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ABSTRACT 

Oyster harvesting is a major industry along the Eastern and Gulf coasts of the United 

States. Eastern oysters (Crassostrea virginica) spawn when the waters start to warm between 

May and October in the Gulf of Mexico. The warmer temperature creates a problem with an 

increase of bacteria. The two major bacteria affecting the oyster industry are Vibrio vulnificus 

and Vibrio parahaemolyticus. These bacteria are the leading causes of seafood-borne illnesses in 

the United States. This increase of V. vulnificus and V. parahaemolyticus has led to stricter 

time/temperature requirements for harvesting oysters. The regulations are not plausible for 

smaller vessels too small to hold a refrigeration unit. Chilling the oysters to lower Vibrio levels 

using an on-board icing unit was proposed for further investigation. The oysters were tested for 

V. vulnificus and V. parahaemolyticus at each stage along with tested for gaping after 7 and 14 

days in refrigerated storage. This experiment was conducted in May, July, and September 2015. 

The results will help advance the use of triploid oysters as viable options for the oyster industry 

during the spawning of diploid oysters. 

 The total Vibrio parahaemolyticus and Vibrio vulnificus results were log10 transformed to 

compare the treated and controlled data for all three months. The data was run through a mixed 

procedure in SAS 9.4. The V. parahaemolyticus showed a significant difference in the sampling 

months (p<.001) but not a difference in the treatments (p=0.4715). The differences in the Vibrio 

vulnificus sampling months were significant (p<0.001) but not the treatments (p=0.2617). 

Pathogenic V. parahaemolyticus was not flourishing in this area. A difference could not be found 

in the months or treatment because of the low amounts of bacteria. The gaping data was 

significantly different between the iced and controlled oyster sacks (p<.001) along with the 

sampling months (p=.0014). Further work is needed to improve this design and process.
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CHAPTER 1 : INTRODUCTION 

Oyster harvesting is a large business exceeding $100 million per year along the coastal 

regions, with extensive (on-bottom) and intensive oyster culture (off-bottom) continuously 

growing along the Eastern and Gulf coasts (ECSGA 2014; LODGA 2014). The eastern oyster 

(Crassostrea virginica) is a bivalve mollusk found in marine and estuarine environments along 

the east coast of Canada and the United States and into the Gulf of Mexico (Byrum 2014; FAO 

2013; Carriker and Gaffney 1996). The eastern oyster has the ability to survive a variety of water 

conditions allowing the oysters to span the different environments along the Atlantic coast. The 

oysters can endure salinity ranges from 5 to 35 ppt, dissolved oxygen levels 2 to 3 ppm and 

temperature ranges from 0°C to 35°C with optimal conditions at 10 to 30 ppt, dissolved oxygen 

levels above 4 ppm and temperature ranges from 20°C to 30°C (Berrigan et al. 1991). A 

prolongation of conditions outside these ranges may cause mortality. 

Spawning occurs yearly during the summer months of May-October in the Northern 

Hemisphere as water temperatures rise. The spawning puts a halt to public oyster harvesting to 

increase the spat survival rates. The National Oceanic and Atmospheric Administration (NOAA) 

funded this project in coordination with a multi-year research program funded by Sea Grant to 

develop the commercialization of triploid oysters in the region. The triploid oysters were created 

to capture the market during the spawning months since they have a highly reduced chance of 

spawning, therefore retaining the glycogen stores and continuing to grow. Triploid oysters can 

take over the market during the summer months to give the eastern oyster spat a better chance at 

survival. Gametes are produced using the glycogen stores of diploid oysters, while triploid 

oysters do not reproduce so the glycogen stores are retained and can continue to grow (Young 

2010). A reliable method for producing triploid oysters is by spawning a tetraploid male with a 
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diploid female (Guo et al. 1996). Advantages of these oysters go beyond the faster growth rate 

due to sterilization; they also have a greater survival rate and better meat condition. 

The triploid oysters can be grown using an intensive culturing method known as off-bottom cage 

culture to reduce predator related mortality, improve growth, and help control bio-fouling 

(Leonhardt 2013). This culture allows for an easier harvest of the oysters. 

