
Louisiana State University Louisiana State University

LSU Scholarly Repository LSU Scholarly Repository

LSU Master's Theses Graduate School

2011

An Euler solver for nonlinear water waves using a modified An Euler solver for nonlinear water waves using a modified

staggered grid and Gaussian quadrature approach staggered grid and Gaussian quadrature approach

Qi Fan
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://repository.lsu.edu/gradschool_theses

 Part of the Engineering Science and Materials Commons

Recommended Citation Recommended Citation
Fan, Qi, "An Euler solver for nonlinear water waves using a modified staggered grid and Gaussian
quadrature approach" (2011). LSU Master's Theses. 1690.
https://repository.lsu.edu/gradschool_theses/1690

This Thesis is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It has
been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Scholarly
Repository. For more information, please contact gradetd@lsu.edu.

https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_theses
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_theses?utm_source=repository.lsu.edu%2Fgradschool_theses%2F1690&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/279?utm_source=repository.lsu.edu%2Fgradschool_theses%2F1690&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_theses/1690?utm_source=repository.lsu.edu%2Fgradschool_theses%2F1690&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

AN EULER SOLVER FOR NONLINEAR WATER WAVES
USING A MODIFIED STAGGERED GRID AND GAUSSIAN

QUADRATURE APPROACH

A Thesis
Submitted to the Graduate Faculty of the

Louisiana State University and
Agricultural and Mechanical College

in partial fulfillment of the
requirements for the degree of

Master of Science in Engineering Science
in

The Interdisciplinary Program in Engineering Science

By
Qi Fan

B.S., Wuhan University, 2003
December 2011

ACKNOWLEDGEMENTS

The deepest appreciation goes to my advisor Dr. Qin Jim Chen who has always been

supportive and an inspiration. His academic rigour helps me develop a good attitude about

research, and his guidance and influence not only in research but also in other aspects are

an estate for life. I also want to thank my committee members Dr. Haosheng Huang and

Dr. Xiaoliang Wan for the valuable guidances and suggestions I received from them when

I got into difficulties in research.

I also want to thank all of my collaborators. I really appreciate Dr. Haihong Zhao and Dr.

Kelin Hu’s enormous help in every aspects which made my work and life here much easier.

I ’d also like to thank my fellow students Ranjit Jadhav, Qian Zhang, Ling Zhu, Ke Liu

for the wonderful working environment they create and the kind help they offered.

I am also very grateful for the help I get from my collaborators in LSU’s Center of Com-

putational Technology (CCT). I want to thank Dr. Jian Tao and Lei Jiang’s technical

support for my work. Also I ’d like to thank Dr. Soon-Heum Ko who spent a lot of his

own time helping me solve specific problems.

ii

Finally, I appreciate my parents for their love and continuous support and my wife, Shan-

shan Cai, who has always been supporting me and influencing me with her great personality.

iii

Table of Contents

ACKNOWLEDGEMENTS . ii

ABSTRACT . vii

1 Introduction . 1

1.1 An introduction to water waves . 1
1.2 Numerical modeling of water waves . 2
1.3 Objective and overview of thesis . 5

2 Literature review . 6

3 Method . 9

3.1 Mathematical Formulation . 9
3.1.1 Computational domain . 9
3.1.2 Governing equations . 10
3.1.3 Boundary conditions . 11

3.2 Numerical Discretization . 13
3.2.1 Computational grid . 16
3.2.2 Application of Gauss-Jacobi Quadrature 17
3.2.3 Control volume . 19
3.2.4 Spatial discretization of continuity equation and free surface equation 21
3.2.5 Spatial discretization of horizontal momentum equation 22
3.2.6 Spatial discretization of vertical momentum equation 24

3.3 Solution Procedure . 26
3.3.1 Hydrostatic step . 28
3.3.2 Non-hydrostatic step . 30
3.3.3 Implementation of HYPRE . 35
3.3.4 Overall solution procedure . 40

4 Results . 42

4.1 Standing waves . 42
4.2 Velocity profile and dispersion accuracy . 44
4.3 Submerged bar test case . 46

5 Conclusion . 48

iv

5.1 Summary and conclusion . 48
5.2 Future work . 49

REFERENCES . 51

APPENDIX A . 54

VITA . 60

v

List of Figures

3.1 Computational domain . 10

3.2 Modified staggered grid . 15

3.3 Locations of variables on grid . 17

3.4 Determination of the layer thickness . 19

3.5 Control volume for the modified staggered grid 20

3.6 Simplified index for constructing Poisson equation 31

4.1 Basin for standing wave test . 43

4.2 Comparison between analytical solution (solid line) and numerical result
(circle) . 44

4.3 Comparison of velocity and non-hydrostatic pressure profiles between ana-
lytical solution (solid line) and numerical result (circle) 45

4.4 Comparison of dispersion accuracy between rectangular integration and Gauss-
Jacobi quadrature . 45

4.5 Geometry of submerged bar and location of wave gauges 46

4.6 Comparison between analytical solution (circle) and numerical result (solid
line) from Station 4 to Station 7 . 47

4.7 Comparison between analytical solution (circle) and numerical result (solid
line) from Station 8 to Station 11 . 47

vi

ABSTRACT

A structured, finite-volume Euler solver for non-hydrostatic, free surface flows is developed

to simulate coastal nonlinear dispersive water waves. A semi-implicit projection method

which splits the pressure term into hydrostatic and non-hydrostatic parts is employed. A

vertically shifted, staggered grid is designed to accommodate a new Gaussian discharge

calculator and to facilitate the enforcement of a non-hydrostatic free-surface boundary

condition. The Gaussian discharge calculator on the shifted grid increases the dispersion

accuracy compared to traditional approaches that calculate discharges on a regular stag-

gered grid. Numerical results are presented to demonstrate the improvements of these

methods.

vii

Chapter 1

Introduction

1.1 An introduction to water waves

As one of the most powerful natural phenomena on Earth, water waves strongly affect

coastal areas. In the vast majority of coastal engineering projects, from beach nourishment

to harbor construction, we need to take into account the influence of water waves and their

impact on these projects. Therefore, accurate and efficient wave modeling is very important

in coastal engineering.

Even though waves can be generated by earthquakes or boat wakes, the main energy source

for ocean waves is wind. The amplitude and period of waves are determined by the strength

of the wind, fetch (the distance over which the wind blows), and the duration of the wind.

The behavior of waves changes when they propagate from deep water to shallow water. The

1

definition of deep water or shallow water is determined by the ratio of water depth (h) to

wave length (L). A wave is categorized as a deep water wave when h/L ≥ 0.5 and a shallow

water wave when h/L ≤ 0.05. Deep water waves are dispersive, which means wave speed

is determined by wave period(T). The deep water wave speed approximates g
2π
T , where g

is the acceleration of gravity. This means the fastest waves are the ones with the longest

wave period or the longest wavelength. Shallow water waves are non-dispersive waves.

The expression of the shallow water wave speed is
√
gh. Thus the speed of shallow water

waves is only determined by water depth. The shallow water equation that is the depth-

integrated Euler equations of motion can be used to model shallow water waves. The

shallow water equation is under the hydrostatic assumption which is only correct when

vertical-to-horizontal scales are very small. Thus it fails in modeling deep water waves

because the vertical velocity distribution needs to be considered for an accurate deep water

simulation. Therefore non-hydrostatic pressure has to be included in a dispersive wave

model.

1.2 Numerical modeling of water waves

Navier-Stokes (N-S) equation with free surface boundary conditions is the most accurate

equation for wave modeling. However, solving the N-S equation in 3D with a free surface

in a large domain is very expensive in terms of computational power. Therefore, many

approximate models have been developed for practical applications. The main effort has

2

been made to reduce the computational time and extend model from shallow water to deep

water, and to the surf zone.

The first attempt is ray approximation for infinitesimal waves propagating over mildly-

varied depth. In this approximation, wave rays are found by employing the geometrical

optic theory, which defines the wave ray as a curve tangential to the wave number vector.

Then the spatial variation of the wave envelope along the rays can be calculated by invoking

the energy conservation law. However, the approximation does not take into account the

energy transfer between wave rays. Hence, it fails when neighboring wave rays intersect,

and diffraction and nonlinearity are important.

An improvement to ray approximation was later made by the mild slope equation which

was first suggested by Eckart(1952) and then rederived by Berkhoff(1972, 1976). The two

dimensional mild slope equation can deal with large regions of refraction and diffraction.

The assumption made to derive the equation is that the evanescent modes are not impor-

tant for waves propagating over a slowly varying bathymetry. The mild slope equation is

essentially depth integrated using an analytical velocity profile, which enables it to model

wave propagation from deep water to shallow water.

