

agent-oriented concepts, into a common information model called the Ontology for Software

Specification and Design (OSSD), in order to identify errors among multiple design perspectives.

MOA also utilizes the OSSD Model to facilitate the interoperability of formal requirements modeling

tools and software design tools to detect complex errors in software designs. MOA contributes to the

software design verification process by facilitating the identification and addition of error detection

rules above and beyond that provided by the tools it interconnects. As an application of this

methodology, MOA transforms a software design into an instance of the OSSD Model and then into a

requirements specifications in order to deduce consistency properties of the specifications. These

properties are then used to improve the original design.

Numerous modeling languages can represent a design from diverse views, including UML, the OPEN

Modeling Language (OML) [Firesmith et al.], Specification and Description Language (SDL) [IEC],

Z, and Petri-nets. In this work, we represent the source design using UML. UML, one of the most

commonly used informal software modeling techniques, has become a de facto standard for modeling

software systems. One of the major benefits of using UML is the extensive collection of various

modeling notations specifically designed to encourage considerable freedom of specification. These

notations enable software designers to specify partially overlapping views of the system to be

modeled as shown in Figure 2; however, this flexibility often introduces inconsistencies into a

software design. Unfortunately, UML does not have a precisely unified semantics to clearly specify

and verify consistency. It is virtually impossible to adequately verify and validate software designs

without precise semantics. Considerable research has detailed the problems and inadequacies caused

by the lack of precise semantics in UML. Numerous theories, research projects, and a few practical

tools have been developed to address this lack of precise semantics in UML. This research addresses

undetected errors resulting from multiple views of software designs represented in UML.

We represent the common integrated model using an ontology. An ontological model provides a

model and application independent method of integrating heterogeneous design models. Other

models considered as a basis for the OSSD Model included UML Profiles, the Common Warehouse

Model [OMG5], the ADORA model [Glinz] and work being performed by the Precise UML Group

[pUML]. None of these models provided enough independence from their respective underlying

Interaction

View

Object

View

State

View

System

Figure 2: Multiple Views of Software Design

9

conceptual base. Ontologies provide the conceptual independence needed for a truly integrated

model. We chose from among the numerous ontology representation languages to represent the

OSSD Model using the Web Ontology Language (OWL), the World Wide Web Consortium (W3C)

Recommendation for ontology representation [OWL]. Representing the OSSD Model with OWL

will enable future interoperability with a wide variety of software engineering tools. Additionally,

there exist numerous ontology building tools based on OWL, such as Protégé [Gennari], a tool for

ontology modeling and knowledge base acquisition. Protégé, which is widely used with over 26,000

registered users, has several advantages over comparable ontology development tools [Alani].

Lastly, there exists an OWL Plugin to Protégé that facilitates the development of ontologies in OWL

[Knublauch et al.].

Many specification languages exist to assist software developers with detailing the requirements of a

software product. We chose to narrow analysis of formal requirements modeling languages to those

that are agent-oriented due to the growing importance and success of agent-oriented approaches to

software development. Examples of agent-based formal specification languages include KAOS,

TROPOS [Bresciani], MaSE [DeLoach], MESSAGE [Evans1 et al.], and SLABS [Zhu]. In this

work, we chose to represent the target requirements specification in KAOS, a goal-oriented approach

to requirements engineering that has been used successfully to detect and resolve conflicts in

requirements engineering. KAOS includes a wide range of requirements engineering activities

including meta-modeling, obstacle recognition, and conflict management. KAOS performs formal

reasoning utilizing real-time temporal logic notation to prove the completeness and correctness of its

refinement process, obstacle analysis and conflict analysis. Classification of inconsistencies within

the KAOS framework includes product-level inconsistencies (such as terminology, designation, or

structure clashes), and assertion inconsistencies (such as conflict, divergence, competition,

obstruction, realizability and concern meta-relationships). Additionally, KAOS has associated with

it commercially available tools that can perform consistency verification, including Objectiver

Requirements Management platform [Delor et al.] and an extension to Objectiver called the FAUST

Toolbox for Formal Requirements Specification Analysis [Ponsard et al.].

Figure 3 portrays a high-level view of MOA. MOA extracts structure, data and relationships from

the UML design; abstracts them into an ontology-based integrated model; and creates a specification

level representation of the original UML design in a formal, agent-oriented requirements modeling

language, namely KAOS. MOA transforms a software design specified using UML into an OSSD

OSSD

UML
Design

KAOS
Specification

CASE

Tool
Verification

of Properties

Reports

Verification

Tool

Manual Updates

abstracting

design details

combined agent and object

oriented abstractions

extracting

specification

 concepts

Figure 3: MOA

10

Model instance, upon which consistency checking is performed, and then into a KAOS representation

of its associated requirements specifications level in order to utilize formal verification tools to

deduce consistency properties of the specifications. The verification tool associated with the agent-

oriented model then processes the generated specification and produces a report that lists the

inconsistencies in the original UML design. For each inconsistency identified, the UML developer

can then determine whether it should be resolved or permitted to exist. Any changes to the sources of

these inconsistencies in the original UML design are manually updated. This research assumes that

the UML design includes all available requirements level information. The existence of a formal

and/or testable requirements specification is not relevant to this research. Some implementation

details resident in the UML design are not represented in MOA if they are not relevant to generation

of the specification level representation.

The primary motivation for this research is to improve the quality of software designs through

enhanced error detection in order to improve the quality of the resulting software product. A second

motivation is the need for improved methods to promote interoperability among different design

methodologies. A final motivation addresses the need to improve software development tool

interoperability that can help improve the design process. Interoperability in these last two

motivations implies the capability of software components to interact cooperatively with each other.

The National Institute of Standards and Technology (NIST) has defined within the recent Automated

Methods for Integrating Systems (AMIS) project that “the object of the integration process is to get

separately designed resources to work together to accomplish some end goal” [Barkmeyer].

1.5 Dissertation Overview

Chapter 2 reviews related research. Chapter 3 presents background information on the integration

components that are integral to the methodology presented in this dissertation: ontologies, UML and

OCL, and KAOS. Chapter 4 introduces MOA including it analysis, transformation and consistency

checking algorithms. Chapter 5 presents an example application of the MOA via a case study

analysis of an elevator system. Chapter 6 presents evaluations of the ontology model, the error

detection, and transformation technique employed in this methodology. Chapter 7 includes a

summary of this research and ideas for future work. Appendix A describes the application of MOA

to a safety-critical, real-time, and distributed system case study, the London Ambulance Service

(LAS) Computer Aided Dispatch (CAD) System [Finkelstein & Dowell].

11

2 Review of Literature

2.1 Related Research Areas

The research presented in this dissertation touches upon seven areas of related research as shown in

the two Venn Diagrams given in Figure 4: Ontologies, Software Design, Requirements Specification,

Consistency Management, Knowledge Integration, Agents, and Tool Integration. This research,

represented by MOA, is shown in the center of both Venn Diagrams. Although it is possible that

additional overlaps exist between the two Venn Diagrams, the arrangement is Figure 4 portrays

MOA’s relationship to related research in an easily understood format. This Section presents a brief

overview of each of the seven related research areas with a narrowing focus on its relationship with

MOA. Section 2.2 provides examples of related research sources that overlap two or more research

areas and a discussion of those areas that overlap three or more areas.

2.1.1 Ontologies

Ontologies have been utilized for many years in the fields of philosophy, linguistics and artificial

intelligence. They are becoming a popular technique to solve problems in a variety of applications

as described in a recent survey on ontology-based applications [Gargantilla]. Ontologies have become

the underlying information model in a variety of software development areas including multi-agent

systems, natural language processing, knowledge engineering, information retrieval, digital libraries,

and electronic commerce. They offer the potential of supporting and integrating the difficult tasks of

representing extensive and diverse knowledge, searching that knowledge, and presenting that

knowledge in a user-friendly format. The OSSD Model is based on ontological concepts to represent

software design and requirements specification knowledge. Chapter 3 contains additional

background on ontologies.

Requirements
Specification

Ontologies

Software
Design

Consistency
Management

MOA Agents

Ontologies

Tool
Integration

Knowledge
Integration

MOA

Figure 4: Related Research Areas

12

2.1.2 Requirements Specification

Most software development projects include the basic software development concepts of analysis,

specification, design, coding, testing and maintenance. The techniques used to actually implement

these concepts vary greatly as is evident in the variety of approaches including the traditional

Waterfall Model, Spiral Model, Controlled-Iteration Model, and Prototyping Model. There are

numerous methods and languages for specifying software requirements, each with its own associated

verification techniques and tools. Some tools and techniques are useful in improving the quality of

software development by identifying errors early in the development process. Chapter 3 reviews one

such requirements specification language, KAOS, which is the target specification language selected

for integration with UML via MOA.

2.1.3 Software Design

The software design related research area focuses upon methods and tools to produce a complete,

consistent, unambiguous software design in a high-level design language. The MOA assumes the

existence of a software design that is then transformed into a requirements specification to facilitate

the application of a formal requirements modeling tool to identify errors in the original software

design. Chapter 1 provides an overview software design in general and Chapter 3 provides an

overview of UML, the source design language selected for integration with KAOS via MOA.

2.1.4 Consistency Management

MOA is related to the numerous methodologies that have been developed to address software design

inconsistencies. An overview of consistency in software design is provided in Chapter 1. Many of

these methodologies are manual methods developed to detect inconsistencies while some are partially

automated. Only a few of these automated approaches have tools available for industrial use. A

limited number of approaches offer guidance on diagnosis, tracking, or resolution of software design

problems.

2.1.5 Knowledge Integration

The goal of knowledge integration is to combine specialized knowledge from a variety of sources

into one synthesized form that is better than the sum of its parts. MOA utilizes ontological concepts

to integration software requirements specification knowledge with software design knowledge. This

integrated model can then be used to detect errors in the software design as well as use to integrate

other software engineering tools with the end goal of improving the quality of the software.

2.1.6 Tool Integration

Given the wide diversity of software engineering tools available to developers today, it is becoming

increasingly important for these tools to be able to access common information sources and have a

shared, common understanding of these sources. MOA provides one way to integrate software

design tools with tools for software requirements specification.

2.1.7 Agents

Agent-oriented approaches to software development have been steadily gaining popularity in recent

years as an alternative to the object-oriented methods. It is appealing to consider developing software

that can react autonomously and/or cooperatively with other software agents to events its

13

environment. Acknowledging the importance of this trend, MOA transforms a software design into

an agent-oriented requirements specification. Chapter 1 provides an overview of agent-oriented

versus object-oriented software development.

2.2 Related Research Comparison

Figure 5 shows specific research sources in the seven related research areas presented in Section 2.1.

Table 1 provides a key to identify the reference sources, represented as numbers in the two Venn

diagrams, most closely related to this research. It lists sources with their corresponding reference

identification. A source can be represented in one or both Venn Diagrams. A detailed review is

given for sources that exist in three out of four research area in a Venn diagram.

2.2.1 Ontology Research

Related research methodologies employing ontologies to improve the software development process

include the following.

1) An ontological engine is integrated into a CASE-tool that assists with the creation,

verification, and validation of software artifacts (not designs) used throughout the software

development life cycle, such as classes, patterns, and diagrams [Deridder].

2) Ontologies organize design knowledge on the functional decomposition of engineering

devices based on functional ontologies into a framework of systematization in order to make

that knowledge consistent and relatively domain independent [Kitamura & Mizoguchi].

3) A common ontological model integrates network management information models [Vergara];

a Merge and Map (M&M) method merges the network management information into the

common model and then maps instances of each input model to the common model via a

mapping ontology.

4) An agent-based requirements refinement model represents requirements as state transition

diagrams uses a domain ontology for the detection, diagnosis, and resolution of semantic

inconsistencies in software requirements specifications [Zhu & Zhi].

Requirements
Specification

Ontologies

Software
Design

Consistency

Management

MOA

1, 2, 5, 7,

11, 12, 19,

20, 21, 24

29

 16, 17

 22

4

6, 10, 27

Agents

Ontologies

Tool
Integration

Knowledge

Integration

MOA 14,17

4, 25, 26,

29
15

13

8,23

9,12,

 28

Figure 5: Sources of Related Research

14

5) Ontologies integrate software engineering tools in a knowledge based system development

environment to facilitate knowledge integration among software engineering tools in order to

avoid redundancies and inconsistencies [Falbo1 et al.]; specifically, an ontology of software

development process is created on top of domain ontologies of software development

activities, procedures to be performed to carry out those activities, and resources required to

complete those procedures.

6) Ontologies in an agent-based system, InfoSleuth, integrate heterogeneous, distributed

information, and tools [Fowler et al.]; six types of agents (user agents, broker agents, ontology

agents, resource agents, value mapping agents, and multi-resource query agents) interact with

each other and reason via a common ontological model of information management.

Table 1: Related Research
Ref. ID Description Key

Aredo Tool integrates UML and PVS for verification 1

Beato et al. Tool to transform UML to SMV for formal verification 2

Botelho et al. Integrating ontologies and databases with agent communication language 3

Brandao Ontology as specification for verification of consistency of Multi-agent

system design models

4

Briand et al. Rules to detect inconsistencies in UML designs 5

Chen Ontology for inconsistency handling in requirements specifications 6

Chinorean et al. 7

Corradini et al. Agent-oriented approach to tool integration using wrappers and workflows 8

Deridder Integrating ontologies into CASE tool for software artifact creating,

verification, validation

9

Dong Semantic Web environment to integrate formal specification languages 10

Egyed2 Pattern-based approach to integrating design views in UML 11

Falbo et al. Software development process ontology for knowledge integration among SE

tools

12

Fowler et al. Agent-based system that utilizes ontologies to integrate heterogeneous,

distributed information, and tools

13

Guizzardi et al. Integrated agent-oriented methodology; knowledge management system 14

Jin Ontology and tool adapters provide interoperability of software reengineering

tools

15

Kalfoglou Ontology to identify conceptual errors in software specifications 16

Kitjongthawonjul

& Khosla

Integration of objects and agents via task-based problem solving adapters 17

Kitamura &

Mizoguchi

Ontological organization of functional design knowledge 18

Kozlenkov &

Zisman3

Goal-Based; identify and resolve inconsistencies 19

Liu Rule-based inconsistency classification 20

Mota Mapping UML to NuSMV 21

Nentwich2 et al. XML-based tool to check consistency of distributed and heterogenous

documents

22

Perini Integrates agent-oriented modeling tool with software verification tool 23

Ramalho &

Robin

Maps UML to a formal knowledge representation language for verification 24

Silva & Lucena Combines concepts of agents, objects, and UML into a multi-agent modeling

language

25

Silva et al. Integrating OO and AO concepts into an ontology for multi-agent systems 26

VanLamsweerde8 Goal-Oriented approach to detect, handle, resolve inconsistencies in

requirements

27

Vergara et al. Ontology for integrating network management tools 28

Zhu & Zhi Agent-based requirements refinement model including a domain ontology;

detect, diagnose, resolve inconsistencies in software requirements

29

15

MOA differs from the related research in ontologies by combining object-oriented and agent-oriented

concepts into its common model, and by utilizing its ontological common model, with associated

ontological reasoning, to detect errors in the domain of software design.

2.2.2 UML and Model Checking Research

Related research integrating UML with model checking and/or theorem proving tools to verify UML

designs includes the following.

1) The automatic mapping of UML diagrams (Class, Object, Statechart, Activity, and

Collaboration) into a formal knowledge representation language, Concurrent Transaction

Frame Logic (CTFL) programs is performed as a part of the Model-Oriented Development

with Executable Logical Object Generation (MODELOG) project [Ramalho & Robin]; CTFL

programs can then be processed by an inference engine to perform consistency and

completeness verification as well as other model analysis, refinement, and refactoring.

2) A tool integrates UML and PVS that maps UML modeling constructs (obtained from UML

Class, Sequence and Statechart Diagrams) into the specification language Prototype

Verification System (PVS) for verification via PVS type-checkers, theorem-provers, and

model-checkers [Aredo].

3) A Tool for the Active Behavior of UML (TABU) inputs a UML specification formatted in

XMI and automatically generates a Symbolic Model Verifier (SMV) specification, which is

then processed by a SMV tool model checker [Beato].

Model checking tools, such as SMV, input a description of a software system as a finite-state

machine including properties of the system specified in temporal logic. The model checker then

determines if the system satisfies those properties by performing a search of the state space defined

by the state machine. If the search produces a state in which the temporal logic is not satisfied, it

outputs the sequence of states leading up to the point at which the inconsistency was identified. For

example, the types of properties that can be verified using TABU concern proof that a state machine

and/or object activity is in a particular state, a signal or event is produced, and a comparison of

attribute values.

Approaches utilizing model checkers and theorem provers are similar to the MOA because they

attempt to integrate formal methods with semi-formal methods to verify UML behavior. However,

these approaches verify only a limited number of consistency and completeness problems. MOA

facilitates the definition of numerous syntactic and semantic rules to assist with error detection.

Additionally, the model checkers and theorem provers do not provide the higher-level detailed error

detection results or the obstacle recognition and conflict management techniques available in

requirements engineering tools with which MOA is designed to interface, such as KAOS.

2.2.3 Semantic Web Languages Research

Related research utilizing Semantic Web [Berners-Lee] languages in software development includes

the following.

1) Markup languages specify software requirements to facilitate detection and resolution of

inconsistencies in those specifications via a CASE tool (SC-CHECK) [Chen]. The “semantic

markup involves placing tags that point to pre-defined web-based ontologies for explicating

the meaning of elements of a specification being marked up” [Chen]. The original software

16

requirements specifications, defined in one of three formats ranging from textual to informal

(UML), to formal specifications (KAOS), are manually marked up in DAML+OIL (DARPA

Agent Markup Language [DAML] + Ontology Inference Layer [W3C2]) format. The SC-

CHECK tool combines editors for ontology and rule management, annotators for markup

management, an ontology repository, a formal set of rules, a set of consistent specifications,

and an inconsistency monitor to detect and resolve inconsistencies. The inconsistency

monitor consists of an inference engine, theorem prover or reasoner that identifies if a

specification violates specified consistency rules. The SC-CHECK tool is in its preliminary

stages. The examples and case study given address only a very small subset of either the

UML or KAOS languages.

2) The Semantic Web languages RDF (Resource Description Framework) [W3C3] and DAML

create a Semantic Web environment that integrates different formal specification languages

such as Z and CSP [Dong et al.].

3) An XML-based tool, xlinkit, facilitates the consistency checking of distributed and

heterogeneous documents [Nentwich2 et al]. A document is any source of structured or semi-

structured data represented in XML including software engineering documents such as

requirements specifications, design models, and source code. Xlinkit utilizes a rule language,

based on first-order logic, to specify assertions regarding consistency relationships between

elements in the distributed documents; it associates constraints with the hyperlinks that

interconnect elements of the distributed documents.

We utilize the semantic web language OWL to define the common model at the heart of MOA, the

OSSD Model. The research closest in concept to MOA is xlinkit [Nentwich2 et al]. However, the

syntactic checks performed by the xlinkit tool cannot contain the semantic information nor perform

the semantic reasoning that is possible in the ontologically based MOA because XML focuses on

structural relationships in a document and does not interpret the data within that document with

regards to different domains. XML does provide the syntactic and structural interoperability upon

which ontology languages can provide true semantic interoperability. “Ontologies in the form of

logical domain theories and their knowledge bases offer the richest representations of machine-

interpretable semantics for systems and databases in the loosely coupled world” [Obrst].

2.2.4 Tool Integration Research

Research integrating tools and/or software development methodologies includes the following.

1) Integration of AIXO (Any Input XML Output) wrappers to facilitate XML-based wrapping of

tools, agents to manage and coordinate heterogeneous activities, and workflows to specify and

coordinate the series of activities [Corradini et al.].

2) Integration of an agent-oriented modeling tool, TAOM, with software verification tools such

as the T-TOOL, a type of model-checker [Perini]; both TAOM and the T-TOOL are based on

the TROPOS Methodology for requirements engineering.

3) An approach to develop knowledge management systems [Guizzardi et al.], the Agent-

oriented Recipe for Knowledge Management Systems Development, integrates two agent-

oriented methodologies: the TROPOS Methodology for requirements engineering and the

ontology-based Agent-Object-Relationship.

MOA is similar in concept to the integration of TAOM with the T-TOOL [Perini]. However, both

TAOM and the T-TOOL focus on agent-oriented concepts while MOA integrates object-oriented and

agent-oriented concepts.

17

2.2.5 Integrating Objects and Agents Research

Research addressing the integration of objects with agents focuses on either the development of

agent-oriented systems utilizing new conceptual frameworks or the implementation of agents using

OO concepts. Such research includes the following.

1) The Taming Agents and Objects (TAO) conceptual framework [Silva et al.] defines an

ontology consisting of both OO and AO concepts essential for developing a multi-agent

system (MAS). These concepts are grouped into three categories of abstraction:

a) fundamental (objects and agents);

b) grouping (the organizations and roles required to represent complex collaborations);

and

c) environmental (constraints, events, and characteristics of the environment in which the

objects and agents exist).

The TAO conceptual framework combined with concepts from the UML metamodel is the

basis for a MAS Modeling Language (MAS-ML) [Silva & Lucena] which, in turn, is the

basis for a MAS ontology [Brandao et al.] used to verify the consistency of MAS design

models.

2) Integrating OO domain ontologies and OO databases with an agent communication language

(ACL) is the goal of an alternative approach to OO and AO integration [Botelho et al.]. In

this research, they augment the ACL with OO domain ontological concepts and translate the

ACL via a one-to-one mapping to the OO database entries.

3) Task-based problem solving adapters integrate object and agents into an integrated

architecture for information system and database system development [Kitjongthawonkul&

Khosla].

4) Considerable research exists regarding implementing agents using OO techniques by

augmenting the OO methodologies and/or programming languages to accommodate AO

concepts. A recent empirical study compares a pattern-oriented approach and an aspect-

oriented approach to MAS design and implementation [Garcia et al.]. The Agent Unified

Modeling Language (AUML) [Bauer et al.] is an extension of UML that provides modeling

mechanisms for describing multi-agent interactions; it extends the OO concept of an active

object and provides agent interaction protocols, agent roles, and agent lifelines including

multiple threads of interaction.

MOA most closely resembles the TAO conceptual framework research [Silva et al.] and specifically

its use in the MAS ontology to verify consistency of MAS design models [Brandao et al.]. However,

MOA assists with error detection in object-oriented designs, specifically for designs specified using

UML.

2.2.6 Consistency Management Research

Since the software design language used in this research is UML, this Section concludes with a more

in-depth analysis of the related research regarding approaches to consistency management in software

design and requirements engineering with a specific focus on software engineering with UML. In

[Spandoudakis & Zisman], techniques and methods for handling inconsistencies are organized into

the following six activities: detection of overlaps, detection of inconsistencies, diagnosis of

inconsistencies, handling of inconsistencies, tracking of inconsistencies, and specification and

application of a management policy for inconsistencies. A different overview of UML consistency

18

management organizes approaches into Meta-Modeling approaches, Constraint Language

approaches, and Formal Notation approaches [Elaasar].

MOA can be categorized among the approaches that detect inconsistencies in UML designs based on

the concept of mapping UML to the input specification required by model checking or theorem

proving tools. These approaches include, but are not limited to, the Prototype Verification System

(PVS) [Aredo], Concurrent Transaction Frame Logic (CTFL) [Ramalho], and NuSMV [Mota et al.].

These tools are useful in detecting inconsistencies; however, they do not provide the higher-level

detailed verification results or the obstacle recognition and conflict management techniques of a

formal requirements engineering tool such as those that support KAOS.

An empirical study quantifying inconsistency and incompleteness of UML designs divides

approaches to solving UML inconsistency problems into two categories: complete approaches and

partial approaches [Lange et al.]. A complete approach provides a formal semantic definition for all

UML. A partial approach focuses upon defining the semantics for a subset of UML in order to assist

with identifying inconsistencies. The category of partial approaches can be further subdivided into

two groups: formal approaches in which subsets of UML designs are mapped to formal methods; and

design-oriented approaches in which meta-model analysis of designs specified in UML and OCL

format is performed to analyze design properties and then define meta-model consistency rules

[Lange et al.]. The following examples of each approach would be placed in the overlap between

software design and consistency management in Figure 5. Examples of formal partial approaches are

algebraic abstract data types [Andre et al.], classical algebraic specifications [Astesiano & Reggio],

description logic [Mens et al.] and [Wagemann], category-theoretic framework for analyzing fuzzy

viewpoints [Sabetzadeh & Easterbrook], abduction [Nuseibeh & Russo], conceptual graphs

[Sunetnanta & Finkelstein], attributed graph grammar [Tsiolakis & Ehrig], and graph transformation

to a variety of formats that serve as input to a theorem prover that verifies system properties [Kyas &

Fecher] and [Paige2]. Examples of design-oriented partial approaches are rule-based or expert

systems [Briand et al.], [Liu] and [Suourrouille & Caplat], OCL constraints [Chiorean et al.], [Gomaa

& Wijesekera] and [Bodeveix et al.], graph-grammar [Wagner et al.], pattern-based analysis

[Egyed2], goal driven knowledge-based system [Kozlenkov & Zisman3], and based on XML

[Nentwich2 et al]. MOA can be categorized as a design-oriented partial approach.

Few examples of complete approaches exist that attempt to provide a formal semantic definition for

all UML. Considerable research has been performed during the past few years detailing the problems

and inadequacies caused by the lack of precise semantics in UML [Andreopoulos]. Imprecise

semantics make adequate verification and validation virtually impossible. Numerous theories,

research projects, and a few practical tools have been developed to address this lack of precise

semantics in UML. The underlying concept of most of these approaches is to formalize the semantics

of UML. With formal verification, a property of the software specification is usually mathematically

proven. Attempts to formalize UML have encountered numerous problems due to the very nature of

UML including its “heterogeneous semi-formal notations”, it multiple viewpoint perspective, its

extendable features (such as stereotypes and tagged values) and the fact that UML does not

“prescribe any particular development process” [Andreopoulos]. There are basically three

approaches to formalizing UML [Evans2 et al.]:

1) Supplemental Approach: transforming the semantics of the informal UML model to a formal

specification language (such as Z, Object Z [Roe et al.], B [Marcano et al.]) or to an

intermediate mathematical notation (such as Petri Nets and Kripke automata [VIATRA], and

Abstract State Machines [Ober]) so that the UML semantics can be proven via the formal

19

semantics of the specification language itself or via a verification tool (such as model

checkers [Engels1 et al.], and theorem provers [Paige2]); other intermediate formats include

Algebraic Specifications [Peng] or Object Algebras [Hussmann] with which properties can

also be proven mathematically;

2) O-O-extended Formal Language Approach: extending an existing formal notation (such as Z)

with the object oriented features of UML thereby creating a new formal notation (such as

Object-Z) so that the semantics of UML Meta-Model can be formalized and proven; and

3) Methods Integration Approach: incorporating formal specification notation into the informal

UML meta-model in order to prove properties by manipulation of the graphical object-

oriented model without reference to the underlying formalism.

A recent classification of consistency checking approaches defines three unique categories:

consistency by analysis; consistency by monitoring; and consistency by construction [Snoek et al.].

Most approaches fall under the first category, consistency by analysis, in which inconsistency

detection algorithms are developed and executed several times against developing models. Such

algorithms are manual or automated, and result in a generated report that is used to update the

original model. MOA can be classified as a consistency by analysis approach. Consistency by

monitoring enables the incremental development of a model that is always consistent. Inconsistent

updates to the model are simply not allowed. With consistency by construction, a tool automatically

generates consistent specifications via automatic inference. We classify MOA as a consistency by

analysis approach.

Several papers published recently define rules to detect inconsistencies in UML designs but most

define only a handful of rules; one notable exception defines 100 rules [Briand]. Only a few papers

define classifications or frameworks for organizing the types of inconsistencies. Examples of

consistency frameworks are: a classification based on five design issues: syntax versus semantics,

static versus dynamic, intra-model versus inter-model, multi-level, and error type [Elaasar & Briand];

a classification that presents three classes of design description inconsistencies: redundancy,

conformance to constraints and standards, and change [Liu]; a constraint classification that addresses

the various domains that are included in the development process: paradigmatic (typically those

detectable by UML modeling tools), profiles and stereotypes, modeling process,

target/implementation specific, and target domain specific [Suourrouille & Caplat]; a three-tier

classification of inconsistencies based on a view integration framework that organizes over 50

different types of inconsistencies [Egyed1]; and, lastly, classification of seven intra-specification and

inter-specification inconsistencies within UML structural, interaction and statechart diagrams:

vocabulary, integrity, abstraction, definition, coherence, configuration, and contract [Kozlenkov &

Zisman1]. This last classification is a component of a goal-based approach to discovering, recording,

analyzing and resolving inconsistencies in software specifications written in UML in which axioms

define goals that collectively represent the UML. MOA provides a consistency framework based on

the constructs of the OSSD Model.

Although several goal-oriented approaches exist addressing inconsistencies in software

specifications, we found only one other approach addressing inconsistencies in software design that

utilizes goals. This approach, referred to as a goal-driven knowledge-based approach [Kozlenkov &

Zisman3], is not based upon the KAOS approach to goal-oriented requirements engineering. In this

approach, goals are defined via axioms to represent the UML meta-model as a knowledge base.

Abduction is used to process information in this knowledge base. MOA includes the concept of goals

its error detection process through inclusion of a goal construct in its OSSD Model.

20

2.2.7 Summary

We categorize MOA as a combination of overlap detection and inconsistency detection based on

violations of consistency rules, a design-oriented partial approach with a unique ontological

perspective that includes an integrated model that provides a model and application independent

method of integrating heterogeneous design models, and a consistency by analysis approach. MOA

differs from the related research in several ways.

1) MOA provides a common ontological model to integrate multiple views of software design.

It is this ontological model that represents semantic design information, thereby enabling the

application of ontological reasoning to assist with the detection of complex semantic errors in

software designs.

2) MOA enables definition of semantic rules above and beyond the typical syntactic checks.

Most software design consistency checks are syntactic, based on the well-formed rules (WFR)

specified in the UML 2.0 Specification that address primarily the syntactic inconsistencies

within a given UML diagram. MOA facilitates the definition of numerous syntactic and

semantic rules to assist with error detection.

3) MOA integrates OO and AO concepts of software design in its error detection ontology. Few

error detection techniques for software design take into consideration the integration of AO

and OO concepts. As mentioned in Section 1.3, it is critical that future software development

address the integration of these two worlds. Additionally, existing techniques that encompass

solely object-oriented concepts, specifically UML related techniques such as profiles and

stereotypes, can make it difficult to address the complexity and abstractions of the more

frequently reoccurring agent-oriented concepts.

4) MOA introduces a new classification framework for consistency rules. This framework

enables a broad definition of consistency rules that includes a wide variety of potential

interactions.

21

3 Components for Integration

3.1 Overview

This chapter reviews the basic integration components used in MOA: ontologies; the source design

language UML with OCL; and the target requirements specification language KAOS. Included with

the overview of ontologies is an introduction to the ontology language in which the OSSD Model was

developed. Additionally, a comparison of object-oriented versus agent-oriented software

development is provided to show the relationships between UML and KAOS.

3.2 Ontologies

3.2.1 Introduction

Viewed simply, an ontology structures knowledge that consists of hierarchically arranged concepts,

properties associated with these concepts, relationships between the concepts, and rules that govern

these relationships. However, no standard definition of ontology exists. One of the more commonly

quoted definitions, originating with [Gruber] and enhanced by [Borst], defines ontology as a formal,

explicit specification of a shared conceptualization. An ontology is, therefore, an abstract model of

some area of knowledge, also known as a domain, which is used to share information in that domain.

It should consist of explicitly defined and generally understood concepts and constraints that are

machine understandable.

An ontology should be formalized if it is to be understood and managed by a computer. Although

there exists several different formal definitions of an ontology, the OSSD Model is based on one of

the more commonly referenced definitions [Maedche & Staab] and is graphically portrayed by a

simple example given in Figure 6:

* a set of Concepts C

* a set of Relations R

* two sets of strings describing lexical entries L: L
C
 and L

R

* a concept taxonomy: H
C

* a relation taxonomy: H
R

* two set of relations associating concepts and relations with corresponding lexical entries: F and G

* a set of axioms describing constraints on the ontology: A

3.2.2 Ontology Development

There exist a variety of ontology development techniques. As with many aspects of ontologies, no

standard ontology development methodology has yet emerged. A recent survey of the current

approaches is given in [Cristani & Cuel]. In general, the process of building an ontology usually

takes four steps including specification, conceptualization, formalization and implementation

[Kayed]. Popular methodologies that have been used to build ontologies include: Toronto Virtual

Enterprise [TOVE], ENTERPRISE [Uschold et al.], METHONTOLOGY [Fernandez et al.], and

Ontology Development 101 [Noy & McGuinness].

The “Ontology Development 101” was selected from among the variety of ontology development

methodologies because it is promoted as the beginner’s guide to ontology development using Protégé

[Gennari], a tool for ontology modeling and knowledge base acquisition. It also includes guidelines

22

to: ensure that class hierarchies are correct; analyze class sibling relationships; permit multiple

inheritance; identify disjoint sub-classes; limit scope; and, assist with distinctions between class,

property, and instance definitions. The basic steps proposed by “Ontology Development 101” are: 1)

identify the domain and scope of the ontology, 2) evaluate reusing an existing ontology, 3) identify

important terminology to be used in the ontology, 4) identify classes and their hierarchical

relationship, 5) identify class properties, 6) define the characteristics (or facets) of the class

properties, and 7) create the class instances. Development of the OSSD Model followed steps 1

through 6 of the “Ontology Development 101”. Step 7 is repeated each time MOA is applied to a

unique UML design.

3.2.3 Ontology Language

3.2.3.1 Introduction

Numerous languages have been developed to represent ontologies. We analyzed two of these with

regards to representing the OSSD Model: the Knowledge Interchange Format (KIF) and the Web

Ontology Language (OWL). The Knowledge Interchange Format (KIF) [Genesereth] is a low-level

language based on first-order predicate logic. It is not intended as a user-level language. It has

extensions that can be used to represent definitions and meta-knowledge. Ontolingua [Farquhar] is

an example of an ontology-editing tool that is based on the KIF and developed by Stanford

University for the construction and maintenance of ontologies. OWL is the World Wide Web

Consortium (W3C) Recommendation for ontology representation. OWL has a significant advantage

over modeling in software design languages such as UML because UML does not support

specification of domain knowledge and domain constraints other than in textual format; however,

OWL does provide the capability to represent domain knowledge [Neuhold et al.].

Representing the OSSD Model with OWL will enable future interoperability with a wide variety of

software engineering tools. Protégé is widely used to build OWL ontologies, with currently over

Lc = {c1, c2, c3, c4, c5, c6, c7}
Lr = {r1, r2, r3, r4, r5, r6, r7}

Relations F and G
Set of Axioms A

Lc = {producer, consumer, plant, herbivore,
 carnivore, omnivore, energy}

F(producer)=c1, F(consumer)=c2, F(plant)=c3,
F(herbivore)=c4, F(carnivore)=c5, F(omnivore)=c6,
F(energy)=c7

Hc(c3, c1), Hc(c4, c2), Hc(c6, c2) ...
Hr(c4, r2, c1), Hr(c1, r3, c4), ...

Lr = {absorbs, eats, isEatenby, ...}

G(absorbs)=r1, G(eats)=r2, G(isEatenBy)=r3, ...

Axiom: r2 is the inverse of r3

c1

c3

c7

r2

c2

c6

c4

c5

r7
r6

r1

r4
r5

r3

Figure 6: An Example Ontology

23

26,000 registered users. It has several advantages over comparable ontology development tools

[Alani]. Additionally, there exists an OWL Plugin to Protégé that facilitates the development of

ontologies in OWL [Knublauch]. The next chapter provides an overview of OWL.

3.2.3.2 OWL

OWL evolved from earlier ontology modeling languages (Resource Description Framework (RDF),

RDF Schema, and DAM+OIL) to provide a more expressive and powerful language to define, and

reason with, ontologies on the World Wide Web. RDF is basically a data model used to make simple

statements concerning resources (objects such as books, people, places, etc.) on the Web together

with the relationships (properties such as “title”, “name”, “location”, etc.) between those resources.

These simple statements are specified in the format object-attribute-value triplet corresponding to the

resource, property and value. RDF Schema expands upon the capabilities of RDF by adding the

concept of generalization enabling the definition of classes and subclasses of objects as well as

subproperty relationships. RDF Schema also adds the ability to specify to which side of a

relationship a resource can belong, either the domain or range. OWL builds upon RDF Schema by

adding the abilities to specify logical expressions, equalities and inequalities, cardinality restrictions,

required and optional properties, enumerated classes, and the concepts of symmetry in inverse. This

additional expressiveness enables enhanced semantical specification of and reasoning with domain

information. OWL uses XML syntax. OWL is used to describe a domain model by defining classes,

properties, and individuals. Figure 7 gives an example of a partial OWL representation of the

consumer-producer-decomposer relationships. Individuals are the instances of the ontology, the

specific examples. The classes describe sets of individuals. The properties describe relationships

between objects (object property) such as subclass, inverse, transitive, symmetric, and functional

properties, and between objects and their data type values (data type properties) such as integer,

chemosynthetic

photosynthetic

producer decomposer

plant

scavenger

subClassof

subClassof

subClassof
subClassof

subClassof

fungisoil

sun
energy

nutrients

bacteria

subClassof

subClassof

eats

isEatenBy

consumer

omnivore

herbivore

subClassof

subClassof
subClassof

"squirrel"

"owl"

carnivore "snake"

eats

eats

eats

creates

absorbs

isDecomposedBy

isDecomposedBy

absorbs

contains

recycles

"grass"

"vulture"

Figure 7: OWL Ontology Example

24

string, boolean, date and time. It is possible to specify restrictions on properties such as one of,

unionOf, allValuesFrom, someValuesFrom, minCardinality, and maxCardinality. There are three

sublanguages of OWL that range from the simplest and easiest to implement to the most expressive:

OWL Lite, OWL DL (Description Logics), and OWL Full. OWL Full is an extension of OWL DL

which is an extension of OWL Lite.

3.3 UML and OCL

This research focuses on UML designs specified using the officially adopted standard UML 2.0

[OMG1] addressing two layers of the UML Architecture, shown in Table 2, specifically the UML

Meta-model layer and the Model layer.

Table 2: UML Architecture
UML Layer Description Example

M3: Meta-metamodel Defines the language to specify meta-models MetaClass, MetaAttribute,

MetaOperation

M2: Meta-model Defines the language to specify models

Instance of meta-metamodel

Class, interface, operation

M1: Model Defines the language to specify user objects in a

specific domain; Instance of meta-model

Car, customer

M0: User Objects Defines a specific domain; Instance of the model Honda Prelude ABC-123,

John Smith

UML 2.0 includes the following 13 diagrams: Activity, Class, Communication, Component,

Composite Structure, Deployment, Interaction Overview, Object, Package, Sequence, State Machine,

Timing and Use Case Diagrams. This research analyzes a subset of UML diagrams that includes the

Use Case, Class, Sequence and State Machine diagrams:

1. use case diagram: specifies the system’s functionality from the perspective of interactions with the

user, also known as an actor; includes relationships between the system and its environment; typically

is supplemented with considerable natural language descriptions;

2. class diagram: specifies the static structure of objects, including attributes and operations, and

their relationships such as aggregation and generalization;

3. sequence diagram: specifies the dynamic behavior between objects represented as a chronological

sequence of messages exchanged between objects;

4. state machine diagram: specifies the dynamic behavior within objects in terms of states and

events.

This subset of UML includes a representative selection of UML diagrams specific to analysis and

design and covers the representative diagrams of the user view, the structural view and the behavioral

view. This research does not cover the implementation view.

UML designs analyzed in this research can include constraints specified via OCL. Typically, OCL is

used in conjunction with UML to specify constraints utilizing constructs unavailable in UML but

typically required for formal verification. It is possible to specify well-formed rules for the UML

model using OCL that can in turn be used to assist with the verification of consistency of the UML

design. OCL enables the software engineer to specify more precisely the behavior and constraints

25

associated with the system via the specification of invariants on classes, and pre-conditions and post-

conditions on operations. A class invariant is a statement about a property of a class that holds for all

objects of that class throughout the lifetime of each object. A post-condition is a statement about

conditions that exist after execution of an operation, basically what the operation should accomplish.

