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Abstract

In this thesis, we discuss a robust preconditioner (the AGKS preconditioner) for solving

linear systems arising from approximations of partial differential equations (PDEs) with

high-contrast coefficients. The problems considered here include the standard second and

higher order elliptic PDEs such as high-contrast diffusion equation, Stokes’ equation and

biharmonic-plate equation. The goal of this study is the development of robust and par-

allelizable preconditioners that can easily be integrated to treat large configurations. The

construction of the preconditioner consists of two phases. The first one is an algebraic phase

which partitions the degrees of freedom into high and low permeability regions which may be

of arbitrary geometry. This yields a corresponding block partitioning of the stiffness matrix

allowing us to use a formula for the action of its inverse involving the inverses of both the high

permeability block and its Schur complement in the original matrix. Singular perturbation

analysis plays a big role to analyze the structure of the required subblock inverses in the high

contrast case which shows that for high enough contrast each of the subblock inverses can

be approximated well by solving only systems with constant coefficients. The second phase

involves an efficient multigrid approximation of this exact inverse. After applying singular

perturbation theory to each of the sub-blocks, we obtain that inverses of each of the sub-

blocks with high contrast entries can be approximated efficiently using geometric multigrid

methods, and that this approximation is robust with respect to both the contrast and the

mesh size. The result is a multigrid method for high contrast problems which is provably

optimal to both contrast and mesh size. We demonstrate the advantageous properties of the

AGKS preconditioner using experiments on model high-contrast problems. We examine its

performance against multigrid method under varying discretizations of diffusion equation,

Stokes equation and biharmonic-plate equation. Thus, we show that we accomplished a de-

sirable preconditioning design goal by using the same family of preconditioners to solve the

elliptic family of PDEs with varying discretizations.

ix



Chapter 1

Introduction

1.1 Background

Systems of linear equations arise from discretization of partial differential equations and other

problems. In many cases, the sparse matrices in these systems are symmetric and positive

definite, or positive semi definite. Often, they are M-matrix. Producing a solution for these

equations efficiently on a fine mesh is a challenging task, and the conditioning of an operator

equation plays a big role in this task. Conditioning, represented by condition number, is

a measure that indicates the stability of the equation with respect to perturbations on the

input data. A large sensitivity to such perturbations causes the equation to be unstable and

this is referred as ill-conditioning. The mechanism, usually in the form of numerical methods,

designed to correct ill-conditioning of the underlying equation is called preconditioning.

To solve these large systems of linear equations Kx = b, we can apply iterative methods.

These iterative methods start with an approximate solution x0, and then modify the approx-

imation xi at each iteration step i until convergence is reached. However, for ill-conditioned

systems, which occurs in many applications, even though the iterative methods are theoret-

ically founded, they have not been too successful with such problems and suffer from slow

convergence. To speed up the convergence of iterative methods, preconditioning enters into

the equation, especially for Krylov subspace methods. The idea of preconditioning technique

is that instead of solving the system directly, we can solve the following preconditioned sys-

tem B−1Kx = B−1b. Here the preconditioner B should be a matrix approximating to K,

and Bx = b is inexpensive to solve compared to the original system.
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Designing efficient preconditioners for solving elliptic PDEs with high contrast coefficients

is a challenging task as the resulting stiffness matrix is ill-conditioned. There has been intense

research activity, specifically in the setting of multiscale solvers [2, 41, 42, 80], and any

significant achievement in this area is vital to a wide set of real-world applications, such as

reservoir and underground water flow simulation, composite plate bending, slab subduction

and many others.

Classical preconditioners, such as Jacobi, Gauss Seidel, SOR, and SSOR are effective for

a number of simple problems. However, they do not have the efficiency required by current

applications. Their main drawback is not being numerically optimal, i.e. the computational

work is not linear with respect to the number of unknowns. The development of multigrid

methods, which have been shown to be very efficient for elliptic-type problems, and for which

various adaptations have been brought,in the 1960s provided a solution to this problem.

Multigrid theory is based on the use of a hierarchy of grids or discretizations, to solve

a coarse problem, in order to obtain a global correction to the solution. The convergence

theory for the geometric multigrid algorithm shows convergence with anO(N) computational

complexity implying that the geometric multigrid algorithm is highly optimal. However, the

increase in complexity of the problem grids slowed down the development of such methods,

and lead to a different adaptation: algebraic multigrid. The algebraic multigrid (AMG)

methods is a generalization of the multigrid idea to handle problems whose solution with

geometric multigrid is unfeasible, for example discretized problems on unstructured grids.

Unlike geometric multigrid, AMG does not assume any underlying geometry. An important

feature of this is that they can be used as a black box algorithm, i.e. the only input for

the coarsening procedures is the coefficient matrix. One such preconditioner was proposed

by K.Stüben and his collaborators [78]. It can be used for any symmetric positive semi

definite system, and sometime it converges even for unsymmetrical systems. However, the

main drawback is that there is no straightforward theoretical justification of this method.

While multigrid methods are not ideal as general purpose solvers for indefinite or general

2



sparse linear systems of equations, they can be used as preconditioners in conjunction with

Krylov accelerators, to yield efficient iterative solvers. Krylov subspace methods belong to

a class of iterative solvers called projection methods. They extract approximate solutions

to the linear system from the subspace span{r̃0,Ar̃0, . . .Akr̃0}, where r̃0 = B−1r0 is the

initial residual for an initial guess x0. The approximate solution lies in the affine space

x0 + span{r̃0,Ar̃0, . . .Akr̃0}.

1.2 Robust multigrid preconditioner

The ill-conditioning of the stiffness matrices in high-contrast elliptic PDEs is due to the

contrast in the entries which caused by the presence of both low (O(1)) and high (O(m))

magnitude PDE coefficients. This disproportionate coupling leads to small (O(m−1)) eigen-

values in the diagonally scaled stiffness matrix. In a high-contrast elliptic PDE, the solver

issues, in particular the loss of robustness, are largely due those small eigenvalues. The

treatment of the coupling between the degrees of freedom (DOF) associated to low and high

PDE coefficient is a delicate task. It would be ideal to decouple the problem without com-

plications. Hence, the design philosophy of the AGKS preconditioner is based on decoupling.

This enables us to create blocks in the system matrix associated to low and high magnitude

DOF that are entirely of O(1) and O(m), respectively. The AGKS preconditioner’s decou-

pling role becomes more and more conspicuous as m → ∞ and that is why the effectiveness

of the preconditioner increases for m in the asymptotic regime. Once the decoupling is in

place, the AGKS preconditioner employs multigrid(MG) because it can effectively handle

both blocks.

The purpose of this dissertation is two-phased. First, it is to design, analyze, and test new

efficient preconditioners for algebraic problems arising from the conventional discretization

(for instance, finite volume method) of a diffusion type equation with high-contrast coeffi-

cients. Second, it is to extend the theory of the preconditioner to a family of discretization

methods and family of equations so that the preconditioner for a resulting system can be

3



used broadly. The dissertation is organized as follows. In Chapter 2 we introduce a multi-

level preconditioner for high-contrast diffusion equation. In Chapter 3 we use the properties

of saddle point matrix and various solver methods to couple the AGKS preconditioner with

a basic preconditioner (the pressure mass matrix) for the solution of high-contrast stokes

equation. Finally, in Chapter 4 we extend the preconditioner to a fourth order problem

(the biharmonic plate equation), and generalize the use of AGKS preconditioner for family

of high contrast elliptic PDEs. In each Chapter, we present the aforementioned singular

perturbation analysis and reveal the asymptotic qualitative nature of the solution for the

model problem, and we write down the proposed preconditioner as we prove its effectiveness

by establishing a spectral bound for the preconditioned system. Moreover, the m- and h-

robustness of the AGKS preconditioner is demonstrated and compared with the performance

of MG preconditioner by numerical experiments.

1.2.1 Related publications

The following articles resulted from this dissertation:

• B. Aksoylu and Z.Yeter, Robust multigrid preconditioners for cell-centered finite vol-

ume discretization of the high-contrast diffusion equation([10])

In this article, we study a conservative 5-point cell-centered finite volume discretization

of the high-contrast diffusion equation to construct preconditioners that are robust with

respect to the coefficient contrast size and the mesh size simultaneously. We prove and

numerically demonstrate the robustness of the AGKS preconditioner. As a side result, we

prove a fundamental qualitative property of solution of the high-contrast diffusion equation.

• B. Aksoylu and Z. Unlu, Numerical study of the high-contrast Stokes equation and its

robust preconditioning([8])

In this article, we numerically study the Stokes equation with high-contrast viscosity coef-

ficients. We examine the performance of the AGKS preconditioner against multigrid and

4



provide a comparative study reflecting the effect of the underlying discretization and the

aspect ratio of the mesh by utilizing the preconditioned inexact Uzawa and Minres solvers.

• B. Aksoylu and Z. Unlu, Robust preconditioners for the high-contrast Stokes equation([9])

In this study, We address the rigorous justification of the solver methods in [8], and utilize a

new solver method, Schur complement reduction (SCR). As the contrast size grows asymp-

totically, we prove and numerically demonstrate that the inexact p-Uzawa solver converges

to the exact one. Finally, we show that our preconditioner is contrast size and mesh size

robust under p-Minres when the Schur complement solve is accurate enough.

• B. Aksoylu and Z.Yeter, Robust multigrid preconditioners for the high-contrast bihar-

monic plate equation([11])

In this article, we focus on the high-contrast biharmonic plate equation with HCT finite

element discretizations. We extend the devised singular perturbation analysis from linear

finite element discretization to the above discretization to prove the main result. We also

present a strategy on how to generalize the proposed preconditioner to cover high-contrast

elliptic PDEs of order 2k, k > 2. Moreover, we prove a fundamental qualitative property of

solution of the high-contrast biharmonic plate equation.

5



Chapter 2

The AGKS Preconditioner for the High-
contrast Diffusion Equation

2.1 The underlying PDE and the linear system

In this Chapter, we focus on the construction and convergence of a family of algebraic

preconditioners for the high-contrast diffusion equation. We consider the preconditioners for

the finite volume discretizations of the following high-contrast stationary diffusion equation:

 −∇ · (α∇u) = f in Ω

u = 0 on ∂Ω
(2.1)

where Ω ⊂ Rd, d = 2, 3. The coefficient α(x) may vary over many orders of magnitude in

an unstructured way on Ω.

Problems with high-contrast coefficients are ubiquitous in porous media flow applications.

Many examples of this kind arise in groundwater flow and oil reservoir simulation; see for

example the comprehensive overviews [1, 38, 65, 69]. Consequently, development of efficient

solvers for high-contrast heterogeneous media has been an active area of research, specifically

in the setting of multiscale solvers [2, 41, 43, 44, 81]. In addition, the fictitious domain

method and composite materials are also sources of rough coefficients; see the references

in [51].

Important current applications deal with composite materials whose components have

nearly constant diffusivity, but vary by several orders of magnitude. In composite material

applications, it is quite common to idealize the diffusivity by a piecewise constant function.

Likewise, we restrict the diffusion process to a binary regime (see Figure 2.1) in which the

6



Figure 2.1: The domain Ω = ΩH ∪ ΩL where ΩH and ΩL are high and low diffusivity regions,
respectively.

coefficient α is a piecewise constant function with the following values:

α(x) =


m� 1, x ∈ ΩH ,

1, x ∈ ΩL.

Due to the atomistic structure of matter, the physical treatment of diffusion involves

regular (C∞-) diffusivity, Aksoylu and Beyer [4] showed that the idealization of diffusivity

by piecewise constant coefficients is meaningful by showing a continuous dependence of the

solutions on the diffusivity.

The first algebraic phase of the preconditioner involves partitioning of the DOF in to

high-permeability and low-permeability region. Note that algebraically this partitioning can

be obtained by examining the magnitude of the diagonal entries of the stiffness matrix for

high enough contrast.

Let us denote the linear system arising from the finite volume discretization by:

K(m) x(m) = b. (2.2)

Let Ω be decomposed with respect to diffusivity value as

Ω = ΩH ∪ ΩL, (2.3)

where ΩH and ΩL denote the high and low diffusivity regions, respectively. When m-
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dependence is explicitly stated and the discretization system (2.2) is decomposed with respect

to (2.3), i.e., the magnitude of the coefficient values, we arrive at the following 2 × 2 block

system:  KHH(m) KHL(m)

KLH(m) KLL(m)


 xH(m)

xL(m)

 =

 bH

bL

 . (2.4)

Note that all the subblocks in (2.4) have m-dependence.

The exact inverse of K can be written as:

K−1(m) =

 IHH −K−1
HH(m)KHL(m)

0 ILL

 K−1
HH(m) 0

0 S−1(m)

 IHH 0

−KLH(m)K−1
HH(m) ILL

 (2.5)

where IHH and ILL denote the identity matrices of the appropriate dimension and the S(m)

is the Schur complement of KHH(m) in K(m) given by

S(m) = KLL(m)−KLH(m)K−1
HH(m)KHL(m). (2.6)

Let NHH denote the Neumann matrix corresponding to the pure Neumann problem for

the Laplace operator on ΩH . We write an important decomposition which will be used in

the analysis to come:

KHH(m) = mNHH + ∆(m) . (2.7)

Singular perturbation analysis can be devised to explain the properties of the subblocks

in (2.5). However, before that, since the utilized analysis is based on matrix entries, we

provide the outline of the cell-centered FV discretization for the 5-point stencil used for the

discretization; for more details see [33].
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2.2 The cell-centered finite volume discretization

2.2.1 The outline of the discretization scheme

Let T = Vi,j with i, j = 1, . . . , n1/2 be the mesh and the control volume be defined by

Vi,j = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2].

The FV scheme is constructed by integrating (2.1) over each control volume Vi,j, which yields

−
∫ yj+1/2

yj−1/2

αi+1/2,j ux(xi+1/2, y) dy +

∫ yj+1/2

yj−1/2

αi−1/2,j ux(xi−1/2, y) dy

+

∫ xi+1/2

xi−1/2

αi,j−1/2 uy(x, yj−1/2) dx−
∫ xi+1/2

xi−1/2

αi,j+1/2 uy(x, yj+1/2) dx

=

∫
Vi,j

f(x, y) dxdy.

Let kxi = xi+1/2 − xi−1/2 and kyj = yj+1/2 − yj−1/2 be the x- and y-size of the control

volume Vi,j, respectively. Since a uniform mesh is used, kxi = kx and kyj = ky for all

i, j = 1, . . . , n1/2. Then, the discretization scheme is

Fi+1/2,j − Fi−1/2,j + Fi,j+1/2 − Fi,j−1/2 = hi,jfi,j,

where hi,j = kx ky, and fi,j is the mean value of f over Vi,j, and where

Fi+1/2,j = −ky
kx

hαi
{u(xi+1, yj)− u(xi, yj)} ,

Fi,j+1/2 = −kx
ky

hαj
{u(xi, yj+1)− u(xi, yj)} ,

and

hαi
=

2αi,j αi+1,j

αi,j + αi+1,j

, hαj
=

2αi,j αi,j+1

αi,j + αi,j+1

. (2.8)

Note that hαi
and hαj

are the harmonic means of the diffusion coefficients for the adjacent
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control volumes in x and y directions respectively. The discretization formula can be written

explicitly as follows:

− hαi
u(xi+1, yj)− hαi−1

u(xi−1, yj)

+ (hαi
+ hαi−1

+ hαj
+ hαj−1

)u(xi, yj) (2.9)

− hαj
u(xi, yj+1)− hαj−1

u(xi, yj−1) = hi,jfi,j.

In our binary diffusivity regime, for notational convenience, we denote the harmonic mean

by

hm :=
2m

m+ 1
. (2.10)

The harmonic mean is used to ensure the continuity of the flux across the control volume

interfaces. As a result, this flavor of finite volume discretization enjoys the desirable property

of mass conservation.

One can write the discretization matrix entries a priori due to the formula (2.9). Hence,

in 2D, we explicitly state each contribution of the off-diagonals to the diagonal entry values

in the following:

[K(m)]pp =



m + m + m + m, p ∈ IΩ1 ,

m + m + m + hm, p ∈ ΓΩ1 and non-corner,

m + m + hm + hm, p ∈ ΓΩ1 and corner,

1 + 1 + 1 + hm, p ∈ ΓΩ2 ,

1 + 1 + 1 + 1, p ∈ IΩ2 and strictly interior,

5, p ∈ IΩ2 and non-corner boundary,

6, p ∈ IΩ2 and corner boundary.

(2.11)
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2.2.2 1D example of finite volume method for the 5-point stencil

We explicitly provide the discretization matrix utilizing the FV method in (2.9) corre-

sponding to (2.1). The domain is chosen to be Ω := (0, 1) with the highly-diffusive island

ΩH := (2/7, 5/7). The mesh consists of 7 cells. The cells and cell-centers are denoted by

V1, . . . , V7 and x1, . . . , x7, respectively. See Figure 2.2.

The corresponding submatrices in (2.4) are given below:

KHH(m) =


2m −m −m

−m m+ hm 0

−m 0 m+ hm

 ,

KHL(m) =


0 0 0 0

−hm 0 0 0

0 −hm 0 0

 = KT
LH(m),

KLL(m) =



1 + hm 0 −1 0

0 1 + hm 0 −1

−1 0 3 0

0 −1 0 3


.

Moreover, from (2.7), we obtain

NHH(m) =


2m −m −m

−m m 0

−m 0 m

 , ∆(m) =


0 0 0

0 hm 0

0 0 hm

 .

| −x6 − | − x4−︸ ︷︷ ︸
α=1

| −x2 − | − x1 − | − x3−︸ ︷︷ ︸
α=m�1

| −x5 − | − x7−︸ ︷︷ ︸
α=1

|

Figure 2.2: The finite volume mesh where the cell-centers are denoted by xi, i = 1, . . . , 7.

We readily see that the m-dependence of the matrices KLH(m), KHL(m), KLL(m), and
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∆(m) is eliminated asymptotically. For instance,

∆(m) = ∆∞ +O(m−1) =


0 0 0

0 2 0

0 0 2

+O(m−1).

2.3 Spectral analysis of the diagonally scaled finite vol-
ume discretization matrix

Roughness of PDE coefficients causes loss of robustness of the preconditioners. This is

mainly due to clusters of eigenvalues with varying magnitude. Although diagonal scaling

has no effect on the asymptotic behavior of the condition number, it leads to an improved

clustering in the spectrum; see Table 2.1.

In this section we will analyze the behavior of the spectrum of the symmetrically scaled

discretization matrix

A(m) := (diagK(m))−1/2K(m) (diagK(m))−1/2 . (2.12)

In the case of a single highly-diffusive island corresponding to the configuration in Figure

2.1, A(m) contains only one small eigenvalue for which the below main result is established:

C1 m
−1 ≤ λmin(A(m)) ≤ C2 m

−1/2. (2.13)

The analysis also supports multiple highly-diffusive islands. In fact, the number of small

eigenvalues of A(m) depends on the number of isolated islands comprising the highly-diffusive

region.
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Table 2.1: A 2D example showing the condition numbers and eigenvalues of the finite volume discretization matrixK(m) and its diagonally
scaled version A(m) in which the eigenvalues are sorted in ascending order.

m κ(K(m)) λ1(K(m)) λ61(K(m)) λ62(K(m)) λ64(K(m)) κ(A(m)) λ1(A(m)) λ2(A(m)) λ64(A(m))

100 2.63× 101 3.05× 10−1 7.70× 100 7.85× 100 8.00× 100 2.55× 101 7.54× 10−2 1.80× 10−1 1.925× 100

102 1.25× 103 3.24× 10−1 8.00× 100 2.04× 102 4.04× 102 3.45× 102 5.78× 10−3 1.36× 10−1 1.99× 100

104 1.24× 105 3.24× 10−1 8.00× 100 2.00× 104 4.00× 104 3.26× 104 6.14× 10−5 1.35× 10−1 2.00× 100

106 1.24× 107 3.24× 10−1 8.00× 100 2.00× 106 4.00× 106 3.26× 106 6.14× 10−7 1.35× 10−1 2.00× 100

108 1.24× 109 3.24× 10−1 8.00× 100 2.00× 108 4.00× 108 3.26× 108 6.14× 10−9 1.35× 10−1 2.00× 100

1010 1.24× 1011 3.24× 10−1 8.00× 100 2.00× 1010 4.00× 1010 3.26× 1010 6.14× 10−11 1.35× 10−1 2.00× 100
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The required analysis is quite technical and will be presented in the appendix. In this

section, we outline only the steps leading to the main result (2.13). The upper bound in

(2.13) is obtained by an application of Courant-Fischer mini-max Theorem; see Lemma 3.

