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LIST OF NOMENCLATURE
RM is some really long explanation of this value
CM is the capacity model suggested by Al-Yousef (2006)

CRM is capacitance resistivity model suggested by Sayarpour (2008)
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ABSTRACT

Reservoir characterization is one of the most important tasks that determines the recovery plan

for a specific reservoir. This process incorporates a significant amount of data acquisition and pro-

cessing to finally develop an acceptable model that matches the production history and can forecast

the future production behavior. The model also should be able to adapt to changes along the way:

adding or removing producers or injectors, changing the injection pattern, recompletions and con-

verting wells are all examples of possible changes that are common in the oil and gas industry.

These goals will not be realistic if an approximate understanding of the subsurface structures and

heterogeneities in the system are not understood. The more accurate the understanding, the less

effort and cost will be spent on secondary or tertiary recovery operations, since the ultimate goal

is maximization of recovery at minimal operating costs. In this thesis the focus will be on the

simple models and three of the most common simple models were investigated: the Resistance

Model (RM) by Albertoni et al (2003), the Capacitance Model (CM) by Al-Yousif (2006), the

Capacitance-Resistance Model (CRM) by Sayarpuor (2008). These models were coded using R-

project and Matlabr, and these codes were generalized to handle any case size (i.e. number of

injectors and producers). Both R-Project and Matlabr were found to be capable of solving RM

problems. Several optimization algorithms were tested in R-project and Matlabr to solve the CM

and CRM non-linear optimization problems.

Only the Matlabr solution solved these models efficiently. To test these implementations, data

for two synthetic cases were used. A 5×4 and 16×25 i.e. (producers×injectors) and the results

were discussed. The issue of having missing or corrupted data in the field data was studied. The

maximum acceptable rate of missing data was found to be 6%. Having more than this amount

of missing data resulted in solutions that were unacceptable compared to complete data results.

To deal with the missing data, two options were evaluated: truncate the data, which means less

information for the model, or correctly estimate the missing value. The RM model was utilized

xiii



in the process of estimating the missing values. Two cases: were tested: 15% and 30% of missing

data rates respectively. The lowest value of R2 obtained between the good dataset and the missing

dataset was ∼ 0.7. Finally, a field case study was performed which had 189 producers and 65

injectors.
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CHAPTER 1
INTRODUCTION

The finite difference reservoir simulation model is the main tool that reservoir engineers use

to develop an understanding of the reservoir. There are many black oil simulators in the market.

All share limitations that make the process of quick reservoir model inference almost impossible

without significant effort. Some of these limitations are:

• The need for large computational power and storage space for realistic problems.

• Simulation models require data preparation effort to build the model in addition to the time

required to run field-scale simulations.

• The need for highly trained individuals to perform the tasks of model creation, interpretation,

updating and prediction.

For many problems, full-scale reservoir characterization and modeling is unnecessary and sim-

ple models are sufficient to infer flow characteristics. There are several simple models that have

been proposed. For the resistance model (RM), injection and production rates and well locations

are all the data that is needed to understand flow behavior trends in the reservoir and connectivity

between injector/producer pairs (Albertoni et al., 2003). The Capacitance Model (CM) proposed

by Al-Yousef (2006) added knowledge of bottomhole pressures (BHPs) to the required data. The

whole approach in this model was different from what Albertoni et al. (2003) did, as he started

with a simple mass balance over the drained volume (Vp) between each injector/producer pair in

the reservoir. The output of this model was a set of values that represent the time constants (τ)

and the connectivity (λ) for each injector/producer pair. Sayarpour (2008) presented an analyti-

cal solution to the continuity equation using superposition in time and space and called this the

Capacitance-Resistance Model (CRM). The model output was also a set of variables for each in-

jector/producer pair. The difference here is the objective function used which will be discussed

later. Simple models provide quick understanding to reservoir properties and guide the process
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of performance optimization. In this work, these different types of simplified models will be de-

veloped to evaluate their use for reservoir characterization problems and to explore whether these

tools can simplify or improve the modeling process or model results either through less user in-

teraction or faster model performance. This thesis will first discuss the different modeling tools

to be evaluated. Then an implementation of the models will be developed followed by proposed

enhancements. Results from these models will be presented and further work will be proposed.

Chapter 3 includes the coding work that has been done using Matlabr and R-project program-

ming languages. Codes were implemented to solve the RM, CM, and CRM models and to represent

the results. These codes were generalized to handle any case size with as little user input as possi-

ble. Several issues in these two coding platforms were identified and a comparison has been done

for the two implementations. Chapter 4 presents two synthetic field cases from which data was

used to run the RM, CM, and CRM implementations. The issue of missing and corrupted data

has been studied in Chapter 5, where different patterns and scenarios of missing data have been

simulated. Several recommendations will be given about the maximum amount of missing data

to work with. A complete decision procedure was implemented in Matlabr to handle different

missing data scenarios and patterns. Chapter 6 presents a field case study, were the data from 189

producers and 65 injectors is presented. The use of the RM model resulted in about 49% of the

injector-producer pairs having unphysical connectivity values and the approach that was suggested

by Albertoni et al. (2003) to handle this issue was implemented in addition to CM and CRM mod-

els. Several conclusions were made and an integrated procedure was developed that handles the

missing and corrupted data automatically, runs the previously mentioned models and presents the

data.
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CHAPTER 2
LITERATURE SURVEY
2.1 Resistance model (RM)

Albertoni et al (2003) presented the resistance model (RM) where multivariate correlation be-

tween the injection and production rates was used to infer injection well influences on production

well behavior. The approach of the work was to assume that the production from each well was a

linear combination of the injection from each injector. Thus this is a multivariable linear regression

between injection rates and the production rates using the model:

q̂ j = βo j +
I

∑
i=1

βi jii + ε (2.1)

where βo j represents the primary production for each well in the case where total injection and total

production are not balanced (equal). This term is omitted in cases where injection and production

rates are balanced. Minimizing the squared differences between the calculated production rates, q̂ j

and observed production rates is how the values of βi j for each injector-producer pair are obtained.
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(2.2)

where the σ2
11 . . .σ

2
II are the injector-injector covariance values and the σ2

1 j . . .σ
2
I j are the injector-

producer covariance values.

They proposed the concept of diffusivity filters to account for any time lag between the injector-

producer pairs in field applications. The generic steps of the RM are:

• Acquire and prepare the injection and the production data.

• Check the records for any missing or zero values.
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• Limit the time frame for application of the technique to where there are no missing data or

zero injection rate values (this thesis will present an approach for handling missing data).

• Compute the injector-injector covariance matrix and injector-producer covariance vector ob-

taining values for well pair connectivity values βi j to solve Eqn 2.1.

• Plot the predicted values and calculate the value of the residual squared errors, R2.

2.1.1 Diffusivity filters

The development of diffusivity filters (DF) was proposed to account for any time lag between

when the fluid is injected and when it is produced caused by the effect of permeability, porosity

and the existence of different fluids with different compressibility and viscosity. The main task of

the DF is to modify the injection rate to be an effective or time-shifted injection rate. All these

factors were grouped into one value called the diffusivity constant.

η =
k

φµCt
=

1
d

(2.3)

Albertoni et al. (2003) called the reciprocal of the diffusivity constant the dissipation value (d).

2.1.2 Mathematical development

Albertoni (2002) presented the following mathematical development for the diffusivity filters.

Pressure at any point of the reservoir caused by a change in an injection rate is given by:

∆P =C1×Ei

(
−d

r2

t

)
(2.4)

Using the superposition principle:

∆P =


C1×Ei

(
−d r2

t

)
if t ≤ 1

C1×
[
Ei

(
−d r2

t

)
−Ei

(
−d r2

t−1

)]
if t > 1

(2.5)

where Ei is the exponential integral function, C1 is a constant, r is the distance from the point to

the injector and d is the dissipation term described above. Utilizing the productivity index equation

(Muskat, 1937):

q = J(P̄−Pw f ) (2.6)
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Eq. 2.7 can be written as:

∆q =


C3×Ei

(
−d r2

t

)
if t ≤ 1

C3×
[
Ei

(
−d r2

t

)
−Ei

(
−d r2

t−1

)]
if t > 1

(2.7)

and the (filtered) injection will be given by:

ici (t) =
I

∑
n=0

α
n
ikii(t−n) (2.8)

where αn
ik terms are given by:

α
n
i j =

t=n+1∫
t=n

∆qdt

t=12∫
t=0

∆qdt

(2.9)

and hence the calculated production is given by:

q̂ j(t) =
I

∑
i=1

λi jici (t) (2.10)

2.2 Capacitance model (CM)

One issue with the RM is the difference between the length of the diffusivity filters and the

time step. In some cases the diffusivity filter may be less than the time step, and will not add any

effect on the injection schedule. There are several works and versions of the capacitance model.

Al-Yousef (2006) replaced the diffusivity filters in the RM model with a time constant. The CM

is a mass balance over the drained pore volume, Vp, for each injector-producer well pair. Starting

with the mass balance Al-Yousef (2006) presented this equation as:

CtVp
d p̄
dt

= i(t)−q(t) (2.11)

where Ct and Vp represent the total compressibility and the drained pore volume respectively.

When the productivity equation (Eq. 2.6) is substituted into 2.11 a new constant is introduced.

This constant is τ =
CtVp

J and the revised form of Eqn 2.11 will be:

τ
d p̄
dt

+q(t) = i(t)− τJ
d pw f

dt
(2.12)
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Integrating this equation yields:

q(t) = q(to)e
−(t−to)

τ +
1
τ

e
−(t)

τ

ζ=t∫
ζ=to

e
ζ

τ i(ζ)dζ+ J

pw f (to)e
−(t−to)

τ − pw f (to)+ e
−(t−to)

τ

ζ=t∫
ζ=to

pw f (ζ)dζ


(2.13)

where the first part of Eq. 2.13 represents the contribution of the primary production to the total

production, the integral accounts for the production that comes from the injection and the term in

brackets accounts for the effects of producer bottomhole pressure changes on the production. The

final discrete model for the system will be:

q j(n) = λpq j(n) e
−(t−to)

τp j +
I

∑
i=1

i
′
i(n)λi j +ν j

[
pw f (n) e

−(t−to)
τp − pw f (n)+ p

′
w f (n)

]
j

(2.14)

where:

i
′
i(n) =

m=n

∑
m=no

∆n
τi j

e
m−n
τi j ii(m) (2.15)

p
′
w f j(n) =

m=n

∑
m=no

∆n
τi j

e
m−n
τk j pw f j(m) (2.16)

So the equations above introduces the following unknowns:

1. λi j: refers to the connectivity between each injector i and producer j; initially this is unknown

and it will be initialized by using the inverse of the distance between injector i and producer

j i.e. λi j =
1

distance(i, j) . It is an I× J matrix (where I is the number of the injectors and J is

the number of the producers) as suggested by Sayarpour (2008).

2. τi j: are the time constants for each injector i and producer j; these are also initially unknown

and will be initialized using the method suggested by Sayarpour (2008) described in section

3.2.4. This is also an I× J matrix.

3. ν j: are coefficients that account for the effect of pressure changes in producers; initially they

are unknown and they will be obtained from a matrix multiplication that will be presented in

Ch. 3 (Eq. 3.1).

4. τk j: are the producer-producer time constants for each producer (Eq 2.16). Initially they are

unknown and will be initialized in the same way as τi j; this is a J× J matrix.
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5. τp j: are the time constants for each producer that accounts for the primary production. Ini-

tially the values are unknown and will be initialized in the same way τi j. This is a vector

with J elements.

6. λp: refers to the primary production contribution to the total production. Initially unknown

and they will be initialized by taking values less than the minimum value of the λ values

obtained in step 1. This is also a vector with J elements.

7. no: refers to the first time step that will be used as the primary production contribution to

the total production. Therefor q j(no) is the first flow rate value in the time sequence for each

well.

Figure 2.1 shows these parameters and the relation between them in the control volume between

each injector and producer pair. The solution of the set of equations given by 2.14, 2.15 and 2.16

is through nonlinear optimization to minimize the squared difference between the observed flow

rates and calculated flow rates for each well.

MIN

[
N

∑
n−1

(
q j(n)− q̂ j(n)

)2

]
(2.17)

Figure 2.1: Illustrative diagram shows the main parameters of the CM Model.
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2.3 Capacitance Resistance Model (CRM)

Sayarpour (2008) and Sayarpour et al. (2009a) presented analytical solutions for the continuity

equation using superposition in time and space and introduced three cases for the control volume

drained: 1) for the entire reservoir volume (CRMT); 2) for the volume drained by each producer

(CRMP); 3) for the volume drained by each producer and injector pair (CRMIP). The CRM as

presented by Sayarpour (2008) minimizes the Average Relative Error or Mean Average Error (ARE

or MAE) as its objective function. The ARE (or MAE) is defined as:

ARE = MAE = min


Ndata

∑
n=1

∣∣∣Qobs−Qest
Qobs

∣∣∣
Ndata

×100

 (2.18)

The MAE measures the absolute value of the errors between the simulated and the calculated rates

and averages them. It has been reported to be the most suitable to time-related data and continuous

variables. Also it is a linear score which treats all errors with equal weight. In other words it is

considered as a natural measure to the error (Willmott and Masuura, 2005). The mean square error

is defined as:

MSE =
Ndata

∑
n=1

(Qobs−Qest)
2

n
×100 (2.19)

In this work these two criteria will be compared when used for the CM and CRM optimization

routines. In addition only CRMT and CRMIP will be implemented since CRMP was replaced with

CRMIP in Sayarpour (2008).

2.3.1 CRMT (tank model)

In the tank representation the producers and the injectors are summed into one pseudo-injector

and one pseudo-producer. The governing equation is written in terms of the field (summed) param-

eters.

qF(tk) = qF(tk−1)e
−∆tk

τF +

[
fi jIk

F

(
1− e

∆tk
τF

)]
(2.20)

An MAE objective function is written to minimize the difference between the actual field rate at

a given time step and the rate computed using Eq. 2.20 to obtain the field time constant, τF . This
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value will be used later to initialize the injector-producer model i.e. the CRMIP values for the time

constants.

2.3.2 CRMIP (Injector, producer model)

For the CRMIP model, production at any time can be written as:

q̂ j(tn) = q j(t0)e
− tn−t0

τi j +
Nin j

∑
i=1

[
fi j

(
ii(tn)− e

∆t
τi j ii(tn−1)

)]
− τi j

(
1− e

∆tn
τi j

)[Nin j

∑
i=1

fi j
∆ini
∆tn

+ Ji
∆pw f , j

∆tn

]
(2.21)

where fi j represents the fraction of injection that is directed from injector i toward each producer

at steady-state, i.e it is the percentage that the i(th) injector contributes towards the j(th) producer.

The minimization algorithm to obtain the unknowns for this model will be presented in section 3.2

2.3.3 Modifications and similar models

There have also been some modifications to these simple models and especially to the CRM

model. Liang et al. (2007) introduced an optimization model along with a power law model that

accounts for oil production in terms of the cumulative injected water. A non-linear optimization

method was then presented to maximize the produced oil and predict the future production.

Tiab and Dinh (2008) introduced a different approach for these models. By changing the per-

meability at the well pairs and holding injection well permeability values constant, a match can

be found between the actual and modeled rates. The main difference here is that Tiab and Dinh

(2008) used the bottomhole pressure to obtain the production well permeability values. Another

assumption made was that the injection should reach pseudo-steady state at the end of each time

step.