A pre-condition is a statement about conditions that exist before the execution of an operation,

basically the assumptions before the operation. Class invariants, pre-conditions and post-conditions

are usually specified as assertions. An assertion is a logical statement regarding one or more

variables. OCL expressions are declarative, specifying what constraints should be enforced but not

how they should be enforced, and side effect-free since they do not change the state of the system.

Currently, the semantics of OCL is based on UML semantics. OCL does not have a separate meta-

model [Warmer]. However, the current UML 2.0 OCL specification includes meta-modeling

diagrams that link it with UML 2.0 [OMG3].

3.4 KAOS

KAOS is a widely cited goal-oriented approach to requirements engineering that is currently being

incorporated into several emerging research projects including obstacle recognition [Brohez &

Gregoire], process control systems design [El-Maddah & Maibaum], derivation of event-based

specifications (SCR) from KAOS models [DeLandtsheer et al.], security requirements [Fontaine],

software architecture design [van Lamsweerde1], the reconciling of requirements with runtime

behavior [Feather et al.], and UML profiles [Heaven & Finkelstein]. KAOS covers a broad range of

requirements engineering activities including meta-modeling, specification methodology, obstacle

recognition, and conflict management. Goals are used to refer to the state(s) of the system that

should be achieved, maintained, ceased and/or avoided. KAOS uses real-time temporal logic

notation to perform formal reasoning to prove correctness and completeness of its refinement

process, its analysis of obstacles and conflicts. The different types of inconsistencies detectable in

the KAOS framework include intra-level inconsistencies among a process/product/instance tri-level

scope, product-level inconsistencies (such as terminology, designation, or structure clashes), and

assertion inconsistencies (such as conflict, divergence, competition, obstruction, realizability and

concern meta-relationships).

Research in requirements engineering during the past fifteen years has increasingly recognized the

importance of incorporating a goal-oriented view into its modeling, specification and reasoning [van

Lamsweerde5], [Kavakli & Loucopoulos]. The correspondence between goals and requirements are

that “requirements implement goals much the same way as programs implement design

specifications” [van Lamsweerde8]. Rather than focusing upon the system behavior and its

interactions with users, goal-oriented approaches make it “easier to investigate different ways of

achieving the stated goals and to detect and solve conflicts between them” [Regev & Wegmann].

Several goal-oriented approaches exist that are applicable to one or more of the four basic

requirements engineering activities: elicitation, negotiation, specification and validation. Such

approaches include KAOS, i* approach [iSTAR], Non-functional Requirements (NFR) Framework

[Mylopoulos et al.], Goal-Based Requirements Analysis Method (GBRAM) [Anton2 et al.], and

Goal-Questions-Metrics approach (GQM) [Basili et al.].

The KAOS approach covers a broad range of requirements engineering activities including meta-

modeling, specification methodology, obstacle recognition, and conflict management. KAOS

enables software engineers to identify high-level goals of the system to be built, both functional and

non-functional, and subsequently refine those goals into sub-goals and/or identify super-goals by

continually asking, in addition to “what” types of questions typical of requirements engineering, the

26

“why”, “how” and “when” type of questions. The sub-goals are in turn assignable to individual

software components, hardware devices or humans, collectively referred to as agents. Goals are used

to refer to the state(s) of the system that should be achieved, maintained, ceased and/or avoided.

KAOS facilitates alternative goal refinement and alternative agent responsibility assignment enabling

the development of alternative system proposals [van Lamsweerde4].

The basic structures in KAOS are goals, requirements, agents, objects and operations. A goal is

basically “an objective the system should achieve through cooperation of agents in the software-to-be

and in the environment” [vLamsweerde4]. An agent is either a person or a software/hardware

component that is responsible for achieving one or more requirements [Objectiver1]. A requirement

is “a low-level type of goal to be achieved by a software agent” [Objectiver1]. An object is a “thing

of interest in the system whose instances share similar features, can be distinctly identified, and have

specific behavior from state to state” [van Lamsweerde3]. Viewed from the meta-level, object

specializations include entities, associations, events and agents. Entities are autonomous.

Associations are subordinate. Events are instantaneous. Agents are active. Operations are input-

output relations over objects that are used to define state transitions and are characterized by pre-

conditions, post-conditions, and trigger conditions [van Lamsweerde8]. In the KAOS approach,

constraints are obtained by formally refining high-level goals. Constraints can be specified on

objects, processes and requirements. Constraints on objects are specified in a manner similar to class

invariants. Constraints on requirements and processes are specified in a manner similar to necessary

and sufficient pre-conditions and post-conditions.

KAOS goals are subdivided into functional and non-functional high-level goals and are expressed at

the conceptual model level thereby ignoring specific system implementation issues. KAOS includes

numerous requirements patterns that are useful when building the goal model. Goal refinement

utilizes these patterns to refine high-level goals into combinations of low-level goals. Goals are

refined into sub-goals and/or used to identify super-goals by continually asking, in addition to the

“what” types of questions typical of requirements engineering, the “why”, “how” and “when” type of

questions. Refinement stops once “a goal has been placed under the responsibility of a single agent”

[Objectiver1]. These goals are organized into goal graphs with the business or strategic goals at the

root and the system requirements at the leaves. Conflicts among goals arise if two goals in the same

goal graph cannot be satisfied simultaneously or when two or more goals produce opposite actions

under the same conditions. Obstacles are conflicts that prevent the achievement of goals.

All KAOS language constructs can be specified via a two-level structure: an outer declaration layer,

which includes semi-formal goal diagrams with natural language descriptions, and an inner formal

assertion layer that is used to formally define the construct and for formal reasoning. KAOS assists

software engineers with identifying and resolving goal conflicts and obstacles to those goals. KAOS

uses real-time temporal logic notation, originally developed by [Manna & Pnueli], to perform formal

reasoning to prove correctness and completeness of its refinement process, its analysis of obstacles

and conflicts. It performs this formal reasoning at the goal level to detect and resolve conflicts,

generate obstacles, refine goals and operationalize goals. Each goal is represented as a rule in

temporal logic. When the goals are specified formally the temporal logic, it is possible to derive goal

refinement patterns via goal regression that are provable. Refinement patterns are used to

decompose goals into sub-goals. Assuming that a sub-goal holds, the truth of the super-goal is

inferred from the conjunction (or disjunction) of the sub-goals. Goals are negated to produce

obstacles that are used to create and resolve new goals. A goal is assigned to an object or operation.

Once derived, a goal refinement pattern can be reused with the necessity to re-prove. KAOS uses

state-based specifications to specify operations.

27

KAOS utilizes the following temporal logic operators originally developed in [Manna & Pnueli]:

○ (in the next state) ● (in the previous state)

◊ (some time in the future) ♦ (some time in the past)

□ (always in the future) ■ (always in the past)

W (always in the future unless) U (always in the future until)

The following patterns of temporal behavior are used to classify goals [van Lamsweerde7]:

Therefore, goals are used to refer to the state(s) of the system that should be achieved, maintained,

ceased and/or avoided. Goals do not refer to state transitions in the system. The Achieve and Cease

goals are used to generate behaviors. The Maintain and Avoid goals are used to restrict behaviors.

There also exist soft goals that are used to indicate behavioral preferences where there exist

alternative behaviors. However, it is the Achieve, Cease, Maintain and Avoid goals that can be

verified via goal satisfaction and formal reasoning.

Goals are additionally organized in taxonomic categories such as satisfaction, information, accuracy,

security, safety, usability, etc. Goals have attributes, such as name, priority, and definition. Goals

also have links. Intra-model links are utilized for goal refinement as well as obstruction and conflict

analysis. Inter-model links are used for reference, operationalization and responsibility.

The KAOS Metamodel [van Lamsweerde2] has evolved considerably during the past ten years. The

KAOS meta-level is composed of four sub-models: goal model, object model, agent responsibility

model and operation model. The goal model focuses upon behavioral aspects including refinement,

obstacle, and conflict analysis. The object model concerns conceptual issues such as agents

(independent, active objects) and entities (independent, passive objects), and associations (dependent,

passive objects) as well as the relationships among them such as specialization and aggregation. The

agent responsibility model addresses the assignment of responsibility to agents and the corresponding

interfaces. Lastly, the operation model concerns the behavior required of agents (the scenarios) to

meet the requirements and includes and operationalization. Operationalization is the process of

identifying and deriving operations and their domain pre-conditions and post-conditions for

associated goals; what an agent needs to do in order to fulfill a goal. Operations are performed upon

objects.

Before discussing the different types of inconsistencies detectable in the KAOS framework, it is

important to cover the scope of managing inconsistency within this framework. This scope is viewed

from the following three levels [van Lamsweerde8]:

• process level: describes requirements in terms of objectives, actors, and elaboration operators to

produce artifacts; actors at this level include clients, users, domain specialists, requirements

engineers, and software developers;

• product level: describes instances of the artifacts created in the process model to further describe

the requirements model in terms of goals, agents, objects and operations;

• instance level: describes instances of the objects and operations created in the product level to

describe operations executed on objects in the running system.

Achieve: P ◊ Q or Cease: P ◊ ¬ Q

Maintain: P Q W R or Avoid: P ◊ ¬ Q W R

where P and Q and R are propositions

28

The KAOS framework includes the following inconsistencies:

A. Intra-level inconsistencies: inconsistencies involving two levels of scope that arise due to

problems with the objectives and rules at the process level, or the requirements at the product level,

or the states at the instance level:

1. process-level deviation: violation of a process-level rule that occurs in the requirements

engineering process; for example, assigning responsibility for a goal to two different agent types;

2. instance-level deviation: violation of a product-level rule that occurs in the running system; for

example, a specific instance of an agent failing to provide requirement constraints;

B. product level inconsistencies: problems with goals and requirements at the product level:

1. terminology clash: multiple syntactic names given to a single real-world concept;

2. designation clash: one syntactic name is given to multiple real-world concepts;

3. structure clash: multiple structures are given to a single real-world concept;

C. assertion inconsistencies: problems among assertions that formalize a goal, or a requirement or

an assumption; this type of inconsistency involves domain descriptions:

1. conflict: two or more assertions are logically inconsistent in the domain descriptions; the negation

of these assertions can be inferred from other assertions; also, if any one of these assertions no

longer exist then the inconsistency no longer exists; for example (modified from [van

Lamsweerde8], the following three assertions are conflicting: (1) when a device is in operation it

should be running; (2) when a device is in operation it should be running but when it is in start up

it is not running; (3) a device should always be running;

2. divergence: a conflict (as defined above) between assertions that occurs only if there is a

boundary condition such that 1) a set of assertions become inconsistent within the domain that

includes the boundary condition, 2) the removal of one or more of the assertions removes the

inconsistency and 3) it is possible for the boundary condition to exist; a boundary condition is a

specific combination of circumstances that results in conflicts between goals or requirements; for

example (modified from [Letier]): Given the two assertions (1) a pump should be on when there

exists high water and (2) a pump should be off when critical methane levels are detected, the

boundary condition, high water level and critical methane level, results in a divergence;

boundary conditions can be “formally derived by regressing the negation of one of the goal

assertions through the domain theory extended with the other goal assertions” [van

Lamsweerde7];

3. competition: a type of divergence within a single goal or requirement; for example, a person is

invited to attend two different meetings in which that person is able to attend each of the meetings

separately but if he attends one meeting he can not attend the other meeting [van Lamsweerde8];

imagine the case where the meetings are held in two distant states on the same day and there is

not enough time to travel from one state to the other between meetings;

4. obstruction: a type of divergence that involves only one assertion; a boundary condition becomes

an obstacle to the assertion of a goal; for example, a person is invited to attend a meeting to which

that person can attend but then the meeting time changes and that person can no longer attend the

meeting [van Lamsweerde8];

5. realizability: “a goal can be assigned as the responsibility of an agent only if the goal is stated in

terms of objects that are monitorable and controllable by the agent” [Letier];

6. concern meta-relationship: “every vocabulary element used in the formal definition of goals

must be declared in the object model” [Letier].

29

The KAOS approach has been used successfully to detect and resolve conflicts in requirements

engineering. The research presented in this paper adopts the KAOS framework for the classification

of requirements inconsistencies presented in [van Lamsweerde8] combined with its enhancements in

[Letier]. The KAOS approach manages conflicts at the goal level in order to provide more flexibility

in handling conflicts. Associated with the KAOS classification of inconsistency types, there exist

within KAOS techniques for detecting and resolving inconsistency types based on this classification.

In general terms, the problems of inconsistency are addressed in KAOS by “checking the meta-

constraints” and “by using systematically formal refinement techniques and the pattern library”

[Ponsard]. More specifically, inconsistencies are detected in KAOS by assertion regressing,

divergence patterns and detection heuristics [van Lamsweerde8]. Inconsistencies are resolved in

KAOS by avoiding boundary conditions, goal restoration, conflict anticipation, goal weakening,

resolution patterns, alternative goal refinement, resolution heuristics and object refinement [van

Lamsweerde8].

There does exist some incompleteness in the KAOS approach. Specifically, “inconsistencies are not

explicitly represented as a KAOS object” therefore “focusing on a subset of inconsistencies is outside

the scope of the framework” [Robinson]. Additionally, there exists a “lack of heuristic criteria that

could direct the search for boundary conditions towards goals and domain formulas whose sub-

formulas would be more likely to appear in prominent scenarios” [Spanoudakis & Zisman]. And

lastly, “the current set of (divergence and obstacle) patterns has to be expanded to capture a larger

part of the range of divergences that can be found in goal specifications for complex system”

[Spanoudakis & Zisman].

Significant benefits of utilizing the KAOS model beyond detection and diagnosis of inconsistencies

include [Objectiver1]: bi-directional traceability between the problem description and solution

spaces; completeness criteria via refinement of all goals specified, assignment of all requirements to

agents, justification of all operations, assignment of responsibility and order of operations; and

reduction of ambiguity via glossary construction and validation.

KAOS has associated with it commercially available tools that can perform consistency verification,

including Objectiver Requirements Management platform [Delor] and an extension to Objectiver

called the FAUST Toolbox for Formal Requirements Specification Analysis [Ponsard et al.]. The

KAOS model is incorporated into other tools including diagram editors. Additionally, Rational Rose

modeling tools provide extension mechanisms for the KAOS meta-model. There is also a KAOS

CASE-tool known as GRAIL [Ballant et al.]. Lastly, there exists a toolbox for Formal Requirements

Specification Analysis [FAUST] that is based on the KAOS goal-oriented methodology.

One other example of similar research addressing both the UML and KAOS models exists but it has a

different focus that applies goal-oriented requirements engineering techniques between system

objectives and UML models to facilitate the development of precise software specifications [van

Lamsweerde3]. KAOS starts with gathering information on requirements, assists the requirements

engineers with modeling and creating the requirements specification documentation. KAOS

addresses inconsistencies with regard to requirements. MOA starts with a UML design, transforms it

to a KAOS specification, and performs analysis on that specification in order to address

inconsistencies in UML models.

30

4 Methodology for Objects to Agents (MOA)

4.1 Introduction

Methodology for Object to Agents (MOA) is a methodology that integrates multiple views of a

software design and combines object-oriented concepts with agent-oriented concepts to facilitate

detection of errors arising from these multiple perspectives. Section 4.2 presents the Ontology for

Software Specification and Design (OSSD) that was developed for use in MOA as the common

model during the transformation of an informal software design into a formal agent-oriented

requirements specification. Sections 4.3.1 to 4.3.4 define the MOA process including a high-level

view of MOA processing including a novel utilization of thesauruses to analyze behavior and goals

identified in the source language design followed by the algorithms to transform a UML design to an

OSSD representation of that design. Section 4.3.5 describes the two forms of MOA consistency

checking. Finally, Section 4.3.6 gives the algorithm to transform an OSSD representation into a

target formal requirements specification, KAOS.

4.2 OSSD Model

The structure of the OSSD Model, shown in Figure 8, is a hierarchical decomposition of software

development concepts that is intended for automated manipulation. The top level of the ontology

consists of a Construct, which is subdivided into nine sub-constructs: Object, Attribute, Behavior,

Relation, State, Transition, Goal, Constraint, and Plan. Object is subdivided into Event and

Statebased; the latter is subdivided into Agent and Entity. An Event is an Object that has only one

State with no duration of time. An Agent is an Object that Controls and/or Monitors the Behavior of

other Objects. An Entity is an Object that has multiple States but does not Control or Monitor the

behavior of other Objects. Both Agents and Entities can have Perform Behavior. An Event is the

result of a Behavior. Attribute is subdivided into ObjectAttribute, RelationalAttribute, Visibility, and

Multiplicity. Behavior is subdivided into Control, Monitor and Perform. Relation is subdivided into

Association and Non-Association, the latter of which is further subdivided into Aggregation,

Composition, and Generalization/ Specialization. State is subdivided into Initial, Intermediate and

Final. Transition is subdivided into Incoming and Outgoing. Goal is subdivided into Achieve,

Maintain, Cease and Avoid. Constraint is subdivided into Precondition, Postcondition, Trigger,

Guard and Action.

Properties in the OSSD Model depict both structural and behavior relationships between OSSD

constructs. This wide latitude of interpretation is derived from the definition of an ontological

“property”. The term “property” itself has numerous definitions. In the general sense, a property of

something is often referred to as an attribute and describes a quality of that something and is used to

describe that something; for example, the color, weight, and size of something. Within the Resource

Description Framework (RDF), a property represents an attribute or relationship associated with a

resource. “A property is a binary relation between Thing and Thing” [DSTC et al.]. Properties in the

OSSD Model are assumed to imply the “has” relationship unless otherwise labeled. For example,

each Object has ObjectAttribute(s), the Relation(s) in which it is involved, and for StateBased

Objects, the State(s) in which the Object can exist.

Associated with each Behavior are the Attributes that it inputs and outputs, the Constraints it has, and

the Goal that it operationalizes. Associated with each Goal are other Goals that the Goal depends

on, the Agent for which the Goal is under the responsibility of, and the Object that the Goal concerns.

Lastly, each Agent has a Plan that contains a sequence of Behavior(s).

31

The agent-oriented concepts of goal, belief, and intention are represented in the OSSD Model.

Beliefs portray knowledge that an agent has of its environment and are represented via the Object,

d
ep

en
d

s

o
n

A
ss

o
ci

a
ti

o
n

N
o
te

:
u
n
m

ar
k
ed

p
ro

p
er

ti
es

 a
re

im
p
li

ed
 "

h
as

"

S
ta

te
c
o

n
ta

in
s

N
o

n
-a

ss
o

c
.

P
a

rt
.

S
u
p

e
rc

la
ss

A
g

g
re

g
.

C
o

m
p

o
s.

causes

V
is

ib
.

M
u
lt

ip
li

c
.

G
u

a
rd

.

T
ri

g
g
e
r.

P
re

co
n

d
.

P
o

st
co

n
d

In
it

ia
l

F
in

a
l

In
te

rm
ed

.

R
o

le

p
e
rf

o
rm

e
d

 b
y

O
b
j.

A
tt

ri
b

T
o
.O

b
j

F
ro

m
.O

b
j

se
n
d
s

m
sg

 t
o

E
ve

n
t

se
n

d
s

m
sg

 t
o

O
u

tg
o
in

g
In

c
o

m
in

g

fr
o

m
to

co
nt

ai
ns

R
el

a
ti

o
n

R
el

.A
tt

ri
b

en
tr

y

ex
itd
o

fo
ll

o
w

ed
 b

y

A
tt

ri
b

u
te

concern
s

A
g

en
t

in
p
u
ts

o
u
tp

u
ts

o
p
er

a
ti
o
n
a
li
ze

s

u
n

d
e
r

re
sp

o
n

si
b

il
it

y
 o

f

G
o

a
l

E
n

ti
ty

O
b
je

c
t

S
ta

te
b

a
se

d

B
eh

a
vi

o
r

G
e
n

er
a

l.

S
u

b
c
la

ss

W
h
o
le

.

A
c
h

ie
v
e

A
v
o

id

C
e
a

se

M
a

in
ta

in

C
o

n
st

ru
c
t

C
o

n
tr

o
l

M
o

n
it

o
r

P
e
rf

o
rm

T
ra

n
si

ti
o
n

C
o

n
st

ra
in

t

A
c
ti

o
n
.

P
la

n

contains

Figure 8: The Ontology for Software Specification and Design Model

32

Relation, Attribute, State, Transition and Constraint Constructs. Goals are the ultimate outcomes

desired by an agent and are represented via the Goal Construct. Intentions are the goals that an agent

is focusing on at a specific moment in time and are depicted via how the agent plans to work towards

its selected goals based on its current knowledge. Intentions are represented via the Behavior

Construct.

Because the terms Agents, Entities and Events are often used in software development with varying

definitions, there is a need for additional clarification and refinement of their definitions. These

refinements affect the transformation between software modeling and/or requirements languages and

the OSSD Model.

An Agent is an Object that controls and/or monitors the behavior of other Objects. These

“controlled” Objects are “outside” of the Agent, that is, they are not sub-components of the Agent.

Agents interact with other Agents, control Entities, and react to Events based on sensory input from

their environment. Agents execute their own thread of control and therefore cannot be a

subcomponent of another Object. Agents send messages to other Objects and sometimes expect a

response from those Objects. Therefore, they are, as part of their normal processing, partaking in a

communication similar to that of an agent communication language. Lastly, since an Agent has

control of its own actions and internal state without any direct intervention from people or other

Agents, the receipt of a message cannot change the state of that Agent.

An Entity is an Object that has multiple States but does not control or monitor the behavior of other

Objects unless those Objects are sub-components of the Entity. Entities typically perform operations

at the request of Agents and typically send messages to Agents indicating an operation has been

performed. The internal state of an Entity can be changed as a result of receiving a message from

another Object.

An Event is an Object that has only one State with no significant duration of time. An Event occurs

when some action has been performed by another Object. An Event can be as simple as a discrete

change in an environment variable, including temporal variables, or the completion of a complex

operation. The receipt of an Event by an Agent causes that Agent to perform some action. In UML

2.0, an event is defined as “the specification of a significant occurrence that has a location in time and

space and can cause the execution of an associated behavior”….”in the context of state diagrams, an

event is an occurrence that can trigger a transition” [OMG1]. In UML 2.0 each message in a

Sequence Diagram is represented as an event in an associated State Machine Diagram. The

definition of an OSSD Event is more restricted than a UML event because it does not include the

request for an operation or the command from one Object to another Object, therefore UML call

events are not considered OSSD Events. A message in a UML Sequence Diagram corresponds to an

Event only if it indicates that some action has been performed.

The graphical notations of the OSSD Model are commonly used in ontological representations.

Classes are depicted as rounded rectangles with solid lines showing sub-class relationships. This

subclass relationship is typically referred to as an “Is-a” relation. A class can have associated with it

one or more properties, indicated by dashed lines, which further define the class and link it

conceptually with related classes. The two classes interconnected by a property can be identified as

the “from” class and the “to” class, if required for clarification, via the direction of the arrow at the

end of the dashed line. Classes are given in italics and capitalized while properties are given in italics

and not capitalized. Instances of a class are indicated at the end of a double-headed arrow.

33

Similar models have influenced the development of the OSSD Model such as the ABC Metadata

Model [Lagoze & Hunter] and the Methodology for Engineering Systems of Software Agents

[Evans1 et al.]; however, the OSSD Model is not directly derived from any one of these ontologies

but rather is developed based upon different concepts inherent in the ontologies.

4.3 MOA

4.3.1 Overview

The MOA includes both transformations and consistency checking. The transformation from the

source language UML to the OSSD Model can be summarized as a combined lexical and semantic

analysis of the UML Model diagrams, followed by the utilization of multiple mapping tables that

enable the creation of an instance of the OSSD Model. The MOA consistency checking is a two-

stage process that introduces a consistency framework and an Inter-View Inconsistency Detection

Table, both of which are based on the OSSD Model. The final transformation from the OSSD Model

to the target agent-based requirements specification language, KAOS, is accomplished by the use of

two mapping tables.

Processing of the UML Class Diagrams is the first step in identifying the Object, Attribute, Relation

and Behavior Constructs of the OSSD Model. The processing of the UML Sequence Diagrams

refines the OSSD concept of Behavior and identifies the Constraints associated with Behavior. The

processing of the UML StateMachine Diagram refines the OSSD concept of Constraints and

identifies the States and Transitions in the OSSD Model. Lastly, the processing of the UML Use

Case Diagram identifies the Goals associated with Objects and Behavior in the OSSD Model.

Section 4.3.4 provides details concerning the transformation of UML diagrams to the OSSD Model.

Figures 9 and 10 show high-level views of the conceptual mappings between the UML Diagrams and

the Model Constructs, and the MOA processing, respectively. The MOA algorithms are shown as the

shaded areas in Figure 10. The first algorithm transforms a UML design into an instance of the OSSD

Model. The second algorithm performs basic consistency processing on the OSSD Model. The third

algorithm transforms the consistent OSSD Model instance into a KAOS specification.

UML

Diagram

Use Case Diagram

Class Diagram

Sequence Diagram

State Diagram

OSSD
Construct

Goal
Object

Attribute
Relation
Behavior

Plan
State

Transition
Constraint

Figure 9: High-Level View of UML to OSSD Mapping

34

4.3.2 Lexical and Semantic Analysis

The initial step consists of a lexical analysis that performs a part-of-speech tagging for each English

word in the source language. This research utilizes the Suggested Upper Merged Ontology (SUMO)

[Niles] WordNet [Miller] Browser [Sigma] to assist with the categorization of terminology used in

the UML diagrams. SUMO is a large formal ontology that is available to the public and is currently

mapped to the complete WordNet lexicon. WordNet is a lexical reference system for the English

language that categorizes English words into parts of speech (noun, verb, adjective, adverb). It

organizes words into sets of synonyms, referred to as synsets, gives definitions and provides semantic

relations between the synsets. These relations include synonyms/antonyms, hypernyms/hyponyms

(is-a relations with a broader and narrower definition), and meronyms/holonyms (similar to

part/whole of the part-of or has-part relations). A partial view of the SUMO hierarchy is shown in

Figure 11.

The initial steps of the part-of-speech tagging include identifying each word in the source design as

one of the typical English parts of speech: noun, verb, adjective, adverb, and preposition. All verbs

are identified as either in past and present tense. If an English word has more than one possible part

of speech interpretation, the context of the UML element determines the appropriate part of speech,

defaulting to nouns for classes and attributes and verbs for operations and messages. For example,

the English word “press” is sometimes interpreted as a verb describing the act of pressing something

or as a noun describing a machine used for printing, a newspaper organization, a newspaper or

magazine. Next, the SUMO/WordNet Browser determines the English word’s ontological

classification within the SUMO Ontology. If a word has multiple meanings within the same part of

speech, the user is asked to select the closest meaning from a list of possible definitions.

A1

A2

A3

UML →→→→ OSSD

MOA Consistency

Processing

OSSD →→→→ KAOS

OSSD Model

Consistent OSSD Model

KAOS Specification

KAOS

Processing

Inconsistency List

UML Design

Manual Update

Updated UML Design

Updated UML Design

Figure 10. High-Level View of MOA Processing

35

There is no standard format for specifying Use Case Diagrams; as a result, the processing of the

UML Use Case Diagrams uses the guidelines given in [Gottesdiener]. Use cases identify the actors

and actor interactions along with the goals associated with the roles that the actors play. Use Case

Diagrams describe “what” a system does as opposed to the “how”. The frame of references is that of

an observer external to the system. Use case diagrams relate to scenarios, which describe what

happens during interactions with the system to be developed. A use case is a set of scenarios that

accomplish a single task or goal. Actors represent the roles that people or system components play

that initiate events in the scenarios. A stick figure represents an actor. A use case represents the

primary goal of the actor. An oval containing a named description represents a use case. The line

connecting an actor to a use case is a communication association. The rectangle around the set of use

cases is the system boundary. The “includes” relationship shows sub-cases and the “extends”

relationship shows Use Case alternatives, exceptions and error conditions. Additionally, for purposes

of processing, the naming of the Use Cases conforms to the recommendations given in [Gottesdiener]

which state:

• use the format “verb” + [qualified] “noun”

• use active verbs and not passive verbs

• avoid verbs that are vague such as “do” or “process”

• avoid low-level verbs that are database oriented such as “create”, “read”, “update”, “delete”,

“get”, “insert”

• use “informative” verbs such as “analyze”, “discover”, “find”, “identify”, “inform”, “monitor”,

“notify”, “query”, “request”, “search”, “select”, “state”, “view”

• use “performative” verbs such as “achieve”, “allow”, “arrange”, “change”, “classify”, “define”,

“deliver”, “design”, “ensure”, “establish”, “evaluate”, “issue”, “make”, “perform”, “provide”,

“replenish”, “request”, “set up”, “specify”

• only one actor goal per Use Case

• the format for events should be either “subject”+”verb”+”object” OR “time to <verb + object>”

Physical

SelfConnectedObj

Collection

SetClass Quantity Attribute

Number

Entity

Physical

SelfContainedObject

SetClass Quantity Attribute

Number PhyscialQuantity PhyscialQuantity

relation

Agent

…

Artifact

Abstract Abstract

…

Object Object

PhyscialQuantity IntentionalProcess

PhyscialQuantity InternalChange

Process Process

… Collection

Device …

Motion

Physical

SelfConnectedObj

Collection Collection

SetClass Quantity Attribute

Number

Entity

Physical

SelfContainedObject

SetClass Quantity Attribute

Number PhyscialQuantity PhyscialQuantity PhyscialQuantity PhyscialQuantity

relation

Agent Agent

…

Artifact

Abstract Abstract Abstract Abstract

…

Object Object Object Object

PhyscialQuantity IntentionalProcess PhyscialQuantity IntentionalProcess

PhyscialQuantity InternalChange PhyscialQuantity InternalChange

Process Process Process Process

… Collection Collection

Device Device …

Motion

Figure 11: Partial View of SUMO Hierarchy

36

4.3.3 Goal Thesaurus and Behavior Thesaurus

In addition to the SUMO/WordNet Browser and WordNet Database, two lists of keywords were

specifically developed for the MOA, a Goal Thesaurus and a Behavior Thesaurus, assist with the

classification of the OSSD Model Constructs Goal and Object. There are four types of Goals in the

OSSD Model: Achieve, Maintain, Cease, or Avoid. There are three types of Behavior in the OSSD

Model: Perform, Monitor, or Control. Goals and behaviors are divided into these categories based on

their categorization in the KAOS methodology. While the meanings of perform, monitor, and control

are obvious, the meaning of the goal classifications need further explanation. Terminology for Goals

and Behavior is based on similar terms defined previously [van Lamsweerde5]. An object

monitors/controls a second object if it observes/modifies the state of one or more variables of that

second object. An object behavior is considered to perform if it actually executes a sequence of steps

to complete a task or operation. Specifically, achieve and cease imply a desired goal will eventually

be obtained or rejected while maintain and avoid imply that a desired goal is to be continuously held

or rejected. Figure 12 gives a partial view of the Goal Thesaurus, and Figure 13 provides a partial

view of the Behavior Thesaurus. The similar use of keywords in the repository created for the

Privacy Goal Management Tool (PGMT), under development at the North Carolina State University

[Anton1 et al.], inspired the development of the Goal Thesaurus and the Behavior Thesaurus.

Creating the Goal Thesaurus includes extracting synonyms for the key words “achieve”, “maintain”,

“cease”, and “avoid” from a standard thesaurus. Creating the Behavior Thesaurus includes extracting

synonyms for the key words “monitor” and “control” from a standard thesaurus. The perform type of

behavior is too broad a category to capture its meaning in a listing of synonyms. Categorization of

perform is a combination of SUMO and heuristics. The Goal Thesaurus assists with analyzing verbs

from each UML Use Case name to create instances of goal classes in the OSSD Model. The

Behavior Thesaurus assists with analyzing verbs from each UML Association name to determine if

an OSSD Model instance of an OSSD Agent or Entity should be created.

The MOA transformation process includes heuristics. Heuristics have been applied recently to the

transformation of natural language text into the Entity-Relationship (ER) Model [Omar et al.] and a

UML Class Model [Harmain & Gaizauskas], and in the transformation between UML Diagrams

[Selonen et al.]. While formal rules will always consistently produced correct results, heuristics will

accomplish

arrange

act

complete

enact

pull

determine

discharge

confirm

effect

fix

acquire

occupy

devise

attain

find

carry out

perform

execute

conclude

develop

close

complete

establish

create

master

move

discover

nullify

abstain

avert

bypass

circumvent

deflect

divert

evade

deny

refrain

withhold

obviate

debar

deflect

void

preclude

prevent

prohibit

reject

avert

forbid

inhibit

impede

restrain

curb

hold off

repulse

prevent

desist

halt

terminate

wrap up

conclude

culminate

discontinue

drop

fail

finish

refrain

shut down

suspend

arrest

freeze

delete

quit

end

finish

stop

destroy

interrupt

cessation

complete

eliminate

exclude

extract

abstain

abort

abolish

keep

hold

observe

uphold

sustain

conserve

preserve

assert

uphold

exert

wield

defined

continue

monitor

guard

manage

preserve

prolong

protect

provide

retain

supply

support

guarantee

assist

reinforce

strengthen

endure

ensure

persist
...

Achieve Avoid CeaseMaintain

Figure 12: Goal Thesaurus

37

usually produce correct results. The key is to clearly define the context in which the heuristic is to be

applied in order to ensure produce the desired results and thereby enhance the confidence in it.

Additionally, application of formalization techniques can be used to enhance confidence in the

heuristic. Eventually, the heuristic must be tested and verified.

4.3.4 UML to OSSD Transformation

4.3.4.1 Overview

Figure 14 represents the transformation of a UML design to the OSSD Model as a UML Activity

Diagram. A detailed overview of each step is given below including tables 3 through 5 that contain

examples of the mappings from UML to OSSD for the UML Class, Sequence and StateMachine

Diagrams. The first step identifies the Objects, Attributes, Relations and Behavior Constructs of the

OSSD Model. The processing of the Sequence Diagrams refines the concept of Behavior and

identifies the Constraints associated with Behavior. Each message in a Sequence Diagram produces

an Behavior whether it corresponds to a UML signal or an operation call. The processing of the

StateMachine Diagram refines the concept of Constraints and identifies the States and Transitions in

the OSSD Model. The processing of the Use Case Diagram identifies the Goals associated with

Objects and Behavior in the OSSD Model. Lastly, the information gathered and analyzed is

combined into an instance of the OSSD Model for the UML design.

Four steps detail the classification of a UML Class as an OSSD Object. First, the English text used to

describe the Class name is identified within the SUMO hierarchy as a possible Agent or an Entity.

For example, if a Class is identified as a sub-level of the SUMO Entity:Physical:Object then it is

potentially an Entity. If a Class is identified as a sub-level of the SUMO Entity:Abstract:Attribute:

RelationalAttribute:SocialRole then it is potentially an Agent. Second, the association relationships

between UML classes are analyzed based on a search through the Behavior Thesaurus for the English

text used to describe the relationships. Relationships with a Monitor or Control type of behavior

identify potential Agents and Entities. Third, the English text used to describe the UML operations

within each Class are analyzed for their type of behavior. Operations in messages sent from an Agent

to an Entity are assumed to utilize the present tense of the verb, thereby indicating a command.

Similarly, operations in messages sent from an Entity to an Agent are assumed to utilize the past

tense of the verb, thereby reporting to the Agent that some action has been performed or observed.

UML operations that correspond to levels in the SUMO hierarchy under IntentionalProcess indicate

advise
check
listen

observe
record
scan

survey
track

analyze
ascertain
compare
confirm
look at

lookover
note

audit
overlook

read
review

scrutinize
study
attend
detect

discover
distinguish
examine
perceive
recognize

see
view

Control Monitor
administer

advise

boss
call

command
conduct

direct

guide
handle

instruct
manage

manipulate

...

check

observe

survey
track

analyze
compare

audit

read
review

study
distinguish

examine

...

Figure 13: Behavior Thesaurus

38

that such operations are associated with an Agent because these operations are deliberate actions

initiated by an Agent and performed by either an Agent or Entity. Any Class that contains only

Perform type of operations is classified as an Entity. Any Entity that has only one state is classified

as an Event. Any Class that has either Control or Monitor type of behavior but that Controls or

Monitors only one or more classes contained within that Class is classified as an Entity because that

Class is actually controlling or monitoring itself. Any Class that has either Control or Monitor type

of behavior that Controls or Monitors one or more classes not contained within that Class is classified

as an Agent. Lastly, since the definition of an agent states that it must be able to control its own

actions and internal state without any direct intervention from people or other agents, if the behavior

of an Object caused by the receipt of a message from an Agent object results in a change in the state

of that Object, then that Object is an Entity.

Process Class Diagram

Process Sequence
Diagram

Process State Diagram

Classify OSSD States,

Transitions, Constraints

Associate States with Objects,

Transitions, Behavior, Constraints

Associate Transitions with

Constraints and Behavior

Verify Agent classification
based on state changes

Classify Message Types

Classify OSSD Behavior

Classify OSSD Objects as Agents, Entities or Events

Associate

Behavior with

Objects and Attributes

Classify OSSD Attributes and Associate them with Objects

Associate

Relations with

Objects and Attributes

Classify Message Type B as OSSD Entities

Perform POS
tagging
using

SUMO / WordNet

Classify OSSD

Relations

ID UML
definitions

Process Use Case
Diagram

ID OSSD Objects

ID OSSD Behavior

Classify OSSD Goals

Associate Goals with Behavior

Associate Goals with Objects and Agents

Build the OSSD Model

Figure 14: Activity Diagram - UML to OSSD Transformation

39

This research makes the following assumptions concerning the UML specifications. When a UML

definition includes multiple English words, each new English word starts with a capital letter (e.g.

TurnLightOn). UML Association Names are specified using directional indicators to enhance

interpretation of the Association Name. If directional indicators are not specified with the UML

Association names in the Class Diagrams then the Association is read from left to right for

horizontally specified associations and from top to bottom for vertically specified association.

4.3.4.2 High-level Algorithms

Five high-level algorithms, shown in Figures 15 through 19 as A1-1 through A1-5, correspond to the

five major activities shown in the Activity Diagram in Figure 14 that describe the transformation

from UML diagrams to an instance of the OSSD Model that represents the UML design. Section

4.3.4.3 provides expanded and more formalized versions of these five algorithms.