Remark 1. Numerically we observe that the smallest eigenvalue is O(m−1); see Table 2.1.

The perturbation expansion leads to O(m−1) estimate with one exceptional case corresponding

to the first “Case 1” in §2.8.1.1. Hence, O(m−1/2) estimate is an artifact of the perturbation

expansion. The same artifact also appears in the FE analysis; see [41, Eq. (5.14)].

The lower bound proof is more involved; see §2.8.1.2. For that, first we establish the

below estimate for K(m):

xTK(m)x ≥ xTK(1)x ≥ m−1xTK(m)x. (2.14)

Then, we establish a similar estimate for diag K(m):

xTdiag K(m)x ≥ xTdiag K(1)x ≥ m−1xTdiag K(m)x. (2.15)

Combining (2.14) and (2.15), yields the lower bound estimate for the smallest eigenvalue:

C1 m
−1 ≤ λmin(A(m)).

We illustrate the spectral effects of diagonal scaling by an example in Table 2.1. In the

example, K(m) has 3 eigenvalues approaching to ∞ and 61 bounded eigenvalues, whereas,

A(m) has only one eigenvalue approaching to zero. The merit of diagonal scaling becomes

apparent after studying the spectral behavior of A(m). We observe that the number of the

eigenvalues of A of O(m−1) depends only on the number of isolated islands. On the other

hand, the number of the eigenvalues of K(m) of O(m) depends on the number of DOF of the

islands, asymptotically. Note that the reduction in the number of m-dependent eigenvalues

is a desirable feature for fast convergence of Krylov subspace solvers.
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2.4 Singular perturbation analysis on matrix entries

2.4.1 Preliminaries on matrix properties

The discretization formula (2.9) with the harmonic means (2.8) gives rise to the matrix

entries given in (2.11). Due to harmonic means, the m-dependence of the matrix entries

corresponding to HL and LL couplings is asymptotically eliminated. As a result, the sub-

matrices KHL(m) and KLL(m) do not have m-dependence asymptotically:

KHL(m) = K∞HL +O(m−1),

KLH(m) = K∞
T

HL +O(m−1), (2.16)

KLL(m) = K∞LL +O(m−1).

The analysis mainly relies on this crucial property.

To analyze the m-robustness of preconditioners based on (2.5), we need to analyze the

asymptotic behaviour of the block components KHH(m)−1, S(m)−1, and KLH(m)KHH(m)−1

asm→∞. This is the purpose of Lemma 1 below. To prepare for this, we further decompose

DOF associated with ΩH into a set of interior DOF associated with index I and boundary

DOF with index Γ. This leads to the following further block representation of

KHH(m) =

 KII(m) KIΓ(m)

KΓI(m) KΓΓ(m)

 . (2.17)

By using (2.11), we can write a more refined expression for the block KΓΓ(m):

KΓΓ(m) = K
(H)
ΓΓ (m) + hmD

(L)
ΓΓ ,

with

D
(L)
ΓΓ := diag(0, . . . , 0, 1, . . . , 1, 2, . . . , , 2), (2.18)
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where the number of 0, 1, and 2 entries is equal to the cardinality of interior, non-corner inter-

face, and corner interface cell-centers, respectively. Thus, we can characterize the Neumann

matrix NHH on ΩH as described in (2.7) as follows:

KHH(m) = mNHH + ∆(m) , (2.19)

∆(m) = hm

 0 0

0 D
(L)
ΓΓ

 , (2.20)

= ∆∞ +O(m−1), (2.21)

where ∆(m) is a diagonal matrix due to (2.18). NHH is a SPSD matrix with a simple zero

eigenvalue and associated constant eigenvector. If nH denotes the number of DOF in ΩH , a

suitable normalized eigenvector is the constant vector with entries n−1/2
H , which we denote by

eH . We further write in block form as eTH = (eTI , e
T
Γ). Finally we note that the off-diagonal

blocks in (2.4) have the decomposition:

KLH(m) =

[
0 KLΓ(m)

]
= KHL(m)T . (2.22)

As we prepare for the proof of our main Lemma, we need to define the following quantity:

η(m) := eTHKHH(m)eH . (2.23)

η(m) > 0 because KHH(m) is SPD as a diagonal subblock of K(m). Moreover, combining

(2.19) and (2.20), one can reduce the expression in (2.23) to

η(m) = hm e
T
ΓD

(L)
ΓΓ eΓ. (2.24)

In fact, (2.24) can be expressed explicitly by:

η(m) = hm
nH,nc + nH,c

nH
, (2.25)

16



where

nH,nc := #{non-corner interface cell-centers}

nH,c := #{corner interface cell-centers}.

Finally, (2.25) delivers the asymptotic convergence expression for η(m):

η(m) = η +O(m−1), (2.26)

where η = 2
nH,nc+nH,c

nH
.

2.4.2 The main results on the preconditioner

Lemma 1. The asymptotic behaviour of the submatrices in (2.5) is described by the following:

(i) KHH(m)−1 = eHη
−1eTH +O(m−1),

(ii) S(m) = K∞LL − (K∞LΓeΓ)η−1(eTΓK
∞
ΓL) +O(m−1),

(iii) KLH(m)KHH(m)−1 = (K∞LΓeΓ)η−1eTH +O(m−1).

Proof. Since NHH is symmetric positive semidefinite we have the eigenvalue decomposition:

ZTNHHZ = diag(λ1, . . . , λnH−1, 0), (2.27)

where {λi : i = 1, . . . , nH} is a non-increasing sequence of eigenvalues of NHH and Z is

orthogonal. Since, the eigenvector corresponding to the zero eigenvalue is constant, we can
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write Z =
[
Z̃ | eH

]
and so, using (2.19), we have

ZTKHH(m)Z

=

m diag(λ1, . . . , λnH−1
) + Z̃T∆(m)Z̃ Z̃T∆(m)eH

eTH∆(m)Z̃ eTH∆(m)eH


=:

 Λ̃(m) δ̃(m)

δ̃T (m) η(m)

 . (2.28)

To find the limiting form of KHH(m)−1 note that

Λ̃(m) = m diag(λ1, . . . , λnH−1
) + Z̃T∆(m)Z̃

= m diag(λ1, . . . , λnH−1
)
(
Ĩ +m−1 diag(λ−1

1 , . . . , λ−1
nH−1

)Z̃T∆(m)Z̃
)
.

Now, let Cλ := maxi<nH
λ−1
i and C∆ be the constant in (2.21), i.e., ‖∆(m)‖2 ≤ ‖∆∞‖2 +

C∆m
−1. Then, for sufficiently large m,

‖Λ̃(m)−1‖2 ≤
m−1Cλ

1−m−1Cλ ‖Z̃T∆(m)Z̃‖2

≤ m−1Cλ
CΛ̃

where

CΛ̃ := 1−m−1Cλ ‖Z̃T‖2‖∆∞‖2‖Z̃‖2 −m−2C∆ Cλ ‖Z̃T‖2‖Z̃‖2

= 1 +O(m−1). (2.29)

Hence, combining (2.29) and (2.29), we obtain:

Λ̃(m)−1 = O(m−1). (2.30)
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We proceed with the following inversion:

 Λ̃(m) δ̃(m)

δ̃(m)T η(m)


−1

= U(m) V (m) U(m)T ,

where

U(m) :=

 Ĩ −Λ̃(m)−1δ̃(m)

0T 1

 ,
V (m) :=

 Λ̃(m)−1 0

0T
(
η(m)− δ̃(m)T Λ̃(m)−1δ̃(m)

)−1

 .
Using (2.21), one gets

δ̃(m) = Z̃T∆∞eH +O(m−1). (2.31)

Then, (2.26), (2.30), and (2.31) imply that

η(m)−1 = η−1 +O(m−1),

U(m) = I +O(m−1),

V (m) =

 O 0

0T η−1

+O(m−1).

Combining the above results, we arrive at

 Λ̃(m) δ̃(m)

δ̃(m)T η(m)


−1

=

 O 0

0T η−1

 + O(m−1) , (2.32)
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and, by (2.28), we have

KHH(m)−1 = Z

 O 0

0T η−1

ZT + O(m−1)

= eH

(
eTΓ 2D

(L)
ΓΓ eΓ

)−1

eTH + O(m−1) ,

which proves part (i) of the Lemma.

Parts (ii) and (iii) follow from simple substitution, using (2.6) and (2.22).

We use the following limiting forms in the definition of the proposed preconditioner (2.35):

K∞
†

HH := eHη
−1eTH , (2.33)

Q∞LH := K∞LHK
∞†
HH ,

S∞ := K∞LL −K∞LHK∞
†

HHK
∞
HL. (2.34)

Based on the above perturbation analysis we propose the following preconditioner:

BAGKS(m) :=

 IHH −Q∞T

LH

0 ILL


 KHH(m)−1 0

0 S∞
−1


 IHH 0

−Q∞LH ILL

. (2.35)

The following theorem shows that AGKS preconditioner is an effective preconditioner for

m� 1.

Theorem 1. For m sufficiently large we have

σ(BAGKS(m) K(m)) ⊂ [1− cm−1/2, 1 + cm−1/2]

for some constant c independent of m, and therefore

κ(BAGKS(m) K(m)) = 1 + O(m−1/2).
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Proof. The m-dependence of KHL(m), KLH(m), and KLL(m) are eliminated asymptotically

as in (2.16). Furthermore, m-dependence of η(m) is also eliminated as a result of (2.21).

Therefore, the proof of this theorem is as following:

Letting M1/2 denote the square root of any symmetric positive definite matrix M , we

write BAGKS = LTL with

L :=


K
−1/2
HH 0

−S∞−1/2
Q∞LH S∞

−1/2

 .

(Note that for notational convenience we do not explicitly state which terms depend on m

everywhere in this proof.) A straightforward calculation shows that

σ(BAGKSK) = σ(LKLT ) = σ(I +R) , (2.36)

where R is the matrix:
0 K

−1/2
HH (KHL −KHHQ

∞T

LH )S∞
−1/2

S∞
−1/2

(KLH −Q∞LHKHH)K
−1/2
HH 0

 .

As an example of the computation leading to (2.36), note that the bottom right-hand entry

of the product LALT reads:

S∞
−1/2

[
Q∞LHKHHQ

∞T

LH −Q∞LHKHL −KLHQ
∞T

LH +KLL

]
S∞

−1/2

= I,

since, by definition of Q∞LH and of η, we have −KLHQ
∞T

LH +KLL = S∞ and

Q∞LHKHHQ
∞T

LH −Q∞LHKHL = KLH

(
eHη

−1eTHKHHeHη
−1eTH − eHη

−1eTH
)
KHL = 0 .
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To finish the proof we shall show that, for m sufficiently large,

K
−1/2
HH = eHη

−1/2eTH +O(m−1/2). (2.37)

On the assumption that (2.37) holds, we have

RLH = S∞
−1/2

KLH(IHH − eHη
−1eTHKHH)eHη

−1/2eTH +O(m−1/2) = O(m−1/2) (2.38)

and so the spectral radius ρ(R) of R is O(m−1/2), which together with (2.36) completes the

proof.

To prove (2.37), let us write down the eigenvalue decomposition of KHH(m)

V (m)TKHH(m)V (m) = diag(µ1(m), . . . , µnH
(m)) (2.39)

where {µi(m) : i = 1, . . . , nH} denotes any non-increasing ordering of the eigenvalues of

KHH(m). Since KHH(m) is SPD, we have µi(m) > 0 for all i ≤ nH . Moreover, the µi are

continuous functions of m, with

m−1µi(m) = λi +O(m−1), (2.40)

as m → ∞, where the λi are as defined in the proof of Lemma 1 and we have used (2.28).

However, we also know from (2.33) that (for m sufficiently large) the largest eigenvalue of

KHH(m)−1 is given by

µnH
(m)−1 = η−1 +O(m−1) . (2.41)

Therefore, using (2.39), (2.40) and (2.41), we have

V (m)TKHH(m)−1/2V (m) = diag(0, . . . , 0, η−1/2) + O(m−1/2) .
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The required estimate (2.37) follows by noting that the last column of V (m) approaches eH

with O(m−1) as m→∞.

2.5 Qualitative nature of the solution of the high-contrast
diffusion equation and decoupling

We advocate the usage of SPA because it is a very effective tool in gaining qualitative

insight about the asymptotic behavior of the solution of the underlying PDE. Through SPA,

in Lemma 1, we were able to fully reveal the asymptotic behaviour of the submatrices of K in

(2.5). This information leads to a characterization of the limit of the underlying discretized

inverse operator and we studied this in more detail in [3]. We now prove that asymptotically,

the solution over the highly-diffusive island goes to a constant vector. This is probably the

most fundamental qualitative feature of the solution of the high-contrast diffusion equation.

Lemma 2. Let xH(m) be the solution in (2.4) corresponding the highly-diffusive island and

eH be the constant vector. Then,

xH(m) = cH eH + O(m−1), (2.42)

where cH is determined by the solution in the lowly-diffusive region.

Proof. We prove the result by providing an explicit quantification of the limiting process

based on Lemma 1:

xL(m) = S−1(m) {bL −KLH(m)K−1
HH(m)bH}

= S∞
−1{bL −K∞LHK∞

†
HHbH}+O(m−1)

=: x∞L +O(m−1),
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xH(m) = K−1
HH(m) {bH −KHL(m)xL(m)}

= K∞
†

HH{bH −K∞HLx∞L }+O(m−1)

=: cH eH + O(m−1).

SPA helps to reveal a further qualitative property, namely, the decoupling phenomenon.

We show how the original algebraic solution strategy decouples into two algebraic problems

of different nature and the decoupling is indeed an implication of (2.42). This observation

would be very valuable also for designing preconditioners for different classes of PDEs and

discretizations. In Chapter 4 we will give a solution behaviour result similar to (2.42) for

the high-contrast biharmonic plate equation for HCT and Morley discretizations.

In order to show the decoupling, let us start by noting that S∞ in Lemma 1 can also be

interpreted as the Schur complement of c2 eTΓK
(L)
ΓΓ eΓ in the matrix

KK∞LL =

 c2 eTΓK
(L)
ΓΓ eΓ c eTΓKΓL

c KLΓeΓ KLL

 ,

for any nonzero value of c. In particular, if we choose c := n
1/2
H , then ceΓ = 1Γ, the vector of

all ones on Γ and, using also (2.19), we have

KK∞LL :=

 1TΓK
(L)
ΓΓ 1Γ 1TΓKΓL

KLΓ1Γ KLL


=

 1THKHH(1)1H 1THKHL

KLH1H KLL

 . (2.43)

This is the stiffness matrix for a pure Dirichlet problem for the Laplacian on all of Ω

with the additional constraint that the solution is constant on ΩH . See Figure 2.3. Thus,

when m � 1, the original problem decouples almost entirely into a (regularized) Neumann
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Figure 2.3: xHi(mi) = cHi +O(m−1
i ), i = 1, 2 where ΩH1 and ΩH2 correspond to square and triangle

shaped highly-diffusive islands, respectively with mi = 106.

problem (i.e. KHH(m)) for the Laplacian on ΩH (scaled by m) and a Dirichlet problem (i.e.

KK∞LL) for the Laplacian on all of Ω, but under the additional constraint that the solution

is constant on ΩH .

Next, we show an additional decoupling. This time the preconditioner decouples into a

block diagonal matrix with the help of a deflation method.

2.6 Implementation aspects and the related deflation-
method

The fact that NHH has a simple zero eigenvalue (with the corresponding constant eigenvector

eH) and NHH is of co-rank 1 imply that KHH(m) has a single eigenvalue of O(1) and nH −1

eigenvalues of O(m). For sufficiently large m, eH can be taken as an approximate eigenvector

corresponding to NHH ’s single smallest eigenvalue. Therefore, in the light of (2.5),

eT := [eTH , 0
T ],

becomes an approximate eigenvector corresponding to the smallest eigenvalue of the decou-

pled matrix: KHH(m) 0

0 S(m)

 . (2.44)
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In order to eliminate the negative effect of the smallest eigenvalue, we utilize a deflation

method under the constraint that it gives the decoupling as in (2.44). If such decoupling

occurs, it would provide a large computational advantage. We utilize a deflation method,

known as subdomain deflation [68, 85, 86, 87] constructed by the following K-orthogonal

projection onto the subspace orthogonal to e, provides the desired decoupling.

PT := I − e η(m)−1 eT K . (2.45)

We apply AGKS preconditioner within a conjugate gradient algorithm for the deflated

system

PKx⊥ = Pb, (2.46)

where x⊥ := PTx is the projected solution. The component of x in the direction of e is then

simply given by

x− x⊥ = (I − PT )x = e η(m)−1 eT b .

When we rewrite (2.35) as

BAGKS(m) = LT D(m)L,

where

L :=

 IHH 0

−Q∞LH ILL

 ,
D(m) :=

 KHH(m)−1 0

0 S∞
−1

 . (2.47)

By observing the following interesting property

LP = P , (2.48)
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the system in (2.46) after preconditioned by BAGKS(m) turns into:

BAGKS(m)
(
PKx⊥

)
= BAGKS(m) (Pb) .

Then, it reduces to the following block diagonal system:

D(m) PK x⊥ = D(m) P b.

Remark 2. The fact that e becomes an approximate eigenvector corresponding to the small-

est eigenvalue of the decoupled matrix in (2.44) is not necessarily true for the original matrix

K(m) because it is not block diagonal. Therefore, utilizing the above deflation method in the

direction of e will not necessarily provide any further robustness for the underlying precon-

ditioner if that preconditioner uses off-diagonal blocks of K(m) as well. Multigrid method

is one such preconditioner. In fact, numerically we observed that introducing deflation did

not improve the multigrid convergence rate at all. If one still wants to improve the conver-

gence rate by the help of deflation, then the approximate eigenvector corresponding to the

smallest eigenvalue must be computed in an alternative way rather than the simple usage of

e. Consequently, we can say that BAGKS(m), by its design, naturally goes with subdomain

deflation. The incorporation of subdomain deflation not only brings robustness with respect

to the smallest eigenvalue, but also provides huge computational savings due to reduction to

a block diagonal system. This is a significant computational advantage BAGKS(m) offers.

By exploiting the fact that S∞ in (2.34) is only a low-rank perturbation of K∞, we

can build robust preconditioners for S∞ in (2.35) via standard multigrid preconditioners.

Combining (2.33) and (2.34), we arrive at

S∞ = K∞LL − vη−1vT ,
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where v := K∞LHeH . IfMLL denotes a standard multigrid V-cycle preconditioner for KLL, we

can construct an efficient and robust preconditioner S̃−1 for S∞ using the Sherman-Morrison-

Woodbury formula [40, Eq. (2.1.4)], i.e.

S̃−1 := MLL + MLLv (1− η)−1 vTMLL. (2.49)

Note also that we can precompute and store MLLv during the setup phase. This means we

only need to apply the multigrid V-cycle MLL once per iteration. Therefore, the following

practical version of preconditioner (2.35) is used in the implementation:

B̃AGKS :=

 IHH −Q∞T

LH

0 ILL


 MHH 0

0 S̃−1


 IHH 0

−Q∞LH ILL

, (2.50)

where MHH denotes a multigrid V-cycle preconditioner for KHH(m).