Boussinesq equations have been the dominant model for coastal wave simulation in the past

two decades. The classic Boussinesq equations for variable depth under the assumption

of weak nonlinearity and weak frequency dispersion were derived by Peregrine (1967). A

depth averaged horizontal velocity is used in the classical model. The assumption of this

set of equations makes it impossible to use the model in deep water. Later the effort of

3

extending Boussinesq equations to deeper water was made by Madsen et al. (1991) and

Nwogu (1993). The method proposed by Nwogu uses a reference velocity instead of the

depth averaged velocity, which extends Boussinesq equations to deep water, where the

water depth (h) to wave length (L) ratio is 0.5.

Even though the modified Boussinesq equations have good dispersion properties in water

of 0 < h
L

≤ 0.5, they are still restricted to weakly nonlinear waves. The defect can

be remedied by removing the weak nonlinearity assumption as in Liu (1994), Wei et al.

(1995), Wu (2001) and Madsen et al. (2003).

The continuous increase in computing power and the development of High Performance

Computing (HPC) technologies make it possible to use the full N-S equation to model

waves. A fractional step method for solving free surface N-S equation was first proposed

by Casulli and Stelling (1998). One problem with this method early on is that a large

number of vertical layers, like 10-40, were need to achieve a good dispersion accuracy in

deep water. A lot of effort has been devoted to reducing the number of vertical layers for

wave modeling. Stelling and Zijlema (2003) employed a Keller-box scheme that enables

the use of only two vertical layers to achieve acceptable dispersion accuracy for deep water

modeling (h/L ≤ 0.5). Another impressive work was done by Yuan and Wu (2004). In

order to better represent the non-hydrostatic pressure at the top layer, they integrated

the vertical velocity from the top layer center to free surface to get the accurate top layer

non-hydrostatic pressure.

4

1.3 Objective and overview of thesis

The objective of the present study is to develop a numerical model for nonlinear, dispersive

waves in coastal regions, which not only has good dispersion properties but also accurately

predicts the vertical distribution of velocities.

In this study, a numerical model using the pressure correction method is developed based

on the Euler equations. A modified staggered grid is introduced to improve the accuracy

of the model. This new grid shifts all the variables on a regular staggered grid by half a

layer and determines the layer interface according to the zeros of Gauss-Jacobi polynomial.

The new modified grid makes it possible to achieve a good wave dispersion accuracy using

only two layers and an accurate velocity profile as well. The outline of the dissertation

is as follows. In Chapter one, a brief introduction to water waves and wave modeling is

given. A literature review of N-S wave models are presented in Chapter two. The details

of the new model on a modified staggered grid are presented in Chapter three. Numerical

results generated by the model to verify the model is shown in Chapter four. Conclusions

and discussion are given in Chapter five.

5

Chapter 2

Literature review

There are many N-S equation based free surface flow models that are capable of simulating

non-linear dispersive waves. To capture the moving free surface, several methods, such as

the arbitrary Lagrangian-Eulerian method (e.g. Hodeges and Street 1999, and Zhou and

Stansby 1999), marker and cell method (e.g. Park et al. 1999), volume of fluid method (e.g.

Ng and Kot 1992, Shen et al. 2004, and Nielsen and Mayer 2004), and level-set method

(e.g. Iafrati and Campana 2003, and Yue et al. 2004) have been successfully incorporated

in the N-S model. However, these methods are yet to be used for large scale, near-shore

wave modeling due to high computational costs and strict stability requirements.

More than a decade ago, a fractional step method was used by Casulli and Stelling (1998),

Casulli (1999) and Stelling and Busnelli (2001) to model free surface flows at a reasonable

computational cost. This method added a non-hydrostatic step to the hydrostatic model.

6

The incorporation of non-hydrostatic pressure enables the modeling of short waves. Since

the fractional step method can be implemented on an existing hydrostatic model, the extra

effort for model development has been minimized. The pressure in the fractional step

method is separated into two parts, the hydrostatic and non-hydrostatic parts. The non-

hydrostatic pressure is not involved in the momentum equation solved in the hydrostatic

step and only calculated in the non-hydrostatic step by solving a Poisson equation. This

will cause a cut-off error that leads to severe wave damping (Zijlema and Stelling 2005).

This problem is solved by the pressure correction method (Stansby and Zhou 1998, Zhou

and Stansby 1999, and Kocyigit et al. 2002). In this pressure correction method, the non-

hydrostatic pressure is included in the momentum equation in the hydrostatic step, and

only the increment of the non-hydrostatic pressure is calculated in non-hydrostatic step.

The computational cost of these pressure correction models in the early publications was

still high because a large number of vertical layers, normally 10-40, are need to achieve

acceptable dispersion accuracy.

Stelling and Zijlema (2003) was the first to use the Keller-box scheme to address the issue of

the classic staggered grid in which the top layer non-hydrostatic pressure was not correctly

determined. In the classic staggered grid, non-hydrostatic pressure is located at the layer

center, which makes it difficult to apply the boundary condition for the non-hydrostatic

pressure (q) at the free surface. The Keller-box scheme replaces the derivative of q at the

layer center by an average of the derivative of q at the upper and lower layer interfaces. This

treatment makes it convenient to impose the free surface dynamic boundary condition for

7

q. The result shows that Stelling and Zijlema’s model can accurately simulate deep water

waves (h/L ≤ 0.5) using only two layers. An alternative was presented by Yuan and Wu

(2004). In order to obtain an accurate non-hydrostatic pressure on the top layer, they

integrated the vertical velocity from the center of top layer to the free surface to get the

expression of non-hydrostatic pressure. This method has been further enhanced by using

high order interpolation schemes for the top layer (Badiei et al. 2008 and Young et al.

2009).

The present study is focused on developing a model that is able to simulate dispersive waves

with a good accuracy of velocity profile in the water column using a minimal number of

vertical layers.

8

Chapter 3

Method

3.1 Mathematical Formulation

3.1.1 Computational domain

A two dimensional model is developed to demonstrate the method introduced in the present

study. The discretization and solution procedure of a three dimensional model is similar to

that of the two-dimensional model. The computational domain is shown in Fig. (3.1). It is

bounded by a free surface on top and a rigid boundary at bottom, which can be represented

by −d(x) ≤ z ≤ η(x, t), where, z is the vertical coordinate with an origin sitting on the still

water and pointing upward, d(x) is the water depth from the still water level and η(x, t) is

the surface elevation.

9

Figure 3.1: Computational domain

3.1.2 Governing equations

The governing equations used here are the incompressible Euler equations, which read:

∂u

∂x
+

∂w

∂z
= 0 (3.1)

∂u

∂t
+

∂u2

∂x
+

∂wu

∂z
+ g

∂η

∂x
+

∂q

∂x
= 0 (3.2)

∂w

∂t
+

∂uw

∂x
+

∂w2

∂z
+

∂q

∂z
= 0 (3.3)

where u and w are velocity components in the horizontal x direction and the vertical z

direction, respectively; g is gravitational acceleration; η is free surface elevation; q is non-

hydrostatic pressure. Here the pressure is split into two parts. The total pressure p is

represented by:

10

p = ρg(η − z) + q (3.4)

In order to get the free surface equation, we need to integrate the mass equation (3.1) from

the bottom to the free surface and use the corresponding kinematic boundary conditions,

which read:

u
∂d

∂x
+ w = 0 (3.5)

∂η

∂t
+ u

∂η

∂x
− w = 0 (3.6)

That gives the free surface equation:

∂η

∂t
+

∂

∂x

∫ η

−d

udz = 0 (3.7)

3.1.3 Boundary conditions

Boundary conditions are needed at all the boundaries of the two dimensional domain,

including free surface, bottom, inflow and outflow.

1) Free surface boundary: The kinematic boundary condition (3.6) is needed here. Actually,

11

as we will see later, the kinematic boundary condition is not directly implemented at the

free surface, because we do not have the grid point of velocity located at the free surface.

However, we do use the kinematic boundary condition implicitly as we set the momentum

flux at the free surface zero. The free surface boundary condition for non-hydrostatic

pressure q is also needed to be implemented in the model. This condition is very important

because the achievement of high dispersion accuracy relies on the accurate calculation of

the non-hydrostatic pressure. Here we just set q = 0 at the free surface.

2) Bottom condition: Similar to the free surface, we also need the kinematic boundary

condition at the bottom. The bottom is treated as a free-slip bottom without including

bottom friction. As for the non-hydrostatic boundary condition, we set ∂q
∂z

= 0 in the case

of flat or mild slope bottom where the vertical velocity near bottom is negligible. And a

very thin bottom layer, which is determined by our unique grid, also reduces the error for

this assumption.