 The warm waters during the spawning months bring along a new problem. The high 

temperatures in the warm months from May through October allow bacteria to flourish including 

Vibrio vulnificus and Vibrio parahaemolyticus (Rippley 1994; Hlady 1997; Cook et al. 2002). 

Vibrio vulnificus and Vibrio parahaemolyticus are naturally occurring rod-shaped, halophilic, 

gram-negative, motile bacteria (Oliver 2005). The bacteria accumulate in the oysters through 

their main source of food, plankton, which is consumed by filtering water through the gills 

(Chowdhury et al. 1990; Groubert and Oliver 1994; Kaneko and Colwell 1973; Kelly and 

Dinuzzo 1985). Regulations for time/temperature handling of oysters become more stringent 

during summer harvest to keep the growth of bacteria low and prevent health issues. The current 

regulation requires mandatory refrigeration within 1 hour of harvest for shellstock, which allows 

the internal meat temperature to reach 12ºC within 6 hours. For testing, the oysters were removed 

from the floating cages, separated into 100-count mesh sacks, placed in the on-board chilling unit 

until they reached 10ºC, kept on ice, and stored in a refrigeration unit once back on shore. 

Samples were taken at each transition point for lab testing. The samples were tested using 

polymerase chain reaction (PCR), which magnified the DNA strands to test for vibrio.  

The data from the proposed method for on-board icing can encourage a change to the regulations 

by increasing the allowed time between harvest and mechanical cooling of oysters to allow 

smaller vessels to continue harvesting during warmer periods. 
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Literature Review 

Oysters 

 The eastern oyster, Crassostrea virginica, is a bivalve mollusk found along the coast in 

the Gulf of Mexico and along the Atlantic coast of North America. Oysters feed by capturing 

particles in the gills as seen in Figure 1 and transporting the matter to the palps, mouth, and 

stomach (Ward et al. 1994). The growth of the oyster shell is from the inside edge of the shell by 

continuously adding new shell material (Kennedy et al. 1996). The water temperature can greatly 

affect the growth rate of oysters with the normal time an oyster reaching market size (75mm, 3 

inches) taking 2 to 5 years, warmer water conditions can achieve this in 9 months (Menzel 1951; 

Shumway 1996). 

 

Figure 1 Anatomy of the eastern oyster (from Wheaton 2007) 

 The eastern oyster is a hermaphroditic organism with the ability to change sexes 

depending on the need (Thompson et al. 1996). The first year, oysters are usually male and can 

change depending on several environmental factors including water temperature and male to 

female ratio (Eble et al. 1996). The water temperatures also affect the spawning of the eastern 

oysters. Yearly, spawning occurs from May through October as the water temperatures rise in the 

Gulf of Mexico (EOBRT 2007). This release of the gametes decreases the meat yield for the 



 4 

oyster market. The triploid oyster can capture the market during this time since the majority of 

triploids are sterile and retain their glycogen stores allowing them to grow faster than diploids, 

the difference can be seen in Figure 2.  

 

Figure 2 Typical meat conditions of triploid (left) and diploid (right) oysters during spawning 

months. (Photo: J. Supan) 

Triploid oysters are bred by spawning a tetraploid male with a diploid female (Guo et al. 

1996). Tetraploids may be produced by spawning a triploid female with a diploid male then 

using cytochalasin B to inhibit polar body 1 (Guo et al. 1996; Young 2010). Triploid oysters 

were grown in off-bottom cages to better control the growth, health, and shape of the oysters. 

The better meat conditions make them optimal for summer harvest, however, the bacteria 

increase is a problem with warm water temperatures. 