2.7 Numerical experiments

The goal of the numerical experiments is to compare the performance of the two precondi-

tioners: AGKS and CCMG. The domain is unit square with a uniform mesh consisting of

2`×2`, ` = 3, . . . , 6, cells. The coarsest level mesh contains 8×8 cells with a highly-diffusive

single island of size 2×2 cells centered at the point (3/8, 3/8). For the discussion of multiple

disconnected islands, refer to [6, Sections 3 and 4].

We denote the norm of the relative residual at iteration t by rr(t):

rr(t) :=
‖r(t)‖2

‖r(0)‖2

,

where r(t) denotes the residual at iteration t with a stopping criterion of rr(t) ≤ 10−9. In the

tables, we report the iteration count and the average reduction factor of the residual which

is defined as: (
rr(t)

)1/t
.

28



We enforce an iteration bound of 60. If the method seems to converge slightly beyond

this bound, we denote it by 60+. Whereas, the divergence is denoted by ∞. In Tables

2.2–2.10, iteration count and the average reduction factor are reported for combinations of

preconditioner, prolongation, and smoother types.

We use Galerkin variational approach to construct the coarser level algebraic systems.

There are two types of prolongation operators under consideration; Wesseling-Khalil [92] and

bi-linear, given by respectively:

P (WK) =
1

4



1 1 0 0

1 3 2 0

·

0 2 3 1

0 0 1 1



h

2h

, and R(WK) = P (WK)∗ ,

P (B) =
1

16



1 3 3 1

3 9 9 3

·

3 9 9 3

1 3 3 1



h

2h

, and R(B) = P (B)∗ .

The multigrid preconditioner CCMG is derived from the implementation by Aksoylu,

Bond, and Holst [5]. We employ a V(1,1)-cycle with point symmetric Gauss-Seidel (sGS)

or ILU smoothers. A direct solver is used for the coarsest level. We construct two different

multilevel hierarchies for multigrid preconditioners MHH in (2.50) and MLL in (2.49) for

DOF corresponding to ΩH and ΩL, respectively. The corresponding prolongation matrices

PHH and PLL are extracted from the prolongation matrix for the whole domain Ω in the

fashion following (2.4):
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Table 2.2: Preconditioner = CCMG - V(1,1)-cycle, prolongation = Wesseling-Khalil, smoother = ILU

h\m 100 101 102 103 104 105 106 107 108 109

1/8 10, 0.025 29, 0.472 30, 0.500 35, 0.528 36, 0.559 40, 0.593 44, 0.622 52, 0.669 52, 0.669 58, 0.697

1/16 10, 0.121 12, 0.165 15, 0.240 21, 0.315 31, 0.481 38, 0.541 50, 0.644 60+, 0.786 60+, 0.770 60+, 0.922

1/32 8, 0.069 10, 0.093 12, 0.162 14, 0.224 19, 0.309 27, 0.455 52, 0.668 60+, 0.829 60+, 1.002 60+, 1.033

1/64 8, 0.064 10, 0.099 13, 0.160 14, 0.201 19, 0.311 29, 0.462 47, 0.638 60+, 0.860 60+, 1.014 60+, 1.033

Table 2.3: Preconditioner = CCMG - V(1,1)-cycle, prolongation = Wesseling-Khalil, smoother = sGS

h\m 100 101 102 103 104 105 106 107 108 109

1/8 10, 0.025 29, 0.472 30, 0.500 35, 0.528 36, 0.559 40, 0.593 44, 0.622 52, 0.669 52, 0.669 58, 0.697

1/16 12, 0.166 14, 0.222 19, 0.310 26, 0.409 38, 0.535 52, 0.649 60+, 0.777 60+, 0.843 60+, 0.938 ∞, 1.070

1/32 14, 0.195 15, 0.217 18, 0.294 25, 0.432 39, 0.552 58, 0.698 60+, 0.917 ∞, 1.002 ∞, 1.080 ∞, 1.127

1/64 13, 0.197 14, 0.221 17, 0.282 22, 0.362 31, 0.497 48, 0.645 60+, 0.793 ∞, 0.954 ∞, 1.097 ∞, 1.120
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Table 2.4: Preconditioner = CCMG - V(1,1)-cycle, prolongation = bi-linear, smoother = ILU

h\m 100 101 102 103 104 105 106 107 108 109

1/8 10, 0.025 29, 0.472 30, 0.500 35, 0.528 36, 0.559 40, 0.593 44, 0.622 52, 0.669 52, 0.669 58, 0.697

1/16 9, 0.095 12, 0.145 14, 0.225 23, 0.403 32, 0.514 48, 0.637 59, 0.693 60+, 0.834 60+, 0.924 ∞, 0.990

1/32 7, 0.040 9, 0.074 12, 0.154 60+, 1.051 ∞, 1.001 ∞, 1.001 ∞, 1.001 ∞, 1.001 ∞, 1.001 ∞, 1.001

1/64 7, 0.039 8, 0.075 11, 0.127 21, 0.350 ∞, 1.001 ∞, 1.001 ∞, 1.001 ∞, 1.001 ∞, 1.001 ∞, 1.001

Table 2.5: Preconditioner = CCMG - V(1,1)-cycle, prolongation = bi-linear, smoother = sGS

h\m 100 101 102 103 104 105 106 107 108 109

1/8 10, 0.025 29, 0.472 30, 0.500 35, 0.528 36, 0.559 40, 0.593 44, 0.622 52, 0.669 52, 0.669 58, 0.697

1/16 11, 0.122 13, 0.194 18, 0.293 24, 0.414 38, 0.564 58, 0.692 60+, 0.827 60+, 0.931 ∞, 0.995 ∞, 1.094

1/32 8, 0.075 11, 0.121 15, 0.229 22, 0.362 35, 0.545 60+, 0.722 60+, 0.903 ∞, 1.022 ∞, 1.085 ∞, 1.133

1/64 8, 0.068 10, 0.115 14, 0.216 19, 0.334 27, 0.449 44, 0.600 60+, 0.773 ∞, 0.965 ∞, 1.116 ∞, 1.168
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Table 2.6: Preconditioner = CCMG - W(1,1)-cycle, prolongation = Wesseling-Khalil, smoother = ILU

h\m 100 101 102 103 104 105 106 107 108 109

1/8 10, 0.025 29, 0.472 30, 0.500 35, 0.528 36, 0.559 40, 0.593 44, 0.622 52, 0.669 52, 0.669 58, 0.697

1/16 10, 0.121 12, 0.166 15, 0.245 21, 0.315 31, 0.481 38, 0.541 50, 0.644 60+, 0.786 60+, 0.769 60+, 922

1/32 8, 0.070 12, 0.165 17, 0.263 19, 0.328 ∞, 0.968 ∞, 1.110 ∞, 1.127 ∞, 1.164 ∞, 1.169 ∞, 1.184

1/64 8, 0.064 12, 0.137 16, 0.267 18, 0.305 20, 0.345 32, 0.520 ∞, 1.115 ∞, 1.137 ∞, 1.190 ∞, 1.199

Table 2.7: Preconditioner = AGKS - V(1,1)-cycle, prolongation = Wesseling-Khalil, smoother = ILU

h\m 100 101 102 103 104 105 106 108 109 1011 1013

1/8 22, 0.371 10, 0.115 10, 0.116 9, 0.078 9, 0.056 8, 0.059 8, 0.045 8, 0.039 8, 0.039 8, 0.039 8, 0.039

1/16 16, 0.240 13, 0.199 11, 0.131 9, 0.098 8, 0.043 7, 0.043 6, 0.018 6, 0.007 6, 0.010 5, 0.010 5, 0.006

1/32 20, 0.329 19, 0.313 14, 0.192 11, 0.127 9, 0.093 8, 0.035 7, 0.041 6, 0.012 6, 0.008 6, 0.004 5, 0.008

1/64 29, 0.484 26, 0.435 17, 0.284 12, 0.161 10, 0.092 8, 0.061 8, 0.026 6, 0.016 6, 0.010 6, 0.006 5, 0.013
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Table 2.8: Preconditioner = AGKS - V(1,1)-cycle, prolongation = Wesseling-Khalil, smoother = sGS

h\m 100 101 102 103 104 105 106 108 109 1011 1013

1/8 22, 0.371 10, 0.115 10, 0.116 9, 0.078 9, 0.056 8, 0.059 8, 0.045 8, 0.039 8, 0.039 8, 0.039 8, 0.039

1/16 16, 0.268 13, 0.201 11, 0.131 9, 0.098 8, 0.043 7, 0.043 6, 0.017 6, 0.007 6, 0.004 5, 0.010 5, 0.005

1/32 20, 0.350 19, 0.317 14, 0.192 11, 0.127 9, 0.093 8, 0.035 7, 0.041 6, 0.010 6, 0.007 6, 0.008 5, 0.008

1/64 29, 0.483 26, 0.436 17, 0.283 12, 0.162 10, 0.092 8, 0.061 8, 0.030 6, 0.017 6, 0.011 6, 0.005 5, 0.013

Table 2.9: Preconditioner = AGKS - V(1,1)-cycle, prolongation = bi-linear, smoother = ILU

h\m 100 101 102 103 104 105 106 108 109 1011 1013

1/8 22, 0.371 10, 0.115 10, 0.116 9, 0.078 9, 0.056 8, 0.059 8, 0.045 8, 0.039 8, 0.039 8, 0.039 8, 0.039

1/16 16, 0.237 13, 0.197 11, 0.131 9, 0.098 8, 0.043 7, 0.043 6, 0.018 6, 0.007 6, 0.011 5, 0.010 5, 0.006

1/32 20, 0.348 19, 0.312 14, 0.192 11, 0.126 9, 0.093 8, 0.035 7, 0.041 6, 0.010 6, 0.006 6, 0.021 5, 0.008

1/64 29, 0.483 26, 0.431 17, 0.283 12, 0.161 10, 0.092 8, 0.062 8, 0.026 6, 0.015 6, 0.010 6, 0.006 5, 0.013
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Table 2.10: Preconditioner = AGKS - V(1,1)-cycle, prolongation = bi-linear, smoother = sGS

h\m 100 101 102 103 104 105 106 108 109 1011 1013

1/8 22, 0.371 10, 0.115 10, 0.116 9, 0.078 9, 0.056 8, 0.059 8, 0.045 8, 0.039 8, 0.039 8, 0.039 8, 0.039

1/16 16, 0.256 13, 0.197 11, 0.131 9, 0.098 8, 0.043 7, 0.043 6, 0.017 6, 0.007 6, 0.004 5, 0.010 5, 0.004

1/32 20, 0.352 19, 0.317 14, 0.192 11, 0.127 9, 0.093 8, 0.035 7, 0.041 6, 0.010 6, 0.007 6, 0.020 5, 0.009

1/64 29, 0.481 26, 0.438 17, 0.281 12, 0.161 10, 0.092 8, 0.061 8, 0.026 6, 0.018 6, 0.012 6, 0.008 5, 0.014
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P =

 PHH PHL

PLH PLL

 . (2.51)

The superior performance of AGKS preconditioner is partially due to employing these two

distinct multilevel hierarchies, which is very much in spirit of the aforementioned decoupling

in Section 2.6. In fact, due to decoupling, AGKS technology allows the usage of any ordinary

prolongation operator. This operator does not have to be constructed in a sophisticated

manner as in the case of Wesseling and Khalil [92] or Kwak [53].

As emphasized in [6], AGKS can be used purely as an algebraic preconditioner. There-

fore, the standard multigrid preconditioner constraint that the coarsest level mesh resolves

the boundary of the island is automatically eliminated. However, for a fair comparison, we

enforce the coarsest level mesh to have that property.

When the discretization matrix is scaled by 1/m, we observe a significant reduction in

the iteration count for the AGKS preconditioner, while, CCMG suffers from inconsistent

convergence behaviour. That is why, we only report the unscaled case for CCMG. Moreover,

for the CCMG preconditioner, we use lexicographic ordering. On the other hand, for AGKS,

we follow the standard way of ordering the highly-diffusive after the lowly-diffusive DOF as

used in [6].

Note that as the diffusion coefficient m increases, the CCMG method becomes less ef-

fective. For sufficiently large m, it even diverges. CCMG shows this adverse behaviour for

all types of transfer operators, and smoother types for almost all levels; see Tables 2.2–2.5.

The CCMG preconditioner is more effective than the AGKS preconditioner for m < 103.

However, for those m values, the AGKS preconditioner still manages to converge in less

than 30 iterations.

The main issue addressed in our study is the robustness for large values of m. We observe

that the CCMG preconditioner becomes ineffective, even diverges for m ≥ 106 under both

types of smoothers; see the corresponding columns in Tables 2.2–2.5. On the other hand,
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the AGKS preconditioner becomes more effective with increasing m. Furthermore, as seen

in Tables 2.7–2.10, AGKS preconditioner demonstrates consistently similar iteration counts

and contraction numbers for all types of transfer operators and smoothers. Therefore, AGKS

performance is independent of the utilized prolongation operators and smoothers.

We observe an interesting cut-off m value for performances of preconditioners. While

in general, the CCMG performance starts to deteriorate at around m > 105, the AGKS

preconditioner reaches its peak performance and maintains an optimal iteration count for

m ≥ 105. We reveal several observations. The CCMG preconditioner with sGS smoothing

shows an adverse convergence behaviour for all prolongation types. On the other hand,

the CCMG preconditioner with ILU smoothing shows a higher performance with Wesseling-

Khalil prolongation type. The iteration counts for the CCMG method jumps to 60 at around

m = 105 and m = 106 for sGS and ILU smoothing cases, respectively.

The CCMG preconditioner has been of type V-cycle so far. After observing convergence

complications, we decided to try W(1,1)-cycle as an alternative; see the W(1,1)-cycle con-

vergence history in Table 2.6. W(1,1)-cycle does not show a consistent convergence with

respect to the contrast size. For instance, we observe a jump in the iteration count at

around m = 104 and m = 106 for levels 3 and 4, respectively. Therefore, the performance

of the CCMG preconditioners gets worse for m > 105 independently from the cycle type.

Consequently, this observation indicates that CCMG fails to be robust with respect to the

contrast size whereas AGKS maintains its robustness.

CCMG performance heavily depends on the smoother choice. It is well-known that

pattern relaxations would not improve CCMG performance [55, p. 112]. In addition, since

there is no anisotropy, the line smoothers also do not improve CCMG performance compared

to sGS and ILU smoothers; see Llorente and Melson [55, p. 112] for other ordering related

smoother complications. Hence, we used neither pattern relaxations nor line smoothers in our

experiments. As pointed out by Mohr and Wienands [66], CCMG may need a sophisticated
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smoother like ILU. The behaviour of ILU was extensively studied by Wittum [93, 94], also

see [91, pp. 98 and 134]. In our experiments, the specific ILU choice is set to be no-fill-in.

We conclude the numerical experiments by reporting the cost of each preconditioner.

For variational conditions, the decoupling of KHH(m) and S∞ in (2.47) causes the AGKS

preconditioner to be cheaper than CCMG because it only employs PHH and PLL blocks in

(2.51) whereas CCMG employs the whole P matrix; see the flop counts in Figure 2.4. When

the size of the highly-diffusive island grows, the enforcement of the variational conditions of

the AGKS preconditioner becomes even less costly than that of the CCMG preconditioner.

Finally, we report the cost per iteration for AGKS and CCMG V(1,1)-cycle precondi-

tioners. AGKS preconditioner in (2.47) requires inversions of two blocks: KHH(m) and S∞

corresponding to highly- and lowly-diffusive regions, respectively. Therefore, for each iter-

ation of AGKS preconditioner, we utilize a full CCMG method for each block separately.

This is exactly the setup that CCMG methods are known to be highly effective because each

block corresponds to a discretization of the Laplace equation with homogeneous coefficients.

Therefore, one iteration of the AGKS preconditioner is roughly 10 times more costly than

that of the CCMG preconditioner; see the flop counts in Figure 2.4. This additional cost

is worthy because AGKS preconditioner results in convergence in a few iterations for large

values of m, whereas, the CCMG preconditioner results in a consistent failure.

2.8 Appendix

2.8.1 The technical part of the spectral analysis for the diagonally
scaled matrix

Let {1, . . . , s} denote the index of islands in the domain. Let Nk, k = 1, . . . , s be the FV

discretization matrix of −∆ on the k-th island Ωk with respect to Ti with homogeneous pure

Neumann boundary condition. Let C denote the set of all DOF in Ω.
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Figure 2.4: (Left) Flop counts for the enforcement of variational conditions. (Right) Flop counts
for a single iteration of the preconditioners.

We start by examining the dependence of the (p, q)-th entry of K(m) on m, for each

p ∈ C. Let Ωs+1 denote the outer region of islands, i.e.,

Ωs+1 = Ω \
⋃

k=1,...,s

Ωk.

We denote the cell-centers that are adjacent to Ωs+1 and the ones that are interior to Ωk, k =

1, . . . , s by ΓΩk
and IΩk

, respectively. On the other hand, the cell-centers in the outer region

Ωs+1 that are adjacent to the islands Ωk, k = 1, . . . , s are denoted by ΓΩs+1 .

We define the following index set for p, q ∈ C with p 6= q:

I(p ∧ q) :=


k, p and q ∈ Ωk, k = 1, . . . , s

s+ 1, p or q ∈ Ωs+1,

I(p) :=


k, p ∈ IΩk

, k = 1, . . . , s

s+ 1, k, p ∈ ΓΩk
, k = 1, . . . , s

s+ 1, p ∈ Ωs+1.

Also, we define I(p ∧ p) = I(p).
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Note that the discretization matrix and its entries can be written as follows:

K(m) =
s∑

k=1

mNk(1) +Ns+1(m)

[K(m)]pq =
∑

`∈I(p∧q)

α`(m)[N`]pq,

where

α`(m) =


m, ` = 1, . . . , s

1, ` = s+ 1,

(2.52)

and by abuse of notation, we have defined N` := N`(1) for ` = 1, . . . , s and Ns+1 := Ns+1(m).

Then,

[A(m)]pq

= [K(m)]−1/2
pp [K(m)]pq [K(m)]−1/2

qq ,

=

∑
`∈I(p)

α`(m)[N`]pp


−1/2 ∑

`∈I(p∧q)

α`(m)[N`]pq

∑
`∈I(q)

α`(m)[N`]qq


−1/2

.

For p ∈ C, [A(m)]pq = 0 if p, q are not adjacent cell-centers and [A(m)]pp = 1. Furthermore

note that, [A(m)]pq is m-dependent only if either p or q ∈
⋃
k=1,...,s+1 ΓΩk

.

It is sufficient to study only the single island case because single island expression for

K(m) = mN1 +N2(m) (2.53)

can be simply generalized to

K(m) =
s∑

k=1

mNk +Ns+1(m).
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2.8.1.1 Perturbation expansion analysis for the upper bound of the smallest
eigenvalue

We devise a perturbation expansion analysis based on m, in order to study the m-dependent

spectral behavior of A(m). Hence, only the matrix entries A(m)pq, p 6= q, that have m-

dependence are considered where cells p and q are adjacent. Combining (2.11) and (2.53),

one can deduce that

N2(m) = N∞2 +O(m−1). (2.54)

We will use (2.54) in the below analysis. For clarity, we treat the perturbation expansion in

full detail for the first case.

