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Abstract

We prove results relating to the exit time of a stochastic process from a region in

N -dimensional space. We compute certain stochastic integrals involving the exit

time. Taking a Gaussian copula model for the hitting time behavior, we prove

several results on the sensitivity of quantities connected with the hitting times to

parameters of the model, as well as the large-N behavior. We discuss the relation-

ship of these results to certain credit derivative instruments. Relevant simulations

are presented.

vi



Chapter 1
Introduction

This dissertation forms a step towards a fuller understanding of certain hitting

time questions for stochastic processes in N dimensions, especially with a view

towards understanding what happens for large N . As it happens, some of these

questions have arisen in connection with certain financial instruments called credit

derivatives. We draw on intuition and simulation-based observations gathered in

the context of these instruments, to formulate precise mathematical results and

proofs. Our ultimate objectives are, however, mathematical.

• Motivation and Background

Consider a stochastic process, i.e. a random path,

t 7→ Xt

evolving in RN . A natural and classic question in probability theory is the deter-

mination of the behavior of the first time τ when the process hits some specified

set. For instance, if the process initiates at a point p0 in a region D ⊂ RN , one

may study the first time the process hits the boundary ∂D. A particular case of

great simplicity is the question of when a Brownian motion

t 7→ Bt

in one dimension, starting at the origin 0, reaches a point x > 0. It is well known

(see, for instance, [74]) that this hitting time τx has distribution given by

Prob [τx ≤ t] = 2

∫ ∞
x/
√
t

1√
2π
e−u

2/2 dy

1



The questions we study involve a stochastic process t 7→ Xt, initiating at a point in

a ‘wedge’, an unbounded subset of RN with boundary formed by hyperplanes. Ide-

ally, one would like to know the exact joint distribution of the times at which the

process hits each of the bounding hyperplanes. This task is, of course, of tremen-

dous complexity. Even in two dimensions, the distribution of the hitting time to

one of two bounding walls, is very complex (it has been studied by, among others,

Rebholz in his 1994 Berkeley PhD thesis [76]).

As it happens, and as we shall explain in detail in later chapters, hitting (or exit)

time questions are of relevance to certain fundamental models of default events of

bonds. The quantitative work in connection with the pricing and risk management

of instruments which market default risk in portfolios has given rise to ‘phenomeno-

logical models’, called copula models, for describing the joint probability distribu-

tion of defaults of bonds in a portfolio. The usefulness of these phenomenological

models suggests that, at least when the dimension N of the ambient space is large,

the hitting time distributions might be approximated by large-N limits of these

copula models, especially the so-called Gaussian copula. Whether this is in fact

the case, remains conjectural at this time.

Our study splits into two parts, first a study of questions relating to hitting

times of stochastic process, and then a study of statistical/probabilistic features

of a copula model for default-time/hitting-time distributions. These features are

suggested by simulation-based observations and intuitively understood phenomena

used in practice. We turn now to a more detailed summary of the results we prove.

• Overview of Results

A Brownian motion t 7→ B(t) in RN is a stochastic process (thus, having random

paths) which sets off at the origin 0, has continuous paths, with Gaussian incre-

2



ments Bt − Bs (for 0 ≤ s < t) independent of the ‘past’, each component having

mean 0 and variance t− s. Consider now a stochastic process

t 7→ Y (t) =
(
Y1(t), ..., YN(t)

)
in RN , such that each component Yj is a Brownian motion, but now suppose that

these component are correlated, i.e. the correlations

ρjk = Corr
(
Yj(t), Yk(t)

)
are not all 0. Now consider the region

{x ∈ RN : x1 > −c1, ..., xN > −cN},

where c1, ..., cN > 0, which is bounded by the ‘walls’ given by:

j-th wall = {x ∈ RN : xj = −cj}.

In dimensions > 2, Brownian motion is known to be ‘transient’ and escapes to

infinity with probability one. Our first result provides an upper bound for the

probability that the exit time is greater than t, and then we discuss several other

results on the exit time and the correlation.

Next we construct a discrete approximation to the process t 7→ Y (t). We prove re-

sults showing exactly in what sense this discrete process approximates the continuous-

time process. We also derive a difference equation for the probability distribution

of the hitting time for the discrete process. We then indicate, informally, how this

difference equation provides, as its limit, the Kolmogorov backward equation for

the hitting time distribution of the continuous process.

Brownian motion is technically described through a measure, the standardWiener

measure µ on the space C0([0,∞); RN) of continuous paths in RN starting at 0. As

3



with all measures, this measure is best understood by means of integrals∫
C0([0,∞);RN )

f dµ

for functions f of interest. The simplest choice of such functions f are cylinder

functions, i.e. functions of the form

x 7→ f(x) = F
(
x(t1), ..., x(tn)

)
for paths x ∈ C0([0,∞); RN), time instants 0 < t1 < ... < tn, and suitable measur-

able functions F on RN . Another interesting standard class of functions are of the

form

x 7→ f(x) = e−
∫ T
0 F (x)(t) dtg(x)(T )

for suitable functions F and g on the path space, and T > 0. Integrals of such

functions are the subject the Feynman-Kac formula. Instead of a fixed time T , one

may also study such integrals with a random time τ . We will take a the random

exit times τ mentioned before, and obtain closed-form expressions for integrals of

the type ∫
C0([0,∞);RN )

[∫ τ∧T

0

e−
∫ t
0 ζ(x,u) du

]
dµ(x), (1.0.1)

where ζ may be one of several types of functions on the path space, usually speci-

fied, almost everywhere, through a stochastic differential equation. We will describe

our method in Chapter 6 in the context of certain credit-derivative models.

Finally, we turn to a set of questions motivated by a phenomenological model

for exit times from the region. Here we simply assume, as an Ansatz, that the

number k of the N component paths of a process t 7→ Y (t), initiating at a point in

a wedge in RN , which exit the wedge are governed by a specific ‘Gaussian copula’

law. We can formulate our results directly, without reference to the process Y . We

consider jointly Gaussian variables X1, ..., XN , each being standard Gaussian, with

4



a common positive correlation

ρ = E [XjXk] > 0 for all j, k ∈ {1, ..., N},

specified by

Xi =
√
ρZ +

√
1− ρεi for every i ∈ {1, ..., N}

where Z, ε1, ..., εN are independent standard Gaussians. Let c ∈ R be a ‘threshold’.

We view the event [Xj < c] as indicating that the j-th component of the process

has exited the wedge within a fixed time horizon. Let ν be the random variable

which counts the number of Xj which are below the threshold value:

ν = 1[X1<c1] + · · ·+ 1[XN<cN ]. (1.0.2)

One way to study the joint distribution of the events [Xj < c] is to examine the

behavior of the random variables

νk = min{ν, k} for k ∈ {1, ..., N}, (1.0.3)

and the expectations

E [νk] .

Here, and always, E [Z] denotes the expected value of a random variable Z. When

the correlation ρ increases, the distribution of ν gets heavier at both high and low

values, and it is not apparent which way the expected value E [νk] would move. We

prove that, in fact, E [νk] decreases when ρ increases.

We may also consider the ‘delta’ for k ∈ {0, 1, ..., N}, given by

∆k =

∂E [νk]

∂c
∂E [ν]

∂c

, (1.0.4)

which is a normalized sensitivity of E [νk] to changes in the threshold c.

Our main results for this ‘Gaussian copula’ model may be summarized as follows.

5



Theorem 1.0.1. With notation and hypotheses as above,

(i) the derivative of E [νk] with respect to the correlation parameter ρ is negative:

dE [νk]

dρ
< 0

(ii) There is a probability measure ∆ on subsets of {0, 1, ..., N}, such that

∆k = ∆({0, 1, ..., k});

the delta measure ∆ is given by an averaging of a certain Binomial probability

distribution over a Gaussian distribution (see (4.2.6) for an explicit formula).

(iii) The ‘Gamma’ for k, defined by

Γk
def
= ∆k

∂2LN
∂c2

− ∂2Lk
∂c2

, (1.0.5)

is positive.

(iv) Let Z, ε1, ε2, .... be a sequence of independent standard Gaussians, and Xi =

√
ρZ +

√
1− ρεi for each i, with a fixed ρ > 0. Let ν(N) be the number of j

for which Xj is below c. Then the random variable ν(N)/N converges almost

surely to Φ
(
(c −√ρZ)/

√
1− ρ

)
, where Φ is the distribution function of the

standard Gaussian.

We also prove analogous results for Poisson distributions in place of the Bino-

mial. These two results are inspired by observations made in quantitative finance

practice.

In addition to the preceding theorems, we also present some simulations illus-

trating aspects of the results.

• Relationship with Credit Derivative Modeling

6



As noted earlier, some of our results are inspired by ideas arising from models for

certain credit derivative instruments, specifically models for credit default swaps

(CDS) and collateralized debt obligations (CDO).

A CDS is a credit derivative which is an agreement between two parties, A

(who is buying protection) and B (who is selling protection). A pays B a premium

periodically to insure the notional amount of a given defaultable bond against risk

of default. If a default happens during the life of the CDS, B pays A the loss

amount. Otherwise, B pays A nothing. To model the price of a CDS basically

means to set up a model to find the premium A should pay B.

A CDO is a credit derivative in which the credit risk on a portfolio of defaultable

assets is sold by different default levels, called tranches. The first tranche, 0%−3%,

is called the equity tranche; it is the most risky tranche. The last one, usually

30%− 100%, is called the supersenior tranche, and is the most secure.

The market for CDS and CDOs, which began in the mid 1990s, has grown

explosively (from 7.3 trillion US dollar notional in June 2005 to 24.2 trillion in June

2007 for a certain category of CDS contracts, according to Table 19 in [9].) This,

along with the current turmoil in the credit derivatives market and its ramifications

to the global economy, underline the need for broader, theoretical studies of the

models used in pricing and risk managing default swaps and CDOs. The present

work, however, is primarily mathematical, with the objective being rigorous proofs

of precisely formulated theorems. The finance context serves only as an intuitive

guide, providing a qualitative guidance towards conjecturing new results relating

to exit time phenomena.

The exit time of a stochastic process from the wedge described earlier, can be

viewed as a simple first model of default of a bond. The process is a proxy for the

value of the assets of the bond issuer, and hitting the boundary corresponds to

7



default of the bond. The distribution of the default time, i.e. the wedge exit time

in the model, is a significant factor in the CDS premium rate for the bond.

Our results on the Gaussian copula model, and the Poisson-mix model, are con-

nected with default behavior in a CDO. The Gaussian copula model for default

behavior in a CDO associates to each CDS name i in the portfolio a standard Gaus-

sian variable Xi; these variables are assumed to be such that that are independent

standard Gaussians Z, ε1, ..., εN with

Xi =
√
ρZ +

√
1− ρεi,

for i ∈ {1, ..., N}, for some fixed positive ρ. Name i defaults in a given time horizon

if the value of Xi is below a threshold c (assumed, in this simple model, to be the

same for all names). With this framework our results in Theorem 1.0.1 match

what is understood through simulations and experience in actual practice (see, for

instance, [70]). It may be noted that the Gaussian copula model (popularized by

David Li [64]) for default behavior, though still a valuable tool in practice, has

many practical deficiencies. However, from the mathematical point of view, it is a

fundamental setting, with the Gaussian background measure, to prove results of

elegance and simplicity.

The interaction between stochastics and financial models goes back at least to

Louis Bachelier’s 1900 PhD thesis using the essential ideas of Brownian motion

in the context of stock price evolution. In more modern times, in 1973, Robert

C. Merton and Myron S. Scholes, who were later awarded the Nobel prize, in col-

laboration with Fischer S. Black, developed the celebrated Black-Scholes-Merton

formula to evaluate stock options, and changed pricing financial derivatives from

a guessing game into solving a mathematical model. The mathematical tools they

used, continuous-time stochastic calculus and stochastic differential equations, be-

8



came the most common language for evaluating financial instruments in industry

and in academic work.

• Organization of Thesis

Chapter 2 presents our main results on the exit time of a stochastic process from

a region in N -dimensional space.

In Chapter 3, we describe a discrete random walk process, as an approximation

to a continuous process, and obtain a difference equation for the exit; we also

discuss related results and notions.

In Chapter 4, we take a phenomenological model, mainly the Gaussian copula

model, for hitting time distributions, and present our results concerning sensitivity

of hitting time distribution characteristics to model parameters. We explain how

these connect with ideas used in the credit-derivatives industry. We also prove a

convergence result for the large-N (dimension) behavior of the model.

Chapter 5 summarizes some standard material from ‘stochastic finance’, ex-

plaining how certain integrals involving stopping times arise and how they may be

interpreted in the financial context.

Chapter 6 begins with a description of certain standard models in pricing bond-

related instruments. Then, in section 6.4 we describe our method for computing

the integrals (1.0.1) for these models.

A few standard definitions and notions pertaining to copula and correlation are

summarized in Appendix A, presented in a manner suitable for our needs.

• Brief Comments on the Bibliography

The bibliography presents primarily works which have been broadly consulted

in preparing this dissertation.

9



The literature on exit times/first-passage-times is vast, spanning many decades.

A search on mathscinet for ‘first passage time’ produces over a thousand entries.

These include works in several areas of physics, biological sciences, reliability the-

ory, and finance. The book by Oeksendal [74] has been particularly useful for us.

There is also a large body of literature, with heavy current activity, relating to

credit derivatives. However, very little of this is motivated mainly by the search for

mathematically elegant and precise results and proofs. Indeed, a search on math-

scinet for ‘credit default swaps’ and ‘collateralized debt obligations’ produces very

few entries. The present dissertation should be viewed as a work of mathematics,

with simulations and ideas arising in part from the finance context.

The long range goal of this line of research is the study of large-N behavior of

exit times of stochastic processes in N dimensions. The ICM lecture of Williams

[102], and the work of Varadhan and Williams [96], testify to depth of questions

and ideas that arise in even the case of a stochastic process in a wedge.

10



Chapter 2
A First Passage Time Estimate

In this chapter we consider a stochastic process in RN , with continuous paths

and Gaussian in nature, and study the first time this process exits from a region

bounded by hyperplanes orthogonal to the coordinate vectors. We obtain an upper

bound for the exit time distribution.

All through this chapter we work on a fixed probability space (Ω,F ,P), which is

assumed to be richly structured enough to admit Brownian motion processes. For

example, the probability space might by the space C0

(
[0,∞),RN

)
, of continuous

paths in RN starting at 0, equipped with Wiener measure on the completion of the

σ-algebra generated by cylinder sets.

We shall use the terminology ‘first passage time’, ‘hitting time’, and ‘exit time’,

interchangeably. For our purposes a distinction between these notions need not

be made. In other settings, especially for processes with discontinuous paths, a

distinction could be made, but that is not applicable to our discussion.