Bacteria 

 Harvesting during the summer months creates a public health concern because of the 

higher levels of vibrio bacteria present in the warmer water temperatures. As filter feeders, 

oysters can accumulate microbes present in the surrounding waters (Dombroski et al., 1999). The 

leading causes of seafood-borne illness in the United States are Vibrio vulnificus and Vibrio 

parahaemolyticus most commonly from the consumption of raw shellfish (Cook 1991; Drake et 
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al., 2007; Larsen 2012; Mead et al., 1999; Oliver et al., 1995). V. vulnificus and V. 

parahaemolyticus can cause primary septicemia which can be fatal to consumers with underlying 

medical conditions, and both bacteria can cause gastroenteritis (Daniels et al., 2000; Shapiro et 

al., 1998). Water temperatures have a direct relationship to the frequency of illnesses from V. 

vulnificus and V. parahaemolyticus. Therefore when the water temperature is high (>15°C) in the 

summer months the number of illnesses also increases (Duan and Su, 2005; Gooch et al., 2002; 

Kaneko and Colwell 1975; Kinsey et al., 2015; Murphy and Oliver, 1992; Newton et al. 2012). 

The frequency of infections of V. parahaemolyticus and V. vulnificus have steadily risen and for 

the United States it is estimated they account for 80 deaths annually along with 330 

hospitalizations (Newton et al., 2012; Oliver 2012; Scallan et al., 2011). 

 V. parahaemolyticus is a halophilic, Gram-negative bacterium naturally found in marine 

environments (DePaula et al., 1990; Kaneko and Colwell 1973; Kinsey et al., 2015). Not all V. 

parahaemolyticus are pathogenic and can contribute to the carbon cycle, they are also found in 

plants and can help with nutrient recycling (Cole et al., 2015; Johnson 2013; Souza et al., 2011). 

The pathogenic V. parahaemolyticus is associated with around 53% of all mollusk related 

illnesses and accounts for almost 40% of all Vibrio infections. The most frequent result of 

infections from V. parahaemolyticus is gastroenteritis (CDC, 2011; Daniels et al., 2000; Iwamoto 

et al., 2010; Levine and Griffin, 1993; Morris and Black, 1985). Thiosulfate-citrate-bile salts-

sucrose agar (TCBS) shown in Figure 3, a has been used to target V. parahaemolyticus since it 

has provided better results at isolating this bacterium than other agars (Nicholls et al. 1976; 

Panicker et al., 2004). 

 V. vulnificus is also a halophilic, Gram-negative bacterium found in marine environments 

(Froelich and Oliver, 2013). The most severe infections, frequently resulting in septicemia, tend 
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to come from V. vulnificus (Blake et al., 1979; Newton et al., 2012). This bacterium is one of the 

most deadly food borne pathogens with a mortality rate of ~35% (Mead et al., 1999; Scallan et 

al., 2011). V. vulnificus is an opportunistic pathogen and patients with liver disease or other 

immune system deficiencies are at a greater risk when exposed to V. vulnificus since it can 

become particularly virulent in these cases (Hlady and Klontz, 1995; Levine and Griffin, 1993). 

Modified cellobiose-polymyxin B-colistin (mCPC) agar shown in Figure 3, b has been used to 

target V. vulnificus (Panicker et al., 2004).  

  

Figure 3 (a) The growth of Vibrio parahaemolyticus on TCBS and (b) Vibrio vulnificus on 

mCPC. 

The many illnesses linked to these bacteria are cause for concern when the temperatures 

increase the bacteria flourish. This increase in bacteria has caused regulations to become much 

more severe for harvesting oysters with more stringent time/temperature requirements. The 

oysters must be refrigerated within 1 hour of harvest to obtain an internal meat temperature of 

55ºF within 6 hours (LDHH 2014). This time requirement is not plausible for smaller vessels that 

are not large enough to hold a refrigeration unit. 
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Polymerase Chain Reaction (PCR) 

Polymerase Chain Reaction (PCR) is a technique developed by Kary Mullis in 1983 

earning him a Nobel Prize in Chemistry in 1993 by synthesizing billions of copies of a samples 

specific region of DNA (Erlich 1989; Mullis 1990; Bartlett and Stirling 2003). The bacteria were 

analyzed using the Applied Biosystems 7500 Fast Real-Time PCR system (AB 7500; Life 

Technologies Waltham, MA). Real-time PCR runs a sample through cycles to collect fluorescent 

signals from polymerase chain reaction (Dorak 2006). To detect a fluorescent signal, the DNA 

target was amplified and a background end cycle was set to 10 to help identify when the PCR 

product is first detected (Bustin 2005; Kinsey 2015). 