3) Inflow boundary: At the inflow boundary, although only the grid points of u are located

right at the inflow boundary, the boundary conditions for other variables are still needed

when doing interpolation or solving the Poisson equation. Horizontal velocity u is always

given at the inflow boundary. Vertical velocity w and non-hydrostatic pressure q are set to

be zero. The horizontal derivative of surface elevation η are assumed to be zero as well. We

may also apply wall boundary condition to the inflow boundary. Then it will be treated

as an free-slip impermeable boundary with the variables’ values set as u = 0, ∂w
∂x

= 0 and

∂q
∂x

= 0.

12

4) Outflow boundary: In our model, the outflow boundary is treated as the wall boundary.

A spongy layer can be added in front of the outflow boundary for absorbing the wave

energy. In the spongy layer, a damping coefficient function presented in Chen et al. (1999)

with the form listed below is used to gradually decrease the amplitude of surface elevation

and the velocities.

Cs = αγi−1
s

s , i = 1, 2, ...n (3.8)

where αs and γs are two free parameters. Numerical experiments suggest that αs = 2,γs =

0.88− 0.92, and n = 50− 100 lead to an efficient absorption of shortwaves.

Thus, the variables in the spongy layer are calculated by:

ηj = ηj/Cs, uj = uj/Cs, wj = wj/Cs (3.9)

3.2 Numerical Discretization

A structured finite volume method is used in this model. The entire domain is divided into

N ∗K quadrilaterals, where K is the number of layers in the vertical direction and N is

the number of cells in the horizontal direction. The width in the x direction is constant for

every cell. So the x coordinate in this Cartesian grid at the cell centers is:

13

xi+1/2 = (i+ 1/2)∆x (3.10)

where ∆x is the width of the cell.

The height of the cell varies in space and time. However, it is proportional to the total

water depth at a given time and location. The sum of the height of cells in the water

column is equal to the total water depth:

K
∑

k=1

hi,k = η(xi, t) + d(xi) (3.11)

So the z coordinate of the layer interface can be expressed by:

zi,k+1/2 = zi,k−1/2 + hi,k (3.12)

with:

zi,1/2 = −d(xi), zi,K+1/2 = η(xi, t) (3.13)

If the ratio between the layer thickness and total water depth is fixed to be fk, then we

can rewrite (3.12) to be:

14

Figure 3.2: Modified staggered grid

zi,k+1/2 = zi,k−1/2 + fk(η(xi, t) + d(xi)) (3.14)

The choice of fk can significantly influence the performance of the model. fk may change

in the x direction or be constant for every layer, but it can not be negative. In our

model, fk is determined according to the zeros of Gauss-Jacobi quadrature for the purpose

of implementing Gauss-Jacobi quadrature. This will be illustrated in details later. The

computational mesh is shown in Fig. (3.2).

Since the layer interfaces move with time, we need a relative vertical velocity to accurately

calculate the flux passing the cells interface in the vertical direction. The formula for this

relative vertical velocity ωk+1/2 is expressed as:

ωk+1/2 = w(zk+1/2)−
∂zk+1/2

∂t
− u(zk+1/2)

∂zk+1/2

∂x
(3.15)

15

By applying the kinematic boundary condition to the expression of ωk+1/2 at the bottom

and free surface we have:

ω1/2 = 0, and ωK+1/2 = 0 (3.16)

3.2.1 Computational grid

A modified staggered grid is proposed in this study. Before introducing the new grid, we

review the classic staggered grid first. In the classic staggered grid, velocities u and w are

located at the cell surface while non-hydrostatic pressure q is located at the cell center.

The indices for u, w, q are (i + 1/2, k), (i, k + 1/2) and (i, k), respectively. η is a one

dimensional variable, thus the index of η is i. In our model, all the variables on the grid

are shifted in the vertical direction by half a cell. The consequence of this shift is that

all the variables, which are originally located at the cell center, are relocated to the cell

surface and vice versa. Now, the new indices for u, w, q are (i + 1/2, k + 1/2), (i, k) and

(i, k + 1/2), respectively. The index for η remains the same because the variable on the

grid only shifts in the vertical direction. There are two benefits of the new modified grid.

One is that we now have non-hydrostatic pressure on the layer interface, therefore we can

apply the boundary condition for q at the free surface directly. Another benefit is that

this grid will make it more convenient to apply a Gauss-Jacobi quadrature to calculate the

integration in (3.7). Both of the benefits will considerably improve the dispersion accuracy.

16

Figure 3.3: Locations of variables on grid

The detail of applying Gauss-Jacobi quadrature will be discussed next. The modified grid

is illustrated in Fig. (3.3).

3.2.2 Application of Gauss-Jacobi Quadrature

Base on (3.7), it can be seen that the dispersion accuracy is determined by the integration

accuracy of horizontal velocity from bottom to free surface. In a classic staggered grid, the

horizontal velocity is located at the layer center. This integration is done by:

∫ η

−d

udz =
K
∑

k=1

ukhk (3.17)

If the velocity is located at the zeros of Gauss-Jacobi polynomial, then we can use a more

accurate Gaussian-Jacobi Quadrature for the integration. The numerical result shows that

this can improve the model accuracy in terms of dispersion.

The formula for Gauss-Jacobi quadrature is:

17

∫

1

−1

f(t)dt =
n

∑

i=1

wif(ti) (3.18)

where ti is the zeros of Gauss-Jacobi polynomial and wi is the weight for ti. n is the

number of the zeros and it is determined by the order of the polynomial. The detailed

information about Gauss-Jacobi polynomial and the evaluation of the zeros and weights

of the polynomial can be found in the Appendix B in Karniadakis and Sherwin (2005). A

C++ code for generating zeros and weights of Gauss-Jacobi polynomial can be downloaded

from www.nektar.info/code/page polylib.html.

A transformation is needed to change the integration domain from [-1,1] to any given

interval [a,b].

∫ b

a

f(x)dx = m

∫

+1

−1

f(c+mt)dt = m
n

∑

i=1

wif(c+mti) (3.19)

where m = 1

2
(b− a), c = 1

2
(b+ a) and x = c+mt.

In order to apply Gauss-Jacobi quadrature in our model, we need to place the layer interface

at the zeros.This can be achieved by setting:

f1 =
t1 + 1

2
− 0; fk =

tk − tk−1

2
, k = 2 : K − 1; fK = 1− tK + 1

2
; (3.20)

Based on (3.18), we can get:

18

Figure 3.4: Determination of the layer thickness

∫ η

−d

udz = (η + d)
K−1
∑

k=1

wk+1/2uk+1/2 (3.21)

The whole process is illustrated by Fig. (3.4).

3.2.3 Control volume

The control volume for the variables on the new grid also needs to be redefined, as shown

in Fig. (3.5). The shift of the variables creates two half control volumes for u near the free

surface and the bottom. The two half cells are actually very thin because of the distribution

of the zeros of Gauss-Jacobi polynomial. And we don’t have to solve horizontal velocity at

the free surface and the bottom. Therefore, we merge these two half cells to the cells next

to them.

19

Figure 3.5: Control volume for the modified staggered grid

According to the finite volume method, velocities at the faces of a control volume are

needed to calculate the flux. At the left and right boundaries of the control volume, the

velocities are calculated by taking the average of the velocities at the cell centers.

ui,k+1/2 = 0.5 ∗ (ui−1/2,k+1/2 + ui+1/2,k+1/2), wi+1/2,k = 0.5 ∗ (wi,k + wi+1,k) (3.22)

At the upper and lower face of the control volume, we have:

ui+1/2,k = 0.5 ∗ (ui+1/2,k−1/2 + ui+1/2,k+1/2),

wi,k+1/2 = (hi,k ∗ wi,k+1 + hi,k+1 ∗ wi,k)/(hi,k + hi,k+1) (3.23)

A weighted averaged is needed for w at cell surface because the layer thickness changes

20

from layer to layer.

3.2.4 Spatial discretization of continuity equation and free sur-

face equation

To discretize the continuity equation we first integrate (3.1) in the vertical direction between

the center of two adjacent layers k and k + 1.

∫ zk+1

zk

(
∂u

∂x
+

∂w

∂z
)dz =

∂hk+1/2uk+1/2

∂x
− u

∂z

∂x
|zk+1

zk
+ wk+1 − wk = 0 (3.24)

Here, hk+1/2 is obtained by:

hk+1/2 = 0.5 ∗ (hk + hk+1) (3.25)

Then we integrate (3.24) in the horizontal direction from xi−1/2 to xi+1/2, which gives

hi+1/2,k+1/2ui+1/2,k+1/2 − hi−1/2,k+1/2ui−1/2,k+1/2 + ui,k(zi+1/2,k − zi−1/2,k)

− ui,k+1(zi+1/2,k+1 − zi−1/2,k+1) + (wi,k+1 − wi,k)∆x = 0 (3.26)

The discretized free surface equation is:

21

∂η

∂t
+Qi+1/2 −Qi−1/2 = 0 (3.27)

where Q is the integration determined by (3.21).