As mentioned in the Introduction, there is a large body of literature on exit

times. In particular, we will use a well-known formula concerning the probability

that a standard Brownian path t 7→ B(t) in R, starting at the origin, reaches

beyond a level x > 0:

P[ sup
s∈[0,t]

B(s) ≥ x] = P[ sup
s∈[0,t]

B(s) > x] = P[τx ≤ t]

= 2
(

1− Φ(x/
√
t)
)

= 2Φ

(
− x√

t

)
,

(2.0.1)

where τx is the exit time

τx = inf{t ≥ 0 : B(t) ≥ x},

11



and Φ is the standard Gaussian distribution function

Φ(y) =

∫ y

−∞
(2π)−1/2e−s

2/2 ds.

This result may be found in standard texts, such as Oksendal [74].

We will work with a Gaussian stochastic process

[0, 1]→ RN : (t, ω) 7→ Y (t;ω) = Yt(ω) ∈ RN

for which each component Yj(·) is a standard Brownian motion. In particular,

Y (0) = 0.

For each j, k ∈ {1, ..., N}, define ρjk through

ρjk = Corr
(
Yj(t), Yk(t)

)
, (2.0.2)

and we assume that ρjk this is independent of t.

Since each Yj(t) has mean 0 and variance t, it follows that

E [Yj(t)Yk(t)] = tρjk

Let

R = [ρjk],

the N×N matrix whose entries are the correlation terms ρjk. Note that the matrix

R is symmetric.

Exit times have been studied, mostly in terms of general, abstract, results in

many works. We mention Wentzell [99], Freidlin [41], Krylov [60] and Oksendal

[74]. Shepp [86] studies a more specific hitting-time problem, with a parabolic

boundary.

12



2.1 From the Gaussian Process to Uncorrelated
Brownian Motion

It is a standard fact that this matrix is non-negative-definite; this is because

N∑
j,k=1

zjρjkzk = E

[∣∣∣ N∑
j=1

zjYj(t)
∣∣∣2] ≥ 0,

for every complex z1, ..., zN ∈ C. The inequality above will be an equality if and

only if
∑N

j=1 zjYj(t) is 0 almost-everywhere. Thus, if we assume that Y1(t), ..., YN(t)

are linearly independent then the matrix R is positive definite.

Now, for some invertible symmetric matrix β, consider the random vector

W (t) = β−1Y (t),

so that

Y (t) = βW (t). (2.1.1)

We want to find the β which will make the W (·) a standard Brownian motion,

i.e. its components (which are Gaussian) should be independent. Thus, we should

have

E [Yj(t)Yk(t)] =
N∑

m,l=1

E [βjmWm(t)βklWl(t)]

= t
∑

1≤m,l≤N

βjmδmlβkl

= t(ββt)jk,

(2.1.2)

Thus, we should take β to be the positive definite matrix (hence, automatically,

symmetric) whose square is R:

β = R1/2. (2.1.3)

Thus,

t 7→ W (t)

13



is a Gaussian stochastic process whose components are independent Brownian

motions. Hence t 7→ W (t) is a standard Brownian motion in RN .

2.2 Exit Time from an Orthant
Fix ‘threshold’ values

c1, ..., cN > 0

and let τj be the exit time

τj = inf{t ≥ 0 : Yj(t) ≤ −cj} (2.2.1)

We are interested in

τ = min{τ1, ..., τN}. (2.2.2)

This is the first time when the process Y (·) has one component fall to or below

the corresponding threshold level −cj.

The condition

Yj(t) > −cj for all j ∈ {1, ..., N}

is equivalent to each component of the vector

βW (t) + c

being positive. This means that βW (t) + c is in the positive orthant (0,∞)N .

Thus, τ is the first time t when W (t) + β−1c exits β−1
(
(0,∞)N

)
.

Let τ ′ be the first time t when W (t) + β−1c exits the half space Hv. Then

τ ≤ τ ′ (2.2.3)

because the process must first exit β−1
(
(0,∞)N

)
before it can exit the half-space

Hv.
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Lemma 2.2.1. The distribution of the exit time τ ′ is given by

Prob [τ ′ ≤ t] = 2Φ

(
−〈β

−1c, v〉√
t

)
(2.2.4)

In particular, τ ′ is finite with probability 1.

Proof. Let us write W (t) as a component along the vector v and a component

perpendicular to v:

W (t) = 〈W (t), v〉v + W (t)− 〈W (t), v〉v

Each of these two components is a Brownian motion. In particular,

t 7→ 〈W (t), v〉

is a standard Brownian motion.

The first timeW (t)+β−1c exits the half-space Hv is the first time the component

〈W (t), v〉 falls to or below the value

−〈β−1c, v〉.

So

Prob [τ ′ ≤ t] = Prob [τ ′′ ≤ t] , (2.2.5)

where τ ′′ is the first time a standard Brownian motion t 7→ B(t) hits the value

〈β−1c, v〉.

Now (see, for example, Oksendal [74]), for any x ≥ 0,

Prob

[
sup

0≤s≤t
Bs ≥ x

]
= 2Φ

(
− x√

t

)
. (2.2.6)

Therefore,

Prob [τ ′′ ≤ t] = 2Φ

(
−〈β

−1c, v〉√
t

)
(2.2.7)

This gives the desired result from (2.2.5). Letting t ↑ ∞ shows that Prob [τ ′ <∞]

is 1.
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Now we have:

Proposition 2.2.1. Let t 7→ Y (t) be a Gaussian process, each of whose components

is a standard Brownian motion, and with a non-degenerate correlation matrix R =

[ρjk], where ρjkt = E [Yj(t)Yk(t)] for j, k ∈ {1, ..., N} and all t > 0. Let c =

(c1, ..., cN) ∈ (0,∞)N , and τ the exit time of Yt + c from (0,∞)N . Then:

P[τ > t] ≤ 2Φ

(
minj cj√

t

)
− 1. (2.2.8)

Proof. As before, let β = R1/2, and Wt = β−1Yt. The exit time τ is the first time

βWt + c exits (0,∞)N , i.e. the first time Wt + β−1c exits β−1(0,∞)N . Suppose n

is any unit vector such that

β−1
(
(0,∞)N

)
⊂ Hn = {x ∈ RN : 〈x, n〉 ≥ 0}.

This is equivalent to 〈β−1ej, n〉 being positive for each standard basis vector ej, i.e.

〈ej, β−1n〉 > 0 for all j ∈ {1, ..., N}. (2.2.9)

Then, from Lemma 2.2.1, the time τ ′n of exit of the process t 7→ Wt from Hn,

satisfies

P[τ ′n ≤ t] = 2Φ

(
−〈c, β

−1n〉√
t

)
.

The maximum over unit vectors n for which (2.2.9) holds, occurs at β−1n equal to

some ek, and so it is for that k for which 〈c, ek〉 is minimum.

2.3 Correlation and Some Geometric
Consequences

We work with a Gaussian process t 7→ Yt with Brownian components, and with

correlation matrix R = [ρjk] specified by

E [Yj(t)Yk(t)] = ρjkt.
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If the matrix R is positive definite and has all entries ρjk positive then the Brownian

‘factor’ process t 7→ Wt is contained in a halfspace determined by RL

Proposition 2.3.1. If R is a positive definite matrix with all entries positive then

R−1/2((0,∞)N) is contained in the half-space

Hv = {x ∈ RN : 〈x, v〉 ≥ 0}

where v is the eigenvector of R corresponding to the largest eigenvalue. Thus, if

each ρjk is positive and c ∈ (0,∞)N , then the process t 7→ W (t) + R−1/2c lies

entirely inside the half-space Hv up to time τ of exit of the process Y + c from the

positive orthant.

Proof. Since R is positive-definite and has all entries positive, the Perron-Frobenius

theorem says that it has a unique unit eigenvector v, with all components positive,

which corresponds to the largest eigenvalue λ:

Rv = λv.

Since R is positive definite, λ is positive. Note also that

β = R1/2

is a positive definite, and hence, symmetric matrix. Looking at the matrix of R

relative to an orthonormal basis of eigenvectors of R, it is simply a diagonal matrix,

and β is the diagonal matrix with entries given by the corresponding square-roots.

In particular,

βv =
√
λv

Consider any of the standard unit basis vectors

ej = (0, 0, ..., 0, 1, 0, ..., 0)
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with 1 at the j-th entry. Then

〈β−1ej, v〉 = 〈ej, β−1v〉 =
1√
λ
〈ej, v〉 > 0, (2.3.1)

the last inequality holding because each component of the vector v is positive.

Thus

β−1ej ∈ Hv
def
= {x ∈ RN : 〈v, x〉 > 0}

Thus, β−1 maps each of the basis vectors into the half space Hv. Hence, it maps

any positive linear combination of the ej’s into Hv. This means that β−1 maps

(0,∞)N into a subset of Hv.

Next suppose R is positive definite and R−1 has all entries positive. For this case

we have:

Proposition 2.3.2. Suppose the Gaussian process t 7→ Y (t) has Brownian com-

ponents, and the correlation matrix R = [ρjk], where ρjkt = E [Yj(t)Yk(t)] for all

j, k ∈ {1, ..., N} and t > 0, is such that R is invertible and R−1/2 has all entries

positive. Then

W (t) +R−1/2c ∈ (0,∞)N

for all t ≤ τ , where τ is the time of exit of the process Y + c from the positive

orthant.

Proof. Upto time τ , R1/2W (t) + c lies in (0,∞)N , and so W (t) + R−1/2c lies in

R−1/2(0,∞)N , and this lies inside the positive orthant if R−1/2 has all components

positive.

In the 2-dimensional case we can draw some conclusions concerning the expec-

tation of the hitting time τ .

Let

X(t) =
(
Y1(t) + c1

)(
Y2(t) + c2

)
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Then, by Itô’s lemma,

dX(t) = martingale terms + ρdt

Consequently,

E [X(τ ∧N)] = X(0) + ρE [(τ ∧N)] (2.3.2)

Now at time τ ∧N ≤ τ , the process Y + c is still inside (0,∞)2, and so

X(τ ∧N) ≥ 0

Thus

c1c2 + ρE [(τ ∧N)] ≥ 0.

By monotone convergence as N ↑ ∞, we have

c1c2 ≥ −ρE
[
τ1[τ<∞]

]
.

But we already know that τ <∞ with probability 1. So we conclude:

Proposition 2.3.3. For the process t 7→ Y (t) in R2 if the correlation ρ is negative,

then the expected hitting time E [τ ] is finite.

Intuitively, if one component, say Y1(t) is very high positive (away from −c1)

then the negative correlation makes it likely that the other component is very low

negative and so likely below the corresponding threshold (−c2 for Y2). This makes

it more likely that the boundary of the region will be hit in less time than in the

case of positive correlation when both components could be large simultaneously.

The case of two dimensions implies the following consequence for higher dimen-

sions:

Proposition 2.3.4. For the process t 7→ Y (t) in RN if the correlation between Yj

and Yk is negative for some pair j, k ∈ {1, ..., N}, then the expected hitting time

E [τ ] is finite.
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2.4 Hitting Times for Processes with Drift
We should note that the Brownian motion we discussed above has no drift and

volatility coefficient. However, by Girsanov’s theorem, a variation on some of our

results should still hold for Brownian motion with volatility σ and an added ‘small’

drift. That is, τ is still finite with probability 1 under some transformed proba-

bility measure to which Girsanov’s theorem applies. (For Girsanov’s theorem, see

theorem A.3.1 in Appendix A.)

We focus now on a case that is more concrete. The following result is well-known,

but we include a proof.

Proposition 2.4.1. Let t 7→ Bt be standard Brownian motion in one dimension,

µ ∈ R, and a ∈ (0,∞). Let τ be the first time Bt + µt exits (−∞, a). Then τ <∞

with probability 1 if µ ≥ 0, and is equal to e2aµ of µ < 0.

Proof. Let λ > 0 and N ∈ {1, 2, ...}. Then

eλBτ∧N−λ
2(τ∧N)/2 ≤ eλ(a−µ(τ∧N))−λ2(τ∧N)/2

≤ eaλ−λ
(

2µ+λ)(τ∧N)/2

(2.4.1)

To make this bounded, we work with λ satisfying

λ > −2µ. (2.4.2)

Note that, when N ≥ τ then in (2.4.1), eλBτ∧N−λ2(τ∧N)/2 stabilizes at eaλ−λ(2µ+λ)τ/2,

whereas, if N < τ , then it is always bounded by eaλ−λ
(

2µ+λ)N/2, which goes to 0.

Thus,

lim
N→∞

eλBτ∧N−λ
2(τ∧N)/2 = eaλ−λ(2µ+λ)τ/2

1[τ<∞] (2.4.3)

From the martingale property of t 7→ eBt−t/2, we have, for the bounded stopping

time τ ∧N ,

E
[
eλBτ∧N−λ

2(τ∧N)/2
]

= 1.
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We can apply monotone convergence to the part of the expectation over [τ ≤ N ],

and dominated convergence to the part on [τ > N ], as N ↑ ∞, to conclude, using

(2.4.3), that

eaλE
[
e−λ(2µ+λ)τ/2

1[τ<∞]

]
= 1. (2.4.4)

If µ ≥ 0 we let λ ↓ 0 and conclude that E
[
1[τ<∞]

]
is 1, i.e. τ <∞ with probability

1. If µ < 0 then letting λ ↓ −2µ, and using monotone (or dominated) convergence,

we see that E
[
1[τ<∞]

]
equals e2aµ.

The argument above provides the Laplace transform of τ :

E
[
e−θτ

]
= e−a(

√
µ2+2θ−µ) for all θ > 0. (2.4.5)

(Note that the part τ = ∞ disappears because the exponential term is then 0.)

This Laplace transform may be inverted. According to Krylov [60, Page 66] (by

other methods),

P[τ > t] =
1√
2πt

∫ a

−∞
eµy−

1
2
µ2t

(
e−

y2

2t − e−
(2a−y)2

2t

)
dy. (2.4.6)

From Proposition 2.4.1 it follows that for a Gaussian process in RN , given by

t 7→ Y (t) = βW (t) + µt,

where µ ∈ RN , the process Y + c, where c ∈ (0,∞)N , leaves the positive or-

thant in finite time with probability 1 if the drift velocity vector µ such that some

component of β−1µ has the same sign as the component of −β−1c.
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Chapter 3
Exit Times Revisited

In this chapter we examine the exit time question for a stochastic process in RN in

terms of a discrete approximation to the original process. We shall also look at the

continuum case, and the Kolmogorov backward equation describing the probability

distribution of the exit time. We will quote results on the solution of this equation,

and also demonstrate how the equation can be transformed to a standard heat

equation.

3.1 Extrema of Paths
We will work with correlated Brownian motions

t 7→ Yj(t) ∈ R

for j ∈ {1, ..., N}.