On-board Icing 

 Reducing the vibrio bacteria levels while keeping mortality of the oyster low will be the 

key to harvesting oysters on smaller vessels without an on board refrigeration unit. An on-board 

icing unit has been investigated to collaborate with previous research showing no significant 

increases in vibrio levels after dipping the oysters in an ice-slurry maintained at ≤4.5ºC for 15 

minutes (Thomas et al. 2016). The ice-slurry can produce unexpected mortality in the oysters 

from gaping during cold storage. Melody et al. (2008) found after 7 and 14 days post harvest the 

oysters exposed to the ice had significant gaping. In accordance with the Nation Shellfish 

Sanitation Program (2013) all the sacks achieved the temperature reductions for the on-board 

icing side of the experiment. The high mortality rate is prompting further research for on-board 

icing. 

Goals 

 The use of smaller vessels (e.g., skiffs) to harvest is desirable to reduce fuel costs and 

possible with intensive culture becoming more popular and eliminating the need and capital to 
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dredge for the oysters. The time/temperature requirements for summer harvest however limit the 

smaller vessels because the decks do not have space for on-board refrigeration. 

 The goal of this study was to design and test an on-board rapid chilling unit for small 

vessels to achieve time/temperature requirements for vibrio control of harvested triploid oysters 

during the warmer months while keeping oyster gaping to a minimum throughout cold storage. 

 The first objective was to determine if there was a significant difference in 7 and 14 day 

post-harvest oyster mortality (gaping) of iced vs. un-iced oysters while held in cold storage (H0: 

µiced oysters = µcontrol). 

 The second objective was to determine if there was a significant difference in levels of V. 

vulnificus and V. parahaemolyticus of treated and control oysters (H0: µiced Vp = µcontrol Vp and H0: 

µiced Vv = µcontrol Vv). 

 The third objective was to determine if there was a significant difference in the heat 

transfer coefficient (h) of static vs. circulating water (H0: hstatic = hcirculating).  
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CHAPTER 2 : ANALYSIS OF ON-BOARD CHILLING OF EASTERN OYSTERS 

Introduction 

The high temperatures in the Gulf of Mexico’s warm waters occurring from May through 

October allow bacteria to increase (Rippley 1994; Hlady 1997; Cook et al. 2002). Different 

methods of lowering bacterial counts in the eastern oyster Crassostrea virginica have been 

explored. Investigated methods include relaying, irradiation, mild heat treatments, and cooling. 

Relaying of oysters offshore in a high-salinity area reduced the Vibrio levels (Motes and DePaola 

1996). The use of irradiation also lowers the amount of bacteria while also extending the shelf 

life; however unwanted gaping can occur (Dixon and Rodrick 1990; Colby et al. 1993; Kilgen 

1994). Mild heat treatments were also used to reduce bacteria while maintaining a raw product 

(Goldmintz and Ernst 1979). These methods were successful at decreasing the amount of 

bacteria present in oysters. The fourth method of chilling the oysters to lower Vibrio levels was 

conducted using an on-board icing unit. 

Materials 

Chilling and Washing Unit Design 

An on-board treatment prototype was conceived to match commercial oyster culture 

practice for shellstock cooling and storage using ice. The oysters were harvested and washed 

prior to marketing as 100 count and stored in small sacks that do not retain water. The washing is 

done prior to separation to remove silt and grit to justify high dockside pricing and so cold wash 

water will not be used nor rewarming of the oysters post-harvest. 