Weber et al. (2009) used the CRM model to maximize the net production value and to optimize

the inje*ction schedule. They suggested identifying the data points within more than two standard

deviations as outliers. The method of compensating the outliers is to replace it with the average of

five consecutive data points.
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2.4 Current work

A CRM model code has been implemented as a part of this project. The code developed and

results will be presented in chapters 3 and 4. Two minimization methods were used: MAE (Mean

Average Error) and a traditional minimization based on the mean square error, MSE. In this ap-

proach the weights of the differences will be squared, so small values will be much smaller and

vice versa. Thus the MSE is a more stringent measure for the optimization. From Figure 2.2 we can

see that the MSE takes more iterations to obtain at least the same value of R2 than the MAE. These

two approaches may have an impact on the optimization process speed. Thus both approaches were

tried in this work and the results are reported in terms of the number of the iterations to obtain the

same residual error. Both methods took almost the same time to run but the number of iterations in

the MSE is higher, thus the MAE converges faster.

Figure 2.2: The Difference in number of iterations between the MSE and the MAE for the CRM
method
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CHAPTER 3
CODING WORK AND PRELIMINARY
RESULTS

3.1 RM coding work (R and Matlabr )

The RM was programmed using the R-Statistical Package and the code allows a user-defined

number of time periods as well as a user-defined number of producers and injectors in the model.

All results matched values provided in Albertoni et al. (2003) for similar cases and an example is

shown in Figure 3.1. Utilizing R provided a fast and efficient method for obtaining these results

outside the spreadsheet options typically used. The complete R- code for implementation of RM is

shown below:

PRD=read.csv(file="PRD.csv", header=F)

INJ=read.csv(file="INJ.csv",header=F)

INJCOV=matrix(nrow=ncol(INJ), ncol=ncol(INJ))

for (i in 1:ncol(INJCOV))

for (j in 1:ncol(INJCOV))

{INJCOV[i,j]=cov(x=INJ[,i],y=INJ[,j])}

INJPRCOV=matrix(nrow=ncol(INJ),ncol=ncol(PRD))

for (j in 1:ncol(INJPRCOV))

for (i in 1:nrow (INJPRCOV)) {INJPRCOV[i,j]=cov(x=INJ[,i],y=PRD[,j]);3

INJPRCOV[is.na(INJPRCOV)] <- 0}

for (j in 1:ncol(BETAS.NOMISS)) {BETAS.NOMISS[,j]=INJPRCOV[,j]%*%solve(INJCOV)}

write.csv(BETAS.NOMISS, file="BETAS.csv")

A sample of the input data format and the output format is shown in section 4.2. The β values for

each well are shown in Figure 3.1 and show a good match between the R code and what was found

in an Excel-spreadsheet provided by Albertoni (2006). The running time was∼ .14-.15 seconds for
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the case of 16 producers and 25 injectors. The code is generalized to deal with any case size with no

modifications needed. Cases with larger numbers of producers and injectors have been tested. Run

times are shown in Figure. 3.2 and show that the running time is relatively fast. Note that the biggest

time sink is in data preparation and cleaning; the data needs to be in a specific format and the data

needs to be checked for any missing values as they will cause problems obtaining the solution. This

data preparation step needs to be done regardless of the tool being used. A technique to account

for missing data will be described as part of this thesis. Exactly equal injection and production

rates cause singular matrices. To prevent this from occurring data records can be altered by adding

a small amount of white noise to each record that will prevent the matrices from approaching

singularity as suggested by Al-Yousef (2006). As a result it can be concluded that using R-code to

process the RM method is suitable in terms of the processing time and the only time sink will be

the data preparing and processing before running.

Figure 3.1: Validation between this work using R-project and Albertoni (2003) work in Excel
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Figure 3.2: The relationship between the RM running time in R and the number of the wells

3.2 Coding work for both the CRM and CM

3.2.1 Coding work for both the CRM and CM using R-project

The system of equations to obtain the unknown parameters in Eq. 2.18 for well j is shown in Eqn

3.1. There are I+J+1 (I=No. of injectors, J=No. of producers) variables in the unknown vector for

this non-linear problem. The unknowns vector shown is λp j, λi j and νk j and there are unknowns

that influence the covariance values in the matrix and in the righthand side vector. These are τp j, τi j

and τk j 
σpp CT

pp−I CT
pp−BHP

Cpp−I CII CI−BHP

Cpp−BHP CT
I−BHP CBHP−BHP




λp

λi j

νk j

=


σpp−q j

CI−q j

CBHP−q j

 (3.1)

The variables in Eq. 3.1 are:

• σpp: is the primary production variance a single value computed for each producer. The

primary production vector values can be obtained using:

λp jq j(n0) e
−(t−to)

τp j (3.2)

and the initial estimates for the values for λp j, τp j were explained in section 2.2.
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• Cpp−I: is the covariance between the filtered injection values calculated using Eq. 2.15 and

the primary production values (Eq. 3.2. There are I values in this vector.

• Cpp−BHP: is the covariance between the bottomhole pressure term in Eq. 2.16 and the pri-

mary production for producer j. There are J values in this vector.

• CII is the filtered injection covariance matrix, which can be calculated using Eq. 2.15. There

are I×I values in this matrix.

• CI−BHP: is the covariance between the filtered injection values (Eq. 2.15) and filtered bot-

tomhole pressure values (Eq. 2.16). There are I×J values in this matrix.

• CBHP−BHP: is the variance of the filtered bottomhole pressure values for each producer (Eq.

2.16) and there are J×J values in this matrix.

• σpp−q j : is the covariance between the primary production value and the production values

for producer j. This is a single value.

• CI−q j : is the covariance between the filtered injection values (Eq. 2.15) with the production

values for producer j. There are I values in this vector.

• CBHP−q j : is the covariance of the filtered bottomhole pressure (Eq. 2.16) and the production

values for producer j. There are J values in this vector.

The coefficient vector in the matrix was explained in section 2.2. The above terms need to be

assembled into one master matrix. Figure. 3.3 shows the final master matrix with the expected

dimensions.
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Figure 3.3: The final matrix for the CM model

A flowchart of the optimization process is shown in Figure. 3.4 and this flowchart is how the code

was implemented in R-Project. Both CRM and CM were also coded using the R-project statistical

package. The first case tested was a synthetic case with five injectors and four producers where

pressure, injection and production data for 100 time intervals was generated using the IMEX black

oil reservoir simulator. The optimization algorithm that was used was BFGS (Broyden-Fletcher-

Goldfarb-Shanno) which is an approximation for Newton’s method (R-documentation, 2013). The

following issues were observed:

• The RM matrix calculations were reasonably fast and the results matched the ones calculated

using an Excel sheet from Albertoni et al. (2003).

• The CM optimization gave a good match between the observed and the calculated values of

the production values i.e. R2=.98. Figure 3.5 shows the optimization results plotted against

the actual production along with the R2 value calculated.
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Figure 3.4: The flow chart of the procedure in R Optimization
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Figure 3.5: Optimization results plotted against the real production along with the R2 value calcu-
lated for well no. 1

3.2.2 Coding work for both the CRM and CM using Matlabr

The R-package was used to perform the CRM optimization but took an extraordinary amount of

time to converge: a session for 5 injectors and 4 producers took almost an hour to get to a minimum

value of the objective function (MSE ≤ tol). Conclusions from the CM and CRM models coded

using R is that the data preparation and cleaning effort will be the same as for the RM model

but the main issue is the time to reach convergence. Figure. 3.6 shows a comparison between the

CRM, CM and RM in terms of running time in R. Several optimization algorithms were tested to

try to improve the convergence speed (BFGS, Nelde-Mead, L-BFGS-B) in R and they gave similar

results in terms of running time. Consultants from the LSU Statistics Department stated that the

R-package lacks the computational power required for optimization processes because it is mainly

designed to handle statistical problems. The conclusion is that it is not recommended to implement

the CRM or CM methods using the available R-project optimization packages as these packages

are not optimized enough to handle such optimization problems. This leads to the conclusion that

R-project is suitable to implement the RM models only.
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Figure 3.6: A comparison between CRM, CM and RM models running time in R

3.2.3 Matlabr optimization toolboxr work

The Optimization toolboxr in Matlabr was utilized to run the same optimization problem and

this implementation reduced the time needed to reach an optimum value of the objective function

significantly. Tables 3.1 and 3.2 show comments comparing the R-Project code and Matlabr for

CRM, CM, and RM implementations in terms of running time and implementation effort. Figure

3.7 shows the optimization box window from the Matlabr interface. The important inputs have

been highlighted and are explained as follows:

1. Solver: Several solvers can be found in Matlabr (depends on the version of the software).

The solver that was used in this work was Constrained nonlinear minimization as the problem

is a constrained minimization (constraints in λi j and τi j).

2. Algorithm: The minimization algorithms can be selected from the panel shown. The selec-

tion criteria in general depends on whether the problem derivative is provided or not.
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Figure 3.7: Matlab optimization toolbox r main entries for the CRM, CM model

3. Objective function: The function that needs to be optimized. The way this function should

be entered is shown in Figure. 3.8 for the CRM.

Figure 3.8: Matlabr optimization toolboxr objective function syntax entry for the CRM optimiza-
tion
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4. Start point: The starting (initial) values of the optimization vector or scalar.

5. Bounds: The lower and upper bounds for the unknown values are to be entered here. In the

case of the λi j values, the lower bounds are 0 and the upper bounds should be 1. For the τi j

values, a lower bound of 0 is all that is required.

6. Max iteration: The maximum number of iterations is set to 400 by default.

7. X tolerance: Specifies the termination tolerance for X (X is the final values of the optimiza-

tion vector, Eq. 2.18)

8. Specifies the termination tolerance for the objective function value (Eq. 2.18)

Items 6, 7 and 8 represent the stopping criteria that Matlabr uses for the optimization of the

objective function (Eq. 2.18). The flowchart for these steps is shown in Figure. 3.11.

The only difference in the CM method syntax is the name of the function that Matlabr calls.

Figure. 3.9 shows the syntax for the CM method.

Figure 3.9: Matlabr optimization toolboxr objective function syntax entry for the CM optimiza-
tion

Figure. 3.10 shows the results for the same problem from section 3.5 (4 producer× 5 injector

) graphically. The value for R2 is slightly smaller (in R yielded R2 = .998 while Matlabr

yielded 0.996) and it is believed that the decrement is not significant comparing with the

difference in the time needed to perform the optimization. Increasing the maximum iterations

function iteration to more than 400 might improve the value of R2.
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Figure 3.10: Results of Matlabr optimization comparing with R-Proj, Qobs.
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Figure 3.11: Matlabr Optimization toolbox implementation flowchart for the CRM and CM mod-
els
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Table 3.1: R-Project usage observations

CM, CRM Implementation Iteration Function
Evaluations

Running
time

RM Implementation Running
time

One time implementation and the code
was generalized. More than one non-
linear optimization method was tested
(Optim, Optimx, nlm) and they resulted
good matches but with long run times.
In this implementation we have two time
sinks, the data preparation and cleaning
and the optimization time required.

120 130 60 min Less effort than CRM and CM. No opti-
mization tools need to be used. The code
is generalized to handle any case size.
The only time sink is the data cleaning
and preparation and handling the missing
data. The run times are much shorter than
the CRM, CM.

1-2 mins
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Table 3.2: Matlabr usage observations

CM and CRM Implementation Iteration Function
Evaluations

Running
time

RM Implementation Running
time

A generalized code to handle any case
size. The Optimization toolboxr was
used. The functions fmincon and fminunc
were tested, run times were significantly
less than R-Project implementation with
more function evaluations. Results were
used to predict the same values and yield
good correlation.

94 4000 10 min No issues with RM in R-Project. Matlabr

code was generalized. The same data
preparation effort is required. The only
difference here is that Matlabr offers
many aids to represent the data and is
more flexible to manipulate the variable
values. The run times were 10% shorter
than R- Project

1-2 mins
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3.2.4 The mechanics of picking the starting values for the time constants

The optimization process for both the CM and the CRM is sensitive to the starting values for

the time constants in terms of the function convergence speed. Thus there should be a reasonable

guess that can save the process time and memory needs. For the CRM model, Sayarpour (2008)

suggested that the production and injection data should be added into one pseudo-producer and one

pseudo-injector (a tank model) and then the CRM model should be run to obtain an estimate of the

time constants. In Figure. 3.12 the time constants are shown for the case of the tank model as well

as the final values for the time constants obtained after convergence. Also shown is the tank model

values divided by the number of injector-producer pairs. The figure shows that the usage of the

tank model (CRMT) to obtain the starting values of the time constants provides an upper limit for

the converged time constants. Dividing the tank model value by the number of injector-producer

pairs provides a lower limit. For further investigation the relation between the initial guess of the

time constant and the final error has been investigated by taking multiple values and computing the

corresponding error. It has been found that there is an optimum value that yielded the least error

for this problem. Figure 3.13 shows this trend and the optimum value location. For balanced water

flooding the time constant value usually is low as will be explained in Chapter 4. For a better start

value for the time constants, it is suggested that the maximum value to start with is:

τinitial =
Lower bound +U pper bound

4
(3.3)
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Figure 3.12: The upper and lower limits for the time constants for the case of the CRMT (tank
model)

Figure 3.13: Effect of the starting value for the time constant on the final error SSE

3.2.5 Issues with using Matlabr optimization toolboxr to solve CRM, CM models

Although the procedure of using the optimization toolboxr in Matlabr yielded good results,

some values for the injector-producer connectivity were found to be either negative or greater than

one and some values of the time constants were found to be negative. These values do not have
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physical meaning. This is another motivation that it could be a good idea to implement a different

procedure to solve the problem. But first it is important to test whether there are local minima

that the connectivity values or the time constant values could converge to. In order to answer this

question the value for the SSE (Sum of Squared Errors) of the function as λi j for one injector-

producer was increased from 0 to 1 (holding other parameters constant). Figure 3.14 shows the

that there is only one value (for this problem) that the function converges to. Furthermore, the

value for the τi j vs. SSE was investigated (holding other parameters constant). The result is shown

in Figure 3.15 where there is again a single minima.

The next step was to implement a procedure for an appropriate solution sequence. The suggested

procedure is shown in Figure 3.17 for the CM and the steps are as follows:

1. Data input (injection and production rates, wells locations, pressure data if available)

2. Data cleaning and preparation. Start with production well 1.

3. Guess values for τpi, τi j and τk j (Use Eq. 3.3)

4. Calculate the initial values for λi j and λp j using Eq. 3.1

5. Predict the production rates from steps 3 and 4

6. Calculate a value for the SSE

7. Do one λi j increment using λi j = λi j +SI×∆λi j (SI is a sign changing factor default=either

1 or −1)

8. Predict the production rates and the new values for λi j using the time constants from step 3

9. Calculate a new value for SSE

10. If the SSE from step 9 is greater than the SSE from step 6 there will be a sign change in the

calculation of λi j (SI=−SI)

11. Iterate between steps 7 and 10 until the difference between the new value for the SSE and

the old value for the SSE is less than or equal to the tolerance (10−6 for this work)

12. The value for this SSE is saved for further comparisons

13. Increase the values for τi j by a factor (0.1 for the results presented here)

14. Repeat steps 4-12
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15. Compare the SSE value from steps 9 and 12 until the difference is less than the tolerance

level.

16. Again save the SSE value

17. Increase τk j by a factor and perform steps 4-16 until the difference in SSE values between

steps 9 and 16 is less than the tolerance.