Fix threshold values d1, ..., dN < 0, and let

τj = inf{t ≥ 0 : Yj(t) ≤ dj} (3.1.1)

Since the paths of Yj are continuous, we have the following equality of events:

[τj ≤ t] = [ inf
0≤s≤t

Yi(s) ≤ dj]. (3.1.2)

A simulation is shown in Figure 3.1. Ideally, one would like to determine the

joint distribution of

(τ1, τ2, · · · , τN)

In view of the equality (3.1.2), this is essentially equivalent to determining the

behavior of the process of extrema:

t 7→ ( inf
0≤s≤t

Y1(s), inf
0≤s≤t

Y2(s), · · · , inf
0≤s≤t

YN(s)). (3.1.3)
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FIGURE 3.1. A Sample Path Of A Stochastic Process

We will focus mainly on the case N = 2.

Our objective then is to study the probability

P [ inf
0≤s≤t

Y1(s) < d1, inf
0≤s≤t

Y2(s) < d2].

Our method will be to replace the continuous process Y with a discrete process

Z, which is a random walk, which, in a limit, converges to the process Y . We first

discretize time into steps of size

∆t = δ > 0.
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We then work with a lattice in R2 specified by

L∆t = {(m∆x, n∆y) : m,n ∈ Z} (3.1.4)

where ∆x and ∆y are given by

∆x = σ1

√
∆t, and ∆y = σ2

√
∆t (3.1.5)

The discrete process we consider is a random walk, whose time-n position is

given by

Sn =
n∑
j=1

Zj (3.1.6)

where Z1, Z2, ... are independent identically distributed random variables, with

distribution given by

P11 : = P [Zi = (∆x,∆y)] =
1

4
(1 + ρ+

µ1∆x

σ2
1

+
µ2∆y

σ2
2

)

P21 : = P [Zi = (−∆x,∆y)] =
1

4
(1− ρ− µ1∆x

σ2
1

+
µ2∆y

σ2
2

)

P12 : = P [Zi = (∆x,−∆y)] =
1

4
(1− ρ+

µ1∆x

σ2
1

− µ2∆y

σ2
2

)

P22 : = P [Zi = (−∆x,−∆y)] =
1

4
(1 + ρ− µ1∆x

σ2
1

− µ2∆y

σ2
2

),

(3.1.7)

We assume that ∆t = δ > 0 is chosen small enough that all these transition

probabilities are positive.

Lemma 3.1. Let Y (t) = (Y1(t), Y2(t)) be a two-dimensional Brownian motion with

mean (µ1t, µ2t), variance (σ2
1t, σ

2
2t) and correlation ρ. We use the notation and

process introduced above. Then Y (t) is the limit in distribution of the process

Xδ(t) =

[t/δ]∑
i=1

Zi

i.e.

Xδ(t)
dist.→ Y (t) as δ → 0

24



Proof. Consider the characteristic function MX(t)(θ1, θ2) of X(t) with complex θ1

and θ2:

MX(t)(θ1, θ2) = E[e(θ1,θ2)X(t)]

= E[e(θ1,θ2)
∑t/∆t
i=1 Zi ]

=

[t/∆t]∏
i=1

E[e(θ1,θ2)Zi ]

= (P11e
θ1∆x+θ2∆y + P12e

θ1∆x−θ2∆y

+ P21e
−θ1∆x+θ2∆y + P22e

−θ1∆x−θ2∆y)[ t
∆t

]

= (A11 + A12 + A21 + A22)[ t
∆t

].

where

A11 = P11e
θ1σ1

√
∆t+θ2σ2

√
∆t

A12 = P12e
θ1σ1

√
∆t−θ2σ2

√
∆t

A21 = P21e
−θ1σ1

√
∆t+θ2σ2

√
∆t

A22 = P22e
−θ1σ1

√
∆t−θ2σ2

√
∆t

By using Taylor expansion on A11, A12, A21, A22, we have

A11 =
1

4
(1 + ρ+ (

µ1

σ1

+
µ2

σ2

)∆t)

×(1 + (θ1σ1 + θ2σ2)
√

∆t+
1

2
(θ1σ1 + θ2σ2)2∆t+ o(∆t))

A12 =
1

4
(1− ρ+ (

µ1

σ1

− µ2

σ2

)∆t)

×(1 + (θ1σ1 − θ2σ2)
√

∆t+
1

2
(θ1σ1 − θ2σ2)2∆t+ o(∆t))

A21 =
1

4
(1− ρ− (

µ1

σ1

− µ2

σ2

)∆t)

×(1 + (−θ1σ1 + θ2σ2)
√

∆t+
1

2
(θ1σ1 − θ2σ2)2∆t+ o(∆t))

A22 =
1

4
(1 + ρ− (

µ1

σ1

+
µ2

σ2

)∆t)

×(1 + (−θ1σ1 − θ2σ2)
√

∆t+
1

2
(θ1σ1 + θ2σ2)2∆t+ o(∆t)).
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Then

A11 + A12 + A21 + A22 = 1 + (µ1θ1 + µ2θ2)∆t

+
1

2
(θ2

1σ
2
1 + θ2

2σ
2
2 + 2ρθ1θ2σ1σ2)∆t+ o(∆t)

and by L’Hospital’s rule

lim
∆t→0

lnMX(t)(θ1, θ2) = lim
∆t→0

t

∆t
ln(A11 + A12 + A21 + A22)

= (µ1θ1 + µ2θ2)t+
1

2
(θ2

1σ
2
1 + θ2

2σ
2
2 + 2ρθ1θ2σ1σ2)t

= lnMB(t)(θ1, θ2),

that is

MX(t)(θ1, θ2)→MB(t)(θ1, θ2) as ∆t→ 0.

Therefore

X(t)
dist.→ Y (t) as ∆t→ 0

The following result is known (see, for instance, [76]).

Lemma 3.1.1. Let Y (t) be the process defined in Lemma 3.3 and

F (x1, x2, t) = P[ sup
0≤s≤t

Y1(s) ≤ x1, sup
0≤s≤t

Y2(s) ≤ x2],

where 0 < Y1(0) = x10 < x1 and 0 < Y2(0) = x10 < x2,

then F (x1, x2, t) satisfies the following Backward Equation:

∂F

∂t
=
σ2

1

2

∂2F

∂x2
1

+ ρσ1σ2
∂2F̄

∂x1∂x2

+
σ2

2

2

∂2F

∂x2
2

− µ1
∂F

∂x1

− µ2
∂F̄

∂x2

with boundary conditions:

F (x1, x2, 0) = 1, F (0, x2, t) = F (x1, 0, t) = 0.
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Instead of a formal proof, we present the essential argument in a manner related

to simulation of the continuous processes. Our method yields a difference equation

for the discrete approximation to the continuous process.

Let F̄ (x1, x2, t) denote the hitting probability for the discrete process

t 7→ X(t) + (x1, x2)

where (x1, x2) is an initial point in the lattice Lδ, with positive coordinates.

From the definition of F̄ , we have

F̄ (x1, x2, t) = Pr[ sup
0≤s≤t

X1(s) ≤ x1, sup
0≤s≤t

X2(s) ≤ x2]

= P [X1(s) ≤ x1, X2(s) ≤ x2 s ∈ [0, t]|X1(0) = x10, X2(0) = x20]

= P11 · P [X1(s) ≤ x1, X2(s) ≤ x2 s ∈ [∆t, t]|X1(∆t) = x10 + ∆x

and X2(∆t) = x20 + ∆y]

+ P21 · P [X1(s) ≤ x1, X2(s) ≤ x2 s ∈ [∆t, t]|X1(∆t) = x10 −∆x

and X2(∆t) = x20 + ∆y]

+ P12 · P [X1(s) ≤ x1, X2(s) ≤ x2 s ∈ [∆t, t]|X1(∆t) = x10 + ∆x

and X2(∆t) = x20 −∆y]

+ P22 · P [X1(s) ≤ x1, X2(s) ≤ x2 s ∈ [∆t, t]|X1(∆t) = x10 −∆x

and X2(∆t) = x20 −∆y]

27



= P11 · Pr[X1(s) ≤ x1 −∆x,X2(s) ≤ x2 −∆y s ∈ [0, t−∆t]|X1(0) = x10

and X2(0) = x20]

+ P21 · Pr[X1(s) ≤ x1 + ∆x,X2(s) ≤ x2 −∆y s ∈ [0, t−∆t]|X1(0) = x10

and X2(0) = x20]

+ P12 · Pr[X1(s) ≤ x1 −∆x,X2(s) ≤ x2 + ∆y s ∈ [0, t−∆t]|X1(0) = x10

and X2(0) = x20]

+ P22 · Pr[X1(s) ≤ x1 + ∆x,X2(s) ≤ x2 + ∆y s ∈ [0, t−∆t]|X1(0) = x10

and X2(0) = x20]

= P11 · F̄ (x1 −∆x, x2 −∆y, t−∆t) + P21 · F̄ (x1 + ∆x, x2 −∆y, t−∆t)

+P12 · F̄ (x1 −∆x, x2 −∆y, t+ ∆t) + P22 · F̄ (x1 + ∆x, x2 + ∆y, t−∆t)

To summarize,

F̄ (x1, x2, t) = P11 · F̄ (x1 −∆x, x2 −∆y, t−∆t) + P21 · F̄ (x1 + ∆x, x2 −∆y, t−∆t)

+ P12 · F̄ (x1 −∆x, x2 −∆y, t+ ∆t) + P22 · F̄ (x1 + ∆x, x2 + ∆y, t−∆t)

(3.1.8)

This difference equation governs the hitting time distribution of the discrete

process X.

To understand, at a formal level, the relationship with the Kolmogorov backward

equation, we use Taylor expansion on the right hand side, assuming that F̄ arises
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from a smooth enough function, defined in the continuum. Then

F̄ (x1, x2, t)

= P11[F̄ −∆x
∂F̄

∂x1

−∆y
∂F̄

∂x2

−∆t
∂F̄

∂t
+

1

2
(∆x)2∂

2F̄

∂x2
1

+
1

2
(∆y)2∂

2F̄

∂x2
2

+∆x∆y
∂2F̄

∂x1∂x2

+ o(∆t2)]

+ P21[F̄ + ∆x
∂F̄

∂x1

−∆y
∂F̄

∂x2

−∆t
∂F̄

∂t
+

1

2
(∆x)2∂

2F̄

∂x2
1

+
1

2
(∆y)2∂

2F̄

∂x2
2

−∆x∆y
∂2F̄

∂x1∂x2

+ o(∆t2)]

+ P12[F̄ −∆x
∂F̄

∂x1

+ ∆y
∂F̄

∂x2

−∆t
∂F̄

∂t
+

1

2
(∆x)2∂

2F̄

∂x2
1

+
1

2
(∆y)2∂

2F̄

∂x2
2

−∆x∆y
∂2F̄

∂x1∂x2

+ o(∆t2)]

+ P22[F̄ + ∆x
∂F̄

∂x1

+ ∆y
∂F̄

∂x2

−∆t
∂F̄

∂t
+

1

2
(∆x)2∂

2F̄

∂x2
1

+
1

2
(∆y)2∂

2F̄

∂x2
2

+∆x∆y
∂2F̄

∂x1∂x2

+ o(∆t2)]

Simplify the above equation and plug in P11, P21, P12, P22,∆x and ∆y, we have

∂F̄

∂t
∆t =

σ2
1

2

∂2F̄

∂x2
1

∆t+ ρσ1σ2
∂2F̄

∂x1∂x2

∆t+
σ2

2

2

∂2F̄

∂x2
2

∆t

−µ1
∂F̄

∂x1

∆t− µ2
∂F̄

∂x2

∆t+ o(∆t2).

dividing both sides by ∆t, we have

∂F̄

∂t
=
σ2

1

2

∂2F̄

∂x2
1

+ ρσ1σ2
∂2F̄

∂x1∂x2

+
σ2

2

2

∂2F̄

∂x2
2

− µ1
∂F̄

∂x1

− µ2
∂F̄

∂x2

+ o(∆t).

and the boundary conditions come from the initial conditions:

0 < X1(0) = x10 < x1

0 < X2(0) = x10 < x2

.
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The following theorem gives a solution of the above Kolmogorov Backward Equa-

tion.

Theorem 3.2. The Kolmogorov Backward Equation

∂F

∂t
=
σ2

1

2

∂2F

∂x2
1

+ ρσ1σ2
∂2F

∂x1∂x2

+
σ2

2

2

∂2F

∂x2
2

− µ1
∂F

∂x1

− µ2
∂F

∂x2

(3.1.9)

with boundary conditions:

F (x1, x2, 0) = 1, F (0, x2, t) = F (x1, 0, t) = 0

has the solution

F (x1, x2, t) =
2

α′t

∞∑
n=1

sin(
nπθ′

α′
)e−r

′2/2t

∫ α′

0

sin(
nπθ

α′
)gn(θ) dθ

where

gn(θ) =

∫ ∞
0

re−r
2/2t

1nπ/α

(
rr′

t

)
dr

tanα′ = −
√

1− ρ2

ρ

α = α′ − π

2

r′ =
1√

1− ρ2

(
x2

1

σ2
1

− 2ρx1x2

σ1σ2

+
x2

2

σ2
2

) 1
2

cos θ =
x1

σ1r′

θ′ = θ + α

Full details of a solution are worked out in e the Ph.D. thesis of Rebholz (1994)

[76]. See also Caslow (1947) [22] for an approach using separation of variables.

Here we shall describe how the equation can be transformed into a standard heat

equation. Let

F (x1, x2, t) = em1x1+m2x2+atG(x1, x2, t),
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where

m1 =
µ1σ2 − ρµ2σ1

(1− ρ2)σ2σ2
1

m2 =
µ2σ1 − ρµ1σ2

(1− ρ2)σ1σ2
2

a =
σ2

1

2
m2

1 + ρσ1σ2m1m2 +
σ2

2

2
m2

2 − µ1m1 − µ2m2.

Then F (x1, x2, t) solves

∂F

∂t
=
σ2

1

2

∂2F

∂x2
1

+ ρσ1σ2
∂2F

∂x1∂x2

+
σ2

2

2

∂2F

∂x2
2

− µ1
∂F

∂x1

− µ2
∂F

∂x2

with boundary conditions:

F (x1, x2, 0) = 1, F (0, x2, t) = F (x1, 0, t) = 0

if and only if G(x1, x2, t) solves

∂G

∂t
=
σ2

1

2

∂2G

∂x2
1

+ ρσ1σ2
∂2G

∂x1∂x2

+
σ2

2

2

∂2G

∂x2
2

with boundary conditions:

G(x1, x2, 0) = e−m1x1−m2x2 , G(0, x2, t) = G(x1, 0, t) = 0

Define two new variables ξ1 and ξ2 as below,

ξ1 =
1

σ1

x1

ξ2 =
1√

1− ρ2

(
− ρ

σ1

x1 +
1

σ2

x2

)
.