The main features of the unit (Figure 4) included a commercially-built, rugged foam and 

fiberglass box (2.13 m x .91 m x .559 m) with two interior compartments, a large hinged lid, and 

a removable oyster washer. The two interior compartments consisted of a smaller “dipping 
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chamber” for rapid chilling of oysters while soaking in an ice-slurry of ambient seawater and a 

larger chamber for ice storage and chilled oysters. The lid was designed to extend past the 

gunwales of the boat to allow overboard drainage. The lid also served as a work platform to 

place harvested oysters for sorting, counting, and cleaning. The oyster washer (61 cm x 40 cm x 

23 cm) was not used during testing but has interior seawater jets supplied by an onboard 

gasoline-powered pump; it was built as a spray hood typically used to wash shellstock at onshore 

facilities. 

The design of the chilling and washing unit also includes a 90 cm x 60 cm plastic tray 

(not pictured) for placement of oysters to be washed by sliding beneath the washer hood, a 

plastic-mesh sacks (i.e., crawfish sacks) (not pictured) for placing 100 washed oysters for 

dipping and storage and, a sheet of coroplast (corrugated plastic) (not pictured) for placing bags 

of shellstock atop ice in the large chamber. 

  

Figure 4 (a) Standard oyster washer typically used in Louisiana for on-shore shellfish washing. 

(b) The prototype on-board chilling unit. 

Commercially available plastic mesh sacks (i.e., for crawfish handling) of 100-count 

oysters were tested three times on different days using the prototype cooling unit with a 

participating oyster farmer at the Grand Isle Oyster Farming Zone, Caminada Bay, LA.  
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 A gas-charged lift support (MightyLift!, AutoZone, Memphis, TN) was added to each 

side of the oyster chilling box as seen in Figure 5 to offset the weight of the lid and improve the 

design. 

          

Figure 5 Improvements to the lid. 

The lifts were able to handle 500 N (112 lbs) each. The lifts had a range of 42.5 cm to 71 

cm (16.75 in to 28 in). Lifting one side while standing on a scale and doubling the resulting 

number determined the weight of the lid. The weight was used to determine the size of the gas 

lifts needed to accommodate the force using the following formula: 

                    

Additional support was needed to attach the lifts since the unit is made of foam and fiberglass. A 

2 in x 4 in board was attached to either side using Liquid Nails (Liquid Nails Adhesive, Cranbery 

Township, PA). The placements of the lift supports were determined using the trigonometric 

equations for a right triangle (lid closed) 

         

and a scalene triangle (lid open 60°) as shown in Figure 6. 
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Figure 6 Schematic of the lid closed and open used for calculations. 

The variables b and c are constants in both trigonometric equations. The variable a 

corresponds to the length of the lift with a closed lid larger than 42.5 cm. The variable a’ 

references the length of the gas-lift with the lid open to 60° and cannot exceed 71 cm. 

Methods 

Temperature Tests 

Two different methods for cooling eastern oysters were experimented with to determine 

the more efficient process. The methods compared dipping the oysters in static vs circulating ice-

slurries maintained at ≤4.5°C to test the differences of thermal reduction of internal vs external 

oyster temperatures using thermocouples connected to a 21X Micrologger (Campbell Scientific, 

Logan, UT, United States) and Smart Button temperature loggers (ACR Systems Inc, Surrey, 

B.C, Canada). Static water uses conduction and natural convection to transfer heat to 

neighboring particles. By circulating the water, the tests were changing the second heat transfer 

method, forced convection, to accelerate the cooling of the oysters. The heat transfer of static 

versus circulating water are analyzed and compared in Chapter 3. An ice-slurry remaining static, 
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demonstrating natural convection was compared to an ice-slurry with water circulated by a pump 

with forced convection. 

Smart Buttons are easily attached to the surface, can be left for a longer period of time, 

and do not have wires making them more ideal for fieldwork (Drake et. al, 2009). The Smart 

Buttons and thermocouples were tested for accuracy by being placed in different temperature 

environments. The two types of sensors were also compared to a mercury thermometer for 

verification. 