3.2.5 Spatial discretization of horizontal momentum equation

The control volume for horizontal velocity is from xi to xi+1 in the x direction and from

zk to zk+1 in the z direction. Here we treat terms in the horizontal momentum equation

over control volume separately. These terms include time derivative term, convective term,

surface elevation gradient term and non-hydrostatic pressure gradient term.

Integrating the time derivative term in the vertical direction from zk to zk+1 gives:

∫ zk+1

zk

∂u

∂t
dz =

∂hk+1/2uk+1/2

∂t
− u

∂z

∂t
|zk+1

zk
(3.28)

Then integrating the convective term over the same vertical interval gives:

∫ zk+1

zk

(
∂u2

∂x
+

∂wu

∂z
)dz =

∂

∂x

∫ zk+1

zk

u2dz

+ uk+1(ωk+1 +
∂zk+1

∂t
)− uk(ωk +

∂zk
∂t

) (3.29)

22

In the formula above, we have:

∫ zk+1

zk

u2dz = hk+1/2u
2

k+1/2 +

∫ zk+1

zk

(u− uk)
2dz (3.30)

The integral term in the right-hand side of the equation above is due to the non-uniformities

of the horizontal velocity. Here we assume it is small and negligible.

For q we have:

∫ zk+1

zk

∂q

∂x
dz =

∂

∂x

∫ zk+1

zk

qdz − qk+1

∂zk+1

∂x
+ qk

∂zk
∂x

(3.31)

The integral on the right-hand size is approximated by:

∫ zk+1

zk

qdz ≈ 1

2
hk+1/2(qk+1 + qk) = hk+1/2qk+1/2 (3.32)

Putting all the terms together, the vertical integration of the horizontal momentum equa-

tion reads

∂hk+1/2uk+1/2

∂t
+

∂hk+1/2u
2

k+1/2

∂x
+ uk+1ωk+1 − ukωk

+ ghk+1/2
∂η

∂x
+

∂hk+1/2qk+1/2

∂x
− qk+1

∂zk+1

∂x
+ qk

∂zk
∂x

(3.33)

23

Then integrating (3.33) over interval in the x direction from xi to xi+1 gives

∂hi+1/2,k+1/2ui+1/2,k+1/2

∂t
∆x+ ui+1,k+1/2φi+1,k+1/2 − ui,k+1/2φi,k+1/2

+ (ui+1/2,k+1ωi+1/2,k+1 − ui+1/2,kωi+1/2,k)∆x

+ g(ηi+1 − ηi)hi+1/2,k+1/2 + hi+1,k+1/2qi+1,k+1/2 − hi,k+1/2qi,k+1/2

− qi+1/2,k+1(zi+1,k+1 − zi,k+1) + qi+1/2,k(zi+1,k − zi,k) = 0 (3.34)

where φ = hu is the value at the side faces of a control volume.

3.2.6 Spatial discretization of vertical momentum equation

We follow the same procedure as that for the horizontal momentum equation. The control

volume for the vertical momentum equation is from xi−1/2 to xi+1/2 in the x direction and

from zk−1/2 to zk+1/2 in the z direction.

After we integrate the vertical momentum equation in the vertical direction in the interval

[zk−1/2, zk+1/2], we get

∂hkwk

∂t
+

∂hkukwk

∂x
+ wk+1/2ωk+1/2 − wk−1/2ωk−1/2 + qk+1/2 − qk−1/2 = 0 (3.35)

24

Then we do the integration in the x direction and obtain

∂hi,kwi,k

∂t
∆x+ hi+1/2,kwi+1/2,kui+1/2,k − hi−1/2,kwi−1/2,kui−1/2,k

+ [wi,k+1/2ωi,k+1/2 − wi,k−1/2ωi,k−1/2]∆x+ (qi,k+1/2 − qi,k−1/2)∆x = 0 (3.36)

Notice that the time derivative terms in the discretized vertical and horizontal equation have

the layer thickness in the differentiation. To get a time derivative only for the velocities,

we apply the chain rule as follows:

∂u

∂t
=

1

h
(
∂hu

∂t
− u

∂h

∂t
) (3.37)

Based on (3.15) and (3.24), we can verify that:

ωk+1 = ωk −
∂hk+1/2

∂t
− ∂hk+1/2uk+1/2

∂x
(3.38)

Applying (3.37) and (3.38) to (3.34), we can get the discretized equation with time deriva-

tive only for u, as follows:

25

hi+1/2,k+1/2

∂ui+1/2,k+1/2

∂t
∆x+(ui+1,k+1/2−ui+1/2,k+1/2)φi+1,k+1/2−(ui,k+1/2−ui+1/2,k+1/2)φi,k+1/2

+ [(ui+1/2,k+1 − ui+1/2,k+1/2)ωi+1/2,k+1 − (ui+1/2,k − ui+1/2,k+1/2)ωi+1/2,k]∆x

+ g(ηi+1 − ηi)hi+1/2,k+1/2 + hi+1,k+1/2qi+1,k+1/2 − hi,k+1/2qi,k+1/2

− qi+1/2,k+1(zi+1,k+1 − zi,k+1) + qi+1/2,k(zi+1,k − zi,k) = 0 (3.39)

The same procedure is applied to the vertical momentum equation and the discretized

equation is obtained:

hi,k
∂wi,k

∂t
∆x+ hi+1/2,k(wi+1/2,k − wi,k)ui+1/2,k − hi−1/2,k(wi−1/2,k − wi,k)ui−1/2,k

+ [(wi,k+1/2 − wi,k)ωi,k+1/2 − (wi,k−1/2 − wi,k)ωi,k−1/2]∆x+ (qi,k+1/2 − qi,k−1/2)∆x = 0

(3.40)

3.3 Solution Procedure

How the solution at the time level n+1 is evolved from the time level n using the discretized

equations derived above is discussed in this section. This is achieved by doing the time

integration. A pressure correction method is applied in our model. The time integration in

this method is completed in two steps, namely the hydrostatic step and the non-hydrostatic

26

step. The spatial discretization versions of (3.1), (3.2), (3.3) and (3.7) listed below are

employed to demonstrate the time integration procedure.

δui,k

δx
+

δwi,k

δz
= 0 (3.41)

dui,k

dt
+ g

δηi
δx

+
qi,k
δx

= Fu (3.42)

dwi,k

dt
+

δqi,k
δz

= Fw (3.43)

dηi
dt

+
δQi

δx
= 0, Qi =

∫ η

−d

uidz (3.44)

Fu and Fw represent the spacial discretization of convective terms in the horizontal momen-

tum and vertical momentum equations, respectively. δ/δx and δ/δz are linear algebraic

operators of gradients in the x− and z−direction, respectively. Different time integra-

tion schemes are applied to different terms. An explicit time stepping scheme is employed

for convective terms and a semi-implicit θ-scheme is used for both hydrostatic and non-

hydrostatic pressure terms, as follows:

δun+1

i,k

δx
+

δwn+1

i,k

δz
= 0 (3.45)

un+1

i,k − un
i,k

∆t
+ g(θ

δηn+1

i

δx
+ (1− θ)

δηni
δx

) + θ
qn+1

i,k

δx
+ (1− θ)

δqni,k
δx

= F n
u (3.46)

wn+1

i,k − wn
i,k

∆t
+ θ

δqn+1

i,k

δz
+ (1− θ)

δqni,k
δz

= F n
w (3.47)

27

ηn+1

i − ηni
∆t

+ θ
δQn+1

i

δx
+ (1− θ)

δQn
i

δx
= 0, Qi =

∫ η

−d

uidz (3.48)

The value of θ should be in interval [0.5,1] to give a stable model. The explicit treatment

of convective terms makes this scheme conditionally stable. A pressure correction scheme

is employed to solve (3.45)-(3.48). In the hydrostatic step of the scheme, intermediate

variables u∗, w∗, η∗ are calculated based on the variables at the time level n. Then in the

non-hydrostatic step, a Poisson solver is constructed based on the intermediate variables

and the incremental ∆q is calculated by the Poisson solver. Finally, un+1, wn+1, qn+1 are

all updated based on ∆q. The details are discussed below.