By the above substitution, G(x1, x2, t) becomes H(ξ1, ξ2, t) and the PDE

∂G

∂t
=
σ2

1

2

∂2G

∂x2
1

+ ρσ1σ2
∂2G

∂x1∂x2

+
σ2

2

2

∂2G

∂x2
2

,

with boundary conditions:

G(x1, x2, 0) = e−m1x1−m2x2 , G(0, x2, t) = G(x1, 0, t) = 0,

becomes
∂H

∂t
=

1

2

∂2H

∂ξ2
1

+
1

2

∂2H

∂ξ2
2
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with boundary conditions:

H(ξ1, ξ2, 0) = e−(m1σ1+ρm2σ2)ξ1−(m2σ2

√
1−ρ2)ξ2

H(ξ1, ξ2, t) = 0 if ξ1 = 0 and ξ2 > 0

H(ξ1, ξ2, t) = 0 if ξ2 = − ρ√
1− ρ2

and ξ2 > 0.
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Chapter 4
The Gaussian Copula Model

In this chapter we assume, as a phenomenological model, that the exit time be-

havior of an underlying process is governed by a ‘Gaussian copula model.’ We will

also present some analogous results for a Poisson-type model.

In more detail, we assume that there exist independent standard Gaussian vari-

ables Z, ε1, ..., εN , and parameters ρ > 0 and c > 0 such that, with

Xi =
√
ρZ +

√
1− ρεi, (4.0.1)

the event that the i-th component Yi of an underlying stochastic process exits a

threshold value is given through

[Xi ≤ c].

Note that we assume a common correlation

E [XiXj] = ρ > 0, for all i 6= j. (4.0.2)

For the results of this chapter, we will draw from intuition based on credit

derivative modeling of CDO instruments. To make the comparison, we should view

the event [Xi ≤ c] as a default of a name i in a portfolio of N CDS names, within

a fixed time horizon. The event that exactly k of the random variables Xi have

values ≤ c will be called an equity tranche. The complementary event of having

more than k such hits will be called a senior tranche. We view an event [Xi ≤ c]

as a ‘loss’ of name i. We will also use terms such as ‘delta’ and ‘Gamma’, inspired

by concepts in the CDO context. We also present similar results for a Poisson-type

model.
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Sections 4.1 to 4.5 present our results. The remainder of the chapter is largely

a discussion about the relationship of the mathematical results with the CDO

context.

4.1 Sensitivity to Correlation in the Gaussian
Model

We use the notation

φ(x) =
1√
2π
e−

x2

2 and Φ(x) =

∫ x

−∞
φ(s) ds. (4.1.1)

The probability that exactly j of the variables Xi are at level ≤ c, is given by

pj =

∫
R

(
N

j

)
pj(1− p)N−jφ(x) dx (4.1.2)

where

p = P [Xi ≤ c |Z = x] = Φ

(
c−√ρx
√

1− ρ

)
(4.1.3)

Let ν be the random variable counting the number of i for which Xi ≤ c. A

convenient way to study the joint behavior of the events [Xi < c] in terms of ν, is

by using the ‘cut-off’ random variables

νk = min{ν, k} = 1[ν=1] + 21[ν=2] + · · ·+ (k − 1)1[ν=k−1] + k1[ν≥k] (4.1.4)

and the complementary variables

νsk = ν −min{ν, k} = 1[ν=k+1] + 21[ν=k+2] + · · ·+ (N − k)1[ν=N ] (4.1.5)

We can now formulate our first main result for this model.

Theorem 4.1.1. Assume that Z, ε1, ..., εN are independent standard Gaussian

variables, with N > 1, and let

Xi =
√
ρZ +

√
1− ρ εi, for i ∈ {1, ..., N}
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where ρ ∈ (0, 1). Let c ∈ R. Let ν be the random variable which counts the number

of Xj with value < c:

ν = #{j ∈ {1, ..., N} : Xj < c} (4.1.6)

and, for k ∈ {1, ..., N},

νk = min{ν, k} (4.1.7)

νsk = ν −min{ν, k}. (4.1.8)

Then the expected value of ν has no dependence on ρ:

dE [ν]

dρ
= 0.

Moreover,
dE [νk]

dρ
< 0, and

dE [νsk]

dρ
> 0,

for 1 ≤ k < N .

The rest of this section is devoted to proving this result.

Since

νk + νsk = ν,

we have

E [νk] + E [νsk] = E [ν]

Now

E [ν] = E

[
N∑
j=1

1[Xj<c]

]
= NP[X1 < c] = NΦ(c),

which is clearly independent of ρ. Thus,

dE [νsk]

dρ
= −dE [νk]

dρ
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So it will suffice to prove that dE[νk]
dρ

is negative.

The expected value of νk is

E [νk] = p1 + 2p2 + · · ·+ (k − 1)pk−1 + k [1− p0 − · · · − pk−1] ,

which can be rewritten as

E [νk] = k −
k∑
j=0

(k − j)pj. (4.1.9)

From this we have

dE [νk]

dρ
= −

k∑
j=0

(k − j)
(
N

j

)∫
R

[
jpj−1(1− p)N−j − (N − j)pj(1− p)N−j−1

] ∂p
∂ρ
φ(x) dx

=

∫
R
I(p)

∂p

∂ρ
φ(x) dx

where

I(p)
def
= −

k∑
j=0

(
N

j

)
(k − j)

[
jpj−1(1− p)N−j − (N − j)pj(1− p)N−j−1

]
(4.1.10)

(Note that the integrand in the expression for dE [νk] /dρ contains an expo-

nentially decreasing term in x2, which ensures that d/dρ and
∫

R . . . dx can be

interchanged.)

We can now compute the derivative ∂p/∂ρ from (4.1.3):

∂p

∂ρ
= φ

(
c−√ρx
√

1− ρ

) √1− ρ
{
− 1

2
√
ρ
x
}
− (c−√ρx)

{
− 1

2
√

1−ρ

}
1− ρ

= −
(1− ρ)x−√ρ(c−√ρx)

2
√
ρ(1− ρ)3/2

φ

(
c−√ρx
√

1− ρ

)
= −

x− c√ρ
2
√
ρ(1− ρ)3/2

φ

(
c−√ρx
√

1− ρ

)
.

So

dE [νk]

dρ
= −

∫
R
I(p)

(x− c√ρ)

2
√
ρ(1− ρ)3/2

φ

(
c−√ρx
√

1− ρ

)
φ(x) dx

=︸︷︷︸
y=x−c√ρ

−
∫

R
I(p)

y

2(1− ρ)3/2
√
ρ
φ

(
c(1− ρ)−√ρy
√

1− ρ

)
φ(y + c

√
ρ) dy

= −
∫

R
I(p)

y

2(1− ρ)3/2
√
ρ

1

2π
e−

y2

2(1−ρ)−
c2

2 dy
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Looking back at (4.1.3), let us write

p(y) = p = Φ

(
c−√ρx
√

1− ρ

)
= Φ

(
c(1− ρ)−√ρy
√

1− ρ

)
(4.1.11)

Note that this is clearly monotonically decreasing in y.

Returning again to the derivative dE [νk] /dρ, we have:

dE [νk]

dρ
= −

∫ ∞
0

[
I
(
p(y)

)
− I
(
p(−y)

)] y

2(1− ρ)3/2
√
ρ

1

2π
e−

y2

2(1−ρ)−
c2

2 dy (4.1.12)

As we prove below in Lemma 4.1.2, the function I(·) is monotonically decreasing.

Now, as noted above, for y > 0, we have p(y) < p(−y). Hence,

I
(
p(y)

)
− I
(
p(−y)

)
> 0 for any y > 0.

This implies, from (4.1.12), that

dE [νk] /dρ < 0,

which is the result we had set out to prove.

We have used the following observation about I(p):

Lemma 4.1.2. Let

I(p) = −
k∑
j=0

(
N

j

)
(k − j)

[
jpj−1(1− p)N−j − (N − j)pj(1− p)N−j−1

]
where N and k are positive integers, with k ≤ N , and p ∈ [0, 1]. Then

I(p) = N − (N − k)k

(
N

k

)∫ p

0

tk−1(1− t)N−k−1 dt (4.1.13)

In particular, I(p) is monotonically decreasing with p, if 1 ≤ k < N .
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Proof First let us rework the expression for I(p):

I(p)
def
= −

k∑
j=0

(
N

j

)
(k − j)

[
jpj−1(1− p)N−j − (N − j)pj(1− p)N−j−1

]
= −

k∑
j=1

(
N

j

)
(k − j)jpj−1(1− p)N−j

−
k−1∑
j=0

(
N

j

)
(k − j)(N − j)pj(1− p)N−j−1

= −
k−1∑
j=0

[(
N

j + 1

)
(k − j − 1)(j + 1)−

(
N

j

)
(k − j)(N − j)

]
pj(1− p)N−j−1

=
k−1∑
j=0

(
N

j

)
(N − j)pj(1− p)N−j−1

= N(1− p)N−1 +
k−1∑
j=1

(
N

j

)
(N − j)pj(1− p)N−j−1

Taking the derivative, we obtain

I ′(p) =
k−1∑
j=1

(
N

j

)
(N − j)jpj−1(1− p)N−j−1 −

k−1∑
j=0

(
N

j

)
(N − j)pj(N − j − 1)(1− p)N−j−2

=
k−2∑
j=0

{(
N

j + 1

)
(N − j − 1)(j + 1)−

(
N

j

)
(N − j)(N − j − 1)

}
︸ ︷︷ ︸

0

pj(1− p)N−j−2

−
(

N

k − 1

)
(N − k + 1)(N − k)pk−1(1− p)N−k−1

Rewriting the last term, we have

I ′(p) = −(N − k)k

(
N

k

)
pk−1(1− p)N−k−1

Integrating, and using the value N for I(0), we obtain (4.1.13).

4.2 Sensitivity to the Threshold
We wish to study the sensitivity of the distribution of ν to changes in the threshold

value c. To this end we look at
∂E [νk]

∂c
,
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where

νk = E [min{k, ν}] . (4.2.1)

The normalized form

∆k =

∂E [νk]

∂c
∂E [ν]

∂c

, (4.2.2)

is a more convenient quantity. For the denominator we observe first that

E [ν] = NΦ(c)

and so

∂E [ν]

∂c
= Nφ(c) =

N√
2π
e−

c2

2 .

Then, from (4.1.9),

E [νk] = k −
k∑
j=0

(k − j)pj, (4.2.3)

where

pj =

∫
R

 N

j

 pj(1− p)N−jφ(x) dx, (4.2.4)

and

p = Φ

(
c−√ρx
√

1− ρ

)
. (4.2.5)

Theorem 4.2.1. The numbers

p∆s(k) =

∫
R

(
N − 1

k − 1

)
p(y)k−1

(
1− p(y)

)N−k 1√
2π(1− ρ)

e−
y2

2(1−ρ) dy (4.2.6)

for 0 ∈ {1, ..., N}, with p∆s(0) being 0 by definition, specify a probability measure

on {0, ..., N}. For any k ∈ {0, 1, ..., N}, we have

∆k =
k∑
j=0

p∆s(j). (4.2.7)
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Proof. From (4.2.3) we have

dE [νk]

dc
= −

k∑
j=0

(k − j)
(
N

j

)∫
R

[
jpj−1(1− p)N−j − (N − j)pj(1− p)N−j−1

] ∂p
∂c
φ(x) dx

=

∫
R
I(p)

∂p

∂c
φ(x) dx

where, as seen in the proof of Lemma 4.1.2,

I(p) =
k−1∑
j=0

(
N

j

)
(N − j)pj(1− p)N−j−1. (4.2.8)

Now

∂p

∂c
=

1√
2π(1− ρ)

e−
(c−√ρx)2

2(1−ρ) ,

and

∂p

∂c
φ(x) =

1

2π
√

1− ρ
e−

(x−c√ρ))2
2(1−ρ) −

c2

2 .

Setting y = x− c√ρ, we have

dE [νk]

dc
=

∫
R
I(p)

∂p

∂c
φ(x) dx

=

∫
R
I(p)

1

2π
√

1− ρ
e−

(x−c√ρ))2
2(1−ρ) −

c2

2 dx

=

∫
R
I(p(y))

1

2π
√

1− ρ
e−

y2

2(1−ρ)−
c2

2 dy

Therefore

∆k =
∂E [νk]

∂c
/
∂E [ν]

∂c

=
1

N

∫
R
I(p(y))

1√
2π(1− ρ)

e−
y2

2(1−ρ) dy (4.2.9)

As I(p) is monotonically decreasing with p and p(y) = Φ
(
c(1−ρ)−√ρy√

1−ρ

)
is mono-

tonically increasing with c, the delta (4.2.9) decreases with increasing c.

The expression (4.2.8) shows that

∆k =
∑

j∈{0,1,...,k}

p∆s(k),

40



where

p∆s(k) =
1

N

∫
R

(
N

k − 1

)
(N − k + 1)p(y)k−1

(
1− p(y)

)N−k 1√
2π(1− ρ)

e−
y2

2(1−ρ) dy,

understood to be 0 when k is 0. This expression simplifies to (4.2.6).

This result confirms, for the Gaussian copula model, the generally held view that

the delta with respect to index spread movements is a probability measure on the

loss levels (see, for instance, [70]).

4.3 Gamma: A Convexity Measure
This section is best appreciated in the CDO terminology, which we shall use, and

may be read in consultation with section 4.6 below.

Consider a portfolio with a short position on an equity tranche with losses ≤ k

and a long position on h units of the index (entire portfolio). The expected loss of

this hedged portfolio is then

V (h) = hE [ν]− E [νk] .

The ‘convexity’ for νk is described through

Γk =
∂2V (h)

∂c2
|h=∆k

, (4.3.1)

i.e. it is h fixed.

Theorem 4.3.1. For each k ∈ {0, 1..., k}, the quantity Γk is positive.

Proof. Recall that

dE [νk]

dc
=

∫
R
I(p(y))

1

2π
√

1− ρ
e−

y2

2(1−ρ)−
c2

2 dy

and
∂E [ν]

∂c
=

N√
2π
e−

c2

2 ,

41



where

I(p) = N − (N − k)k

(
N

k

)∫ p

0

tk−1(1− t)N−k−1 dt

and

p(y) = Φ

(
c(1− ρ)−√ρy
√

1− ρ

)
∆k =

1

N

∫
R
I(p(y))

1√
2π(1− ρ)

e−
y2

2(1−ρ) dy.

Then

∂2E [νk]

∂c2
=

1

2π
√

1− ρ

∫
R

[
∂I(p)

∂c
e−

y2

2(1−ρ)−
c2

2 + (−c)I(p)e−
y2

2(1−ρ)−
c2

2

]
dy,

and
∂I(p)

∂c
= −(N − k)k

(
N

k

)
pk−1(1− p)N−k−1 ·

√
1− ρ√

2π
e−

(c(1−ρ)−√ρy)2

2(1−ρ)

On the other hand,

∂2E [ν]

∂c2
=
−cN√

2π
e−

c2

2 .