Figure 15: Process Class Diagram Algorithm

Figure 16a: Process Sequence Diagram Algorithm

A1-1: Process Class Diagram Algorithm

For each element in a UML Class Diagram:

a. identify UML definitions (e.g., class, operation);

b. perform an English language part of speech (POS) tagging using the SUMO/WordNet browser (e.g.

 noun, verb, adjective); for each verb, identify its English sub-POS (present/past) and determine its

 English language significance based on the SUMO ontology accessed via the WordNet mappings;

 if an English word has multiple SUMO/WordNet definitions then

 prompt the user to select the closest meaning from a list of SUMO/WordNet definitions

c. classify each UML relationship as an OSSD Relation based on the different relationships involving

 the UML classes (e.g. association, generalization, aggregation, composition);

d. update the Inter-View Inconsistency Detection Table

A1-2: Process Sequence Diagram Algorithm

For each message in a UML Sequence Diagram:

a. classify the message type(note: [] indicates optional);

 Message Type A: {present tense verb}+[noun/adj]

 Message Type B: [noun]+[past tense verb]+[adj]

b. rename UML operations in a message if necessary:

 if a UML message with the same operation is sent to multiple Objects then

 rename the UML operation with the operation name suffixed by the UML Class name

 to which the message is sent

 if an unnamed UML return message (dashed line with filled arrowhead) is sent corresponding

 to a synchronous message (solid line with a filled arrowhead) then

 name the Behavior using a Message Type B format corresponding to the last

 message sent from the UML Class receiving the return message

40

c. classify each UML operation as an Behavior;

 if the sending UML Class and receiving UML Class are the same then

 classify the Behavior of the sending UML Class as Construct:Behavior:Perform AND

 classify the Behavior of the receiving UML Class as Construct:Behavior:Perform

 else

 if the UML operation corresponds to Message Type A then

 classify the Behavior of the sending UML Class as Construct:Behavior:Control AND

 classify the Behavior of the receiving UML Class as Construct:Behavior:Perform

 else

 if the UML operation corresponds to Message Type B then

 classify the Behavior of the receiving UML Class as Construct:Behavior:Monitor

 classify the Behavior of the sending UML Class as Construct:Behavior:Perform

d. classify each UML Class as an OSSD Object;

 if UML Class name is identified as sublevel of SUMO Entity:Physical:Object then

 classify the UML Class as an OSSD Construct:Object:Statebased:Entity

 else

 if UML Class name is identified as sublevel of SUMOEntity:Physical:Object:Agent OR

 Entity:Abstract:Attribute:RelationalAttribute:SocialRole then

 classify the UML Class as an OSSD Construct:Object:Statebased:Agent

 search Behavior Thesaurus for the verb specified in the UML Association Name

 if verb is not found then

 search WordNet Database for the verb AND

repeat for each synonym identified for the verb

 search the Behavior Thesaurus for that synonym

until verb is found in Behavior Thesaurus OR there are no more synonyms

 if the verb is found in the Behavior Thesaurus then

 if directional indicators have been specified next to the UML association name then

 if the verb is the type Control or Monitor then

 classify the UML Class on the “from” side of the association name

 as OSSD Construct:Object:Statebased:Agent

 classify the UML Class on the “to” side of the association name

 as OSSD Construct:Object:Statebased:Entity

 else

 if the verb is the type Control or Monitor then

 classify the UML Class to the left of or above the association name

 as Construct:Object:Statebased:Agent

 classify the UML Class to the right of or below the association name

 as Construct:Object:Statebased:Entity

 if all operations associated with the UML Class are of the OSSD type Perform then

 if UML Class has only one state then

 classify the UML Class as an OSSD Construct:Object:Statebased:Event

 ellse

 classify the UML Class as an OSSD Construct:Object:Statebased:Entity

 else

 if the Control and/or Monitor type operations of the UML Class refer only to Class(es)

 contained within that UML Class then

 classify the UML Class as an OSSD Construct:Object:Statebased:Entity

 else classify the UML Class as an OSSD Construct:Object:Statebased:Agent

Figure 16b: Figure continued

41

Figure 16c: Figure continued

Figure 17: Process StateMachine Diagram Algorithm

e. classify each UML Class Attribute as an OSSD Attribute either as ObjectAttributes (including

properties visibility, and multiplicity) or RelationAttributes ToObject and FromObject (including

properties role and multiplicity) and associate them with the OSSD Objects

f. associate Behavior with OSSD Objects and Attributes according to sends message to and the inputs

and outputs for each message; the ordering of the messages exchanged between UML objects is

captured in the OSSD Model by simply ordering the creation of the properties (e.g. has Behavior0,

has Behavior1)

g. associate each OSSD Relation with its corresponding OSSD Objects and Attribute(s)

h. update the Inter-View Inconsistency Detection Table

A1-3: Process StateMachine Diagram Algorithm

For each state and transition in a UML StateMachine Diagram;

a. classify each UML State as an OSSD State and Initial, Intermediate, or Final;

b. classify each UML Transition as an OSSD Transition and Incoming or Outgoing;

 link all Transitions in a given State using the followed by property

c. classify each UML Constraint as an OSSD Constraint and Precondition, Postcondition, Guard, or

 Trigger based on the following:

 Precondition: state related attributes and values associated with Incoming Transition; these are

 attached to the UML transition via a UML Note;

 Postcondtion: state related attributes and values associated with Outgoing Transition; these are

 attached to the UML transition via a UML Note;

 Guard: conditional statement of non-state attributes and values associated Incoming Transition

 Trigger: behavior associated with Incoming Transition; associate Trigger with Behavior

 Action: behavior associated with a Transition that is performed as a result of the Transition

d. associate each OSSD State with its State-Based Object, Transition, Constraints and State Contains;

e. associate each OSSD Transition with its Constraint and Behavior;

f. recheck each OSSD Object classified previously as an Agent to determine if its state is changed by a

 different Object:

 for each State in the StateMachine Diagram

 if the state of the UML class can be changed by a UML message that UML Class receives then

 UML Class is an OSSD Construct:Object:Statebased:Entity

g. update the Inter-View Inconsistency Detection Table

42

Figure 18: Process Use Case Diagram Algorithm

Figure 19a: Build OSSD Model Algorithm

A1-4: Process Use Case Diagram Algorithm

For each Use Case defined in the UML Use Case Diagram:

a. identify the OSSD Objects in the Use Case scenarios via a simple matching of the Actor(s) and any

nouns described in the scenarios of the Use Case with the OSSD Objects already identified; nouns

referenced in scenario lines containing other Use Case names are processed in the subordinate Use

Case;

b. identify the Behavior that is described in the Use Case via a simple matching of the verbs described

in the scenarios of the Use Case with the Behavior already identified; verbs referenced in scenario

lines containing other Use Case names are processed in the subordinate Use Case;

c. name the Goal by reversing the main verb and noun in the Use Case name; change the verb to noun

or past tense;

d. identify the dependency relationships between Goals based on the nesting of UML Use Cases

e. classify the Goals (Achieve, Maintain, Avoid, Cease) based on the verb specified in the Use Case

Name:

 search Goal Thesaurus for the verb specified in the Use Case Name

 if verb is not found then

 search WordNet Database for the verb

 repeat for each synonym identified for the Use Case verb

 search the Goal Thesaurus for that synonym

 until an Goal Category has been found OR

 there are no more synonyms

 if verb is found then

 classify the Goal according to the goal category identified

f. associate each Goal with the Behavior identified for the associated verbs from the Use Case

g. associate each Goal with the OSSD Objects they concern and the Agents the Goal is under the

responsibility of based on the Objects identified with the Use Case

h. update the Inter-View Inconsistency Detection Table

A1-6: Build the OSSD Model Algorithm

Build an instance of the OSSD Model for the UML design:

a. create an OSSD Construct Object State-based Agent / Entity or Construct Object Event for each

OSSD Object; if an Agent is created then create an OSSD Plan

b. create an OSSD Construct Relation Association or Non-Association for UML Association

for each NonAssociation create the appropriate General or Composition sub-trees;

link each Relation with its associated OSSD Construct Object via the has property

43

Figure 19b: Figure continued

c. create an OSSD Construct Attribute ObjectAttribute / RelationAttribute (ToObject, FromObject)

for each UML Attribute

link each OSSD Construct Attribute ObjectAttribute / RelationAttribute with the OSSD

Construct Object or OSSD Construct Relation Association corresponding to the UML Class or

Association to which the OSSD Construct Attribute belongs based the UML elements via the

has property;

d. create an OSSD Construct Attribute Visibility for each UML Visibility

link each OSSD Construct Attribute Visibility with the corresponding OSSD Construct

Attribute ObjectAttribute via the has property;

e. create an OSSD Construct Attribute Multiplicity for each UML Multiplicity

link each OSSD Construct Attribute Multiplicity with the corresponding OSSD Construct

Attribute ObjectAttribute / RelationalAttribute via the has property;

f. create an OSSD Construct Attribute Role for each UML Role

link each OSSD Construct Attribute Role with the corresponding OSSD Construct Attribute

RelationalAttribute via the has property;

link each OSSD Construct Attribute Role with the corresponding OSSD Construct Statebased

Agent via the performed by property;

g. create an OSSD Construct Behavior (Perform, Control, Monitor) for each Perform, Control, or

Monitor Behavior associated with Message Type A

link each Behavior with its sending OSSD Construct Object State-based Agent or Entity via the

has property

link each Behavior with its receiving OSSD Construct Object State-based Agent or Entity via

the sends message property if that Behavior is either Control or Monitor

link each Behavior with its receiving OSSD Construct Event via the causes property if that

 Behavior is Perform and then that Event with its receiving OSSD Construct Object State-

based Agent or Entity via the sends message

link each Behavior with its associated input and output OSSD Construct Attribute via the

inputs and outputs properties respectively

h. create OSSD Construct Object Event for each Perform Behavior associated with Message Type B

link each Behavior with newly created OSSD Construct Object Event via the causes property

link each Event with its receiving OSSD Construct Object State-based Agent or Entity via the

sends message property

44

i. create an OSSD Construct State (Initial, Intermediate, Final) for each UML State;

link each OSSD Construct State with its contained OSSD Construct State(s) via contains property

link each OSSD Construct State with its associated OSSD Construct Behavior via entry property

link each OSSD Construct State with its associated OSSD Construct Behavior via do property

link each OSSD Construct State with its associated OSSD Construct Behavior via exit property

j. create an OSSD Construct Transition (Incoming, Outgoing) for each UML State;

link each OSSD Construct Transition with its subsequent OSSD Construct Transition via the

 followed by property

link each OSSD Construct State with its corresponding OSSD Construct Transition (Incoming,

 Outgoing) via the has property

link each OSSD Construct Transition (Incoming, Outgoing) to its corresponding OSSD Construct

 State via the from and to properties respectively

k. create an OSSD Construct Constraint (Precondition, Postcondition, Trigger, Guard, Action) for

each UML Constraint;

link each OSSD Construct Constraint with its corresponding OSSD Construct Transition via

 the has property;

link each OSSD Construct Constraint with its corresponding Behavior via contains property

link each OSSD Construct Constraint with its corresponding OSSD Attribute RelationalAttribute

 via the has property

l. create an OSSD Construct Goal (Achieve, Maintain, Cease, Avoid) for each UML Goal identified

link each OSSD Construct Goal with its associated OSSD Construct Object State-based Agent

 via the under responsibility of property

link each OSSD Construct Goal with its associated OSSD Construct Object via concerns property

link each OSSD Construct Goal with its associated OSSD Construct Behavior via

 operationalizes property

link each OSSD Construct Goal with its associated OSSD Construct Goal via depends on property

Figure 19c: Figure continued

4.3.4.3 Detailed Algorithms

Five detailed transformation algorithms, shown in Figures 20 through 24 as A1-1 through A1-5,

correspond to the five high-level algorithms given in Figures 15 through 19 that describe the

transformation from UML diagrams to an instance of the OSSD Model that represents the UML

design. These algorithms utilize supplemental algorithms, shown in Figure 25. The transformation

algorithms utilize tables whose names and formats are shown in Figure 26.

For use in the MOA transformation algorithms, we formally define followings sets:

1) WCLD is the set of words in the UML Class diagrams

45

2) WSQD is the set of words in the UML Sequence diagrams

3) WSMD is the set of words in the UML StateMachine diagrams

4) WUCD is the set of words in the UML Use Case diagrams

5) WUC is the set of words in the UML Use Cases

6) E is the set of UML elements {class, operation, attribute, association, generalization, …} d E

7) R is the set of relationships in the UML diagrams; R d E

{association, generalization, aggregation, composition} d R

8) SW is set of SUMO/WordNet words

9) SWC is the set of SUMO/WordNet classifications

{entity:physical:object, entity:physical:process:motion, …}d SWC

10) V is set of verbs; PastV is set of past tense verbs; Present V is set of present tense verbs

V d SW; {PastV, PresentV} d V

11) A is the set of adjectives

A d SW

12) N is the set of nouns

N d SW

13) OSSD_Behavior_Thesaurus is the set of verbs divided into Control and Monitor verbs

{Control_Verbs, Monitor_Verbs} f OSSD_Behavior_Thesaurus

{administer, advise, call, command, instruct, …} d Control_Verbs

{oversee, regulate, rule, supervise, check, …} d Monitor_Verbs

14) OSSD_Goal_Thesaurus is the set of verbs divided into Achieve, Maintain, Avoid, and

Cease verbs

{Achieve_Verbs, Maintain_Verbs, Avoid_Verbs, Cease_Verbs} f OSSD_Goal_Thesaurus

{accomplish, determine, confirm, find, execute, close, …} d Achieve_Verbs

{keep, hold, observe, manage, assist, support, provide, …} d Maintain_Verb

{nullify, avert, deny, void, prevent, reject, forbid, reject, …} d Avoid_Verbs

{desist, halt, drop, finish, quit, delete, destroy, interrupt, …} d Cease_Verb

15) OSSD_Model is the set of elements in the OSSD Model

 {OSSD_Constructs, OSSD_Properties} f OSSD_Model

16) OSSD_Constructs is the set of constructs in the OSSD Model

 {Object, Attribute, Behavior, Relation, State, Transition, Goal, Constraint, Plan} f

 OSSD_Constructs

 {Statebased, Event} f Object

 {ObjectAttribute, RelationAttribute, Visibility, Role, Multiplicity} f Attribute

46

 {Control, Perform, Monitor} f Behavior

 {Association, NonAssociation} f Relation

 {Intial, Intermediate, Final} f State

 {Incoming, Outgoing} f Transition

 {Achieve, Avoid, Cease, Maintain} f Goal

 {Action, Guard, Trigger, Precondition, Postcondition} f Constraint

 {Agent, Object} f Statebased

 {Generalization, Aggregation, Composition} f Non-Association

 {Subclass, Superclass} f Generalization

 {Whole, Part} f Aggregation

 {Whole, Part} f Composition

 {ToObject, FromObject} f RelationAttribute

17) OSSD_Properties is the set of properties in the OSSD Model {causes, concerns, dependsOn,

 do, entry, exit, followedBy, from, has, inputs, operationalizes,

 outputs, performedBy, sendMsgTo, to, underResponsibilityOf} f OSSD_Properties

18) T is the set of MOA transformation tables; {t1, t2, t3, t4, t5, t6, t7, t8}f T

19) t1 is the UML Class Element and POS Tagging Table where {t11, t12, …, t1i} d t1

 and {uml, e, p, sp, swc, dww, parms) f t1i where

 uml = UML name,{w1, w2, …, wi}f uml, w 0 WCLD

 e = UML element, e 0 E

 p = POS, p 0{verb, noun, adjective, preposition}

 sp = SubPOS, p 0 {past, present, future}

 swc = SUMO/WordNet classification, swc 0 SWC

 dw = Defined within UML

 dwc = Defined within UML classification

 parms = Parameters

20) t2 is the MOA Relation Classification Table where {t21, t22, …, t2i} d t2

 and {an, rel, at, r, m) f t2i where

 an = UML association name

 rel1 = OSSD Relation, rel 0{from, superclass, whole}

 rel2 = OSSD Relation, rel 0{to, subclass, part}

 at1 = OSSD Relation Attribute, at 0WCLD

 at2 = OSSD Relation Attribute, at 0WCLD

 r = OSSD Role

 m = OSSD Multiplicity

21) t3 is the MOA Behavior Classification Table where {t31, t32, …, t3i} d t3

 and {op, mt, parms, so, soc, ro, roc) f t3i where

 op = UML operation

 mt = message type, mt 0{A, B}

 parms = message parameters

 so = OSSD sending Object

 soc = OSSD sending Object classification

 ro = OSSD receiving Object

47

 roc = OSSD receiving Object classification

22) t4 = MOA Object Classification where {t41, t42, …, t4i} d t4

 and {cn, c, swc, b, oc) f t4i where where

 cn = UML class name

 c = UML composition type, c 0{TOP, SUB)

 swc = SUMO/WordNet classification

 b = list of OSSD Behavior associated with cn

 oc = OSSD Object classification

23) t5 = MOA State, Transition, Constraints Classification Table Part 1

 where {t51, t52, …, t5i} d t5 and {cn, sn, sc, enb, db, exb, itf, ott} f t5i where

 cn = UM class name

 sn = UML state name

 sc = OSSD State classification where {initial, intermediate, final} f sc

 enb = OSSD Entry Behavior

 db = OSSD Do Behavior

 exb = OSSD Exit Behavior

 itf = OSSD Incoming Transition From

 ott = OSSD Outgoing Transition To

24) t6 = MOA State, Transition, Constraints Classification Table Part 2

 where {t61, t62, …, t6i} d t6 and {cn, tn, itf, ott, c, cc, tl) f t6i where

 cn = UML class name

 tn = OSSD transition number

 itf = OSSD Incoming Transition From

 ott = OSSD Outgoing Transition To

 clist = OSSD Constraint list

 cc = OSSD Constraint classif. where {precondition, postcondition, guard, trigger, action} fc

 tlist = OSSD Transition list

25) t7 = MOA Goal Classification Table where {t71, t72, …, t7i} d t7

 and {ucn, a, el, b, g, gc) f t7i where

 ucn = UML Use Case name

 a = OSSD Agent

 el = OSSD Entity list where e1 0{el1, el2,…eli}

 b = OSSD Behavior

 g = OSSD Goal

 gc = OSSD Goal classification

26) t8 = Inter-view Inconsistency Detection Table where {t81, t82, …, t8i} d t8

 and {uml, ossd, cld, sqd, smd, ucd} f t8i where

 uml = UML element name

 ossd = OSSD element

 cld 0{Y, N}

 sqd 0{Y, N}

 smd 0{Y, N}

 ucd 0{Y, N}

48

Figure 20a: Process Class Diagram Algorithm

A1-1: Process Class Diagram Algorithm

for each w, w 0 WCLD

 /* create entries in UML Class Element and POS Tagging Table */

 identify uml, uml = {w1, w2, ….wi} and wi 0 WCLD

 identify e corresponding to uml

 create a new entry t1a in t1

 set t1a.uml = uml, t1a.e = e

 /* end create entries in UML Class Element and POS Tagging Table */

for each t1a, t1a 0 t1

 /* update UML Class Element and POS Tagging Table */

 for each w, w 0 t1a.uml

 find sw and w = sw via the SUMO/WordNet browser

 if not found prompt user to select sw in SW

 identify swc corresponding to sw

 identify p ccorresponding to sw

 if p = verb identify sp

 set t1a.p = p, t1a.sp = sp, t1a.swc = swc

 if t1a.e = {operation}

 identify parameters parms, parms 0 WCLD associated with t1a.w

 set t1a.parms = parms

 if t1a.e = {attribute} or t1a.e = {operation}

 identify t1b, t1b 0 t1 such that

 t1b.e = {class} and t1a.w is defined within t1b.w

 set t1.dw = t1b.w

 if t1a.e = {class}

 identify t1b, t1b 0 t1 such that

 t1b.e = {class} and t1a.w is defined within t1b.w

 set t1a.dwc = “C” or “A” (to be refined)

 identify t1b, t1b 0 t1 such that

 t1b.e = {class} and t1a.w is a sub-class of t1b.w

 set t1a.dwc = “G”

 if t1a.e = {association}

 /* create entry in OSSD Relations Classification Table */

 create a new entry t2a in t2

 set t2a.an = uml

 identify t1b, t1b 0 t1 such that

 t1b.e = {class} and t1b is the from end of association t1a

 set t2a.rel1 = ‘from’ /* note: directional indicators may affect “to” and “from” */

 set t2a.at1 = t1b.uml

 identify role of t1b

 set t2a.r = role

 identify multiplicity of t1b

 set t2a.m = multiplicity

 identify t1b, t1b 0 t1 such that

 t1b.e = {class} and t1b is the to end of association t1a

 set t2a.rel2 = ‘to’ /* note: directional indicators may affect “to” and “from” */

 set t2a.at2 = t1b.uml

 identify role of t1b

 set t2a.r = role

 identify multiplicity of t1b

 set t2a.m = multiplicity

49

A1-2: Process Sequence Diagram Algorithm

for each w, w 0 WSQD

 /* create and update entries in UML Class Element and POS Tagging Table */

 execute A1-S2(w, WSQD, e) /* get UML element */

 execute A1-S1(e, t8a) /* update Inter-view Inconsisntency Detection Table */

 set t8a.sqd = “Y”

 if e = {operation}

 create a new entry t3a in t3

 set t3a.op = e

 identify mt such that n 0 N, pv 0 PresentV, ptv 0 PastV, a 0 A
 if message has format {pv}[n ^ a] /* note {} indicates required */

 mt = A

 else if message has format [n] [ptv] [a]/* note [] indicates optional */

 mt = B

 else mt = {null} /* unnamed return message */

 set t3a.mt = mt

 execute A1-S2(w, s, e) /* get UML element */

if e = {attribute}

 add e to t3a.parms

Figure 20b: Figure continued

Figure 21a: Process Sequence Diagram Algorithm

 if t1a.dwc = “G”

 identify t1b, t1b 0 t1 such that

 t1b.e = {class} and t1b is the superclass of the association t1a

 set t2a.rel1 = ‘superclass

 set t2a.at1 = t1b.uml

 identify t1b, t1b 0 t1 such that

 t1b.e = {class} and t1b is the to subclass of the association t1a

 set t2a.rel2 = ‘to’

 set t2a.at2 = t1b.uml

 if t1a.dwc = “C” or “A”

 identify t1b, t1b 0 t1 such that

 t1b.e = {class} and t1b is the whole side of the association t1a

 set t2a.rel1 = ‘whole

 set t2a.at1 = t1b.uml

 identify t1b, t1b 0 t1 such that

 t1b.e = {class} and t1b is the to part side of the association t1a

 set t2a.rel2 = ‘part’

 set t2a.at2 = t1b.uml

 /* end create entry in OSSD Relations Classification Table */

 execute A1-S1(t1a.uml, t8a) /* update Inter-view Inconsistency Table */

 set t8a.cld = “Y”

 /* end update UML Class Element and POS Tagging Table */

50

 execute A1-S2(w, s, e) /* get UML element */

if e = {class}

 if e = sending object

 set t3a.so = so

 else set t3a.ro = ro

 /* end create entries in UML Class Element and POS Tagging Table */

for each t3a, t3a 0 t3

 /* update entries in UML Class Element and POS Tagging Table */

 for each t3b, t3b 0 t3

 if t3a.op = t3b.op /* operations have same name */

 set t3a.op = concat(t3a.op, t3a.ro)

 set t3b.op = concat(t3b.op,t3b.ro)

 if t3a.mt = {null}

 set t3a.mt = B

 /* set t3a.op to behavior of last message sent from UML class receving return msg*/

 /* use B format */

 /* classify OSSD Behavior */

 if t3a.so = t3a.ro

 set soc = “Perform” and roc = “Perform”

 else

 if t3a.mt = A

 set soc = “Control”

 set roc = “Perform”

 else

 if t3a.mt = B

 set roc = “Monitor”

 set soc = “Perform”

 set t3a.soc = soc

 set t3a.roc = roc

 /* end classify OSSD Behavior */

 /* update Inter-view Inconsistency Table entry*/

 execute A1-S1(t3.op, t8a)

 set t8a.sqd = “Y”

 execute A1-S1(t3so, t8a)

 set t8a.sqd = “Y”

 execute A1-S1(t3ro, t8a)

 set t8a.sqd = “Y”

 /* end update entries in UML Class Element and POS Tagging Table */

 for each t1a, t1a 0 t1
 if t1a.e = {class}

 /* process a class */

 for each t3a, t3a 0 t3

 if t1a.uml = t3a.soc or t1a.uml = t3a.roc

 /* create entry in OSS Object Classification Table */

 create an entry t4a in t4

 set t4a.cn = t1a.uml

 if t1a.uml = t3a.soc

 add t3a.soc to t4.b

 else

 add t3a.roc to t4.b

Figure 21b: Figure continued

51

 identify t1a.uml as whole top level or part sub level and set to t4a.c

 set t4a.swc = t1a.swc
 /* end create entries in OSSD Object Classification Table */

 /* process a class */

 for each t4a, t4a 0 t4

 /* classify OSSD Object */

 if t4a.swc is a sublevel of SUMO Entity:Physical:Object then

 set t4a.oc = Entity

 else

 if t4a.swc is a sublevel of SUMO Entity:Physical:Object then

 set t4a.oc = Entity

 else if t4a.swc is a sublevel of (SUMO Entity:Physical:Object:Agent or

 Entity:Abstract:Attribute:RelationalAttribute:SocialRole)

 set t4a.oc = Agent

 for each t2a, t2a 0 t2

 /* check each association of current class */

 if t2a.rel1 = “from”

 if t2a.at1 = t4a.cn or t2a.at2=t4a.cn

 set av = null
 repeat for each v, v 0 OSSD_Behavior_Thesaurus

 /* find association verb in Behavior Thesaurus */

 if v = t2a.an

 set av = v

 until av <> null or end of OSS_Behavior_Thesaurus

 /* if av= null then repeat search WordNet Database for t2a.an AND */

 /* repeat for each synonym identified for the verb */

 /* search the Behavior Thesaurus for that synonym */

 /* until verb is found in Behavior Thesaurus OR there are no more synonyms */

 if av <> null /* verb is Control or Monitor */

 if t2a.at1 = t4a.cn

 set t4a.oc = “Agent” /* the “from” side of the association */

 else

 set t4a.oc = “Entity” /* the “to” side of the association */

/* check each association of current class */

 if all entries in list t4a.b is “Perform”

 if t4a.cn has only one state

 set t4a.oc = “Event”

 else

 set t4a.oc = “Entity”

 else /* some Behavior is “Control” and/or “Monitor” */

 set t4a.oc = “Entity”

 for each t3a, t3a 0 t3

 if t3a.so = t4a.cn and t3a.ro <> t4a.cn

 set t4a.oc = “Agent”

 /* end classify OSSD Object */

Figure 21c: Figure continued

52

A1-3: Process StateMachine Diagram Algorithm

execute A1-S2(w, s, e) /* get UML element */

set c = e /* first word to get is the Class name of the StateMachine diagram */

for each w, w 0 WSMD

 execute A1-S2(w, s, e) /* get UML element */

 execute A1-S1(e, t8a) /* update Inter-view Inconsisntency Detection Table */

 set t8a.smd = “Y”

if e = {state}

 /* create new table entries in OSSD State, Transition, Constraints Classification Tables */

 create a new entry t5a in t5

 set t5a.sn = w

 classify t5a.sn as one of {initial, intermediate, final} and set to t5a.sc

 set transition count, tn=0

 /* end create new table entries */

 else

 /* update table entry */

 if e = {transition}

 /* process a transition */

 increment tn

 if w is an incoming transition of t5a.sn

 add the state from which the transition is incoming to t5a.itf

 if w is an incoming transition of t5a.sn

 add the state to which the transition is outgoing to t5a.ott

 create a new entry t6a in t6 t5a.sn

 set t6a.cn = c

 set t6a.tn = tn

 set t6a.iitf = state from which the transition is incoming

 set t6a.ott = state to which the transition is outgoing

 add constraints on transtion w to t6a.clist

 identify the constraint types and add to t6a.cc

 /* Precondition: state related attributes and values associated w/ Incoming Transition*/

 /* Postcondtion: state related attributes and values associated w/ Outgoing Transition */

 /* Guard: conditional stmt of non-state attributes and values assoc. w/ Incoming Transition

 /* Trigger: behavior assoc. with Incoming Transition; associate Trigger w/ Behavior */

 /* Action: behavior assoc. with Transition performed as a result of Transition */

 add tn to t6a.tlist
 /* process a transition */

 else if e = {entry operation}

 add e to t5a.enb

 else if e = {do operation}

 add e to t5a.db

 else if e = {exit operation}

 add e to t5a.exb

 /* update table entry */

 /* end create new table entries */

 /* end process each word in StateMachine diagram */

Figure 22: Process StateMachine Diagram Algorithm

53

A1-4: Process Use Case Diagram Algorithm

for each w, w 0 WUCD and each w, w 0 WUC

 /* process each word in Use Case diagrams and Use Cases */

 execute A1-S2(w, s, e) /* get UML element */

 execute A1-S1(e, t8a) /* update Inter-view Inconsisntency Detection Table */

 set t8a.ucd = “Y”

 if e = {class}

execute A1-S3(e, c) /* get OSSD Object Classification */

 if e = {Use Case name}

 set ucn = e
 if c = {Entity}

 add e to el

else if e = {Behavior}

 set b = Behavior

 else if c = {Agent}

 set a = e

 find a in t7

 if a is not found in t7

 /* create new table entries in */

 /* OSSD State, Transition, Constraints Classification Table Part 2 */

 create a new entry t7a in t7

 set t7a.ucn = ucn

 set t7ta.a = a

 add el to t7a.el

 set t7b = b

 set ucv = verb in ucn

 set vp = past tense of ucv

 set n = noun in ucn

 set g = n + vp

 set t7a.g = g

 /* classify goals */

 set gv = null

 repeat for each v, v 0 OSSD_Goal_Thesaurus

 /* find Use Case verb in Behavior Thesaurus */

 if ucv = v

 set av = ucv

 until av <> null or end of OSS_Goal_Thesaurus

 /* if av= null then repeat search WordNet Database for ucv AND */

 /* repeat for each synonym identified for ucv */

 /* search the Goal Thesaurus for that synonym */

 /* until ucv is found in Goal Thesaurus OR there are no more synonyms */

 if av <> null

 if t7a.gc = v.classification /* Maintain, Cease, Avoid, Achieve */

 /* end process each word in Use Case Diagrams */

Figure 23: Process Use Case Diagram Algorithm

54

A1-5: Build the OSSD Model Algorithm

for each t1a, t1a 0 t1

if t1a.e = {class} /* create Objects */

execute A1-S3(t1a.e, c) /* get OSSD Object Classification */

 if c = {agent}

 create c, c 0 OSSD_Constructs and c 0 Agent; assign instance = t1a.uml

 create c, c 0 OSSD_Constructs and c 0 Plan; assign instance = t1a.uml

 else if c = {entity}

 create c, c 0 OSSD_Constructs and c 0 Entity; assign instance = t1a.uml

 else create c, c 0 OSSD_Constructs and c 0 Event; assign instance = t1a.uml

 else if t1a.e = {association} /* create Relations and RelationAttributes */

 find t2a, t2a 0 t2 such that t2a.an = t1a.e

 if t2a.rel1 = {whole} or {part}

 create c, c 0 OSSD_Constructs and c 0 {Composition, Aggregation}

 else if t2a.rel1 = {Superclass} or {Subclass}

 create c, c 0 OSSD_Constructs and c 0 Generalization

 else

 create c, c 0 OSSD_Constructs and c 0 Association; assign instance = t2a.an

 create c, c 0 OSSD_Constructs and c 0 FromObject; assign instance = t2a.at1

 create c, c 0 OSSD_Constructs and c 0 ToObject; assign instance = t2a.at2

 create c, c 0 OSSD_Constructs and c 0 Role; assign instance = t2a.r

 create c, c 0 OSSD_Constructs and c 0 Multiplicity; assign instance = t2a.m

 else if t1a.e = {attribute} /* create Object Attributes */

find t2a, t2a 0 t2 such that t2a.an = t1a.e

create c, c 0 OSSD_Constructs and c 0 ObjectAttribute

else if t1a.e = {operation} /* create Behaviors */

find t3a, t3a 0 t3 such that t3a.op = t1a.e

 if t3a.soc = {Perform}

 create c, c 0 OSSD_Constructs and c 0 Perform; assign instance = t3a.op

if t3a.mt = {B} /* Message type is B */

 create c, c 0 OSSD_Constructs and c 0 Event; assign instance = t3a.op

else if t3a.soc = {Monitor}

 create c, c 0 OSSD_Constructs and c 0 Monitor; assign instance = t3a.op

else

 create c, c 0 OSSD_Constructs and c 0 Control; assign instance = t3a.op

if t3a.roc = {Perform}

 create c, c 0 OSSD_Constructs and c 0 Perform; assign instance = t3a.op

if t3a.mt = {B} /* Message type is B */

 create c, c 0 OSSD_Constructs and c 0 Event; assign instance = t3a.op

else if t3a.roc = {Monitor}

 create c, c 0 OSSD_Constructs and c 0 Monitor; assign instance = t3a.op

 else

 create c, c 0 OSSD_Constructs and c 0 Control; assign instance = t3a.op

for each t5a, t5a 0 t5 /* create States */

 if t5a.sc = {Initial}

create c, c 0 OSSD_Constructs and c 0 Initial; assign instance = t5a.sn

else if t5a.sc = {Intermediate}

create c, c 0 OSSD_Constructs and c 0 Intermediate; assign instance = t5a.sn

 else

create c, c 0 OSSD_Constructs and c 0 Final; assign instance = t5a.sn

Figure 24a: Build the OSSD Model Algorithm

55

for each t6a, t6a 0 t6 /* create Transitions */

create c, c 0 OSSD_Constructs and c 0 Incoming; assign instance = t6a.itf

create c, c 0 OSSD_Constructs and c 0 Outgoing; assign instance = t6a.ott

for each cl, cl 0 t6.clist /* create Constraints */

 if cl = {Trigger}

create c, c 0 OSSD_Constructs and c 0 Trigger; assign instance = cl

 else if cl = {Guard}

create c, c 0 OSSD_Constructs and c 0 Guard; assign instance = cl

else if cl = {Precondition}

create c, c 0 OSSD_Constructs and c 0 Precondition; assign instance = cl

else if cl = {Postcondition}

create c, c 0 OSSD_Constructs and c 0 Postcondition; assign instance = cl

 else

create c, c 0 OSSD_Constructs and c 0 Action; assign instance = cl

for each t7a, t7a 0 t7 /* create Goals */

 if t7a.g = {Achieve}

create c, c 0 OSSD_Constructs and c 0 Achieve; assign instance = t7a.g

 else if t7a.g = {Maintain}

create c, c 0 OSSD_Constructs and c 0 Maintain; assign instance = t7a.g

 else if t7a.g = {Avoid}

create c, c 0 OSSD_Constructs and c 0 Avoid; assign instance = t7a.g

 else

create c, c 0 OSSD_Constructs and c 0 Cease; assign instance = t7a.g

/* link all OSSD Constructs via OSSD Properties */

for each c1, c1 0 Object

/* link Objects, Relations, RelationAttributes */

 for each c1 in t2 where t2.rel1 = c1

 create a property p1, p1 0 OSSD_Properties and p1 = {has}

 link c1 with r1, r1 0 Relation where t2.an = r1 via p1

 create a property p2, p2 0 OSSD_Properties and p2 = {has}

 link r1 with a1, a1 0 ToObject where t2a.at1 = a1 and t2.at1 = c1 via p2

 create a property p3, p3 0 OSSD_Properties and p3 = {has}

 link r1 with a2, a2 0 FromObject where t2.at2 = a2 via p3

 create a property p4, p4 0 OSSD_Properties and p4 = {has}

 link a1 with a3, a3 0 Role and t2.r = a3 via p4

 create a property p5, p5 0 OSSD_Properties and p5 = {has}

 link a1 with a4, a4 0 Multiplicity and t2.m = a4 via p5

 create a property p5, p5 0 OSSD_Properties and p5 = {has}

 link a2 with a5, a5 0 Role and t2.r = a5 via p5

 create a property p6, p6 0 OSSD_Properties and p6 = {has}

 link a2 with a6, a6 0 Multiplicity and t2.m = a6 via p6

 create a property p7, p7 0 OSSD_Properties and p7 = {performedBy}

 link a3 with agent1, agent1 0 Agent and t2.at1 = agent1 via p7

 create a property p8, p8 0 OSSD_Properties and p8 = {performedBy}

 link a5 with agent2, agent2 0 Agent and t2.at2 = agent2 via p8

Figure 24b: Figure continued

56

/* link Behavior with Objects and Attributes */

for each b1 in t3 where t3.op = b1

 create a property p9, p9 0 OSSD_Properties and p9 = {has}

 link b1 with so1, so1 0 Object where t3.so = so1 via p9

 if b1.mt = {A}

 create a property p10, p10 0 OSSD_Properties and p10 = {sendMessageTo}

 link b1 with ro1, ro1 0 Object where t3.ro = ro1 via p10

 else

 create a property p11, p11 0 OSSD_Properties and p11 = {causes}

 link b1 with e1, e1 0 Event where b1 = e1 via p11

 create a property p12, p12 0 OSSD_Properties and p12 = {sendMessageTo}

 link e1 with ro1, ro1 0 Object where t3.ro = ro1 via p12

 create a property p13, p13 0 OSSD_Properties and p13 = {inputs}

 link b1 with a7, a7 0 Attributes where t3.parms = at7 via p13

 create a property p14, p14 0 OSSD_Properties and p14 = {outputs}

 link b1 with a8, a8 0 Attributes where t3.parms = at8 via p14

/* link State with Objects, Behavior, Transitions, Constraints */

for each s1 in t5 where t5.sn = s1

 create a property p15, p15 0 OSSD_Properties and p15 = {has}

 link s1 with o1, o1 0 Object where t5.cn = o1 via p15

 create a property p16, p16 0 OSSD_Properties and p16 = {entry}

 link s1 with b2, b2 0 Behavior where t5.enb = b2 via p16

 create a property p17, p17 0 OSSD_Properties and p17 = {do}

 link s1 with b3, b3 0 Behavior where t5.db = b3 via p17

 create a property p18, p18 0 OSSD_Properties and p18 = {exit}

 link s1 with b4, b4 0 Behavior where t5.exb = b4 via p18

 for each itf1 in t5.itf

 create a property p19, p19 0 OSSD_Properties and p19 = {has}

 link s1 with t1, t1 0 IncomingTransition where itf1 = t1 via p19

 create a property p20, p20 0 OSSD_Properties and p20 = {from}

 link t1 with s1 where via p20

 for each otf1 in t5.otf

 create a property p21, p21 0 OSSD_Properties and p21 = {has}

 link s1 with t2, t2 0 OutgoingTransition where otf1 = t2 via p21

 create a property p22, p22 0 OSSD_Properties and p22 = {to}

 link t2 with s1 where via p22

find otf1 in t6

 for each t3, t3 0 t6.tlist

 create a property p23, p23 0 OSSD_Properties and p23 = {followed_by}

 link t3 with otf1 via p23

 create a property p24, p24 0 OSSD_Properties and p24 = {has}

 link otf1 with ct1, ct1 0 Constraint where t6.ott = otf1 via p24

 for each b5, b5 0 t6.cl

 create a property p25, p25 0 OSSD_Properties and p25 = {contains}

 link b5 with b6, b6 0 Behavior and b6 = b5 via p25

 if b5 = {Action} or b5 = {Trigger}

 create a property p26, p26 0 OSSD_Properties and p26 = {has}

 link b5 with b7, b7 0 Behavior and b7 = b7 via p25

Figure 24c: Figure continued.

57

Figure 24d: Figure continued

Figure 25: Supplemental Algorithms

/* link Goals with Objects */

for each g1 in t6 where t6.g = g1

 for each o2, o2 0 t7.o

 create a property p27, p27 0 OSSD_Properties and p27 = {concerns}

 link g1 with o2 via p27

 for each b6, b6 0 t7.b

 create a property p28, p28 0 OSSD_Properties and p28 = {contains}

 link g1 with plan1, plan1 0 Plan where plan1 = t6.a via p28

 create a property p29, p29 0 OSSD_Properties and p29 = {operationalizes}

 link g1 with b7 where b7 0 Behavior and b6=b7 via p29

 create a property p30, p30 0 OSSD_Properties and p30 = {has}

 link plan1 with agent2, agent2 0 Agent and t6.a = agent2 via p30

 create a property p31, p31 0 OSSD_Properties and p31 = {underResponsibilityOf}

 link g1 with agent2 where agent2 0 Agent and t6.a = agent2 via p31

A1-S1: Get Inter-view Inconsistency Table Entry
input: uml /* UML element */

output: t8a /* entry in Inter-view Inconsistency Table */

find t8a, t8a 0 t8 and t8a.uml = uml

 if not found

 create a new entry t8a in t8

 set t8a.cld = t8a.sqd = t8a.smd = t8a.ucd = “N”

 set t8a.uml = uml

return t8a

A1-S2: Get UML Element
input: w /* UML word */

 s /* set of words from a UML diagram */

output: e /* UML element */

set e = null

for each t1a, t1a 0 t1

 if w = t1a.uml

 e = w

if e = null

 for each w1, w1 0 s

 concatenate w1 to w

for each t1a, t1a 0 t1

 if w = t1a.uml

 e = w

 until e <> null or end of t1

return e

A1-S3: Get OSSD Object Classification
input: o /* OSSD Object */

output: c /* OSSD Classification */

set c = null

for each t4a, t4a 0 t4

 if o = t4a.cn

 c =t4a.oc

until c <> null or end of t4

return c

58

4.3.4.4 Summary of UML to OSSD Model Transformations

Tables 3 through 5 summarize the transformations from the UML design to an instance of the OSSD

Model. Table 3 shows the one-to-one mapping of major elements from a UML Class Diagram to the

OSSD Model. Table 4 shows the one-to-one mapping subset of major elements from a Sequence

Diagram to the OSSD Model. Table 5 shows the one-to-one mapping of major elements from a

UML StateMachine Diagram to the OSSD Model. Some UML elements do not have a mapping to

the OSSD Model because they concern implementation details that are not utilized in the target

requirements specification language.