18. Save the SSE value

19. Increase τp j by a factor and perform steps 4-17 until the difference between SSE values is

less than the tolerance

20. Repeat steps 3-19 for each injector

21. Calculate the production rates and R2 values for the current well

22. Repeat steps 3-21 for each production well

23. Data representation (well connectivity values graph and the predicted values plot matrix)

Figure 3.14: The function convergence with the change of connectivity value λi j for well no. 1
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Figure 3.15: The function convergence with the change of time constant τi j for well no. 1

A similar procedure for each producer has been implemented to solve the CRM model and is

shown in Fig. 3.16 with some differences, The steps are:

1. Data input

2. Data cleaning and preparing. Start with production well 1

3. Guess τi j values (using Eq. 3.3) and guess fi j using the reciprocal of the distance between

producer j and injector i as suggested by Sayarpour (2008) i.e. fi j =
1

distance(i, j)

4. Predict the production values using Eq 2.21

5. Calculate a value for the SSE and store it for further comparison

6. Increase fi j values by a factor (0.01).

7. Calculate a new value for SSE and store it for further comparison

8. if the new value of SSE is greater than the old value of the SSE there will be a sign change

(SI=-SI)

9. Save the last computed SSE for further comparison

10. Repeat steps 5-8 until the new value of SSE - the old value of SSE is less than or equal to

the tolerance of SSE

11. Increase τi j values by a factor (0.1).
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12. Predict the production values

13. Calculate the new SSE and compare it with the stored SSE from step 5

14. If the new value of SSE is greater than the old value of the SSE there will be a sign change

(SI= –SI)

15. Repeat steps 11-13 until the new value of SSE - the old value of SSE is less than or equal to

the tolerance.

16. Repeat steps 3-15 for each production well

17. Data representation (Production plots matrices)
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Figure 3.16: The CRM solution routine flow chart
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Figure 3.17: The CM solution routine flow chart
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3.2.6 The effect of time constant (τi j) on production rates estimation

The time constant accounts for the pressure dissipation until a response is seen in a production

well. So from the equation of the time constant, τ =
CtVp

J a large value for time constant would be

expected when the system is highly compressible (high GOR), when there is a large pore volume

or for low permeability formations i.e. low J. Also a high time constant and pressure dissipation

occurs when producers are far from injectors. Figure 3.18 shows the relationship between an as-

sumed time constant for a well (τi j) and the predicted production rate curve assuming fixed values

for the other unknowns. It can bee seen that the larger the time constant, the smoother and more

dampened the predicted production will be.

Figure 3.18: The effect of the time constant on the estimated production rate for one well

3.2.7 The effect of the connectivity (λi j) on the estimated production rate

Connectivity accounts for the amount of the injection that goes toward, or contributes to the

production (Albertoni et al., 2003). The larger the connectivity, the more the production rate is

influenced by a particular injector, and the less magnitude difference there is between the injection
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and production curves. The effect of the assumed connectivity values for fixed values of the time

constants has been calculated in a 5×4 case (Figure 3.19). It can be seen that as the connectivity

value increases, the curve will be shifted up to match the actual production curve. For this case then,

almost all of the injection is going toward this producer(λi j ' 1). Variations in the curves were very

similar with very little dampening. This indicates that τi j values are small and the optimization is

most influenced by the connectivity values.

Figure 3.19: Connectivity effect on the estimated production rate for pseudo-producer/pseudo-
injector

3.2.8 Graphical representation for connectivity values

The code was extended to be capable of superimposing the values of the connectivity on a layout

of all the wells in order to have a graphical illustration for the connectivity trends. This routine has

been automated and generalized to work with and adapt to any case size. Figure 3.20 shows a

sample representation for this feature in the code, where the arrow direction refers to the relation

between the current injector and the producer that it is pointing to, and the arrow length refers to the

magnitude of the connectivity value in that direction. This method of representation has been used
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by Albertoni et al. (2003), Al-Yousif (2006), Sayarpour (2008), Ogunyomi (2009) and Gherabati

et al. (2012).

Figure 3.20: Graphical representation of the connectivity values for the CRM model

3.3 Summary

Coding work has been done for all the three models using two coding environments R and

Matlab r. The resulting connectivity values λi j , and the time constants τi j were used calculate

production data for the same time interval and comparisons were made for both R and Matlab r.

In the following sections detailed observations will be made for each method.

3.3.1 Ease of implementation

RM Model : As mentioned previously the RM model is a multivariate linear regression model

(Albertoni et al.,2003). The implementation was simple and easy in both R and Matlab; not that

much of effort was needed to develop a fully generalized and automated system that handles all

the cases and produces a good graphical representation for most cases.
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CM : The implementation of the CM model was more complicated compared to RM. There are

several covariance matrices that need to be coded and these matrices were combined into a master

matrix that is needed to calculate the required parameters. The optimization process was also long

and a bit complicated due to the non-linear nature of the function. Also collecting and sorting out

the results was not as direct as for RM.

CRM : The CRM model falls between the CM and the RM in terms of ease of implementation.

Because the method to initialize the solution is by inverting the distances, there is no need to

calculate the covariance matrices. The optimization was easier than the CM model. Although the

function is also non-linear, the terms were less complicated than CM.

3.3.2 Running time

RM : The running time in R and Matlabr for the RM model was not an issue as was explained

in section 3.1. The model is a linear model so there is no iteration or substitution.

CM, CRM : Using R, the running time for the CM model was excessive. Although many sce-

narios and methods were tested to speed the process, run time was still long. One reason is that the

procedure has more variables than RM. Another is that these are non-linear problems that contains

iterations and substitution finally and the most important thing is that R is not optimized to handle

such high computational demand problems (as per the Faculty of Statistics Department at LSU).

In Matlabr the time was significantly less than in R using the optimization toolboxr . Even when

a simple iteration procedure was used, the run time was much less than in R.
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CHAPTER 4
SYNTHETIC CASE APPLICATIONS

The process of code implementation for the three models (RM, CM, and CRM) was described

in Chapter 3. Recommendations were made for each coding platform and each model in addition

to investigation of some parameter effects. In this chapter, the implemented code will be applied

to synthetic case that was described by Albertoni et al. (2003) and others to measure the interwell

connectivity values using these three models. Usually in these synthetic case the desire is to test the

model with basic settings without any real complications. A homogeneous, isotropic model will

be introduced to infer the values of these parameters. The procedure used was that part of the data

was used to obtain the connectivity values and the values were then used to predict the production

response.

4.1 Application of RM model

4.1.1 4×5 Case

In this case 4 producers and 5 injectors were positioned in an inverted 5-spot injection pattern

which is the same as case has been described by Albertoni et al. (2003). Using the CMG IMEX

reservoir simulator, production and injection data were created to have a bit of fluctuation in order

for these models to work correctly. Also the model is a balanced injection case whereby the total

injection rate is equal to the total production rate with no losses and no aquifer support. This

means that the balanced RM model can be used (Albertoni et al., 2003). The well pattern is shown

in Figure 4.1. Boundary conditions are known with variable injection rates for the injection wells

and constant bottomhole pressure constraints for the producers. Thus there are known production

rates with no changes (adding, removing, or re-completion of producers) during the process of data

acquisition. For synthetic data, the data cleaning process is formatting the data from the numerical
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simulator for use in the simplified methods. The values for the connectivity obtained from the RM

model are listed in Table 4.1 and shown in Figure 4.1:

Figure 4.1: Connectivity values representation for the RM model

Table 4.1: λi j values for the RM model

P01 P02 P03 P04

I01 0.2961 0.2958 0.1534 0.153
I02 0.3032 0.1593 0.303 0.1591
I03 0.2474 0.2454 0.2442 0.2423
I04 0.146 0.2959 0.1466 0.2965
I05 0.1701 0.1682 0.3143 0.3124

These results were used to predict the production history for the four producers and the R2 values

were all greater than 0.98. Figures 4.2 and 4.3 show simulated and calculated total field production

rates respectively. Both the connectivity values and the prediction of rates agree with the results

obtained by Albertoni et al. (2003).
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Figure 4.2: Prediction production rate values using RM model, 4×5 model

Figure 4.3: Total field injection/production prediction using the RM model
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4.1.2 16×25 Case

This is an extended case of the previous one balanced injection and production as shown in Figure

4.4, Figure 4.5 shows the relative connectivities that were obtained from the RM model.

Figure 4.4: Total field injection/production prediction 16×25 using RM model

Figure 4.5: Connectivity values for the 16×25 case using the RM model
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These values were used to reproduce the production rates and were plotted. Again, very high R2

values were obtained for the predicted rates. Table 4.2 shows the connectivity values for all the well

pairs. Similar to cases in (Albertoni et al. 2003) there are some small negative values that appear in

the connectivity results. These negative values especially for injector-producer pairs where another

injector with stronger influence on the producer is positioned between the injector and producer

with the negative value. Figure 4.6 shows the predicted production values for 16×25 case

Figure 4.6: Prediction using RM model for 16×25 wells

4.2 RM model application discussion

The RM method was applied for these cases since they were balanced waterflooding cases. The

properties were homogeneous and isotropic reservoirs in both cases. In the first case (4x5) the

results were almost symmetrical and identical for each injector. For the second case the results

were more directed and variable. Taking into consideration that for every injector there are 16
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Table 4.2: Connectivity values for 16× model

P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 9 P 10 P 11 P 12 P 13 P 14 P 15 P 16

I 1 0.346 0.135 0.049 0.011 0.142 0.070 0.025 0.000 0.079 0.036 0.009 -0.007 0.077 0.030 0.001 -0.012
I 2 0.230 0.204 0.095 0.068 0.075 0.063 0.044 0.043 0.007 0.006 0.004 0.010 -0.022 -0.022 -0.024 -0.016
I 3 0.110 0.199 0.193 0.088 0.066 0.061 0.047 0.026 0.044 0.013 -0.013 -0.025 0.043 -0.002 -0.038 -0.059
I 4 0.028 0.068 0.183 0.212 0.010 0.022 0.051 0.068 0.005 0.005 0.012 0.021 0.014 0.007 0.006 0.008
I 5 0.070 0.082 0.127 0.301 0.058 0.063 0.075 0.113 0.050 0.043 0.044 0.051 0.061 0.041 0.034 0.033
I 6 0.238 0.092 0.035 0.011 0.204 0.072 0.024 0.002 0.084 0.043 0.016 -0.003 0.049 0.030 0.013 -0.007
I 7 0.165 0.141 0.052 0.024 0.146 0.127 0.048 0.026 0.065 0.056 0.040 0.030 0.043 0.039 0.038 0.035
I 8 0.011 0.086 0.087 0.010 0.009 0.083 0.083 0.012 0.001 0.021 0.021 0.008 0.001 0.012 0.015 0.012
I 9 0.007 0.031 0.111 0.127 0.004 0.024 0.097 0.109 0.001 0.008 0.023 0.028 0.003 0.001 0.002 0.001

I 10 0.017 0.026 0.065 0.198 0.011 0.019 0.051 0.169 -0.001 0.011 0.031 0.060 -0.016 0.002 0.019 0.028
I 11 0.083 0.068 0.084 0.108 0.183 0.088 0.092 0.109 0.190 0.096 0.097 0.106 0.085 0.079 0.087 0.093
I 12 0.049 0.035 0.014 0.004 0.126 0.107 0.030 0.008 0.133 0.114 0.037 0.013 0.068 0.055 0.033 0.019
I 13 0.008 0.022 0.024 0.014 0.025 0.089 0.090 0.026 0.032 0.096 0.095 0.030 0.027 0.039 0.038 0.025
I 14 0.014 0.024 0.044 0.057 0.018 0.038 0.112 0.130 0.021 0.042 0.118 0.135 0.022 0.035 0.057 0.071
I 15 -0.028 -0.012 0.015 0.056 -0.028 -0.009 0.032 0.157 -0.037 -0.016 0.027 0.156 -0.051 -0.028 0.004 0.053
I 16 0.038 0.023 0.013 0.005 0.081 0.045 0.023 0.014 0.201 0.078 0.039 0.027 0.231 0.096 0.051 0.038
I 17 0.026 0.022 0.018 0.016 0.056 0.046 0.028 0.020 0.147 0.127 0.047 0.025 0.174 0.147 0.057 0.029
I 18 0.022 0.023 0.022 0.019 0.031 0.042 0.041 0.028 0.049 0.114 0.113 0.045 0.057 0.128 0.127 0.055
I 19 0.012 0.011 0.014 0.015 0.016 0.022 0.038 0.045 0.023 0.042 0.117 0.134 0.031 0.055 0.137 0.159
I 20 0.023 0.026 0.031 0.039 0.019 0.027 0.048 0.085 0.017 0.035 0.080 0.209 0.018 0.040 0.095 0.242
I 21 0.062 0.052 0.044 0.041 0.080 0.060 0.046 0.040 0.149 0.091 0.058 0.046 0.346 0.148 0.078 0.058
I 22 0.035 0.032 0.027 0.023 0.053 0.046 0.038 0.032 0.112 0.088 0.056 0.038 0.276 0.224 0.090 0.044
I 23 0.040 0.037 0.033 0.034 0.038 0.039 0.038 0.039 0.059 0.072 0.071 0.057 0.110 0.196 0.191 0.091
I 24 -0.013 -0.005 0.005 0.018 -0.009 -0.007 0.006 0.022 -0.001 0.006 0.033 0.058 0.015 0.043 0.159 0.199
I 25 0.053 0.045 0.044 0.048 0.055 0.057 0.066 0.081 0.066 0.079 0.111 0.167 0.082 0.106 0.181 0.380
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values of connectivity (one for each producer), the process of interpreting theses values is more

difficult. It can be seen that the injection has no strong preference in terms of the magnitude of

the connectivity. Because the model is homogeneous but with variable injection amounts it can be

seen from Figure 4.5 that the model has some symmetry but this symmetry is broken due to the

variable injection.

4.2.1 Running time

The time required to obtain the 400 connectivity values was less than one second. This time

also includes the time necessary to use R to generate the rose diagrams and to do the prediction

routine. The code has been automated and generalized to perform all these tasks with little effort

if the data is in the proper format. The main time sink here is data cleanup and preparation into the

appropriate format.

4.2.2 Prediction accuracy

The prediction yielded R2 values for all the producers that were greater thant .98 with most greater

than 0.99.

4.2.3 Input files

Two groups of input data are needed: firstly, the injection and production data and secondly the

locations of the wells in the form of xy coordinates and the names of the wells for the purpose

of representation. Figure 4.7 show a typical input spreadsheet for injection and production data

in which each row is a particular date and each column is the production or injection rate for

that date. The spreadsheet must be saved as a comma separated values (CSV) file if a spreadsheet

is used for the input data. A location file is shown in Figure 4.8 and there should be separate

files for the injection well locations and for the production well locations. Each row of the file is

the x and y location of a well and the well order in the location file is the column order in the

production/injection rate file. Units for the production and injection rates files should be consistent

and should be flow rate per time period. Rates in this thesis are barrels per month.
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Figure 4.7: Injection/Production input format

Figure 4.8: Injection/Production locations input format to CRM, CM, and RM model codes in
Matlabr

There are then 4 input files to prepare (Injection data, Production data, Injector locations, Pro-

ducer locations). The routines require that there be no missing data in these files. If there is missing

data (i.e. dates with production or injection values of 0) this thesis will present techniques for deal-

ing with this missing data prior to running the model.
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4.3 Application of CRM Model

4.3.1 4×5 model

Using the same set of data used in section 4.1.1 the CRM model was applied to the 4x5 case and

the connectivity results (λi j values) are shown in Figure 4.9 and Table 4.3.

Figure 4.9: Connectivity values for 4x5 case using CRM model

The same production history was predicted using the obtained values for connectivity and time

constants, these results are shown in Figure 4.10

Figure 4.10: Production predicted history for 4x5 case using the CRM model
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Table 4.3 shows the values for the connectivity.

Table 4.3: λi j values for the CRM model

P01 P02 P03 P04

I01 0.316777 0.316777 0.174834 0.174834
I02 0.316777 0.174834 0.316777 0.174834
I03 0.316777 0.316777 0.316777 0.316777
I04 0.174834 0.316777 0.174834 0.316777
I05 0.174834 0.174834 0.316777 0.316777

4.3.2 16×25 model

Using the same set of data used in section 4.1.1 the CRM model was applied to the 16x25

case. Production rates were predicted as shown in Figure 4.11 using the obtained values for the

connectivity and the time constants.