The oysters were readied to test by being scrubbed and attaching sensors as seen in 

Figure 7. Three oysters had smart buttons attached using duct tape and three oysters were 

monitored using thermocouples. Two T-type thermocouples (copper-constantan) were attached 

to each of the three live oysters. Martin et al. 2007 found drilling a 6.35 mm (¼ in) hole into the 

oyster and inserting a thermocouple 2.5 cm into the meat is best to record the internal meat 

temperature. The hole was sealed using modeling clay. The second thermocouple was taped to 

the bottom of the shell and both thermocouples were secured with duct tape. The thermocouples 

were attached to Campbell Micrologger to record the temperatures using the code in APPENDIX 

A. 

   

Figure 7 (a) A T-type thermocouple inserted into a live oyster and sealed with modeling clay. (b) 

Thermocouples secured with duct tape to ensure contact with the shell. (c) Smart Button attached 

to the outside of a live oyster using duct tape. 
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Each cooling run was timed for 20 minutes to ensure the oysters were thoroughly chilled 

to get a complete temperature profile. To monitor ambient temperature a thermocouple was 

placed in the sack with the oysters. The tests were replicated to verify, three tests for a static ice-

slurry and three tests for a circulating ice-slurry were conducted. The data was collected from the 

smart buttons and thermocouples and analyzed to determine the amount of time needed for icing 

the oysters after harvest to achieve an internal meat temperature of 10°C. A 12V bilge pump was 

placed on the bottom of the slurry chamber to provide circulation with a discharge hose directed 

towards the surface. The testing temperature was maintained by monitoring and sustaining 

floating ice. 

Harvest Oysters 

The oysters were located in Portersville Bay (30º35’ 03.51”N: 88º19’32.93”W) (Figure 

8) on a private oyster farm. Oysters were harvested, sorted into groups of 100, and stored in 

plastic mesh sacks that do not absorb water. Each sack was labeled corresponding to the 

treatment; six bags put individually in the ice-slurry for eight minutes and six bags left on the 

deck of the boat un-iced as the controls. The rapidly cooled oysters were placed in the second 

chamber of the icing box on top of spare bags of ice separated by a coroplast sheet. Each group 

of six consisted of three oyster sacks for sampling for vibrio analysis and three for gaping tests. 

To get a consistent sample, the Dauphin Island research team suggested collecting 15 oysters to 

ensure 12 live oysters for tests. Each testing period had 5 different points for vibrio testing: (1) at 

harvest (H); (2) after dipping in the ice-slurry (IS); (3) when placed in mechanical refrigeration 

storage (R0); (4) after 7 days in refrigeration (R7); and (5) after 14 days in refrigerated storage 

(R14).  
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Figure 8 Google Earth images of oyster farm location. 

Samples and Counts 

The first day of the testing period consisted of harvesting the oysters, icing the 

appropriate samples and placing the oyster sacks in cold storage. Twelve samples were taken the 

first day. The three harvest samples were taken only from the three control sacks. The three 

samples after dipping in the ice-slurry were taken from the three iced sacks. Three samples were 

taken from each of the control and icing sacks before refrigeration. All samples were taken from 

the same six sacks labeled for sampling. Six samples were taken after 7 days and 14 days in 

refrigeration; three from the control and three from the iced oysters. 

The other six sacks were used for the mortality counts. Each oyster was tested for 

mortality by taping on the shell to audibly detect gaping from a hollow sound (Melody et al, 

2008). The hollow (dead) oysters were recorded and removed. The live oysters were replaced in 

the cold storage at R & A Oyster Company. 

Enriching Samples 

The samples were taken to the Food and Drug Administration Division of Seafood 

Science and Technology, Gulf Coast Seafood Laboratory in Dauphin Island, AL for processing 

and analysis. Each sample of 12 oysters was processed using sterile equipment: shucking knife, 

board, scrubber, and blender bottle. The process followed for each test began by scrubbing each 
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oyster to remove sediment, particularly around the hinge. The oyster knife was inserted in the 

hinge while the oyster was held upside down, pushed then twisted the knife to separate the shells. 