3.3.1 Hydrostatic step

First, we find out the intermediate variables u∗ and η∗ using the variables at the time level

n.

u∗

i,k − un
i,k

∆t
+ g(θ

δη∗

δx
+ (1− θ)

δηni
δx

) +
δqni,k
δx

= F n
u (3.49)

η∗i − ηni
∆t

+ θ
δQ∗

i

δx
+ (1− θ)

δQn
i

δx
= 0, Q∗

i = GLQ(u∗

i,k) (3.50)

GLQ(u∗

i,k) means the Gauss-Jacobi quadrature of u∗

i,k defined before. It is easy to see that

the two equations above are coupled. To solve it we have to define another variable u∗∗

i,k

which is calculated based on ηni , as follows:

28

u∗∗

i,k − un
i,k

∆t
+ g

δηni
δx

+
δqni,k
δx

= F n
u (3.51)

Subtracting (3.49) by (3.51) and introducing ∆ηi = η∗i − ηni , we can calculate u∗

i by:

u∗

i,k − u∗∗

i,k

∆t
+ gθ

δ∆ηi
δx

= 0 (3.52)

Integrating (3.52) from the bottom to the free surface gives

Q∗

i = Q∗∗

i − gθ∆tH∗

i

δ∆ηi
δx

, H∗

i = η∗i + di (3.53)

Based on (3.50) and (3.53), an equation for ∆ηi is constructed as follows:

∆ηi
∆t

− gθ2∆t
δ

δx
(H∗

i

δ∆ηi
δx

) = −θ
δQ∗∗

i

δx
− (1− θ)

δQn
i

δx
(3.54)

We update u∗

i and η∗i after (3.54) is solved.

w∗

i can be solved by:

w∗

i,k − wn
i,k

∆t
+

δqni,k
δz

= F n
w (3.55)

29

3.3.2 Non-hydrostatic step

In this step, the intermediate variables u∗, w∗, η∗ will be updated to the time level n+ 1.

By subtracting (3.46) and (3.47) by (3.49) and (3.55), we get:

un+1

i,k − u∗

i,k

∆t
+ gθ

ηn+1

i − η∗i
δx

+ θ
δ∆qi,k
δx

= 0 (3.56)

wn+1

i,k − wn
i,k

∆t
+ θ

δ∆qi,k
δz

= 0 (3.57)

where ∆qi,k = qn+1

i,k − qni,k. We are not going to update surface elevation in the non-

hydrostatic step, which means ηn+1

i − ηni = 0. Thus (3.56) can be rewritten as:

un+1

i,k − u∗

i,k

∆t
+ θ

δ∆qi,k
δx

= 0 (3.58)

A Poisson equation can be constructed by substituting (3.57), (3.58) to (3.45).

In order to better demonstrate the construction of Poisson equation, a set of simplified

indices are used here and is shown in Fig. (3.6).

The black dots are grid locations of the variables. The number and letter in the brackets

are the simplified index. Their real index in the original grid is indicated by i and k. The

30

Figure 3.6: Simplified index for constructing Poisson equation

31

black dots with an index from 1 to 9 is where the non-hydrostatic pressure is located. Take

q6 for example, its index in the original grid is qi+3/2,k+1/2. Index u,d,l and r means up,

down, left and right, respectively. lu,ld,ru and rd are the combinations of u,d,l and r. ul

and ui−1/2,k+1/2 represent the same grid variable. So are wu and wi,k+1.

With the simplified indices, (3.22) can be rewritten as:

hrur − hlul − uu∆zu + ud∆zd + (wu − wd)∆x = 0 (3.59)

where ∆zu = zru − zlu,∆zd = zrd − zld

The discretized form of (3.57) and (3.58) are part of (3.34) and (3.40). Applying them to

ul, ur, wu, wd yields

urhr − u∗

rhr

∆t
∆x+ θ(h6∆q6 − h5∆q5 −∆qru∆zru +∆qrd∆zrd) = 0 (3.60)

ulhl − u∗

l hl

∆t
∆x+ θ(h5∆q5 − h4∆q4 −∆qlu∆zlu +∆qld∆zld) = 0 (3.61)

wu∆x− w∗

u∆x

∆t
hu + θ(∆q8∆x−∆q5∆x) = 0 (3.62)

wd∆x− w∗

d∆x

∆t
hu + θ(∆q5∆x−∆q2∆x) = 0 (3.63)

We still need to get uu∆zu and ud∆zd to complete the continuity equation. They are

represented by:

32

uuhu − u∗

uhu

∆t
∆x+ θ(hru∆qru − hlu∆qlu −∆q8∆z8 +∆q5∆z5) = 0 (3.64)

udhd − u∗

dhd

∆t
∆x+ θ(hrd∆qrd − hld∆qld −∆q5∆z5 +∆q2∆z2) = 0 (3.65)

By replacing every term in (3.59) using (3.60)-(3.65), we can get an equation with only

known intermediate variables and unknown non-hydrostatic pressure. Put all the interme-

diate variables to the right hand side:

RHS = u∗

rhr − u∗

l hl + w∗

u∆x+ w∗

d∆x− u∗

u∆zu + u∗

d∆zd (3.66)

∆qru,∆qrd,∆qlu,∆qld can be determined by linear interpolation listed below:

∆qru = 0.25 ∗ (∆q5 +∆q6 +∆q8 +∆q9) (3.67)

∆qrd = 0.25 ∗ (∆q2 +∆q3 +∆q5 +∆q6) (3.68)

∆qlu = 0.25 ∗ (∆q4 +∆q5 +∆q7 +∆q8) (3.69)

∆qld = 0.25 ∗ (∆q1 +∆q2 +∆q4 +∆q5) (3.70)

Finally, we can get the coefficients c1, c2, ...c9 of ∆q1,∆q2, ...∆q9, as follows:

33

c1 = −0.25θ∆t(∆zld + hld
∆zd
hd

)/∆x (3.71)

c2 = [0.25θ∆t(∆zrd −∆zld + hrd
∆zd
hd

− hld
∆zd
hd

) + ∆z2
∆zd
hd

]/∆x+
∆x

hd

(3.72)

c3 = 0.25θ∆t(∆rd + hrd
∆zd
hd

)/∆x (3.73)

c4 = [0.25θ∆t(∆zlu −∆zld + hlu
∆zu
hu

− hld
∆zd
hd

+ h4]∆x (3.74)

c5 = [0.25θ∆t(∆zrd −∆zru −∆zld +∆zlu +
∆zu
hu

hlu −
∆zu
hu

hru +
∆zd
hd

hrd −
∆zd
hd

hld)

− 2h5 −
∆zu
hu

∆z5 −
∆zd
hd

∆z5]/∆x− ∆x

hu

− ∆x

hd

(3.75)

c6 = [0.25θ∆t(∆zrd −∆zru − hru
∆zu
hu

+ hrd
∆zd
hd

) + h6]/∆x (3.76)

c7 = 0.25θ∆t(∆zlu +
∆zu
hu

hlu)/∆x (3.77)

c8 = [0.25θ∆t(∆zlu −∆zru −
∆zu
hu

hru +
∆zu
hu

hlu) +
∆zu
hu

∆z8]/∆x+
∆x

hu

(3.78)

c9 = −0.25θ∆t(∆zru +
∆zu
hu

hru)/∆x (3.79)

The constructed Poisson equation is solved by a software library called HYPRE, which

is a high performance preconditioners and solvers for the solution of large, sparse linear

systems of equations on massively parallel computers.The details of implementing HYPRE

in our model is discussed next.

34

3.3.3 Implementation of HYPRE

HYPRE is a library of high performance preconditioners and solvers for the solution of

large, sparse linear systems of equations on massively parallel computers. More information

about HYPRE can be found in its website(http://acts.nersc.gov/hypre/). HYPRE offers

different conceptual interface for different applications. They are listed below:

• Structured-Grid System Interface (Struct): This interface is for structured grid with

fixed stencil pattern of non-zeros at each grid point. This interface supports only a

single unknown per grid point.

• Semi-Structured-Grid System Interface (SStruct): This interface is for applications

whose grids are mostly structured, but with some unstructured features. Examples in-

clude block-structured grids, composite grids in structured adaptive mesh refinement

(AMR) applications, and overset grids. This interface supports multiple unknowns

per cell.

• Finite Element Interface (FEI): This interface is for finite element application. The

interface mirrors typical finite element data structures, including element stiffness

matrices.

• Linear-Algebraic System Interface (IJ): This is the traditional linear-algebraic inter-

face which can be used where other interfaces are not appropriate. It requires more

work on the user’s part.

35

In our case, the Struct interface is used. There are five basic steps involved in setting up

the linear system and solving it:

1) set up the grid

2) set up the stencil

3) set up the matrix

4) set up the right-hand-side and solution vector

5) solve the linear system

Each step is explained in detail with a piece of code as follows.