Therefore

Γk = ∆k
∂2LN
∂c2

− ∂2Lek
∂c2

=
−c

2π
√

1− ρ

∫
R
I(p)e−

y2

2(1−ρ)−
c2

2 dy

− 1

2π
√

1− ρ

∫
R

[
∂I(p)

∂c
e−

y2

2(1−ρ)−
c2

2 + (−c)I(p)e−
y2

2(1−ρ)−
c2

2

]
dy

= − 1

2π
√

1− ρ

∫
R

∂I(p)

∂c
e−

y2

2(1−ρ)−
c2

2 dy.

Clearly, ∂I(p)
∂c

< 0 for all y ∈ R, and so Γk > 0.

4.4 Poisson-mix Model
It is well known that a binomial (N, p) distribution is approximately Poisson (Np),

when N is large, p is small, and Np is fixed. This suggests study of a limiting case,

with the binomials distribution replaced by a Poisson. This is the object of this

section.
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Under the Poisson-mix model,

pj
def
= P[ν = j] =

∫
R
e−Np

(Np)j

j!
φ(x) dx, (4.4.1)

where

p = P [Xi ≤ c |Z = x] = Φ

(
c−√ρx
√

1− ρ

)
.

Then we have

∂E [νk]

∂ρ
= −

k∑
j=0

(k − j)
∫

R
e−Np

[
−N (Np)j

j!
+N

(Np)j−1

(j − 1)!

]
∂p

∂ρ
φ(x) dx

=

∫
R
I1(p)

∂p

∂ρ
φ(x) dx

where

I1(p) = −
k∑
j=0

(k − j)e−Np
(
−N (Np)j

j!
+N

(Np)j−1

(j − 1)!

)
,

where the second term here is taken to be 0 when j = 0.

Lemma 4.4.1. Let

I1(p) = −
k∑
j=0

(k − j)e−Np
[
−N (Np)j

j!
+N

(Np)j−1

(j − 1)!

]
,

where N and k are positive integers, with k ≤ N , and p ∈ [0, 1]. Then

I1(p) = N −N2

∫ p

0

e−Nt
(Nt)k−1

(k − 1)!
dt (4.4.2)

In particular, I1(p) is monotonically decreasing with p, if 1 ≤ k < N .

Proof. First let us simplify the expression for I1(p):

I1(p)
def
= −

k∑
j=0

(k − j)e−Np
[
−N (Np)j

j!
+N

(Np)j−1

(j − 1)!

]

= e−Np

[
k−1∑
j=0

(k − j)N (Np)j

j!
−

k∑
j=1

(k − j)N (Np)j−1

(j − 1)!

]

= e−Np

[
k−1∑
j=0

(k − j)N (Np)j

j!
−

k−1∑
j=0

(k − j − 1)N
(Np)j

j!

]

= Ne−Np
k−1∑
j=0

(Np)j

j!
(4.4.3)

43



Taking the derivative, we obtain

I ′1(p) = −N2e−Np
k−1∑
j=0

(Np)j

j!
+N2e−Np

k−1∑
j=1

(Np)j−1

(j − 1)!

= −N2e−Np
k−1∑
j=0

(Np)j

j!
+N2e−Np

k−2∑
j=0

(Np)j

j!

= −N2e−Np
(Np)k−1

(k − 1)!

Integrating, and using the value N for I1(0) by (4.4.3), we obtain equation (4.4.2).

The functions I1 and I are both monotonically decreasing. By using reasoning

similar to that used for the binomial case, we obtain the following result:

dE[νk]

dρ
< 0, and

dE[νsk]

dρ
> 0. (4.4.4)

For evaluation of ∆k, we can simply replace I(p) by I1(p) and all proofs continue

to be valid. Hence under the Poisson distribution, we have the same properties for

∆k.

To evaluate Γk, we can replace I(p) by I1(p), to obtain:

Γk = ∆k
∂2LN
∂c2

− ∂2Lek
∂c2

=
−c

2π
√

1− ρ

∫
R
I(p)e−

y2

2(1−ρ)−
c2

2 dy

− 1

2π
√

1− ρ

∫
R

[
∂I(p)

∂c
e−

y2

2(1−ρ)−
c2

2 + (−c)I(p)e−
y2

2(1−ρ)−
c2

2

]
dy

= − 1

2π
√

1− ρ

∫
R

∂I(p)

∂c
e−

y2

2(1−ρ)−
c2

2 dy.

we only need to see the sign of ∂I1(p)
∂c

. By Lemma 4.4.1, we have

∂I1(p)

∂c
=

∂I1(p)

∂p

∂p

∂c

= −N2e−Np
(Nt)k−1

(k − 1)!
· ∂p
∂c
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where

∂p

∂c
=

√
1− ρ√

2π
e

(c(1−ρ)−√ρy)2

2(1−ρ) .

Clearly, ∂I1(p)
∂c

< 0. Therefore, in the Poisson approach, it is still true that Γk > 0

for all k ∈ {1, ..., N}.

4.5 The Large-N Limit
As before, we work with the standard Gaussian copula for a portfolio of size N .

The large-N behavior has been studied in the CDO literature through simula-

tions for various copula models. See, for example, Schönbucher [81], Andersen and

Sidenius [5], and [43].

The proportion of Xi below the threshold c is

ν̄(N) =
1

N

N∑
i=1

1Xi≤c, (4.5.1)

where we have explicitly indicated N on the left. We have then

Theorem 4.5.1. The sequence ν̄(N) converges with probability 1 to the random

variable Φ
(
c−√ρZ√

1−ρ

)
:

ν̄(N) → ν̄(∞) def
= Φ

(
c−√ρZ
√

1− ρ

)
almost surely.

Moreover,

ν̄(N) → ν̄(∞)

in L2.

Proof The variable ν̄(N) is a function of the Gaussian variable (Z, ε1, ..., εN). For

each fixed value for Z, it is the average of N independent, identically distributed

(bounded) variables. So, by the law of large numbers, for each fixed value z of Z,

lim
N→∞

ν̄(N) = E [Xi ≤ c |Z = z] = P[Xi ≤ c |Z = z] = Φ

(
c−√ρ z
√

1− ρ

)

45



almost surely in (ε1, ..., εN). Therefore, by Fubini’s theorem (which guarantees that

a set with all sections of full measure is itself of full measure),

lim
N→∞

ν̄(N) = Φ

(
c−√ρZ
√

1− ρ

)
holds almost everywhere.

As for L2 convergence, denoting P[Xi ≤ c |Z = z] by p(z), we have

E

[∣∣∣∣∣∣ 1

N

N∑
i=1

1Di − p(z)
∣∣∣∣∣∣2] = E

[
p(Z)

(
1− p(Z)

)
N

]
≤ 1

N
→ 0

as N →∞.

The distribution of the limiting average loss ν̄(∞) is thus

P[ν̄(∞) ≤ x] = Φ

(√
1− ρΦ−1(x)− c

√
ρ

)
(4.5.2)

This agrees with Schönbucher [81, Eq. (23)].

4.6 Relationship with CDO Tranche Models
A (synthetic) CDO is a portfolio of credit default swaps (as explained in the In-

troduction), whose default risk is sliced up into tranches. A standard approach to

modeling a CDO’s default behavior, is to consider a proxy Xi for the firm value

for each CDS name i, and declare a default if Xi fall below a threshold value c.

The Gaussian copula model for pricing CDO tranches became popular following

the work of Li [64]. It is an excellent foundational model which displays qualitative

characteristics observed in practice and through simulations in other models. In

this model, for a homogeneous portfolio of N names, one assumes there exist N+1

independent standard Gaussian variable factors

Z, ε1, ..., εN ,

and declare that name i defaults if

Xi =
√
ρZ +

√
1− ρεi
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falls below a threshold c ∈ R. Here

ρ > 0

is a fixed correlation parameter.

The assumptions that the same c and same ρ operate for all the names i in the

portfolio is, of course, a great simplification, for the sake of constructing a working

initial model.

The threshold c controls the default probability; the default probability for name

i is

P[Xi < c] = Φ(c),

where Φ is the standard Gaussian distribution function. The default probability,

in turn, is related to the CDS rate, and so can be imputed from market data.

Some of the mathematical results in this chapter, for the Gaussian copula and

Poisson-mix models, translate to the following in the language of CDOs:

(i) Equity tranches are long correlation and senior tranches are short correlation;

(ii) equity tranche deltas decrease (increase) when the index spread increases

(decreases);

(iii) tranche deltas, for index spread movements, form a probability measure on

losses;

(iv) the normalized loss in a size N portfolio converges almost surely to a random

variable, of known distribution, as N →∞.

These results are supported both by intuition and simulations. If correlation

rises, the probability of very few defaults increases (as well as that for many de-

faults), and this ought to decrease the expected loss for, at least, a low-detachment
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equity tranche. It is, however, not quite clear intuitively whether this ought to

work for all equity tranches. Theorem 4.1.1 establishes the result rigorously. The

document [70] mentions some of these results, with justifications provided by sim-

ulations.

We proceed to further elucidate some questions concerning the proxy variables

used and underlying continuous-time process. The remainder of the chapter is

devoted to this objective.

4.7 Proxy Variables
A very useful procedure that underlies the idea of proxy variables is contained in

the following well-known result:

Lemma 4.1. For any random variable Y , if its distribution function FY is strictly

monotone and continuous, then FY (Y ) is uniform on [0,1].

Proof. Suppose that FY is strictly monotone and continuous. Then its inverse

function F−1
Y exists, and is also strictly monotone and continuous. Let Z = FY (Y ),

then its distribution function FZ(m) can be found as the following:

FZ(t) = P [FY (Y ) ≤ t]

= P [Y ≤ F−1
Y (t)]

= FY (F−1
Y (t))

= t

Therefore, Z = FY (Y ) is uniformly distributed on [0,1].

This idea here leads to the following very useful transformation of a stopping

time τ to a standard Gaussian variable X:

Lemma 4.2. Suppose τ is a random variable with values in [0,∞), having a strictly

increasing continuous distribution function Fτ . Then there is a standard Gaussian
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random variable X, and a function c on [0,∞) such that

[τ < t] = [X < c(t)], (4.7.1)

for all t ∈ [0,∞).

Proof. We can simply take

X = Φ−1
(
Fτ (τ)

)
,

where Φ is the standard Gaussian distribution function, and take c to be the

function Φ−1 ◦ Fτ .

Assume that we have N names in our portfolio, whose default behaviors are

governed by N related standard Gaussian random variables, Xi, i = 1, 2, ..., N .

Each Xi is represented as a combination of two factors, a global factor Z and an

idiosyncratic factor εi, i = 1, 2, ..., N , in the following way:

Xi =
√
ρZ +

√
1− ρεi, (4.7.2)

where Z and εi’s are all independent standard Gaussian random variables. Then

the name i defaults by time T if Xi is below a threshold level ci(T ), that is,

Xi ≤ ci(T ) ⇔ default of i by time T

To simplify our model, we assume that all names have the same threshold level c,

i.e.,

c = c1(T ) = c2(T ) = ... = cN(T ).

Usually, the default probability for any name is less than 0.5, i.e.

P [Xi ≤ c] < 0.5,

which implies c < 0.

By some easy calculations, we have the following lemmas:
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Lemma 4.3. In the Gaussian copula model (4.7.2), ρ is the correlation of names.

Proof. For distinct i, j ∈ {1, ..., N}, we have

corr(Xi, Xj) = E[XiXj]

= E[(
√
ρZ +

√
1− ρεi)(

√
ρZ +

√
1− ρεj)]

= E[ρZ2 +
√
ρ(1− ρ)Zεi +

√
ρ(1− ρ)Zεj + (1− ρ)εiεj]

= ρE[Z2]

= ρ,

since Z and the εi are independent Gaussian random variables.

For the conditional probability that Xi falls below c, given the global factor Z,

we have

Lemma 4.4. With notation as above,

P[Xi ≤ c |Z] = P [Z, ρ] =

∫ c−√ρZ√
1−ρ

−∞

1√
2π
e
−y2

2 dy.

Proof. We have

P [Z, ρ] = P[Xi ≤ c |Z]

= P
[
εi ≤

c−√ρZ
√

1− ρ

∣∣∣Z]
= Φ

(
c−√ρZ
√

1− ρ

)
=

∫ c−√ρZ√
1−ρ

−∞

1√
2π
e−

y2

2 dy

where Φ is the cumulative distribution function of standard Gaussian random

variable.
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For the distribution of ν, the number of Xi which are below the threshold c,

conditional on Z, is given by

P[Xi ≤ c |Z] =

∫ ∞
−∞

P [x, ρ]
1√
2π
e−

x2

2 dx (4.7.3)

=

∫ ∞
−∞

(
N
k

)
(P [x, ρ])k(1− P [x, ρ])N−k

1√
2π
e−

x2

2 dx, (4.7.4)

in the binomial case, and by

P[ν = k |Z] = P [k|Z] = e−NP [Z,ρ] (NP [Z, ρ])k

k!

in the Poisson case.

4.8 Simulations and Graphs
Default probability refers to Φ(c), i.e. P[Xi ≤ c].
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FIGURE 4.1. Dependence of dLe3
dρ on ρ and c
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FIGURE 4.2. Graph of L = Le3 against ρ and Φ(c)
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Chapter 5
Significance of Certain Stochastic Integrals

The purpose of this chapter is to summarize well-known basic notions relating

to pricing certain types of financial instruments. The objective is to outline how

certain stochastic integrals arise from this context.

5.1 Probability and Pricing Notions
Here we summarize some standard notions on expressing prices of risky assets using

probability measures. We will keep to a rather sketchy outline, looking only at a

simplified abstract structure, since the topic is not central to our overall objectives.

The market price of a hypothetical asset IA which pays off one unit of currency

(or some other numeraire) if an event A happens, and nothing otherwise, is the

market’s estimate of the probability of the event A:

Q(A) = price of asset A.

The pricing measure arises from a market at equilibrium.

More structurally, the market is modeled by a probability space

(Ω,F , Q),

where elements of Ω are to be viewed as states or scenarios in the market, and a

space of random variables

X : Ω→ R,

where X(ω) is to be understood as the price of X (in some chosen fixed unit

numeraire) in market state ω. In the presence of additional information, encoded

in a σ-algebra G ⊂ F , the price is the conditional expectation

EQ[X|G]
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(See [84] for a framework along these lines.)

A bond is a financial instrument that yields to the issuer an agreed-upon sum,

the face value ($1 in our case), at a chosen maturity date T , and may also pay

coupons prior to maturity if so agreed upon. A default-free zero-coupon bond is a

bond that has no risk of default and pays no coupons.