The abductor muscle was separated with the knife from the bottom shell (located on top at this 

point) to release the first piece of shell. The knife was then slid underneath the meat to separate 

the second shell. The entire oyster and liquid were put into the labeled blender bottle, weighed, 

and record. The oyster meat was homogenized in the blender on high for ~90s. The homogenized 

oyster meat was used for Vibrio analysis.  

A three-tube most probable number (MPN) dilution series was used to analyze each 

sample per standard methods (Kaysner and DePaola, 2001; Kaysner and DePaola, 2004). To 

prepare for the MPN one rack was set up per sample of 12 oysters. Six vials filled with 9 mL 

phosphate-buffered saline (PBS; 7.65 g NaCl, 0.724 g Na2HPO4 [anhydrous], .21 g KH2PO4 in 

1L distilled H2O, pH7.4 ) and 21 vials filled with 9 mL of the growth media APW (Alkaline 

Peptone Water) per rack (Figure 9).  

    

Figure 9 Preparation of the MPN tubes. 
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To create a 1:10 dilution, one gram of oyster homogenate was added to 9 mL of 

phosphate buffered saline (PBS) as seen in Figure 9. 10-fold dilutions were made from the first 

PBS tube through 10
-6

. One gram of the oyster homogenate was also added to the first three vials 

filled with 9 mL of alkaline peptone water (APW; Bacto peptone 10g, NaCl 10g, dH2O 1L). 1 

mL was taken from each PBS tube and added to three tubes filled with 9 mL APW to complete 

the three-tube MPN. The tubes were incubated at 37 °C for 18 hours. All media volumes and 

contents were provided by Dauphin Island Gulf Coast Seafood Laboratory as used in Kinsey et 

al. 2015. 

Preparing for Vibrio Tests 

After the incubation period, the MPN tubes were ready to be processed. The tubes with 

visible growth were considered positive for bacteria seen in Figure 10. Each positive APW tube 

was marked in the appropriate column of the sheet. A 1 mL aliquot was transferred from each 

positive APW vial into an Ependorff 1.5 mL micro-centrifuge tube. The tubes were labeled 

according to the rack and location of the vial. The micro-centrifuge tubes were heated for 10 

minutes at 100 °C then immediately placed on ice for 10 minutes. Micro-centrifuge tubes either 

continued on to vibrio testing using polymerase chain reaction (PCR) by being centrifuged for 2 

minutes at 2000 rpm or were stored in the refrigerator.  

    

Figure 10 (a) APW and PBS tubes before inoculation. (b) Opaque tube on the left indicates a 

positive APW test compared to a transparent negative tube. 
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Real-Time PCR Analysis 

The Applied Biosystems 7500 Fast Real-Time PCR system (AB 7500; Life Technologies 

Waltham, MA) was used to run three separate Rti-PCR assays for total V. vulnificus (vvh), total 

V. parahaemolyticus (tlh), and pathogenic V. parahaemolyticus (tdh+/trh+). 2µl of an Internal 

Amplification Control (IAC) DNA is used to eliminate false-negative reporting (Nordstrom et 

al., 2007). The concentrations for each assay are described in Table 1. 

Table 1 – All primers and probes used for Vibrio PCR. 

 V. vulnificus V. parahaemolyticus Pathogenic Vp 

Component Volume (µl)/RXN 

Target Template 2 2 2 

PCR H2O 12.22 12.77 11.87 

Buffer 2.5 2.5 2.5 

MgCl2 2.5 2.5 2.5 

dNTPs 0.75 0.75 0.75 

vvhF 0.75   

vvhR 0.75   

IC 46F 0.188 0.188 0.063 

IC 186R 0.188 0.188 0.063 

vvh CY5 0.5   

IC JOE 0.375   

IAC DNA 2 2  

Platinum Taq 0.22 0.3  

ROX reference dye 0.06 0.06 0.06 

tl 884F  0.5  

tl 1091R  0.5  

tl JOE 1043C  0.375  

IC CY5  0.375 0.375 

trh 20F   0.75 

trh 292R   0.75 

tdh 89F   0.25 

tdh 321R   0.25 

trh VIC   0.188 

tdh FAM   0.188 



 19 

The final reaction volume for each template was 25 µl. The values in Table 1 were 

provided by the FDA lab in Dauphin Island, AL. The deoxynucleose triphoshpates (dNTPs) are 

used in all three Real-Time PCR assays. All components labelled F or R are a forward or reverse 

primer or probe. The IAC is an internal amplification control DNA used to identify negative 

PCR responses. CY5, JOE, ROX, VIC, and FAM are reference dyes that help mark positive 

samples. 