Figure 4.11: Production predicted history for 16×25 case using the CRM model
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For this case the optimization was forced to stop after a number of iterations (1000 for each

variable) as there was no more change in the value of the variables. It was noted also that the

values of τi j do not have a significant effect on the predicted value of the production rates for the

same time period. It was noted during the optimization that the value of τi j did not have large

changes from the initial assumptions calculated using the CRMT (tank) model. This could be due

to the fact that the synthetic field is homogeneous. Figures 4.12 and 4.13 show the time constant

distribution for both the 16×25 and the 4×5 case.

Figure 4.12: Values of the time constant for 4×5

Figure 4.13: Values of the time constant for 16×25
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CHAPTER 5
MISSING AND CORRUPTED DATA
TREATMENT

“the only thing we know for sure about a missing data point is that it is not there, and there is nothing that the magic of statistics can do to change that. The best that can be managed is to estimate the extent to which missing data have influenced the inferences we wish to draw”.

Howard Wainer- American Statistician

5.1 Introduction

Oil field data are not always accurate and complete. According to Nobakht et al. (2009) $60

billion per year is the cost of corrupted and missing data. Unless extreme caution is taken to collect

the data, every dataset is expected to have at least 1-5% error from different sources. Some of the

error sources are:

1. Human error: these errors include the misreading and interpretation of the data that has been

recorded by field personnel.

2. Data collection setup error: the way that data is collected might have a probability of error

to propagate as shown Figure 5.1., where the flow rate of all the four producers is obtained

by dividing the total flow rate by 4. This assumes that the rates from the four producers are

equal, and in fact they most likely are not.
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Figure 5.1: Missing data setup error case example

Some examples were mentioned by Nobakht et al. (2009) and the ones related to production

and injection data include:

• Averaging the rates of a specific well from an adjacent group of wells.

• Incorrect assumptions (Single phase flow while having increasing GOR for example)

• Incorrect meter location. (i.e. it is downstream while the choke is not fully opened)

• Incorrect measure synchronization, (i.e. taking the injection and production data with

a time shift between them and treating them as being measured at the same time)

3. Device malfunction which results in corrupted data.

The missing or corrupted data can have an impact on the decisions that need to be made. The

error in one data set may propagate to parameters that depend on these data sets. As discussed

previously, the mechanisms causing the missing data will be discussed from a statistical point of

view.

5.2 Missing data

5.2.1 Detection

Detection of the missing data is easy to implement. Simply the missing data will be denoted

by NaN (Not-A-Number) in the Matlabrcoding environment. The code also will be extended to

provide the ratio of the missing data.
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5.2.2 Missing patterns

According to Schafer and Graham (2002) there are several typical patterns to missing data that

might narrow down the distribution of missing points. These patterns are characterized in terms

of how many response variables are contributing to the missing data. If one of the variables has

missing data that is called a univariate pattern. A monotone pattern is if the same data point is

missing in all the variables. An Arbitrary pattern means that any N data points could be missing

for any variable Y without any dependency. Figure 5.2 shows these patterns in order where Figure

5.2A is a univariate pattern, Figure 5.2B is a monotone pattern and Figure 5.2C is an arbitrary

pattern. A fourth case D which is an extension of case A is when more than one variable is missing

in the model data which is more likely to happen in oil field data.

Figure 5.2: Missing data patterns as per (Schafer 2002)

5.2.3 Missing mechanisms

Schafer and Graham (2002) and Nobakht et al. (2009) divide the missing mechanisms into three

main methods depending on the probability for a specific observation in a specific variable to be

missing.

Missing completely at random (MCAR): As per Schafer and Graham (2002), MCAR is defined

when you have missing data that is independent from the data set itself.

P(R|Ycom) = P(R) (5.1)

where R is an indicator variable that defines what is missing and what is not missing, Ycom is the

complete data set i.e. Ycom = {Yobs,Ymiss}.
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Missing at random (MAR) In this case the probabilities of the missing data are allowed to depend

on the observed data not the missing data.

P(R|Ycom) = P(R|Yobs) (5.2)

Missing not at random (MNAR): The distribution of R here depends on the missing data itself

(Schafer and Graham 2002). As an example, in Figure 5.3 if there is a problem in valve no.1, both

Prod1 and Prod2 data will be missing and the missing data for Prod1 here depended on Prod2

because of the location of the malfunctioned valve. While if the problem location is in value no.2,

Prod1 data still may be acquired.

Figure 5.3: MNAR Example

5.2.4 Simulated missing patterns

In order to simulate some of these missing data situations, a randomized process was imple-

mented to create these patterns. These patterns depend on some accidents that might happen in

the process of data collection and there might be other patterns depending on the conditions and

mechanism of the acquisition. All of these patterns were taken from a statistical study done by

Schafer and Graham (2002) and were coded into MATLABr. The process starts by asking the

user to input the desired ratio of the missing data and then it will generate the patterns explained

below according to the ratio provided. An explanation will also be given for when it is expected

that a specific pattern might happen under oilfield conditions.
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5.2.4.1 Arbitrary missing pattern

This pattern consists of individual random data missing in each data column (injector/producer).

Such a pattern could happen due to conditions like measuring device malfunction, human error,

simply missing a gauging opportunity for a specific period of time, etc. This pattern of data loss can

be found in everyday data not only in oilfield related data. The way this was coded into Matlabr

was to generate a number of random locations equal to the user input ratio of missing data. The

actual values were replaced at these locations with NaN values (Matlabr reads NaN as missing).

Figure 5.4 shows the pattern for a missing data ratio of 6%. It can be seen from the Figure that

there are more than random missing data in all the columns of the data, each column represents

one injector or producer and also the amount of the missing data per column is not constant.

Figure 5.4: Arbitrary missing pattern

5.2.4.2 Monotone missing pattern

This pattern is created by having missing data that starts at some time and has different lengths

of time where details are missing before returning to normal data collection. This pattern would

be expected to happen if there was any general trouble with the measuring system across the field.

The author has personally experienced a user-input data acquisition issue like this in the Rumaila

field in Iraq. The missing data for this pattern was also generated using a user input ratio of the
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amount of data missing. This pattern also has been discussed by Schafer and Graham (2002) and

is shown in Figure 5.5.

Figure 5.5: Monotone missing pattern

5.2.4.3 Multivariate missing pattern

This pattern is expected to happen when wells or measuring equipments have some regular

maintenance activities that take a fixed length time period to finish and the starting time depends

on the well records. So these would be randomly placed periods of missing data with nearly equal

length. Figure 5.6 shows this pattern.

Figure 5.6: Multivariate missing pattern
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5.2.4.4 Modified multivariate pattern

This pattern occurs when there are different lengths of missing data that occur at different times

for each well. This pattern is expected to happen when there is any random accident or problem in

a single measurement device. Figure 5.7 shows an example of this pattern.

Figure 5.7: Modified multivariate missing pattern

5.3 Dealing with missing data

In general there are three options to deal with missing or corrupted data. First, Albertoni et al.

(2003) stated that missing data causes singular covariance matrices so full data sets are required.

The effect is then to limit the time frame to these full data sets and drop all remaining data either

up to the time of the missing data or after. Second, the missing data time steps could be discarded

but the rest of the data would be used. The third method would be to find a method to impute a

(presumably) good data estimate. This is often done by taking advantage of data dependency to

implement some linear models to be used in prediction. To find the missing data is not a difficult

process but deciding whether the data is corrupted or not is the difficulty. Finally, a situation-

dependent method to treat these issues must be developed. In this chapter an integrated approach
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will be introduced that combines several methods from the statistical point of view to deal with the

missing data.

5.3.1 Dropping the missing points

Presuming that oil and gas data has some missing data and restricting the simple models to

complete data sets sometimes might not be an option, so dropping the data for the missing time

period is the next least preferable action. The data must be synchronized, i.e. all the readings for

all the wells should be at the same time. So to imagine the case, if there are 16 wells and each well

has 100 data points, and assuming that there is a missing pattern where each well is off by one time

period as shown in Figure 5.8, then dropping data would cause the entire data set to be useless.

There must then be a cutoff ratio of the the lost data whereby the drop method cannot be used. In

the following sections this cut off ratio will be investigated.

Figure 5.8: Example on a case that dropping the missing data will result non-usable set of data

5.3.1.1 Methodology

As per Sayarpour (2008) the minimum recommended no. of points is 4×Nin j×Npro, for a case

of 16x25 the minimum required data points are around 40 points. In the approach in this work

missing data will be generated in a random pattern as in Figure 5.4 starting with 1% and increasing

the missing data in 1% increments.The error in the connectivity values will be computed using

the full data set values as the actuals. These errors will then be plotted vs the percentage of the
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missing data. The process was simulated 100 times to overcome any random behavior although

the function used is a pseudo-random function in Matlab (rand) with a normal distribution from

0-1. Figure 5.10 shows the relationship between the missing ratio and the error encountered in

calculating the value of a particular λi j. It can be seen that error is propagating as the missing ratio

increases. There are times when the error decreases as the missing ratio increases, which can be

explained by the missing data occurring during a flat part of the curve (i.e. almost equal value data

points). Figure 5.9 shows one random realization were the SSE error in the values of λi j and R2

value are plotted against the missing ratio. The 100 random realizations were simulated to show

the effect of the missing ratio on the SSE and results shown in Figure 5.10. The SSE term is defined

as:

SSE =
N

∑
i=1

(λactual−λcalculated)
2 (5.3)

Figure 5.9: Error encountered (SSE) in the value of λi j and R2 vs. missing ratio for one realization
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Figure 5.10: Error encountered (SSE) vs. missing ratio

The value of R2 was also investigated vs. the missing ratio with a change of missing ratio from

0-5%. The random patterns were generated 100 times to view the effect on R2 which are shown in

Figure 5.11, In general the value of R2 drops drastically as the missing data increases.

Figure 5.11: R2 vs. missing ratio for arbitrary pattern
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The multivariate pattern was simulated in the same way. Figure 5.14 shows that the value of

R2 decreases faster than the arbitrary pattern (which can be seen by the denser distribution as the

missing rate increases). The explanation here is that this is due to the blocks of missing data rather

than the small individual missing points. Figure 5.12

Figure 5.12: R2 vs. missing ratio for multivariate pattern

Figure 5.13 shows R2 trend for the modified multivariate missing pattern. It can be seen that

multivariate and modified multivariate have the largest R2 drop.

Figure 5.13: R2 vs. missing ratio for modified multivariate pattern

58



The group of plots in Figure 5.14 summarizes and visualizes pattern related error in a different

way by showing the values of λi j for the case with no missing data compared to that with the

maximum missing data of 15%. From these figures the pattern-related error effect from the least

affected to the most affected will be:

1. Arbitrary error (pattern shown in Figure 5.4)

2. Monotone error (pattern shown in Figure 5.5)

3. Multivariate error (pattern shown in Figure 5.6)

4. Modified multivariate error (pattern shown in Figure 5.7)

5.3.1.2 Conclusion about dropping the missing data

From the above graphs we can conclude that the error propagation is maximum when the modi-

fied multivariate mode is in effect i.e. this pattern is expected to happen when there is a systematic

accident or problem in the rate measurement devices. Thus, it takes time until the system can be re-

turned to normal measurement. The least amount of error occurs when there is an arbitrary missing

data which could happen at anytime. The recommendation here is that dropping is not an appro-

priate method if there is more than 3% missing data. The value of R2 approaches 60% quickly

once the amount of missing data hits 2% for all the patterns. This also helps explain the reasoning

behind using only full data sets.
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Figure 5.14: Subplots show the pattern related error in connectivity values for 15% missing ratio
case

5.3.2 Missing data imputation

Using imputation methods when dealing with the missing data are more complicated than simply

dropping the missing points but allow the inclusion of more data in the analysis. There are several

methods for imputation discussed in Kabacoff (2011). The imputation techniques are more likely

case-specific methodologies, hence the data dependency between values influence the imputation

approach that needs to be taken. For injection and production data there is a significant dependency

between these sets of data especially in a case were the injection and production is approximately
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balanced. In such a case the production is likely due to the injection displacement. This relation

has been discussed in detail by Albertoni et al. (2003) and others. We will use this relation with

minor modifications to make the imputation of the missing data.

5.3.3 Imputation suggested methods

In this section we will investigate the suggested imputation methods and develop the required

code to implement these methods. It is good to mention that we will concentrate on the two extreme

patterns of missing data (arbitrary and modified multivariate) while all the rest of the patterns

represent intermediate cases between these patterns.

5.3.3.1 Linear dependency relations

The linear dependency between injection and production data is well known and has been dis-

cussed in the literature Albertoni et al. (2003) while Al-Yousef (2006) and Sayarpour (2008) went

further and developed nonlinear models. In this section will use the linear relation suggested by

Albertoni et al. (2003). The assumption here is a balanced case. The case that was used in the

beginning of this chapter will be used here.

A. Missing values in production data:

The production in any producer is given by Albertoni et al. (2003) as:

q̂ j = λo +
I

∑
i=1

λi jii + ε (5.4)

This means that if an estimate for the values of (λi j) can be made, values for the missing produc-

tion data can be imputed from Eq. 5.4. For this case it is assumed that there is a complete data set.

But what if there are missing injection rates? A decision algorithm that accounts for this case is

required.

B. Missing values in injection data
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Assuming a balanced injection case, implies that every injection rate, ii, is distributed to all

producers in an amount αi j for each producer j. This also implies that each producer has a corre-

sponding relationship with each producer. Starting from Eq. 5.4 above, for a balanced case every

injector rate can be broken down to:

îi = αo +
J

∑
j=1

αi j q j + ε (5.5)

where:

• αi j has been used here to differentiate from the connectivity value λi j

• îi: is the calculated injection rate.

• αo: is the remaining amount that does not contribute to the production. A different symbol

has been used here to recognize it from the main equation in 5.4.

• ε: random error, typically assumed to be normally distributed.

Now, there are two equations 5.4 and 5.5 that can be used start from to impute the missing

injection and production values. An algorithm needs to be developed that organizes these cases and

decisions. Figure 5.15 shows the proposed flowchart to handle all the cases for missing injection

and production data. This flowchart was coded and tested and will be discussed later in this chapter.
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Figure 5.15: Imputation method decision making flowchart
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5.3.3.2 Horizontal missing data (same time-step missing in injection and production data)

The most difficult cases to handle have been when data is missing for multiple injection and

production wells at the same time, (i.e. when missing data is in the same row for multiple wells).

This case will be called horizontal missing data in this thesis. For this case an approach that might

ensure the least damage to the data will be followed. The injection data between two “good” points

will be averaged assuming that the injection process fluctuates less than the production. After

this averaging is done the matrices will be imputed again in an iterative process in an attempt

reduce the error. The flowchart in Figure 5.15 has been modified to be able to handle the horizontal

missing cases as shown in Figure 5.16. In general the imputation algorithm seems to performs well

when the data missing is on the production side. Different scenarios and missing rates have been

investigated and will be discussed later in this chapter.

Terms that will be used to investigate some missing scenarios are:

Horizontal missing: Having data missing in the same row (i.e. at the same time) in both the

injection and production rate datasets.

Good data: Having data in the same row in both injection and production data sets with no miss-

ing data.