Let us assume that there is a default-free zero-coupon bond, which pays off $1

at time T . Under market scenario ω ∈ Ω, let b(t, T ;ω) (we will usually suppress

ω) be the price of this bond at time t. Thus, b(t, T ) is the value at time t of $1 at

time T . Clearly, b(t, T ) < 1 and b(t, T ) is increasing with respect to t.

Consider a short moment ∆t after time t, the interest rate from time t to time

t+ ∆t is
b(t+ ∆t, T )− b(t, T )

b(t, T )∆t

We define the force of interest r(t) at time t as the limit of the average interest

rate over the short moment (t, t+ ∆t]:

r(t)
def
= lim

∆t→0

b(t+ ∆t, T )− b(t, T )

b(t, T )∆t

=
1

b(t, T )

db(t, T )

dt

=
d log b(t, T )

dt

which implies

log b(T, T )− log b(t, T ) =

∫ T

t

r(s) ds

and

b(t, T ) = e−
∫ T
t r(s) ds

since b(T, T ) = 1.

The market price B(t, T ) of such bond is then

B(t, T ) = EQ[e−
∫ T
t r(s) ds].
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5.2 Default Intensity
Now let us consider consider a bond which has a likelihood of defaulting. In market

scenario ω, let the stopping time τ be the time-to-default, then event [τ ≤ s] is

the event that the bond defaults before time s for any s between the present time

t and maturity T . Of course the event that the bond survives beyond time s is

[τ > s].

In what follows we work with a probability space

(Ω,F , Q),

and, in the interpretation, we can view Q as the measure used for pricing instru-

ments. Sometimes we will use the notation P for Q.

We define the default intensity λ(s) as the limit of the average probability of

default over (s, s+ ∆s), given that there is no default up to time s:

λ(s)
def
= lim

∆s→0

q(s < τ ≤ s+ ∆s|τ > s)

∆s

= lim
∆s→0

Q(τ > s)−Q(τ > s+ ∆s)

Q(τ > s)∆s

= −d logQ(τ > s)

ds

Integrating both sides from t to T , we have

logQ(τ > T )− logQ(τ > t) = −
∫ T

t

λ(s) ds

and

Q(τ > T ) = e−
∫ T
t λ(s) ds,

assuming that

Q(τ > t) = 1.

Note that this is the probability of the defaultable zero-coupon bond, issued at

time t, survives up to T .
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Let us now build up the market price at time t of a defaultable zero-coupon

bond with maturity T . At time t it is worth, as a function on Ω,

e−
∫ T
t r(s) ds

1[τ>T ].

At time t < T , its price would be

B̄(t, T ) = EQ[e−
∫ T
t [r(s)+λ(s)] ds].

5.3 Default Intensity Integrals
The expected values of integrals

B(t, T ) = EQ[e−
∫ T
t r(s) ds]

and

B̄(t, T ) = EQ[e−
∫ T
t [r(s)+λ(s)] ds]

will be useful “building blocks” for our purposes.

We need to calculate out the density of the time of the first default, Q(τ ∈

(T, T + dT ]), for a specific market scenario ω:

Q(τ ∈ (T, T + dT ]) = Q(τ > T )−Q(τ > T + dT )

= e−
∫ T
t λ(s) ds − e−

∫ T+dT
t λ(s) ds

= −d(e−
∫ T
t λ(s) ds)

dT
dT

= λ(T )e−
∫ T
t λ(s) dsdT.

Let

e(t, T ) = EQ

[
λ(T )e−

∫ T
t λ(s) ds

]
. (5.3.1)

Then

e(t, T )dT = EQ

[
e−

∫ T
t r(s) dsQ(τ ∈ (T, T + dT ])

]
= EQ

[
e−

∫ T
t r(s) dsλ(T )e−

∫ T
t λ(s) dsdT

]
= EQ

[
λ(T )e−

∫ T
t [r(s)+λ(s)] ds

]
dT
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To sum up, we have the following three “building blocks”:

B(t, T ) = EQ[e−
∫ T
t r(s) ds] (5.3.2)

B̄(t, T ) = EQ[e−
∫ T
t [r(s)+λ(s)] ds] (5.3.3)

e(t, T ) = EQ

[
λ(T )e−

∫ T
t [r(s)+λ(s)] ds

]
(5.3.4)

5.4 Stochastic Integrals with Stopping Times
In this section we examine certain stochastic integral expectation values, which

involve a stopping time. These are motivated by an examination of credit default

swaps (CDS).

Recall that a CDS is an agreement between two parties, protection buyer A

and protection seller B: party A pays party B a premium periodically to insure

the notional amount of a given defaultable bond against default risk. If a default

happens during the life of the CDS, B pays A the loss amount. Otherwise, B pays

A nothing.

Suppose that the notional amount is $1 and τ is the time-to-default for a CDS

contract maturing at time T . Thus, the protection seller expects to pay out

E
[
e−

∫ τ
0 r(s) dsQ(τ ≤ T )

]
=

∫ T

0

E
[
e−

∫ t
0 r(s) dsQ(τ ∈ (t, t+ dt])

]
=

∫ T

0

e(0, t) dt

by the third “building block” (5.3.4).

Suppose that the CDS swap rate is sT , with premiums paid on dates t1, t2, . . . , tN .

Then by the second “building block” (5.3.3), the total of premiums protection buyer

expects to pay out is
N∑
j=1

sT (tj − tj−1)B̄(0, tj).

The CDS spread sT should be the price such that the expected pay outs from

protection buyer and seller are equal. Therefore we have sT in terms of the “building
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blocks”

sT =

∫ T
0
e(0, t) dt∑N

j=1(tj − tj−1)B̄(0, tj)

In the next chapter we will see how to calculate the “building blocks” after we

specify the structures on the force of interest r(t) and the default intensity λ(t).
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Chapter 6
Certain Stochastic Integrals with Stopping
Times

In this chapter we will evaluate certain stochastic integrals of the form

E
[∫ T∧τ

0

e−
∫ t
0 r(u) du dt

]
(6.0.1)

for specified stochastic processes

u 7→ r(u)

and τ , to be viewed as the exit time of suitable processes, is a stopping time with

specified intensity. To provide intuitive guidance and motivation we select choice

for the processes r and the intensity of τ from models for default behavior of bonds.

The first three sections of this chapter summarize, in a form useful for our

purposes, the essential features of certain standard models pertaining to credit

default behavior. Section 6.4 is devoted to explaining our method for computing

the integrals (6.0.1) for these models.

6.1 The Vasicek Model
The Vasicek model, a specific Gaussian model, is usually studied in the context of

zero-coupon risk-free bonds, but the same mathematical model could be applied

to the default intensity process of a risky bond. The essential idea of the Vasicek

model is as following. The interest rate r(t) or default intensity λ(t) is generated

by the Vasicek stochastic differential equation

dx(t) = (κ(t)− ax(t))dt+ σ(t)dW (t),

the “building block” B(t, T ) or Q(t, T ) can be computed by

E[e−
∫ T
t x(s) ds|Ft] = eα(t,T )−β(t,T )x(t).
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We start deriving this idea by the following lemma.

Lemma 6.1. Given the following stochastic differential equation:

dx(t) = (κ(t)− ax(t))dt+ σ(t)dW (t)

where a is constant, κ and σ are continuous deterministic functions, and W (t) is

a one-dimensional Brownian motion, we have the following solution:

x(t) = x(0)e−at +

∫ t

0

e−a(t−s)κ(s) ds+

∫ t

0

e−a(t−s)σ(s) dW (s)

Proof. Let us consider the ‘integrating factor’ eat and the process

y(t) = x(t)eat.

The differential is

dy(t) = d(x(t)eat)

= eatax(t) dt+ eat dx(t)

= eat(ax(t) dt+ (κ(t)− ax(t)dt) + σ(t) dW (t))

= eatκ(t) dt+ eatσ(t) dW (t)

Now integrating both sides of the above equation from 0 to t, we get

y(t)− y(0) =

∫ t

0

easκ(s) ds+

∫ t

0

easσ(t) dW (t).

Thus,

x(t)e
∫ t
0 a ds = x(0) +

∫ t

0

easκ(s) ds+

∫ t

0

easσ(t) dW (s),

which implies

x(t) = x(0)e−at +

∫ t

0

e−a(t−s)κ(s) ds+

∫ t

0

e−a(t−s)σ(s) dW (s).
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Lemma 6.2. For a deterministic function h(t), a function only of t ∈ [0,∞), lo-

cally square-integrable, its Itô integral
∫ t

0
h(s) dW (s) is Gaussian with mean 0 and

variance
∫ t

0
h2(s) ds.

Proof. By the construction of the Itô integral, we know that

E

[∫ t

0

h(s) dW (s)

]
= 0.

Also by the definition of the Itô integral,∫ t

0

h(s) dW (s) = lim
n→∞

∫ t

0

hn(s) dW (s) (6.1.1)

= lim
n→∞

n∑
i=1

h(ti) (W (ti+1)−W (ti)) , (6.1.2)

where the simple function hn(t) is defined by

hn(t) =
n∑
i=0

h(t) · χ[ti,ti+1)(t)

and the above limits are in L2(P ).

The differences W (ti+1)−W (ti) are Gaussian N(0, ti+1 − ti), and are mutually

independent as W (t) is a Brownian motion. So the sum

n∑
i=1

h(ti)(W (ti+1)−W (ti)) (6.1.3)

is also Gaussian. Therefore as the L2−limit of the Gaussian random variables in

(6.1.3),
∫ t

0
h(s) dW (s) is also a Gaussian random variable.

The variance of
∫ t

0
h(s) dW (s) is, from the Itô isometry,

E

[(∫ t

0

h(s) dW (s)

)2
]

= E

[∫ t

0

h(s)2 ds

]
=

∫ t

0

h(s)2 ds, (6.1.4)

the last equation is because h(t) is deterministic.

Theorem 6.3. Let x(t) satisfy

dx(t) = (κ(t)− ax(t))dt+ σ(t)dW (t),
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where κ and σ are continuous deterministic functions, and let

Ft = σ{W (s) : s ≤ t}.

Then

E[e−
∫ T
t x(s) ds|Ft] = eα(t,T )−β(t,T )x(t) (6.1.5)

where

β(t, T ) =
1

a
(1− e−a(T−t))

α(t, T ) =
1

2

∫ T

t

σ(t)2β2(s, T ) ds−
∫ T

t

κ(t)β(s, T ) ds

Proof. By Lemma 6.1 and 6.2, we know that the process

x(t) = x(0)e−at +

∫ t

0

e−a(t−s)κ(s) ds+

∫ t

0

e−a(t−s)σ(s) dW (s)

is a Brownian motion with a drift

x(0)e−at +

∫ t

0

e−a(t−s)κ(s) ds.

The process x(s) is Markov, how x(s) evolves when s ≥ t conditional on Ft depends

only on the behavior of x(t). So we have

E[e−
∫ T
t x(s) ds|Ft] = E[e−

∫ T
t x(s) ds|x(t)]

and therefore E[e−
∫ T
t x(s) ds|Ft] is a function only of t and x(t).

From now on, we denote E[e−
∫ T
t x(s) ds|Ft] by B(t, x(t)).

It is easy to check that if we look on e−
∫ T
0 x(s) ds as a random variable when fixing

T , then

E[e−
∫ T
0 x(s) ds|Ft] (6.1.6)

is a martingale with respect to t. We also have the following relationship

E[e−
∫ T
0 x(s) ds|Ft] = E[e−

∫ t
0 x(s) dse−

∫ T
t x(s) ds|Ft] (6.1.7)

= e−
∫ t
0 x(s) dsE[e−

∫ T
t x(s) ds|Ft] (6.1.8)

= e−
∫ t
0 x(s) dsB(t, x(t)), (6.1.9)
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which implies that e−
∫ t
0 x(s) dsB(t, x(t)) is a martingale.

Then, using Itô’s lemma,

d
(
e−

∫ t
0 x(s) dsB(t, x(t))

)
=

∂e−
∫ t
0 x(s) dsB(t, x(t))

∂t
dt+

∂e−
∫ t
0 x(s) dsB(t, x(t))

∂x(t)
dx(t)

+
1

2

∂2e−
∫ t
0 x(s) dsB(t, x(t))

∂x(t)2
(dx(t))2

= e−
∫ t
0 x(s) ds[−x(t)B(t, x(t)) +

∂B(t, x(t))

∂t

+(κ(t)− ax(t))
∂B(t, x(t))

∂x(t)
+

1

2

∂2B(t, x(t))

∂x(t)2
σ(t)2] dt

+e−
∫ t
0 x(s) dsσ(t)

∂B(t, x(t))

∂x(t)
dW (t). (6.1.10)

Because this is the stochastic differential of a martingale, drift part in equation

(6.1.10) must be zero, i.e.

∂B(t, x(t))

∂t
− x(t)B(t, x(t)) + (κ(t)− ax(t))

∂B(t, x(t))

∂x(t)
+

1

2

∂2B(t, x(t))

∂x(t)2
σ(t)2 = 0.

Let us try a solution of the form B(t, x(t)) = eα(t,T )−β(t,T )x(t). Then the above

equation becomes:

−x(t) +
∂α(t, T )

∂t
− ∂β(t, T )

∂t
x(t)− (κ(t)− ax(t))β(t, T ) +

1

2
σ(t)2β2(t, T ) = 0

with initial conditions α(T, T ) = β(T, T ) = 0 as B(T, x(T )) = 0 from its definition.

The above equation is true for all x(t), so we obtain the following two partial

differential equations:

∂β(t, T )

∂t
= aβ(t, T )− 1 (6.1.11)

∂α(t, T )

∂t
= κ(t)β(t, T )− 1

2
σ(t)2β2(t, T ) (6.1.12)

with initial conditions

β(t, T ) = 0 (6.1.13)

α(T, T ) = 0 (6.1.14)
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By solving the PDE (6.1.11) and its initial condition (6.1.13), we have

β(t, T ) =
1

a
(1− e−a(T−t)).

By solving the PDE (6.1.12) and its initial condition (6.1.14), we have

α(t, T ) =
1

2

∫ T

t

σ(t)2β2(s, T ) ds−
∫ T

t

κ(t)β(s, T ) ds.

6.2 The Two-Factor Gaussian Model
In the two-factor Gaussian model, we will study two factors which mainly affect the

CDS rate: interest rate of the market, r(t) and default intensity of the reference,

λ(t). Financially, the interest rate and default intensity are generally correlated.

We bring the ideas of the Vasicek Model from the interest rate term structure

model to setup r(t) and λ(t). The following are the two-factor Gaussian Model

and its assumptions:

dr(t) = (κ(t)− ar(t)) dt+ σ(t) dW (t)

dλ(t) = (κ̄(t)− āλ(t)) dt+ σ̄(t) dW̄ (t)

dW (t)dW̄ (t) = ρ dt

where r(t) is the default-free interest rate, λ(t) is the default intensity and ρ is

the correlation between their generating white noise processes, the changes of two

Brownian Motions, W (t) and W̄ (t).