Case 1: p ∈ ΓΩ1 and q ∈ Ω2,

[A(m)]pq

= {m[N1]pp + [N2(m)]pp}−1/2 [N2(m)]pq {[N2(m)]qq}−1/2

= m−1/2
{

[N1]pp +m−1[N2(m)]pp
}−1/2

[N2(m)]pq {[N2(m)]qq}−1/2

= m−1/2
{
m−1[N1]−1/2

pp − 1/2[N1]−3/2
pp [N2(m)]pp + O(m−2)

}
{[N2(m)]pq} {[N2(m)]qq}−1/2

= m−1
{

[N1]−1/2
pp +O(m−1)

}{
[N∞2 ]pq +O(m−1)

} {
m−1[N∞2 ]qq +O(m−2)

}−1/2

= O(m−1/2)

Case 2: p ∈ ΓΩ1 and q ∈ ΓΩ1 ,

[A(m)]pq

= {m[N1]pp + [N2(m)]pp}−1/2 [mN1]pq {m[N1]qq + [N2(m)]qq}−1/2

=
{

[N1]pp +m−1[N2(m)]pp
}−1/2

[N1]pq
{

[N1]qq +m−1[N2(m)]qq
}−1/2

= [N1]−1/2
pp [N1]pq[N1]−1/2

qq +O(m−1)
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Case 3: p ∈ ΓΩ1 and q ∈ IΩ1 ,

[A(m)]pq

= {m[N1]pp + [N2(m)]pp}−1/2 [mN1]pq {m[N1]qq}−1/2

=
{

[N1]pp +m−1[N2(m)]pp
}−1/2

[N1]pq {[N1]qq}−1/2

= [N1]−1/2
pp [N1]pq[N1]−1/2

qq +O(m−1)

Case 4: p ∈ ΓΩ2 and q ∈ Ω2,

[A(m)]pq

= {[N2(m)]pp}−1/2 [N2(m)]pq {[N2(m)]qq}−1/2

=
{
m−1[N2(m)]pp

}−1/2
m−1[N2(m)]pq

{
m−1[N2(m)]qq

}−1/2

=
{
m−1[N∞2 ]pp +O(m−2)

}−1/2 {
m−1[N∞2 ]pq +O(m−2)

} {
m−1[N∞2 ]qq +O(m−2)

}−1/2

= [N∞2 ]−1/2
pp [N∞2 ]pq[N

∞
2 ]−1/2

qq +O(m−1).

We will use following modification of N2 for our further analysis:

[Ñ2]pq =


0 if p ∈ ΓΩ1

[N∞2 ]pq otherwise.

(2.55)

Consider the reduced version of (2.53)

K̃(m) = mN1 + Ñ2,

and let Ã(m) denote the diagonally scaled version of K̃(m). Then m-independent Ã(m) has

a single zero eigenvalue. Next, we proceed with the element-wise analysis of A(m)− Ã(m).

41



Case 1: p ∈ ΓΩ1 and q ∈ Ω2,

[A(m)]pq = m−1/2 [N1]−1/2
pp [N∞2 ]pq [N∞2 ]−1/2

qq +O(m−3/2)

and from (2.55) we get

[Ã(m)]pq = 0.

Therefore,

[A(m)]pq − [Ã(m)]pq = O(m−1/2).

Case 2: p ∈ ΓΩ1 and q ∈ Ω1,

[A(m)]pq = [N1]−1/2
pp [N1]pq [N1]−1/2

qq +O(m−1)

and from (2.55) we get

[Ã(m)]pq = [N1]−1/2
pp [N1]pq[N1]−1/2

qq

Thus,

[A(m)]pq − [Ã(m)]pq = O(m−1).

Case 3: p ∈ ΓΩ2(nodes of Ω2),

[A(m)]pq = [N∞2 ]−1/2
pp [N∞2 ]pq [N∞2 ]−1/2

qq +O(m−1)

and from (2.55) we get

[Ã(m)]pq = [N∞2 ]−1/2
pp [N∞2 ]pq [N∞2 ]−1/2

qq .

Thus,

[A(m)]pq − [Ã(m)]pq = O(m−1).
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Case 4: Otherwise,

[A(m)]pq − [Ã(m)]pq = 0.

Therefore, λmax(A(m)− Ã(m)) = O(m−1/2).

Lemma 3. Let G and H be symmetric matrices of dimension n×n. Then, for k = 1, . . . , n,

the following holds:

λk(G) + λmin(H) ≤ λk(G+H) ≤ λk(G) + λmax(H).

Proof. The result follows from Courant-Fischer minimax Theorem; see [40, Corollary 8.1.3].

From Lemma 3, we have

λmin(A(m)) ≤ λmin(Ã(m)) + λmax(A(m)− Ã(m))

= λmax(A(m)− Ã(m))

= O(m−1/2)

Moreover, we have for all k ≥ 1,

λk(A(m)) ≥ λk(Ã(m)) + λmin(A(m)− Ã(m))

≥ λk(Ã(1))−O(m−1) ≥ C

for some constant C independent of m, asymptotically. Thus, A(m) has a single eigen-

value approaching to zero while the remaining eigenvalues are bounded away from 0.

2.8.1.2 Lower bound for the smallest eigenvalue

We aim to show the following lower bound for the smallest eigenvalue:

λmin(A(m)) ≥ C m−1. (2.56)
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For that, we will establish the below main estimates in the discussion to follow:

xTK(m)x ≥ xTK(1)x ≥ m−1xTK(m)x. (2.57)

Remark 3. Establishing the estimate (2.57) is not as simple as in the FE discretization

case due to m-dependence of N2 in (2.53). This requires further detailed matrix analysis.

2.8.1.3 xTK(m)x ≥ xTK(1)x estimate

For the decomposition in (2.53), it is straightforward to see that mN1 ≥ N1 for m ≥ 1.

Hence, in order to establish (2.57), we concentrate on the following auxiliary estimate:

xTN2(m)x ≥ xTN2(1)x. (2.58)

First, note that N2(m) has positive diagonal and negative off-diagonal entries. In ad-

dition, due to the discretization formula (2.9), it has a row sum equal to zero with the

exception that the row sums corresponding to cell-centers that are adjacent to the boundary

are positive. Hence, N2(m) is a diagonally dominant matrix. We further decompose N2(m)

as follows:

N2(m) = N̄2(m) +R2, (2.59)

where N̄2(m) is a symmetric matrix with positive diagonal entries and a row sum equal to

zero, and R2 := N2(m)− N̄2(m) is the remainder matrix.

Lemma 4. Let G be a symmetric matrix and have a row sum equal to zero. In addition, let

[G]pp ≥ 0, then G is symmetric positive semi-definite (SPSD).

Proof. Let λp be the p-th eigenvalue of G. Using Gerschgorin’s Theorem with the fact that

G has a row sum equal to zero yields:

|λp − [G]pp| ≤
∑
q 6=p

|[G]pq| = [G]pp.
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Then the result follows from

0 ≤ λp ≤ 2[G]pp.

By Lemma 4, N̄2(m) is immediately SPSD. In addition, R2 is a diagonally dominant

matrix with non-negative diagonal entries, again by Lemma 4, R2 is SPSD. Now, we can

conclude that N2(m) is SPSD.

From (2.11), one observes that [K(m)]pp is monotonically increasing inm. This important

property implies that

[N̄2(m)]pp ≥ [N̄2(1)]pp, m ≥ 1. (2.60)

We need the following additional decomposition:

N̄2(m) = N̄2(1) + R̄2(m). (2.61)

Combining (2.60) and (2.61), we obtain [R̄2(m)]pp ≥ 0. Hence, Lemma 4 implies that R̄2(m)

is SPSD. Using this, we now arrive at the auxiliary estimate (2.58) in the following:

xTN2(m)x = xT N̄2(1)x+ xT R̄2(m)x+ xTR2x

≥ xT N̄2(1)x+ xTR2x

= xTN2(1)x.

Consequently,

mxTK(m)x = mxTN1x+ xTN2(m)x

≥ xTN1x+ xTN2(m)x

≥ xTN1x+ xTN2(1)x

= xTK(1)x.
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2.8.1.4 mxTK(1)x ≥ xTK(m)x estimate

Combining (2.53) and (2.59), we obtain

K(m) = mN1 + N̄2(m) +R2,

where N1 and R2 are SPSD and independent of m, which yields the following for m ≥ 1:

mxTN1x ≥ xTN1x,

mxTR2x ≥ xTR2x,

Thus, in order to establish (2.57), it is sufficient to establish the auxiliary estimate

mxT N̄2(1)x ≥ xT N̄2(m)x. (2.62)

By using 2.11, one can also show that

m[N̄2(1)]pp ≥ [N̄2(m)]pp. (2.63)

We will use the following decomposition:

mN̄2(1) = N̄2(m) + R̂2(m), (2.64)

where R̂2(m) is the SPSD remainder matrix. Combining (2.63) and (2.64), we obtain

[R̂2(m)]pp ≥ 0, which leads us to the auxiliary estimate (2.62). Hence,

mxTK(1)x = mxTN1x+mxTN2(1)x

≥ mxTN1x+ xTN2(m)x

= xTK(m)x.
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In conclusion, we have obtained the two main estimates in (2.57). These yield similar

estimates for diag K(m).

xTdiag K(m)x ≥ xTdiag K(1)x

≥ m−1xTdiag K(m)x (2.65)

From (2.57) and (2.65), and letting C1 := λmin(A(1)), we get:

xTK(m)x ≥ xTK(1)x ≥ C1x
Tdiag K(1)x

≥ C1 m
−1xTdiag K(m)x,

yielding

C1 m
−1 ≤ λmin(A(m)) ≤ C2 m

−1/2.
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Chapter 3

The AGKS Preconditioner for High-contrast
Stokes Problem

In this Chapter, we aim to bring the same rigorous preconditioning technology to vector

valued problems such as the Stokes equation. The Stokes equation plays a fundamental role in

the modeling of several problems in emerging geodynamics applications. Numerical solutions

to the Stokes flow problems especially with high-contrast variations in viscosity is critically

needed in the computational geodynamics community; see recent studies [37, 36, 59, 77]. The

high-contrast viscosity corresponds to a small Reynolds number regime because the Reynolds

number is inversely proportional to the viscosity value. One of the main applications of

the high-contrast Stokes equation is the study of earth’s mantle dynamics. The processes

such as the long time scale dynamics of the earth’s convecting mantle, the formation and

subsequent evolution of plate tectonics can be satisfactorily modeled by the Stokes equation;

see [37, 59, 67] for further details. Realistic simulation of mantle convection critically relies on

the treatment of the two essential components of simulation: the contrast size in viscosity and

the mesh resolution. Hence, our aim is to achieve robustness of the underlying preconditioner

with respect to the contrast size and the mesh size simultaneously, which we call as m- and

h-robustness, respectively.

We extend the usage of AGKS preconditioner to the solution of the stationary Stokes

equation in a domain as in Figure 2.1.

−∇ · (ν∇u) +∇p = f in Ω,

∇ · u = 0 in Ω,
(3.1)
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with piecewise constant high-contrast viscosity used in the slab subduction referred as the

Sinker model by [59]:

ν(x) =


m� 1, x ∈ ΩH ,

1, x ∈ ΩL.

(3.2)

Here, u, p, and f stand for the velocity, pressure, and body force, respectively.

The discretization of (3.1) gives rise to the following saddle point matrix:

A

 u

p

 =

 K(m) Bt

B 0


 u

p

 =

 f

0

 . (3.3)

The velocity vector can be treated component-wise which allows the usage of a single finite

element space for each component. The extension of AGKS preconditioner from diffusion to

Stokes equation is accomplished by the following crucial block partitioning of (3.3); see [32,

p. 226]: 
Kx(m) 0 (Bx)t

0 Ky(m) (By)t

Bx By 0



ux

uy

p

 =


fx

f y

0

 , (3.4)

where K∗ = Kx = Ky are the scalar diffusion matrices, and Bx and By represent the weak

derivatives in x and y directions, respectively. We apply the AGKS preconditioning idea to

the Kx and Ky blocks by further decomposing each of them as the following 2 × 2 block

system; see [11, Eqn. 11], [10, Eqn. 4], [6, Eqn. 3]:

K∗(m) =

 K∗HH(m) K∗HL

K∗LH K∗LL

 , (3.5)

where the DOF are identified as high and low based on the viscosity value in (3.2) and

K∗HH , K
∗
HL, K

∗
LH , and K∗LL denote couplings between the high-high, high-low, low-high, and
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low-low DOF, respectively. The exact inverse of K∗ can be written as:

K∗
−1

=

 IHH −K∗−1

HHK
∗
HL

0 ILL


 K∗

−1

HH 0

0 S∗
−1


 IHH 0

−K∗LHK∗
−1

HH ILL

, (3.6)

where IHH and ILL denote the identity matrices of the appropriate dimension and the Schur

complement S∗ is explicitly given by:

S∗(m) = K∗LL −K∗LHK∗
−1

HH(m)K∗HL. (3.7)

The AGKS preconditioner is defined as follows:

K̂∗
−1

(m) :=

 IHH −K∞†HHK
∗
HL

0 ILL


 KHH(m)∗

−1
0

0 S∞
−1


 IHH 0

−K∗LHK∞
†

HH ILL

 , (3.8)

where K∞†HH and S∞ are the asymptotic values of K∗−1

HH and S∗, respectively; see [6, Lemma

1].

3.1 Literature review

There are many solution methods proposed for the system of equations in (3.3); see the ex-

cellent survey article by [18]. Based on where the emphasis is put in the design of a solution

method, solving a saddle-point matrix system can be classified into two approaches: precon-

ditioning and solver. The preconditioning approach aims to construct novel preconditioners

for standard solver methods such as Uzawa, Minres, and the Schur complement reduction

(SCR). A vast majority of the articles on the preconditioning approach focuses on the precon-

ditioning of Schur complement matrix; see [50, 27, 52, 75, 71, 59, 77]. It is well known that the

Schur complement matrix S is spectrally equivalent to the pressure mass matrix (PMM) for

the steady Stokes equation; see [22]. For rigorous convergence analysis of Krylov solvers with

PMM preconditioner, see [83, 89]. [28] established that scaled PMM lead to h-robustness for

50



the Stokes equation with large constant viscosity. Using a new inner product, [71] introduced

a robust preconditioner for the Schur complement matrix S = BK−1Bt for discontinuous

viscosity 0 < ν ≤ 1 and showed that the preconditioned Uzawa (p-Uzawa) and Minres (p-

Minres) became h-robust with this new PMM preconditioner. Further properties of this

preconditioner such as clustering in the spectrum of preconditioned S system was shown by

[45]. It was pointed out by [50] that [29] designed LSQR commutator (BFBt) preconditioner

in order to overcome the m-robustness issues by using Ŝ = (BBt)−1BKBt(BBt)−1 precon-

ditioner for S. [30, 27] further studied this preconditioner. Additionally, [59, 77, 36, 37]

popularized the usage of variants of the BFBt preconditioner for the high-contrast Stokes

equation with ν|ΩH
= m � 1 in geodynamics applications. [59] established that this pre-

conditioner was m-robust when used along with a p-SCR solver. [77] obtained h-robustness

for this preconditioner when used with the Schur method and generalized conjugate residual

method with block triangular preconditioners.

There have been studies focusing on different ways of preconditioning K for the Stokes

equation restricted to constant viscosity case; see [26, 21, 84]. [32] observed that a single

multigrid (MG) cycle with an appropriate smoother was usually a good preconditioner for

K because MG is sufficiently effective as a preconditioner for the constant viscosity case.

For discontinuous coefficient case, however, there has not been much study to analyze the

performance of preconditioners for K in a Stokes solver framework. Since MG loses h-

robustness, there is an imminent need for the robustness study of preconditioners for the

case of discontinuous coefficients and we present the AGKS preconditioner to address this

need.

The solver method approach aims to construct a solver by sticking with standard precon-

ditioners such as MG for theK matrix and PMM or BFBt for the S matrix. The performance

of the solver depends heavily on the choice of the inner preconditioner; see [26, 35, 14, 15].

The Uzawa solver is one of the most popular iterative methods for the saddle point problems

in fluid dynamics; see [48, 35, 39]. Since this method requires the solution of K system in
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each step, this leads to the utilization of an inexact Uzawa method involving an approximate

evaluation of K−1; see [17, 96]. This method involves an inner and outer iteration (in our

context, S- and outer-solve, respectively), and the convergence of this method is studied

extensively; see [17, 21, 26, 75].

[59] utilized p-SCR for the high-contrast viscosity Stokes equation and found that its

performance highly depended on the underlying model and the discretization. They were

able to obtain m-robustness of scaled BFBt preconditioner whereas they observed a poor

performance for the scaled PMM preconditioner under p-SCR. The p-SCR is further studied

by [36, 37] for three dimensional problems.

Another commonly used iterative method is Minres; see [74]. [34] suggested the block

diagonal preconditioner for the p-Minres solver and [79] presented further results for this

type of preconditioning. For constant viscosity case, there have been many studies for

different choices of the preconditioners for K and S blocks; see [83, 18, 75, 89, 19]. For the

discontinuous viscosity case, on the other hand, [70, 71] studied the performance of p-Minres

with a new PMM preconditioner.

3.2 Solver methods

The LBB stability of Stokes discretizations has been extensively studied due to utilization

of weak formulations to solve (2.1). We are interested in the LBB stability in the case of

high-contrast coefficients. [70] proved the LBB stability restricted to 0 < ν ≤ 1. Later, [71]

eliminated this restriction and extended their results to cover general viscosity:

sup
uh ∈ Vh

(div uh, ph)

‖uh‖V
≥ cLBB ‖ph‖Q, ph ∈ Qh. (3.9)

The associated spaces and weighted norms are defined as follows:
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V := [H1
0 (Ω)]d,

Q := {p ∈ L2(Ω) : (ν−1p, 1) = 0} ,

‖u‖V := (ν∇u,∇v)
1
2 , u ∈ V,

‖p‖Q := (ν−1p, p)
1
2 , p ∈ Q.

The inequality in (3.9) immediately establishes the LBB stability of our discretization.

There are many solution methods for the indefinite saddle point problem (3.3). We

concentrate on three different solver methods: the p-Uzawa, p-SCR, and p-Minres. We test

the performance the AGKS preconditioner with these solver methods. First, we establish two

spectral equivalences: between the velocity stiffness matrix K and the AGKS preconditioner

and between the Schur complement matrix S and the scaled PMM. Note that the constant

cLBB in (3.9) is directly used for the spectral equivalence of S in the following.

Lemma 5. Let K̂ and Ŝ denote the AGKS preconditioner and the scaled PMM. Then, for

sufficiently large m, the following spectral equivalences hold:

(a)

(1− cm−1/2)(K̂u, u) ≤ (Ku, u) ≤ (1 + cm−1/2)(K̂u, u), (3.10)

for some constant c independent of m.

(b)

c2
LBB(Ŝp, p)Q ≤ (Sp, p) ≤ d(Ŝp, p)Q, (3.11)

where cLBB is the constant in (3.9) which is independent of m and h.

Proof. One can extract a symmetric positive semi-definite matrix N ∗HH with a rank one

kernel from K∗HH in (2.4). N ∗HH is the so-called Neumann matrix and the extraction leads

to the following decomposition:

K∗HH(m) = mN ∗HH + ∆.
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∆ corresponds to the coupling between the DOF in ΩL and on the boundary of ΩH . Since

ker(N ∗HH) has rank one, N ∗HH has a simple zero eigenvalue and the below spectral decompo-

sition holds with λi > 0, i = 1, . . . , nH − 1 where nH denotes the order of N ∗HH :

ZtN ∗HHZ = diag(λ1, . . . , λnH−1, 0).

Although the eigenvectors in the columns of Z and the eigenvalues λi can change according to

the underlying discretization, there is always one simple zero eigenvalue and its correspond-

ing constant eigenvector independent of the discretization. This is a direct consequence of the

diffusion operator corresponding to a Neumann problem. Therefore, the spectral equivalence

established for the P1 finite element in [6, Thm. 1] extends to Q2 and Q1 discretizations,

thereby, completing the proof of part (a) for K∗. The spectral equivalence of K easily follows

from that of K∗ because of the decomposition in (3.4).

The proof of (b) follows from [71, Thm. 6].

For the p-Uzawa and p-Minres solvers, we present convergence and conditioning results

based on the above spectral equivalences.

3.2.1 The preconditioned Uzawa solver

The Uzawa algorithm is a classical solution method which involves block factorization with

forward and backward substitution. Here, we use the preconditioned inexact Uzawa method

described by [75] and [16]. The system (3.3) can be block factorized as follows:

 K(m) 0

B −I


 I K(m)−1Bt

0 S(m)


 u

p

 =

 f

0

 . (3.12)
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Let (uk, pk) be a given approximation of the solution (u, p). Using the block factorization

(3.12) combined with a preconditioned Richardson iteration, one obtains:

 uk+1

pk+1

 =

 uk

pk

+

 I −K−1BtS−1

0 S−1


 K−1 0

BK−1 −I



 f

0

−A
 uk

pk


 .