Table 3: UML Class Diagram Classification
UML 2.0 OSSD

Class Construct:Object:{StateBased:{Agent or Entity}} or Event

AttributeName Construct:Attribute:ObjectAttribute

AttributeType An implementation detail not represented in OSSD

AttributeVisibility Construct:Attribute:ObjectAttribute property has Visibility

AttributeMultiplicity Construct:Attribute:ObjectAttribute property has Multiplicity

Operation Construct:Behavior:{monitor, control, perform}

OperationParameter (input) Construct:Behavior property inputs Attribute

OperationParameter (output) Construct:Behavior property outputs Attribute

OperationVisibility Construct:Behavior property {inputs or outputs}

Attribute:ObjectAttribute: property Visibility

OperationType An implementation detail not represented in OSSD

table continued

UML Class Element and POS Tagging Table

UML Name UML Element Part of Speech (POS)

SubPOS

SUMO/WordNet Defined within

UML (G/A/C)

Parameters

OSSD Relations Classification Table

UML association Relation Relation Attribute Role Multiplicity

Behavior Classification Table

UML

Operation

Msg

Type

Msg

Parms

Sending Object /

OSSD Classification

Receiving Object /

OSSD Classification

OSSD Object Classification Table

UML

Class

UML

Composition

SUMO/

WordNet Classification

OSSD

Behavior

OSSD

Classification

OSSD State, Transition, Constraints Classification Table (part 1)

UML

Class

UML

State

OSSD

State

Classification

OSSD

Entry

Behavior

OSSD

Do

Behavior

OSSD

Exit

Behavior

OSSD

Incoming

Transition/From

OSSD

Outgoing

Transition/To

OSSD State, Transition, Constraints Classification Table (part 2)

UML

Class

OSSD

Transition

Number

OSSD Transition

IncomingFrom/

OutgoingTo

OSSD

Constraint

OSSD

Constraint

Classification

OSSD Transition

followed by

OSSD Transition

Number

Goal Classification Table

UML UseCase Name OSSD Agent OSSD Entity Behavior Goal Goal Classification

Inter-View Inconsistency Detection Table

UML

Element

OSSD

Element

Class

Diagram

Sequence

Diagram

StateMachine

Diagram

Use Cases or

Use Case Diagram

Figure 26: Transformation Tables

59

Assocation Construct:Relation:{Association or

NonAssociatio:{Generalization, Aggregation, Composition}

Depending on the AssociationAggregationKind

AssociationType
1

Transformed as multiple leaves of the Relation:Association construct

Association AggregationKind
2

See Association above

AssociationOwningName Construct:Relation:Association:Rel.Attrib:FromObject

AssociationOwningRole Construct:Relation: Association:Rel.Attrib property has Role

AssociationOwningMultiplicity Construct:Relation: Association:Rel.Attrib:FromObject property has Multiplicity

AssociationOwningContraint Construct:Relation: Association:Rel.Attrib property has Constraint

AssociationOwningNavigability An implementation detail not represented in OSSD

AssociationOwnedName Construct:Relation:Association:Rel.Attrib:ToObject

AssociationOwnedRole Construct:Relation:Association:Rel.Attrib property has Role

AssociationOwnedMultiplicity Construct:Relation:Association:Rel.Attrib:ToObject property has Multiplicity

AssociationOwnedContraint Construct:Relation:Association:Rel.Attrib property has Constraint

AssociationOwnedNavigability An implementation detail not represented in OSSD
1
 UML 2.0 Association Types include: binary, n-ary

2
 UML 2.0 Association AggregationKind: none (simple association), aggregation, composition

Table 4: UML Sequence Diagram Classification
UML 2.0 OSSD

ObjectLifeline Match with OSSD Object

SynchronousMessage Operation Name Match with Behavior

SynchronousMessage Arguments Match with Behavior{Inputs or Outputs}

ReturnFromSynchronousMessage Match with OSSD Event

Asynchronous Message Match with Behavior

StateInvariantIcon Match with OSSD State

SelfReferenceMessageOperation Name Match with Behavior

SelfReferenceMessageArguments Match with Behavior{Inputs or Outputs}

StateInvariantConstraint Match with OSSD Constraint

DurationContraint Match with OSSD Constraint

TimeConstraint Match with OSSD Contraint

Table 5: UML StateMachine Classification
UML 2.0 OSSD

StateType
3

Construct:State property contains State

InitialState Construct:State:Initial

FinalState Construct:State:Final

IntermediateStateName Construct:State

IntermediateStateEntryTransition Construct:State property has Transition:incoming

IntermediateStateExitTransition Construct:State property has Transition:outgoing

StateEntryAction Construct:State property Entry Behavior

StateDoActivity Construct:State property has Behavior

StateExitAction Construct:State property Exit Behavior

Transition
4

Construct:Transition

TransitionTrigger Construct:Transition property has Constraint:Trigger

TransitionGuard Construct:Transition property has Constraint:Guard

TriggerEvent on ExternalTransition

Construct:Transition:{incoming or outgoing} has Constraint:Trigger

Condition on External Transition

Construct:Transition:{Incoming or Outgoing} has

Constraint:{Precondition or Postcondition}

Guard on External Transition

Construct:Transition:{Incoming or Outgoing} has Constraint:Guard

Action on ExternalTransition Construct:State property {Entry or Exit} Behavior (corresponding to

Incoming or Outgoing transition)

DecisionNode Construct:Transition property followed by Transition
 3

State Type includes: simple, composite, submachine, submachine state
 4

 TransitionType includes: basic, fork, join

60

4.3.5 MOA Consistency Checking

4.3.5.1 Overview

MOA identifies basic consistency problems during the transformation of the UML Model into the

OSSD Model. Although UML CASE tools used to produce the UML Diagrams do have some

inconsistency detection capabilities, such as those performed by the Rose Model Checker [Moors], a

universally accepted set of consistency checks does not exist. Furthermore, these consistency checks

are usually based on the well-formed rules (WFR) specified in the UML 2.0 Specification. These

WFRs address primarily the syntactic inconsistencies within a given UML diagram such as naming,

visibility, and scope. UML provides few explicitly defined inter-diagram consistency rules. “There

exists no general techniques for specifying semantic (and, in particular, behavioral) consistency

constraints” [Engels4 et al.].

Consistency checking is a two-stage process. The first stage, which begins once the OSSD Model

has been created for a specific set of source language diagrams, concerns consistency checking of the

OSSD constructs. Rules attached to the properties in the OSSD Model facilitate this stage of the

consistency checking process. The second stage introduces an Inter-View Inconsistency Detection

technique, which is based on the Consistency framework and inter-diagram consistency rules of the

source language. Section 4.3.5.2 introduces a consistency framework that organizes these rules and

Section 4.3.5.3 introduces the Inter-View Inconsistency Detection technique.

4.3.5.2 Consistency Checking of OSSD Model Constructs

This research defines a consistency framework based on the OSSD Model. This framework

organizes rules for inconsistency detection based on interactions among the set of ontological

constructs, O, where O = {Agent, Entity, Event, Goal, Relation, State, Behavior, Constraint} and

PlanóO since Plan ó {Behavior1, Behavior2, … Behaviorn}. This framework does not include the

Plan construct because it represents the combination of Behavior constructs and so would cause

unnecessary redundancy in the framework. This framework includes both syntactic and semantic

inconsistencies. Rules from the consistency framework are attached to properties of the OSSD

Model. Figure 27 shows the organization of the consistency framework into 36 categories. In the

contents of the consistency framework table, consistency rules are labeled based on acronyms created

by reading the consistency framework table first by row followed by column. For example, an

 O

B

J

E

C

T

A

T

T

R

I

B

U

T

E

B

E

H

A

V

I

O

R

G

O

A

L

R

E

L

A

T

I

O

N

S

T

A

T

E

T

R

A

N

S

I

T

I

O

N

C

O

N

S

T

R

A

I

N

T

Object OO OA OB OG OR OS OT OC

Attribute AA AB AG AR AS AT AC

Behavior BB BG BR BS BT BC

Goal GG GR GS GT GC

Relation RR RS RT RC

State SS ST SC

Transition TT TC

Constraint CC

Figure 27: Consistency Framework

61

OB_Rule1 concerns the relationship between Object and Behavior, represented in the consistency

framework as O for the object row and B for the behavior column.

In this research, we formally define a set of OSSD_Consistency_Rules where

OSSD_Consistency_Rules d All_Rules. Figure 28 gives two examples of such consistency rules,

OB_Rule1 and OR_Rule1, where {OB_Rule1, OB_Rule2} d OSSD_Consistency_Rules.

OB_Rule1: This category includes rules affecting an Object’s Behavior as given in its definition

(UML Class Diagram) and the Object’s use (or lack of use) of that Behavior (UML Sequence

Diagram). An example of this OB_Rule1 is: a message sent from an Object must be associated with

a Behavior of that Object. Attaching the axiom given in Figure 28, specified in first order predicate

logic, to the OSSD property has that links a Construct:Object:State-based and Construct:Behavior

enforces this OB_Rule1.

OR_Rule1: This category includes rules affecting Relations defined for an Object (obtained from a

UML Class Diagram) and Behavior of that Object as represented by messages that an Object sends

(obtained from a UML Sequence Diagram). An example of this OR_Rule1 is: for a message to be

exchanged between one Object and a second Object there must be a Relation defined between them.

This OR_Rule1 is enforced by the combination of the OB_Rule1 above and executing the following

axiom, specified in first order predicate logic, attached to the OSSD property has that links

Construct:Object-State-based with Construct:Behavior.

4.3.5.3 Consistency Checking of Source Language Views

The Inter-View Inconsistency Detection technique for processing of UML diagrams is based on the

consistency framework. The primary purpose of the technique is to identify inconsistencies in the

definitions of model elements across the partial, overlapping views of the design. In this research, we

formally define a set of OSSD_Inter-View_Consistency_Rules where OSSD_Inter-

View_Consistency_Rules d All_Rules. Figure 29 contains three examples of such rules: IC_Rule1,

IC_Rule2, and IC_Rule3 where {IC_Rule1, IC_Rule2, IC_Rule3} d IC_Rules.

OB_Rule1:

∀o1 ›o2 [(construct:object:state -based(o1) ^ construct:object:state -based(o2)) →

 (›b [construct:behavior(b) ^ (property -has(o1, b) ^

 ((property -sends-message-to(b,o2) V

 ›e [construct:object:event(e) ^

 (property -causes(b, e) ^ property -sends-message-to(e, o1))]))]))]

OR_Rule1:

∀o1 ›o2 [(construct:object:state -based (o1) ^ construct:object:state -based(o2)) →

 (›r [construct:relation:associa tion(r) ^

 (›ra1, ra2 (construct:attribute:relationalattribute:fromObject(ra1) ^

 construct:attribute:relationalattribute:toObject(ra2) ^

 property -has(r,ra1) ^ property-has(r,ra2) ^

 o1 = ra1 ^ o2 = ra2))])]

Figure 28: Examples of OSSD Consistency Rules

62

The meaning of these rules is as follows:

IC_Rule1: an OSSD Object must be defined in a UML Class Diagram and referenced in at least one

UML Sequence Diagram and one UML StateMachine Diagram

IC_Rule2: an OSSD Relation must be defined in a UML Class Diagram and referenced in at least one

UML Sequence Diagram

IC_Rule3: an OSSD Behavior must be defined in a UML Class Diagram and referenced in at least

one UML Sequence Diagram and one UML StateMachine Diagram

MOA detects inconsistencies via a set of rules, such as those shown in Figure 29, in combination with

an Inter-View Inconsistency Detection Table, a portion of which is shown in Table 6. MOA

identifies inconsistencies by combining the information gathered in the Inter-View Inconsistency

Detection Table with inter-view consistency rules. We provide examples of Inter-View

Inconsistency Table entries in Table 6 with numeric suffixes added to the OSSD elements for ease of

reference. Table 6 shows that associated with Agent3 is the set of {Y, Y, Y, Y} which indicates that

reference to the UML equivalent of Agent3 exists in the Class, Sequence, StateMachine, and Use

Case Diagrams or Use Cases. Therefore, Agent3 is compliant with IC_Rule1. However, associated

with Association6 is the set of {Y, N, N, N} which indicates that reference to the UML equivalent of

Association6 exists only in a Class Diagram. Therefore, Association6 is in violation of IC_Rule2

since it is not referenced in a Sequence Diagram. Lastly, associated with Behavior5 is the set of {N,

Y, Y, Y} which indicates that reference to the UML equivalent of Behavior5 does not exist in a Class

diagram but does exist in a Sequence, StateMachine, Use Case Diagrams, or Use Cases. Therefore,

Behavior5 is in violation of IC_Rule3.

Table 6: Inter-View Inconsistency Detection Table
UML OSSD Class

Diagram

Sequence

Diagram

StateMachine

Diagram

Use Cases or

Use Case

Diagram

ClassName Agent3 Y Y Y Y

AssociationName Association6 Y N N N

OperationName Behavior5 N Y Y Y

IC_Rule1:

∀o1 [construct:object (o1) → (in-Class-Diagram(o1) ^

 (›o2 [(in-Sequence-Diagram(o2) V in-StateMachine-Diagram(o2)) ^ o1=o2]))]

IC_Rule2:

∀r1 [construct:relation (r1) → (in-Class-Diagram(r1) ^

 (›r2 [(in-Sequence-Diagram(r2) ^ r1=r2]))]

IC_Rule3:

∀b1 [construct:behavior (b1) → (in-Class-Diagram(b1) ^

 (›b2 [(in-Sequence-Diagram(b2) ^ in-StateMachine-Diagram(b2)) ^ b1=b2]))]

Figure 29: Examples of OSSD Inter-view Consistency Rules

63

Additional rules can be added to the Inter-View Inconsistency Detection Table based on types of

UML Diagrams. For example, a consistency rule that requires each actor in a UML Use Case

diagram to be associated with a Class in a UML Class Diagram can be added. Given the knowledge

that each Class in a UML Class Diagram is represented in OSSD as a Construct:Object, verifying this

rule requires a simple check in the Inter-View Inconsistency Detection Table to show a one to one

correspondence between each Actor in UML Use Case Diagram and some Construct:Object.

The algorithms that transform a UML design to OSSD Model instance (see Chapter 4 Section

4.3.4.2) add new entries to this Inter-View Inconsistency Detection Table each time a unique UML

element is identified.

4.3.5.4 Consistency Checking Algorithm

The Consistency Checking Algorithm is given in Figure 30.

Figure 30: Consistency Checking Algorithm

4.3.6 OSSD Model to KAOS Transformation

4.3.6.1 Overview

Transformation from the OSSD Model to an agent-based model produces an agent-oriented

requirements specification that is used as input to an appropriate verification tool in order to detect

inconsistencies. Many agent-oriented specification techniques already have verification tools for

detecting inconsistencies associated with them. The target language we utilize is the KAOS

specification language. KAOS defines an entity as an autonomous object that is not dependent upon

other objects and an agent as an object that has both behavior and choice; however, KAOS does not

describe in detail how an entity and an agent differ [Silva et al.]. From the numerous examples given

in literature on KAOS, only agents can perform operations. Entities do not perform operations

implying that if an object performs an operation then it must be some type of agent. Therefore, since

OSSD Entities perform behavior but are not agents, a Monitor/Control Behavior of an OSSD Agent

that has the OSSD property sends a message to an OSSD Entity (and therefore corresponds to a

Perform Behavior of that Entity) transforms to an operation of the corresponding KAOS agent.

Lastly, the transformation of the OSSD Constraint to KAOS is based on a related KAOS

transformation application [Van Hung].

4.3.6.2 OSSD Model to KAOS Transformation Algorithm

Figure 31 gives the OSSD to KAOS Transformation Algorithm. The algorithm produces a textual

KAOS specification. Figure 32 gives an example of the template for the definition of a KAOS agent,

KAOS details are in bold print and OSSD Model references are in italics. The textual specification is

not an executable KAOS specification but is used to enter information into a KAOS tool.

A2-1: Consistency Checking Algorithm

for each p, p 0 OSSD_Properties

 if p contains rule r, r 0 OSSD_Consistency_Rules

 execute r

for each r, r 0 OSSD_Inter-View_Consistency_Rules

 execute r

64

Figure 31: OSSD Model to KAOS Transformation Algorithm

A2-1: OSSD to KAOS Transformation Algorithm

A3-1. Using Tables 7 and 8, transform each:

OSSD Agent, Entity, Event into a KAOS Agent, Entity, Event;

OSSD Attribute into KAOS attribute;

Behavior into KAOS operation;

if the Monitor or Control Behavior of an Agent sends a message to an Entity then

 the Behavior of that message becomes a KAOS Operation performed by that Agent;

 the Attributes included in that message become associated with that Agent

 according to the type of Behavior (either Monitor or Control)

A3-2. transform each OSSD Relation into a KAOS Relation using Table 7;

A3-3. transform each OSSD State, Transition and Constraint into a KAOS state variables, transition

variables, and constraints using Tables 7 and 8;

A3-4. transform each Goal into a KAOS Goal using Table 8.

Agent Construct:Object:Statebased:Agent

Has Construct:Object property has

 Construct:Attribute:ObjAttrib

Inherited from Construct:Object property has

 Construct:Relation:Non-Association:Generalization:Subclass property has

 Construct:Relation:Non-Association:Generalization:Superclass

Monitors Construct:Object:Statebased property has

 Construct:Behavior:Monitor property sends message to

 Construct:Object:Statebased /

Construct:Object:Statebased property has

 Construct:Behavior:Monitor

 property inputs

 Construct:Attribute:ObjAttrib

Controls Construct:Object:Statebased property has

 Construct:Behavior:Control

 property sends message to

 Construct:Object:Statebased /

Construct:Object:Statebased property has

 Construct:Behavior:Control

 property outputs

 Construct:Attribute:ObjAttrib

ResponsibleFor Construct:Goal property under responsibility of

 Construct:Object:Statebased:Agent

DependsOn Construct:Object:Statebased:Agent

For

Construct:Goal property under responsibility of

Construct:Object:Statebased:Agent

Performs Construct:Object:Statebased property has

 Construct:Behavior:Perform

End

 Figure 32: Template for Specification of a KAOS Agent

65

Table 7: Mapping OSSD to KAOS Meta-

Objects and Meta-Attributes

OSSD KAOS

Construct:Object:

Statebased:

Entity or Agent

Object:Entity

Construct:Object:

Statebased:

Agent

Object:Agent

Construct:Object:

Event

Object:Event

Construct:Relation:

Association

Object:

Association:

ApplicationSpecific

Construct:Relation:

NonAssociation:

Generalization

Object:Association:Builtin

:IsA

Construct:Relation:

NonAssociation:

Aggregation or

Construct:Relation:

NonAssociation:

Composition

Object:Association:

Builtin:part of

Construct:Attribute:

ObjAttrib

Attribute:Range

Construct:Behavior Operation

Construct:Plan Scenario

Table 8: Mapping Table for OSSD to KAOS

Meta-relationship Mappings
OSSD KAOS

Property concerns Concerns

Construct:Relation Link

Construct:Relation:Association

property has RelationAttribute

property has Role

Link:Role

Construct:Relation:Association

property has RelationAttribute

property has Multiplicity

Link:Multiplicity

Construct:Relation:Association

property has RelationAttribute:

{ToObject OR FromObject}

property has Mutliplicity

Link:Position

Construct:Attribute property has

ObjectAttribute property has

Mutliplicity

ValuesIn:

Multiplicity

Construct:Behavior:Monitor Monitoring

Construct:Behavior:Control Control

Construct:Behavior:Perform Performance

Property under responsibility of Responsibility

Construct:Goal property

dependsOn Construct:Goal

DependsOn

Property inputs Input

Property outputs Output

Construct:Behavior property

causes

Cause

Construct:State property has

Transition:Incoming

hasConstraint:Precondition

Operation:

DomPre

Construct:State property has

Transition:Outgoing

hasConstraint:Postcondition

Operation:

DomPost

Construct:State property has

Transition:Incoming

hasConstraint:Trigger

Operationlization:

ReqTrigFor

Construct:State property has

Transition:Incoming

hasConstraint:Guard

Operationlization:

ReqPre

Construct:State property has

Transition:Outgoing

hasConstraint:Guard

Operationlization:

ReqPost

4.4 Summary

This chapter introduced the Methodology for Object to Agents (MOA), the Ontology for Software

Specification and Design (OSSD); two methods of consistency checking executed during MOA

utilizing axioms attached to properties of the OSSD Model and a three-dimensional Inter-View

Inconsistency Detection table; and lastly the high-level algorithms describing the transformation from

a UML design, to an OSSD Model instance, and then to a KAOS textual specification.

66

5 Elevator Case Study

5.1 Introduction

The Elevator System case study explains the methodology developed in this research. The basic

requirements for this Elevator System are:

• elevator services 3 floors

• floor buttons exist on each floor to call the elevator:

 one Up floor button on the 1
st
 and 2

nd
 floors and

 one down floor button on the 2
nd

 and 3
rd

 floor

• 3 floor buttons exist within the elevator car for the user to select desired floor (1, 2, 3)

• elevator car contains buttons for stopping the elevator, opening doors, and closing doors

• all buttons have a light that turns on when pressed and turns off when the elevator arrives at the associated

floor

• elevator doors are controlled by a timer after each stop

• elevator has two doors; one inner door is attached to the elevator car; one outer door is attached to each floor

• each elevator door has a door sensor which detects if the door is open or closed and detects if something is

blocking the doorway which prevents the door from closing

• elevator car has a motor that moves the elevator up and down

• elevator car has two sensor; a floor sensor that identifies where it is located based on reading a floor

identification tape on the inside of the elevator shaft; a weight sensor detects if the maximum weight has

been exceeded which prevents the elevator doors from closing.

In a typical software development project, multiple teams exist to develop the elevator car, the

elevator controller, the elevator motor, the elevator doors, the elevator button panels as well as teams

that focus on the performance and safety aspects of the overall system. This team organization is

similar to that suggested in the development work of the Viewpoint Framework for integrating

multiple perspectives in software design [Finkelstein92]. When the time comes to integrate the work

of these teams, typically meetings are held and manual reviews are conducted to discover

inconsistencies. This progress can be extremely time-consuming and error-prone when there exist

numerous interactions to consider.

Section 5.2 contains an example subset of UML diagrams developed for the Elevator System case

study including Use Cases and Use Case, Sequence, Class, and StateMachine Diagrams. Section 5.3

provides example mappings from the UML design to the OSSD Model, a sample of OSSD Model

instances created for the Elevator System, a sample of the OSSD Model represented in OWL

notation, and examples of MOA consistency checking applied to the OSSD Model instance created

for the Elevator System. Lastly, Section 5.4 contains Sections of a KAOS specification created for

the Elevator System case study, examples of goal patterns that are produced during the KAOS

processing, and a discussion of the error detection that is performed using the KAOS specification for

the Elevator System.

5.2 UML Representation of the Elevator System

Several examples of Use Cases for the Elevator System are given in Figures 30 through 39.

Although there does not exist a universally accepted Use Case format, the structure of the following

Use Cases consists of the basic and commonly used subSections. Nested Use Cases are underlined

for ease of understanding.

67

Use Case name: Request Elevator

Primary Actor(s): Passenger, Elevator Controller

Precondition: Passenger is at a floor and wants to ride an elevator car

Postcondition: Elevator car is stopped at the passenger’s floor; Elevator doors are open

Scenario:

Passenger presses an elevator call up button or down button

Elevator Controller turns on the call button light

Elevator Controller requests Move Elevator

Elevator Controller turns off the call button light

Elevator Controller requests Open Doors

Alternative Scenario:

Passenger presses an elevator call up button or down button

Elevator Controller turns on the call button light

Elevator car is at the Passenger’s floor

Elevator Controller turns off the call button light

Elevator Controller requests Open Doors

Use Case name: Open Doors

Primary Actor(s): ElevatorController, Door Controller

Precondition: Elevator car is stopped; Elevator Doors are closed

Postcondition: Elevator car is stopped; Elevator Doors are open

Scenario:

Elevator Controller requests doors open

Door Controller requests Inner Door open and Outer Door open simultaneously

Inner Door executes open and Outer Door executes open simultaneously

Use Case name: Move Elevator

Primary Actor(s): Elevator Controller, Elevator Car

Precondition: Elevator car at a floor that is not the requested floor

Postcondition: Elevator car is at the requested floor; Elevator doors are open

Scenario:

Elevator Controller requests elevator car move to passenger’s requested floor

Elevator Car moves up or down based on the current and requested floor locations

Floor Sensor informs Elevator Car of arrival at each floor

When the current floor is the requested floor, the Elevator Car stops the elevator

Use Case name: Request Floor

Primary Actor(s): Passenger

Precondition: Passenger is in the elevator car

Postcondition: Passenger is at the requested floor; Elevator doors are open

Scenario:

Passenger presses an elevator car floor button

Elevator Controller turns on the elevator car floor button light

Elevator Controller requests Close Doors

Elevator Controller requests Move Elevator

Elevator Controller turns off the elevator car floor button light

Elevator Controller requests Open Doors

Figure 33: UML Use Case: Request Elevator

Figure 34: UML Use Case: Open Doors

Figure 35: UML Use Case: Move Elevator

Figure 36: UML Use Case: Request Floor

68

Use Case name: Close Doors

Primary Actor(s): Elevator Controller, Door Controller

Precondition: Elevator car is stopped; Elevator Doors are open

Postcondition: Elevator car is stopped; Elevator Doors are closed

Scenario:

Elevator Controller requests Ensure Safe Door Operation and Prevent Exceeding Elevator Weight Limit

simultaneously

Elevator Controller requests doors close

Door Controller requests Inner Door close and Outer Door close simultaneously

 Inner Door executes close and Outer Door executes close simultaneously

Use Case name: Ensure Safe Door Operation

Primary Actor(s): Elevator Controller, Door Sensor

Precondition: There is no obstruction to the elevator doors

Postcondition: There is no obstruction to the elevator doors

Scenario:

Elevator Controller requests check for door obstruction

Door Controller requests check for inner door obstruction and outer door obstruction simultaneously

Inner Door Sensor indicates inner door not obstructed

Outer Door Sensor indicates outer door not obstructed

Alternative Scenario:

Elevator Controller requests check for door obstruction

Door Controller requests check for inner door obstruction and outer door obstruction simultaneously

Inner Door Sensor indicates inner door is obstructed

Door Controller rings Inner Door Alarm

Use Case name: Prevent Exceeding Elevator Weight Limit

Primary Actor(s): Elevator Controller, Elevator Car, Weight Sensor

Precondition: Maximum weight limit has not been reached

Postcondition: Maximum weight limit has not been reached

Scenario:

Elevator Controller requests check for excess weight

Elevator Car requests check for excess weight

Weight Sensor indicates no excess weight

Alternative Scenario:

Elevator Controller requests check for excess weight

Elevator Car requests check for excess weight

Weight Sensor indicates excess weight

 Elevator Car rings Car Alarm

Figure 37: UML Use Case: Close Doors

Figure 38: UML Use Case: Ensure Safe Door Operation

Figure 39: UML Use Case: Prevent Exceeding Elevator Weight Limit

Figures 40 to 46 contain a subset of UML diagrams developed for the Elevator System case study

including a Use Case diagram, a Sequence diagram showing a passenger’s request for an elevator, a

StateMachine diagram for the door controller, and a Class diagram of the elevator system.

69

Elevator

Controller

Request

Elevator Stop

Passenger

Move

Elevator

Close Doors

Request

Elevator

Stop Elevator

<<includes>>

<<includes>>

<<includes>>

<<includes>>

<<includes>>

Prevent Exceeding

Weight Limit

Door

Controller

Weight

Sensor

Ensure Safe

Door Operation

Open Doors

Request

Floor

Door

Sensor

<<includes>
><<includes>

>

<
<

ex
ten

d
s

>
>

Figure 40: Elevator System Use Case Diagram

PressButton(BT,F)

ButtonPressed()

:Passenger :Floor

UpdateDestination(BT,F)

GetNextDestination(F)

TurnLightOn(BT,F)

TurnLightOff(BT,F)

sd Passenger Request

Elevator
Controller

Door
Controller

StartTimer()

TimedOut()

EnterElevator()

Timer
Outer
Door

Inner
Door

MoveElevatorref

CloseDoorsref

OpenDoorsref

CloseDoorsref

Figure 41: Passenger Request Sequence Diagram

70

sd OpenDoors

Elevator
Controller

Inner
Door

Door
Controller

Outer
Door

OpenDoors()

Open()

Open()

OuterDoorOpened()

InnerDoorOpened()

DoorsOpened()

Elevator
Controller

sd CloseDoors

Inner
Door

Door
Controller

Outer
Door

CloseDoors()

Close()

Close()

OuterDoorClosed()

InnerDoorClosed()

DoorsClosed()

Figure 42: OpenDoors and CloseDoors Sequence Diagrams

:Elevator
Controller

:ElevatorCar

sd MoveElevator(EL, F)

:Motor :FloorSensor

 [EL <> F]OPT

ALT

 [until EL ==F]

MoveTo(F,up)

MoveUp()

ElevatorArrived(EL)

 [until EL ==F]

MoveDown()

ElevatorArrived(EL)

Stop()

Stopped()

ElevatorArrived(EL)

LOOP

LOOP

MoveTo(F,down)

Figure 43: Move Elevator Sequence Diagram

71

ElevatorController

ElevatorDestinationList

ElevatorDirection

CurrrentLocation

ButtonPressed(BT, F)

ElevatorArrivedAt(EL)

UpdateDestinationListFL)

GetNextDestination(F)

DoorsOpened()

DoorsClosed()

TimedOut()

ExcessWeight()
NoExcessWeight()

DoorObstructed()

DoorNotObstructed()

controls

communicates

with

Floor

DoorController
DoorsState

OpenDoors()

CloseDoors()

InnerDoorOpened()

OuterDoorOpened()

InnerDoorClosed()

OuterDoorClosed()

CheckObstruction()

DoorObstructed()

DoorNotObstructed()

InnerDoor

OuterDoor controls

Light

State
TurnLightOn(BT, F)

TurnLightOff(BT, F)

Button

ButtonType

Floor
PressButtton(BT , F)

cd Elevator System

CallButton

controls

FloorButton

OpenButton

CloseButton

AlarmButton

UpButton

DownButton

ButtonPanel

Passenger
pressesrequests

ElevatorCar

State

Moving

Location

MoveTo(F, D)

Stopped()

ElevatorArrived(F)

CheckWeight()

ExcessWeight()
NoExcessWeight()

Motor

MoveUp()
MoveDown()

Door
State
Open()
Close()

DoorSensor

CheckObstruction()

CarAlarm

FloorSensor

DoorAlarm

Alarm

RingAlarm()

Timer
State
Start()
Stop()

uses

WeightSensor

CheckWeight()

Figure 44: Elevator System Class Diagram

72

sm ElevatorController

ElevatorIdle

ButtonPressed(BT, F)

[BT=FloorButton V

BT=DownButton V

BT=UpButton]

PreparingToMove

CloseDoors()

ElevatorMoving

MoveTo(F)

 DoorsClosed()

[F <> ElevatorLocation]

ElevatorArrived(F)

DestinationRequest
Entry/TurnLightOn(BT)

Do/UpdateDestination(BT,F)

Exit/GetNextDestination(F)

ElevatorAtFloor
Entry/TurnLightOff(BT,F)

Exit/OpenDoors()

 DoorsClosed()

[F = ElevatorLocation]

TimedOut()

[F <> Null]
TimedOut()

[F = null]

Waiting

Entry/StartTimer()

Exit/GetNextDesintaion(F)

DoorsOpened()

ButtonPressed(BT,F)

[BT=CloseButton]

ButtonPressed(BT,F)

[BT=

OpenButton]

Figure 45: Elevator Controller State Machine Diagram

DoorsClosed

sm DoorController

OpenDoors()

Outer
DoorO

pened()
^

InnerD
oorO

pen
ded()

OuterDoorClosed() ^

InnerDoorClosed()

[Obstructed()] / OpenDoors()

OpenDoors()

CloseDoors()

[NotObstructed()]
OpenningDoors

CloseDoors()

[NotObstructed()]

ClosingDoors

DoorsOpen

(ElevatorCar.State=stopped) ^
(CurrentFloor = Requested Floor)

Figure 46: DoorController State Machine Diagram

73

5.3 Applying MOA to the Elevator System Case Study

5.3.1 UML Design to OSSD Model

Tables 9 through 14 contain examples of the mappings from the UML design to the OSSD Model for

the Elevator System case study. Appendix B provides additional table entries. In Table 9, each

UML Class element is listed by name, type of UML Class element, its part-of-speech tagging, the

SUMO/WordNet association for each POS, the UML element within which it is defined (if the UML

element is a UML Class then it is given with additional information detailing its classification as

G=generalization, A=aggregation, C=composition), and any parameters associated with the UML

Class element.

It is significant to note the classification of the UML Classes “ElevatorCar” and “DoorController” as

OSSD Entities. While some agent-oriented approaches might consider one or both of these to be

agents, OSSD considers them to be Entities. The “ElevatorCar” is an Entity even though it “controls”

and “monitors” other devices, for example the “Motor” and “Weight Sensor” UML Classes

respectively, these UML Classes are components of the “ElevatorCar”. Therefore, the “ElevatorCar”

is basically controlling and monitoring itself, which does not make it an Agent. The

“DoorController” is an Entity even though it “controls” and “monitors” other UML Classes that are

not components of itself, specifically the “InnerDoor” and “OuterDoor”, the state of the

“DoorController” is directly controlled by the “ElevatorController” via the “OpenDoors” and

“CloseDoors” operations. Only an Agent can change the state of that Agent.

Table 9: UML Class Element and POS Tagging
UML Name UML

Element

POS:

SubPOS

SUMO/WordNet Defined within

UML (G/A/C)

Params

Elevator

Car

Class Noun

Noun

Entity:Physical:Object

Entity:Physical:Object

Elevator System/C None

State Attribute Noun Entity:Abstract:Attribute ElevatorCar None

Moving Attribute Verb Entity:Physical:Process:

Motion

ElevatorCar None

Location Attribute Noun Miscellaneous

Relation:Located

ElevatorCar None

Move

To

Operation Verb:present

Adjective

Entity:Physical:Process:

Motion

Not available

ElevatorCar F

D

Stopped Operation Verb:past Entity:Physical:Process:

IntentialProcess

ElevatorCar None

Elevator

Arrived

Operation Noun Entity:Physical:Object

Entity:Physical:Process:

Motion

ElevatorCar F

Weight

Exceeded

Operation Noun

Verb

Entity:Physical:Object

Entity:Abstract:Attribute:

RelationalAttribute

ElevatorCar None

Weight

Sensor

Class Noun

Noun

Entity:Physical:Object

Entity:Physical:Object

ElevatorCar/C None

Floor

Sensor

Class Noun

Noun

Entity:Physical:Object

Entity:Physical:Object

ElevatorCar/C None

Car

Alarm

Class Noun

Noun

Entity:Physical:Object

Entity:Physical:Object

ElevatorCar/C None

Button

Panel

Class Noun

Noun

Entity:Physical:Object

Entity:Physical:Object

ElevatorCar/C None

74

Table 10: MOA Relations Classification
UML assoc. OSSD Relation OSSD Relation

Attribute

OSSD

Role

OSSD

Mult.

controls

Association:Rel.Attrib:From.Obj

Association:Rel.Attrib:To.Obj

DoorController

InnerDoor

none

none

1

1

controls

Association:Rel.Attrib:From.Obj

Association:Rel.Attrib:To.Obj

DoorController

OuterDoor

none

none

1

1

controls

Association:Rel.Attrib:From.Obj

Association:Rel.Attrib:To.Obj

ElevatorController

ElevatorCar

none

none

1

1

requests Association:Rel.Attrib:From.Obj

Association:Rel.Attrib:To.Obj

Passenger

ElevatorCar

none

none

1

1

presses Association:Rel.Attrib:From.Obj

Association:Rel.Attrib:To.Obj

Passenger

Button

none

none

1

1

uses Association:Rel.Attrib:From.Obj

Association:Rel.Attrib:To.Obj

ElevatorController

Timer

none

none

communic-

ates with

Association:Rel.Attrib:From.Obj

Association:Rel.Attrib:To.Obj

ElevatorController

DoorController

none

none

1

1

unnamed

Nonassociation:General:Superclass

Nonassociation:General:Subclass

Nonassociation:General:Subclass

Door

InnerDoor

OuterDoor

none

none

none

1

1

1

Table 11: MOA Behavior Classification
UML

Operation

Msg

Type

Msg

Parms

Sending Object /

OSSD Classification

Receiving Object /

OSSD Classification

PressButton A BT, F Passenger/Control Floor/Perform

ButtonPressed B none Floor/Perform ElevatorController/Monitor

TurnLightOn A BT, F ElevatorController/

Control

Floor/Perform

UpdateDestination A none ElevatorController/

Perform

ElevatorController/Perform

GetNextDestination A F ElevatorController/

Perform

ElevatorController/Perform

TurnLightOff A BT, F ElevatorController/ Control Floor/Perform

OpenDoors A none ElevatorController/

Control

DoorController/Perform

OpenOuterDoor A none DoorController/Control OuterDoor/Perform

OpenInnerDoor A none DoorController/Control InnerDoor/Perform

InnerDoorOpened B none InnerDoor/Perform DoorController/Monitor

OuterDoorOpened B none OuterDoor/Perform DoorController/Monitor

DoorsOpened B none DoorController/Perform ElevatorController/Monitor

Start A none ElevatorController/

Control

Timer/Perform

Stop A none ElevatorController/

Control

Timer/Perform

EnterElevator A none ElevatorController/

Perform

Passenger/Perform

TimeOut A none Timer/Perform ElevatorController/Monitor

CloseDoors A none ElevatorController/

Control

DoorController/Perform

CloseOuterDoor A none DoorController/Control OuterDoor/Perform

CloseInnderDoor A none DoorController/Control InnerDoor/Perform

InnerDoorClosed B none InnerDoor/Perform DoorController/Monitor

OuterDoorClosed B none OuterDoor/Perform DoorController/Monitor

DoorsClosed B none DoorController/Perform ElevatorController/Monitor

75

Table 12: MOA Object Classification
UML

Class

UML Compos. SUMO/

WordNet Classifica-tion

OSSD

Behavior

OSSD

Classif

ElevatorController Whole top level Entity:Physical:Object Control,

 Monitor,

Perform

Agent

DoorController Whole top level Entity:Physical:Object Control,

Monitor,

Perform

Entity

ElevatorCar Whole top level Entity:Physical:Object Control,

Monitor,

Perform

Entity

ButtonPanel Part sub level Entity:Physical:Object Perform Entity

WeightSensor Part sub level Entity:Physical:Object Perform Entity

Motor Part sub level Entity:Physical:Object Perform Entity

InnerDoor Part sub level Entity:Physical:Object Perform Entity

Door Entity:Physical:Object Perform Entity

DoorSensor Part sub level EntityPhysical:Object Perform Entity

OuterDoor Entity:Physical:Object Perform Entity

Passenger Whole top level Entity:Abstract:Attribute:

RelationalAttribute:SocialRole

Perform Agent

Table 13a: MOA State, Transition, Constraints Classification Table Part 1
UML

Class

UML

State

OSSD

State

Classif.