By Theorem 6.3 in the Vasicek model, we have the following two facts:

Fact 6.2.1. The price of a default-free zero coupon bond at time t with payoff 1

unit at maturity T is

B(t, T ) = E[e−
∫ T
t r(s) ds] = eα(t,T )−β(t,T )r(t)
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where

β(t, T ) =
1

a
(1− e−a(T−t))

α(t, T ) =
1

2

∫ T

t

σ2(s)β2(s, T ) ds−
∫ T

t

β(s, T )κ(s) ds

Fact 6.2.2. The survival probability of the reference security from t to T is

E[e−
∫ T
t λ(s) ds] = eᾱ(t,T )−β̄(t,T )λ(t)

where

β̄(t, T ) =
1

ā
(1− e−ā(T−t))

ᾱ(t, T ) =
1

2

∫ T

t

σ̄2(s)β̄2(s, T ) ds−
∫ T

t

β̄(s, T )κ(s) ds

Then the other “building blocks” can be calculated out by the following lemmas:

Lemma 6.4. The price of a defaultable zero coupon bond at time t with payoff 1

unit at maturity T is

B̄(t, T ) = E[e−
∫ T
t λ(s)+r(s) ds] = B(t, T )eα̃(t,T )−β̄(t,T )λ(t)

where

β̄(t, T ) =
1

ā
(1− e−ā(T−t))

α̃(t, T ) =
1

2

∫ T

t

σ̄2(s)β̄2(s, T ) ds−
∫ T

t

κ̃(s)β̄(s, T ) ds

κ̃(t) = κ̄(t)− ρβσ̄(t)σ(t)

Proof. To evaluate

B̄(t, T ) = EQ[e−
∫ T
t r(s) dse−

∫ T
t λ(s) ds],

we want to change the measure Q into the new measure QT ,

QT (A) =

∫
Ω
1Ae

−
∫ T
t r(s) ds dQ∫

Ω
e−

∫ T
t r(s) ds dQ

,
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by using Girsanov’s Theorem to yield that

B̄(t, T ) = B(t, T )EQT [e−
∫ T
t λ(s) ds].

In the Vacicek model, we know that the process

E[e−
∫ T
t r(s) ds|Fu]

appeared in equation (6.1.6) is martingale. By relationship (6.1.9) and definition

of the "‘building block"’ (5.3.2)

B(t, T ) = EQ[e−
∫ T
t r(s) ds],

we have

E[e−
∫ T
t r(s) ds|Fu] = e−

∫ u
t r(s) dsB(u, T ).

Let

M(u) =
e−

∫ u
t r(s) dsB(u, T )

B(t, T )
,

then clearly M(u) is a martingale with expectation 1.

From Theorem 6.3 and the equations (6.1.5) and (6.1.10), we have

dM(u) =
1

B(t, T )
e−

∫ u
t r(s) dsσ(u)

∂B(u, T )

∂r(u)
dW (u)

=
1

B(t, T )
e−

∫ u
t r(s) dsσ(u)(−β(u, T )B(u, T ))dW (u)

= −σ(u)β(u, T )M(u)dW (u),

which implies
dM(u)

M(u)
= −σ(u)β(u, T )dW (u); (6.2.1)

Define a new QT by
dQT

dQ
= M(T ),

then by Girsanov’s Theorem, the Itô process WQT (t) defined by

dWQT (t) = σ(t)β(t, T )dt+ dW (t) (6.2.2)
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is a Brownian Motion under the new measure QT . Also B̄(t, T ) can be computed

as

B̄(t, T ) = EQ[M(T )e−
∫ T
t λ(s) ds]

= EQ[e−
∫ T
t r(s) ds]EQT [e−

∫ T
t λ(s) ds]

= B(t, T )EQT [e−
∫ T
t λ(s) ds] (6.2.3)

Since

dW (t)dW̄ (t) = ρ dt,

we have

dW̄ (t) = ρ dW (t)

= −ρσ(t)β(t, T ) dt+ ρ dWQT (t).

Note that the second equal sign above is from the equation (6.2.2) of the new

Brownian Motion.

Under the new measure QT , the default intensity becomes

dλ(t) = (κ̄(t)− āλ(t)) dt+ σ̄(t) dW̄ (t)

= (κ̄(t)− āλ(t)) dt+ σ̄(t) (−ρσ(t)β(t, T ) dt+ ρ dWQT (t))

= ((κ̄(t)− ρβ(t, T )σ̄(t)σ(t))− āλ(t))dt+ +σ̄(t)dW̄QT (t)

where

κ̃ = κ̄(t)− ρβ(t, T )σ̄(t)σ(t).

By theorem (6.3) again, we are able to calculate

EQT [e1
∫ T
t λ(s) ds]

under the new measure QT , then the result follows by the equation (6.2.3).
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Lemma 6.5. The value at time t of a payoff of $1 at time T + dt if and only if a

default happens in[T, T + dt] is

e(t, T )dt = B̄(t, T )[λ(t)e−ā(T−t) +

∫ T

t

e−a(T−s)k̃′(s) ds] dt

where

k̃′(t) = k̄(t)− ρσ̄σβ − σ̄2β̄.

Proof. Recall that

e(t, T )dt = E[λ(T )e−
∫ T
t λ(s)+r(s) ds]dt.

Again we want to generate a new measure Q̄T such that

e(t, T ) = B̄(t, T )EQ̄T [λ(T )].

Let

M̄(u) =
e−

∫ u
t r(s)+λ(s) dsB̄(u, T )

B̄(t, T )
,

then similar to M(u) in the previous lemma (6.4), M̄(u) is a martingale with

expectation 1.

By Itô’s lemma,

dM̄(u)

M̄(u)
=

1

M̄(u)

[
∂M̄(u)

∂t
dt +

∂M̄(u)

∂r(u)
dr(u) +

∂M̄(u)

∂λ(u)
dλ(u)

+
1

2

∂2M̄(u)

∂r(u)2
(dr(u))2 +

1

2

∂2M̄(u)

∂r(u)∂λ(u)
dr(u)dλ(u) +

1

2

∂2M̄(u)

∂λ(u)2
(dλ(u))2

]
= (−β(u, T )σ(u) dW (u)− β̄(u, T )σ̄(u) dW̄ (u)

=
(
−β(u, T )σ(u)ρ− β̄(u, T )σ̄(u)

)
dW̄ (u)

Then by Girsanov’s Theorem, we have

dλ(t) = (κ̃′(t)− āλ(t)) dt+ σ̄(t) dW̄Q̄T (t) (6.2.4)
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and

e(t, T ) = B̄(t, T )EQ̄T [λ(T )] (6.2.5)

where

κ̃′ = κ̄(t)− ρβ(t, T )σ̄(t)σ(t)− σ̄2(t)β̄(t, T ).

Therefore the result follows by applying Theorem 6.3.

Putting everything together, we can work out the CDS spread

sT =

∫ T
0
e(0, t) dt∑N

j=1(tj − tj−1)B̄(0, tj)

6.3 The Multifactor Cox-Ingersoll-Ross Model
In the multifactor Cox-Ingersoll-Ross (CIR) model, we will set up n independent

factors which drive the interest rate r(t) and the default intensity λ(t). The model

setup is the following.

The i-th factor is defined by

dxi = (ai − bixi)dt+ σi
√
xidWi(t)

where i = 1, . . . , n and Wi(t)’s are mutually independent Brownian Motions.

To make sure that each factor xi(t) is strictly positive, one assumption on the

coefficients must be made:

ai >
1

2
σ2
i .

Then the interest rate and default intensity are defined as linear combinations of

these n factors.

r(t) =
n∑
i=1

cixi(t)

λ(t) =
n∑
i=1

c̄ixi(t)
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Note that although the Wi(t)’s are independent, r(t) and λ(t) are correlated.

The followings are the calculations of the pricing building blocks based on the

multifactor CIR model. Details of the proofs can be found in Schönbucher [82]

page 175-186.

Lemma 6.6. Given the following stochastic differential equation:

dxi = (ai − bixi) dt+ σi
√
xi dWi(t)

where ai, bi, σi are constants and W (t) is a one-dimensional Brownian Motion, we

have the following result:

E[e−
∫ T
t cxi(s) ds] = H1i(T − t, c)e−H2i(T−t,c)cxi(t)

where

H1i(T − t, c) =

[
2γie

1
2

(γi+βi)(T−t)

(γi + βi)(eγi(T−t) − 1) + 2γi

]2αi/σ
2
i

H2i(T − t, c) =
2(eγi(T−t) − 1)

(γi + βi)(eγi(T−t) − 1) + 2γi

γi =
√
β2
i + 2cσ2

i

Lemma 6.7. The price of a defaultable zero coupon bond at time t with payoff 1

unit at maturity T is

B̄(t, T ) =
n∏
i=1

H1i(ci + c̄i)e
−H2i(ci+c̄i)(ci+c̄i)xi(t)

Lemma 6.8. The value at time t of a payoff of 1 unit at time T + dt if and only if

a default happens in[T, T + dt] is

e(t, T ) dt = E[λ(T )e−
∫
Ttλ(s)+r(s) ds] dt

=
n∑
i=1

c̄(ci + c̄i)

(
αiH2i(ci + c̄i) +

∂H2i(ci + c̄i)

∂t
xi(t)

) n∏
j=1

B̄j(t, T ) dt
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The swap rate

sT =

∫ T
0
E[e−

∫ T
t r(s) ds1τ∈[t,t+dt]]∑N

j=1(tj − tj−1)B̄(0, tj)

=

∫ T
0
e(0, t) dt∑N

j=1(tj − tj−1)B̄(0, tj)

can be worked out.

6.4 Stochastic Integral Representation for the
Duration of a CDS

In this section we show how integrals of the form

E

[∫ τ∧T

0

e−
∫ t
0 r(u) dusT dt

]
= sTE

[∫ τ∧T

0

e−
∫ t
0 r(u) du dt

]
,

may be computed in the models discussed in preceding sections.

The integral above arises, for instance, in measuring the duration of a CDS , it is

the length of time over which the CDS premium would have to be paid to exactly

match the expected loss payments. To simplify the case, we consider paying the

rate, sT , continuously. Then the present value of the total premium paid is

E

[∫ τ∧T

0

e−
∫ t
0 r(u) dusT dt

]
= sTE

[∫ τ∧T

0

e−
∫ t
0 r(u) du dt

]
,

and therefore in this case,

duration of CDS = E

[∫ τ∧T

0

e−
∫ t
0 r(u) du dt

]
. (6.4.1)

For our purposes we will take this as definition.

The following result is our essential tool for computation.

Theorem 6.9. In the two-factor Gaussian model, the duration of the CDS is

CDSduration =

∫ T

0

B̄(0, t) dt

=

∫ T

0

B(0, t)eᾱ−β̄λ(0) dt

72



where

β̄ =
1

ā
(1− e−āt)

ᾱ =
1

2

∫ t

0

σ̄2(s)β̄2 ds−
∫ t

0

β̄k̃(s) ds

k̃ = k̄(0)− ρβσ̄(0)σ(0)

In the multi-factor CIR Model, the duration of CDS is

CDSduration =

∫ T

0

B̄(0, t) dt

=

∫ T

0

n∏
i=1

H1i(ci + c̄i)e
−H2i(ci+c̄i)(ci+c̄i)xi(0) dt (6.4.2)

where

H1i(T − t, c) =

[
2γie

1
2

(γi+βi)(T−t)

(γi + βi)(eγi(T−t) − 1) + 2γi

]2αi/σ
2
i

(6.4.3)

H2i(T − t, c) =
2(eγi(T−t) − 1)

(γi + βi)(eγi(T−t) − 1) + 2γi
(6.4.4)

γi =
√
β2
i + 2cσ2

i (6.4.5)

Proof. If τ is the default time, then

CDSduration = E
[∫ τ∧T

0

e−
∫ t
0 r(u) du dt

]
= E

[∫ T

0

1[τ>t] · e−
∫ t
0 r(u) du dt

]
=

∫ T

0

E
[
1[τ>t] · e−

∫ t
0 r(u) du

]
dt

=

∫ T

0

E
[
e−

∫ t
0 λ(u)+r(u) du

]
dt

=

∫ T

0

B̄(0, t) dt

This yields the desired expression.
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Default Swaps, EFA 2007 Ljubljana Meetings Paper, May 2006, available at
SSRN: http://ssrn.com/abstract=903713

[56] Robert A. Jarrow and Stuart M. Turnbull. Pricing Derivatives on Financial
Securities Subject to Credit Risk, Journal of Finance, Vol. L, No. 1, Cornell
University, and Queen’s University (Canada), Mar-1995, pp. 53-85

[57] Monique Jeanblanc, Modelling of Default Risk: An Overview, Mathematical
Finance: Theory and Practice, Higher Education Press, Beijing, pp.171-269
2000

[58] Dudley P. Johnson, Hitting Time Distributions for General Stochastic Pro-
cesses, The Annals of Mathematical StatisticsVol.43, No.5, 1716-1718 (1972)

[59] Douglas Lucas, CDO Handbook, J.P.Morgan Securities Inc., Global Structured
Finance Research May 2001

[60] N. B. Krylov, Introduction to the Theory of Diffusion Processes, American
Mathematical Society, 1994.

[61] Anna Kalemanova, Bernd Schmid and Ralf Werner, The Normal Inverse
Gaussian Distribution for Synthetic CDO Pricing, Working paper, risklab ger-
many GmbH, August 2005

[62] Hui-ksiung Kuo, Introduction to Stochastic Integration, Universitext, Springer,
October 2006

[63] Jean-Paul Laurent and Jon Gregory, Basket Default Swaps, CDO’s and Factor
Copulas, Journal of Risk, Vol. 7, No. 4, (Summer 2005), pp. 103-122

[64] David Li, On Default Correlation: A Copula Function Approach, The Risk-
metrics Group, 99-07 (2000).