(3.13)

This leads to the following iterative method:

uk+1 = uk + wk − K̂−1Btzk, (3.14a)

pk+1 = pk + zk, (3.14b)

where wk := K̂−1rk1 , rk1 := f −Kuk −Btpk, and zk := ŜB(wk + uk). Computing zk involves

` iterations of pCG. In this computation, since the assembly of S is prohibitively expensive,

first we replace it by S̃. Then, we utilize the preconditioner K̂ for K and Ŝ for S̃ where the

explicit formula is given by:

S̃ := BK̂−1Bt. (3.15)

Thus, the total number of applications of K̂−1 in (3.14a) and (3.14b) becomes `+2. We refer

the outer-solve (one Uzawa iteration) as steps (3.14a) and (3.14b) combined. In particular,

we call the the computation of zk as an S-solve. The stopping criterion of the S-solve plays

an important for the efficiency of the Uzawa method and it is affected by the accuracy of

K̂; see the analysis in [75, Sec. 4]. In Section 3.2.2, we present the convergence analysis

of p-Uzawa method when we use the AGKS preconditioner for velocity stiffness matrix.

Following the results obtained from this analysis, we determine the stopping criterion of the

S-solve as follows:

Let rip be the residual of the S-solve at iteration i. Then, we abort the iteration when
‖rip‖
‖r0p‖
≤ δtol where

• δtol = 0.5 or

55



• maximum iteration reaches 4.

For the details about the choice of δtol, see Section 3.2.2.1.

3.2.2 Analysis of the preconditioned Uzawa solver

There have been many convergence analyses of the Uzawa solver in the literature. These

studies mostly covered the continuous viscosity case, including the ones by [17] and [75]. To

our knowledge, the convergence analysis for the discontinuous viscosity case has never been

addressed before. The extension of the convergence analysis to the high-contrast viscosity

is our novel contribution. The analysis by [75] lays the foundation of our convergence re-

sults. Unlike their case of interest, i.e., a continuous (constant) viscosity ν → 0, we treat

discontinuous (piecewise constant) ν|ΩH
→ ∞. [75, 54] showed that the convergence of the

p-Uzawa solver with MG preconditioner was independent of ν. This favorable property is

due to the ν independent spectral equivalence between the velocity stiffness matrix and the

MG preconditioner. For the case of discontinuous ν, we prove that the p-Uzawa solver with

AGKS preconditioner depends on ν; see (3.10). Interestingly this dependence turns out to

be an advantage for the high-contrast case 1 because it lays the foundation of the results in

(a) and (b) below. By using (3.10), we establish three important results:

(a) We prove the convergence of the inexact p-Uzawa solver for large viscosity values

ν|ΩH
= m.

(b) We prove that the inexact p-Uzawa method converges to the exact one as m→∞.

(c) We quantify the convergence rate of the inexact p-Uzawa solver by the viscosity contrast

m in (3.27) and (3.28) when the AGKS preconditioner is used for the approximation

of velocity stiffness matrix.

We find that the p-Uzawa method is the most suitable solver for reflecting the effectiveness

of a preconditioner designed for high-contrast problems. Since viscosity contrast m can be
1The design of the AGKS preconditioner is centered on asymptotically large values of ν|ΩH

= m. When
m is sufficiently large, the AGKS preconditioner becomes m-robust due to the spectral equivalence in (3.10).
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directly incorporated to the convergence rate, a preconditioner that can use largem values to

its advantage will be discerned most obviously under the p-Uzawa solver. In fact, we observe

the superior performance of the AGKS preconditioner when it is used under the p-Uzawa

method.

Our convergence analysis is based on the one given by [75]. We start by defining the

following norms:

‖u‖K̂ := (K̂u, u)
1
2 for u ∈ Rd

‖p‖S̃ := (S̃p, p)
1
2 for p ∈ e⊥Q

Let

 u

p

 be the exact solution of (2.1) and ek be the error in the k-th step of the p-Uzawa

method:

ek =

 eku

ekp

 :=

 u

p

−
 uk

pk

 .
Define δtol < 1 to be the prescribed tolerance of the S-solve enforcing:

‖p− pk‖s̃
‖p‖s̃

≤ δtol. (3.16)

Utilizing the spectral equivalence (3.10), we have the following error estimates for sufficiently

large m.

Lemma 6.

‖ek+1
u ‖K̂ ≤ cm−1/2(2 + δtol)‖eku‖K̂ + δtol‖ekp‖S̃ (3.17)

‖ek+1
p ‖S̃ ≤ cm−1/2(1 + δtol)‖eku‖K̂ + δtol‖ekp‖S̃. (3.18)
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Proof. The error can be written component-wise as follows:

ek+1
u = u− uk+1 = u− uk − K̂−1(Keku +Btekp −Btz) = (I − K̂−1K)eku − (K̂−1Bt)ek+1

p ,

ek+1
p = p− pk+1 = ekp + z = (ekp − S̃−1Bw) + (S̃−1Bw − z).

Then it can be bounded as follows:

‖ek+1
u ‖K̂ | ≤ ‖I − K̂−1/2KK̂−1/2‖ ‖eku‖K̂ − ‖K̂

−1/2BtS̃−1/2‖ ‖ek+1
p ‖S̃, (3.19)

‖ek+1
p ‖S̃ ≤ ‖ekp − S̃−1Bw‖+ ‖S̃−1Bw − z‖. (3.20)

Note that the spectral equivalence in (3.10) leads to:

‖I − K̂−1/2KK̂−1/2‖ ≤ cm−1/2. (3.21)

By using the definition of S̃, we obtain the following:

‖K̂−1/2BtS̃−1/2‖ = 1. (3.22)

Using (3.19), (3.21), and (3.22), we arrive at:

‖ek+1
u ‖K̂ ≤ cm−1/2‖eku‖K̂ + ‖ek+1

p ‖S̃. (3.23)

We proceed with the ek+1
p bound. First, note that one can prove:

(S̃−1Bw,Bw)1/2 ≤ cm−1/2‖eku‖K̂ + ‖ekp‖S̃. (3.24)

Then, using (3.16) and (3.24), respectively, we arrive at:
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‖ekp − S̃−1Bw‖ ≤ cm−1/2 ‖eku‖K̂ , (3.25)

‖S̃−1Bw − z‖ ≤ δtol(cm
−1/2 ‖eku‖K̂ + ‖ekp‖S̃). (3.26)

Finally, (3.18) follows from (3.20), (3.25), and (3.26). (3.17) follows from (3.23) and (3.18).

Theorem 2. Let the spectral equivalences in (3.10) and (3.11) hold. Then, the error bound

for the p-Uzawa solver is given by the following:

max{‖ek+1
u ‖K̂ , ‖ek+1

p ‖S̃}
max{‖eku‖K̂ , ‖ekp‖S̃}

= δtol +O(m−1/2) (3.27)

‖eku‖K̂ + ‖ekp‖S̃
‖e0

u‖K̂ + ‖e0
p‖S̃

=
5

2
δktol +O(m−1/2) (3.28)

Proof. One can write (3.17) and (3.18) as follows:

 ‖ek+1
u ‖K̂

‖ek+1
p ‖S̃

 ≤ C

 ‖eku‖K̂
‖ekp‖S̃


where the error iteration matrix C is given by:

C =

 cm−1/2(2 + δtol) δtol

cm−1/2(1 + δtol) δtol

 . (3.29)

The result in (3.27) follows from

‖C‖∞ = cm−1/2(2 + δtol) + δtol = δtol +O(m−1/2).

(3.28) requires an upper bound for ‖Ck‖1. For that, we use the following spectral decompo-
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sition of C:

C = V DV −1.

The proof is completed by using ‖Ck‖1 ≤ ρ(C)k‖V ‖1‖V −1‖1 and the following estimates:

ρ(C) = δtol +O(m−1/2)

‖V ‖1 ≤
5

2
+O(m−1/2)

‖V −1‖1 = 1.

The details of the above spectral bounds are given in Section 3.4.1.

Remark 4. For m sufficiently large, it follows from Theorem 2 that the p-Uzawa solver

always converges when the preconditioner of choice is AGKS. In addition, the contraction

factor for the inexact Uzawa method converges to that of the exact one; δtol +O(m−1/2) and

δtol, respectively. We can deduce that only one iteration of pCG with the AGKS preconditioner

is enough for the accuracy of S-solve in the asymptotic regime 2. We give the justification of

this deduction in Section 3.2.2.1.

3.2.2.1 The choice of optimal δtol

Let k and ` be the number of outer- and S-solve iterations of the p-Uzawa solver. Here we

comment on the effect of the choice of δtol on the total number of iterations for varying m

values. An optimal δtol is chosen so that the total number of p-Uzawa iterations is minimized.

In other words, δtol guarantees not only the convergence, but also the efficiency of the p-

Uzawa solver. Let ε < 1 be the tolerance of the p-Uzawa solver and β < 1 be contraction

factor of the S-solve. Using (3.28) and (3.16), we have:

ρ(C)k ≤ ε, β` ≤ δtol.

2For the definition of asymptotic regime, see Section 3.3. Note that the asymptotic regime of the p-Uzawa
solver is observed to be m ≥ 103

60



In order to find the optimal δtol, we minimize the total number of p-Uzawa iterations given

by k`:

k` ≤ ln(ε)

ln(ρ(C))

ln(δtol)

ln(β)

=
ln(ε)

ln(β)

ln(δtol)

ln(ρ(C))

=: iterexact Rinexact/exact.

Here Rinexact/exact represents the ratio of the number of iterations of the p-Uzawa and

exact Uzawa solvers. It suffices to minimize Rinexact/exact to figure out the range for optimal

δtol. We present the plot of Rinexact/exact for a generic constant c = 1 3 in Figure 3.1. As m

value gets larger, specifically for m ≥ 103, we observe that Rinexact/exact reaches its minimum

value for almost all δtol. Asm gets larger, the fact that the smallest value of Rinexact/exact → 1

indicates that the total number of p-Uzawa iterations goes to that of the exact one. Since

it was pointed out by [75] that δtol = 0.5 is an optimal value for the MG preconditioner, we

choose the same δtol in p-Uzawa in order to make a fair comparison between AGKS and MG.
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Figure 3.1: The plot of Rinexact/exact for fixed β = 0.8, and m ≥ 103.

3The constant c is from the explicit expression of O(m−1/2) in (3.10). A numerical study reveals that
Rinexact/exact|c=1 is an upper bound for Rinexact/exact.
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3.2.3 The preconditioned Schur complement reduction solver

The preconditioned Schur complement reduction (p-SCR) solver is a direct method which

decouples the velocity and pressure equations. This method involves the following block

Gaussian eliminated system:

 K(m) Bt

0 S(m)


 u

p

 =

 f

fp

 , (3.30)

where fp = BK−1f . Applying backward substitution, one obtains the following decoupled

system of equations:

Solvefor p : Sp = fp, (3.31)

Solvefor u : Ku = f −Btp. (3.32)

The systems in (3.31) and (3.32) are solved by preconditioned Krylov solvers. Since the

explicit construction of S is required in each step of these subspace methods, we replace the

system in (3.31) by the following equation:

S̃p = fp, (3.33)

where S̃ is the approximation of S by BK̂−1Bt as in (3.15), and K̂ is the preconditioner

for K. The methods applied to solve (3.31) and (3.32) are referred as the S-solve and

the K-solve, respectively; see Section 3.3. Since the p-SCR solver is a direct method, the

convergence of the S-solve highly depends on the accuracy of the K−1 approximation used

in each step. Therefore, instead of one application of K̂−1 (as in the case of p-Uzawa solver),

we use an accurate approximation of K−1 in each step of the S-solve. This is the main

distinction between the usage of p-SCR and p-Uzawa solvers.
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3.2.4 The preconditioned Minres solver

The p-Minres is a popular iterative method applied to the system (3.3). Let v :=

 u

p

.
With the given initial guess v0 :=

 u0

p0

 where p0 ∈ e⊥Q and with the corresponding error

r0 := v − v0, the p-Minres solver computes:

vk = argmin
v∈v0+Kk(B−1A,r̃0)

‖B−1


 f

0

−A v

 ‖.
Here, r̃0 = B−1r0 and Kk = span{r̃0,B−1Ar̃0, . . . (B−1A)kr̃0}, and the preconditioner has

the following block diagonal structure:

B =

 K̂ 0

0 Ŝ

 , (3.34)

where K̂ and Ŝ are the preconditioners for K and S, respectively. In each step of the p-

Minres solver the above preconditioner is applied in the following fashion: for the K-block

one application of K̂ and for the S-block several applications of pCG to the S̃-system with

Ŝ as the preconditioner. Here, S̃ = BK̂−1Bt stands for the approximation of S. Since S

is replaced by S̃, this turns the p-Minres algorithm to an inexact one; see the inexactness

discussion in Section 3.3.3. The p-Minres iterations are called outer-solve whereas the pCG

solve for the S̃-system is called inner-solve.

The convergence rate of the p-Minres method depends on the condition number of the

preconditioned matrix, B−1A. Combining the spectral equivalences given in (3.10) and (3.11)

with the well-known condition number estimate in the book by [12], we obtain:

κB(B−1A) ≤ max{(1 + cm−1/2), d}
min{(1− cm−1/2), c2

LBB}
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It immediately follows that the convergence rate of the p-Minres method is independent of

m asymptotically.

3.3 Numerical experiments

The goal of the numerical experiments is to compare the performance of the AGKS and MG

preconditioners by using three different solvers: p-Uzawa, p-SCR and p-Minres. We use a

four-level hierarchy in which the numbers of DOF, N1, N2, N3, and N4, are 659, 2467, 9539,

and 37507 from coarsest to finest level. We consider cavity flow with enclosed boundary

conditions with right hand side functions f = 1 and g = 0 on a 2D domain [−1, 1]× [−1, 1].

For discretization, we use theQ2-Q1 (the so-called Taylor-Hood) stable finite elements and

stabilizedQ1-Q1 finite elements for the velocity-pressure pair. We consider the case of a single

island (viscous inclusion) located at the region [−1/4, 1/4]×[−3/4, 3/4]. For an extension, we

also consider the cases of L-shaped island and two disconnected islands; see Figure 3.2. The

observation about these cases are given in Section 3.3.4. The implementation of discretization

is based on ifiss3.1 software provided by [82]; also see [31]. The AGKS preconditioner

implementation is based on our implementation in [6, 10, 11]. The implementation of the

MG preconditioner is derived from the one by [5]. We employ a V(1,1)-cycle, with point

Gauss-Seidel (GS) smoother. A direct solver is used for the coarsest level. For each level of

refinement, we present the number of iteration corresponding to each solve (outer-solve and

S-solve; S-solve and K-solve, outer-solve and inner-solve for p-Uzawa, p-SCR, and p-Minres

iterations, respectively). In the tables, N , NS, and NK∗ stand for the number of DOF in

A, S, and K∗ systems, respectively. We enforce an iteration bound of 200. If the method

seems to converge slightly beyond this bound, we denote it by ∗. A zero initial guess is used.

The numerical experiments were performed on a dual core Macbook Pro, running at 2.4 GHz

with 4GB RAM.

In analyzing m-robustness, we observe a special feature. The iteration count remains

fixed whenm becomes larger than a certain threshold value. We define the notion asymptotic
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Figure 3.2: The streamline plot of the high-contrast Stokes equation for three different high-viscosity
island configurations; (left) rectangular, (middle) L-shaped, and (right) two discon-
nected islands.

regime to indicate m values bigger than this threshold. Identifying an asymptotic regime is

desirable because it immediately indicates m-robustness.

3.3.1 The preconditioned Uzawa solver

We use pCG solver with scaled PMM as a preconditioner, 0.5 as tolerance and 4 as maximum

number of iterations, for the S-system in each iteration of p-Uzawa. The tolerance for the

outer-solve is set to be 5× 10−6. We report the performance of the p-Uzawa solver applied

to a rectangular mesh with Q2-Q1 discretization. We observe that the p-Uzawa method is

m-robust as long as the optimal stopping criterion is used for the S-solve; see Table 3.1.

This stopping criterion is chosen according to the convergence analysis in Section 3.2.2.

The performances of the AGKS and MG preconditioners are observed as follows. When

the MG preconditioner is used, the p-Uzawa solver loses m- and h-robustness; see Table 3.1.

Especially for viscosity values larger than 105, we further observe that the iteration number

of pCG method for the S-solve, denoted by `, reaches the maximum iteration count 4. Since

the MG preconditioner is applied `+2 times at each iteration of the outer solve, we illustrate

how this results in an unreasonable number of applications of the MG preconditioner; see
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Table 3.1: Number of iterations for p-Uzawa, Q2-Q1, rectangular mesh. (top) MG, (bottom) AGKS

N\m 100 101 102 103 104 105 106 107 108 109

outer− solve

659 13 15 15 17 19 19 19 19 22 22

2467 13 17 17 18 20 21 21 21 21 21

9539 18 20 20 23 25 26 27 28 31 32

37507 13 23 23 26 27 38 35 40 48 50

659 24 15 14 14 14 14 14 14 14 14

2467 38 21 18 19 18 18 18 18 18 18

9539 47 31 16 16 15 15 15 15 15 15

37507 70 50 17 16 15 15 15 15 15 15

NS\m 100 101 102 103 104 105 106 107 108 109

S−solve

81 2 3 2 2 3 3 3 3 2 2

289 4 4 4 4 4 4 4 4 4 4

1089 1 2 3 4 4 4 4 3 3 3

4225 1 1 1 1 3 2 4 3 4 3

81 3 2 3 3 3 3 3 3 3 3

289 3 3 3 3 3 3 3 3 3 3

1089 1 1 3 1 1 1 1 1 1 1

4225 1 1 3 1 1 1 1 1 1 1
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Figure 3.3. For instance in Table 3.1, for the case of m = 108, we have ` = 4. Therefore,

in each outer-iteration, we apply the MG preconditioner ` + 2 = 6 times as explained in

Section 3.2.2. At level = 4, since the total number of MG application is the product of the

outer-solve count with ` + 2, it becomes 48 × 6 = 288. The iteration increases even more

rapidly as we refine the mesh. Therefore, the loss of h-robustness sets a major drawback as

larger size problems are considered.

On the other hand, the AGKS preconditioner maintains m- and h-robustness simultane-

ously. Asymptotically, only one iteration of pCG is sufficient to obtain an accurate S-solve;

see Table 3.1. When we do the above calculation, we find that the total number of AGKS

applications is 15× (1 + 2) = 45. Since this application count remains fixed as the mesh is

refined, we infer the h-robustness of the AGKS preconditioner; see Figure 3.3. Hence, the

AGKS preconditioner will acceleratedly outperform the MG preconditioner as more mesh

refinements are introduced.

3.3.2 The preconditioned Schur complement reduction solver

Since p-SCR is a direct method, the solution to the saddle point system is obtained by

separate solutions for the K and S systems (with an accuracy of 5 × 10−6.) These solution

processes are called K- and S-solve, respectively. For the K-solve, we apply the pCG method

with either AGKS or MG preconditioner. For the S-solve, we apply the pCG method with

scaled PMM preconditioner. In each iteration of the S-solve, an accurate approximation of

K−1 is needed due to the definition of S. Hence, a K-solve is done in each step of S-solve.

Since an accurate K-system solution is required for both the K-solve and S-solve, the p-SCR

method plays a critical role in revealing the effectiveness of the AGKS and MG as standalone

preconditioners.