OSSD

Entry

Behavior

OSSD

Do

Behavior

OSSD

Exit

Behavior

OSSD

Incoming

Transition/From

OSSD

Outgoing

Transition/To

Door

Controller

Elevator

Idle

Initial none none none none Destination

Request,

Preparing

ToMove,

ElevatorAtFloor

Door

Controller

Destina-

tion

Request

Intermd TurnLight

On(BT,F)

Update

Destina-

tion()

GetNext

Destina-

tion()

ElevatorIdle PreparingTo

Move

Door

Controller

Waiting Intermd Start

Timer()

None GetNext

Destina-

tion()

ElevatorAt

Floor

PreparingTo

Move,

ElevatorIdle

Door

Controller

Prepar-

ing

To

Move

Intermd none Close

Doors()

none ElevatorIdle,

Waiting,

Destination

Request

ElevatorMoving,

ElevatorAtFloor

Door

Controller

Elevator

Moving

Intermd none MoveTo

(F)

none PreparingTo

Move

ElevatorAtFloor

Door

Controller

Elevator

AtFloor

Intermd TurnLight

Off(BT,F)

none Open

Doors()

Elevator

Moving,

PreparingTo

Move

Waiting

Door

Controller

Doors

Closed

Initial none none none none OpenningDoors

Door

Controller

Open-

ing

Doors

Intermd none none none DoorsClosed,

ClosingDoors,

ClosingDoors

ClosingDoors,

DoorsOpen

Door

Controller

Doors

Open

Intermd none none none OpeningDoors ClosingDoors

Door

Controller

Closing

Doors

Intermd none none none DoorsOpen,

OpeningDoors

OpeningDoors,

OpeningDoors,

DoorsClosed

76

Table 13b: MOA State, Transition, Constraints Classification Table Part 2
UML

Class

OSSD

Transition

Number

OSSD Transition

IncomingFrom/

OutgoingTo

OSSD

Constraint

OSSD

Constraint

Classification

OSSD Transition

followed by

OSSD Transition

Door

Controller

1 ElevatorIdle/

DesinationRequest

ButtonPressed(BT,F),

[BT=FloorButton V

 BT=DownButton V

 BT=UpButton]

Trigger,

Guard

4

Door

Controller

2 ElevatorIdle/

PreparingToMove

ButtonPressed(BT,F),

[BT=CloseButton]

Trigger,

Guard

5 or 6

Door

Controller

3 ElevatorIdle/

ElevatorAtFloor

ButtonPressed(BT,F),

[BT=OpenButton]

Trigger,

Guard

8

Door

Controller

4 DestinationRequest/

PreparingToMove

none none 5 or 6

Door

Controller

5 PreparingToMove/

ElevatorMoving

DoorsClosed()

[F <> ElevatorLocation]

Trigger,

Guard

7

Door

Controller

6 PreparingToMove/

ElevatorAtFloor

DoorsClosed()

[F = ElevatorLocation]

Trigger,

Guard

8

Door

Controller

7 ElevatorMoving/

ElevatorAtFloor

ElevatorArrived(F) Trigger 8

Door

Controller

8 ElevatorAtFloor/

Waiting

DoorsOpened() Trigger 9 or 10

Door

Controller

9 Waiting/

PreparingToMove

TimedOut(),

[F <> null]

Trigger,

Guard

5 or 6

Door

Controller

10 Waiting/

ElevatorIdle

TimedOut(),

[F = null]

Trigger,

Guard

1 or 2 or 3

Table 14: MOA Goal Classification
UML Use

CaseName

OSSD

Agent(s)

OSSD Entity OSSD Behavior OSSD Goal OSSD Goal

Classif.

Request

Elevator

Passenger Floor,

CallButton

UpButton

PressButton Elevator

Request

Achieve

Request

Elevator

Elevator

Controller

Floor, CallButton

UpButton, Light

TurnLightOn Elevator

Request

Achieve

Request

Elevator

Elevator

Controller

ElevatorCar See sub goal Elevator

Movement

Achieve

Request

Elevator

Elevator

Controller

Floor, CallButton

UpButton, Light

TurnLightOff Elevator

Request

Achieve

OpenDoors Elevator

Controller

DoorController OpenDoors DoorsOpened Achieve

OpenDoors none DoorController,

InnerDoor

OpenInnerDoor DoorsOpened Achieve

OpenDoors none DoorController,

OuterDoor

OpenOuterDoor DoorsOpened Achieve

Move

Elevator

Elevator

Controller

ElevatorCar MoveTo Elevator

Movement

Achieve

Move

Elevator

none ElevatorCar,

Motor

MoveUp Elevator

Movement

Achieve

Move

Elevator

none ElevatorCar,

Motor

MoveDown Elevator

Movement

Achieve

Move

Elevator

none FloorSensor ElevatorArrived Elevator

Movement

Achieve

Move

Elevator

none ElevatorCar,

Motor

Stop Elevator

Movement

Achieve

77

Table 15: Inter-View Inconsistency Detection
UML OSSD Class

Diagram

Sequence

Diagram

StateMachine

Diagram

Use Cases or

Use Case

Diagram

ElevatorCar Entity Y Y Y Y

Passenger Agent Y Y N Y

OpenDoors Behavior Y Y Y Y

ButtonPressed Behavior Y Y Y Y

Controls Association Y Y N N

WeightSensor Entity Y N N Y

5.3.2 OSSD Model

5.3.2.1 OSSD Model of the Elevator System

Figure 47 shows a partial view of the OSSD Model created for the elevator system described in

Figures 40 to 46. Instances are attached to the leaves of the OSSD Model via a double-headed arrow

and are enclosed in double quotation marks. Each element from the UML diagram is represented as

an instance in the OSSD Model. Each OSSD Model element is suffixed by an integer that is

incremented for each UML element processed. For example, in the OSSD Model in Figure 47, the

“ElevatorController” from the UML Class diagram is represented as an Agent [Construct0, Object0,

Statebased0, Agent0], which has the Association “controls” [Contruct1, Relation1, Association1],

which connects “ElevatorController” with “ElevatorCar” [Construct4, Object4, Statebased4, Entity4].

The numeric suffixes associated with the leaf names are assigned as the leaves are created and do not

correspond directly with semantically related Constructs (e.g. Behavior0 may or may not be

performed by Agent0).

"ElevatorController"

"controls"

"ElevatorCar"

Association1

Relation1

Attribute3

From.Obj2 To.Obj3

Attribute2

Object0

Statebased0

Rel.Attrib3

Rel.Attrib2

Agent0

Object4

Statebased4

Entity4

Construct4 Construct0Construct1 Construct2 Construct3

Figure 47: OSSD Model - Elevator System Partial Representational View

78

Figure 48 shows a partial view of structural relationships between the elevator car and elevator doors

in the Elevator System using the Elevator System example. Figure 49 shows a detailed expansion of

the OSSD Model for the Elevator System described in the UML diagrams in Figures 40 to 46. To

simplify the pictorial view of the OSSD Model for the Elevator System, these figures show only the

significant classes and properties. Some super-classes and paths connecting upward to the Construct

level are omitted to simplify the diagrams and ease their understanding.

5.3.2.2 OSSD Model in OWL Notation

Figure 50 provides examples of OWL notation for portions of the OSSD Model. It specifies the high

level constructs using OWL as well as provides an example a rule specified in SWRL notation

[SWRL]. This rule implements the OB_Rule1 given in Figure 28 in Chapter 4 Section 4.3.5.2. The

disjunctive clause in the head of this rule is not standard SWRL; it is based on FOL RuleML [Boley

et al.]

"InnerDoor"
"Door"

"OuterDoor"

Subclass

NonAssociation

General

Relation

Subclass

NonAssociation

General

Relation

SuperClass

NonAssociation

General

Relation

Statebased

Entity

Object

Composition

NonAssociation

General

Relation

Part

Composition

NonAssociation

General

Relation

Whole

Statebased

Entity

Object

"ElevatorCar"

Figure 48: OSSD Model – Elevator System Partial Structural Relationships

79

Agent

"DoorController"

Control

Behavior

"OpenOuterDoor"Entity

Object

Statebased

"OuterDoor"

sends

message

to

Perform

Behavior

"Open"

causes

Event

"OuterDoorOpened"

se
n

d
s

m
es

sa
g

e
to

"OpenInnerDoor"

Control

Behavior

Entity

Object

Statebased

"InnerDoor"

sends

message

to

Perform

Behavior

"Open"

Event

"InnerDoorOpened"

causes

se
n

d
s

m
es

sa
g

e
to

Statebased

State

internal

"DoorsOpen"

Control Behavior

"CloseDoors"

Perform

Outgoing

Constraint

Guard

"¬PersonDetected"

State

initial

"DoorsClosed"

Transition

State

to

"ClosingDoors"

"OuterDoorClosed"

"InnerDoorClosed"

to

to

from

from

internal

Transition
Outgoing

Outgoing

Incoming

Incoming

Transition

Transition

Object

Agent

Object

"ElevatorController"

"OpenDoors"

sends message to

Control Behavior

Perform

Event "DoorsOpened"

ca
us

es

se
n

d
s

m
es

sa
g
e

to

Behavior
Statebased

Figure 49: OSSD Model - Elevator System Detailed View

80

<owl:Class rdf:ID=”Construct”>

</owl:Class >

<owl:Class rdf:ID=”Relation”>

 <rdfs:subClassOf rdf:resource=”#Construct”/>

 <rdfs:subClassOf>

</owl:Class >

<owl:Class rdf:ID=”Object”>

 <rdfs:subClassOf rdf:resource=”#Construct”/>

 <rdfs:subClassOf>

</owl:Class >

<owl:Class rdf:ID=”Association”>

 <rdfs:subClassOf rdf:resource=”#Relation”/>
 <rdfs:subClassOf>

</owl:Class >

<owl:Class rdf:ID=”Statebased”>

 <rdfs:subClassOf rdf:resource=”#Object”/>

 <rdfs:subClassOf>

</owl:Class >

<owl:Class rdf:ID=”Agent”>

 <rdfs:subClassOf rdf:resource=”#Statebased”/>

 <rdfs:subClassOf>

</owl:Class >

<owl:ObjectProperty rdf:ID=”has”>

 <rdfs:domain rdf:resource=”#Object”/>

 <rdfs:range rdf:resource=”#Relation”/>

<owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=”causes”>

 <rdfs:domain rdf:resource=”#Behavior”/>

 <rdfs:range rdf:resource=”#Event”/>

<owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=”has”>

 <rdfs:domain rdf:resource=”#Statebased”/>

 <rdfs:range rdf:resource=”#Behavior”/>

<ruleml:imp>

 <ruleml:_body>

 <swrlx:classAtom>

 <owlx:Class owlx:name=”StatebasedObject”/>

 <ruleml:var>o1</ruleml:var>

 <swrlx:classAtom>

 <swrlx:classAtom>

 <owlx:Class owlx:name=”StatebasedObject”/>

 <ruleml:var>o2</ruleml:var>

 <swrlx:classAtom>

 <ruleml:_body>

 <ruleml:_head>

 <swrlx:classAtom>

 <owlx:Class owlx:name=”Behavior”/>

 <ruleml:var>b</ruleml:var>
 <swrlx:classAtom>

 <swrlx:individualPropertyAtom swrlx:property=”has”>

 <ruleml:var>o1</ruleml:var>

 <ruleml:var>b</ruleml:var>

 </swrlx:individualPropertyAtom>

 <swrlx:individualPropertyAtom swrlx:property=

 ”sendsMessageTo”>

 <ruleml:var>b</ruleml:var>

 <ruleml:var>o2</ruleml:var>

 </swrlx:individualPropertyAtom>

 <or>

 <swrlx:classAtom>

 <owlx:Class owlx:name=”Event”/>

 <ruleml:var>e</ruleml:var>

 <swrlx:classAtom>

 <swrlx:individualPropertyAtom swrlx:property=”causes”>

 <ruleml:var>b</ruleml:var>
 <ruleml:var>e</ruleml:var>

 </swrlx:individualPropertyAtom>

 <swrlx:individualPropertyAtom swrlx:property=

 ”sendsMessageTo”>

 <ruleml:var>e</ruleml:var>

 <ruleml:var>o2</ruleml:var>

 </swrlx:individualPropertyAtom>

 <ruleml:_head>

</ruleml:imp>

<owl:ObjectProperty>

Figure 50: Partial OWL Notation for Elevator Case Study

81

5.3.3 Consistency Checking

The UML designs in Figures 40 through 46 contain the following seeded inconsistencies.

1) The class “weight sensor” exists in the Class Diagram but no reference to that class exists in

either the StateMachine or Sequence Diagram.

2) The Sequence Diagram shows the Elevator Controller class exchanging messages with the

Floor class but the Class Diagram does not show an association link between these classes.

3) The Door Controller StateMachine Diagram shows detection of an obstruction between the

doors that prevents the doors from closing, but the Passenger Request Sequence Diagram that

indicates the doors should close after a timeout has occurred without any indication of detection

of an obstruction between the doors.

Consistency checking performed during the transformation to the OSSD Model detects the first two

inconsistencies. The first inconsistency involving the “weight sensor” is detected via the IC_Rule1

(see Figure 29) and the Inter-View Inconsistency Table shown in Table 15 in Chapter 5 Section 5.3.1

which shows the UML Class “Weight Sensor” is identified in the Class and Use Case diagrams but

not in the Sequence or StateMachine diagrams. The second inconsistency concerning the missing

association link is detected via two axioms OB-1 and OR-1 (based on the OB_Rule1 and OR_Rule1

axioms given in Figure 28 in Chapter 4 Section 4.3.5.2}. These axioms are shown in Figure 51

located on the property has linking State-Based (representing “ElevatorController”) to Behavior

(representing “TurnLightOn”). Although this diagram shows that axiom OB-1 is true it shows that

axiom OR-1 is not true thereby identifying the inconsistency. Figure 52 shows that

“ElevatorController” participates in only three Associations involving the “ElevatorCar”,

”DoorController”, and “Timer”. No Association exists between “ElevatorController” and “Floor”.

Figure 52 also shows that both axiom OB-1 and OR-1 are true for the message sent between the

“ElevatorController” and the “ElevatorCar” to perform the “MoveTo” behavior.

The third inconsistency in the Elevator system is detected during the KAOS processing of the

Elevator System specification. This inconsistency is an example of a divergence that is easily

detected in the KAOS processing. The KAOS processing will identify from the KAOS specification

of the Elevator System the two assertions (1) elevator doors should close after a given timeout period

and (2) elevator doors should not close if the door sensor detects an obstruction. Then the KAOS

system will identify the boundary condition, “timeout” and “obstruction detected” which results in a

divergence. In KAOS processing, boundary conditions can be “formally derived by regressing the

negation of one of the goal assertions through the domain theory extended with the other goal

assertions” [van Lamsweerde7].

5.4 KAOS

Figure 52 contains Sections of a KAOS specification for the Elevator System that is generated by the

transformation.

Figure 53, adapted from [Objectiver1], shows an example of a generic KAOS goal pattern for a

“system satisfying stakeholder’s needs” which, when applied to the Elevator System, will produce an

initial goal pattern shown in Figure 54, also adapted from [Objectiver1]. Additional reiterations and

expansions of the KAOS goal patterns will facilitate the KAOS identification of conflicts and goals

as well as inconsistencies.

82

The KAOS specification is transformed into XML format in order for it to be accessible to the

FAUST Toolbox. Transformation into XML is beyond the scope of this research. Results of the

verification processing would then be used to manually update the original UML design.

The third inconsistency residing within the UML design is an example of a divergence that is easily

detected in the KAOS processing. The KAOS processing will identify from the KAOS specification

of the Elevator System the two assertions (1) elevator doors should close after a given timeout period

and (2) elevator doors should not close if the door sensor detects an obstruction. Then the KAOS

system will identify the boundary condition, “timeout” and “obstruction detected” which results in a

divergence. In KAOS processing, boundary conditions can be “formally derived by regressing the

negation of one of the goal assertions through the domain theory extended with the other goal

assertions” [van Lamsweerde7].

Object

"TurnLightOn"

se
n

d
s

m
es

sa
g

e
to

Control

Behavior

Perform

Behavior

Agent

Object

"Elevator
Controller"

State-based

Entity

"Floor"

State-based

{OB-1, OR-1}

RelationRelationAttribute

Association

FromObject

RelationAttribute

Object

Entity

"ElevatorCar"

State-based

Relation

RelationAttribute

Association

FromObject

RelationAttribute

ToObject
Agent

"DoorController"

Relation

RelationAttribute

Association

FromObject

RelationAttribute

ToObject

Entity

"Timer"

State-based

"Controls"

"Communicates With"

Object State-based

Object

"Uses"

{OB-1, OR-1}

Behavior

Control

"MoveTo"

BehaviorPerform

ToObject

sends

 message

 to

Figure 51: Relation Inconsistency

83

Agent ElevatorController

Has ElevatorDestinationList,

ElevatorDirection,

CurrentLocation

 Inherited from none

 Monitors DoorController/DoorsState

 Controls ElevatorCar/Location, State

ResponsibleFor ElevatorMovement,

WeightLimitSafety

DependsOn DoorController For

DoorsOpened, DoorsClosed,

DoorSafety

 Performs UpdateDesintationList,

GetNextDestination,

StartTimer, StopTimer

 End

 Entity ElevatorCar

 Has State, Location, Moving

 End

 Event ElevatorArrived(Location)

 Has Location

 End

Association Controls

 Links ElevatorController {mult 1..1},

ElevatorCar {mult 1..1}

 Has none

 End

Goal Maintain [DoorsClosedWhileMoving]

Concerns ElevatorCar/InnerDoor,

 Floor/OuterDoor

AndRefines DoorSafety

UnderResponsibilityOf ElevatorController

OperationalizedBy OpenDoors, CloseDoors,

MoveTo

End

Operation OpenDoors

 Input e:ElevatorCar, id:InnerDoor,

od:OuterDoor

 Output e: ElevatorCar/State,

 id: InnerDoor/State,

od: OuterDoor/State

DomPre e.State="stopped", id.State = "closed",

od.State = "closed"

DomPost e.state="stopped", id.State = "open",

od.State = "open"

ReqPre for DoorsClosedWhileMoving:

¬e.moving

ReqTrig for DoorSafety:

AtFloor=true ^ ¬e.moving

CausedBy ElevatorArrived

PerformedBy DoorController

Operationalizes DoorOperation

 End

Operation MoveTo

 Input e:ElevatorCar,

f:FloorButton

 Output e: ElevatorCar/Location

DomPre e.Location <> f.Floor,

e.State = "doors closed"

DomPost e.Location = f.Floor

e.State = "doors closed"

ReqPre for DoorsClosedWhileMoving

CausedBy ec.ButtonPressed(Floor,f)

PerformedBy ElevatorCar

Operationalizes ElevatorCarOperation

 End

Figure 52: Partial KAOS Specification for Elevator System

84

transporat ion requests satisfied in a safe, efficient ,

usable and cheap way

Safe Elevator System

transportation requests satisfied

efficient elevator system

cheap e levator system

usable elevator system

goal

requirement

refinment of parent goal at head of arrow

Figure 54: Partial KAOS Goal Pattern for the Elevator System

System satisfying

stakeholders' needs

System satisfying
non - functional needs

System satisfying functional
needs

cheap system

usable system

safe system

efficient system

laws in force respect ed

environment preserved

goal

requirement

refinment of parent goal at head of arrow

Figure 53: Generic KAOS Goal Pattern

85

6 Evaluation of Methodology

6.1 Introduction

We evaluated this research from three perspectives: evaluating the ontology represented as the OSSD

Model; evaluating the error detection; and lastly, evaluating the transformation from the source

language to target language, specifically UML to KAOS. No single evaluating technique or method

addresses all three aspects; therefore, we address each aspect separately.

6.2 Ontological Evaluation of the OSSD Model

6.2.1 Introduction

Ontology development is slowly moving from an art to a science. The development of ontology

evaluation methodologies is a significant factor in this progression. A variety of approaches are

available to evaluate the quality of an ontology ranging from simply identifying typical problems

encountered in taxonomic knowledge [Gomez-Perez], to ontological comparison with a generally

agreed upon sound ontological model such as Bunge-Wand-Weber (BWW) Model [Wand &

Weber2], to formal ontology evaluation methods such as OntoClean [Guarino & Welty], and to

commercially available ontology evaluation support tools such as ODEval [Falbo2 et al.]. Recently,

a meta-ontology approach, referred to simply as O
2
 [Gangemi et al.], integrates several ontology

evaluation methods and introduces a variety of ontology evaluation metrics. In this latter approach,

ontologies are evaluated based on structure, functionality, and usability.

A recent survey of ontology evaluation techniques [Brank et al.] organizes ontological evaluation

approaches into broad categories including methods that are based on comparison with a “golden

standard” ontology, comparison with domain knowledge specific to the ontology, manual comparison

against predefined standards, and empirical evaluation of the ontology. From a slightly different

viewpoint, an approach to evaluate reference models (conceptual frameworks) organizes research

methods into empirical and analytical perspectives [Fettke & Loos]. The analytical perspective is

further sub-divided based on the quality criteria utilized, either ad-hoc (including metric-based,

feature-based, and text-based evaluations) or theory-driven (including evaluations based on

ontologies and meta-models). Evaluation of the OSSD Model utilizes the theory-driven analytical

perspective (specifically ontology-based evaluation) in conjunction with a “golden standard”

ontology.

We considered several approaches for evaluating the OSSD Model. The Gomez-Perez approach is

useful but not complex enough to perform a full evaluation of an ontology. The O
2

evaluation

method is a promising technique that provides numerous metrics but does not provide adequate

information as to the interpretation of the results of applying such metrics; it lacks the range

specification for each metric that is required to provide an understanding of the empirical data

gathered by applying the metrics. Research implies that future versions will provide “patterns of

good/bad quality based on correlation between success stories, user satisfaction feedback, and

measures” [Gangemi et al.]. The OntoClean approach requires significant training [Hartmann et al.].

Insufficient information is publicly available to implement the ODEval method. The BWW Model,

on the other hand, has both a wealth of information available regarding its application and has been

used successfully to evaluate numerous modeling methods and modeling grammars (such as

structured, data-centered, object-oriented, and process grammars) including the Entity-Relationship

Model [Wand et al.], Reference Models [Fettke & Loos], Process Modeling Techniques [Rosemann1

86

et al.], UML [Evermann & Wand2], [Opdahl & Henderson-Sellers2], and UML Use Case Modeling

[Irwin & Turk]. A recent application of the BWW Model to object-oriented language constructs to

enhance their semantics provides several reasons supporting the selection of the BWW Model

including “it is rooted in ontological work done over a long period in the past…it is well formalized

as an axiomatic system, using a set theory representation…it has been empirically shown to lead to

useful predictions” [Evermann & Wand1]. Therefore, we chose the BWW Model to evaluate the

OSSD Model.

6.2.2 BWW Model

An ontology developed by Bunge [Bunge] became the basis for the development of three ontological

models (a representation model, a state-tracking model, and a good decomposition model) to evaluate

information systems modeling techniques and grammars. The Bunge-Wand-Weber (BWW)

Representation Model, hereafter referred to simply as the BWW Model, is the most commonly used

of the three models to represent the structure and behavior of the real world. The state-tracking

model analyzes the representation of dynamics from the real world while the good decomposition

model evaluates the subsystem organization of a model. Ontological analysis utilizing the BWW

Model is based on two types of mappings, representation mapping and interpretation mapping, as

shown in Figure 55 (adapted from [Wand & Weber1]). With representation mapping, the BWW

Model constructs are mapped onto the constructs of the grammar or modeling technique under

evaluation (hereafter, referred to as the evaluated model). With interpretation mapping, the evaluated

model constructs are mapped onto BWW Model constructs. As a result of these two mappings, it is

possible to identify four potential weaknesses of the evaluated model [Fettke & Loos]. The

representation mapping can reveal construct incompleteness if there exists one or more BWW Model

construct that cannot be mapped to any construct in the evaluated model; construct redundancy

(ambiguous mapping) occurs if there exists at least one BWW Model construct that can be mapped to

multiple constructs in the evaluated model. The interpretation mapping can identify construct excess

if there exists one or more evaluated model construct that cannot be mapped to any construct in the

BWW Model; construct overload is revealed if there exists at least one evaluated model construct that

can be mapped to multiple constructs in the BWW Model.

The BWW Model represents domain structure and behavior by defining approximately 50

ontological concepts. From a high-level, things represent the world (structural relationships between

things portrayed via composite/component, class/kind) and own characteristics referred to as

properties. Things are able to interact with each other within the systems in the environment

BWW Model OSSD Model

Representation Mapping

Ontological Completeness

Ontological Clarity

Interpretation Mapping

Figure 55: Ontological Evaluation of OSSD Model using the BWW Model

87

according to transformations on properties that are affected into change by events based on

transformation laws. Detailed explanations of the more commonly used BWW constructs are given

in Table 16. The following descriptions of the BWW Model are based on a recent evaluation of

Table 16: BWW Model Concepts
BWW Construct Description

Thing(concrete/conceptual)

 Primitive/Component

 Composite

Elementary units in the real world (perceived/modeled)

Not divisible into other things / a thing that is part of a composite thing

Divisible into two or more related primitive things

Property/Attribute

 Intrinsic /

 Mutual (Relational)

 Hereditary /

 Emergent

 InGeneral /

 InParticular

Property Function

Whole-part Relation

Characteristic belonging to a thing; can not be directly observed; modeled by a

function; sub-types of properties include:

belongs to a single, individual thing; inherent /

 belongs to two or more related things

belongs to both composite and component thing /

 belongs only to a composite thing

belongs to a group of things /

 belongs to an individual in a group of things

“maps the thing into some value”; “represents how a property changes over time”

“being incomposition of another thing or, complementary, of having another thing

as a component”

Class /

Kind and Sub-Kind

Two or more things that have a common property /

Two or more things that have a common set of two or more properties

State “the vector of values for all property functions of a thing”

Conceivable State Space “the set of all states that the thing might ever assume”

State Law Property function value restriction “lawful because of natural laws or human

laws”; is a property of a thing

Lawful State Space “set of states of a thing that comply with the state laws of the thing”

Process “ordered sequence of events on, or states of, a thing”

Event State change “effected via a transformation”

Conceivable Event Space “set of all possible events that can occur in the thing”

Transformation “mapping from a domain comprising states to a codomain comprising states”; a

mapping from one state to another

Lawful Transformation “defines which events in a thing are lawful”; is a property of a thing; indicates

transformations from lawful state to lawful state

Lawful Event Space “set of all events in a thing that are lawful”

History “chronologically ordered states that a thing traverses in time”

Acts on / Coupling “a thing acts on another thing if its existence affects the history of the other thing”

System A set of things in which “couplings exist among things in the two subsets”

System Composition The component things in a system

System Environment Things outside of the system that interact with things in the system

System Structure “set of couplings that exist among things in the system and things in the

environment of the system”

Subsystem Subsets of a system

SystemDecomposition Subsystem set totally inclusive within a system

Level Structure “a partial order over the subsystems in a decomposition to show which subsystems

are components of other subsystems or the system itself”

External Event /

Internal Event

“an event that arises in a thing, subsystem or system by virtue of the action of

something in the environment of the thing, subsystem or system. The before-state

of an external event is always stable. The after-state may be stable or unstable” /

“an event that arises in a thing, subsystem or system by virtue of the lawful

transformations in the thing in the environment of the thing, subsystem or system.

The before-state of an internal event is always unstable. The after-state may be

stable or unstable”

Stable /

 Unstable State

“a state in which a thing, subsystem or system will remain unless forced to change

by virtue of the action of a thing in the environment (an external event)” /

“a state that will be changed into another state by virtue of the action of

transformation in the system”

88

UML using the Bunge-Wand-Weber Model, which includes a synthesis of several sources describing

the BWW Model [Opdahl & Henderson-Sellers2].

A review of the inter-relationships among the BWW Model concepts is beneficial before performing

the BWW evaluation of the OSSD Model. Within the BWW Model, an object is either a concrete

thing (something that is, or can be perceived by someone as, a specific object) or a conceptual thing

(a model of a thing). A composite thing may contain one or component things. A thing posses one or

more properties. A property cannot exist without a thing. A property cannot posses other properties.

A property of a concrete thing is also referred to as a substantial property while a property of a

conceptual thing is also referred to as a formal property or attribute. As an example of this fine

distinction, the color of a thing is an attribute that corresponds to the property reflection of a

wavelength [Leppanen]. The complexity of the concept of a property function is clarified in the

following manner: “In the BWW Model, an attribute (that stands for a BWW-property) is represented

as a property function of time, which maps the property onto different property values” [Opdahl &

Henderson-Sellers1]. In simpler terms, a property is modeled as an attribute. An attribute / property

is characterized by three classifications Hereditary/Emergent, InGeneral/InParticular, and

Intrinsic/Mutual. These classifications are not mutually exclusive of each other, for example, a

property can be Hereditary and Intrinsic. Properties/attributes of a composite thing can be either

hereditary (belonging to both the composite thing and the component things) or emergent (associated

with the composite thing as a whole). An example of a simple emergent property would a sum of

component parts. InGeneral/InParticular indicates belonging to a group as a whole or to only a

specific member of a group. Intrinsic/Mutual imply belonging to only one thing or belonging to two

or more things based on a relationship between those things. A kind is a collection of things that

share two or more properties/attributes that are not shared by any thing outside of that collection. A

class is a collection of things that all possess the same one property. Law and law statement are

properties/attributes that restrict the property/attribute of a thing and specify property relationships.

Properties/attributes that do not restrict other properties/attributes are referred to as value

properties/attributes. An event causes the state of one or more properties of a thing; events can be

internal if caused by a change in state of a thing as a result of a transformation law that applies to that

same thing; external events are due to state changes of one thing caused by actions of a different

thing; a transformation describes the change from one state to another state.

Few of the modeling methods and grammars evaluated via BWW Model produce a comprehensive

one to one mapping with the BWW Model. Usually, mismatches identify weaknesses of the

evaluated model, such as the BWW evaluation of UML to represent concrete problem domains

[Opdahl & Henderson-Sellers2]. However, sometimes the mismatches reveal perceived problems

with the BWW Model. Although critics of the BWW Model state that it lacks understandability,

objectivity, guidance, and completeness [Rosemann2 et al.], and that analytical results of applying the

BWW Model sometimes contradict conceptual modeling practice [Shanks], the overall process of

evaluating a model using the BWW model is useful in refining, correcting, and justifying components

of a model. It is this latter justification that enables developers of a model to prove why their model

should be considered ontologically sound even if it does not map completely to the BWW Model.

Additionally, the BWW Model is useful when combined with other ontologies, such as performed

with the Workflow Management System to evaluate UML with regard to business to business

workflows [Dussart et al.].

89

6.2.3 BWW Model Evaluation of the OSSD Model

A high-level view of the OSSD Model depicts the world (of software engineering requirements and

design) as represented by instances of the OSSD Construct Object {Agent, Entity, and Event}. These

OSSD Model instances own characteristics that are represented by Construct:Attribute. OSSD

Model Agents and Entities interact with each other according to the Construct:Behavior that affects

the states of the Construct:Attribute(s) that in turn cause Construct:Object:Events based on

Construct:State, Construct:Transition, Construct:Constraint, Construct:Plan, Construct:Goal, and

on the axioms associated with those properties between these Constructs. As described earlier when

introducing the OSSD Model, properties within the OSSD Model depict both structural and behavior

relationships between OSSD constructs. Sections 6.2.3.1 and 6.2.3.2 provide the results of

performing a BWW Model Representation evaluation of the OSSD Model and the results of

performing a BWW Model Interpretation evaluation of the OSSD Model.

6.2.3.1 Representation Mapping Evaluation

Table 17 contains the detailed results of the BWW Model Representation Mapping of the OSSD

Model. The correspondence between the BWW Model and the OSSD Model is based on similar

analysis performed to identify the correspondence between UML and the BWW Model [Opdahl &

Henderson-Sellers2], [Dussart et al.] [Evermann & Wand1].

Table 18 contains a high-level summary of the representation mapping with only the construct

incompleteness and construct redundancy errors listed. If no incompleteness or redundancy exists,

the table entry is filled with dashes rather than textual comments to improve readability of the table.

An analytical discussion comparing the evaluation results of the OSSD Model follows the tables.

The representation mapping of the BWW Model constructs onto the constructs of the OSSD Model

reveals potential construct incompleteness if there exists one or more BWW Model construct that

cannot be mapped to any construct in the OSSD Model, and construct redundancy (ambiguous

mapping) if there exists at least one BWW Model construct that can be mapped to multiple constructs

in the OSSD Model.

With regard to construct incompleteness, the BWW Model analysis shows that the OSSD Model is

ontologically complete given the scope restrictions of the OSSD Model. Eight BWW Model

constructs that relate to the BWW concept of system composition/decomposition and environment

cannot be mapped to OSSD Model constructs because the scope of the BWW ontology (the world) is

considerably larger than the scope of the OSSD Model (software requirements specification and

design). Additionally, this research narrows the scope of software requirements specification and

design to include object definition and behavioral interaction but excludes system

composition/decomposition and environment. Research related to OSSD, the adaptation of the

BWW Model to the Off-the-Shelf Information Systems (OISR) Framework [Soffer et al], similarly

narrows the scope of the BWW Model evaluation. With regard to its importance, a recent ontological

analysis of process modeling techniques utilizing the BWW Model shows that while 58% of the

techniques support the system concept only 17% support the subsystem and environment BWW

constructs [Rosemann1 et al.]; additionally, the most commonly supported ontological constructs in

these process modeling techniques include transformation, property, event, lawful transformation,

coupling, state, system, external event, well-defined event, class, and thing. With regard to these

commonly supported ontological constructs, the OSSD Model supports all but the external event.

90

With regard to construct redundancy, three BWW Model constructs can be mapped to multiple

constructs in the OSSD Model. Construct redundancy is not a significant problem when “the

Table 17: BWW Model Representation Mapping of UML and OSSD
BWW Construct UML OSSD

Thing

 Primitive

 (Component)

/ Composite

Object, Actor

/ Aggregate

object

Construct:Object:Statebased:{Agent or Entity}

An Instance of an Construct:Object that does have associated with it

Construct:Relation:Non-Association:Composition:Part or

Construct:Relation:Non-Association:Aggregation:Part

 / An Instance of an Construct:Object that does have associated with

it Construct:Relation:Non-Association:Composition:Whole, or

Construct:Relation:Non-Association:Aggregation:Whole

Property:

 Intrinsic

 / Mutual

 Hereditary

 / Emergent

 InGeneral

 / InParticular

Whole-Part Relation

Attribute,

Property

/ Association

No match

/ No match

No match

/ No match

aggregation

Construct:Attribute

Construct:Attribute:ObjectAttribute

/ Construct:Attribute:RelationAttribute

Attribute assoc. with Composite Thing that is also in its Component

Things

/ Attribute assoc. with Composite Thing that is not in its Component

Things

Attribute assoc. with all instances of a Construct

/ Attribute assoc. with one instance of a Construct

Construct:Relation:Non-Association:{Aggregation/Composition}

Construct:Relation:NonAssociation:

 Generalization:{Superclass,Sub-class}

Class /

Kind and Sub-Kind

Class

(stereotype),

Generalization

Two or more instances of a Construct:Object that have only one

common Construct

Two or more instances of a Construct:Object that have the

relationship Construct:Relation:NonAssociation:

Generalization:{Superclas/Subclass}

State State Construct.State:{Initial, Intermediate,, or Final}

ConceivableStateSpace StateMachine All Construct.States associated with Construct:Object:Statebased

State Law Precondition,

Guard,

Multiplicity

Construct:Constraint:Precondition, Construct:Constraint:Guard

Construct:Attribute:Multiplicity, and Construct:Goal:{Achieve,

Maintain, Cease, Avoid}

Lawful State Space No match All Construct:States with related Construct:Transitions and

Construct:Constraints associated with Constuct:Object:Statebased

Process Use Case Construct:Plan

Event Event Construct:Object:Event

ConceivableEventSpace No match All Construct:Object:Events associated with

Construct:Object:Statebased that are a caused by associated

Construct:Behavior

Transformation Operation,

Activity

Construct:Behavior:{Perform, Monitor, Control}

Lawful Transformation Transition,

Action,

Postcondition

Construct:Transition, Construct:Constraint:Action

Construct:Constraint:Postcondition, Construct:Constraint:Trigger

Lawful Event Space No match All Construct:Object:Events associated with

Construct:Object:Statebased that are a caused by associated

Construct:Behavior and contrained by Construct:Constraint

History Object Lifeline All Construct:States of a Thing associated with all Construct:Plan

Acts On / Coupling Message

passing

(send/receive

pair)

Construct:Relation:Association:Relational:Attribute:ToObject and

Construct:Relation:Association:Relational:Attribute:FromObject

System Composite All instances of Construct:Object that are related via

Construct:Relation:Association

table continued

91

overlapping modeling constructs represent disjunctive subtypes of the ontological concepts [Opdahl

& Henderson-Sellers2]”. Therefore, construct redundancy due to disjunctive subtypes is not listed in

Table16 for the mapping of a BWW Thing, Property, State, Behavior, or ActsOn/Coupling. A BWW

Thing can be mapped to Construct:Object:Statebased:Agent or Construct:Object:Statebased:Entity.

However, this construct redundancy is not significant because it is a result of disjunctive subtypes of

the Construct:Object:Statebased. The distinction between a Primitive Thing and a Composite Thing

depends on Construct:Relation:Non-Association:{Composition, Aggregation}:{Part, Whole}

associated with the Object that in turn indicates the BWW Whole-Part relation property. A BWW

Property can be mapped to Construct:Attribute:ObjectAttribute or

Construct:Attribute:RelationAttribute. However, this construct redundancy is not significant because

it is a result of disjuntive subtypes of the Construct:Attribute. The distinction between an Intrinsic

Property and a Mutual Property is dependent on whether the Property belongs to a single, individual

Thing or to two more related Things. The characteristics of a BWW Property (Hereditary/Emergent,

InGeneral/InParticular, Whole-Part Relation) further describe the Property and are not actually a

direct part of the mapping of the BWW Property. The mapping of the BWW State, Transformation,

ActsOn/Coupling each map to sub-types of the OSSD Model Construct:State, Construct:Behavior,

and Construct:Attribute:RelationAttribute respectively. To reiterate, this redundancy is not

significant because it is a result of the disjunctive subtypes of the OSSD Model constructs.

The significant construct redundancy concerns three BWW Model constructs (StateLaw,

LawfulTransformation, and UnstableState) that can be mapped to multiple constructs in the OSSD

Model.

A BWW State Law can be mapped to four OSSD Constructs. Of these four,

Construct:Constraint:Precondition and Construct:Constraint:Guard are a logically correct mapping

because both logically restrict the values of Attributes before entering a given State. The two

remaining OSSD Constructs pose an interesting dilemma. The OSSD Construct

Construct:Attribute:Multiplicity logically restricts the occurrences of an Attribute (and therefore is a

State Law by definition) but this restriction is independent of any State that the Object associated

with the Attribute is currently in. Therefore, it should not be moved in the OSSD Model to

Constraint and should remain with Attribute. We base the mapping of BWW State Law to OSSD

Construct:Goal on considerable analysis performed with regard to goals that justifies its mapping

based on the understanding that “goals are used to express constraints on the possible states a thing

can be in” [Heymans et al.].

Lawful Transformation can be mapped to four OSSD Constructs. Construct:Constraint:

Postcondition, Construct:Constraint:Trigger, and Construct:Constraint:Action are a logically correct

mapping because all logically restrict the Behavior of Attributes. Postcondition restricts the Behavior

expected within a given state by specifying the expected values of the Attributes after completion of a

given State. Construct:Constraint:Trigger represents the Event that must occur, in conjunction with

System Composition Physical

System

no match

System Environment No match no match

System Structure No match Construct:Relation:Association

Subsystem No match no match

SystemDecomposition No match no match

Level Structure No match no match

External / Internal Event Receive / Send no match

Stable / Unstable State Final State /

Initial, Action

State

no match /

Construct:State:Final, Construct:State:Initial,

Construct:State:Intermediate

92

the Guard and Precondition, in order for a Transition to fire. Similarly, Action is a Behavior that

affects the value(s) of Attributes with the condition that no other Behavior can occur concerning the

related Object until that Action completes. A Construct:Transition logically groups the restrictions on

Behavior and Attribute values that must occur for an Object to transform from one State to another.

Unstable State can be mapped to three OSSD Constructs. The BWW Model makes the distinction

between Stable States and Unstable States based on the occurrence of an External Event or Internal

Event. Since the OSSD Model does not yet support the concepts of System Environment and

Subsystem, it is not possible to make this distinction. The distinction of Construct:State:Initial,

Construct:State:Intermediate, and Construct:State:Final is based on existence in the UML design. It

could be removed if determined to be unnecessary after transformations to other models as deemed it

so.