78

http://ssrn.com/abstract=903713


[65] Filip Lindskog, Alexander McNeil and Uwe Schmock, Kendall’s Tau for Ellip-
tical distributions, Credit Risk - measurement, evaluation and management,
Bol, Nakhaeizade et al., eds. Physica-Verlag, Heidelberg, pp.149-156, 2003

[66] Douglas J. Lucas, Default Correlation and Credit Analysis, Journal of Fixed
Income, Vol. 4, No. 4, March 1995, pp. 76-87

[67] Elisa Luciano and Wim Schoutens, A Multivariate Jump-Driven Finacial As-
set Model, Quantitative Finance, Vol. 6, No. 5. (October 2006), pp. 385-402

[68] Dilip Madan and Haluk Unal, A Two-Factor Hazard-Rate Model for Pricing
Risky Debt and the Term Structure of Credit Spreads, Center for Financial
Institutions Working Paper Series with number 99-32, Wharton School Center
for Financial Institutions, University of Pennsylvania , June 1999

[69] Three Ways to Solve for Bond Prices in the Vasicek Model, Journal of Applied
Mathematics and Decision Sciences 8(1), 1-14 (2004)

[70] Atish Kakodkar, Barnaby Martin and Stefano Galiani, Correlation Trading,
Merrill Lynch Global Securities Research & Economics Group November 2003

[71] Robert C. Merton, On the Pricing of Corporate Debt: The Risk Structure of
Interest Rates, Journal of Finance, Vol. 29, MIT, 1974, pp. 449-470

[72] Thomas Moosbrucker, Pricing CDOs with Correlated Variance Gamma Dis-
tributions, Working paper, Department of Banking, University of Cologne,
January 2006

[73] Roger B. Nelsen, An Introduction to Copulas, Springer 2006

[74] Bernt Oksendal, Stochastic Differential Equations Springer 2003

[75] Jun Pan and Kenneth J. Singleton, Default and Recovery Implicit in the Term
Structure of Sovereign CDS Spreads, Working paper, Stanford University and
MIT, September 2005

[76] Joachim A. Rebholz, Planar Diffusions with Applications to Mathematical
Finance, Ph.D. dissertation, University of California at Berkeley, 1994.

[77] Alice Rogers, Supersymmetry and Brownian motion on supermanifolds,
arXiv:quant-ph/0201006, January 2002

[78] Bernard Roynette, Pierre Vallois and Marc Yor, Limiting Laws Associated
with Brownian Motion Perturbed by Its Maximum, Minimum and Local Time
II, arXiv:math/0510575v1 [math.PR], January 2002

[79] Matthias Scherer, Efficient Pricing Routines of Credit Default Swaps in a
Structural Default Model with Jumps, Working paper, Department of Financial
Mathematics, University of Ulm, December 2005

79



[80] Philipp Schönbucher, A Libor Market Model with Default Risk, December
2000, available at SSRN: http://ssrn.com/abstract=261051

[81] Philipp Schönbucher, Factor Models: Portfolio Credit Risks When Defaults
are Correlated, Journal of Risk Finance 3(1), (2001), 45-56. http://www.
schonbucher.de/papers/portfolio_fo.pdf

[82] Philipp J. Schonbucher, Credit Derivatives Pricing Models, Wiley, 2003.

[83] Philipp Schönbucher, Portfolio Losses and the Term Structure of Loss Transi-
tion Rates: A New Methodology for the Pricing of Portfolio Credit Derivatives,
Working Paper, ETH Zurich November 2005, http://www.schonbucher.de/
papers/cdo_loss_transition_rates.pdf

[84] Ambar N. Sengupta Pricing Derivatives, McGraw-Hill 2005.

[85] Ambar N. Sengupta and Morten Andersen A CDO Primer 2008. Notes.

[86] L. A. Shepp, A First Passage Problem for the Wiener Process, Ann. Math.
Statist., 38:1912Ű1914, 1967

[87] Harald Skarke, Remarks on Pricing Correlation Products, Bank Austria Cred-
itanstalt working paper, July 2005

[88] Richard K. Skora, Correlation-the Hidden Risk in Collateralized Debt Obliga-
tions, Working paper for Skora & Company Inc. November 1998

[89] Miikka Taurén, A Comparison of Bond Pricing Models in the Pricing of Credit
Risk, March 1999, available at SSRN: http://ssrn.com/abstract=155688

[90] Etienne Tanré and Pierre Vallois, Range of Brownian motion with drift, Jour-
nal of Theoretical Probability, Vol. 19, No. 1, pp. 45-69, 2006

[91] Mark S. Tenney, Introduction to Copulas, Mathematical finance Company,
July 2003

[92] Dennis P. Tihansky, Properties of the Bivariate Normal Cumulative Distribu-
tion, Journal of the American Statistical Association,Vol. 67, No. 340, Theory
and Methods Section, December 1972

[93] Daniel Totouom and Margaret Armstrong, Dynamic Copula Processes: A New
Way of Modelling CDO Tranches, Advances in Econometrics: Econometrics
of Risk Management, Volume 22, 2007

[94] Henry C. Tuckwell and Frederic Y.M. Wan First-Passage Time of Markov
Processes to Moving Barriers Journal of Applied Probability, Applied Prob-
ability Trust, Vol. 21, No. 4 (Dec., 1984), pp. 695-709 1984

80

http://ssrn.com/abstract=261051
http://www.schonbucher.de/papers/portfolio_fo.pdf
http://www.schonbucher.de/papers/portfolio_fo.pdf
http://www.schonbucher.de/papers/cdo_loss_transition_rates.pdf
http://www.schonbucher.de/papers/cdo_loss_transition_rates.pdf
http://ssrn.com/abstract=155688


[95] Mantas Valuzis, On the Probabilities of Correlated Defaults: a First Passage
Time Approach, Nonlinear Analysis: Modelling and Control, Vol. 13, No. 1,
March 2008, pp. 117-133

[96] S.R.S Varadhan and R.J. Williams, Brownian Motion in a Wedge with
Oblique Reflection, Communications on Pure and Applied Mathematics, Vol.
XXXVIII205-443 (1985)

[97] Oldrich Vasicek, An Equilibrium Characterization of the Term Structure, Jour-
nal of Financial Economics 5 177-188 (1977)

[98] Oldrich Vasicek, Probability of Loss on Loan Portfolio, KMV Corporation
working paper 999-0000-056, February 1987

[99] A. D. Wentzell, A Course in the Theory of Stochastic Processes, McGraw-Hill,
1981

[100] Tom Wilde, CreditRisk+ A Credit Risk Management Framework, Credit Su-
isse First Boston, October 1997

[101] R.J. Williams, Local time and excursions of reflected Brownian motion in a
wedge, Publ. Res. Inst. Math. Sci. 23 (1987), no. 2, 297–319

[102] R.J. Williams, Reflecting Diffusions and Queueing networks, Proceedings of
the International Congress of Mathematicians, Vol.III(Berlin, 1998)

[103] Mark B. Wise and Vineer Bhansali, Correlated Random Walks and the Joint
Survival Probability, July 7, 2004, available at SSRN: http://ssrn.com/
abstract=562207

[104] Di Zhang and Roderick V.N. Melnik, First Passage Time for Multivariate
Jump-Diffusion Stochastic Models with Applications in Finance, DCDS sup-
plement Volume 2007, arXiv:cs/0702163v1 [cs.CE], Feb 2007

[105] Chunsheng Zhou, Default Correlation: An Analytical Result, Finance and
Economics Discussion Series with number 1997-27, Board of Governors of the
Federal Reserve System (U.S.), May 1997

81

http://ssrn.com/abstract=562207
http://ssrn.com/abstract=562207


Appendix A: Copulas, Correlation and
Girsanov’s Theorem
We summarize some standard notions and well-known results (stated here largely
without proofs) related to our investigations.

A.1 Introduction to Copula
A standard reference for copulas is the book of Nelsen [73]. Details of the results
of this section, and proofs, may be found in [73].

Copulas are of correlated variables, whose marginals are known. The notion of a
copula can be formalized in different degrees of generality. The essential idea may
be expressed as follows.

Definition A.1.1. A function C : [0, 1]N → [0, 1] is a copula if it is the joint
distribution function of N random variables, U1, U2, . . . , UN , each having uniform
distribution on [0, 1]. Thus,

C(u1, u2, . . . , uN) = Q[U1 ≤ u1, U2 ≤ u2, . . . , UN ≤ uN ].

where Q is the underlying probability measure. Equivalently, a function C : [0, 1]N →
R is a copula function if there is a Borel probability measure P on [0, 1]N such that

C(u1, ..., uN) = P ([0, u1]× · · · × [0, uN ]),

for every u1, ..., uN ∈ [0, 1]N .

Copulas have properties which make them very convenient in applications. As
we have seen in Lemma 4.1, any random variable X with continuous, strictly
monotone distribution function can be ‘converts’ into the uniform variable FX(X).
In view of this, one has the following observation:

Proposition A.1.1. If X = (X1, X2, . . . , XN) are random variables with con-
tinuous joint distribution FX and univariate marginal distribution functions FX1,
FX2,...,FXN which are strictly monotone and continuous, then there exists a unique
copula function C such that

FX(x1, x2, . . . , xN) = C(FX1(x1), FX2(x2), . . . , FXN (xN))

for all x1, ..., xN ∈ R.

In a converse direction, there is the following result:

Proposition A.1.2. Given N univariate marginal distribution function FX1 , FX2 , . . . , FXN
for random variables (X1, X2, . . . , XN), and any copula function C, the function
defined by C on [0, 1]N , the function F on RN given by

F (x1, x2, . . . , xN) = C(FX1(x1), FX2(x2), . . . , FXN (xN)),

is a joint distribution function for the random variables (X1, X2, . . . , XN).
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As an example, we have the copula for independent variables:

Proposition A.1.3. If U1, U2, . . . , UN are all independent, then

C(u1, u2, . . . , uN) =
N∏
i=1

ui

A.2 Correlation and Kendall’s Tau
The standard correlation ρ of two non-constant random variables X and Y is
defined by

ρ =
E[(X − E(X))(Y − E(Y ))]√

Var(X)Var(Y )

describing the dependency of X and Y .
Correlation of a different flavor is described through Kendall’s Tau τ , defined by

τKendall = Q[(X − X̃)(Y − Ỹ ) > 0]−Q[(X − X̃)(Y − Ỹ ) < 0] (A.2.1)

where (X̃, Ỹ ) is an independent copy of (X, Y ).
The Kendall’s tau of two random variables X,Y is "‘invariant"’ when they are

replaced by G(X) and G(Y ), for any monotonic function G, and so is the same if
X,Y are transformed into uniform or Gaussian or any other variables. Thus τ is
the right measure of correlation in the copula context. Kendall’s tau is related in
a simple way to the Gaussian correlation which we use,

τ =
2

π
arcsin ρ.

For a proof see [65].

A.3 Girsanov’s Theorem
The following version of the Girsanov’s Theorem is from Oksendal [74] page 162:

Theorem A.3.1. Let Y (t) ∈ Rn be an Itô process of the form

dY (t) = a(t, ω)dt+ dB(t); t ≤ T, Y0 = 0.

where T ≤ ∞ is a given constant and B(t) is n-dimensional Brownian motion.
Put

Mt = exp

(
−
∫ t

0

a(s, ω) dBs −
1

2

∫ t

0

a2(s, ω) ds

)
; 0 ≤ t ≤ T.

Assume that Mt is a martingale with respect to F(n)
t and P . Define the measure Q

on F(n)
t by

dQ(ω) = MT (ω)dP (ω).

Then Q is a probability measure on F(n)
t and Y (t) is an n-dimensional Brownian

motion w.r.t. Q, for 0 ≤ t ≤ T .
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Appendix B: Matlab Code I

The following is the Matlab code for simulating L = L3
e against ρ and Φ(c), where

Φ(c) = P[Xi ≤ c], taken from GcBinomialSimulation.m.

clear;

num_rho = 100;
num_pro = 100;
Expe = zeros(num_rho, num_pro);
for m = 1:num_rho

for n = 1:num_pro

delta = 100;
globe = randn(delta,1);
name = 100;
rho = m/101;
default_pro = n/2000;
c = -sqrt(2)*erfcinv(2*default_pro);
p = zeros(name,1);

for k = 1:3
c_N_k = factorial(name)/(factorial(k-1)*factorial(name-k+1));
p(k) = 0;
for i = 1:delta

p_X = erfc(-(c-sqrt(rho)*globe(i))/sqrt(2*(1-rho)))/2;
p(k) = p(k) + c_N_k * p_X^(k-1) * (1-p_X)^(name-k+1);

end
p(k) = p(k)/delta;
end
Expe(m,n) = p(2) + 2*p(3) + 3*(1-p(1)-p(2)-p(3));

end
end
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Appendix C: Matlab Code II

The following is the Matlab code for simulating Dependence of dL3
e

dρ
on ρ and c,

taken from DerivativeOfExpLoss.m.

clear;

num_rho = 30;
num_pro = 30;
in0 = zeros(num_rho, num_pro);
in1 = in0;
in2 = in0;
exp_loss = in0;
for m = 1:num_rho

for n = 1:num_pro

name = 100;
rho = m/30;
default_pro = n/200;

delta = 100;
globe = -3.5:7/(delta-1):3.5;
globe = globe’;

for i = 2:delta
in0(m,n) = in0(m,n) + integk0(globe(i-1),rho,default_pro)

*(erfc(-globe(i)/sqrt(2))-erfc(-globe(i-1)/sqrt(2)))/2;
in1(m,n) = in1(m,n) + integk1(globe(i-1),rho,default_pro)

*(erfc(-globe(i)/sqrt(2))-erfc(-globe(i-1)/sqrt(2)))/2;
in2(m,n) = in2(m,n) + integk2(globe(i-1),rho,default_pro)

*(erfc(-globe(i)/sqrt(2))-erfc(-globe(i-1)/sqrt(2)))/2;
end

exp_loss(m,n) = -3*in0(m,n)-2*in1(m,n)-in2(m,n);

end
end
meshc(exp_loss); figure(gcf)
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function y = integk0(x,rho,default_pro)
N = 100;
%k = 0;

c = -sqrt(2)*erfcinv(2*default_pro);

p = erfc(-(c-sqrt(rho)*x)/sqrt(2*(1-rho)))/2;
y = (c*sqrt(rho)-x)/((1-rho)*2*sqrt(rho*(1-rho)))

*(-N)*exp(-N*p-0.5*((c-sqrt(rho)*x)/sqrt(1-rho))^2)/sqrt(2*pi);
end

function y = integk1(x,rho,default_pro)
N = 100;
k = 1;

c = -sqrt(2)*erfcinv(2*default_pro);

p = erfc(-(c-sqrt(rho)*x)/sqrt(2*(1-rho)))/2;
y = (c*sqrt(rho)-x)/((1-rho)*2*sqrt(rho*(1-rho)))

*((-N)*(N*p)^k/factorial(k)+(N*p)^(k-1)/factorial(k-1)*N)
*exp(-N*p-0.5*((c-sqrt(rho)*x)/sqrt(1-rho))^2)/sqrt(2*pi);

end

function y = integk2(x,rho,default_pro)
N = 100;
k = 2;
%default_pro = .1;
c = -sqrt(2)*erfcinv(2*default_pro);
%rho = 0.5;
p = erfc(-(c-sqrt(rho)*x)/sqrt(2*(1-rho)))/2;
y = (c*sqrt(rho)-x)/((1-rho)*2*sqrt(rho*(1-rho)))

*((-N)*(N*p)^k/factorial(k)+(N*p)^(k-1)/factorial(k-1)*N)
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*exp(-N*p-0.5*((c-sqrt(rho)*x)/sqrt(1-rho))^2)/sqrt(2*pi);
end
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