Averaging: Imputation option where the missing rates are assumed to be the average of two good

data points prior to and after the missing value.
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Figure 5.16: Decision flowchart for modified imputation method including the horizontal missing
case
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5.3.3.3 Horizontal missing /Production and Injection with a possibility to extract good data

A random pattern of missing data has been created for this case in both the production and

injection information. Two medium and two high missing data rates were tested. The following

strategy was used:

1. Check for horizontal missing data.

2. If data is missing then check for the possibility of extracting good data.

3. If it is possible, compute the values of λi j and αi j using Equations 5.4 and 5.5 respectively.

4. Compute the values of λi j,αi j

5. Compute the average of two good data points prior to and after the missing value and use

these to impute the missing injection value.

6. Use λi j and αi j values to compute the averaged injection and production.

7. Repeat steps 3-5 until the calculated injection and production rates in step 5 are unchanged.

Figure 5.17 shows a case with 15% missing data. An R2 value of 0.85 was obtained using the

imputation method suggested using Eq. 5.5. Some of the imputed points at time steps 25, 39, 42,

45, 46, 83 and 85 have been imputed with a close estimate to the actual value of the data point.

Figure 5.17: Results of missing data imputation for a missing rate of 15% with a possibility to
extract good data (circles values show imputed data)
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5.3.3.4 Horizontal Missing /Production and Injection with no possibility to extract good
data

The case discussed in section 5.3.3.3 was for 15% missing data. In this section the amount of

missing data was increased to 30% in order to reduce the chances of extracting good data from

the model. The strategy followed in this case is almost the same as in 5.3.3.3 except in this case it

was not possible to extract good data. Averaging was used to create some good usable data. These

good data will be used to calculate the values λi j,αi j. As was mentioned previously an acceptable

number of missing data should not exceed 6%. Figure 5.18 shows the results for 5x4 case where

the production rates were imputed and plotted against a good dataset. The rates deviated in some

places due to the high rate of missing data, but overall the smallest R2 value was 0.88 which is

reasonable.

Figure 5.18: Horizontal Missing /Production and Injection with no possibility to extract good data
(High missing 30% case)
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5.3.3.5 Production only missing case

In this case a random pattern in the production data was created. The injection data remains intact.

The strategy of solution here was simpler than for previous cases.

1. Can you extract good data? More than 40 data points at least as per (Sayarpour 2008).

2. If yes then use it to calculate the values for λi j.

3. If not, use averaging to construct usable production data and use it.

4. Impute and re-calculate.

One high and one moderate missing data rates were created with both good data extraction possi-

bility and no possibilities to extract good data. Figures 5.19, and 5.20 show these two cases with the

production rates plotted against the synthetically generated data. There is a very slight decrease in

the R2 for each well, but these changes are very slight and should not affect any perceived influence

an injector has on a producer.

Figure 5.19: Production only missing case, Moderate missing case (15%)
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Figure 5.20: Production only missing case, High missing case (30%)

5.3.3.6 Injection only missing case -RM Model reversing

Assuming good production data the next case consisted of creating some random patterns of

missing on the injection data side. The strategy used here is to try to extract some good usable data

from the injection side. using Eqn. 5.5

It can be noticed here that imputing the injection data resulted in more deviation than imputing

the production data. A 15% missing data case was tested and the results are shown in Figure 5.21.

It can be seen that the algorithm yielded prediction values for the missing rates with R2 higher than

0.8 in all 5 injection wells. A high missing ratio case of 30% was tested. This 30% missing rate

case was tested to see weather the algorithm would be able to handle extreme cases. Figure 5.21

shows that with a moderate missing 15% the average value of R2 obtained was around 0.95 and

Figure 5.22 shows high missing rate for the injection.
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Figure 5.21: Injection only missing case, Moderate missing case (15%)

Figure 5.22: Injection only missing case, High missing case (30%)
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5.4 Missing data treatment summary

In the previous sections treatment of missing input data has been investigated. Several patterns

were presented based on scenarios that might happen at data acquisition time. These patterns were

randomly generated in order to prevent any sampling biases that might affect the results. There

are two ways to deal with the missing data: drop them or impute them. The preference between

the two methods will depend on how much data is missing and where the data is missing; is it

in the production data or the injection data? It has been found that missing more than 6% of the

data is the limit for dropping data since the model R2 drops very fast when the amount of missing

data is more than 6%. The dropping technique has been investigated with each pattern and the

most severe case was found to be when the modified multivariate missing pattern occurs. The

imputation technique was investigated and several methods were introduced. Horizontal missing

data patterns were discussed and two methods were introduced and discussed: using RM models

as in equation 5.5 and rate averaging. A complete decision tree was created (Figure 5.16), coded

and tested to simulate a number of possible scenarios and choose between them. The case used to

test the results was a 5x4 case for all the attempted scenarios.

5.5 Corrupted data (outliers) detection

The definition of corrupted data here is similar to that stated by (Hawkins 1980) “an outlier is

an observation which deviates so much from the other observations as to arouse suspicions that

it was generated by a different mechanism”. In addition to missing data which are not there from

the beginning, another form of input data problem is outliers. This case is more complicated than

having missing data because there is no explicit approach on how to detect and treat the outliers. A

significant part of the solution to this problem is coming from our understanding of the expected

behavior within the dataset. Once an insight to the dataset is developed, the detection of outliers

and a suitable model to adjust for them can be used. Most of the approaches to detect outliers

depend on a multivariate form of the data. By measuring the change in the residual errors when
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a value is removed from the data set, a decision can be taken on whether this value is an outlier

or not (Chawla and Sun, 2006); Kriegel et al. 2009; Franklin and Brodeur, 1997; (Mathworks b).

The other part of these techniques are that they are sample dependent methods or model based

on spatial proximity (Kriegelet al. 2009). In this thesis the model dependent procedures will be

ignored because implementing a model from a problematic data set will not be useful in case they

have to be used again for outlier detection. In this thesis we will use an assumed normal distribution

of data to detect the outliers in addition to another sample dependent method to be discussed later.

5.5.1 Standard Deviation assisted method (STD)

It is safe here to assume the data is normally distributed when the number of values exceeds 30

according to the Central Limit Theorem (Feller,2008). The normal distribution has characteristics:

1%−99% = µ±3σ (5.6)

where µ is the mean of the distribution and σ is the standard deviation Figure 5.23 shows the

probability distribution for the normal distribution

Figure 5.23: Normal Distribution (Close, 2014)
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The standard deviation will be used to identify any data values that fall above or below µ±3σ.

The proposed strategy is to flag the data points outside this range for further investigation; they

cannot be removed unless a full understanding of the data set trends is achieved. The flow chart

for missing data was modified to handle outlier detection and is shown in Figure 5.29. Also the

method was coded as a part of the main code extensions. A set of contaminated data was inserted

into the injection data in order to test this method. The code was modified to flag the potential

outliers points. Two test cases were utilized: the first was to insert some low outliers (values less

than µ−3σ) and the other case was to insert some high outliers (values more than µ+3σ). Figure

5.24 shows results for 4 injectors, the upper row in the figure was for high value outliers and it can

be seen that the method was able to detect these potential outliers. The lower two rows in the figure

show the testing for low outliers. It is good to know that these results are more warning signs than

deleting justifications. Having these data points marked does not mean to start removing the data,

but it is good to check these points as they are suspected to be potential outliers.
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Figure 5.24: Standard Deviation assisted method (STD) results

5.5.2 Local Outlier Factor (LOF)

This method was suggested by Breunig et al. (2000) to decide whether a point is an outlier or not.

The approach is by checking the “degree of isolation” of that point, or what they called the ”local

outlier factor”. This procedure is done by measuring the density of a specific point in relation to

the k-th neighboring points. A low density point suggests that this point is a potential outlier. In the

cases presented here, the number of neighborhood points is 2 from each side. Figure 5.25 shows

this approach. The neighborhood points are then 5 in the cases in this work, and the magnitude of

the differences between the data points were calculated. Any outliers identified are replaced with

NaNs and the methodology presented previously for dealing with missing data is applied to the

revised dataset.
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Figure 5.25: Local Outlier Factor (LOF) method definition

5.5.3 LOF mathematical development

Breunig et al. (2000) presented the following mathematical development for the LOF. As shown

in Figure 5.26, one can define the k-distance (A) as the distance from point A to the k-th nearest

neighbor. The set of k points will be noted as Nk(A). Then the reachability distance between point

A and the group of points Nk(A) will be defined as:

Reachability distancek(A,B) = max{k−distance(A),d(A,B)} (5.7)

where:

d(A,B) is the distance between A and B i.e. |Y (A)−Y (B)|

B ∈ Nk(A). i.e. the reachability distance between two points A and B is the true distance and at

least k-distance(B).

The local reachability density is defined by:

lrd(A) :=
(

∑B ∈ Nk(A) Reachability distancek(A,B)
n(Nk(A))

)
(5.8)
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while the LOF factor will be:

LOFk(A) =
∑B ∈ Nk(A)

lrd(B)
lrd(A)

n(Nk(A))
/lrd(A) (5.9)

where n(Nk(A)) is the number of elements in Nk(A).

Figure 5.26: Basic idea of LOF, by comparing the density of a point with the that of its adjacent
points

5.5.4 Testing and results

The same problematic data sets used in the standard deviation assisted method was used for

testing the LOF method. Figure 5.27 shows the results of the LOF method. The kth neighborhoods

are set to 5 and the outliers were selected be the top-10 outliers which means it is 1% of the data.

It can be noticed here that LOF detected some of the neighbor points to the potential outliers

in addition to flagging the actual outliers. In general the LOF method was able to detect all the

outliers that were inserted into the data and were detected by STD. A superimposed plot in Figure

5.28 between the STD method and the LOF method shows the inserted outliers were detected by

both methods. The highlighted circles are mutual outliers that were detected by both the STD and

LOF.
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Figure 5.27: Local Outlier Factor (LOF) method results

Figure 5.28: Comparison between LOF, STD results
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5.6 Corrupted (outliers) data treatment and detection summary

In section 5.5 and its subsections the second big issue in input data (outliers) was discussed and

two methods were investigated. Looking at the statistical literature there are mainly two approaches

to deal with outliers: a modeling approach which assumes that the data is related in a multivariate

linear model; and a sample dependent method which depends on learning from the data, or data

mining. The modeling approach was not used in this work due to the fact that there is already

problematic data so it will not be that useful to infer a model from such a dataset. Descriptive

statistics are widely used in the data mining literature, so the standard deviation and mean will be

calculated and conclusions can be inferred from that. Comparing each data point with the upper

and lower limits of the distribution is what was tested in this work on a contaminated data set and

results have been presented. Another sample dependent method known as the distances methods

and is related to calculating how far every point is from its neighbor. Several methods could have

been chosen but the Local Outlier Factor (LOF) method as suggested by Breunig et al. (2000) was

selected. The method was implemented and tested on the same set of data and the results were

compared to the STD method. One issue that this method has is detecting adjacent points to the

outlier as outliers. This issue needs to be investigated throughly or other models may need to be

implemented. Despite this issue the method was able to detect all the outliers that were inserted

into the dataset. A complete flowchart in Figure 5.29 to account for the corrupted and missing data

in both injection and production was coded in Matlab
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Figure 5.29: Modified final flowchart for missing and outliers detection

79



CHAPTER 6
FIELD CASE STUDY
6.1 Introduction

To test the implemented simplified models on field data can only be done if the field data is avail-

able and can be utilized. Many operators consider rate and location information as proprietary and

withhold publication rights to protect this data. An operator has provided the necessary information

but has requested that we provide very limited description of the location to prevent its identifica-

tion. The following provides the geologic setting in summary form and should provide a number of

citations to literature provided by the operator or found from traditional literature searches. Rather

than providing these directly, they will be listed as “Operator (2014)” in the citation below in order

to protect the location information.

The field is a very complex, layered turbidite channel sand in the western United States. The

channels are oriented roughly northeast-southwest. Structurally the field is an anticline with some

faulting present near and slightly off the crest of the anticline. The anticline strike is roughly aligned

with the channel direction and dip angles off the crest of the structure range from 20 to 60 degrees.

The sands that make up the channel sequence are contained within a shale system and there does

not appear to be a strong aquifer supporting the field (Operator, 2014).

6.2 Data preparation and analysis

The provided data contains injection and production rates for 189 producers and 65 injectors in

addition to the well locations. The time period is nearly 40 years of monthly data. There have been

a number of both producer to injector conversions as well as injector to producer conversions. The

statistics of these conversions are shown in Figure 6.1 and were taken into consideration.

80



Figure 6.1: No of wells conversions per year

Figure 6.2 shows the well locations for the field along with a selected window for a simplified

modeling effort. The window boundary was chosen by evaluating the data availability and clean-

liness. The selected window contains 24 injectors and 31 producers. The number of data points

available for the study was 156 monthly time intervals.

Figure 6.2: Wells selected for case study
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Over the course of this time period there are many rate values that are 0. This might be indicating

missing data or that the well was shut in for that month. These zero rate intervals are problematic

especially for the RM model and were avoided as much as possible. Figure 6.3 shows the data

availability vs. time with the chosen time span indicated. Figure 6.4 shows the total injection and

production rates for the selected time interval. Injection exceeds production by as much as 100,000

bbl/month.

Figure 6.3: Time span selection for the selected case

Figure 6.4: Sum of the injection and production for the selected span
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The data has been checked for outliers and corruption using the two methods described in Chap-

ter 5 and several outliers were detected. However, no action was taken to treat these points because

there is not enough information about the injection and production schedule to determine whether

these are within normal behavior. Figure 6.5 and 6.6 shows the data values flagged as outliers for

the production values and for the injection data.