In summary, the above analysis of the BWW Model representation mapping of the OSSD Model

shows that the OSSD Model is ontologically complete and non-redundant with regard to the most

commonly used ontological constructs and within the narrowed scope of software specification and

design. This analysis does reveal two ontological inadequacies in the OSSD Model that will be

addressed its future development, specifically addressing system composition/decomposition and

environment.

Table 18: Analysis Summary of the BWW Model Representation Mapping of OSSD
BWW Construct Incompleteness Redundancy

Thing ----------------- --------------------------------

Property ----------------- --------------------------------

Class / Kind ----------------- --------------------------------

State ----------------- --------------------------------

Conceivable State Space ----------------- --------------------------------

State Law ----------------- maps to 4 OSSD constructs

Lawful State Space ----------------- --------------------------------

Process ----------------- --------------------------------

Event ----------------- --------------------------------

Conceivable Event Space ----------------- --------------------------------

Transformation ----------------- --------------------------------

Lawful Transformation ----------------- maps to 4 OSSD constructs

Lawful Event Space ----------------- --------------------------------

History ----------------- --------------------------------

Acts On / Coupling ----------------- --------------------------------

System ----------------- --------------------------------

System Composition no match --------------------------------

System Environment no match --------------------------------

System Structure ----------------- --------------------------------

Subsystem no match --------------------------------

SystemDecomposition no match --------------------------------

Level Structure no match --------------------------------

External Event /

 Internal Event

no match

/ no match

/ -------------------------------

Stable /

 Unstable State

no match

/ ------------------

/ maps to 3 OSSD constructs

93

6.2.3.2 Interpretation Mapping Evaluation

Table 19 contains the results of the BWW Model Interpretation Mapping of the OSSD Model.

Again, the correspondence between the BWW Model and the OSSD Model is based on similar

analysis performed to identify the correspondence between UML and the BWW Model [Opdahl &

Henderson-Sellers2], [Dussart et al.] [Evermann & Wand1]. In most cases, the OSSD Model

Table 19: BWW Model Interpretation Mapping of UML and OSSD
OSSD Construct BWW Construct

Construct:Object

An Instance of an Construct:Object:Statebased:{Agent, Entity} that does

have associated with it Construct:Relation:Non-

Association:Composition:Part or Construct:Relation:Non-

Association:Aggregation:Part

An Instance of an Construct:Object:Statebased:{Agent, Entity} that does

have associated with it Construct:Relation:Non-

Association:Composition:Whole, or Construct:Relation:Non-

Association:Aggregation:Whole

Two or more instances of Construct:Object:Statebased:{Agent, Entity} that

have only one common Construct

Two or more instances of Construct:Object:Statebased:{Agent, Entity} that

have the relationship Construct:Relation:Non-

Association:Generalization:Superclass and Construct:Relation:Non-

Association:Generalization:Superclass respectively

Construct:Object:Event

All Construct:Object:Events associated with Construct:Object:Statebased

that are caused by associated Construct:Behavior

All Construct:Object:Events associated with Construct:Object:Statebased

that are caused by associated Construct:Behavior and constrained by

Construct:Constraint

Thing:Primitive

(Component)

Thing:Composite

Class

Kind and sub-kind

Event

ConceivableEventSpace

LawfulEventSpace

Construct:Attribute

Construct:Attribute:ObjectAttribute

Construct:Attribute:RelationAttribute

Construct:Attribute:RelationAttribute:ToObject

Construct:Attribute:RelationAttribute:FromObject

Construct:Attribute:Multiplicity

Construct:Attribute:Visibility

Construct:Attribute:Role

Attribute assoc. with Composite Thing that is also in its Component Things

Attribute assoc. with Composite Thing that is not in its Component Things

Attribute assoc. with all instances of a Construct

Attribute assoc. with one instance of a Construct

Property:Intrinsic

Property:Mutual

Acts On

Acts On

State Law

no match

no match

Property:Hereditary

Property:Emergent

Property:InGeneral

Property:InParticular

Construct:Relation

Construct:Relation:Association

All instances of Construct:Object that are related via

Construct:Relation:Association

Construct:Relation:Non-Association:Generalization:Superclass

Construct:Relation:Non-Association:Generalization:Subclass

Construct:Relation:Non-Association:Aggregation:{Whole, Part}

Construct:Relation:Non-Association:Composition:{Whole, Part}

SystemStructure

System

Kind

Sub-Kind

Whole-part Relation

Whole-part Relation

Construct:Goal:{Achieve, Maintain, Cease, Avoid} State Law

Construct:Behavior:{Perform, Monitor, Control} Transformation

table continued

94

elements listed in column one correspond to the significant upper-level OSSD Constructs (such as

Object, Behavior, Goal, etc). Sub-levels of these OSSD Constructs (such Object:State-based:Agent)

are not considered unique constructs that must be mapped to different BWW constructs. These sub-

levels of these OSSD constructs are given in Table 19 only if an explicit mapping to a BWW Model

construct must be identified.

Table 20 contains a high-level summary of the interpretation mapping with only the construct excess

and construct overload errors listed. If no excess or overload exists, the table entry is filled with

dashes rather than textual comments to improve readability of the table. An analysis comparing the

evaluation results of the OSSD Model follows the tables. The interpretation mapping of the OSSD

Model constructs onto the BWW Model constructs reveals construct excess if there exists one or

more OSSD Model constructs that cannot be mapped to any construct in the BWW Model, and

construct overload if there exists at least one OSSD Model construct that can be mapped to multiple

constructs in the BWW Model.

It is possible to tolerate Construct excess in some circumstances. It is “only problematic if the

construct is clearly intended (at least in part) to represent phenomena in or aspects of the problem

domain, as opposed to, e.g., representing characteristics of the proposed software or information

system [Opdahl & Henderson-Sellers2]”. The OSSD construct Visibility represents a characteristic

of the source UML design and is not a significant feature of requirements specification. Therefore,

this construct could be removed from the OSSD Model without significant loss to its purpose.

However, the OSSD construct Role is a significant agent-oriented concept that is used to indicate

capability (knowledge) and responsibility for specific tasks based on specific goals. Role is also used

in UML design to name each end of an association. Therefore, the construct Role should be allowed

to exist in the OSSD Model.

There are two other ontological concepts of the OSSD Model cannot be mapped directly into the

BWW Model, the OSSD property and OSSD axiom. It is not possible to make the naïve mapping of

OSSD property to BWW property because the OSSD property specifies a variety of relationships

among OSSD Model Constructs whereas the BWW property specifies a fixed and very limited set of

Construct:Constraint

Construct:Constraint:Action

Construct:Constraint:Guard

Construct:Constraint:Precondition

Construct:Constraint:Postcondition

Construct:Constraint:Trigger

Lawful Transformation

State Law

State Law

Lawful Transformation

Lawful Transformation

Construct:Transition Lawful Transformation

Construct:State

Construct:State:Initial

Construct:State:Intermediate

Construct:State:Final

All Construct:States associated with a Construct:Object:Statebased

All Construct:States with related Construct:Transition and

Construct:Constraints associated with a Construct:Object:Statebased

All Construct:States associated with a Construct:Plan associated with a

Construct:Object:Statebased

Unstable State

Unstable State

Unstable State

ConceivableStateSpace

Lawful State Space

History

Construct:Plan Process

Property no match

Axiom no match

95

characteristics and relationships between things. As already identified, only the OSSD

Object:Statebased:{Agent or Entity} can be considered a BWW Thing, therefore the OSSD property

can not be mapped directly to the BWW property. To force the OSSD property to be considered a

BWW property would severely limit its usefulness in ontological freedom as well as force the

ontological model to revolve solely around the OSSD Object, thereby pushing it toward an object-

oriented representation rather than an ontological representation. Additionally, the OSSD property

provides the basis for the inconsistency detection capabilities of the OSSD Model. Therefore,

permitting construct excess with regard to the OSSD property is justified. A similar reasoning can be

applied to the OSSD concept of axiom. It could naively be mapped to the BWW transformation law

but should not for the same reasons as the OSSD property. Furthermore, the BWW Model actually

does link its constructs implicitly in their textual descriptions producing a similar result as the OSSD

properties and axioms. For example, in the BWW Model, a History is a set of states chronologically

ordered that a thing traverses in time. “Chronologically ordered” is, in a sense, an axiom.

Additionally, it is implied that a Thing “has” a History. However, the BWW Model does not specify

Table 20: Analysis Summary of the BWW Model Interpretation Mapping of OSSD
OSSD Construct Excess Overload

Construct:Object

Construct:Object:Statebased:{Agent,Entity}

Construct:Object:Event

Construct:Attribute

Construct:Attribute:ObjectAttribute

Construct:Attribute:RelationAttribute

Construct:Attribute:RelationAttribute:ToObject

Construct:Attribute:RelationAttribute:FromObject

Construct:Attribute:Multiplicity

Construct:Attribute:Visibility

Construct:Attribute:Role

no match

no match

Construct:Relation

Construct:Relation:Association

Construct:Relation:NonAssociation:Generalization:Superclass

Construct:Relation:NonAssociation:Generalization:Subclass

Construct:Relation:Non-Association:Aggregation:{Whole,Part}

Construct:Relation:Non-Association:Composition:{Whole,Part}

Construct:Goal:{Achieve, Maintain, Cease, Avoid} ------------- -------

Construct:Behavior ------------- -------

Construct:Constraint

Construct:Constraint:Action

Construct:Constraint:Guard

Construct:Constraint:Precondition

Construct:Constraint:Postcondition

Construct:Constraint:Trigger

Construct:Transition ------------- -------

Construct:State

Construct:State:Initial

Construct:State:Intermediate

Construct:State:Final

Construct:Plan ------------- -------

Property no match -------

Axiom no match -------

96

a construct to model this axiomatic restriction or the “has” relationship. Therefore, the construct

excess with regard to the OSSD Model property and axiom should be allowed.

With regard to construct overload, at first glance there appears to be significant construct overload

because several OSSD Model constructs can be mapped to several BWW Model Constructs (e.g.

Construct:Constraint can be mapped to either Lawful Transformation or State Law depending on the

sub-type of Constraint). However, assuming the correlation of the statement that construct

redundancy is not a significant problem when “the overlapping modeling constructs represent

disjunctive subtypes of the ontological concepts [Opdahl & Henderson-Sellers2]”, then construct

overload is not a significant problem if it occurs due to analysis of an intermediate level of the OSSD

ontology and given that construct overload does not exist in the leaf-levels of that intermediate level.

In summary, the above analysis of the BWW Model interpretation mapping of the OSSD Model

shows that the construct excess and overload existing in the OSSD Model is not problematic. The

analysis shows that the OSSD Construct Visibility should be removed from the OSSD Model due to

construct excess. However, the OSSD Construct Role should not be removed, even though it is

deemed as construct excess, due to the importance of the concept of role to software design.

Additionally, the OSSD Model concepts of property and axiom should be allowed to remain as

defined due to their ontological importance in defining relationships among the OSSD Model

constructs that provide the basis for its inconsistency detection capabilities.

6.3 Error Detection

6.3.1 Introduction

Just as there are limitless design solutions for a given problem, there are limitless errors that can

occur in any given design. Since the scope of error detection within MOA is limited to inconsistency

errors, we focus on the specification of errors of consistency. Additionally, given that the software

design and requirements specification addressed in this research are UML and KAOS respectively,

the errors detected focus on UML design errors in general as well as errors detectable by a KAOS

requirements engineering tool. Additionally, MOA adds value to the software design verification

process by facilitating the identification and addition of error detection rules above and beyond that

provided by the tools it interconnects.

It is possible to compile a list of commonly detected errors, as is performed by a UML CASE tool

such as the Rose Model Checker [Moors]. However, these consistency checks are usually based on

the well-formed rules (WFR) specified in the UML 2.0 Specification that address primarily the

syntactic inconsistencies within a given UML diagram such as naming, visibility, and scope. The

consistency checking within commercial tools based on UML remain limited [Kozlenkov &

Zisman3]. Additionally, “there exist no general techniques for specifying semantic (and, in

particular, behavioral) consistency constraints.” [Engels4 et al.]. Therefore, consistency rules

gathered from a variety of other approaches to consistency management became axioms in the OSSD

Model via axioms associated with the properties and the rules defined for the Inter-View

Inconsistency Detection Table. Section 6.3.2 lists a subset of these consistency rules, Section 6.3.3

describes how they are incorporated into the OSSD Model, and Section 6.3.4 shows how

intentionally seeded errors in the UML Case Study are detectable via these rules.

97

6.3.2 Representative Consistency Rules

The following consistency rules were selected randomly from the following sources: [Briand],

[Kielland], and [Ohnishi]. Some of these rules are integrated into the OSSD Model in Chapter 4

Section 4.3.5.

The following rules were obtained from Rules from [Ohnishi]:

Each Actor in a Use Case Diagram should be associated with a Class in a Class Diagram;

Each UML Class should have a State Machine associated with it.

Each UML Class in a Class Diagram should be associated with at least one Object Lifeline in a

Sequence diagram.

The following rules were obtained from [Briand]:

“Each object (in a sequence diagram) must be an instantiation of a class in a Class diagram”;

“For each message between two object (in a sequence diagram) there has to be a valid path

(navigable) between them”;

“Each operation that is invoked in a state transition must be defined in a Class diagram”;

“A class cannot be a part in more than one composition”.

The following rules were obtained from [Kielland]:

Role names specified for an association must be unique within that association;

Attribute names specified in a given Class must be unique within that Class.

The following rules were obtained from [Quatrani]:

there exists a one to one correspondence between messages and behavior of a receiving class;

there exists either an association or aggregation between two interacting objects;

each class must participate in at least one scenario;

each operation specified in a class is used in at least one scenario;

each object specified in a sequence diagram is defined in a class in the class diagram;

each message in a sequence diagram is represented in a StateMachine diagram.

6.3.3 Representation of Consistency Rules

This Section describes the integration of the consistency rules given in Section 6.3.2 into the OSSD

Model via axioms associated with the properties and the rules defined for the Inter-View

Inconsistency Detection Table. Figure 56 describes these consistency rules, specified in first order

predicate logic. The OSSD transformation tables described in Chapter 4 Section 4.3.4.2 contain the

information to implement functions referenced in Figure 56. For example, the functions UML_Class

and UML_Actor utilize information in the UML Class Element and POS Tagging table. The

functions in-Class-Diagram and in-Sequence-Diagram utilize information in the Inter-view

Inconsistency Detection table.

Each Actor in a Use Case Diagram should be associated with a Class in a Class Diagram
IC_Rule4 in Figure 56 represents this rule.

Each UML Class should have a State Machine associated with it
IC_Rule5 in Figure 56 represents this rule.

98

Each UML Class in a Class Diagram should be associated with at least one Object Lifeline in a

Sequence diagram
IC_Rule6 in Figure 56 represents this rule.

IC_Rule4:

∀a [(UML_Actor(a) ^ in-UseCase-Diagram(a)) →

 (›c [(UML_Class(c) ^ in-Class-Diagram(c) ^ a=c])]

IC_Rule5:

∀c1 [(UML_Class (c1) ^ in-Class-Diagram(c1)) →

 (›c2 [in-StateMachine-Diagram(c2) ^ c1=c2])]

IC_Rule6:

∀c1 [(UML_Class (c1) ^ in-Class-Diagram(c1)) →

 (›c2 [UML_Object_Lifeline(c2) ^ in-StateMachine-Diagram(c2) ^ c1=c2])]

IC_Rule7:

∀o [(UML_Object (o) ^ in-Sequence-Diagram(o)) →

 (›c [(UML_Class(c) ^ in-Class-Diagram(c) ^ o=c])]

IC_Rule8:

∀o1 [(UML_Operation (o1) ^ in-StateMachine-Diagram(o1)) →

 (›o2 [(UML_Operation (o2) ^ in-Class-Diagram(o2) ^ o1=02)])]

IC_Rule9:

∀c1, c2 [(UML_Class (c1) ^ in-Class-Diagram(c1) ^

 UML_Class (c2) ^ in-Class-Diagram(c2) ^

 (defined-within(c1, c2) V defined-within(c2, c1))) →

 (›o2 [(UML_Operation (o2) ^ in-Class-Diagram(o2) ^ o1=02)])]

OO_Rule1:

∀o ›r1 [(construct:object(o) ^

 construct:relation:NonAssociation:Composition:Part(r1) ^

 property-has(o, r1)) →

 (ò r2 [construct:relation:NonAssociation:Composition:Part(r2) ^

 property-has(o, r2)])]

AR_Rule1:

∀o ›r, a1, a2, a3, a4 [(construct:object(o) ^ construct:relation:association(r) ^

 construct:attribute:relationAttribute:toObject(a1)

 construct:attribute:relationAttribute:from Object(a2)

 construct:attribute:role(a3) ^ construct:attribute:role(a4) ^

 property-has(o, r) ^ property-has(r,a1) ^ property-has(r,a2)

 property-has(a1,a3) ^ property-has(a2,a4)) → (a3 <> a4)]

AA_Rule1:

∀o ›a1 [((construct:object(o) ^ construct:attribute:objectAttribute(a1) ^

 property-has(o, a1)) →

 (ò a2 [construct:attribute:objectAttribute(a2) ^ property -has(o, a2) ^ (a1=a2)])]

Figure 56: Additional OSSD Consistency Rules

99

Each object (in a sequence diagram) must be an instantiation of a class in a Class diagram
IC_Rule7 in Figure 56 represents this rule.

For each message between two objects (in a sequence diagram) there has to be a valid path

(navigable) between them

IC_Rule 7 in Figure 56 in conjunction with OB_Rule1 and OR_Rule1 in Figure 28 in Chapter 4

Section 4.3.5.3 represent this rule.

Each operation that is invoked in a state transition must be defined in a Class diagram
IC_Rule7 in Figure 56 represents this rule.

A class cannot be a part in more than one composition
This consistency rule would become an OO Consistency rule in the Consistency framework and

added to OSSD Model by attaching the axiom shown as OO_Rule1 in Figure 56 to the property has

that connects Construct:Object with Construct:Relation.

Role names specified for an association must be unique within that association
This consistency rule would become an AR Consistency rule in the Consistency framework and

added to OSSD Model by attaching the axiom shown as AR_Rule1 in Figure 56 to the property has

that connects Construct:Object with Construct:Relation:Association.

Attribute names specified in a given Class must be unique within that Class
This consistency rule would become an AA Consistency rule in the Consistency framework and

added to OSSD Model by attaching the axiom shown as AA_Rule1 in Figure 56 to the property has

that connects Construct:Object with Construct:ObjectAttribute.

6.3.4 Application of Consistency Rules

We used the methodology to perform the detection and diagnosis of consistency errors associated

with the consistency rules given in Section 6.3 by intentionally violating a subset of these rules in the

Elevator case study by first listing the rule, indicating what change to the UML diagrams in Chapter 5

must occur to violate the rule, and then showing how the rule violation would be detected in the

Consistency checking. Details regarding Consistency checking are given in Chapter 5. Two other

examples applications of Consistency detection are given in Chapter 6.

Error Detection #1 via Inter-View Inconsistency Detection Table

Rules: Each UML Class should have a State Machine associated with it; Each UML Class in a Class

Diagram should be associated with at least one Object Lifeline in a Sequence diagram

Violation: The WeightSensor class is identified in UML Use Case and Class diagrams but not in

either UML Sequence or StateMachine Diagrams

Detection: Section 5.3.3 shows how this violation is detected.

Error Detection #2 via Consistency framework Rules

Rule: Role names specified for an association must be unique within that association

100

Violation: Two role names are specified for the controls association between ElevatorController and

ElevatorCar.

Detection: Figure 57 shows a partial representation of the OSSD Model that includes the Elevator

Controller and Elevator Car with the axiom, AR-1, for this rule indicated. The rule would be

executed during step A2-1 of the Consistency Checking Algorithm. Figure 57 shows that both Role

names specified for RelationalAttributes associated with the Association “Controls” are not unique.

Therefore, this inconsistency would be detected via the axiom, AR-1.

We demonstrated the error detection capabilities of MOA by integrating a variety of consistency

rules into the OSSD Model via axioms associated with the properties and rules defined for the Inter-

View Inconsistency Detection Table, and then intentionally seeding errors in a source design of the

Elevator case study to show that the methodology presented in this research performs the appropriate

error detection.

6.4 Transformation

6.4.1 Introduction

Ideally, software developers verify the transformation of one model to another in such a way that it

proves the equivalence of the source and target models. Although one can verify the syntactic

correctness of the target model via a simple parsing of the target specification produced as a result of

the transformation, proving the semantic equivalence of the two models is not such a trivial task. “A

common correctness criterion for translation systems is that they preserve semantics, i.e., the meaning

of the source and the translation has to be the same. This is not necessarily desirable…since it should

be perfectly admissible to perform abstractions or semantic shifts as part of the translation”

[Chalupksy]. This is particularly true with regard to the model transformations between UML and the

Agent

Object

"Elevator
Controller"

State-based

{AR-1}

RelationRelationAttribute

Association

FromObject

RelationAttribute

ToObject

Object

Entity

"ElevatorCar"

State-based

Role

Role

"Transport"

"Controls"

Figure 57: Error Detection via Consistency framework Rules

101

OSSD Model, the OSSD Model and KAOS, and in effect, UML to KAOS. The target KAOS

requirements level specification contains a subset of the functionality provided in the source UML

design level specification. By definition, certain aspects of a software design are not required in a

requirements level specification. Therefore, the task of verifying the transformation becomes

considerably more difficult.

Since the transformation from UML to the OSSD Model to KAOS requires abstractions and semantic

shifts, it is reasonable to expect the KAOS specification to be an abstraction of the UML design.

However, there does not currently exist a model transformation technique that can handle verification

of such abstractions. This research presents a unique methodology to model transformation

evaluation, portrayed graphically in Figure 58, that can evaluate such abstractions and semantic

shifts. This evaluation assumes that significant software design and requirements level concepts

should be maintained throughout the model transformation from source model to target model. It

evaluates the transformation from UML to OSSD Model to KAOS by showing that the set of

semantically significant features of software requirements specification and design are represented in

the UML Design, the OSSD Model, and the KAOS specification. Section 6.4.2 discusses the

identification and determination of which features are selected for evaluation, and Section 6.4.3

presents an evaluation of the MOA transformations using the semantically significant feature set.

6.4.2 Set of Semantically Significant Features

We utilized IEEE Recommended Practices for Software Requirements Specifications (SRS) [IEEE2]

and Software Design Descriptions (SDS) [IEEE3] to assist with the determination of which software

requirements level and design level features to include in a set of semantically significant features

used to evaluate model transformations. We organized these features in the familiar tri-view of

system modeling popularized by the Object Modeling Technique [Rumbaugh et al.]: data (object

structure and behavioral definitions), function (transformation of values and inter-dependencies of

data), and control (event and state change of data with regard to sequence and time). We present the

semantically significant feature set below preceded by the subSections of each of the IEEE

recommendations from which it has been developed.

The second chapter, “Overall Description”, of the IEEE recommended SRS [IEEE2] describes the

product perspective, product functions, user characteristics, constraints, assumptions and

OSSD

original

UML

diagrams

generated

KAOS

specification

Semantic

Features

in UML

~=

Ontology

Semantic

Features

in OSSD

Semantic

Features

in KAOS

~=

Figure 58: Evaluation of Model Transformation

102

dependencies. The product perspective “describes how the software operates inside various

constraints” including system interfaces, user interfaces, hardware interfaces, software interfaces,

communication interfaces, operations, memory and site adaptation requirements (the latter two issues

not relevant for MOA analysis). The product functions chapter describes what the software will do

and any “logical relationships among variables”. The user characteristics chapter describes the users

of the proposed system to justify certain requirements (not relevant for MOA analysis). The

constraints subSection includes hardware limitations, interfaces to other applications, parallel

operations, control functions, signal handshake protocols, reliability requirements, criticality of the

application, and safety and security considerations, and regulatory policies, audit functions, and

higher-order language requirements (the latter three issues are not considered relevant for MOA

analysis). Lastly, the assumptions and dependencies chapter gives potential changes that might affect

the requirements that are not specifically design constraints (not considered relevant for MOA

analysis).

Each requirement given in the IEEE SRS [IEEE2] includes: descriptions of external interfaces

(including names, input/output, valid range/accuracy/tolerance, units of measure, timing,

relationships to other inputs/outputs, and formatting for data and commands (formats for

screens/windows and end messages are not considered relevant for MOA analysis)); functions

(including input validity checks, operation sequence, abnormal situation responses, parameter effects,

and input/output relationships); performance requirements (both static and dynamic); logical database

requirements (not considered relevant for MOA analysis); and design constraints (including

limitations of hardware and other standards requirements).

We present the semantically significant feature set (SSFS) in two stages of development to explicitly

show its derivation from the IEEE standards. We formatted the first stage in an abbreviated textual

format to show how material obtained from IEEE SRS recommendations (written in italics), material

obtained from IEEE SDS recommendations (written in bold), and additional details added via this

research that are above and beyond IEEE recommendations (written in bold italics) contribute to the

development of the SSFS. The second stage gives the analytical format used throughout the

remainder of the evaluation of transformation process. The organization of the SSFS builds on the

familiar object/dynamic/functional models developed in the Object Modeling Technique (OMT)

[Rumbaugh et al.] as a foundation but reorganizes and expands upon its concepts forming a new

Representation/Behavior/Process (RBP) model. This RBP model is not intended for use as a design

model but rather as a evaluation model. The RBP model organizes evaluation information based on

Representation (which defines the objects, attributes, states, and relationships within the proposed

system), Behavior (which defines the operations/functions/methods and their interrelationships/

interfaces that are associated with the system objects as well as the corresponding state transitions),

and Process (which defines the interrelationships of the system objects’ behavior represented via

sequences of operations/functions/methods restricted by constraints/dependencies). A significant

concept introduced in the RBP Model concerns Goals, which are associated with the Behavior of

object(s). Additionally, we represented the concept of constraints/dependencies in each of the three

sub-models of Representation, Behavior, and Process because we address this concept differently in

each of the model. Lastly, we interconnected the concepts of interface and method under the sub-

model Behavior via the concept Relation.

(1) Representation

product functions chapter describes what the software will do and any “logical relationships among

variables”; constraints subSection includes hardware limitations;

103

design entity attributes (identification, type, purpose, subordinates, resources, processing,
data); decomposition descriptions; design constraints (including limitations of hardware and

other standards requirements); design entity dependencies;

actor(s), object(s), event(s),object state/substate(s), relationship (containment,

generalization/specialization);

(2) Behavior

product perspective “describes how the software operates inside various constraints” including

system interfaces, user interfaces, hardware interfaces, software interfaces, communication

interfaces operations; constraints subSection includes interfaces to other applications;

external interfaces (including names, input/output, valid range/accuracy/tolerance, units of

measure, timing, relationships to other inputs/outputs, and formatting for data and commands;

design entity interface; functions (including operations, abnormal situation responses,

parameter effects); performance requirements (both static and dynamic); input validity checks;

relationship (association); actions/behavior, function/methods/return values; messaging; state

transition(s), preconditions, postconditions, exceptions, time; goals;

(3) Process

product perspective “describes how the software operates inside various constraints”; product

functions chapter describes what the software will do and any “logical relationships among

variables”; constraints subSection includes parallel operations, control functions, signal handshake

protocols, reliability requirements, criticality of the application, and safety and security

considerations;

performance requirements (both static and dynamic); functions (including operation

sequence);

scenario(s);

The second stage of development for the Representation/Behavior/Process (RBP) model is presented

below by rearranging the above IEEE concepts into a new and simplified format. The terms

“Object”, “Action” and “Sequence” are used in the RBP Model in their most general terms.

(1) REPRESENTATION:

OBJECT: (actor(s), object(s), event(s));

ATTRIBUTES: (design entity attributes);

STATES: object state/substate(s);

RELATIONS: (“logical relationships among variables”; decomposition descriptions; design

entity dependencies; relationship (containment, generalization/specialization));

CONSTRAINTS: hardware limitations; design entity dependencies; design constraints (including

limitations of hardware and other standards requirements);

(2) BEHAVIOR:

ACTION: (how the software operates; functions (including operations, abnormal situation

responses, parameter effects); actions/behavior, function/methods/return values; messaging);

ATTRIBUTES: (including names, input/output, valid range/accuracy/tolerance, units of

measure, timing, relationships to other inputs/outputs, and formatting for data and
commands);

RELATIONS: (system interfaces, user interfaces, hardware interfaces, software interfaces,

communication interfaces operations; external interfaces; design entity interface); relationship

(association);

104

TRANSITIONS: state transitions;

CONSTRAINTS: interfaces to other applications, performance requirements (both static and

dynamic); input validity checks; preconditions, postconditions, exceptions, time;
GOALS: (what the software will do; reliability requirements, criticality of the application, and safety

and security considerations; standards requirements);

(3) PROCESS:

SEQUENCE: (product perspective “describes how the software operates inside various

constraints”; functions (including operation sequence); scenario(s));

CONSTRAINTS: (parallel operations, control functions, signal handshake protocols; reliability

requirements, criticality of the application, and safety and security considerations; performance

requirements (both static and dynamic)).

In this section we presented the semantically significant feature set (SSFS). We showed how it was

derived from the IEEE standards. Lastly, we detailed the three sub-models of the SSFS. Section

6.4.3 utilizes the SSFS to evaluate MOA transformations.

6.4.3 Evaluation of UML to OSSD to KAOS Transformation

To evaluate the transformation of a UML design to OSSD to KAOS we show that the SSFS

represents the significant software design and requirements level concepts in the source UML model,

the intermediate OSSD Model, and the target KAOS model. Table 21 gives generic examples of the

SSFS as represented in the UML Model, the OSSD Model and the KAOS model to show the

transformation mappings between these three models.

The format given in Table 21 is the basis for the evaluation of transformation process from three

viewpoints: structural, behavioral, or process. The representation viewpoint organizes the design and

requirements specification information based on the structural objects within the presented system

and associates the behavior of that system with those objects and the processes in which each

behavior is a part. The behavioral viewpoint’s organization is based on the behavior of the presented

system and associates the objects of that system with that behavior and the processes in which each

behavior is a part. We based the process viewpoint’s organization on the processes of the presented

system and associate the objects of that system with that behavior and the processes in which each

behavior is a part.

This evaluation of the transformation process does not provide an exact one to one correspondence;

however, it does successfully show that semantically significant features identified in a source design

are represented in both the OSSD Model and target specification. Since the transformation from

UML to OSSD Model to KAOS requires abstractions and semantic shifts, and currently no model

transformation technique exists that can handle evaluation of such abstractions, we evaluated such

abstractions and semantic shifts via evaluating transformation of the semantically significant feature

set. We showed that significant software design and requirements level concepts are maintained

throughout the model transformation from source model to target model.

6.5 Summary

We evaluated this research via a combined evaluation of its ontology, error detection capabilities, and

transformations. We showed that the OSSD Model is ontologically sound by evaluating it using a

generally agreed upon ontologically sound model, the BWW Model. Focusing on the most

105

commonly used ontological constructs and the narrowed scope of software specification and design,

the analysis shows that OSSD Model is ontologically complete and non-redundant; additionally, the

model does not have construct excess or overload. We demonstrated the error detection capabilities

MOA by randomly selecting consistency rules from other consistency management techniques,

incorporating them into the OSSD Model via axioms attached to properties and rules defined for the

Inter-View Inconsistency Detection Table, and intentionally seeding errors in a source design of the

Elevator case study to show that the methodology can successfully detect errors in the source design.

We evaluated the transformation from source design to target specification by showing that a set of

semantically significant features identified in a source design is represented in both the OSSD Model

and target specification.

Table 21: Overview of the Semantically Significant Feature Set
SSFS UML OSSD KAOS

Representation:

 Object Class, Diagram:

Class, Object (instance)

Object (Agent/Entity/Event),

Instance

Agent/Entity/Event

 Attributes Class Diagram:

Object Attributes

Attribute:ObjectAttribute Attribute

 Relations Class Diagram:

Generalization,

Aggregation,

Composition

Relation:NonAssociation/

Generalization,

Aggregation,

Composition

Inherited From

 Constraints Class Diagram:

Visibility, Multiplicity

Visibility,

Multiplicity

None,

Multiplicity

Behavior:

 Action Class Diagram and

Sequence Diagram:

Operation

Behavior Operation

 Attributes Class Diagram and

Sequence Diagram:

Attributes

Attribute Attribute

 Relations Class Diagram and

Sequence Diagram:

Association

Relation:Association Link

 States StateMachine Diagram

State

State Operation:DomPre (source

state)

Operation:DomPost

(destination state)

 Transitions StateMachine Diagram:

Transition

Transition None

 Constraints StateMachine Diagram:

Transition Constraints

Constraint Operationalization:ReqTrigFor,

Operationalization:ReqPre,

Operationalization:ReqPost

 Goals None Goal Goal

Process:

 Sequence Sequence Diagram:

Object Lifeline

Plan Scenario

 Constraints Sequence Diagram:

Constraints

Constraint Operationalization:ReqTrigFor,

Operationalization:ReqPre,

Operationalization:ReqPost

106

7 Summary

7.1 Dissertation Summary

This research introduces an error detection methodology for software design, the Methodology for

Object to Agents (MOA), which utilizes a common ontology-based model, Ontology for Software

Specification and Design (OSSD) Model. MOA integrates multiple views of a software design to

facilitate the interoperability of formal requirements modeling tools and software design tools with

the ultimate goal of error detection in software designs. Inconsistency errors are the focus of the

error detection in this work. The importance of identifying inconsistencies early in a software

development project is recognized by software engineers as one of the keys to a successful project;

however, few tools and techniques exist which apply formal inconsistency detection techniques at the

software design level. MOA was defined to facilitate the detection of software design errors arising

from multiple views of a design. It utilizes the concept of ontologies to define a common information

model, the OSSD Model, which integrates object-oriented and agent-oriented approaches to software

design. It is this ontological representation that enables the application of ontological reasoning to

assist with semantic error detection in software designs. MOA defines a new form of error detection

performed utilizing a combination of rules associated with the ontological properties of the OSSD

Model, an Inter-View Inconsistency Detection technique, and a consistency framework. The focus of

error detection was narrowed to inconsistency errors. MOA contributes to the software design

process by integrating multiple views of software design, integrating object-oriented and agent-

oriented concepts, and providing an error detection method for software designs. Additionally, MOA

facilitates flexible error management by providing a technique to detect errors but not mandating

immediate correction. Some software engineering tools enforce constraints by requiring correction

before the software development process can continue. However, it is often necessary to live with

inconsistency, assuming that it will be resolved at some time in the future. It is the identification of

inconsistencies and the tracking of them that are most critical.

Three motivations for this research were: enhancing software design quality via error detection;

integrating object-oriented with agent-oriented concepts and software specification with software

design knowledge into one common model; and, creating an software methodology and tool

integration component, in the form of an ontology. This research spans several related research areas

including: ontologies, software design, requirements specification, consistency management,

knowledge integration, agents, and tool integration.

This dissertation introduces MOA and the OSSD Model; it provides a unique definition and use of

goal and behavior thesauruses to transform a software design to an OSSD representation of that

design; it defines two forms of consistency checking; lastly, it provides the algorithms to transform

source design into an instance of the OSSD Model and then transform an OSSD instance into a target

formal requirements specification. The OSSD Model is a hierarchical decomposition of software

development concepts including ontological constructs of objects, attributes, behavior, relations,

states, transitions, goals, constraints and plans. Each of these constructs is further ontologically

defined, such as decomposing objects into agent, entities or events. In addition to the hierarchical

relationships, the OSSD Model contains properties that provide additional behavior relationships

among OSSD constructs. Attached to these properties are rules that used to specify semantic

relationship among the OSSD constructs and facilitate error detection. MOA includes both

transformations and consistency checking. The initial transformation process includes both lexical

and semantic analysis of a source software design that utilizes multiple mapping tables in its

algorithm to create an instance of the OSSD Model. The consistency checking is a two-stage process

assisted by a consistency framework and Inter-View Inconsistency Detection Table. The final

107

transformation process produces the target requirements specification from the OSSD Model instance

via a set of simple mapping tables.

After providing details regarding MOA and the OSSD Model, we demonstrated MOA via two case

studies: an elevator system (Chapter 5) and a computer-aided ambulance dispatch system (Appendix

A). A subset of UML Use Case, Class, Sequence, and StateMachine diagrams of each case study was

seeded with consistency errors. MOA transformed the multiple views of each case study into an

instance of the OSSD Model and then into a KAOS requirements specification. Consistency

checking successfully detected two of the seeded errors in each case study. The third error in each

case study is easily detectable via the KAOS processing of the generated requirements specifications.

Finally, an evaluation of MOA’s ontological representation, error detection capabilities, and

transformations showed that: the OSSD Model is ontologically complete, non-redundant, and does

not have construct excess or overload based on its comparison with a generally agreed upon

ontologically sound BWW Model; the error detection capabilities of MOA did successfully detect

design errors; and the transformation of a set of semantically significant features was successfully

performed from source design to target specification.

7.2 Contributions

This research contributes to improving the quality of software design in the following ways.

1) It provides a unique methodology to detecting errors in software design arising from multiple

views of that design. It has the capability to detect not only simple syntactic errors but also

more complex semantic errors. This research performs error detection utilizing a combination

of rules associated with the ontological properties of its common model, an Inter-View

Inconsistency Detection technique, and a consistency framework. It is this ontological

representation that enables the application of ontological reasoning to assist with semantic

error detection in software designs. Most software design consistency checks are syntactic,

based on the well-formed rules (WFR) specified in the UML 2.0 Specification that address

primarily the syntactic inconsistencies within a given UML diagram.

2) It facilitates a systematic approach toward developing a comprehensive and high-level error

detection rule set via its consistency framework. This framework, which includes the

ontological elements of the OSSD Model, enables a broad definition of consistency rules that

includes a wide variety of potential interactions among software design constructs.

Additionally, while most software design consistency checks are syntactic, based on UML’s

well-formed rules, MOA enables the creation of semantic rules above and beyond the typical

syntactic checks. Ontological reasoning can be applied to these rules to assist with detecting

complex design errors.

3) It enhances the semantic interoperability of software modeling tools. MOA facilitates the

integration of informal software modeling tools with formal requirements specification tools

to apply the error detection capabilities of the formal tools to an informal software design.

4) It includes a unique integrated ontology for object-oriented and agent-oriented concepts that

minimizes the difficulties of mapping between these two paradigms, while reaping the

benefits of each approach. Since it appears that both object-oriented and agent-oriented

software development will continue to coexist for the foreseeable future, it is critical that

future software development address the integration of these two worlds. Additionally, there

exist few error detection techniques for software design that take into consideration the

integration of AO and OO concepts.

108

5) It can reduce the development time and effort as compared with other error detection

techniques because it integrates existing tools that have individually undergone development

and testing. It also reduces development effort and time to transform among a variety of

software engineering models by utilizing a common information model. The common

information model reduces the number of transformations to only 2n (where n is the number

of software engineering models) rather that the n
2
–n transformations required to transform

between each pair of models. The common information model also minimizes the effect of

changes to one software engineering model thereby requiring changes to only the

transformation between the common model and the modified model.

6) It requires no additional training or expertise to reap the benefits of formal methods. No

operational knowledge of the formal software modeling tool is required to detect

inconsistency design errors.

7) Because the OSSD Model is ontology-based and defined using OWL, it has the potential to

become a part of a knowledge-based system for software design within Semantic Web

environments by enabling communication and knowledge sharing among agents such as

Software Design Agents [Brazier et al.], or agents within distributed design environments

such as the Intelligent Agent Based Collaborative Design Information Management and

Support Tools (IDIMS) project [Tormey et al.], or as an integration component to facilitate

the semantic interoperability of aerospace architectures [Kogut & Heflin]. Figure 59 shows a

graphical view of potential interoperability of MOA.

7.3 Future Work

The research presented in this dissertation develops a new type of error detection tool for software

design. Future work includes the following.

OSSD

UML
Design

KAOS
Specification

Tropos
Specification

AUML
Design

MaSE
Design

CASE
Tools

Verification
Tools

Tools Tools

Verification
Tools

Semantic Web software

design

agents
distributed design

environment

Figure 59: Future MOA Interoperability

109

1) The OSSD Model will be built using the Protégé ontology modeling and knowledge base

acquisition tool [Gennari] that will create an OWL representation of the OSSD Model.