Typically a sophisticated preconditioner such as BFBt is suggested to handle the S system

due to complications arising from high-contrast viscosity; see [59, 77]. We overcome these

complications by focusing on an accurate K-solve in each iteration of the S-solve. Therefore,

67



10
2

10
3

10
4

10
5

10
1

10
2

10
3

Problem size

N
u
m

b
e
r 

o
f 
M

G
 a

p
p
lic

a
ti
o
n
s

 

 

p−Uzawa

p−SCR

p−Minres

10
2

10
3

10
4

10
5

10
1

10
2

10
3

Problem size

N
u
m

b
e
r 

o
f 
A

G
K

S
 a

p
p
lic

a
ti
o
n
s

 

 

p−Uzawa

p−SCR

p−Minres

10
0

10
2

10
4

10
6

10
8

10
10

10
1

10
2

10
3

Viscosity value

N
u
m

b
e
r 

o
f 

M
G

 a
p

p
lic

a
ti
o
n
s

 

 

p−Uzawa

p−SCR

p−Minres

10
0

10
2

10
4

10
6

10
8

10
10

10
1

10
2

10
3

Viscosity value

N
u
m

b
e

r 
o

f 
A

G
K

S
 a

p
p

lic
a
ti
o
n
s

 

 

p−Uzawa

p−SCR

p−Minres

Figure 3.3: The plot of the number of (top-left) MG applications versus problem size for fixed
viscosity value m = 108, (top-right) MG applications versus viscosity value for fixed
level = 4 (bottom-left) AGKS applications vs problem size for fixed viscosity value
m = 108, (bottom-right) AGKS applications versus viscosity value for fixed level 4.

even a simple preconditioner such as scaled PMM maintains m-robustness resulting in a

good performance of pCG for the S-solve. But h-robustness was lost; see Table 3.2. It is in

agreement with the p-SCR behaviour (even) with BFBt preconditioner observed by [59].

As long as theK solve is accurate, the preconditioner choice (whether AGKS or MG) does

not affect the performance of pCG in S-solve. However, this performance heavily depends

on the mesh aspect ratio and the choice of discretization. We obtain the fastest convergence

when Q2-Q1 discretization is used on a rectangular mesh; see Table 3.2. In this case, one

iteration of AGKS is enough to obtain an accurate solution to the K-system. When the

aspect ratio deteriorates, S-solve is affected only with an increase in the iteration count,

whereas the K-solve is adversely affected by the loss of robustness. Specifically, for the Q2-
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Table 3.2: Number of iterations for p-SCR, Q2-Q1, rectangular mesh. (top) MG, (bottom) AGKS.

NS\m 100 101 102 103 104 105 106 107 108 109

S−solve

81 10 14 14 14 14 14 14 14 14 14

289 10 15 15 15 15 15 15 15 15 15

1089 11 16 17 17 17 17 17 17 17 17

4225 12 17 18 18 18 18 18 18 18 18

81 10 14 14 14 14 14 14 14 14 14

289 10 15 15 15 15 15 15 15 15 15

1089 11 16 17 17 17 17 17 17 17 17

4225 12 17 18 18 18 18 18 18 18 18

NK∗\m 100 101 102 103 104 105 106 107 108 109

K−solve

289 7 7 7 7 7 7 7 7 7 7

1089 6 7 7 7 7 7 7 7 7 7

4225 6 7 7 7 7 7 7 7 7 7

16641 6 7 7 7 7 7 7 7 7 7

289 12 8 5 3 3 3 1 1 1 1

1089 17 10 6 4 3 3 2 1 1 1

4225 24 14 7 5 3 3 1 1 1 1

16641 32 17 8 5 3 3 2 1 1 1
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Q1 discretization, aspect ratio deterioration spoils the h-robustness of the MG preconditioner

whereas it spoils the m-robustness of the AGKS preconditioner; see Tables 3.3 and 3.5.

We observe that the performance of p-SCR method is very poor for the Q1-Q1 discretiza-

tion due to the rapid increase in iteration count of the S-solve. With this discretization, the

AGKS preconditioner maintains them- and h- robustness even when the aspect ratio is poor.

But high iteration counts in the S-solver (see Tables 3.4–3.5) causes the Q1-Q1 discretization

to be an inappropriate choice for the p-SCR solver.

3.3.3 The preconditioned Minres solver

We notice that the p-Minres has not been the solver of choice for high-contrast problems

due to its unfavorable performance with PMM for the S-system; see [70]. We have taken a

novel approach for the S system. First, we replace S by S̃ = BK̂−1Bt where K̂−1 step is

one application of the AGKS preconditioner. This makes the solver method inexact. Then,

we solve S̃ system by using a pCG solver with scaled PMM preconditioner with tolerance

0.05 with a maximum of 20 iterations. The pCG and p-Minres solution steps are called the

inner- and outer-solve, respectively. Our approach for the S-system is similar to the one we

take in the p-Uzawa solver. But, notice that now the inner solver requires more accuracy in

order to guarantee a convergent p-Minres solver.

As in the p-Uzawa case, the effectiveness of the AGKS preconditioner has been confirmed

as it maintains both the m- and h-robustness whereas MG suffers from the loss of both; see

Table 3.6. Furthermore, we observe that the choice of K̂−1–an application of either MG

or AGKS–in the inner-solve dramatically affects the performance inner-solve. Specifically,

the scaled PMM preconditioner is m-robust, but not h-robust for the inner-solve with MG,

whereas it is both m- and h-robust for inner-solve with AGKS.

3.3.4 Remarks on the AGKS performance for different solvers

Here we compare the performance of the AGKS preconditioner under three different solvers.

For p-Uzawa and p-Minres solvers, we report numerical results for only Q2-Q1 discretization
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Table 3.3: Number of iterations for p-SCR, Q2-Q1, skewed mesh (π4 ). (top) MG, (bottom) AGKS.

NS\m 100 101 102 103 104 105 106 107 108 109

S−solve

81 17 23 27 31 32 32 32 32 32 32

289 20 28 33 38 39 38 38 38 38 38

1089 22 34 38 43 45 45 44 44 44 44

4225 25 41 43 47 49 49 49 49 49 49

81 16 22 25 30 30 31 31 31 31 31

289 18 26 31 38 38 38 37 37 37 37

1089 20 32 36 41 44 44 43 43 43 43

4225 22 40 41 45 48 48 48 48 48 48

NK∗\m 100 101 102 103 104 105 106 107 108 109

K−solve

289 8 9 9 9 9 9 9 9 9 9

1089 8 9 10 11 12 12 12 12 12 12

4225 8 9 11 13 13 13 13 13 13 13

16641 8 9 12 15 15 15 15 15 15 15

289 16 13 12 12 12 12 14 15 15 16

1089 22 15 14 13 13 14 14 16 16 18

4225 22 15 14 13 13 14 14 16 16 18

16641 22 15 14 13 13 14 14 16 16 18
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Table 3.4: Number of iterations for p-SCR, Q1-Q1, rectangular mesh, (top) MG, (bottom) AGKS.

NS\m 100 101 102 103 104 105 106 107 108 109

S−solve

81 14 28 47 65 73 84 95 107 125 150

289 17 42 118 ∗ ∗ ∗ ∗ ∗ ∗ ∗
1089 18 55 180 ∗ ∗ ∗ ∗ ∗ ∗ ∗
4225 20 60 189 ∗ ∗ ∗ ∗ ∗ ∗ ∗

81 9 25 52 80 96 110 135 158 180 190

289 15 32 90 171 ∗ ∗ ∗ ∗ ∗ ∗
1089 17 48 178 ∗ ∗ ∗ ∗ ∗ ∗ ∗
4225 19 60 193 ∗ ∗ ∗ ∗ ∗ ∗ ∗

NK∗\m 100 101 102 103 104 105 106 107 108 109

K−solve

289 7 7 7 7 7 7 7 7 7 7

1089 6 7 7 7 7 7 7 7 7 7

4225 6 7 7 7 7 7 7 7 7 7

16641 6 7 7 7 7 7 7 7 7 7

289 12 8 6 4 4 4 2 2 2 2

1089 17 10 7 5 4 4 2 2 2 2

4225 24 13 8 6 4 4 3 2 2 2

16641 24 13 9 6 4 4 3 2 2 2
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Table 3.5: Number of iterations for p-SCR, Q1-Q1, skewed mesh (π4 ). (top) MG, (bottom) AGKS.

NS\m 100 101 102 103 104 105 106 107 108 109

S−solve

81 14 28 47 65 73 84 95 107 125 150

289 17 42 118 ∗ ∗ ∗ ∗ ∗ ∗ ∗
1089 18 55 180 ∗ ∗ ∗ ∗ ∗ ∗ ∗
4225 20 60 189 ∗ ∗ ∗ ∗ ∗ ∗ ∗

81 9 25 52 80 96 110 135 158 180 190

289 15 32 90 171 ∗ ∗ ∗ ∗ ∗ ∗
1089 17 48 178 ∗ ∗ ∗ ∗ ∗ ∗ ∗
4225 19 60 193 ∗ ∗ ∗ ∗ ∗ ∗ ∗

NK∗\m 100 101 102 103 104 105 106 107 108 109

K−solve

289 7 8 9 11 11 11 11 11 11 11

1089 8 8 11 13 13 13 13 13 13 13

4225 8 9 12 14 15 15 15 15 15 15

16641 8 9 13 15 17 17 17 17 17 17

289 15 11 9 8 7 6 6 6 6 7

1089 21 14 10 8 8 7 6 7 7 7

4225 30 17 11 9 8 8 7 7 7 10

16641 35 21 15 9 8 7 6 7 7 9
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Table 3.6: Number of iterations for p-Minres, Q2-Q1, rectangular mesh, (top) MG, (bottom) AGKS.

N\m 100 101 102 103 104 105 106 107 108 109

outer− solve

659 15 15 18 19 19 19 20 20 23 24

2467 20 19 21 24 23 24 25 28 29 30

9539 21 19 24 24 24 24 25 26 28 32

37507 21 21 23 26 30 26 29 31 34 36

659 29 23 18 16 18 16 16 18 20 20

2467 40 30 17 17 16 16 16 19 19 19

9539 50 45 20 20 19 16 16 20 20 20

37507 70 52 22 20 19 16 16 20 20 20

NK∗\m 100 101 102 103 104 105 106 107 108 109

inner− solve

81 6 7 7 7 7 7 7 7 7 7

289 8 9 9 9 9 9 9 9 9 9

1089 9 11 11 11 11 11 11 11 11 11

4225 12 13 13 13 13 13 13 13 13 13

81 20 20 5 5 5 5 5 5 5 5

289 20 20 5 5 5 5 5 5 5 5

1089 20 20 5 5 5 5 5 5 5 5

4225 20 20 5 5 5 5 5 5 5 5
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on a rectangular mesh with a single island. However, we have performed experiments for

other discretizations with L-shaped and two disconnected island cases with both rectangular

and skewed mesh. Since we see similar behaviour, we report only our observations rather

than giving the iteration tables.

The p-Uzawa solver turns out to be the best choice since AGKS preserves both m- and

h-robustness regardless of the discretization type, deterioration in the aspect ratio of the

mesh, or the island configuration. The change in one of the above only causes increase in

the number of iterations, but qualitatively m- and h-robustness are maintained. Moreover,

we observe that the asymptotic regime of the p-Uzawa solver starts with the m value 103;

see left-bottom in Figure 3.3.

p-SCR solver, on the other hand, becomes the fastest for the problem in consideration

withQ2-Q1 discretization in a rectangular mesh. However, the AGKS under the p-SCR solver

is not h-robust; see the left column of Table 3.2. As island configuration changes, the number

of iterations of both K- and S-solve increases. In addition to that, as the discretization

changes, the m-robustness of PMM for S-solve is lost. Therefore, as the problem gets larger

or island configuration becomes more complicated, the p-SCR solver becomes less desirable

than p-Uzawa; see bottom-left and top-left in Figure 3.3. The asymptotic regime of the

p-Uzawa solver is m ≥ 107.

The AGKS preconditioner under the p-Minres solver also maintains both m- and h-

robustness as the discretization, the aspect ratio of the mesh, or the island configuration

change. However, the number of iterations in the p-Minres solver increases dramatically

when the island is L-shaped. Compared to p-Uzawa, one needs a more accurate inner-solve

for a convergent p-Minres. In addition, the asymptotic regime of p-Minres solver is m ≥ 107.

Combining these three features, p-Minres becomes less desirable compared to p-Uzawa; see

bottom-left and top-left in Figure 3.3. We observe that p-Minres method has the poorest

performance among p-Uzawa and p-SCR methods in terms of number of AGKS and MG
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applications. However, this solver is potentially useful for large size problems as the AGKS

preconditioner maintains h-robustness.

3.4 Appendix

3.4.1 Proof of Theorem 2

Here we give the details of the algebraic operations in the proof of Theorem 2.

Lemma 7. Let t be given by t :=
√
c2(δtol + 2)2 + 2cδ2

tolm
1/2 + δ2

tolm. Then

t = δtolm
1/2 + 2cδtol +O(m−1/2). (3.35)

Proof.

t =
t2

t
≤ c2(δtol + 2)2 + 2cδ2

tolm
1/2 + δ2

tolm

δtolm1/2

= δtolm
1/2 + 2cδtol +

c2(δtol + 2)2

δtolm1/2

= δtolm
1/2 + 2cδtol +O(m−1/2).

The error iteration matrix C was given in (3.29). Its spectral radius ρ(C) in (3.36) and

1-norm of its eigenvector matrix in (3.37) were obtain by using symbolic computation.

Lemma 8.

ρ(C) = δtol +O(m−1/2).

Proof. Using the spectral radius of the matrix C in (3.29) and Lemma 7, we get the following:

ρ(C) =
c(δtol + 2) + δtolm

1/2 + t

2m1/2
(3.36)

=
c(δtol + 2) + δtolm

1/2 + δtolm
1/2 + 2cδtol +O(m−1/2)

2m1/2

= δtol +O(m−1/2).
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Lemma 9.

‖V ‖1 =
5

2
+O(m−1/2).

Proof. Using the eigenvectors of C and Lemma 7, we obtain the following bound:

‖V ‖1 =
4c+ 3cδtol − δtolm1/2 + t

2c(1 + δtol)
(3.37)

=
4c+ 5cδtol +O(m−1/2)

2c(1 + δtol)

=
5

2
+O(m−1/2).

The contraction factor of the p-Uzawa method in (3.28) follows from Lemma 8 and

Lemma 9.
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Chapter 4

The AGKS Preconditioner for the High-
contrast Biharmonic Plate Equation

In this Chapter, we extend the applicability of the AGKS preconditioner even further and

show that the very same preconditioner can be used for a wider family of elliptic partial

differential equations (PDEs). The broadness of the applicability of the AGKS preconditioner

has been achieved by singular perturbation analysis (SPA) as it provides valuable insight

into qualitative nature of the underlying PDE and its discretization. The devised SPA is

utilized to explain the properties of the submatrices related to K(m). In particular, SPA of

highly-bending block KHH(m), as modulus of bending m→∞, has important implications

for the behaviour of the Schur complement S(m) of KHH(m) in K(m). Namely,

S(m) := KLL −KLHK
−1
HH(m)KHL = S∞ +O(m−1) , (4.1)

where S∞ is a LRP of KLL.

The rank of the perturbation depends on the number of disconnected components com-

prising the highly-bending region. This special limiting form of S(m) allows us to build a

robust approximation of S(m)−1 by merely using solvers for KLL by the help of the Sherman-

Morrison-Woodbury formula.

Preconditioning for the biharmonic equation was extensively studied in the domain de-

composition setting [63, 95] and multigrid, BPX, and hierarchical basis settings [20, 47, 62,

56, 72, 73]. Other solution strategies were also developed such as fast Poisson solvers [60, 61]

and iterative methods [25]. However, there is only limited preconditioning literature available

for discontinuous coefficients. Domain decomposition preconditioners have been studied
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[58] for the mortar type discretization of the biharmonic equation with large jumps in the

coefficients.

The high-contrast in material properties is ubiquitous in composite materials. Hence,

the modeling of composite materials is an immediate application of the biharmonic plate

equation with high-contrast coefficients. Since the usage of composite materials is steadily

increasing, the simulation and modeling of composite has become essential. We witness that

the utilization of composites has become an industry standard. For instance, light weight

composite materials are now being used in modern aircrafts by Airbus and Boeing. There is

imminent need for robust preconditioning technology in the computational material science

community as the modeling and simulation capability of composites evolve.

In [88], the Euler-Bernoulli equation with discontinuous coefficients was studied for the

kinematics of composite beams. In the beam setting, the physical meaning of the PDE

coefficient corresponds to the product of Young’s modulus and moment of inertia [76, p.

103], [88]. In the biharmonic plate equation setting, the PDE coefficient represents the plate

modulus of bending [76, p. 406]. Nonhomogeneous elastic plates have been considered in

[57] with varying modulus of elasticity.

Our model problem is limited to the biharmonic equation which captures only the

isotropic materials. The extension of our analysis to a more generalized 4-th order PDE

is widely open. Such PDEs have an important role in structural mechanics as they are used

in modeling anisotropic materials. Plane deformations of anisotropic materials were stud-

ied in [64], but extension to simultaneously heterogeneous and anisotropic case needs to be

further explored. Grossi [46] has studied the existence of the weak solutions of anisotropic

plates. The coercivity of the bilinear forms has also been established which may lay the

foundations for our future work related to LRPs.

The reduction of the analysis of the two-dimensional problem in the classical theory of

elasticity to the solution of biharmonic equation is due to Airy, who used the calculations in

the design of a structural support system for an astronomical telescope.
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The study of 3D problems in the mathematical theory of elasticity also touches upon

formulations which involve the biharmonic operator. These developments essentially lay the

foundation to the study of the mathematical theory of elasticity which forms an important

aspect of the mechanics of deformable media.

The solutions developed for slow viscous flow problems including flow of molten metals,

flow particulate suspensions and in the modeling of bio-fluid dynamics.

Relevant field equations are used to develop the biharmonic equations governing plane

problems in elasticity theory and slow viscous flow. In addition, biharmonic equation is

governing equation in flexure of thin plates, described by the Germain-Poisson-Kirchoff this

plate theory.

4.1 The underlying PDE and the linear system

We study the following high-contrast biharmonic equation for the clamped plate problem:

∇2 (α∇2u) = f in Ω ⊂ R2,

u = ∂nu = 0 on ∂Ω.
(4.2)

We restrict the plate bending process to a binary regime (see Figure 2.1) in which the

coefficient α is a piecewise constant function with the following values:

α(x) =


m� 1, x ∈ ΩH ,

1, x ∈ ΩL.

(4.3)

It is quite common to idealize the discontinuous PDE coefficient α by a piecewise constant

function [13, 51]. In the case of high-contrast diffusion equation, Aksoylu and Beyer [4]

showed that the idealization of diffusivity by piecewise constant coefficients is meaningful by

showing a continuous dependence of the solutions on the diffusivity; also see [3]. A similar

justification can be extended to the high-contrast biharmonic plate equation.
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4.1.1 Bilinear forms for the biharmonic equation

In the theory of elasticity, potential energy is defined by using rotationally invariant func-

tions. For plates, the potential energy is given by [23, p. 30]:

J(v) :=
1

2

∫
Ω

α
[
{traceHess}2 + 2(σ − 1) detHess

]
dx−

∫
Ω

fv dx, (4.4)

where Hess is the Hessian,

Hess =

∂11v ∂12v

∂21v ∂22v

 .
The bilinear form corresponding to energy minimization in (4.4) is given by:

a(u, v) :=

∫
Ω

α
[
∇2u∇2v + (1− σ){2∂12u ∂12v − ∂11u ∂22v − ∂22u ∂11v}

]
dx, (4.5)

where 0 < σ < 1/2 is the Poisson’s ratio. Note that the straightforward bilinear form

associated to (4.2) is obtained by using Green’s formula:

∫
Ω

∇2 (α∇2u) v dx =

∫
Ω

α∇2u∇2v dx+

∫
∂Ω

α ∂n∇2u v dγ −
∫
∂Ω

α∇2u ∂nv dγ. (4.6)

We see that both (4.5) and (4.6) contain the so-called canonical bilinear form, ã(u, v), asso-

ciated to the biharmonic equation (4.2):

ã(u, v) :=

∫
Ω

α∇2u∇2v dx. (4.7)

When u, v ∈ H2
0 (Ω), both bilinear forms a(u, v) and ã(u, v) correspond to the strong formu-

lation (4.2) due to second Green’s formula and the zero contribution of the below term:

∫
Ω

(1− σ){2∂12u ∂12v − ∂11u ∂22v − ∂22u ∂11v} dx. (4.8)
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4.1.2 Effects of high-contrast on the spectrum

Roughness of PDE coefficients causes loss of robustness of preconditioners. This is mainly due

to clusters of eigenvalues with varying magnitude. Although diagonal scaling has no effect

on the asymptotic behaviour of the condition number, it leads to an improved clustering

in the spectrum. The spectrum of diagonally scaled stiffness matrix, A, is bounded from

above and below except three eigenvalues in the case of a single isolated highly-bending

island. On the other hand, the spectrum of K contains eigenvalues approaching infinity

with cardinality depending on the number of degrees of freedom (DOF) contained within

highly-bending island. For the case of m = 109, we depict the spectra of K and A and their

subblocks in Figure 4.1. Clustering provided by diagonal scaling can be advantageous for

faster convergence of Krylov subspace solvers especially when deflation methods designed

for small eigenvalues are used; for further discussion see [7].