Figure 6.5: Outliers detection for production rates

Figure 6.6: Outliers detection for injection rates
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6.3 RM (unbalanced) model application

After the data preparation process, the RM model was applied to the window area and the re-

sulting connectivities are shown in Table 6.1 and presented in Figure 6.7. For this case there were

many negative connectivity values (Albertoni, 2003). This could be due to the chosen window and

the severe imbalance in the injection and production. For large datasets there needs to be a tech-

nique to divide the field according to a specific criteria in order to reduce the number of coefficients

per injector. The calculated values for the connectivities are used to predict the rates for the same

time interval and the results were plotted in Figure 6.8. The results show R2 > 0.8 in most of the

simulated wells. In the unbalanced RM method, values of βo j need to be obtained. These values

are obtained using Eq. 6.1 and Eq. 6.2 and are shown in Table 6.2:

q̂ j = βo +
I

∑
i=1

βi jii + ε (6.1)

βo j = q̄ j−
I

∑
i=1

βi j ī j (6.2)

Figure 6.7: RM connectivities results
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Table 6.1: Connectivity values for the field case using unbalanced RM

P06 P14 P15 P18 P25 P31 P34 P40 P51 P52 P56 P57 P72 P73 P77 P78

I01 0.004 -0.016 -0.004 0.007 0.015 0.005 -0.012 -0.025 -0.011 0.087 -0.008 -0.030 0.009 -0.115 -0.050 -0.030
I02 -0.010 -0.007 0.011 -0.001 -0.001 -0.008 0.000 -0.006 -0.012 0.016 -0.005 0.007 0.005 0.023 -0.025 -0.021
I03 -0.056 -0.004 0.158 0.015 -0.009 -0.006 -0.039 -0.009 -0.026 -0.002 0.000 -0.005 -0.002 0.037 0.050 -0.026
I06 0.149 -0.172 0.524 -0.039 0.413 0.119 0.134 -0.211 0.053 -0.121 0.055 -0.062 0.013 0.513 0.553 -0.082
I08 -0.008 -0.026 -0.110 0.004 0.022 -0.015 -0.009 -0.036 0.011 -0.234 -0.001 0.011 -0.001 -0.113 -0.090 -0.013
I09 0.048 -0.005 -0.080 -0.009 0.002 0.017 0.036 0.054 -0.031 -0.033 0.014 -0.010 0.008 0.099 0.053 0.008
I10 0.012 0.006 0.005 0.000 0.007 0.011 0.003 0.000 0.027 0.022 0.004 -0.006 -0.001 0.012 0.062 0.025
I11 -0.073 -0.020 -0.011 -0.014 0.068 -0.018 -0.023 -0.018 0.063 -0.047 0.018 -0.002 -0.011 0.118 -0.109 0.015
I12 0.009 0.006 0.080 0.002 0.062 0.010 0.022 0.027 -0.007 0.265 0.009 -0.009 0.001 0.086 0.091 0.015
I18 0.072 0.022 0.100 0.014 -0.027 -0.009 0.004 0.003 -0.015 -0.028 -0.012 0.031 0.001 -0.018 0.200 -0.009
I19 -0.006 0.047 -0.181 -0.013 0.042 0.002 -0.011 0.008 -0.047 -0.178 0.019 0.006 -0.018 0.010 0.076 0.008
I21 0.018 0.036 -0.272 -0.002 0.029 -0.004 0.002 0.019 0.000 -0.135 0.030 -0.003 -0.010 0.098 0.071 0.027
I22 0.101 -0.028 -0.633 -0.003 -0.215 0.063 0.072 0.080 0.122 -0.055 0.074 0.118 0.007 0.081 0.473 0.210
I23 0.036 0.017 0.120 -0.004 0.025 -0.009 -0.004 0.023 0.046 0.046 -0.007 -0.004 0.000 -0.065 -0.076 0.084
I25 0.028 -0.021 0.144 0.010 0.038 -0.012 -0.017 0.024 0.001 0.037 -0.014 0.000 0.003 -0.001 -0.097 -0.008
I34 -0.006 0.009 0.078 0.013 -0.086 -0.016 -0.016 0.024 0.010 0.275 -0.027 0.008 0.004 -0.092 -0.039 0.004
I39 0.002 0.006 0.205 -0.011 0.093 -0.003 0.005 0.014 0.001 0.033 0.011 0.001 -0.005 -0.014 0.037 0.059
I42 -0.042 -0.020 -0.039 -0.016 0.019 0.021 0.015 -0.013 0.000 -0.045 0.018 -0.026 0.000 0.077 -0.064 0.000
I46 0.077 0.030 0.032 0.006 0.039 0.025 0.031 0.024 0.003 0.049 0.021 0.025 0.000 0.169 0.133 0.026
I48 -0.012 0.002 0.255 0.006 -0.038 0.008 -0.001 0.023 -0.011 -0.041 0.001 0.018 0.014 0.005 -0.036 0.015
I49 0.025 0.012 -0.001 0.012 -0.045 0.015 0.002 -0.027 -0.010 0.079 0.015 -0.010 -0.003 0.066 -0.006 0.002
I51 0.068 -0.040 0.057 0.020 0.121 0.011 0.015 0.008 0.029 0.116 -0.009 0.018 0.017 0.044 -0.062 0.088
I53 0.035 0.003 -0.023 0.007 0.015 0.009 0.023 -0.002 0.015 0.043 -0.001 0.008 0.004 -0.018 0.066 -0.001
I63 0.089 0.012 -0.390 -0.011 0.158 0.055 0.052 -0.009 -0.102 0.074 0.052 0.150 -0.002 0.070 0.123 0.019
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Table 6.2: Example for βo values for the field case

P06 P14 P15 P18 P25 P31 P34 P40 P51
6442.701 619.1948 5544.924 145.1128 3941.68 1057.728 2221.96 461.5375 1083.117

P56 P57 P72 P73 P77 P78 P92 P96 P97
1499.525 2129.629 -190.42 9064.471 8854.427 169.8024 860.848 3015.466 1365.098

Figure 6.7 shows the unbalanced RM (UBRM) rose diagram for the same data.

Figure 6.8: Production rates prediction for the field case

Note that there are some peaks in the actual data that were not represented by the model. These

peaks were also previously identified as outliers. That might suggest that the method used to identi-

fying outliers has found actual outliers. Note also that the injection trends seen in the rose diagram

generally follow a northeast-southwest trend. This would indicate that injection follows the stated

direction of the channel sands as well as the direction of the anticline. All that can be said with

86



certainty is that there is a preferential flow pattern in the southeast-northwest direction according

to the analysis of the connectivity values.

6.4 Full field modeling

Full field unbalanced RM modeling was also run for all 65 injectors and 189 producers. There

were again 153 months of data for each well. The time required to obtain the modeling parameters

(λi j) was 1.5 seconds with 49% of the λi j values being negative. Figure 6.9 shows connectivity

values for all wells on a rose diagram. This diagram again shows the strong northwest-southeast

injection influence and it also shows a group of wells surrounded by injectors. The producers in

the central part of this region receive strong support from the injectors, but the peripheral wells do

not.

Figure 6.9: Rose diagram for full field modeling using RM model
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The negative connectivity values for each injector were plotted spatially using a bubble map

(Figure 6.10). It can be seen that the most negatively influencing injectors i.e. the ones that have the

largest number of negative connectivity values, are located in the middle and the southwestern edge

of the field, i.e. (I57, I28, I58, I09 and I39). Moderate to low negative connectivity value injectors

are located on the southeastern edge and in areas where there are few close surrounding injectors.

Negative connectivity values have generally indicated flow barriers or boundaries (Albertoni, et al,

2003; Oqunyomi, 2009).

Figure 6.10: Map of negative connectivity values per injector for full field modeling (no. of negative
connectivity/ Total connectivities)

The influence of the negative connectivity values as compared with the positive influence of

injectors is relatively small. Figure 6.11 shows negative connectivity values in red and positive

values in green. It can be seen that positive values are generally larger than the negative values.
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Figure 6.11: Negative connectivity values presented with positive values

The trend of negative connectivity values follows the same trend of the positive values from

southeast to northwest. Figure 6.12 shows the negative values only for the full field case.

Figure 6.12: Negative connectivity values only for full field case, the values are scaled up to show
the trend
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6.5 Negative connectivity values treatment

The process to eliminate the negative connectivity values was suggested by Albertoni et al.

(2003). Figure 6.13 shows a flowchart for eliminating both negative values and values that are

larger than 1. These steps are:

1. Input the connectivity values matrix

2. Input actual production and injection rates values.

3. Input predicted production rates q̂ values.

4. The following procedure will be performed for every element in the connectivity value ma-

trix

4.1 if the element is less than 0 or greater than 1

4.1.1 Set this element=0

4.1.2 Calculate the production values q̂ using the updated matrix of connectivity values

and the injection rate values.

4.1.3 Set the actual production values = q̂ in step 4.1.2

4.1.4 Calculate connectivity matrix values again using the new actual production values

and the injection values.

5. Again calculate predicted production q̂

6. Calculate R2 for each producer

7. Plot q̂ vs. actual production rates
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Figure 6.13: Process for elimination negative connectivity values and values larger than one

It has been noticed that once the negative connectivity values are set to zero, these values will

appear back as a very small numbers (1−10) when the matrix is recalculated and positive values
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will have increased during the course of the elimination. Figure 6.14 shows the the decline in R2

for the field production prediction throughout the course of elimination. The decline looks drastic

due to the chosen scale, but R2 is still greater than 93% after eliminating the negative values.

Figure 6.14: Coefficient of determination R2 vs. number of droppings

This decrease is for total actual field production vs. total predicted field production. A higher

decrease in R2 is expected for each well that is removed. Figure 6.15 shows the connectivity values

after the process of elimination. It can be seen that the flow trends are very similar (compare vs.

Figure 6.9).

6.5.1 RM model field rate representation

The resulting values for the connectivity were used to predict the total field rate in order to

compare it with the actual total field rate (Figure 6.16). The resulting R2 was 0.868 which is 2.4%

less than the average R2 obtained for individual wells.
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Figure 6.15: Field case connectivity values after negative connectivity values elimination

Figure 6.16: Predicted total field rate vs. the actual total field rate for the RM model
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6.6 CRM model application

The same data points used in the RM model predictions were used to run the CRM model for 189

producers and 65 injectors. The implemented method in section 3.2.5 was run. The running time

was around 30-40 min. The resulting parameters for the connectivity values and time constants

were less representative of the actual data than the RM model. Several starting values for the time

constant were tested and the final value for the time constants were not changing. The maximum

value for R2 was 0.787 and the average was 0.18 with 19.5% negative connectivity values. Figure

6.17 shows the rose diagram for the field case using the CRM model and there are some differences

as compared with the RM result. First, there is a general angle change to the injection arrows. In

the RM result injectors seem to be supporting a group of wells in a roughly radial pattern in the

central portion of the northwest quadrant. In the CRM result, the arrows in the northwest quadrant

point in a slightly different direction and the injection wells that separate the northwestern quadrant

from the southeastern quadrant point to the southeast rather than the northeast as in the RM result.

Second, most of the wells seem to be pointing more towards wells along the northern edge of the

southeastern part of the field and possibly even “out of zone”. In both cases (RM and CRM) the

arrows point along the northwest-southeast trend consistent with the depositional and structural

directions.

6.7 CM model application

Using the same case data, the CM model was also run for all the 189 producers and 65 injectors

using the method described in section 3.2.5 and the running time was around 55 min. The resulting

parameters for the connectivity values are shown in Figure 6.18. There is 43.9% of negative con-

nectivity values and the maximum values for R2 was 0.89 with an average of 0.166. Figure 6.18

shows that flow trends especially in the southeast quadrant agree with what the RM results showed

but the injection wells in the northwest part of the field show a trend that is different from similar

wells in the RM results. Many of the injectors in this northwest quadrant are showing that injection
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along the north side are supporting wells more towards the far northwest corner rather than more

towards the central part of this quadrant as in the RM result which support wells more towards the

center.

Figure 6.17: CRM model rose diagram for field case

6.8 Models comparison

6.8.1 R2 values

The values of R2 distribution for the three models in Figure 6.19 shows that RM resulted in the

best R2 values and the CM and CRM models respectively come after the RM model. These values

are averaged and shown in Figure 6.20
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Figure 6.18: CM model rose diagram for field case

6.8.2 Negative connectivity values

All the three models yielded negative connectivity values, Figure 6.21 shows the RM and CM

model ratios of negative connectivity values are close 49% and 43.9% respectively, the CRM model

resulted in 19.5% negative values.
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Figure 6.19: R2 distribution for all the three models for the field case

Figure 6.20: R2 averages for all the three models for the field case
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Figure 6.21: Negative connectivity values for RM, CRM, and CM models

6.8.3 Total field R2

The connectivity values and time constants for both the CRM and CM model were used to

predict the total field rate over the same modeling time period and compared with the actual total

field rate. Both the CM and CRM models show a very low R2 values for the total field rate and it is

close to the obtained average R2 values in both models. Figure 6.22 shows a comparison between

the three models R2 for the total field rate.

Figure 6.22: R2 for the RM, CRM and CM for the total predicted field rate vs. the actual total field
rate
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6.8.4 The effect of the time constant in the field case

For the field case, the time constant loop did not seem to work the way that it did for the synthetic

cases. The time constants did not converge to a reasonable fit to the data using the algorithm pro-

vided (the time constants appeared to be too large as the predicted flow rates were much smoother

than the data). When smaller time constants were provided to the system, the time constants did

not change from the initial value provided. Figure 6.23 shows the field data, results from the RM

and three cases from the CRM process. The time constants for the best fit to the data were 1×10−20

month−1 which mimics the RM result. The figure also shows that when the time constants are set

to 1 month−1 and 2 month−1 the predicted production variations are dampened and time shifted to

the right (delayed). The fit to the data steadily gets worse. However, the prediction match is still

reasonably good at 1 month−1. Exactly what is causing the fast convergence in the time constant

loop needs to be further investigated as there should be information in the time constant variations

between wells that is not being considered.

Figure 6.23: Effect of changing the time constant on production rates for the field case
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CHAPTER 7
CONCLUSIONS-ONE INTEGRATED
SOLUTION
7.1 Summary

In the previous chapters we discussed three simple models for reservoir characterization to in-

vestigate the possibility of getting all the models coded into one integrated package and come up

with some recommendations and conclusions in this regard. Two coding environment were used to

implement these coeds: Matlab and R-project where the codes have been written, tested in terms

of coding feasibly, run time, data presentation and coding capabilities. We also tested some opti-

mization packages needed for the CRM and the CM models in both Matlab and R. In general, RM

was the easiest model to code in both R and Matlab, but it is recommended that Matlab be used to

make use of its data representation process. For CRM and CM, R could not handle the optimization

process although we tried a several optimization methods were tried. In addition to that, the LSU

Statistics Department was asked for advice and they stated that “R is not optimized to handle these

kind of high computational needs problems, while these packages are written by individuals and

not optimized to run fast”. So Matlab was used to solve the optimization problem and several opti-

mization methods were tested. They all yielded the same run time with a slightly different results.

In general, Matlab is more suitable to solve the CRM and CM models of optimization.

7.2 Time constant and connectivity

The effect of the time constant (τi j) and connectivity (λi j) on synthetic cases was investigated, It

has been noticed that the value of λi j controls the vertical shift of the curves. While the value of τi j

controls how dampened or smooth the curve will be. Another common issue in field data is missing

and corrupted data. It cannot be assumed that all the field data are 100% correct and complete with

the many sources of errors like human error, device malfunction, measuring procedure flaws..etc.
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Several statistical methods for handling missing data were reviewed and possible missing data

patterns were identified. Matlab code was written to simulate these patterns in order to use them

later on in the study. Basically there are two main options to deal with the missing data: Dropping

and Imputation. This work found that it was not recommended to work with data with missing data

rate of more than 6% as the error will propagate rapidly after this ratio. The most severe missing

data pattern that could generate errors was found to be the “Moidified monotone pattern”. Another

preferable technique here is to impute and compensate the data by several methods. One is to infer

a linear multivariate model and calculate the missing data by assuming that (q̂ j =
I
∑

i=1
λi jii) for

production imputation and (îi =
J
∑

i=1
αi jq j) for injection. Before the imputation process starts there

has to be a data check process that extracts some good data to construct the model. Several possible

scenarios were studied and a decision tree was implemented and coded in order to take the right

decision according to the given data and situation. The other issue was the corrupted data and

its detection while it is another problem of the field-provided data. According to the statistical

literature there are two main methods to detect the outliers in a set of data: Sample dependent and

model dependent methods. The sample dependent method was used whereby descriptive statistics

were used to point out the elements that lie out of the expected distribution of the data. For the

model dependent methods a linear model is used to impute data and try to measure the deviation of

the given elements against that model. This method requires a full understanding of the data, and

as per the LSU Department of Statistics this method is less likely to be used, so it was not included

in this work. Another way was found in the literature to detect the outliers which is a distance

based method. This approach measures the distance of each point from the adjacent neighbors and

by comparing this distance with a factor, a decision will be taken whether this point is an outlier

or not. There are several types of these (distances) methods and the LOF: local Outlier Factor

method was chosen. The two approaches (Standard deviation method (STD) and LOF) were coded

and applied on a contaminated set of data. The results in the STD were more realistic and match
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the problematic points that were added, while the LOF method identified some of the outliers

neighbors as additional outliers.

7.3 Field study

Access to field data which consisted of injection and production rates was obtained. The data

was subjected to a cleaning procedure and the methods for outliers detection were applied. Some

outliers were identified but because full understanding about the data collection conditions was not

provided, no action could be taken to treat these possible outliers. The field was as an unbalanced

injection process that has been under waterflooding at least 30 years ago. The usage of the RM

yielded better results than CM and CRM in terms of data prediction.