2) The OSSD Model consistency rules will be specified using the Semantic Web Rule Language

(SWRL) [Horrocks et al.], a recent W3C proposal for semantic rule languages [SWRL].

SWRL extends OWL by introducing rule axioms that enable ontological reasoning beyond

the basic axioms included in OWL (such as subclass and equivalentClass). The Protégé

ontology modeling and knowledge base acquisition tool that will be used to build the OSSD

Model has a SWRL plugin editor that facilitates the interactive creation and editing of SWRL

rules.

3) Updates to the original source design will be automated based on the errors detected from the

formal target specification consistency analysis. Currently, results of the error detection

performed by the software specification tools are not automatically applied to the original

software design; however, an evaluation and prioritization of the errors identified must be

performed before the original design is updated.

4) MOA will be applied to integrate multiple software design languages with multiple agent-

oriented specification languages.

5) Knowledge from requirements specifications created before the source design will be

integrated into the OSSD Model of that design.

110

References

[Abran et al.] A. Abran, J. Moore, P. Bourque, R. Dupuis, and L. Tripp, Guide to the Software

Engineering Body of Knowledge – 2004 Version SWEBOK, IEEE Computer Society, CA, 2004.

[Alani] H. Alani, K. O’Hara, and N. Shadbolt, “Common Features of Killer Apps: A Comparison

with Protégé”, Proc. 8th International Protégé Conference, July 2005.

[Allen] E. Allen, “Computer-Aided Dispatch System for the London Ambulance Service: Software

Requirements Specification”, Technical Report MSU-030429, Version 0.7, Mississippi State

University, Feb. 2003.

[Andre et al.] P. Andre, A. Romanczuk, J. Royer, and A. Vasconcelos, “Checking the Consistency of

UML Class Diagrams using Larch Prover”, Proc. 3rd Rigorous Object-Oriented Methods Workshop

(ROOM 3), Jan. 2000.

[Andreopoulos] W. Andreopoulos, “Defining Formal Semantics for the Unified Modeling

Language”, Technical Report CSRG-407, Department of Computer Science, University of Toronto,

2000.

[Anton1 et al.] A. Anton, J. Earp, D. Bolchini, Q. He, C. Jensen, and W. Stufflebeam, “The Lack of

Clarity in Financial Privacy Policies and the Need for Standardization,” IEEE Security and Privacy,

vol. 2, no. 2, pp. 36-45, Mar.-Apr. 2004.

[Anton2 et al.] A. Anton, “Goal-Based Requirements Analysis”, Proc. Second IEEE International

Conference on Requirements Engineering (ICRE `96) , pp. 136-144, Apr. 1996.

[Aredo] D. Aredo, “Formal Development of Open Distributed Systems: Integration of UML and

PVS”, PhD Dissertation, Department of Infomatics, University of Oslo, August 2004.

[Astesiano & Reggio] E. Astesiano and G. Reggio, “An Attempt at Analysing the Consistency

Problems in the UML from a Classical Algebraic Viewpoint”, Proc. Recent Trends in Algebraic

Development Techniques 16th International Workshop, WADT 2002, Sept. 2002, Lecture Notes in

Computer Science, n. 2755 Berlin, Springer Verlag, 2003.

[Ballant et al.] D. Ballant, c. Belpaire, R. Darimont, E. Delor, D. Genard, C. Neve, JL Roussel, and

Alain Vanbrabant, “Requirements Engineering with GRAIL/KAOS: From Goal Analysis to

Automatically Derived Requirements Documents”, Proc. 11
th

 IEEE International Requirements

Engineering Conference, Sep. 2003.

[Barkmeyer et al.] E. Barkmeyer, A. Feeney, P. Demo, D. Flater, D. Libes, M. Steves, and E.

Wallace, ”Concepts for Automating Systems Integration”, NISTIR 6928, National Institute of

Standards and Technology, Gaithersburg, Feb. 2003.

[Basili et al.] V. Basili, G. Caldiera, and D. Rombach, “The Goal Question Metric Approach”,

Encyclopedia of Software Engineering, Wiley, 1994.

111

[Bauer et al.] B. Bauer, J. Muller, and J. Odell, “Agent UML: A Formalism for Specifying Multiagent

Interaction”, Agent-Oriented Software Engineering, Paolo Ciancarini and Michael Wooldridge eds.,

Springer, Berlin, pp. 91-103, 2001.

[Beato et al.] M. Beato, M. Barrio-Solorzano, and C. Cuesta, “UML Automatic Verification Tool

(TABU)”, Proc. Specification & Verification of Component Based Systems (SAVCBS) 2004,

SIGSOFT 2004/FSE-12 12th ACM SIGSOFT Symposium on the Foundations of Software

Engineering, pp. 106-109, Oct. 2004.

[Bodeveix et al.] J. Bodeveix and T. Millan, C. Percebois, C. Le Camus, P. Bazex, L. Feraud, and R.

Sobek, “Extending OCL for verifying UML models consistency”, Proc. 5
th

 International Conference

on the Unified Modeling Language – the Language and its applications, Workshop on Consistency

Problems in UML-based Software Development, 2002.

[Boley et al.] H. Boley, M. Dean, B. Grosof, M. Sintek, B. Spencer, S. Tabet, and G. Wagner, “FOL

RuleML: The First-Order Logic Web Language”, Version 0.9, DARPA DAM Program,

http://www.ruleml.org/fol/

[Borst] W. Borst, “Construction of Engineering Ontologies,” Ph.D Dissertation, University of

Tweenty, Enschede, NL- Centre for Telematica and Information Technology, 1997.

[Botelho et al.] L. Botelho, N. Antunes, E. Mohmed, and P. Ramos, “Greeks and Trojans Together”,

Workshop "Ontologies in Agent Systems", Proc. 1st International Joint Conference on Autonomous

Agents and Multi Agent Systems (AAMAS 2002), Italy, July 2002.

[Brandao et al.] A. Brandao, V. da Silva, and C. de Lucena, “Ontologies as Specifications for the

Verification of Multi-Agent Systems Design”, Proc. ACM Conference on Object-Oriented

Programming, Systems, Languages and Applications (OOPSLA 2004), Oct. 2004.

[Brank et al.] J. Brank, M. Grobelnik, and D. Mladenic, “A Survey of Ontology Evaluation

Techniques”, Proc. Conference on Data Mining and Data Warehouses (SiKDD 2005), 7
th

International Multi-conference on Information Society, Slovenia, Oct. 2005.

[Brazier et al.] F. Brazier, C. Jonker, J. Treur, and N. Wijngaards, “Compositional Design of a

Generic Design Agent”, Design Studies Journal, vol. 22, pp. 439-471, 2001.

[Bresciani et al.] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini, “TROPOS:

An Agent-Oriented Software Development Methodology”, Journal of Autonomous Agents and Multi-

Agent Systems, pp. 203-236, 2004.

[Briand et al.] L. Briand, Y. Labiche, and L. O'Sullivan, “Impact Analysis and Change Management

of UML Models”, Technical Report SCE-03-01, Carleton University, Feb. 2003; also, Proceedings of

IEEE International Conference on Software Maintenance (ICSM), pp. 256-265, 2003.

[Brohez & Gregoire] S. Brohez and Y. Gregoire, “Obstacle Recognition with KAOS: ORKA, an

Implementation Based on ASAX”, FM B16/2002/06, Facultés Universitaires Notre-Dame de la Paix,

2002.

112

[Chalupksy] H. Chalupksy, “OntoMorph: a translation system for symbolic knowledge Proceedings

of the 17
th

 International Conference on Knowledge Representation and Reasoning (KR-2000), 2000.

[Chen] Z. Chen, “Semantic Markup for Inconsistency Handling in Requirements Engineering”,

Masters Thesis, University of Wollongong, Oct. 2004.

[Chiorean et al.] D. Chiorean, M. Pasca, A. Carcu, C. Botiza, and A. Moldovan, “Ensuring UML

models consistency using the OCL Environment”, Proc. Sixth International Conference on the

Unified Modelling Language – the Language and its applicatins”, <<UML>> 2003, Oct. 2003.

[Clocksin & Mellish] W. Clocksin and C. Mellish, Programming in Prolog, Springer Verlag, 1981.

[Coggins] J. Coggins, “Subject-Oriented Programming”, Astronomical Data Analysis Software &

Systems V, ASP Conference Series, vol. 101, p. 261, 1996.

[Corradini] F. Corradini, L. Mariani, and E. Merelli, “An agent-based approach to tool integration”,

International Journal of Software Tools Technology Transfer, vol. 6, pp. 231-244, 2004.

[Cristani & Cuel] M. Cristani and R. Cuel, “A Survey on Ontology Creation Methodologies”,

International Journal on Semantic Web & Information Systems, vol. 1, no. 2, pp. 49-69, Apr.-

Jne.2005.

[Czarnecki & Helsen] K. Czarnecki and S. Helsen, “Classification of Model Transformation

Approaches”, Proc. 2nd OOPSLA Workshop on Generative Techniques in the context of Model

Driven Architecture, Oct. 2003.

[DAML] The DARPA Agent Markup LanguageHomepage, http://www.daml.org/.

[Davis] S. Davis, “Integrating People, Process and Technology”, Atlanta SPIN, Software Process

Improvement Network, Jne.2002.

[De Landtsheer et al.] R. De Landtsheer, R. Letier, and A. van Lamsweerde, “Deriving Tabular

Event-Based Specifications from Goal-Oriented Requirements Models”, Requirements Engineering

Journal, vol. 9, no. 2, pp. 104-120, May 2004.

[DeLoach] S. DeLoach, “Analysis and Design using MaSE and AgentTool,” Proc. of the 12th

Midwest Artificial Intelligence and Cognitive Science Conference, 2001.

[Delor et al.] E. Delor, R. Darimont, and A. Rifaut, “Software Quality Starts with the Modelling of

Goal-Oriented Requirements”, ICCSE 2003, Dec. 2003.

[Deridder & Wouters] D. Deridder and B. Wouters, “The Use of Ontologies as a Backbone for

Software Engineering Tools,” Proc. Australian Knowledge Acquisition Workshop (AKAW1999),

1999.

[Derrick et al.] J. Derrick, D. Akehurst, and E. Boiten, “A Framework for UML Consistency”, Proc.

Fifth International Conference on the Unified Modeling Language – the Language and its

applications, Workshop on Consistency Problems in UML-based Software Development, <<UML>>

2002, pp. 30-45, 2002.

113

[Dong et al.] J. Dong, J. Sun, and H. Wang, “Semantic Web for Extending and Linking Formalisms”,

FME 2002, Lecture Notes in Computer Science, vol. 2391, Springer-Verlag Berlin Heidelberg, pp.

587-606, 2002.

[DSTC et al.] DSTC, Gentleware, IBM, and Sandpiper Software, “Ontology Definition Metamodel”,

Preliminary Revised Submission to OMG RFP ad/2003-03-40, Vol. 1, Aug. 2004.

[Dussart et al.] A. Dussart, B. Aubert, and M. Patry, “An Evaluation of Inter-Organizational

Workflow Modelling Formalisms”, Scientific Series, CIRANO, ISSN 1198-8177, 2002.

[Easterbrook] S. Easterbrook, “Model Management and Inconsistency in Software Design”, Proc.

NSF Workshop on the Science of Design, Nov. 2003.

[Easterbrook & Nuseibeh] S. Easterbrook, B. Nuseibeh, “Using ViewPoints for Inconsistency

Management”, Software Engineering Journal, vol. 11, no. 1, pp. 31-43, January 1996.

[Egyed1] A. Egyed, “Heterogeneous View Integration and its Automation”, PhD Dissertation,

University of Southern California, Aug. 2000.

[Egyed2] A. Egyed, “Using Patterns to Integrate UML Views”, Proc. 3rd Ground Systems

Architecture Workshop (GSAW'99), Mar. 1999.

[Elaasar & Briand] M. Elaasar and L. Briand, “An Overview of UML Consistency Management”,

Technical Report SCE-04-18, Carleton University, Aug. 2004.

[El-Maddah & Maibaum] I. El-Maddah and T. Maibaum, "Tracing Aspects in Goal Driven

Requirements of Process Control Systems", Proc. 3
rd

 International Conference on Aspect-Oriented

Software Development AOSD, Mar. 2004.

[Engels1 et al.] G. Engels, J. Kuster, R. Heckel, and M. Lohmann, “Model-Based Verification and

Validation of Properties”, Electronic Notes in Theoretical Computer Science, vol. 82, no. 7, 2003.

[Engels2 et al.] G. Engels, J. Hausmann, R. Heckel, and S. Sauer, “Testing the Consistency of

Dynamic UML Diagrams”, Proc. Sixth International Conference on Integrated Design and Process

Technology (IDPT 2002), Jne. 2002.

[Engels3 et al.] G. Engels, J. Kuester, and L. Groenewegen, “Consistent Interaction of Software

Components”, In Proc (eds.), Proc. Sixth International Conference on Integrated Design and Process

Technology (IDPT 2002) , Jne. 2002.

[Engels4 et al.] G. Engels, R. Heckel, and J. Kuster, “Rule-based Specification of Behavioral

Consistency based on the UML Meta-Model”, Proc. UML 2001, Canada, pp. 272-286, 2001.

[Evans1 et al.] R. Evans, P. Kearney, J. Stark, G. Caire, F. Garijo, J. Sanz, J. Pavon, F. Leal, P.

Chainho, PT Inovacao, and P. Massonet, “MESSAGE: Methodology for Engineering Systems of

Software Agents”, EURESCOM Participants in Project P907, EDIN 0223-0907, 2001.

114

[Evans2 et al.] A. Evans, J.M. Bruel, R. France, K. Lano, B. Rumpe, “Making UML Precise”, Proc.

OOPSLA’98 Workshop on Formalizing UML. Why? How?, 1998.

[Evermann & Wand1] J. Evermann and Y. Wand, “Ontology Based Object-Oriented Domain

Modelling: Fundamental Concepts”, Requirements Engineering, vol.10, no. 2, pp. 146-160, May

2005.

[Evermann & Wand2] J. Evermann and Y. Wand, “Towards Ontologically Based Semantics for

UML Constructs”, Proc. 20th International Conference on Conceptual Modeling, ER 2001, pp 354-

367, 2001.

[Falbo1 et al.] R. Falbo, C.S. de Menezes, and A.R.C. da Rocha, “Using Ontologies to Improve

Knowledge Integration in Software Engineering Environments,” Proc. 9th World Multi-Conference

on Systemics, Cybernetics and Informatics, WMSCI 2005, July 2005.

[Falbo2 et al.] R. Falbo, A. Natali, P. Mian, G. Bertollo, and F. Ruy, “ODE: Ontology-based

Software Development Environment”, CACIC 2003 – RedUNCI, pp. 1124-1135, 2003.

[Farquhar et al.] R. Farquhar, R.Fikes, and J. Rice, “The Ontolingua Server: A Tool for Collaborative

Ontology Construction”, Knowledge System Laboraroty, KSL-96-26, Department of Computer

Science, Stanford University, 1996.

[FAUST] “The FAUST toolbox for Formal requirements Specification Analysis”, Cetic, 2003,

http://www.cetic.be/internal.php3?id_article=73

[Feather et al.] M. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard, “Reconciling System

Requirements and Runtime Behavior”, Proc. of IWSSD'98: 9th International Workshop on Software

Specification and Design, Apr. 1998.

[Fernandez et al.] M. Fernandez, A. Gomez-Perez, and N. Juristo, “METHONTOLOGY: From

Ontological Art Towards Ontological Engineering", Proc. AAAI-97 Symposium Series on Ontological

Engineering, pp 33-40, 1997.

[Fettke & Loos] P. Fettke and P. Loos, “Ontological Evaluation of Reference Models Using the

Bunge-Wand-Weber Model”, Proc. 9
th

 Americas Conference on Information Systems, 2003.

[Finkelstein & Dowell] A. Finkelstein and J. Dowell, “A Comedy of Errors: The London Ambulance

Service Case Study”, Proc. of the 8
th

 International Workshop on Software Specification & Design

IWSSD-8, ACM Software Engineering Notes, pp. 2-4, 1996.

[Firesmith et al.] D. Firesmith, B. Henderson-Sellers, and I. Graham, OPEN Modeling Language

(OML) Reference Manual, Cambridge University Press, NY, 1998.

[Fontaine] P. Fontaine, “Goal-Oriented Elaboration of Security Requirements”, MSc Thesis,

Département d'Ingénierie Informatique, Université catholique de Louvain: Louvain-la-Neuve,

Belgium, 2001.

[Fowler et al.] J. Fowler, B. Perry, M. Nodine, and B. Bargmeyer, “Agent-Based Semantic

Interoperability in InfoSleuth”, SIGMOD Record, vol. 28, no. 1, pp. 60-67, Mar. 1999.

115

[Frantzen] T. Frantzen, “System Requirement Specifications Cost Too Much and Achieve Little”,

PowerStart Agile Requirements Engineering, PowerStart Solutions, Inc., 2003.

[Gangemi et al.] A. Gangemi, C. Catenacci, M. Ciaramita, and J. Lehmann, “Ontology Evaluation

and Validation: An Integrated Formal Model for the Quality Diagnostic Task”, Jne. 2005.

[Garcia et al.] A. Garcia, C. Sant’ Anna, C. Chavez, V. Silva, and A. von Staa, “Agents and Objects:

An Empirical Study on the Design and Implementation of Multi-Agent Systems”, Proc. 2nd

International Workshop on Software Engineering for Large-Scale Multi-Agent Systems (SELMAS

2003), ICSE 2003, OR, May 2003.

[Gargantilla & Gomez-Perez] J. Gargantilla and A. Gomez-Perez, “OntoWeb: A Survey on

Ontology-Based Applications,” OntoWeb Consortium IST Project IST-2000-29243, Deliverable 1.6,

2004.

[Genesereth & Fikes] M. Genesereth and R. Fikes, “Knowledge Interchange Format: Version 3.0

Reference Manual”, Technical Report Logic-92-01, Computer Science Department, Stanford

University, Jne. 1992.

[Gennari et al.] J. Gennari, M. Musen, R. Fergerson, W. Grosso, M. Crubezy, H. Eriksson, N. Noy,

and S. Tu, “The Evolution of Protégé: An Environment for Knowledge-Based Systems

Development”, International Journal of Human-Computer Studies, vol. 58, no. 1, pp. 89-123, 2003.

[Glinz et al.] M. Glinz, S. Berner, and S. Joos, “Object-oriented modeling with ADORA”,

Information Systems, vol. 27, no. 6, pp. 425-444, 2002.

[Goguen & Winkler] J. Goguen and T. Winkler, "Introducing OBJ3", SRI International Technical

Report, Aug. 1988.

[Gomaa & Wijesekera] H. Gomaa, and D. Wijesekera, “Consistency in Mulitple-View UML

Models: A Case Study”, <<UML>> 2003 Modeling Languages and Applications, Workshop on

Consistency Problems in UML-based Software Development II, Oct. 2003.

[Gomez-Perez] A. Gomez-Perez, “Evaluation of Taxonomic Knowledge in Ontologies and

Knowledge Bases”, Proc. 12
th

 Workshop on Knowledge Acquisition, Modeling and Management,

Oct. 1999.

[Gottesdiener] E. Gottesdiener, “Top Ten Ways Project Teams Misuse Use Cases – and How to

Correct Them: Part I”, The Rational Edge, Jne. 2002.

[Gruber] T. Gruber, “A Translation Approach to Portable Ontology Specifications,” Knowledge

Systems Laboratory Technical Report KSL 92-71, Stanford University, Sep. 1992, Revised Apr.

1993.

[Guarino & Welty] N. Guarino and C. Welty, “An Overview of OntoClean”, Handbook on

Ontologies, Berlin:Springer-Verlag, pp. 151-172, 2004.

116

[Guizzardi et al.] R. Guizzardi, V. Dignum, A. Perini, and G. Wagner, “Towards an Integrated

Methodology to Develop KM Solutions with the Support of Agents”, Proc. International Conference

on Integration of Knowledge Intensive Multi-Agent Systems, Apr. 2005.

[Guttag & Horning] J. Guttag and J. Horning, Larch: Languages and Tools for Formal

Specifications, New York, Springer-Verlag, 1993.

[Harmain & Gaizauskas] H. Harmain and R. Gaizauskas, “CM-Builder: A Natural Language-based

CASE Tool for Object-Oriented Analysis”, Journal of Automated Software Engineering, vol. 10, no.

2, pp. 157-181, Apr. 2003.

[Hartmann et al.] J. Hartmann, P. Spyns, A. Giboin, D. Maynard, R. Cuel, M. Suarez-Figueroa, and

Y. Sure, “D1.2.3 Methods for Ontology Evaluation”, EU-IST Network of Excellence (NoE) IST-

2004-507482, Knowledge Web Consortium, Jan. 2005.

[Heaven & Finkelstein] W. Heaven and A. Finkelstein, “A UML Profile to Support Requirements

Engineering with KAOS”, IEEE Proceedings - Software, vol. 151, PP. 10-27, 2004.

[Henderson-Sellers & Gorton] B. Henderson-Sellers and I. Gorton, “Agent-based Software

Development Methodologies”, White Paper, Summary of Workshop, ACM SIGPLAN International

Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),

2002.

[Heymans et al.] P. Heymans, G. Saval, G.Dallons, and I. Pollet, “A Template-based Analysis of

GRL”, Book Chapter, Advanced Topic in Database Research – Volume 5, Idea Group Plublishing,

2005.

[Horrocks et al.] I. Horrocks, P. Patel-Schneider, D. Tsarkov and S. Bechhofer, “OWL Rules: A

Proposal and Prototype Implementation”, Journal of Web Semantics, vol. 3, no. 1, pp. 23-40, 2005.

[Hoss & Carver] A. Hoss and D. Carver, “Ontological Approach to Improving Design Quality”,

Proc. IEEE Aerospace Conference, Mar. 2006.

[Howie et al.] C. Howie, J. Kunz, and K. Law, “Software Interoperability”, Center for Integrated

Facility Engineering, Stanford University, CA, 1996.

[Huhns] H. Huhns, “Software Development with Objects, Agents, and Services,” Proc. Third

International Workshop on Agent-Oriented Methodologies, OOPSLA 2004, 2004.

[Hunter & Nuseibeh] A. Hunter and B. Nuseibeh, “Managing Inconsistent Specifications: Reasoning,

Analysis, and Action”, Transactions on Software Engineering and Methodology, Oct. 1998.

[Hussmann] H. Hussmann, “Loose Semantics for UML/OCL”, Integrated Design and Process

Technology, IDPT-2002, Jne. 2002.

[IEC] International Engineering Consortium, “Specification and Description Language (SDL)”,

Online Tutorials, 2006, http://www.iec.org/online/tutorials/.

117

[IEEE1] IEEE, “IEEE Standard Glossary of Software Engineering Terminology,” IEEE Std. 610.12-

1990, Standards Coordinating Committee of the Computer Society of the IEEE, Institute of Electrical

and Electornics Engineers, 1990.

[IEEE2] Software Engineering Standards Committee of the IEEE Computer Society, “IEEE

Recommended Practice for Software Requirements Specifications”, IEEE Std. 830-1998, Institute of

Electrical Engineers, 1998.

[IEEE3] Software Engineering Standards Committee of the IEEE Computer Society, “IEEE

Recommended Practice for Software Design Descriptions”, IEEE Std. 1016-1998, Institute of

Electrical Engineers, 1998.

[Iglesias et al.] C. Iglesias, M. Garijo, J. Gonzalez, and J. Velasco, “Analysis and Design of

Multiagent Systems using MAS-CommonKADS”, Proc. of AAAI'97 Workshop on Agent Theories,

Architectures and Languages, Jul. 1997.

[Irwin & Turk] G. Irwin and D. Turk, “An Ontological Analysis of Use Case Modeling Grammar”,

Journal of the Association for Information Systems, vol. 6, no. 1, pp. 1-36, Jan. 2005.

[iSTAR] i*: An agent-oriented modeling framework, University of Toronto, 2003,

http://www.cs.toronto.edu/km/istar/

[Jennings] N. Jennings, “On Agent-based Software Engineering”, Artificial Intelligence, 117, pp.

277-296, 2000.

[Jennings et al.] N. Jennings, K. Sycara, and M. Wooldridge, “A Roadmap of agent research and

development,” Autonomous Agents and Multi-Agent Systems, vol. 1, Kluwer Academic Publishers,

pp. 7-38, 1998.

[Jin] D. Jin, “Ontological Adaptive Integration of Reverse Engineering Tools”, PhD Thesis, Queen’s

University, Aug. 2004.

[Kalfoglou] Y. Kalfoglou, “Deploying Ontologies in Software Design”, Ph.D. Thesis, Department of

Artificial Intelligence, University of Edinburgh, Jne. 2000.

[KAOS] “Goal-Driven Requirements Engineering: the KAOS Approach”, Research Project at the

Department of Computer Science, Universite catholique de Louvain,

http://www.info.ucl.ac.be/research/projects/AVL/ReqEng.html, 2003.

[Kavakli & Loucopoulos] E. Kavakli and P. Loucopoulos, “Goal Driven Requirements Engineering:

Evaluation of Current Methods”, Proc. 8th CAiSE/IFIP8.1 International Workshop on Evaluation of

Modeling Methods in Systems Analysis and Design (EMMSAD '03), Jne. 2003.

[Kayed] A. Kayed, “Ontology Management System”, Proc. 3
rd

 International Conference on

Information and Knowledge Engineering (IKE'03), Jne. 2003.

[Kielland & Borretzen] T. Kielland and J. Borretzen, “UML Consistency Checking”, Research

Report SIF8094, Institutt for Datateknikk OG Informasjonsvitenskap, 2001.

118

[Kinny et al.] D. Kinny, M. Georgeff and A. Rao, “A Methodology and Modelling Technique for

Systems of BDI Agents”, Proc. of 7
th

 European Workshop on Modelling Autonomous Agents in a

Multi-Agent World MAAMAW'96, 1996.

[Kitamura & Mizoguchi] Y. Kitamura and R. Mizoguchi, “Ontology-based Description of Functional

Design Knowledge and its Use in a Functional Way Server”, Expert Systems with Application, 2002.

[Kitjongthawonkul & Khosla] S. Kitjongthawonkul, and R. Khosla, “Modeling Information Systems

Using Objects, Agents, and Task-based Problem Solving Adapters,” Proc. 10th Autralasian

Conference on Information Systems (ACIS’99), New Zealand, 1999.

[Knublauch et al.] H. Knublauch, R. Fergerson, N. Noy, and M. Musen, “The Protégé OWL Plugin:

An Open Development Environment for Semantic Web Applications”, Proc. 3
rd

 International

Semantic Web Conference - ISWC 2004, 2004.

[Kogut & Heflin] P. Kogut and J. Heflin, “Semantic Web Technologies for Aerospace”, IEEE

Aerospace Conference, Mar. 2003.

[Kozlenkov & Zisman1] A. Kozlenkov and A. Zisman, “Discovering, Recording, and Handling

Inconsistencies in Software Specifications”, International Journal of Computer & Information

Science, vol. 5, no. 2, Jne. 2004.

[Kozlenkov & Zisman2] A. Kozlenkov and A. Zisman, “Are their Design Specifications Consistent

with our Requirements?”, Proc. IEEE Joint International Conference on Requirements Engineering,

Germany, pp. 145-156, Sep. 2002.

[Kozlenkov & Zisman3] A. Kozlenkov and A. Zisman, “Checking Behavioural Inconsistencies in

UML Specifications”, Proc. Workshop on Scenarios and State Machines: Models, Algorithms, and

Tools, ICSE 2002, May 2002.

[Kuhn et al.] D. Kuhn, R. Chandramouli, and R. Butler, “Cost Effective Use of Formal Methods in

Verification and Validation”, Proc. Foundations 02 Workshop on Verification & Validation, Oct.

2002.

[Kuster et al.] J. Kuster, R. Heckel, and G. Engels, “Defining and Validating Transformations of

UML Models”, Proc. IEEE Symposium on Human Centric Computing Languages and Environments

(HCC 2003), pp. 145-152, Oct. 2003.

[Kyas & Fecher] M. Kyas and H. Fecher, “Formalizing UML Models and OCL Constraints in PVS”,

Semantic Foundations of Engineering Design Languages (SFEDL 2004), Electronic Notes in

Theoretical Computer Science, vol. 115, pp. 39-47, Elsevier, 2005.

[Lagoze & Hunter] C. Lagoze and J. Hunter, “The ABC Ontology and Model”, Proc. Dublin Core

Conference 2001, pp. 160-176, 2001.

[Lange et al.] C. Lange, M. Chaudron, J. Muskens, L. Somers, and H. Dortmans, “An Empirical

Investigation in Quantifying Inconsistency and Incompleteness of UML Designs”, Proc. Workshop

on Consistency Problems in UML-based Software Development, 6
th

 International Conference on

Unified Modeling Language, UML 2003, Oct. 2003.

119

[LEITSC] Law Enforcement Information Technology Standards Council (LEITSC), “Standard

Functional Specifications for Law Enforcement Computer Aided Dispatch (CAD) Systems V.1”,

Aug. 2005.

Leppanen, Mauri, “An Ontological Framework and a Methodical Skeleton for Method Engineering”,

PhD Dissertation, University of Jyvaskyla, August 2005.

[Letier] E. Letier, “Reasoning about Agents in Goal-Oriented Requirements Engineering”, Phd

Dissertation, Université Catholique de Louvain, Dépt. Ingénierie Informatique, Louvain-la-Neuve,

Belgium, May 2001.

[Liu] W. Liu, “Rule-based Detection of Inconsistency in Software Design”, Masters Thesis,

University of Toronto, 2002.

[Maedche & Staab] A. Maedche and S. Staab, “Ontology Learning for the Semantic Web”, IEEE

Intelligent Systems, vol. 16, no. 2, pp72-79, 2001.

[Manna & Pnueli] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems,

Springer-Verlag, 1992.

[Marcano et al.] R. Marcano, S. Colin, and G. Mariano, “A Formal Framework for UML Modelling

with Timed Constraints: Application to Railway Control Systems”, SVERTS: Specification and

Validation of UML models for Real Time and Embedded Systems, 3297, LNCS, Oct. 2004.

[McCarthy] J. McCarthy, “History of LISP”, History of Programming Languages”, Academic Press,

1981.

[Mens et al.] T. Mens, R. Van Der Straeten, and J. Simmonds, “Maintaining Consistency between

UML Models with Description Logic Tools”, Proc. Workshop on Consistency Problems in UML-

based Software Development II, pp. 71-77, Oct. 2003.

[Miller] G. Miller, “WordNet: a lexical database for English,” Communications of the ACM, vol. 38,

no.11, pp. 39-41, Nov. 1995.

[Moors] M. Moors, “Consistency Checking,” ROSE Architect, Visual Modeling with the UML,

Rational Rose, UML Resource Center, Apr. 2000.

[Mota et al.] E. Mota, E. Clarke, W. Oliveira, A. Groce, J. Kanda, and M. Falcao, “VeriAgent: an

Approach to Integrating UML and Formal Verification Tools”, Proc. 6
th

 Brazilian Workshop on

Formal Methods (WMF 2003), pp. 111-129, Oct. 2003,.

[Mylopoulos et al.] J. Mylopoulos, L. Chung, and B. Nixon, “Representing and Using Nonfunctional

Requirements: A Process-Oriented Approach”, IEEE Transactions on Software Engineering, vol. 18,

no. 6, pp. 483-497, Jne. 1992.

[Nentwich1 et al] C. Nentwich, W. Emmerich, A. Finkelstein, and E. Ellmer, “Flexible Consistency

Checking”, ACM Transactions on Software Engineering and Methology, vol. 12, no. 1, pp. 28-63, ,

2003.

120

[Nentwich2 et al] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelsein, “xlinkit: A Consistency

Checking and Smart Link Generation Service,” ACM Transactions on Internet Technology, vol. 2,

pp. 151-185, 2002.

[Neuhold et al.] E. Neuhold, C. Niederee and M. Fuchs, “Semantic Web Application Models”, ER

2003 – 22nd International Conference on Conceptual Modeling, Oct. 2003.

[Niles & Pease] I. Niles and A. Pease, “Toward a standard upper ontology”, Proc. of the 2nd

International Conference on Formal Ontology in Information Systems (FOIS-2001), 2001.

[Noy & McGuinness] N. Noy and D. McGuinness, “Ontology Development 101: A Guide to

Creating your First Ontology”, Stanford Medical Informatics Technical Report SMI-2001-0880,

Stanford University, 2001.

[Nuseibeh et al.] B. Nuseibeh, S. Easterbrook and A. Russo, “Making Inconsistency Respectable in

Software Development”, Journal of Systems and Software, vol. 58, no. 2, pp. 171-180, 2001.

[Nuseibeh & Easterbrook] B. Nuseibeh and S. Easterbrook, “The Process of Inconsistency

Management: A Framework for Understanding,” Proc. First International Workshop on the

Requirements Engineering Process (REP’99), Sep. 1999.

[Nuseibeh & Russo] B. Nuseibeh and A. Russo, “Using Abduction to Evolve Inconsistent

Requirements Specifications”, Austrialian Journal of Information Systems, vol. 7, no. 1, Special Issue

on Requirements Engineer, ISSN: 1039-7841, 1999.

[Ober] I. Ober, “An ASM Semantics of UML Derived from the Meta-model and Incorporating

Actions”, Proc. Abstract State Machines - Advances in Theory and Applications, 10th International

Workshop, ASM 2003, Mar. 2003.

[Objectiver1] “Objectiver: A KAOS Tutorial”, CEDITI S. A., 2003,

http://www.objectiver.com/download/documents/KAOS%20Tutorial.pdf

[Objectiver2] “Objectiver 1.5.0: A Technical Overview”, CEDITI S. A., 2003,

http://www.objectiver.com/download/documents/TechnicalOverview.pdf

[Obrst] L. Obrst, “Ontologies for Semantically Interoperable Systems”, Proc. 12
th

 International

Conference on Information and Knowledge Management (CIKM 2003), pp. 366-369, 2003.

[Odell] J. Odell, "Agent Technology Green Paper," Version 1.0, Agent Working Group OMG

Document, 2000.

[Ohnishi] A. Ohnishi, “Management and Verification of the Consistency among UML models”,

Proc. WS15 Workshop on Knowledge-Based Object-Oriented Software Engineering (KBOOSE),

2002.

[Omar et al.] N. Omar, P. Hanna, and P. McKevitt, “Heuristics-based entity-relationship modeling

through natural language processing”, Proc. of the 15th Irish Conference on Artificial Intelligence

and Cognitive Science (AICS-04), Sept. 2004.

121

[OMG1] Object Management Group, Unified Modeling Language (UML) 2.0, 2003.

[OMG2] Object Management Group, Common Object Request Broker Architecture (CORBA) Core

Specification 3.0.3, 2004.

[OMG3] Object Management Group, “Response to the UML 2.0 OCL RfP,” UML 2 OCL

submission, Catalog of OMG Modeling and Metadata Specifications, 2003.

[OMG4] Object Management Group, “OMG MOF 2.0 query, views, transformations request for

proposals”, Object Management Group, Inc., 2002.

[OMG 5] Object Management Group, Common Warehouse Metamodel (CWM) Specification,

Version 1.0, Feb. 2001.

[Opdahl & Henderson-Sellers1] A. Opdahl and B. Henderson-Sellers, “A Template for Defining

Enterprise Modelling Constructs”, Journal of Database Management, Apr.-Jne. 2004, vol. 15, no. 2, ,

pp. 39-73, 2004.

[Opdahl & Henderson-Sellers2] A. Opdahl and B. Henderson-Sellers, “Ontological Evaluation of the

UML Using the Bunge-Wand-Weber Model”, Software and System Modeling, vol. 1, no. 1, pp. 43-

67, 2002.

[OWL] World Wide Web Consortium, “OWL Web Ontology Language Overview”, W3C

Recommendation, Feb. 10, http://www.w3.org/2004/OWL/, 2004.

[Paetau] P. Paetau, “On the Benefits and Problems of the Object-Oriented Paradigm Including a

Finnish Study”, Swedish School of Economics and Business Administration, Finland, 2005.

[Paige1] R. Paige, J. Ostroff, and P. Brooke, “Theorem Proving Support for View Consistency

Checking”, L'OBJET: Software, Databases, Networks, vol. 9, no. 4, pp. 115-134, 2003.

[Paige2] R. Paige, J. Ostroff, and P. Brooke, “Checking the Consistency of Collaboration and Class

Diagrams using PVS”, Proc. Fourth Workshop on Rigorous Object-Oriented Methods (ROOM4),

Mar. 2002.

[Pap et al.] Zs. Pap, I. Majzik, A. Pataricza, and A. Szegi, “Completeness and Consistency Analysis

of UML Statechart Specifications”, Proc. IEEE Design and Diagnostics of Electronic Circuits and

Systems Workshop (DDECS'2001), pp. 83-90, Apr. 2001.

[Peng] L. Peng, “Formalization of UML Using Algebraic Specifications”, Masters Thesis, Vrije

Universiteit Brussel, Belgium, 2001.

[Perini] A. Perini, and A. Susi, “Developing tools for Agent-Oriented Visual Modeling”, Proc. 2
nd

German Conference on Multiagent System Technologies, Sep. 2004.

[Ponsard] C. Ponsard, “Analyzing Composite Systems using KAOS: the Mine Pump Case Study”,

Technical Report, Universite Catholique de Louvain, Jul. 1998.

122

[Ponsard et al.] C. Ponsard, P. Massonet, A. Rifaut, J-F. Molderez, and P. Stadnik, “The FAUST

toolbox for Formal requirements Specification Analysis”, Proc. of the Workshop on Formal Methods

in Industrial Applications and Engineering Curricula, Nov. 2003.

[pUML] Precise UML Group, http://www.cs.york.ac.uk/puml/.

[Quatrani] T. Quatrani, Visual Modeling with Rational Rose 2000 and UML, Addison Wesley,

Second Edition, Oct. 1999.

[Ramalho & Robin] F. Ramalho and J. Robin, “Mapping UML Class Diagrams to Object-Oriented

Logic Programs for Formal Model-Driven Development”, Proc. 3
rd

 UML Workshop in Software

Model Engineering (WISME’2004), 2004.

[Rational] Rational Rose Developer, IBM,

http://www-306.ibm.com/software/awdtools/developer/rose/

[Regev & Wegmann] G. Regev and A.Wegmann, “Goals, Interpretations, and Policies in

Information Systems Design”, EPFL-DSC Technical Report no. DSC/2001/043, 2001.

[Robbins et al.] J. Robbins, D. Hilbert, and D. Redmiles, “Argo: A design environment for evolving

software architectures”, Proc. of the 19
th

 International Conference on Software Engineering, pp. 600-

601, May 1997.

[Robbins & Redmiles] J. Robbins and D. Redmiles, “Softare Architecture critics in the Argo design

environment”, Knowledge-based Systems, vol. 11, no. 1, pp. 47-60, 1998.

[Robinson] W. Robinson, “Requirement Conflict Restructuring”, Conflict-Oriented Requirements

Restructuring, GSU CIS Working Paper 99-5, 1999.

[Roe et al.] D. Roe, K. Broda, and A. Russo, “Mapping UML Models Incorporating OCL Constraints

into Object-Z”, Technical Report 2003/9, Imperial College London, 2003.

[Rosemann1 et al.] M. Rosemann, P. Green, and M. Indulska, “A Procedural Model for Ontological

Analyses”, Information Systems Foundations: Constructing and Criticising, ANU E Press, Canberra ,

Australia, pp. 153-163, 2005.

[Rosemann2 et al.] M. Rosemann, P. Green, and M. Indulska, “A Reference Methodology for

Conducting Ontological Analyses”, ER 2004, LNCS 3288, pp. 110-121, 2004.

[Rumbaugh et al.] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-

Oriented Modeling and Design, Prentice-Hall, NJ, 1991.

[Sabetzadeh & Easterbrook] M. Sabetzadeh and S. M. Easterbrook, “Analysis of Inconsistency in

Graph-Based Viewpoints: A Category-Theoretic Approach”, Proc. 18th IEEE International

Conference on Automated Software Engineering, Oct. 2003.