Utilizing the matrix entry based analysis by Graham and Hagger [41] for linear finite

elements (FE), in [10], we extended the spectral analysis to cell-centered finite volume dis-

cretization and obtained an identical spectral result for A. Namely, the number of small

eigenvalues of A depends on the number of isolated islands comprising the highly-bending

region. We observe a similar behaviour for the biharmonic plate equation where the only

difference is that for each island we observe three small eigenvalues rather than one. The

three dimensional kernel of the Neumann matrix is responsible for that difference; see §4.2.

A similar matrix entry based analysis can be applied to this problem, but this analysis is

more involved for the HCT discretization than that for linear FE.

4.2 Discretization and low-rank perturbations

We consider an H2-conformal Galerkin finite element discretization with Hsieh-Clough-

Tocher (HCT) element. HCT element is constructed by subdividing the triangle element

into three subtriangles by connecting its vertices to its centroid. Then, a C1 function con-

sisting of piecewise cubic polynomials defined on each subtriangle is built. The function
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Figure 4.1: The HCT discretization of the biharmonic equation with m = 109. (Left) The spectrum
of the stiffness matrix K. (Middle) Spectrum of the diagonally scaled stiffness matrix.
(Right) The zoomed out version of the three smallest eigenvalue of diagonally scaled
matrix.

value and its first derivatives are specified on the vertices of the original triangle, and the

normal derivative of the function is specified on the midpoint of each sides of the triangle;

see Figure 4.2. HCT element is conforming but nonnested, and consists of 12 degrees of

freedom. For more detailed definition of HCT element, see [24].

Let the linear system arising from the discretization be denoted by:

K(m) x = b. (4.9)

Ω is decomposed with respect to magnitude of the coefficient value as

Ω = ΩH ∪ ΩL, (4.10)
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Figure 4.2: The Hsieh-Clough-Tocher element

where ΩH and ΩL denote the highly- and lowly-bending regions, respectively. DOF that

lie on the interface, Γ := ΩH ∩ ΩL, between the two regions are included in ΩH . When

m-dependence is explicitly stated and the discretization system (4.9) is decomposed with

respect to (4.10), i.e., the magnitude of the coefficient values, we arrive at the following 2×2

block system: KHH(m) KHL

KLH KLL


xH
xL

 =

 bH
bL

 . (4.11)

There are important properties associated to the KHH block in (4.11): It is the only block

that has m-dependence, and furthermore, a matrix with low-rank kernel can be extracted

from it. Our preconditioner construction is based on LRPs from this extraction. Next, we

explain how to extract the so-called Neumann matrix and why a(u, v) is the suitable bilinear

form for that purpose. By rewriting (4.5) as the following

a(u, v) =

∫
Ω

α
[
σ∇2u∇2v + (1− σ){∂11u ∂11v + ∂22u ∂22v + 2 ∂12u ∂12v}

]
dx, (4.12)

we see that

a(v, v) = ασ ‖∇2v‖2
L2(Ω) + α (1− σ)|v|2H2(Ω)

≥ α (1− σ)|v|2H2(Ω). (4.13)
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The inequality (4.13) has important implications. Namely, a(v, v) is VP1(Ω)-coercive

where VP1(Ω) ⊂ H2(Ω) is a closed subspace such that VP1(Ω) ∩ P1 = ∅ and P1 denotes the

set of polynomials of degree at most 1. Furthermore, (4.13) immediately implies that a(v, v)

is H2
0 (Ω)-coercive.

Let T h be the triangulation of Ω and V h(Ω) be the associated discrete space. Let V h(ΩH)

be the restriction of V h(Ω) onto ΩH based on the decomposition in (4.10). We define the

Neumann matrix NHH as follows:

〈NHHφhH , ψ
h

H
〉 := a(φhH , ψ

h
H),

where φhH , ψhH ∈ V h(ΩH) are the basis functions whose values of DOF are denoted by φh
H

and ψh
H
, respectively. Since a(·, ·) is VP1(Ω)-coercive, this implies by (4.13) that

kerNHH = Ph1 |ΩH
= span{1H , xH , yH}. (4.14)

Hence, with m defined in (4.3), KHH in (4.11) has the following decomposition:

KHH(m) = mNHH +R, (4.15)

where R is the coupling matrix corresponding to DOF on the interface Γ.

Now, we are in a position to reveal the resulting main numerical linear algebra implication.

As m → ∞, the limiting Schur complement S∞ in (4.1) becomes a rank-3 perturbation of

KLL. This result relies on the fact that the inverse of the limiting KHH is of rank-3; see

(4.17). This is due to the fact thatNHH has a rank 3 kernel whose (normalized) discretization

is given by:

eH := [1H , xH , yH ]. (4.16)
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4.3 Main singular perturbation analysis results

Lemma 10. The asymptotic behaviour of the submatrices in (2.5) is given by the following:

KHH(m)−1 = eHη
−1etH +O(m−1), (4.17)

S(m) = KLL − (KLLeH)η−1(etHKLL) +O(m−1), (4.18)

KLHKHH(m)−1 = (KLLeH)η−1etH +O(m−1), (4.19)

where

η := etH KHH eH . (4.20)

Proof. Since NHH is symmetric positive semidefinite, using (4.14) we have the following

spectral decomposition where nH denotes the cardinality of DOF in ΩH :

ZtNHHZ = diag(λ1, . . . , λnH−3, 0, 0, 0), (4.21)

where {λi : i = 1, . . . , nH} is a non-increasing sequence of eigenvalues of NHH and Z is

orthogonal. Since, the eigenvectors corresponding to the zero eigenvalues are discretization

of the polynomials 1, x, and y, we can write Z =
[
Z̃ | eH

]
where eH is defined in (4.16).

Using (4.15), we have:

ZtKHH(m)Z =

m diag(λ1, . . . , λnH−3) + Z̃tRZ̃ Z̃tReH

etHRZ̃ etHReH


=:

Λ̃(m) δ̃

δ̃T η

 . (4.22)
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To find the limiting form of KHH(m)−1 note that

Λ̃(m) = m diag(λ1, . . . , λnH−3) + Z̃tRZ̃

= m diag(λ1, . . . , λnH−3)
(
Ĩ +m−1 diag(λ−1

1 , . . . , λ−1
nH−3)Z̃tRZ̃

)
.

Then,

‖Λ̃(m)−1‖2 ≤
m−1 maxi≤nH−3 λ−1

i

1−m−1 maxi≤nH−3 λ−1
i ‖Z̃tRZ̃‖2

,

for sufficiently large m, we can conclude the following:

Λ̃(m)−1 = O(m−1). (4.23)

We proceed with the following inversion:

 Λ̃(m) δ̃

δ̃t η


−1

= U(m) V (m) U(m)t,

where

U(m) :=

 Ĩ −Λ̃(m)−1δ̃

0t 1

 ,

V (m) :=

 Λ̃(m)−1 0

0t
(
η − δ̃tΛ̃(m)−1δ̃

)−1

 .
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Then, (4.23) implies that

U(m) = I +O(m−1),

V (m) =

O 0

0t η−1

+O(m−1).

Combining the above results, we arrive at

 Λ̃(m) δ̃

δ̃t η


−1

=

O 0

0t η−1

 + O(m−1) ,

and, by (4.22), we have

KHH(m)−1 = Z

O 0

0t η−1

Zt + O(m−1) (4.24)

=: eHη
−1etH + O(m−1) ,

which proves (4.17) of the Lemma.

Parts (4.18) and (4.19) follow from simple substitution and using (2.6).

Remark 5. If we further decompose DOF associated with ΩH into a set of interior DOF

associated with index I and interface DOF with index Γ, we obtain the following block rep-

resentation of KHH :

KHH(m) =

KII(m) KIΓ(m)

KΓI(m) KΓΓ(m)

 . (4.25)

The entries in the block KΓΓ(m) are assembled from contributions both from finite elements

in ΩH and ΩL, i.e. KΓΓ(m) = A
(H)
ΓΓ (m) + A

(L)
ΓΓ .

We further write eH in block form; eH = (etI , e
t
Γ)t. Finally we note that the off-diagonal
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blocks have the decomposition:

KLH =

[
0 KLΓ

]
= Kt

HL. (4.26)

Therefore, the results of Lemma 10 can be rewritten as the following:

KHH(m)−1 = eH

(
etΓK

(L)
ΓΓ eΓ

)−1

etH +O(m−1),

S(m) = KLL − (KLΓeΓ)
(
etΓK

(L)
ΓΓ eΓ

)−1

(etΓKΓL) +O(m−1),

KLHKHH(m)−1 = (KLΓeΓ)
(
etΓK

(L)
ΓΓ eΓ

)−1

etH +O(m−1).

We will use the following limit values of the block matrices (in Lemma 10) in the definition

of the preconditioner in (4.30):

K∞
†

HH := eHη
−1etH , (4.27)

S∞ := KLL −KLHK
∞†
HHKHL. (4.28)

4.3.1 Qualitative nature of the solution

We advocate the usage of SPA because it is a very effective tool in gaining qualitative insight

about the asymptotic behavior of the solution of the underlying PDE. Through SPA, in

Lemma 10, we were able to fully reveal the asymptotic behaviour of the submatrices of K in

(2.5). This information leads to a characterization of the limit of the underlying discretized

inverse operator. We now prove that the solution over the highly-bending island converges to

a linear polynomial. In other words, x∞H ∈ span eH . This is probably the most fundamental

qualitative feature of the solution of the high-contrast biharmonic plate equation.

Lemma 11. Let eH as in (4.16). Then,

xH(m) = eH cH + O(m−1), (4.29)

where cH is a 3× 1 vector determined by the solution in the lowly-bending region.
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Proof. We prove the result by providing an explicit quantification of the limiting process

based on Lemma 10:

xL(m) = S−1(m) {bL −KLH K
−1
HH(m)bH}

= S−1
∞ {bL −KLH (eHη

−1etH) bH}+O(m−1)

=: x∞L +O(m−1),

xH(m) = K−1
HH(m) {bH −KHL xL(m)}

= eHη
−1etH{bH −KHL x

∞
L }+O(m−1)

=: eH cH + O(m−1).

4.4 Construction of the preconditioner

Let the limit in (4.17) be denoted by K∞†HH := eHη
−1etH . Based on the above perturbation

analysis, our proposed preconditioner is defined as follows:

BAGKS(m) :=

 IHH −K∞†HHKHL

0 ILL


KHH(m)−1 0

0 S−1
∞


 IHH 0

−KLHK
∞†
HH ILL

 , (4.30)

where K∞†HH and S∞ are defined in (4.27) and (4.28), respectively.

We need the following auxiliary result to be used in the proof of Theorem 3 which

characterizes the spectral behaviour of the preconditioned system.

Lemma 12. For sufficiently large m, we have

K
−1/2
HH = eHη

−1/2etH +O(m−1/2), (4.31)

where η is this time 3× 3 SPD matrix independent of m defined in (4.20).
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Proof. We start by writing down the spectral decomposition of KHH(m)

Q(m)tKHH(m)Q(m) = diag(µ1(m), . . . , µnH−3(m), µnH−2(m), µnH−1(m), µnH
(m)),

where {µi(m) : i = 1, . . . , nH} denotes a non-increasing ordering of the eigenvalues of

KHH(m). Since KHH(m) is SPD, we have µi(m) > 0 for all i ≤ nH . We use the main fact

that eigenvalues and eigenvectors of a symmetric matrix are Lipschitz continuous functions

of the matrix entries [49, 90].

By (4.21) and (4.24) in Lemma 10, we give the following spectral decomposition:

K−1
HH(m) = z1 0 zt1 + . . .+ znH−3 0 ztnH−3 + eH η

−1 etH +O(m−1). (4.32)

Note that η in (4.22) is a 3×3 symmetric, and hence, diagonalizable matrix. We proceed to-

wards a fully diagonalized form of the limiting K−1
HH(m). For that, we use the diagonalization

of η−1:

η−1 = ẑH1 µ
−1
H1
ẑtH1

+ ẑHx µ
−1
Hx
ẑtHx

+ ẑHy µ
−1
Hy
ẑtHy

.

Therefore, we have the following expression for the last term in (4.32):

eHη
−1etH = [zH1 zHx zHy ] diag(µ−1

H1
, µ−1

Hx
, µ−1

Hy
) [zH1 zHx zHy ]t, (4.33)

where

[
zH1 zHx zHy

]
:=
[
eH1 eHx eHy

]
,
[
ẑH1 ẑHx ẑHy

]
[
eH1 , eHx , eHy

]
:= eH .

Now by substituting (4.33) in (4.32), we have the following spectral decomposition which

corresponds to the fully diagonalized version:
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K−1
HH(m) = z1 0 zt1 + . . .+ znH−3 0 ztnH−3 + zH1 µH1 z

t
H1

+ zHx µHx z
t
Hx

+ zHy µHy z
t
Hy

+O(m−1)

=: Z∞ diag(0, . . . , 0, µ−1
H1
, µ−1

Hx
, µ−1

Hy
)Zt
∞ +O(m−1). (4.34)

The expression in (4.34) also implies the convergence of the eigenvectors of KHH(m):

Q(m) = Z∞ +O(m−1). (4.35)

Note that Z∞ differs from Z in (4.21) only in the last three columns due to diagonalization

of η.

From (4.34), we obtain a characterization of the largest three eigenvalues of KHH(m)−1:

µnH−2(m)−1 = µ−1
H1

+O(m−1) (4.36a)

µnH−1(m)−1 = µ−1
Hx

+O(m−1) (4.36b)

µnH
(m)−1 = µ−1

Hy
+O(m−1) . (4.36c)

Using (4.34) and (4.36), we arrive at the following:

diag(µ1(m)−1/2, . . . , µnH−3(m)−1/2, µnH−2(m)−1/2, µnH−1(m)−1/2, µnH
(m)−1/2)

= diag(0, . . . , 0, µ
−1/2
H1

, µ
−1/2
Hx

, µ
−1/2
Hy

) +O(m−1/2). (4.37)

By using (4.37) and (4.35), we arrive at the desired result:

KHH(m)−1/2 = Q(m) diag(µ1(m)−1/2, . . . , µnH
(m)−1/2)Q(m)t

= Z∞ diag(0, . . . , 0, µ
−1/2
H1

, µ
−1/2
Hx

, µ
−1/2
Hy

)Zt
∞ +O(m−1/2)

= [zH1 zHx zHy ] diag(µ
−1/2
H1

, µ
−1/2
Hx

, µ
−1/2
Hy

) [zH1 zHx zHy ]t +O(m−1/2)

= eH η
−1/2 etH +O(m−1/2).
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Now, we can prove the main theorem that shows the AGKS preconditioner is an effective

preconditioner for the solution of biharmonic-plate equation for m� 1.

Theorem 3. For sufficiently large m, we have

σ(BAGKS(m) K(m)) ⊂ [1− cm−1/2, 1 + cm−1/2]

for some constant c independent of m, and therefore

κ(BAGKS(m) K(m)) = 1 + O(m−1/2).

Proof. The proof follows from the proof of Theorem 1.

4.5 Numerical experiments

The goal of the numerical experiments is to compare the performance of the two precon-

ditioners: AGKS and MG. The domain is a unit square whose coarsest level triangulation

consists of 32 triangles. We consider the case of a single highly-bending island located at the

region [1/4, 2/4]× [1/4, 2/4] consisting of 2 coarsest level triangles. For an extension, we also

consider the cases of L shaped island and two disconnected islands. The implementation of

HCT discretization is based on Pozrikidis’ software provided in [76]. For these experiments,

the problem sizes are 131, 451, 1667, 6403 for levels 1, 2, 3 and 4.

We denote the norm of the relative residual at iteration i by rr(i):

rr(i) :=
‖r(i)‖2

‖r(0)‖2

,

where r(i) denotes the residual at iteration i with a stopping criterion of rr(i) ≤ 10−7. In

Tables 4.1–4.5, preconditioned conjugate gradient iteration count and the average reduc-

tion factor are reported for combinations of preconditioner, smoother types, and number of
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smoothing iterations. The average reduction factor of the residual is defined as:

(
rr(i)

)1/i
.

We enforce an iteration bound of 60. If the method seems to converge slightly beyond

this bound, we denote it by 60+, whereas, stalling is denoted by ∞.

We use Galerkin variational approach to construct the coarser level algebraic systems.

The multigrid preconditioner MG is derived from the implementation by Aksoylu, Bond,

and Holst [5]. We employ a V(s,s)-cycle, s = 1, 5, 10, with point symmetric Gauss-Seidel

(sGS) and point Gauss-Seidel (GS) smoothers. A direct solver is used for the coarsest level.

Due to Shermann-Morrison-Woodbury formula, the inversion of S∞ and S(m) require

the inversions of 3 × 3 and nH × nH matrices. 1 Therefore, the low-rank perturbation

clearly yields a computational advantage. By exploiting the fact that S∞ in (4.1) is only a

LRP of KLL, we can build robust preconditioners for S∞ in (4.30) via standard multigrid

preconditioners. (4.1) implies that

S∞ = KLL − vη−1vT ,

where v := KLHeH . MHH and MLL denote the standard multigrid V(s,s)-cycles for KHH

and KLL, respectively. We can construct an efficient and robust preconditioner S̃−1 for S∞

using the Sherman-Morrison-Woodbury formula, i.e.

S̃−1 := MLL + MLLv (η − vTMLLv)−1 vTMLL. (4.38)

1Let T∞ := η−vtK−1
LLv and T (m) := KHH−Kt

LHK
−1
LLKLH . The inversions yield the following operations

respectively:

S−1
∞ = K−1

LL +K−1
LL v T

−1
∞ vtK−1

LL

S(m)−1 = K−1
LL +K−1

LLKLH T (m)−1 Kt
LH K−1

LL.