7.4 One integrated package

In order to employ these models in one integrated package to get the most benefit from them, a

complete code package was implemented. This package starts with the data which will undergo a

thorough quality check procedure to detect any missing data or outliers and to find the best way to

treat them. After this stage there is a routine that will processes that data using the three models

and finishes with data representation. The models were coded under Matlab in a set of stand alone

functions that can be called independently to perform the required tasks. A flow chart in Figure7.1

shows the entire procedure.

7.5 Future work recommendations

1. In all the three studied models we saw that every producer is the summation of the influence

of all the other injectors. That could be a reasonable approach in synthetic systems and

small field cases. In large field cases or for large synthetic cases this approach can be time

consuming, computationally difficult and often is not correct for distant injector/producer

pairs. A windowing technique needs to be developed for these large systems.
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2. In every waterflood project, there will be some non-swept volumes due to preferential flow

paths. Using the resulting values of the connectivities and their orientation in the reservoir

could be a good starting point to investigate the non-swept volumes.

3. Some issues were faced during the CRM and CM optimizations (negative connectivity and

time constant values, convergence issues, etc.). Different optimization algorithms should be

investigated.

4. Studying the effect of applying these three models on deviated wells and identifying the

factors that can be added to the model needs to be done.
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Figure 7.1: The suggested integrated model flow chart
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MATLAB and R-PROJECT CODES
RM Model Codes

This code is under Matlab, the input to this code is the injection and production rates, the output
will be a plotting matrix contains the simulated and calculated values and the connectivities matrix
can be accessed by looking up the variable mlrlambda

PRD=prdmlr%csvread(’PRDB.csv’);
INJ=injmlr%csvread(’INJB.csv’);
nrowprd=size(PRD,1);
ncolprd=size(PRD,2);
ncolinj=size(INJ,2);
nrowinj=size(INJ,1);
injinj=cov(INJ);
%injprd cov
injprdcov=zeros(ncolinj, ncolprd);
for j=1:ncolprd

for i=1:ncolinj
tt=cov(INJ(:,i), PRD(:,j));
injprdcov(i,j)=tt(1,2);

end
end
mlrlambda=zeros(ncolinj, ncolprd);
mlrlambda=injprdcov’/(injinj);
mlrlambda=mlrlambda’;
%checking and plotting
predmatrix=ones(nrowprd, ncolprd);
for k=1:ncolprd;

for n=1:nrowinj;
temp=0;
for j=1:ncolinj;
temp=INJ(n,j)*mlrlambda(j,k)+temp;

end
predmatrix(n,k)=temp;

end
end
for i = 1:ncolprd

subplot(5,6,i);
plot(PRD(:,i));hold on ;

plot (predmatrix(:,i),’Marker’,’.’,’LineStyle’,’none’,’Color’,[1 0 0])
rs= corrcoef(PRD(:,i),predmatrix(:,i));
title([’PRD’,num2str(i),’ R=’, num2str(sprintf(’%0.4f’,rs(1,2)))]);
%legend(’Calculated’,’Simulated’)

end
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CM Model codes

This code will calculate the CM model coefficients using the fmincon function in Matlab, the
input are the injection and production rates and the output will be a plotting matrix contains the
simulated and calculated values and the connectivities matrix can be accessed by looking up the
variable masterlambda

%This is the main CRM model
PRD=csvread(’PRD.csv’);
PR=csvread(’PR.csv’);
INJ=csvread(’INJ.csv’);
nrowprd=size(PRD,1);
ncolprd=size(PRD,2);
ncolinj=size(INJ,2);
nrowinj=size(INJ,1);
nrowpr=size(PR,1);
ncolpr=size(PR,2);
masterlambda=ones(2*ncolinj+2*ncolpr,ncolpr);
for i=1:ncolprd
%Calling the Matrices Subroutine
lambdas=matrcies11(PRD(:,i),INJ);
masterlambda(1:ncolinj,i)=lambdas(2:ncolinj+1,1);
%masterlambda(ncolinj*2+ncolprd+1:ncolinj*2+2*ncolprd,i)=lambdas(ncolinj+2:ncolinj

+1+ncolprd,1);
end
tao=.01*(ones(ncolinj,ncolprd));
nopressmat=zeros(2*ncolinj+1,ncolprd);
%modified optimization
for i=1:ncolprd

options = optimset;
options = optimset(options,’Display’, ’off’);
options = optimset(options,’Algorithm’, ’interior-point’);
options = optimset(options,’PlotFcns’, { @optimplotfval });
x0=tao(:,i);
lambda=masterlambda(2:ncolinj+1,i);
%tao=tao(:,i);
[x,fval,exitflag,output] = fmincon(@(tao)fn11(tao,lambda,INJ,PRD(:,i)),x0

,[],[],[],[],lb,ub,[],options);
% [x,fval,exitflag,output] = fminunc(@(lambda)fn1(lambda,INJ,PRD(:,i),PR),x0,

options);
tao(:,i)=x
for j = 1 : ncolprd

x0=x
% [x,fval,exitflag,output] = fminunc(@(lambda)fn1(lambda,INJ,PRD(:,i),PR),x0,

options);
[x,fval,exitflag,output] = fmincon(@(tao)fn11(tao,lambda,INJ,PRD(:,j)),x0

,[],[],[],[],lb,ub,[],options);

tao(:,i)=x;
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end
nopressmat(ncolinj+2:end,i)=x;
nopressmat(1:ncolinj,i)=lambda;

end

%Calcluating qhat after getting the parameters
predmatrix=ones(nrowprd, ncolprd);
for i = 1 : ncolprd;

predmatrix(:,i)= checking(masterlambda(:,i), INJ, PR);
end

%plotting
for i = 1:ncolprd

subplot(2,2,i);
plot(predmatrix(:,i));hold on ;
plot (PRD(:,i),’Marker’,’.’,’LineStyle’,’none’,’Color’,[1 0 0])
rs= corrcoef(PRD(:,i),predmatrix(:,i));
title([’PRD’,num2str(i),’ R=’, num2str(sprintf(’%0.2f’,rs(1,2)))]);
legend(’Sim’,’Act’)

end

This function calculates the value of q̂ for any given set of injection rates, lambdas and pressures
using the CM model.
function fin = fn1(lambda, INJ,PR)
nrow = size(INJ,1);
ncol = size(INJ,2);
nrowpr=size(PR,1);
ncolpr=size(PR,2);
idash = zeros(nrow, ncol);
%
% Constructing the i.dash matrix
for i = 1:ncol

for j = 1:nrow
temp=0;
for k = 1:j

temp= (1/lambda(ncol+i,1))*
exp((k-j)/lambda(ncol+i,1))*INJ(k,i)+ temp;

end
idash(j,i) =temp;

end
end
%
% Preparing the idash matrix X lambda matrix
lambdai = zeros(nrow, ncol);
for i = 1:ncol

lambdai(:,i)=lambda(i+1,1)*idash(:,i);
end
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qhat = sum(lambdai,2);
%
% Prepating the BHP matrix
bhp1term=zeros(nrowpr, ncolpr);
for k=1:ncolpr

for i = 1: nrowpr
bhp1term(i,k)=PR(1,k)*

exp((1-i)/lambda(((2*ncol)+k),1));
end

end
%
% preparing the 2nd term (Pwfkj)
bhp2term=PR;
%
%preparing the 3rd term (P’wfkj)
bhp3term=zeros(nrowpr, ncolpr);
for k=1:ncolpr

for l=1:nrowpr
temp=0;
for m=1:l

temp=(1/lambda(((2*ncol)+k),1))
*exp((m-l)/lambda(((2*ncol)+k),1))*PR(m,k)+temp;

end
bhp3term(l,k)=temp;

end
end
%
%wrapping up
bhpmaster=bhp3term+bhp2term+bhp1term;
bhpnue=zeros(nrowpr, ncolpr);
for i=1:nrowpr

for j=1:ncolpr
bhpnue(i,j)= (bhpmaster(i,j)*

lambda(((2*ncol)+ncolpr+j),1))+bhpnue(i,j);
end

end
fin=qhat+sum(bhpnue,2);
%fin=bhpmaster

return

This function creates the CM model sub-matrices and combine them into the master matrix. The
inputs are production, injection and pressures. The output will be the lambda matrix that has IxJ
values for connectives readings.

%This is the matrices creation subroutine
function lambdas=matrices(PRD, INJ, PR)
nrowprd=size(PRD,1);
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ncolprd=size(PRD,2);
ncolinj=size(INJ,2);
nrowinj=size(INJ,1);
nrowpr=size(PR,1);
ncolpr=size(PR,2);
taop=ones(30,1).*.05; %this is the tao for the production Tk
taoipp=.2; %this is the tao for the injection Ti
ppmatrix=zeros(nrowprd,ncolprd);
ppvar=zeros(1,ncolprd);
cppi=zeros(ncolinj, ncolprd);
injinj=zeros(ncolinj, ncolinj);
ppq=zeros(1,ncolprd);
ciqj=zeros(ncolinj, ncolprd);
lhs=zeros(ncolinj+ncolpr+2,1);
lambda=zeros(2+ncolinj+ncolprd,1);
master=zeros(2+ncolinj+ncolpr,2+ncolinj+ncolpr);
iavg=zeros(1,ncolinj);
idash=zeros(nrowinj, ncolinj);
%preparing the BHP matrix
%Preparing the 1st term (Pwf(n0)e)
bhp1term=zeros(nrowprd, ncolprd);
for k=1:ncolpr

for i=1:nrowpr
bhp1term(i,k)=PR(1,k)*exp((1-i))/taop(k,1);

end
end
%preparing the 2nd term (Pwfkj)
bhp2term=PR;
bhp3term=zeros(nrowpr, ncolpr);
%Preparing the 3rd term(P’wfkj)
for k=1:ncolpr

for l=1:nrowpr
temp=0;
for m=1:l

temp=(1/taop(k,1)*exp((m-l)/taop(k,1))*PR(m,k)+temp);
end

bhp3term(l,k)=temp;
end

end
%wrapping up bhp...
bhpmaster=zeros(nrowpr, ncolpr);
bhpmaster=bhp1term+bhp2term+bhp3term;
% preparin the idash values
taoi=csvread(’taoi.csv’);
for i=1:ncolinj

for j=1:nrowinj
temp=0;
for k=1:j

temp=(1/taoi(i,1))*exp((k-j)/taoi(i,1))*INJ(k,i)+temp;
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end
idash(j,i)=temp;

end
end

%filling pp matrix for all producers
for j=1:ncolprd

for i=1:nrowprd
ppmatrix(i,1)=PRD(1,1)*exp((-i+1)/taoipp);

end
end
%filling the cov matrix for pp
ppvar=var(ppmatrix);
%filling the cov of cppi and its trans.
for j=1:ncolprd

for i=1:ncolinj
tt=cov(ppmatrix(:,1),idash(:,i));
cppi(i,j)=tt(1,2);

end
end
cppit=transpose(cppi);
%filling the inj-inj cov
injinj=cov(INJ)

%filling sigmapp-qq matrix
for j=1:ncolprd

tt=cov(ppmatrix(:,j),PRD(:,j));
ppq(1,j)=tt(1,2);

end
%filling the ci-qj matrix
for j=1:ncolprd

for i=1:ncolinj
tt=cov(idash(:,i), PRD(:,j));
ciqj(i,j)=tt(1,2);

end
end
%preparing the BHP-BHP cov matrix
bhpbhp=zeros(ncolpr,ncolpr);
for i=1:ncolpr

for j=1:ncolpr
tt=cov(bhpmaster(:,i),bhpmaster(:,j));
bhpbhp(i,j)=tt(1,2);

end
end
% preparing the bhp.avg matrix and trans
bhpavg=transpose(mean(bhpmaster));
bhpavgt=transpose(bhpavg);
% preparing the cpp bhp and its trans
cppbhp=zeros(ncolpr, 1);
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for i=1:ncolpr
tt=cov(ppmatrix,bhpmaster(:,i));
cppbhp(i,1)=tt(1,2);

end
cppbhpt=transpose(cppbhp);
%preparing the C - BHP matrix
cbhpqj=zeros(ncolpr,1);
for i=1:ncolpr

tt=cov(bhpmaster(:,i), PRD(:,1));
cbhpqj(i,1)=tt(1,2);

end
%preparing the ci-bhp matrix and its trans
cibhp=zeros(ncolinj, ncolpr);
for i=1:ncolinj

for j=1:ncolpr
tt=cov(idash(:,i), bhpmaster(:,j));
cibhp(i,j)=tt(1,2);

end
end
cibhpt=transpose(cibhp);
% preparing the avg matrix for the i dash
iavg=mean(idash);
%preparing the master matrix
ncolmaster=size(master,2);
nrowmaster=size(master,1);
master(1,1)=ppvar(1,1);
master(1,2:(ncolinj+1))=cppit;
master(1,2+ncolinj:ncolmaster-1)=cppbhpt;
master(1,ncolmaster)=mean(ppmatrix);
master(2:(ncolinj+1), 1)=cppi(:,1);
master((nrowmaster),1)=mean(ppmatrix);
master(2:(ncolinj+1),2:(ncolinj+1))=injinj;
master(2:(ncolinj+1),ncolmaster)=transpose(iavg);
master((nrowmaster),ncolmaster)=0;
master(2:(ncolinj+1), ncolmaster)=iavg;
master(ncolinj+2:nrowmaster-1, 1)=cppbhp;
master(ncolinj+2:nrowmaster-1,2:ncolinj+1)=cibhpt;
master((ncolinj+2):(nrowmaster-1),(2+ncolinj):(ncolmaster-1))=bhpbhp;
master(2:(ncolinj+1), (2+ncolinj):(ncolmaster-1))=cibhp;
master((ncolinj+2):(nrowmaster-1), ncolmaster)=bhpavg;
master(nrowmaster,2:ncolinj+1)=iavg;
master(nrowmaster,2+ncolinj:ncolmaster-1)=bhpavgt;
% filling the LHS matrix
nrowlhs=size(lhs,1);
lhs(1,1)=ppq;
lhs(2:(ncolinj+1),1)=ciqj(:,1);
lhs(ncolinj+2:nrowlhs-1,1)=cbhpqj;
lhs(nrowlhs,1)=mean(PRD);
%%%%%%lambda
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lambdas=inv(master)*lhs;
return

This code is under R-Project and it solves the CM model. In order to access the values lookup
the file lambdaReplacement.csv in the working directory and the code also will generate some
comparison plots for the value of lambdas

#Bismilla-Reading the files and preparing the matrices------------CM Model
ptm <- proc.time()
PRD=read.csv(file="PRDCRM.csv")
INJ=read.csv(file="INJCRM.csv")
ms=4
PRD=do.call(cbind, PRD[ms])
INJ=do.call(cbind, INJ)
tao.p=.2
#Preparing the matrices
pp.matrix=matrix(ncol=ncol(PRD), nrow=(nrow(PRD))) #pp matrix
pp.var=matrix(ncol=ncol(PRD), 1) #pp variance matrix
cpp.I=matrix(ncol=ncol(PRD), nrow=ncol(INJ)) #cpp.I matrix
inj.inj=matrix(ncol=ncol(INJ), nrow=ncol(INJ)) #inj-inj matrix
pp.q=matrix(ncol=ncol(PRD)) #pp.q matrix
ci.qj=matrix(ncol=ncol(PRD), nrow=ncol(INJ)) #ci.qj matrix
lhs=matrix(nrow=ncol(INJ)+2,1) #lhs matrix
lambda=matrix(ncol=1, nrow=(1+ncol(INJ))) #lambda matrix
master=matrix(ncol=ncol(INJ)+2, nrow=(ncol(INJ)+2)) #master matrix
i.avg=matrix(1,ncol(INJ))
i.dash=matrix(ncol=ncol(INJ), nrow=(nrow(INJ)))
#############Preparing the i.dash values####################################
# preparing the i’ values
tao=do.call(cbind, read.csv(file="tao.csv",header=FALSE))
for (i in 1:ncol(INJ)){
for (j in 1:nrow (INJ)){
temp=0
for (k in 1:j){
temp=(1/tao[i,1])*exp((k-j)/tao[i,1])*INJ[k,i]+temp