1) Set up the grid

HYPRE StructGridCreate(MPI COMM WORLD, 2, &grid);

int ilower[2]=0,1, iupper[2]=Nc-1,Nr-2;

HYPRE StructGridSetExtents(grid, ilower, iupper);

HYPRE StructGridAssemble(grid);

The grid is described via a global index space, i.e., via integer singles in 1D, tuples in 2D,

or triples in 3D. The basic component of the grid is a box: a collection of abstract cell-

centered indices in index space, described by its ”lower” and ”upper” corner indices. The

Create() routine creates an empty 2D grid object. The SetExtents() routine adds a new

box defined by ilower and iupper. The Assemble() routine assembles the grid and makes

the grid ready to use.

36

2) Set up the Struct Stencil

HYPRE StructStencilCreate(2, 9, &stencil);

int entry;

int offsets[9][2] = {{0,0}, {-1,0}, {1,0}, {0,-1}, {0,1},{-1,-1},{1,-1},{-

1,1},{1,1}};

for (entry = 0; entry ≤ 8; entry++)

HYPRE StructStencilSetElement(stencil, entry, offsets[entry]);

The geometry of discretization stencil is described by an array of indices, each representing

a relative offset from any given point on the grid. The offsets array represent a 9-point

stencil. The (0,0) entry represents the ”center” coefficient, and is the 0th stencil entry. The

(0,-1) entry represents the ”south” coefficient, and is the 3rd stencil entry, and so on. The

Create() routine creates an empty 2D, 9-point stencil object. The SetElement() routine

defines the geometry of the stencil and assigns the stencil numbers for each of the stencil

entries.

3) Set up the Struct Matrix

37

HYPRE StructMatrixCreate(MPI COMM WORLD, grid, stencil, &A);

HYPRE StructMatrixInitialize(A);

int ilower[2]=0,1, iupper[2]=Nc-1,Nr-2;

int stencil indices[9] = {0,1,2,3,4,5,6,7,8};

int nentries = 9;

int nvalues = N*9;

double values[N*9];

HYPRE StructMatrixSetBoxValues(A, ilower, iupper, nen-

tries,stencil indices, values);

HYPRE StructMatrixAssemble(A);

The matrix is set up in terms of the grid and stencil objects described above. The coeffi-

cients associated with each stencil entry will typically vary from grid point to grid point,

and their calculations are based on the derivation given in the last section. The Create()

routine creates an empty matrix object. The initialize() routine indicates that the matrix

coefficients are ready to be set. The SetBoxValues() routine sets the matrix coefficients

for some set of stencil entries over the grid points in some box. The Assemble() routine

assembles the matrix and makes it ready to use.

4) Set up the struct right-hand-side and solution vector

38

HYPRE StructVectorCreate(MPI COMM WORLD, grid, &b);

HYPRE StructVectorCreate(MPI COMM WORLD, grid, &x);

HYPRE StructVectorInitialize(b);

HYPRE StructVectorInitialize(x);

int ilower[2]=0,1, iupper[2]=Nc-1,Nr-2;

double values[N];

HYPRE StructVectorSetBoxValues(b, ilower, iupper, values);

HYPRE StructVectorSetBoxValues(x, ilower, iupper, values);

HYPRE StructVectorAssemble(b);

HYPRE StructVectorAssemble(x);

The right-hand-side and solution vector are set up similar to the matrix set up described

above. The main difference is that there is no stencil. The right-hand-side vector is assigned

based on the derivation in the previous section, and the solution vector is assigned zeros.

The Initialize() routine indicates that the vector coefficients are ready to be set. This

routine follows the same rules as its corresponding Matrix routine. The SetBoxValues()

routine sets the vector coefficients over the grid points in some box, and again, follows

the same rules as its corresponding Matrix routine. The Assemble() routine assembles the

vector and makes them ready to use.

5) Solve the linear system

39

HYPRE StructPCGCreate(MPI COMM WORLD, &solver);

HYPRE StructPCGSetTol(solver, 1.0e-15);

HYPRE StructPCGSetMaxIter(solver, 1000);

HYPRE StructPCGSetPrintLevel(solver, 100);

HYPRE StructPCGSetup(solver, A, b, x);

HYPRE StructPCGSolve(solver, A, b, x);

The Create() routine creates a solver object. The SetTol() routine sets the tolerance of the

solver. SetMaxIter() routine sets the maximum iteration times. SetPrintLevel() routine

sets the frequency to print out the results. PCGSetup() routine prepares to solve the

system using the PCG solver. The PCGSolve() routine solves the linear system.

3.3.4 Overall solution procedure

The overall solution procedure is listed below:

1. Assign value to variables at the time level n including ηn, un, wn, qn.

2. Calculate u∗∗ by (3.51).

3. Solve (3.54) to obtain ∆η.

4. Get intermediate variables u∗ by (3.52) and η∗ by η∗ = ηn +∆η.

5. Set ηn+1 = η∗.

6. Calculate w∗ by (3.55).

40

7. Solve the system of linear equations constructed by (3.66) and (3.71)-(3.79) to get

∆q.

8. Update the non-hydrostatic pressure by qn+1 = qn +∆q.

9. Calculate un+1 and wn+1 by (3.58) and (3.57).

10. Update ω by (3.15).

41

Chapter 4

Results

Several test cases have been carried out to verify the code and demonstrate the performance.

These are standing waves in a closed channel, linear progressive waves on a flat bottom

and laboratory experiments of waves over an uneven bottom.

4.1 Standing waves

In this test case, a sinusoidal wave is released in a closed channel at time zero, as shown

in Fig. (4.1). Without considering diffusion, there should be no energy loss and the time

series of the water level at a fixed location should be a sinusoidal function with constant

amplitude. In our test case, the length of the basin is 20m and the depth is 10m. The

initial surface profile is given by

42

Figure 4.1: Basin for standing wave test

η = a cos(kx) (4.1)

where k = 2π/L is the wave number. L = 20m is the wavelength. The wave amplitude is

a = 0.1m. Based on the linear dispersion relationship, we have the wave period as:

T =

√

2πL

gtanh(kd)
(4.2)

In this case, when L = 20m, d = 10.0m, g = 9.81m/s2, the period is 3.5858s.

The time series of water level at x = 17.5m is used for the comparison between analytical

solution and the result from our two-layer model. Grid spacing and time-step is ∆x = 1.0m

and ∆t = 0.025, respectively. The comparison is shown in Fig. (4.2). Good agreement is

found.

43

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 1 2 3 4 5 6 7 8

a/
a 0

T/T0

Figure 4.2: Comparison between analytical solution (solid line) and numerical result (circle)

4.2 Velocity profile and dispersion accuracy

A progressive wave test case is used to demonstrate the improvement in dispersion accu-

racy achieved by applying the modified staggered grid and Gauss-Jacobi quadrature. A

progressive wave train of 0.01m with a period of 3.5858s is generated at the left end of

a channel with water depth d. The water depth will vary while the wave period remains

unchanged. When d = 10m, the velocity and non-hydrostatic pressure profile comparisons

between analytical solution and numerical results at x = 33.3m are shown in Fig. (4.3).

The grid spacing and time spacing are ∆x = 1.0m,∆t = 0.025s. Nine layers are used here.

Excellent agreement with the analytical solution of velocities and pressure is found.

In order to demonstrate the dispersion accuracy improvement of the modified grid along

with the Gauss-Jacobi quadrature, we compare our result to a modified grid with constant

layer thickness along with the integration represented by (3.17). Six layers are used for

both models and d is changed to vary the wave dispersion. The comparison is shown below

in Fig. (4.4). The figure shows an obvious improvement.

44

-10

-8

-6

-4

-2

 0

-2-1.5-1-0.5 0 0.5 1 1.5 2

z[
m

]

u-velocity[cm/s]

-10

-8

-6

-4

-2

 0

-2-1.5-1-0.5 0 0.5 1 1.5 2

z[
m

]

w-velocity[cm/s]

-10

-8

-6

-4

-2

 0

-10 -5 0 5 10

z[
m

]

q[0.01Pa]

Figure 4.3: Comparison of velocity and non-hydrostatic pressure profiles between analytical
solution (solid line) and numerical result (circle)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10 12 14re
la

tiv
e

er
ro

r

c/
c 0

kH

Analytical Solution
Gaussian Quadrature

Rectangle Rule
Relative Error

Figure 4.4: Comparison of dispersion accuracy between rectangular integration and Gauss-
Jacobi quadrature

45

Figure 4.5: Geometry of submerged bar and location of wave gauges

4.3 Submerged bar test case

This test case is a laboratory experiment of a non-linear wave train propagating over a

submerged bar done by Beji and Battjes (1993). The experiment was performed in a flume

with a length of 30m and a water depth of 0.4m. As shown in Fig. (4.5). A sinusoidal

wave train with an amplitude of 0.01m and a period of 2.02s is generated from the left end.