[Selonen et al.] P. Selonen, K. Koskimies, and M. Sakkinen, “How to make Apples from Oranges in

UML”, Proc. of the 34th Hawaii International Conference on System Sciences (HICCS 34), vol. 3,

IEEE Computer Society, Jan. 2001.

123

[Sendall & Kozaczynski] S. Sendall and W. Kozaczynski, “Model Transformation: The Heart and

Soul of Model-Driven Software Development”, IEEE Software, vol. 20, no. 5, pp. 42-45, Sept./Oct.

2003.

[Shanks] G.Shanks, E. Tansley, and R. Weber, “Using Ontology to Validate Conceptual Models”,

Communications of the ACM, vol. 46, no. 10, pp. 85-89, 2003.

[Shehory & Sturm] O. Shehory and A. Sturm, “Evaluation of Modeling Techniques for Agent-based

Systems”, Proc. 5
th

 International Conference on Autonomous Agents, Canada, pp. 624-631, 2001.

[Sigma] Sigma Knowledge Engineering Environment Browsing Interface, Teknowledge Corporation,

http://sigma.ontologyportal.org:4010/sigma/KBs.jsp, 2006.

[Silva et al.] V. Sivla, A. Garcia, A. Brandao, C. Chavez, C. Lucena, and P. Alencar, “Taming Agents

and Objects in Software Engineering”, Software Engineering for Large-Scale Multi-Agent Systems -

Research Issues and Practical Applications, Berlin Heidelberg, pp. 1-25, 2003.

[Silva & Lucena] V. Silva and C. Lucena, “From a Conceptual Framework for Agents and Objects to

a Multi-Agent System Modeling Language”, Journal of Autonomous Agents and Multi-Agent

Systems, vol. 9, pp. 145-189, 2004.

[Snoeck et al.] M. Snoeck, C. Michiels, and G. Dedene, “Consistency by Construction: The Case of

MERODE”, Proc. Conceptual Modeling for Novel Application Domains, ER 2003 Workshops

ECOMO, IWCMQ, AOIS, and XSDM, Oct. 2003.

[Soffer et al.] P. Soffer, B. Golany, D. Dori, and Y. Wand, “Modelling Off-the-Shelf Information

Systems Requirements: An Ontological Approach”, Requirements Engineering, vol. 6, pp. 183-199,

2001.

[Spanoudakis & Zisman] G. Spandoudakis and A. Zisman, “Inconsistency Management in Software

Engineering: Survey and Open Research Issues”, Handbook of Software Engineering and Knowledge

Engineering, vol. 1, 2001.

[Spivey] J. Spivey, “An Introduction to Z and Formal Specifications”, Software Engineering Journal,

vol. 4, no. 1, pp. 40-50, 1989.

[Sudeikat et al.] J. Sudeikat, L. Braubach, A. Pokahr, and W. Lamersdorf, “Evaluation of Agent-

Oriented Software Methodologies – Examination of the Gap Between Modeling and Platform”, Proc.

Agent-Oriented Software Engineering V, 5
th

 International Workshop AOSE, pp. 126-141, 2004.

[Sunetnanta & Finkelstein] T. Sunetnanta and A. Finkelstein, “Automated Consistency Checking for

Multiperspective Software Specifications”, Proc. Workshop on Advanced Separation of Concerns,

The 23rd International Conference on Software Engineering (ICSE2001), May 2001.

[Suourrouille & Caplat] J. Suourrouille and G. Caplat, “Checking UML Model Consistency,” Proc.

Workshop on Consistency Problems in UML-Based Software Development, pp. 1-15, 2002.

124

[SWRL] W3C Member Submission, “SWRL: A Semantic Web Rule Language Combining OWL and

RuleML”, http://www.w3.org/Submission/SWRL/, May 2004.

[Tomek] I. Tomek, The Joy of Smalltalk: An Introduction to Smalltalk, Sep. 2000,

http://www.iam.unibe.ch/~ducasse/FreeBooks.html.

[Tormey et al.] D. Tormey, C. Chira, O. Chira, T. Roche, and A. Brennan, “Development of

Engineering Design Methodologies and Software Tools to Support the Creative Process of Design in

a Distributed Environment”, International Conference on Engineering Design (ICED ’03), Aug.

2003.

[Torres-Pomales] Torres-Pomales, W., “Software Fault Tolerance: A Tutorial”, NASA Langley

Research Center, TM-2000-210616, 2000.

[TOVE] TOVE Ontology Project, University of Toronto, 2002, http://www.eil.utoronto.ca/enterprise-

modelling/tove/index.html

[Tsiolakis & Ehrig] A. Tsiolakis and H. Ehrig, “Consistency Analysis of UML Class and Sequence

Diagrams using Attributed Graph Grammars and their Transformation”, Technische Universitat

Berlin, Technical Report No. 2000/3, Mar. 2000.

[Uschold et al.] M. Uschold, M. King, S. Moralee, and Y. Zorgios, “The Enterprise Ontology”, The

Knowledge Engineering Review, vol. 13, 1998.

[Van Hung et al.] T. Van Hung, A. van Lamsweerde, P. Massonet, and C. Ponsard, “Goal-Oriented

Requirements Animation”, Proc. of RE’04, 12th IEEEJjoint International Requirements Engineering

Conference, pp. 218-228, Sep. 2004.

[van Lamsweerde1] A. van Lamsweerde, “From System Goals to Software Architecture”, Formal

Methods for Software Architectures, M. Bernardo & P. Inverardi (eds), LNCS 2804, Springer-Verlag,

pp. 25-43, 2003.

[van Lamsweerde2] A. van Lamsweerde, “The KAOS Meta-Model – Ten Years After”, Departement

d’Ingenierie Informatique, UCL, Apr. 2003.

[van Lamsweerde3] A. van Lamsweerde, “Goal-Oriented Requirements Engineering: from System

Objectives to UML Models to Precise Software Specifications”, Cediti SA, Proc. 25th International

Conference on Software Engineering, ICSE 2003, pp. 744 –745, May 2003.

[van Lamsweerde4] A. van Lamsweerde, “Building Formal Requirements Models for Reliable

Software”, Proc. 6th International Conference on Reliable Software Technologies, Ada-Europe 2001,

Lecture Notes in Computer Science, Springer-Verlag, May 2001.

[van Lamsweerde5] A. van Lamsweerde, “Goal-Oriented Requirements Engineering: A Guided

Tour,” Proc. RE'01 - 5th IEEE International Symposium on Requirements Engineering, pp. 249-263,

Aug. 2001.

[van Lamsweerde6] A. van Lamsweerde, “Formal Specification: A Roadmap”, The Future of

Software Engineering Track, ICSE 2000, pp 147-159, 2000.

125

[van Lamsweerde7] A. van Lamsweerde, “Inferring Declarative Requirements Specifications from

Operational Scenarios”, IEEE Transactions on Software Engineering, Special Issue on Scenario

Management, Dec. 1998.

[van Lamsweerde8] A. van Lamsweerde, R. Darimont, and E. Letier, “Managing Conflicts in Goal-

Driven Requirements Engineering”, IEEE Transactions on Software Engineering, Special Issue on

Managing Inconsistency in Software Development, vol. 24, no. 11, pp. 908-926, Nov. 1998.

[Vergara et al.] J. Vergara, V. Villagra, and J. Berrocal, “An Ontology-based Method to Merge and

Map Management Information Models,” Proc. HP Openview University Association Tenth Plenary

Workshop, Switzerland, July 2003.

[VIATRA] “Integration of UML and formal analysis methods for assuring dependability”, Budapest

University of Technology and Economics, Fault Tolerant Systems Research Group, Department of

Measurement and Information Systems, 2003.

[Wagemann] J. Wagemann, “Consistency Maintenance of UML Models with Description Logics”,

Masters Thesis, Vrije Universiteit, Brussel, Belgium, 2003.

[Wagner et al.] R. Wagner, H. Giese, and U. Nickel, “A Plug-In for Flexible and Incremental

Consistency Management”, <<UML>> 2003 Modeling Languages and Applications, Workshop on

Consistency Problems in UML-based Software Development II, Oct. 2003.

[Wagner2] G. Wagner, “Information Systems Have to Deal with Objects and with Agents,” Proc.

International Workshop on Agent-Oriented Information Systems (AOIS’99), 1999.

[Wand et al.] Y. Wand, V. Storey, and R. Weber, “An Ontological Analysis of the Relationship

Construct in Conceptual Modeling”, ACM Transactions on Database Systems, vol. 24, no. 4, pp. 494-

528, 1999.

[Wand & Weber1] Y. Wand and R. Weber, "On the Ontological Expressiveness of Information

Systems analysis and Design Grammars", Journal of Information Systems, vol. 3, no. 4, pp. 217-237,

1993.

[Wand & Weber2] Y. Wand and R. Weber, “An Ontological Model of an Information System”, IEEE

Transactions on Software Engineering, vol. 16, no. 11, pp. 1282-1292, 1990.

[Warmer] J. Warmer, “The Future of UML”, Kasse Objecten, 2003.

[Woodman & Heal] M. Woodman and B. Heal, Introduction to VDM, McGraw-Hill, London, 1993.

[Wooldridge & Jennings] M. Wooldridge and N. Jennings, “Pitfalls of Agent-Oriented

Development”, Proc. 2nd International Conference on Autonomous Agents, pp. 385-391, 1998.

[W3C1] World Wide Web Consortium, “Ontology Driven Architectures and Potential Uses of the

Semantic Web in Software Engineering”, Working Group Note,

http://www.w3.org/2001/sw/BestPractices/SE/ODA/, Sep. 2005.

126

[W3C2] World Wide Web Consortium, “DAML+OIL Web Ontology Langauge”,

Sep. 2001, http://www.w3.org/Submission/2001/12/.

[W3C3] World Wide Web Consortium, “Resource Description Framework (RDF)”, 2006,

http://www.w3.org/RDF/.

[XML] World Wide Web Consortium, “Extensible Markup Language (XML) 1.0 (Third Edition)”,

W3C Recommendation 04, Feb. 2004.

[XVCL] XVCL, “ XML-Based Variant Configuration Language, Case Studies: Computer Aided

Dispatch Product Line”, Department of Computer Science, National University of Singapore,

http://xvcl.comp.nus.edu.sg/xvcl_cases.php, 2006.

[Zambonelli & Omicini] F. Zambonelli and A. Omicini, “Challenges and Research Directions in

Agent-Oriented Software Engineering,” Journal of Autonomous Agents and Multiagent Systems, vol.

9, no. 3, pp. 253-283, Sep. 2004.

[Zhu] H. Zhu, “Developing Formal Specifications of Multi-Agent Systems in SLABS: A Case Study

of Evolutionary Multi-Agent Ecosystem”, Proc. AOIS’2002’, pp. 20-34, 2002.

[Zhu & Zhi] X. Zhu and J. Zhi, “Ontology-Based Inconsistency Management of Software

Requirements Specifications”, Proc. 31st Annual Conference on Current Trends in Theory and

Practice of Informatics, SOFSEM 2005, pp. 340-34, Jan. 2005.

127

Appendix A: London Ambulance Service Computer Aided Dispatch Case Study

We apply MOA to a portion of a well-known and often utilized case study, the London Ambulance

Service (LAS) Computer Aided Dispatch (CAD) System, which was used as a common case study at

the 8
th

 International Workshop on Software Specification and Design (IWSSD-8) [Finkelstein &

Dowell]. This case study is considerably more complex than the elevator system case study. The

LAS CAD System is a safety-critical, real-time, distributed system that receives emergency calls,

dispatches ambulances based on medical need and availability of resources, and tracks the allocation

of resources to emergency calls.

A sample of the basic system users and locations is:

• Dispatcher at the Central Ambulance Control

• Ambulance driver at each ambulance

• Hospital emergency room supervisor at each hospital emergency room

• Locations in the ambulance service jurisdiction are partitioned into sectors

• Incidents are geographically widely distributed

A portion of the basic system functionality is:

• Call taking: receiving emergency calls; recording incident details

• Dispatching ambulances: identifying nearest available ambulances; communicating with

ambulance drivers; monitoring ambulance status; transporting patient(s) to nearest available

hospital

• Time constraints: an ambulance should be dispatched within 3 minutes of receiving a call; an

ambulance should arrive at the location of the incident within 14 minutes after the first call is

received

Figures 60 and 61 give examples of Use Cases describing the LAS CAD system functionality.

Use Case name: Provide Ambulance Service

Primary Actor(s): Dispatcher, Computer-AidedDispatch, ER Supervisor

Precondition: Open incident does not exist for Caller

Postcondition: Incident is completed for Caller

Trigger: Caller Makes Emergency Call

Scenario:

Caller Makes Emergency Call

Dispatcher requests Computer-AidedDispatch to create an incident

Computer-AidedDispatch Dispatches Ambulance

ER Supervisor Updates Resource Status

Dispatcher requests Computer-AidedDispatch to close the incident

Figure 60: UML Use Case: Provide Ambulance Service

128

Nested Use Cases are underlined for ease of understanding. Figures 62 through 65 provide several

UML diagrams that model the LAS CAD system. These diagrams are based on a conglomeration of

previously specified software requirements specification of the London Ambulance Service [Allen],

Use Case name: Dispatches Ambulance

Primary Actor(s): Computer-AidedDispatch, Ambulance Driver

Precondition: Open incident, location, section, resource status and

 ambulance status data are current

Postcondition: Ambulance is assigned in < 3 minutes; Ambulances

 arrives at incident location < 14 minutes

Trigger: Computer-AidedDispatch creates an incident

Scenario:

Computer-AidedDispatch identifies nearest available ambulance

Computer-AidedDispatch identifies nearest available hospital

Computer-AidedDispatch sends incident information to nearest available ambulance

Computer-AidedDispatch sends incident information to nearest available hospital

Ambulance driver Updates Ambulance Status

Ambulance driver Updates Resource Status

Ambulance arrives at location of incident

Figure 61: UML Use Case: Provide Ambulance Service

Dispatcher

Makes
Emergency

Call

Provides

Ambulance
Service

Updates

Ambulance

Status

Caller

Updates

Resource

Status

Ambulance

DriverER

Supervisor

Dispatches

Ambulance
<<includes>>

<<includes>>

<<includes>>

Figure 62: CAD Use Case Diagram

129

[LEITSC], [XVCL]. We have extended these diagrams and seeded them with consistency errors to

demonstrate our approach.

cd Computer-AidedDispatch System

Lot
number

Hospital
name

Ambulance
number
status
location
destination
arrived()

updateLocation()
updateStatus()

updateDestination()

patientOnBoard()

assignIncident()

Sector

Location

Incident
callerNumber
location
incidentType
ambulance
status
setIncidentType()
setLocation()
setStatus()

Caller
name
address
telephoneNumber
getName()
getAddress()
getDescription()

Computer-AidedDispatch
incidentList
currentIncident
createIncident()
closeIncident()
selectAmbulance()
selectHospital()
ambulanceArrived()

informs

manages

ER Supervisor
name
address
telephoneNumber
assignIncident()
resourceCheck()
assignResources()
ambulanceArrived()

AmbulanceDriver
name
ambulance
estimateArrival()

drives

assigns

works at

communicates with

Dispatcher
status
getNextCall()

calls

Resource
status
getResourceStatus()
assignResource()

Figure 63: CAD Class Diagram

sm Ambulance

arrived()

[location=hospital]

At Hospital

Idle in Lot

Enroute to
Incident

At Incident
Enroute to
Hospital

Enroute to Lot

incidentCancelled()

arrived()
[location=incident]

incidentCancelled()

assignIncident()

arrived() [location=lot]

assignIncident()

incidentClosed()

patientOnBoard()

Ambulance.status= available
^ Ambulance.location <>

Incident.location

Figure 64. Ambulance StateMachine Diagram

130

Tables 22 through 29 contain partial examples of the mappings from UML to OSSD for the LAS

CAD case study.

Table 22: UML Class Element and Part of Speech (POS) Tagging

UML Name UML Element Part of Speech

(POS)

SubPOS

SUMO/WordNet Defined

within UML

(G/A/C)

Parameters

ambulance class noun Entity:Physical:Object computer-

aided dispatch

system/C

none

select

Ambulance

operation

noun

verb:present

noun

Entity:Physical:Process:

IntentionalProcess

Entity:Physical:Object

computer-

aided dispatch

none

location attribute noun Entity:Physical:Object incident none

caller class noun Entity:Abstract:Attribute:

RelationalAttribute:SocialRole

computer-

aided dispatch

system/C

none

sd Provide Ambulance Service

:Caller

Call()
ReceivesCall()

:Computer-AidedDispatch

selectAmbulance()

:ER

Supervisor
:Ambulance

Driver

selectHospital()

assignIncident()

assignIncident()

UpdatesAmbulanceStatus
ref

a

b

{b-a < 3 min}

{c-a < 14 min}

c
ambulanceArrived()

UpdatesResourceStatus
ref

[location=incident]

Figure 65: CAD Class Diagram

131

Table 23: OSSD Relations Classification

UML

association

OSSD Relation OSSD Relation Attribute OSSD

Role

OSSD

Multiplicity

informs Association:Rel.Attrib:From.Obj

Association:Rel.Attrib:To.Obj

Dispatcher

Computer-Aided Dispatch

none none

unnamed NonAssocation:Aggreg:Whole

NonAssociation:Aggre:Part

Resource

Ambulance

none none

Table 24: OSSD Behavior Classification
UML

Operation

Msg

Type

Message

Parameters

Sending Object /

OSSD Classification

Receiving Object /

OSSD Classification

assignIncident A none Computer-

AidedDispatch/Control

AmbulanceDriver/Perform

ambulanceArrived B none ER Supervisor/Perform Computer-AidedDispatch/Monitor

Table 25: OSSD State-based Object Classification

UML

Class

UML

Composition

SUMO/

WordNet Classification

OSSD

Behavior

OSSD

Classification

Dispatcher Whole top

level

Entity:Abstract:Attribute:

RelationalAttribute:SocialRole

Control,

Perform

Agent

Incident Whole top

level

Entity:Physical:Process Perform Entity

Table 26: MOA State, Transition, Constraints Classification Table Part 1
UML

Class

UML

State

OSSD

State

Classif.

OSSD

Entry

Behavio

r

OSSD

Do

Behavior

OSSD

Exit

Behavior

OSSD

Incoming

Transition/From

OSSD

Outgoing

Transition/To

Ambulance IdleinLot Initial none none none EnroutetoLot Enrouteto

Incident

Ambulance Enrouteto

Incident

Intermed none none none IdleinLot,

AtHospital

AtIncident,

EnrouteToLot

Ambulance AtIncident Intermed none none none EnrouteTo

Incident

EnrouteTo

Hospital,

EnrouteToLot

Table 27: MOA State, Transition, Constraints Classification Table Part 2
UML

Class

OSSD

Trans.

Num.

OSSD Transition

IncomingFrom/

OutgoingTo

OSSD

Constraint

OSSD

Constraint

Classif.

OSSD

Transition

followed

by

OSSD

Transition

Number

Ambulance 1 IdleinLot/

EnrouteToIncident

assignIncident,

{ambulance.status=available ^

 ambulance.location<>

 incident.location}

Trigger,

Precondition

2 or 3

Ambulance 2 EnrouteToIncident/

AtIncident

arrived,

[location=incident]

Trigger,

Guard

4 or 5

Ambulance 3 EnrouteToIncident/

EnrouteToLot

incidentCancelled Trigger 9

Ambulance 4 AtIncident/

EnrouteToHospital

PatientOnBoard Trigger 6

132

Table 28: MOA Goal Classification Table
UML

UseCase

Name

OSSD Agent OSSD

Entity

OSSD Behavior OSSD Goal OSSD

Goal

Classif.

Provides

Ambulance

Service

Caller none getName,

getAddress,

getDescription

IncidentReported Achieve

 Dispatcher none GetNextCall

GetCallerData,

AvailableToReceiveCall

Achieve

Maintain

 ER

Supervisor

Incident resourceCheck,

getResourceStatus

assignResource

ResourcesAvailable

ResourcesAssigned

Maintain

Achieve

 Computer-

Aided

Dispatch

Incident createIncident

selectAmbulance

selectHospital

assignIncident

getResourceStatus

closeIncident

IncidentCreated

IdentifyNearestAmbulance

IdentifyNearestHospital

AmbulanceDispatched

TrackAmbulance

IncidentClosed

Achieve

Achieve

Achieve

Achieve

Maintain

Achieve

Table 29: Inter-View Inconsistency Detection Table
UML

Element

OSSD

Element

Class

Diagram

Sequence

Diagram

StateMachine

Diagram

Use Cases or

Use Case Diagram

caller Agent Y Y N Y

assignIncident Behavior Y Y Y Y

incidentCancelled Behavior N N Y N

Figure 66 shows a partial view of the OSSD Model for the LAS CAD system described in the UML

diagrams given in Figures 62 through 65. Figure 66 also shows an example of two rules the

OB_Rule1 and OR_Rule1, shown in Figure 28 and discussed in more detail in Section 4.3.5.2. To

simplify the pictorial view of the OSSD Model for the LAS CAD System, these figures show only

the significant classes and properties. Some super-classes and paths connecting upward to the

Construct level are omitted to simplify the diagrams and ease their understanding.

Figure 67 contains Sections of a KAOS specification for the LAS-CAD System that is generated at

the end of the MOA transformation.

We seeded errors into the UML design of the LAS CAD case study given in Figures 62 through 65.

The following two errors can be correctly detected during the creation and consistency processing of

the OSSD Model:

1) an inconsistency between the Sequence Diagram showing the Computer-Aided Dispatch class

exchanging messages with the Ambulance Driver class but the Class Diagram does not

describe an association link between the Computer-Aided Dispatch and the Ambulance Driver

classes;

2) an inconsistency between the Ambulance StateMachine Diagram showing

“incidentCancelled” which is not specified in either the Class or Sequence Diagrams;

3) the ambulance assigned to the incident is unable to arrive at the incident location within the

required 14 minutes due to unexpected events such as traffic gridlock.

133

The first inconsistency concerns a missing association link in the UML Class Diagram that is

detected via two OSSD axioms OB-1 and OR-1 (based on the OB_Rule1 and OR_Rule1 axioms

given in Figure 28 in Chapter 4 Section 4.3.5.2). Figure 66 shows these axioms on two properties: 1)

the property has linking State-based (representing “Computer-AidedDispath”) to Behavior

(representing “assignIncident”); and 2) the property has linking State-based (representing

“Computer-AidedDispath”) to Behavior (representing “setIncidentType”). This diagram shows that

first axiom pair reveals an inconsistency: axiom OB-1 is true but axiom OR-1 is not true. Figure 66

Relation

RelationAttribute

Association

RelationAttribute

Object

Entity

"Incident"

State-based

"Manages"

Behavior

Control

"setIncident
 Type"

Object

"assignIncident"

se
n

d
s

m
es

sa
g

e
to

Control

Behavior

Perform

Behavior

Agent

Object

"Computer-Aided
 Dispatch"

State-based

Agent

"AmbulanceDriver"

State-based

{OB-1, OR-1}

{OB-1, OR-1}

BehaviorPerform

ToObject

sends

 message

 to

FromObject

Fig. 67. Partial View of the OSSD Model for the LAS CAD System

Agent Computer-Aided Dispatch

 Has incidentList, currentIncident

 Inherited from none

 Monitors Dispatcher/status

 Controls Incident/callerNumber, location,

incidentType, ambulance, status

 Performs createIncident, closeIncident,

setIncidentType, setLocation,

setStatus, assignIncident,

selectAmbulance, selectHospital

ResponsibleFor IncidentCreated,

AmbulanceDispatched,

IncidentClosed

DependsOn Dispatcher For GetCallerInfo,

AmbulanceDriver for

CurrentAmbulanceData

 End

 Entity Incident

 Has callerNumber, location,

incidentType,

 ambulance, status

 End

 Event AmbulanceArrived(Location)

 Has Location

 End

 Operation selectAmbulance

 Input i:Incident, a:Ambulance

 Output a:Ambulance/status,a:Ambulance/destination,

 i:Incident/ambulance

DomPre a.status="available" ^

¬a.location = i.location

DomPost a.status="assigned" ^

a.destination = i.location

CausedBy createIncident

PerformedBy Computer-AidedDispatch

Operationalizes IdentifyNearestAmbulance,

AmbulanceDispatched

 End

 Goal Achieve [IdentifyNearestAmbulance]

Concerns Ambulance, Incident

AndRefines DispatchAmbulance

UnderResponsibilityOf Computer-AidedDispatch

OperationalizedBy selectAmbulance

 End

 Association Informs

 Links Caller {mult *..*},

 Dispatcher {mult *..*}

 Has none

 End

Fig. 68. Partial KAOS Specification for the LAS CAD System

134

shows that “Computer-AidedDispatch” participates in only one Association, “Manages”, which

involves the Entity “Incident” and includes the Behavior “setIncidentType. However, the axiom

OR-1 is violated because no Association exists between “Computer-AidedDispatch” and

“AmbulanceDriver” to support the exchange of the message associated with the Behavior

“assignIncident”.

The second inconsistency involving “incidentCancelled” is detected via the IC_Rule3 associated the

Inter-view Inconsistency Detection Table (refer to Figure 29 in Chapter 4 Section 4.3.5.3). Figure 64

shows that the Behavior “incidentCancelled” is defined in the StateMachine diagram but not in Class

or Sequence diagrams and so violates IC_Rule3.

The remaining seeded error would be identified during the KAOS processing of the LAS CAD

specification. The KAOS processing includes obstacle generation that would identify such an event,

as well as numerous other potential conflicts and obstacles, and then recommend alternative solutions

to those obstacles and/or conflicts.

135

Appendix B: Additional Data for the Elevator System Case Study

Table 30: UML Class Element and Part of Speech (POS) Tagging

UML Name UML Element Part of Speech

(POS)

SubPOS

SUMO/WordNet Defined within

UML (G/A/C)

Parameters

Door

Controller

Class Noun

Noun

Entity:Physical:Object

Entity:Physical:Object

ElevatorSystem/

C

None

Doors

State

Attribute Noun

Noun

Entity:Physical:Object

Entity:Abstract:Attribute

DoorController None

Motor Class Noun Entity:Physical:Object ElevatorCar/C None

Move

Up

Operation Verb:present

Adverb

Entity:Physical:Process:

Motion

Entity:Abstract:Attribute:

RelationalAttribute

Motor None

Move

Down

Operation Verb:present

Adverb

Entity:Physical:Process:

Motion

Entity:Abstract:Attribute:

RelationalAttribute

Motor None

Elevator

Controller

Class Noun

Noun

Entity:Physical:Object

Entity:Physical:Object or

Miscellaneous:

OccupationalRole

Elevator System None

Elevator

Destination

List

Attribute Noun

Noun

Noun

Entity:Physical:Object

Entity:Physical:Object

Entity:Physical:Object

Elevator

Controller

None

Elevator

Direction

Attribute Noun

Noun

Entity:Physical:Object

Relation:Subclass:

Orientation

Elevator

Controller

None

Timer Attribute Noun Entity:Physical:Object ElevatorSystem None

At

Floor

Attribute Preposition

Noun

Not found

Entity:Physical:Object

Elevator

Controller

None

Button

Pressed

Operation Noun

Verb:past

Entity:Physical:Object

Entity:Physical:Process:

Motion

Elevator

Controller

BT

F

Elevator

Arrived

At

Operation Noun

Verb:past

Preposition

Entity:Physical:Object

Entity:Physical:Process:

Motion

Elevator

Controller

EL

Update

Destination

Operation Verb:present

Noun

Entity:Physical:Process:

IntentionalProcess

Miscellaneous

Relation:Destination

Elevator

Controller

FL

Get

Next

Destination

Operation Verb:present

Adjective

Noun

Entity:Physical:Process:

IntentionalProcess

Relation:Subclass:

MeetsSpatially

Miscellaneous

Relation:Destination

Elevator

Controller

F

Doors

Opened

Operation Noun

Verb:past

Entity:Physical:Object

Entity:Physical:Process:

Motion

Elevator

Controller

None

Doors

Closed

Operation Noun

Verb:past

Entity:Physical:Object

Entity:Physical:Process:

Motion

Elevator

Controller

None

table continued

136

Open

Doors

Operation Verb:present

Noun

Entity:Physical:Process:

Motion

Entity:Physical:Object

DoorController None

Close

Doors

Operation Verb:present

Noun

Entity:Physical:Process:

Motion

Entity:Physical:Object

DoorController None

Inner

Door

Opened

Operation Adjective

Noun

Verb:past

Relation:Subclass:Located

Entity:Physical:Object

Entity:Physical:Process:

Motion

DoorController None

Outer

Door

Opened

Operation

Adjective

Noun

Verb:past

Relation:Subclass:Located

Entity:Physical:Object

Entity:Physical:Process:

Motion

DoorController None

Inner

Door

Closed

Operation Adjective

Noun

Verb:past

Relation:Subclass:Located

Entity:Physical:Object

Entity:Physical:Process:

Motion

DoorController None

Outer

Door

Closed

Operation Adjective

Noun

Verb:past

Relation:Subclass:Located

Entity:Physical:Object

Entity:Physical:Process:

Motion

DoorController None

Timed

Out

Operation Noun

Adjective

Entity:Physical:Process:

IntentionalProcess

Entity:Abstract:Attribute:

RelationalAttribute

DoorController None

Door

Blocked

Operation Noun

Verb:past

Entity:Physical:Object

Entity:Physical:Process:

Motion

DoorController None

Door

Sensor

Class Noun

Noun

Entity:Physical:Object

Entity:Physical:Object

DoorController/C None

Door Class Noun Entity:Physical:Object ElevatorCar/C,

Floor/C

None

State Attribute Noun Entity:Abstract:Attribute Door None

Open Operation Verb:present Entity:Physical:Process:

Motion

Door None

Close Operation Verb:present Entity:Physical:Process:

Motion

Door None

DoorAlarm Class Noun Entity:Physical:Object Door/C None

Alarm Class Noun Entity:Physical:Object ElevatorSystem/C None

DoorAlarm Class Noun Entity:Physical:Object Alarm/G None

CarAlarm Class Noun Entity:Physical:Object Alarm/G None

Ring

Alarm

Operation Verb:present

Noun

Entity:Abstract:Attribute:

RelationalAttribute:

SoundAttribute

Entity:Physical:Object

Alarm None

Inner

Door

Class Adjective

Noun

Relation:Subclass:Located

Entity:Physical:Object

Door/G None

Outer

Door

Class Adjective

Noun

Relation:Subclass:Located

Entity:Physical:Object

Door/G None

Floor Class Noun Entity:Physical:Object ElevatorSystem/C None

Passenger Class Noun Entity:Abstract:Attribute:

RelationalAttribute:

SocialRole

Elevator System/A None

table continued

137

UpButton Class Noun Entity:Physical:Object Floor/C, None

Dpwn

Button

Class Noun Entity:Physical:Object Floor/C, None

Floor

Button

Class Noun Entity:Physical:Object ButtonPanel/C None

Open

Button

Class Noun Entity:Physical:Object ButtonPanel/C None

Close

Button

Class Noun Entity:Physical:Object ButtonPanel/C None

Alarm

Button

Class Noun Entity:Physical:Object ButtonPanel/C None

Down

Button

Class Noun Entity:Physical:Object Button/G None

Alarm

Button

Class Noun Entity:Physical:Object Button/G None

UpButton Class Noun Entity:Physical:Object CallButton/G None

Down

Button

Class Noun Entity:Physical:Object CallButton/G None

Press

Button

Operation Verb:present

Noun

Entity:Physical:Process:

Motion

Entity:Physical:Object

Button BT, F

Light Class Noun Entity:Physical:Object Button/C None

Turn

Light

On

Operation Verb:present

Noun

Adjective

Entity:Physical:Process:

Motion

Entity:Physical:Object

Miscellaneous Relation:

Capability

Button BT

Turn

Light

Off

Operation Verb:present

Noun

Adjective

Entity:Physical:Process:

Motion

Entity:Physical:Object

Miscellaneous Relation:

Capability

Button BT

Controls Association Verb:present Entity:Physical:Process:

IntentionalProcess

ElevatorSystem None

Communic-

ates

With

Association Verb:present

Adjective

Entity:Phsical:Process:

IntentionalProcess

Not available

ElevatorSystem None

Controls Association Verb:present Entity:Phsical:Process:

IntentionalProcess

ElevatorSystem None

Presses Association Verb:present Entity:Physical:Process:

Motion

ElevatorSystem None

Requests Association Verb:present Entity:Phsical:Process:

IntentionalProcess

ElevatorSystem None

Start

Operation Verb:present Entity:Physical:Process:

Motion

Timer None

Stop Operation Verb:present Entity:Physical:Process:

Motion

Timer None

138

Table 31: OSSD Relations Classification

UML

assoc.

OSSD Relation OSSD Relation Attribute OSSD

Role

OSSD

Multiplicity

unnamed

Nonassociation:General:Superclass

Nonassociation:General:Subclass

Nonassociation:General:Subclass

Nonassociation:General:Subclass

Nonassociation:General:Subclass

Nonassociation:General:Subclass

Button

CallButton

FloorButton

OpenButton

CloseButton

AlarmButton

none

none

none

none

none

none

1

1

1

1

1

1

unnamed

Nonassociation:Aggreg:Whole

Nonassociation:Aggreg:Part

Nonassociation:Aggreg:Part

Nonassociation:Aggreg:Part

Nonassociation:Aggreg:Part

ElevatorCar

InnerDoor

WeightSensor

ButtonPanel

Motor

none

none

none

none

none

1

1

1

1

1

unnamed

Nonassociation:Aggreg:Whole

Nonassociation:Aggreg:Part

Nonassociation:Aggreg:Part

Floor

OuterDoor

CallButton

none

none

none

1

1

1

unnamed

Nonassociation:Aggreg:Whole

Nonassociation:Aggreg:Part

Door

DoorSensor

none

none

1

1

unnamed

Nonassociation:Aggreg:Whole

Nonassociation:Aggreg:Part

Button

Light

none

none

1

1

Table 32: OSSD Behavior Classification
UML

Operation

Msg

Type

Message

Params

Sending Object /

OSSD Classification

Receiving Object /

OSSD Classification

MoveTo A F, D ElevatorController/

Control

ElevatorCar/Perform

MoveUp A none ElevatorCar/Control Motor/Perform

EleavtorArrived

ElevatorCar

B EL FloorSensor/Perform ElevatorCar/Monitor

MoveDown A none ElevatorCar/Control Motor/Perform

Stop A none ElevatorCar/Control Motor/Perform

Stopped B none Motor/Perform ElevatorCar/Monitor

ElevatorArrived

ElevatorController

B none ElevatorCar/Perform ElevatorController/Monitor

EnterElevato A none ElevatorController/Control Passenger/Perform

Table 33: OSSD State-based Object Classification

UML

Class

UML

Composition

SUMO/

WordNet Classification

OSSD

Behavior

OSSD

Classification

Door Part sub level Entity:Physical:Object Perform Entity

Floor Whole top level Entity:Physical:Object Perform Entity

Button Part sub level Entity:Physical:Object Perform Entity

Light Part sub level Entity:Physical:Object Perform Entity

CallButton Part sub level Entity:Physical:Object Perform Entity

UpButton Part sub level Entity:Physical:Object Perform Entity

DownButton Part sub level Entity:Physical:Object Perform Entity

AlarmButton Part sub level Entity:Physical:Object Perform Entity

OpenButton Part sub level Entity:Physical:Object Perform Entity

CloseButton Part sub level Entity:Physical:Object Perform Entity

FloorButton Part sub level Entity:Physical:Object Perform Entity

139

Table 34: MOA State, Transition, Constraints Classification Table Part 2
UML

Class

OSSD

Trans.

Num.

OSSD Transition

IncomingFrom/

OutgoingTo

OSSD

Constraint

OSSD

Constraint

Classif.

OSSD Transition

followed by

OSSD Transition

Door

Controller

11 DoorsClosed/

OpeningDoors

OpenDoors(),

(ElevatorCar.State=

stopped) ^ (CurrentFloor =

Requested Floor

Trigger,

Precondition

2 or 3

Door

Controller

12 OpeningDoors/

DoorsOpen

OuterDoorOpened() ^

InnerDoorOpened()

Trigger 4

Door

Controller

13 OpeningDoors/

ClosingDoors

CloseDoors()

[NotObstructed()]

Trigger,

Guard

5 or 6 or 7

Door

Controller

14 DoorsOpen/

ClosingDoors

CloseDoors()

[NotObstructed()]

Trigger,

Guard

5 or 6 or 7

Door

Controller

15 ClosingDoors/

OpeningDoors

OpenDoors() Trigger 2 or 3

Door

Controller

16 ClosingDoors/

OpeningDoors

[Obstructed()]

OpenDoors()

Guard,

Action

2 or 3

Door

Controller

17 ClosingDoors/

DoorsClosed

OuterDoorClosed() ^

InnerDoorClosed()

Trigger 1

Table 35: MOA Goal Classification Table
UML

UseCase

Name

OSSD Agent OSSD Entity OSSD Behavior OSSD Goal OSSD Goal

Classif.

Request

Floor

Passenger ElevatorCar,

ButtonPanel,

FloorButton

PressButton Floor

Request

Achieve

Request

Floor

Elevator

Controller

ElevatorCar,

ButtonPanel,

FloorButton,

Light

TurnLightOn Floor

Request

Achieve

Request

Floor

Elevator

Controller

ElevatorCar See sub goal DoorsClosed Achieve

Request

Floor

Elevator

Controller

ElevatorCar See sub goal Elevator

Movement

Achieve

Request

Floor

Elevator

Controller

ElevatorCar,

ButtonPanel,

FloorButton,

Light

TurnLightOff Floor

Request

Achieve

Request

Floor

none DoorController See sub goal Doors

Opened

Achieve

CloseDoors Elevator

Controller

DoorSensor See sub goal Door

Operation

Safety

Ensurement

Achieve

CloseDoors Elevator

Controller

WeightSensor See sub goal Excessive

Weight

Prevention

Achieve

CloseDoors Elevator

Controller

DoorController CloseDoors Doors

Closed

Achieve

table continued

140

CloseDoors none DoorController,

InnerDoor

CloseInnerDoor Doors

Closed

Achieve

CloseDoors none DoorController,

OuterDoor

CloseOuterDoor Doors

Closed

Achieve

Ensure Safe

Door

Operation

Elevator

Controller

DoorController Check

Obstruction

Door

Operation

Safety

Guarantee

Maintain

Ensure Safe

Door

Operation

none DoorController,

DoorSensor,

InnerDoor,

OuterDoor

DoorNot

Obstructed

Door

Operation

Safety

Guarantee

Maintain

Ensure Safe

Door

Operation

none DoorController,

DoorSensor,

InnerDoor,

OuterDoor

DoorObstructed Door

Operation

SafetyGuarantee

Maintain

Ensure Safe

Door

Operation

none DoorController,

DoorAlarm

RingAlarm Door

Operation

Safety

Guarantee

Maintain

Prevent

Exceeding

Elevator

Weight

Limit

Elevator

Controller

ElevatorCar CheckWeight Excessive

Weight

Prevention

Avoid

Prevent

Exceeding

Elevator

Weight

Limit

none ElevatorCar,

WeightSensor

NoExcess

Weight

Excessive

Weight

Prevention

Avoid

Prevent

Exceeding

Elevator

Weight

Limit

none ElevatorCar,

WeightSensor

ExcessWeight Excessive

Weight

Prevention

Avoid

Prevent

Exceeding

Elevator

Weight

Limit

none ElevatorCar,

Elevator

CarAlarm

RingAlarm Excessive

Weight

Prevention

Avoid

141

Vita

Allyson M. Hoss is a doctoral candidate at the Louisiana State University in Baton Rouge. She

received a Bachelor of Science in business administration/management information systems from the

State University of New York at Albany, and a Master of Science in computer science from the

University of Texas in Arlington. She was employed for several years as a Member of Technical

Staff at NEC America in Irving, Texas. Her current research interests include software engineering,

knowledge representation, ontologies, and the Semantic Web.

	Ontology-based methodology for error detection in software design
	Recommended Citation

	tmp.1483830367.pdf.TK2PI