T∞ is of size 3×3 (in the case of a single island), independent of nH and m, whereas T (m) is of size nH×nH ,
dense, and depends on m.
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Table 4.1: Single island case: AGKS + HCT + sGS + smooth number 1-5-10

N\m 100 101 102 103 104 105 107 109 1010

smooth number = 1
131 24, 0.485 20, 0.447 18, 0.407 17, 0.371 17, 0.381 16, 0.337 18, 0.371 16, 0.362 17, 0.384
451 52, 0.730 38, 0.650 21, 0.452 13, 0.286 12, 0.249 12, 0.256 13, 0.279 12, 0.253 11, 0.213
1667 60+, 0.857 60+, 0.768 33, 0.610 20, 0.426 18, 0.401 19, 0.410 21, 0.447 19, 0.420 19, 0.417
6403 ∞, 0.972 60+, 0.930 60+, 0.839 45, 0.692 37, 0.637 36, 0.636 36, 0.638 36, 0.635 39, 0.661

smooth number = 5
131 24, 0.485 20, 0.447 18, 0.407 17, 0.371 17, 0.381 16, 0.337 18, 0.371 16, 0.362 17, 0.384
451 40, 0.664 28, 0.547 15, 0.330 8, 0.131 6, 0.054 6, 0.023 4, 0.014 4, 0.016 4, 0.012
1667 60+, 0.786 48, 0.706 24, 0.490 12, 0.258 8, 0.091 6, 0.058 5, 0.035 5, 0.026 5, 0.024
6403 60+, 0.947 60+, 0.862 43, 0.682 21, 0.427 12, 0.223 8, 0.091 6, 0.051 6, 0.052 6, 0.062

smooth number = 10
131 24, 0.485 20, 0.447 18, 0.407 17, 0.371 17, 0.381 16, 0.337 18, 0.371 16, 0.362 17, 0.384
451 37, 0.634 26, 0.528 15, 0.330 8, 0.131 6, 0.050 6, 0.017 4, 0.010 3, 0.004 3, 0.003
1667 60+, 0.785 43, 0.680 20, 0.442 12, 0.213 8, 0.080 6, 0.030 4, 0.004 4, 0.002 4, 0.008
6403 60+, 0.943 60+, 0.861 38, 0.653 20, 0.410 10, 0.177 8, 0.090 5, 0.028 5, 0.015 5, 0.023
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Table 4.2: Single island case: MG + HCT + sGS + smooth number 1-5-10

N\m 100 101 102 104 105 106 107 108 109

smooth number = 1
131 60+, 0.885 60+, 0.898 60+, 0.932 ∞, 0.988 ∞, 0.997 ∞, 1.075 ∞, 1.089 ∞, 1.065 ∞, 1.137
451 ∞, 0.963 ∞, 0.987 ∞1.014 ∞, 1.050 ∞, 1.086 ∞, 1.106 ∞, 1.172 ∞, 1.081 ∞, 1.091
1667 ∞, 0.985 ∞, 1.015 ∞, 1.044 ∞, 1.062 ∞, 1.122 ∞, 1.109 ∞, 1.142 ∞, 1.170 ∞, 1.124
6403 ∞, 1.025 ∞, 1.040 ∞, 1.057 ∞, 1.125 ∞, 1.145 ∞, 1.130 ∞, 1.171 ∞, 1.112 ∞, 1.187

smooth number = 5
131 60+, 0.885 60+, 0.898 60+, 0.932 ∞, 0.988 ∞, 0.997 ∞, 1.075 ∞, 1.089 ∞, 1.065 ∞, 1.137
451 60+, 0.761 60+, 0.829 60+, 0.920 ∞, 1.070 ∞, 1.084 ∞, 1.120 ∞, 1.174 ∞, 1.118 ∞, 1.166
1667 60+, 0.854 60+, 0.923 ∞, 0.999 ∞, 1.038 ∞, 1.0037 ∞, 1.0085 ∞, 1.134 ∞, 1.154 ∞, 1.208
6403 60+, 0.931 ∞, 0.979 ∞, 0.998 ∞, 1.012 ∞, 1.023 ∞, 1.058 ∞, 1.041 ∞, 1.063 ∞, 1.099

smooth number = 10
131 60+, 0.885 60+, 0.898 60+, 0.932 ∞, 0.988 ∞, 0.997 ∞, 1.075 ∞, 1.089 ∞, 1.065 ∞, 1.137
451 48, 0.660 53, 0.701 60+, 0.825 ∞, 0.955 ∞, 1.032 ∞, 1.115 ∞, 1.179 ∞, 1.200 ∞, 1.196
1667 40, 0.624 49, 0.680 60+, 0.797 ∞, 1.001 ∞, 1.088 ∞, 1.035 ∞, 1.064 ∞, 1.052 ∞, 1.095
6403 60+, 0.890 60+, 0.929 ∞, 0.972 ∞, 1.049 ∞, 1.017 ∞, 1.052 ∞, 1.051 ∞, 1.134 ∞, 1.170
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Table 4.3: L-shaped island case: AGKS + HCT + sGS + smooth number 1-5-10

N\m 100 101 102 103 104 105 107 109 1010

smooth number = 1
131 23, 0.515 20, 0.4878 15, 0.378 12, 0.310 10, 0.247 9, 0.148 9, 0.168 ∞, 1.055 ∞, 1.132
451 60+, 0.801 49, 0.745 35, 0.657 25, 0.544 21, 0.491 21, 0.421 22, 0.529 25, 0.570 25, 0.573
1667 ∞, 0.961 60+, 0.893 60+, 0.818 50, 0.735 47, 0.730 49, 0.742 37, 0.727 40, 0.830 47, 0.819

smooth number = 5
131 23, 0.515 20, 0.4878 15, 0.378 12, 0.310 10, 0.247 9, 0.148 9, 0.168 ∞, 1.055 ∞, 1.132
451 54, 0.770 44, 0.709 27, 0.579 17, 0.443 13, 0.321 11, 0.254 9, 0.112 9, 0.149 9, 0.233
1667 ∞, 0.964 60+, 0.893 44, 0.730 25, 0.559 18, 0.406 14, 0.367 11, 0.289 10, 0.292 19, 0.379

smooth number = 10
131 23, 0.515 20, 0.4878 15, 0.378 12, 0.310 10, 0.247 9, 0.148 9, 0.168 ∞, 1.055 ∞, 1.132
451 54, 0.771 44, 0.709 27, 0.571 18, 0.441 14, 0.313 11, 0.244 9, 0.157 9, 0.147 9, 0.268
1667 ∞, 0.964 60+, 0.893 44, 0.708 25, 0.564 17, 0.400 13, 0.280 11, 0.250 10, 0.278 18, 0.412
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Table 4.4: L-shaped island case: MG + HCT + sGS + smooth number 1-5-10

N\m 100 101 102 104 105 106 107 108 109

smooth number = 1
131 60+, 0.885 60+, 0.917 ∞, 1.004 ∞, 1.109 ∞, 1.093 ∞, 1.099 ∞, 1.141 ∞, 1.149 ∞, 1.032
451 ∞, 0.968 ∞, 1.004 ∞1.041 ∞, 1.097 ∞, 1.098 ∞, 1.111 ∞, 1.095 ∞, 1.136 ∞, 1.179
1667 ∞, 0.992 ∞, 1.029 ∞, 1.055 ∞, 1.078 ∞, 1.135 ∞, 1.107 ∞, 1.143 ∞, 1.134 ∞, 1.179

smooth number = 5
131 60+, 0.885 60+, 0.917 ∞, 1.004 ∞, 1.109 ∞, 1.093 ∞, 1.099 ∞, 1.141 ∞, 1.149 ∞, 1.032
451 60+, 0.761 60+, 0.868 60+, 0.970 ∞, 1.098 ∞, 1.137 ∞, 1.119 ∞, 1.128 ∞, 1.169 ∞, 1.195
1667 60+, 0.855 ∞, 0.952 ∞, 1.029 ∞, 1.039 ∞, 1.079 ∞, 1.120 ∞, 1.182 ∞, 1.183 ∞, 1.191

smooth number = 10
131 60+, 0.885 60+, 0.917 ∞, 1.004 ∞, 1.109 ∞, 1.093 ∞, 1.099 ∞, 1.141 ∞, 1.149 ∞, 1.032
451 41, 0.671 60+, 0.775 60+, 0.900 ∞, 1.060 ∞, 1.141 ∞, 1.141 ∞, 1.144 ∞, 1.178 ∞, 1.194
1667 38, 0.648 60+, 0.767 60+, 0.913 ∞, 1.055 ∞, 1.030 ∞, 1.098 ∞, 1.117 ∞, 1.171 ∞, 1.218
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Table 4.5: Two islands case: AGKS + HCT + sGS + smooth number 1-5-10

N\m 100 101 102 103 104 105 107 109 1010

smooth number = 1
131 21, 0.495 18, 0.455 12, 0.266 8, 0.144 6, 0.046 4, 0.016 3, 0.009 3, 0.002 3, 0.001
451 49, 0.754 36, 0.674 19, 0.478 11, 0.261 8, 0.165 8, 0.166 9, 0.209 8, 0.160 8, 0.162
1667 60+, 0.890 60+, 0.841 36, 0.680 18, 0.459 13, 0.315 13, 0.336 13, 0.315 13, 0.314 13, 0.316

smooth number = 5
131 21, 0.495 18, 0.455 12, 0.266 8, 0.144 6, 0.046 4, 0.016 3, 0.009 3, 0.002 3, 0.001
451 42, 0.717 32, 0.625 17, 0.436 10, 0.215 6, 0.074 5, 0.057 4, 0.004 4, 0.001 3, 0.003
1667 60+, 0.867 54, 0.772 26, 0.577 14, 0.311 8, 0.133 6, 0.050 4, 0.018 4, 0.010 4, 0.011

smooth number = 10
131 21, 0.495 18, 0.455 12, 0.266 8, 0.144 6, 0.046 4, 0.016 3, 0.009 3, 0.002 3, 0.001
451 42, 0.717 32, 0.625 17, 0.436 10, 0.215 6, 0.074 5, 0.057 4, 0.004 4, 0.001 3, 0.003
1667 60+, 0.866 54, 0.769 26, 0.576 14, 0.311 8, 0.133 6, 0.041 4, 0.007 4, 0.004 4, 0.006
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Note also that we can precompute and store MLLv during the setup phase. This means

that we only need to apply the multigrid V(s,s)-cycleMLL once per iteration. Therefore, the

following practical version of preconditioner (4.30) is used in the implementation:

B̃AGKS :=

 IHH −K∞†HHKHL

0 ILL


MHH 0

0 S̃−1


 IHH 0

−KLHK
∞†
HH ILL

. (4.39)

We construct two different multilevel hierarchies for multigrid preconditioners MHH in

(4.39) and MLL in (4.38) for DOF corresponding to ΩH and ΩL, respectively. For prolon-

gation, linear interpolation is used as in [20]. The prolongation matrices PHH and PLL are

extracted from the prolongation matrix for whole domain Ω in the fashion following (4.11):

P =

PHH PHL

PLH PLL

 .
As emphasized in [6], AGKS can be used purely as an algebraic preconditioner. There-

fore, the standard multigrid preconditioner constraint that the coarsest level mesh resolves

the boundary of the island is automatically eliminated. However, for a fair comparison, we

enforce the coarsest level mesh to have that property.

We do not observe convergence improvement when a subdomain deflation strategy based

on the smallest eigenvalues is used as in the diffusion equation case [10]. The eigenvectors of

the Neumann matrix, eH in (4.16), cannot approximate the eigenvectors corresponding to the

smallest eigenvalues of KHH which are of O(1) (see Figure 4.1) since the remainder matrix

R in (4.15) is of O(104). Therefore, a deflation strategy utilizing eH will not necessarily

guarantee deflation of the smallest eigenvalues of KHH in the biharmonic case.

We have studied three experiment cases: a square island, an L-shaped island, and two

islands (two triangle islands with different coefficient values). With these experiments, we

obtain the following results regarding the effect of number of smoothing iterations on the
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convergence behavior. We do not show the results of MG performance for the two-island

case. This is because there is a contrast between the coefficients always, and MG fails to

converge for any m. For the other two cases, the convergence of MG heavily depends on m

and the number of smoothing iterations, i.e., for small m, the more the smoothing iteration,

the faster the convergence; see Tables 4.2 and 4.4. However, if the coefficient m is bigger

than 101, the MG method fails to converge independent of the smoothing number.

Throughout the AGKS experiments, we observe different behaviors of convergence. First

of all, for the single square island case, AGKS requires more than one smoothing iteration

for convergence; see Table 4.1. The choice of 5 smoothing iterations is sufficient for AGKS

to reach h-robustness and its peak performance for m > 105. For the L-shaped island case,

m-robustness is obtained for smoothing number 1. When the smoothing number is increased

to 10, h- and m-robustness are obtained simultaneously; see Table 4.3.

To test the performance of the AGKS preconditioner for the third case, i.e., the case of

two islands with different coefficients, we fix the coefficient of one of the islands to 109, and

devise a coefficient parameter for the second island. We observe that AGKS preconditioner

enjoys m robustness even when the smoothing number is one. Moreover, when we set the

smoothing number to 5 we obtain that AGKS preconditioner converges in a few iterations

for large m and is h robust. In fact, as it can be seen from Table 4.5, for the same problem

size, AGKS preconditioner demonstrates the best performance for the 2 islands case.

Hence, when smoothing number is set to be greater than 10, we can conclude that the

AGKS preconditioner clearly enjoys h-robustness for sufficiently large m values indepen-

dently of the shape or the number of the islands. In contrast, MG is not h-robust regardless

of the m value and the smoothing number. MG is totally ineffective as the problem size

increases.

Finally, we report the m-robustness results. The loss of m-robustness of MG can be

observed consistently for all m values while the AGKS preconditioner becomes more effective

with increasing m and reaches its peak performance by maintaining an optimal iteration

101



count for all m ≥ 105. This indicates that m ≥ 105 corresponds to the asymptotic regime.

Even increasing the m value from 102 to 103 reduces the iteration count significantly, a clear

sign of close proximity to the asymptotic regime. In addition, the AGKS outperforms MG

even for m = 1. Consequently, we infer that AGKS is m-robust.

We conclude the numerical experiments by reporting the cost of each preconditioner.

For variational conditions, the decoupling of KHH(m) and S∞ in (4.30) causes the AGKS

preconditioner to be cheaper than MG see the flop counts in Figure 4.3. When the size of

the highly-bending region grows, the enforcement of the variational conditions of the AGKS

preconditioner becomes even less costly than that of the MG preconditioner.
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Figure 4.3: (Left) Flop counts for the enforcement of variational conditions. (Right) Flop counts
for a single iteration of the preconditioners.

Finally, we report the cost per iteration for AGKS and MG V(1,1)-cycle preconditioners.

The AGKS preconditioner in (4.30) requires inversions of two blocks: KHH(m) and S∞ corre-

sponding to highly- and lowly-bending regions, respectively. Therefore, for each iteration of

AGKS preconditioner, we utilize a full MG method for each block separately. This is exactly

the setup that MG methods are known to be highly effective because each block corresponds

to a discretization of the Laplace equation with homogeneous coefficients. Therefore, one

iteration of the AGKS preconditioner is roughly 20 times more costly than that of the MG

preconditioner; see the flop counts in Figure 4.3. This additional cost is worthy because

after smoothing number set to be 5, the AGKS preconditioner results in convergence in a

few iterations for large values of m, whereas, no matter what the smoothing number is, the
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MG preconditioner results in a consistent failure.

4.6 Generalization to elliptic PDEs of order 2k

In essence, the biharmonic plate equation preconditioner is an extension of the construction

for the diffusion equation. It is possible to generalize this construction to a family of elliptic

PDEs of order 2k, k > 2. We present how to obtain LRPs from associated bilinear forms.

We choose a different perspective than the one in Section 4.2. We start with a canonical

bilinear form and show the modification it needs to go through in order to construct LRPs.

Let the generalized problem be stated as follows: Find u ∈ Hk
0 (Ω) such that

Tku := (−1)k∇k
(
αk∇ku

)
= f in Ω. (4.40)

The straightforward bilinear form associated to (4.40) is obtained by application of Green’s

formula k times:

∫
Ω

∇k (αk∇ku) v dx =

∫
Ω

αk∇ku∇kv dx+ boundary terms. (4.41)

Then, we define a bilinear form corresponding to (4.40) which can be seen as a generalization

of the canonical bilinear form in (4.7):

ãk(u, v) :=

∫
Ω

αk∇ku∇kv dx. (4.42)

Without modification, ãk(·, ·) cannot lead to LRPs because ãk(v, v) is not Hk
0 (Ω)-coercive.

This is due to the fact that ãk(v, v) = 0 for v ∈ Pk−1 ∩Hk
0 (Ω). Hence, the stiffness matrix

induced by (4.42) has a large kernel involving elements from Phk−1 ∩ V h which indicates that

extraction of a Neumann matrix with a low-dimensional kernel is impossible. In order to
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overcome this complication, we utilize a modified bilinear form:

ak(u, v) = ãk(u, v) + (1− σk) âk(u, v).

The bilinear form should maintain the following essential properties:

1. Hk
0 (Ω)-coercive.

2. VPk−1(Ω)-coercive.

3. Corresponds to a strong formulation giving Tku in (4.40) precisely,

where VPk−1(Ω) is a closed subspace such that VPk−1
(Ω) ∩Pk−1 = ∅ and Pk−1 denotes the set

of polynomials of degree at most k − 1.

The above properties (1) and (2) will be immediately satisfied if the generalization of

(4.13) holds for the modified bilinear form:

ak(v, v) ≥ ck |v|2Hk(Ω). (4.43)

A similar construction of the Neumann matrix can be immediately generalized as follows:

〈N (k)
HHφ

h, ψh〉 := ak(φ
h
H , ψ

h
H).

The low-rank perturbations arise from the following decomposition of K(k)
HH(m):

K
(k)
HH(m) = mN (k)

HH +R(k),
(
K

(k)
HH(m)

)−1

= e
(k)
H η(k)−1

e
(k)t

H +O(m−1),

where η(k) := e
(k)t

H K
(k)
HHe

(k)
H . LRP is produced by e(k)

H ∈ Phk−1 because the rank is equal to the

cardinality of the basis polynomials in Phk−1.

kerN (k)
HH = Phk−1|ΩH

.
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Due to (4.8), a2(·, ·) in (4.5) corresponds to the strong formulation T2 exactly. Let us

denote the strong formulation to which ak(·, ·) corresponds by T̂k. We have T̂k = Tk, k = 1, 2

for the high-contrast diffusion and biharmonic plate equations, respectively:

a1(v, v) := (∇v, α1∇v),

a2(v, v) := σ2 (∇2v, α2∇2v) + α2 (1− σ2)|v|2H2(Ω).

However, for general k, ak(·, ·) may not correspond to Tk. In addition, one may need more

general boundary conditions if similar zero contributions in (4.8) can be obtained for general

k. Further research is needed to see if such boundary conditions are physical. Currently, it

is also unclear for which applications such general PDEs can be used. However, there are

interesting invariance theory implications when one employs bilinear forms corresponding

to rotationally invariant functions compatible to energy definition in (4.4). This allows a

generalization of the energy notion and may be the subject for future research. For further

information, we list the relevant bilinear forms that are composed of rotationally invariant

functions derived by the utilization of invariance theory.

a3(v, v) := σ3 (∇3v, α3∇3v) + α3 (1− σ3)|v|2H3(Ω),

a4(v, v) := σ4 (∇4v, α4∇4v) + α4 (1− σ4)|v|2H4(Ω) + α4 γ4|∇2v|2H2(Ω).

Note that the above bilinear forms satisfy (4.43).
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Chapter 5

Conclusion

The focus of this thesis is on the robust preconditioning for the solution of various high-

contrast elliptic partial differential equations. The AGKS preconditioner was originally de-

signed for the high-contrast diffusion equation under finite element discretization. In Chap-

ter 2 we extended the AGKS preconditioner from finite element discretization to cell-centered

finite volume discretization. Hence, we have shown that the same preconditioner could be

used for different discretizations with minimal modification. Furthermore, in Chapter 3, we

extended the usage of AGKS preconditioner to the solution of the stationary Stokes equation,

and we have reached the conclusion that the same preconditioning technology can be used

for the vector valued problems, and the AGKS preconditioner can be coupled with other pre-

conditioners for the preconditioning of the saddle point problems. Finally, in Chapter 4 we

applied the same family of preconditioners to high-contrast biharmonic plate equation, and

demonstrated that the AGKS preconditioner can be used for higher order problems only with

minimal modifications. Therefore, we have accomplished a desirable preconditioning design

goal by using the same family of preconditioners to solve the elliptic family of high-contrast

PDEs with varying discretizations for which we numerically accomplish the contrast size and

mesh size robustness simultaneously. This is mainly due similarities in low-rank perturbation

properties of the underlying PDEs and their discretizations. Once this striking property is

established, we would immediately be able to extend the use of the AGKS preconditioner to

a significantly larger group of PDEs.
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