The time series of water level at different stations is recorded. The comparison between

the numerical result and experimental data at Station 4 to Station 11 is shown in the Fig.

(4.6) and Fig. (4.7). Generally good agreement is found.

46

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 33 34 35 36 37 38 39

el
ev

at
io

n(
m

)

time(s)

station4

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 33 34 35 36 37 38 39

el
ev

at
io

n(
m

)

time(s)

station5

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 33 34 35 36 37 38 39

el
ev

at
io

n(
m

)

time(s)

station6

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 33 34 35 36 37 38 39
el

ev
at

io
n(

m
)

time(s)

station7

Figure 4.6: Comparison between analytical solution (circle) and numerical result (solid
line) from Station 4 to Station 7

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 33 34 35 36 37 38 39

el
ev

at
io

n(
m

)

time(s)

station8

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 33 34 35 36 37 38 39

el
ev

at
io

n(
m

)

time(s)

station9

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 33 34 35 36 37 38 39

el
ev

at
io

n(
m

)

time(s)

station10

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 33 34 35 36 37 38 39

el
ev

at
io

n(
m

)

time(s)

station11

Figure 4.7: Comparison between analytical solution (circle) and numerical result (solid
line) from Station 8 to Station 11

47

Chapter 5

Conclusion

5.1 Summary and conclusion

A two-dimensional finite-volume Euler solver for free-surface flow on a modified staggered

grid using a Gaussian Quadrature method has been developed and verified. The pres-

sure correction method which splits the pressure into the hydrostatic part and the non-

hydrostatic part is used to enhance the dispersion accuracy of the model. In this method,

a hydrostatic step is followed by a non-hydrostatic step with a Poisson solver that cal-

culates the increment of the non-hydrostatic pressure. The time integrations of both the

hydrostatic and non-hydrostatic pressure are treated in a semi-implicit way. This solver

employs a vertically boundary-conforming coordinate system. A modified staggered grid

with the non-hydrostatic pressure on the cell surface enables the direct use of the dy-

48

namic free-surface boundary condition. The layer thickness of the computational mesh is

determined by the zeros of Gauss-Jacobi polynomial. This facilitates the use of the Gauss-

Jacobi quadrature to calculate the discharge rate. The solution of Poisson equation relies

on HYPRE, a library for solving large, sparse linear systems of equations on massively

parallel computers. The numerical results show that the modified grid with Gauss-Jacobi

quadrature enables the modeling of deep water waves (h/L ≤ 0.5) using only two vertical

layers with good accuracy. Furthermore, the model is able to generate accurate vertical

profiles of velocities and non-hydrostatic pressure using a limited number of vertical layers.

5.2 Future work

1) Extending the two-dimensional code to three dimensions. Although a two dimensional

model is good to demonstrate the method and performance, a three-dimensional model is

needed for more complicated cases and practical applications. There should be no major

difficulties when extending the two-dimensional code into a three-dimensional one. How-

ever, how to solve a three-dimensional Poisson equation efficiently is a question that needs

to be thought of.

2) Parallelizing the code using openMP and MPI. Some two-dimensional applications have

already been computationally intensive, like highly dispersive progressive waves in a long

channel, not to mention a three dimensional code with a massive Poisson equation to solve.

With openMP, it is easy to obtain several times speedup on a multiple-core computer by

49

adding a few extra lines into the code. An MPI version of the three dimensional code

would be a better option. For both openMP and MPI, the bottleneck will be the Poisson

equation. Therefore, most of the effort should be devoted to finding an efficient parallel

algorithm to solve the Poisson equation.

50

REFERENCES

Badiei, P., Namin, M.M., Ahmadi, A., 2008. A three-dimensional non-hydrostatic vertical
boundary fitted model for free-surface flows. International Journal for Numerical Methods
in Fluids 56, 607-627.

Beji, S., Battjes, J.A., 1993. Experimental investigations of wave propagation over a bar.
Coastal Engineering 19(1,2), 151-162.

Berkhoff, J.C.W., 1972. Computation of combined refraction and diffraction. Proceedings
of the 13th International Coastal Engineering Conference(ASCE), 471-490.

Berkhoff, J.C.W., 1976. Mathematical models for simple harmonic linear water waves;
wave refraction and diffraction. PhD thesis, Delft Technical University of Technology.

Casulli, V., Stelling. G.S., 1998. Numerical simulation of 3D quasi-hydrostatic, free-surface
flows. Journal of Hydraulic Engineering (ASCE) 124, 678-686.

Casulli V., 1999. A semi-implicit finite difference method fro non-hydrostatic, free-surface
flows. International Journal for Numerical Methods in Fluids 30, 425-440.

Chen, Q., Madsen, P.A., Basco, D.R., 1999. Current effects on nonlinear interactions of
shallow water waves. Journal of Waterway, Port, Coastal, and Ocean Engineering 125,
176-186.

Eckart, C., 1952. The propagation of gravity waves from deep to shallow water. Circular
20, National Bureau of Standards, 165-173.

Hodges, B.R., Street, R.L., 1999. On simulation of turbulent nonlinear free-surface flows.
Journal of Computational Physics 151 (2), 425-457.

Iafrati, A., Campana, E.F., 2003. A domain decomposition approach to compute wave
breaking (wave-breaking flows). International Journal for Numerical Methods in Fluids 41
(4), 419-445.

Karniadakis, G.E., Sherwin, S., 2005. Spectral/hp Element Methods for Computational

51

Fluid Dynamics. New York: Oxford University Press.

Kocyigit, M.B., Falconer, R.A., Lin, B., 2002. Three-dimensional numerical modeling
of free surface flows with non-hydrostatic pressure. International Journal for Numerical
Methods in Fluids 40, 1145-1162.

Liu, P.L.F. 1994 Model equations for wave propagation from deep to shallow water. Ad-
vances in Coastal and Ocean Engineering 1, 125-158.

Madsen, P.A., Murray, R., Sorensen, O.R., 1991. A new form of the Boussinesq equations
with improved linear dispersion characteristics. Coastal Engineering 15, 371-388.

Madsen, P.A., Bingham, H.B., Schaffer, H.A., 2003. Boussinesq-type formulations for fully
nonlinear and extremely dispersive water waves: derivation and analysis. Proceedings of
Royal Society of London Series A-Mathematical Physical and Engineering Sciences 495
(2033), 1075-1104.

Ng, C.O., Kot, S.C., 1992. Computations of water impact on a 2-dimensional flat-bottom
body with a volume-of-fluid method. Ocean Engineering 19 (4), 337-383.

Nielsen, K.B., Mayer, S., 2004. Numerical prediction of green water incidents. Ocean
Engineering 31 (3-4), 363-399.

Nwogu, O., 1993. Alternative form of Boussinesq equations for near-shore wave propaga-
tion. Journal of Waterway, Port, Coastal and Ocean Engineering 119, 618-638.

Park, J.C., Kim, M.H., Miyata, H., 1999. Fully nonlinear free-surface simulations by a 3D
viscous numerical wave tank. International Journal for Numerical Methods in Fluids 29
(6), 685-703.

Peregrine, D.H., 1967. Long Waves on a beach. Journal of Fluid Mechanics 27, 815-827.

Shen, Y.M., Ng, C.O., Zheng, Y.H., 2004. Simulation of wave propagation over a submerged
bar using the VOF method with a two-equation K-=epsilon turbulence modeling. Ocean
Engineering 31 (1), 87-95.

Stelling, G.S., Busnelli, M.M., 2001. Numerical simulation of the vertical structure of
discontinuous flows. International Journal for Numerical Methods in Fluids 30, 425-440.

Stelling, G.S., Zijlema, M., 2003. An accurate and efficient finite-difference algorithm
for non-hydrostatic free-surface flow with application to wave propagation. International
Journal for Numerical Methods in Fluids 43, 1-23.

Wei, G., Kirby, J.T., Grilli, S.T. and Subramanya, R., 1995. A fully nonlinear Boussi-
nesq model for surface waves. Part I Highly nonlinear unsteady waves. Journal of Fluid

52

Mechanics 294, 71-92.

Wu, T.Y., 2001. A unified theory for modeling water waves. Advances in Applied Mechan-
ics 37, 1-88.

Young, C.C., Wu, C.H., Liu, W.C., Kuo, J.T., 2009. A higher-order non-hydrostatic σ
model for simulating non-linear refraction-diffraction of water waves. Coastal Engineering
56, 919-930.