}
i.dash[j,i]=temp

}
}
########################filling PP MATRIX FOR ALL PRODUCERS###################
for (j in 1 : ncol(PRD))
for (i in 1: nrow(PRD)) {
pp.matrix[i,1]=PRD[1,1]*exp((-i+1)/tao.p)

}
#######################filling THE COV. MATRIX FOR PP#########################
pp.var= var(pp.matrix)

#######################filling THE COV OF Cpp-I and its transpose#############
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for (j in 1:ncol(cpp.I))
for (i in 1: nrow(cpp.I)){
cpp.I[i,j]=cov(pp.matrix[,1],i.dash[,i] )

}
cpp.IT=t(cpp.I)
#######################filling THE INJ-INJ COV MATRIX##########################
for (j in 1: ncol(inj.inj))
for (i in 1: ncol(inj.inj)){
inj.inj[i,j]=cov(i.dash[,j], i.dash[,i])

}
#######################filling SIGMA.PP-QQ MATRIX#############################
for ( j in 1: ncol (pp.q)){
pp.q[1,j]=cov(pp.matrix[,j], PRD[,j])

}
######################filling CI-QJ MATRIX####################################
for ( j in 1: ncol(ci.qj))
for (i in 1: nrow(ci.qj)){
ci.qj[i,j]=cov(i.dash[,i], PRD[,j])

}
################Preparing the avg. matrix for i.dash###########################
i.avg=colMeans(i.dash)
###################ASSEMBLING THE MASTER MATRIX################################
master[1,1]=pp.var[1,1]
master[1,2:(ncol(master)-1)]=cpp.IT[1,]
master[1,ncol(master)]=mean(pp.matrix)
master[2:(nrow(master)-1), 1]=cpp.I[,1]
master[nrow(master),1]=mean(pp.matrix)
master[2:(nrow(master)-1),2:(ncol(master)-1)]=inj.inj
master[nrow(master),2:(ncol

(master)-1)]=t(i.avg)
master[nrow(master),ncol(master)]=0
master[2:(nrow(master)-1), ncol(master)]=i.avg
##################################filling THE LHS Matrix#####################
lhs[1,1]=pp.q
lhs[2:(nrow(lhs)-1),1]=ci.qj[,1]
lhs[nrow(lhs),1]=mean(PRD)
##############lambda###################Resulsts##############################
lambda=solve(master)%*% lhs
#for (i in 1 : nrow(lambda)){
if(lambda[i,1]<0) {lambda[i,1]=0}
#}
write.csv(lambda,file="lambdaReplacement.csv")
#############################plotting########################################
coff=read.csv(file="BETAS.CSV")

png(file=paste("CRM Lambdas",".png"),width=900,height=900)
plot (lambda[2:nrow(lambda),1], type="l",xlab="Injector No.",

ylab="Lambda", col="green",axes=FALSE ,
ylim=c(min(lambda,coff[,2] ),c(max(lambda, coff[,5]))))
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axis(2)
axis(1,at=1:(ncol(INJ)), cex.axis=.7)
par(new=TRUE)
plot (coff[,ms+1], axes=FALSE, type="l", col="red",xlab=FALSE,ylab=FALSE)
#axis(4)
box()
title(main = (paste("Lambdas", lambda[1,1])))
dev.off()
###############checking out#############################
# Preparing the lambda X i’ matrix
lambda.i=matrix(ncol=ncol(INJ),nrow=nrow(INJ))
for (i in 1: ncol(INJ)){
lambda.i[,i]=lambda[i+1, 1]*i.dash[,i]

}
#Wrapping up to calculate Qhat
#preparing the on col qhat
q.hat=matrix(nrow=nrow(INJ),1 )
for (i in 1:nrow(INJ)){
q.hat[i,1]=sum(lambda.i[i,1:ncol(INJ)])+lambda[1,1]*pp.matrix[i,1]

}
diff=matrix(nrow(INJ), 1)
diff=q.hat-PRD
png(file=paste("Qobs vs Qhat",".png"),width=2000,height=900)
plot(PRD, type="l", col="red", axes=TRUE,ylim=c(min(diff,PRD,q.hat),max(PRD,q.hat)))
legend (’topright’, c("Q Calc." ,"Q Obs","Difference"),lty=c(1,1,2),

col=c("blue", "red", "brown"))
par(new=T)
plot(q.hat[,1], type="l", col="blue", axes=F)
par(new=T)
plot(diff, type="b", col="brown", axes=F,

ylim=c(min(diff,PRD,q.hat),max(PRD,q.hat)))
dev.off()
Difference=colSums(q.hat)-colSums(PRD)
proc.time() - ptm
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CRM model codes

This code will solve the CRM model using an ad-hoc algorithm. The inputs are the production
and injection rates. The wells locations and names are also needed in order to plot the sectors. You
may want to zoom in in order to spot the sectors. tic

clear all

PRDI=readtable(’PRD_Org.xlsx’);

INJI=readtable(’INJ_Org.xlsx’);

prd=table2array(PRDI(305:end,2:end-3));

inj=table2array(INJI(305:end,2:end-3));

XYII=readtable(’XYI.csv’);

XYPI=readtable(’XYP.csv’);

xyi=table2array(XYII(:,2:end));

xyp=table2array(XYPI(:,2:end));

% inj=csvread(’INJB.csv’);
%
% prd=csvread(’PRDB.csv’);
%
% xyi=csvread(’xyib.csv’);%rand(size(inj,2),2);
%
% xyp=csvread(’xypb.csv’);%rand(size(prd,2),2);;

%Calc. the initial values of f (which is the initial values of the

%connectvity

distance=zeros(size(xyi,1), size(xyp,1));

for k=1:size(xyp,1)

for i =1:size(xyi,1)

distance(i,k)=((abs(xyp(k,1)-xyi(i,1)).ˆ2+(abs(xyp(k,2)-xyi(i,2)).ˆ2))).ˆ.5;

end

end

%creating the matirx of the connectivity
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fmat=zeros*distance;

for k=1:size(xyp,1)

for i =1:size(xyi,1)

fmat(i,k)=(1/distance(i,k))./(sum(1./distance(:,k)))+.06;

end

end

%---------Creating the matrix of taos------------------------

tao=.06*ones(size(inj,2),size(prd,2));

qest=zeros*prd;

%------------------------------------------------------------
tic
%---------Calculating Q from f & tao above-----------

for j= 1:size(prd,2)%to no. of prod.

for i = 1:size(inj,1)%to no. of timesteps

for kk=1:i%internal loop from 1-->i

for m=1:size(inj,2)%no. of injetors

qest(i,j)=qest(i,j)+(1-exp(-1/tao(m,j)))*...
(fmat(m,j)*inj(kk,m))*(exp((kk-i)/tao(m,j)));

end

end

end

end

%------Calc. the new sum of sequared errors between Qest and Qact.---

% This new SSE is after one increment of fmat to check the convergence
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%---Procedure of calculatin the optimum lambda for each injector

dfmat=.1;

si=1;

for j =1:size(prd,2)

for i = 1:size(fmat,1) % taking every lambada

si=1;

%---------checking the convergence----------------------

fmatnew=fmat;% creating a new matrix

fmatnew(i,j)=fmatnew(i,j)+si*dfmat; %modifying the new matrix

lso=ls2(fmat(:,j),tao(:,j),size(prd,2),size(inj,2),prd(:,j),inj);

lsn=ls2(fmatnew(:,j),tao(:,j),size(prd,2),size(inj,2),prd(:,j),inj);

if (lso<lsn)% if true--> we are not on the track, flip the sign

si=-2*si;

end

fmat=fmatnew;

m=1 ;

tol=mean(prd(:,j))*size(inj,1);

for tt = 1:5

abs(lso-lsn);

lso=lsn;

lso;

lsn;

fmat(i,j)=fmat(i,j)+si*dfmat; %starin the iteration
lsn=ls2(fmat(:,j),tao(:,j),size(prd,2),size(inj,2),prd(:,j),

inj);

m=m+1;
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m;
end
lso=0;
lsn=0;

end

end

% Calc. qest new from fmat and tao

lso=0;

lsn=0;

%------Starting the procedure for optimizing tao---------------------%
dtao=.01;

for j =1:size(prd,2)

for i = 1:size(fmat,1) % taking every lambada

si=1;
%---------checking the convergence----------------------

taonew=tao;% creating a new matrix

taonew(i,j)=taonew(i,j)+si*dtao; %modifying the new matrix

lso=(ls2(fmat(:,j),tao(:,j),size(prd,2),size(inj,2),prd(:,j),inj));

lsn=(ls2(fmat(:,j),taonew(:,j),size(prd,2),size(inj,2),prd(:,j),inj));
lsn-lso

% if (lso<lsn)% if true--> we are not on the track, flip the sign
%
% si=-2*si;
%
% end

tao=taonew;

m=1;
%for tt = 1:15
taotest=zeros(100,2);
while (lsn<lso) && (m<100)

abs(lso-lsn);
lso=lsn;
lso;
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lsn;
taotest(m,1)=tao(i,j)
tao(i,j)=tao(i,j)+si*dtao; %starin the iteration
lsn=(ls2(fmat(:,j),tao(:,j),size(prd,2),size(inj,2),prd(:,j),inj));
taotest(m,2)=lsn;
old=lsn-lso
m=m+1;
end

m
%lso=0;
%lsn=0;

end

end

close all
for i =1:size(prd,2)
subplot(4,4,i)
qest=qescal(fmat(:,i),taonew(:,i),size(prd,2),size(inj,2),prd(:,i),inj);
plot(qest(:,1))
hold on
plot(prd(:,i),’r*’)
hold off
xlabel(’time (month)’)
ylabel(’rate (bbl/d)’)
legend(’Calculated’, ’Simulated’,’Location’,’south’)
title([’PRD’,num2str(i)])
lsn=ls2(fmat(:,i),taonew(:,i),size(prd,2),size(inj,2),prd(:,i),inj);
end

toc
%Sectors routine
%---------------------------------------------------------
xyi=csvread(’xyi.csv’);
xyp=csvread(’xyp.csv’);
prdnames=csvread(’prdnames.csv’);
injnames=csvread(’injnames.csv’);
angles=zeros(size(xyi,1),size(xyp,1));
arrlength=fmat
axislimit=max(xyi(:));
if max(xyp(:))>axislimit

axislimit=max(xyp(:))
end
for i = 1 : size(angles,1)%filling per row for each injector

for j =1:size(angles,2)
angles(i,j)=atand((xyp(j,2)-xyi(i,2))/(xyp(j,1)-xyi(i,1)))
if (xyp(j,2)-xyi(i,2))<0 && (xyp(j,1)-xyi(i,1))<0

angles(i,j)=angles(i,j)+180
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end

if (xyp(j,2)-xyi(i,2))==0 && (xyp(j,1)-xyi(i,1))<0
angles(i,j)=angles(i,j)+180

end

if (xyp(j,2)-xyi(i,2))>0 && (xyp(j,1)-xyi(i,1))<0
angles(i,j)=angles(i,j)+180

end
end

end
figure
for i = 1:size(angles,1)

for j = 1:size(angles,2)
plot_sect(angles(i,j),(angles(i,j)+10),xyi(i,1),xyi(i,2),arrlength(i,j),

axislimit)
hold on

end
end

for i =1:size(prdnames,1)
text(xyp(i,1),xyp(i,2),[’*P’, num2str(prdnames(i,1))])

end
for i =1:size(injnames,1)

text(xyi(i,1),xyi(i,2),[’I’, num2str(injnames(i,1))])
end

This code is to solve the CRM method using the fmincon function in Matla. The output is the
matrix of lambdas and the input will be the rates, and well locations. The lambdas matrix can be
accessed by looking up the variable fmat clear all

PRDI=readtable(’PRD_Org.xlsx’);

INJI=readtable(’INJ_Org.xlsx’);

prd=table2array(PRDI(305:end,2:end-3));

inj=table2array(INJI(305:end,2:end-3));

XYII=readtable(’XYI.csv’);

XYPI=readtable(’XYP.csv’);

xyi=table2array(XYII(:,2:end));

xyp=table2array(XYPI(:,2:end));

%Calc. the initial values of f (which is the initial values of the
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%connectvity

distance=zeros(size(xyi,1), size(xyp,1));

for k=1:size(xyp,1)

for i =1:size(xyi,1)

distance(i,k)=((abs(xyp(k,1)-xyi(i,1)).ˆ2+(abs(xyp(k,2)-xyi(i,2)).ˆ2))).ˆ.5;

end

end

%creating the matirx of the connectivity

fmat=zeros*distance;

for k=1:size(xyp,1)

for i =1:size(xyi,1)

fmat(i,k)=(1/distance(i,k))./(sum(1./distance(:,k)))+.06;

end

end
%---------Creating the matrix of taos------------------------

tao=.06*ones(size(inj,2),size(prd,2));

qest=zeros*prd;

%------Optimization section lambda-------------------------
% the process will be for each producer, so the filling for lambda matrix
% will be vertical
lb=0*(fmat(:,1));
ub=1+lb;

for i=1:size(prd,2)

for j=1:5

inifmat=fmat(:,i);

fmat(:,i)=fmincon(@(fmat)crm(abs(inifmat),inj,prd(:,i),tao(:,i)),inifmat
,[],[],[],[],lb,ub,[],options);
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inifmat=fmat(:,i);

end

end

%------Optimization section tao----------------------------

lb=ub*.001;

for i=1:size(prd,2)

for j=1:5

initao=tao(:,i);

tao(:,i)=fmincon(@(tao)crm(abs(fmat(:,i)),inj,prd(:,i),initao),initao
,[],[],[],[],lb,ub,[],options);

initao=tao(:,i);

end

end

%----------- checking and plotting-------------------------
close all
for i =1:size(prd,2)
subplot(4,4,i)
qest=qescal(fmat(:,i),tao(:,i),size(prd,2),size(inj,2),prd(:,i),inj);
plot(qest(:,1))
hold on
plot(prd(:,i),’r*’)
hold off
xlabel(’time (month)’)
ylabel(’rate (bbl/d)’)
legend(’Calculated’, ’Simulated’,’Location’,’south’)
title([’PRD’,num2str(i)])
lsn=ls2(fmat(:,i),tao(:,i),size(prd,2),size(inj,2),prd(:,i),inj);
end

%---------------sectors routine----------------------------
angles=zeros(size(xyi,1),size(xyp,1));
arrlength=fmat
axislimit=max(xyi(:));
if max(xyp(:))>axislimit

axislimit=max(xyp(:))
end
for i = 1 : size(angles,1)%filling per row for each injector
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for j =1:size(angles,2)
angles(i,j)=atand((xyp(j,2)-xyi(i,2))/(xyp(j,1)-xyi(i,1)))
if (xyp(j,2)-xyi(i,2))<0 && (xyp(j,1)-xyi(i,1))<0

angles(i,j)=angles(i,j)+180
end

if (xyp(j,2)-xyi(i,2))==0 && (xyp(j,1)-xyi(i,1))<0
angles(i,j)=angles(i,j)+180

end

if (xyp(j,2)-xyi(i,2))>0 && (xyp(j,1)-xyi(i,1))<0
angles(i,j)=angles(i,j)+180

end
end

end
figure
for i = 1:size(angles,1)

for j = 1:size(angles,2)
plot_sect(angles(i,j),(angles(i,j)+10),xyi(i,1),xyi(i,2),arrlength(i,j),

axislimit)
hold on

end
end
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