Yuan, H., Wu, C.H., 2004. A two-dimensional vertical non-hydrostatic σ model with an
implicit method for free-surface flows. International Journal for Numerical Methods in
Fluids 44(8), 811-835.

Yue, W.S., Lin, C.L., Patel, V.C., 2004. Numerical simulation of unsteady multidimen-
sional free surface motions by level set method. International Journal for Numerical Meth-
ods in Fluids 42 (8), 853-884.

Stansby, P.k., Zhou, J.G., 1998. Shallow-water flow solver with non-hydrostatic pressure:
2D vertical plane problems. International Journal for Numerical Methods in Fluids 28,
514-563.

Zhou, J.G., Stansby, P.K., 1999. An arbitrary Lagrangian-Eulerian σ (ALES) model with
non-hydrostatic pressure for shallow water flows. Computer Methods in Applied Mechanics
and Engineering 178, 199-214.

Zijlema, M., Stelling, G.S., 2005. Further experiences with computing non-hydrostatic
free-surface flows involving water waves. International Journal for Numerical Methods in
Fluids 48, 169-197

Zijlema, M., Stelling, G.S., 2008. Efficient computation of surf zone waves using the non-
linear shallow water equations with non-hydrostatic pressure. Coastal. Engineering 55,
780-790.

53

APPENDIX A: USERS’ MANUAL

FOR THE CODE

A.1 Program flow chart

The code was written using C++. The libraries used include Boost multi array and
HYPRE. The flow chart is shown in Fig. (A.1).

A.2 Class and function descriptions

1) Classes and class functions

GF1D: one-dimensional grid function. It is used to represent one-dimensional grid functions
such as the surface elevation and bottom elevation. The private variables include ”row”
and ”gf”. ”row” is the size of the grid function. ”gf” is an array to store the grid function.

GF1D::plotM: output grid function to a file that can be plotted by matlab.

GF1D::plotG: output grid function to a file that can be plotted by Gnuplot.

GF1D::showpoint: output an element of grid function with the index i.

GF1D::showgrid: output grid function to screen.

GF1D::input: input an element of grid function with the index i.

GF1D::getpoint: return an element of grid function with the index i.

GF1D::getrow: return the size of the grid function.

GF1D::getgf: return the grid function.

GF2D: two-dimensional gird function. It is used to represent two-dimensional grid functions
such as velocities and the non-hydrostatic pressure. The private variables include ”row”,
”column” and ”gf”. ”row” is the number of rows of the grid function. ”column” is the

54

number of columns of the gird function. ”gf” is a two-dimensional array to store the grid
function.

Figure A.1: Flow chart

GF2D::plotM: output grid function to a file that can be plotted by matlab.

GF2D::plotG: output grid function to a file that can be plotted by Gnuplot.

55

GF2D::showpoint: output an element of grid function with the index i, j.

GF2D::showgrid: output grid function to screen.

GF2D::input: input an element to grid function with the index i, j.

GF2D::getpoint: return an element of grid function with the index i, j.

GF2D::getrow: return the number of rows of the grid function.

GF2D::getcolumn: return the number of columns of the grid function.

GF2D::getgf: return the grid function.

2) Functions

zwgj: calculate the zeros and weights of Gauss-Jacobi polynomial. It calls functions ”ja-
cobz”, ”jacobd” and ”gammaF” during its calculation.

Initialization: assign the initial conditions to surface elevation, bottom elevation, velocities
and the non-hydrostatic pressure.

Gethandz: calculate the layer thickness and z coordinates.

GetQ: calculate the discharge.

GetH: calculate the total water depth.

TriSolver: solve the tridiagonal matrix equation.

GetMVar: calculate the intermediate variables including surface elevation and velocities.
This function implements the hydrostatic step.

PoissonSolver: calculate the non-hydrostatic pressure increment and update the interme-
diate variables.This function implements the non-hydrostatic step.

Getomega: calculate the relative vertical velocity.

ProgressiveUniform: generate progressive waves with a uniform horizontal velocity distri-
bution at inflow boundary. This function is used in the submerged bar test case.

ProgressiveAnalytical: generate linear progressive wave using the analytical horizontal ve-
locity distribution at inflow boundary.

AddSpongy: add a spongy layer in front of outflow boundary.

A.3 Permanent variables

56

blineco: bathymetry at xj±1/2.

eta: surface elevation plus still water level at xj. Time level is n+ 1.

eta p: surface elevation plus still water level at xj. Time level is n.

eta m: intermediate surface elevation plus still water level at xj.

elevation: surface elevation at xj. Time level is n+ 1.

q: non-hydrostatic pressure. It locates at (i± 1/2, j). Time level is n+ 1.

q p: non-hydrostatic pressure. It locates at (i± 1/2, j). Time level is n.

q m: intermediate non-hydrostatic pressure. It locates at (i± 1/2, j).

checkdq: the increment of non-hydrostatic pressure calculated in non-hydrostatic step.

uco: horizontal velocity. It locates at (i± 1/2, j ± 1/2). Time level is n+ 1.

uco p: horizontal velocity. It locates at (i± 1/2, j ± 1/2). Time level is n.

uco m: intermediate horizontal velocity. It locates at (i± 1/2, j ± 1/2).

wcc: vertical velocity. It locates at (i, j). Time level is n+ 1.

wcc p: vertical velocity. It locates at (i, j). Time level is n.

wcc m: intermediate vertical velocity. It locates at (i, j).

omega: relative vertical velocity. It locates at (i, j). Time level is n+ 1.

omega p: relative vertical velocity. It locates at (i, j). Time level is n.

omega m: intermediate relative vertical velocity. It locates at (i, j).

zco: vertical coordinate at (i± 1/2, j ± 1/2). Time level is n+ 1.

zco p: vertical coordinate at (i± 1/2, j ± 1/2). Time level is n.

zco m: intermediate vertical coordinate at (i± 1/2, j ± 1/2).

zcc: vertical coordinate at (i, j). Time level is n+ 1.

zcc p: vertical coordinate at (i, j). Time level is n.

zcc m: intermediate vertical coordinate at (i, j). Time level is n.

57

hco: layer thickness at xj±1/2. Time level is n+ 1.

hco p: layer thickness at xj±1/2. Time level is n.

hco m: intermediate layer thickness at xj±1/2.

hs: layer thickness at xj. Time level is n+ 1.

hs p: layer thickness at xj. Time level is n.

hs m: intermediate layer thickness at xj.

hcointer: the average of the layer thickness of two adjacent layers. It locates at xj±1/2.
Time level is n+ 1.

hcointer p: the average of the layer thickness of two adjacent layers. It locates at xj±1/2.
Time level is n.

hcointer m: intermediate the average of the layer thickness of two adjacent layers. It locates
at xj±1/2.

hsinter: the average of the layer thickness of two adjacent layers. It locates at xj. Time
level is n+ 1.

hsinter p: the average of the layer thickness of two adjacent layers. It locates at xj. Time
level is n.

hsinter m: intermediate the average of the layer thickness of two adjacent layers. It locates
at xj.

zeros: the zeros of Gauss-Jacobi polynomial.

weights: the accordingly weights of Gauss-Jacobi polynomial

blinterpoc: the extrapolation coefficient to get the horizontal velocity in the center of the
top and the bottom layer.

A.4 Installation and compilation

Our code relies on HYPRE to solve the Poisson equation. So first we need to install and
compile HYPRE. Before installing HYPRE, we have to make sure that mpi and blas are
installed on the computer. Then we can install HYPRE by executing ”./configure” and
”make” in command line under ”src” folder in HYPRE. After that, we can copy our source
code to ”examples” folder and use the make file provided by HYPRE in that folder to
compile our code with HYPRE. We need to install multi array in Boost before we compile
our code. Finally, the executable file can be executed using command ”mpirun -np $(np)

58

./$(executable file)”. Where np is the number of processors. np is 1 for single-processor
application.

A.5 Input and output

Input includes initial condition and inflow boundary condition. They can be set in Initial-
ization, ProgressiveUniform and ProgressiveAnalytical. The methods in classes GF1D and
GF2D, like plotG, plotM, showgrid and getpoint, can be used to output the grid function
into files or to screen.

59

VITA

Qi Fan was born in 1982, in Ezhou, Hubei, China. He received his Bachelor of Electrical

Engineering from Wuhan University, China in June 2003. He entered the Department of

Civil and Environmental Engineering (Engineering Science) at Louisiana State University

in spring 2008 and has been working on numerical modeling of water waves and coastal

hydrodynamics. He expects to earn a Master of Science in Engineering Science in December

2011 and then pursue a doctorate.

60

	An Euler solver for nonlinear water waves using a modified staggered grid and Gaussian quadrature approach
	Recommended Citation

	fig_exp_8to11.eps