The Real-Time PCR assay for V. vulnificus used vvhA primers and probes as published 

by Campbell, M. and A. Wright (2003). Modifications were needed for the reaction mixtures to 

run on the AB 7500 platform since the original mixtures were for a different machine. The 

cycling parameters for a 25 µl volume were 95°C for 60s for the initial denaturation, and 45 

cycles of 95°C for 15s (denature), 57°C for 15s (anneal), and 72°C for 25s (extend). The 

threshold cycle was set to 0.02 and the background end cycle was set at 10. 

The Real-Time PCR assay for V. parahaemolyticus used tlh primers and probes as 

described by Givens et al., 2014. Modifications were also required for this mixture to run on the 

AB 7500 platform. The cycling parameters for a 25 µl reaction volume were an initial 

denaturation of 95°C for 60s, and 45 cycles of 95°C for 5s (denature) and 59°C for 45s 

(anneal/extend). The threshold cycle was set to 0.02 and the background end cycle was set at 10. 

The Real-Time PCR assay for pathogenic V. parahaemolyticus used tdh and trh primers 

and probes as described by Jones et al., 2014. Modifications were also required for this mixture 

to run on the AB 7500 platform. The cycling parameters for a 25 µl reaction volume were the 

same as the assay for tlh with an initial denaturation of 95°C for 60s, and 45 cycles of 95°C for 

5s (denature) and 59°C for 45s (anneal/extend). The threshold cycle was set to 0.02 and the 

background end cycle was set at 10. 
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The results seen in Figure 11 from the Real-Time PCR were used to estimate total V. 

vulnificus, total V. parahaemolyticus, and pathogenic V. parahaemolyticus densities in each 

sample with standard MPN tables (Blodgett 2010).  

    

Figure 11 (a) The results from PCR. (b) Table was used to estimate the Vibrio levels in each 

sample.  

The data of total V. vulnificus, total V. parahaemolyticus, and pathogenic V. 

parahaemolyticus was log10 transformed and run through a mixed procedure in SAS 9.4. 

Streaking for Vibrio 

The positive MPN vials were also streaked onto selective agar for Vibrio 

parahaemolyticus and Vibrio vulnificus. Thiosulfate-citrate-bile salts-sucrose agar (TCBS) was 

used to target V. parahaemolyticus and modified cellobiose-polymyxin B-colistin (mCPC) agar 

was used to target V. vulnificus (Hoi 1998). The TCBS and mCPC plates were removed from 

refrigeration and placed in the incubator to prepare for streaking. Once warm, a TCBS and 

mCPC plate were labeled as seen in Figure 12 to correspond with each positive MPN vials for 

one rack of each treatment but not the replicates.  
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Figure 12 Streaked plate SSR4 -3C. S1: September, S2: Iced, R4: Refrigerated sample 4, -3C: 10
-

3
 Dilution’s 3

rd
 tube (C). 

Plates were streaked using 1 μL from the incubated vials and spread using an inoculating 

loop onto a quarter of the plate. The loop was cleaned by being repeatedly inserted into the agar 

around the edge of the plate. Using one side of the loop, one line was streaked through the 

previously section into a clean section of the agar and dragged back and forth in a zigzag motion 

into the second quarter of the plate. The loop was flipped to the opposite side and streaked one 

line through the previously section into the third quarter of the plate. The flat side of the loop 

was used to repeat the same process for the fourth quarter of the plate to isolate colonies. The 

same loop was used for the TCBS and mCPC plates of the same sample since the agars were 

sterile. The plates were incubated at 37°C overnight once all vials were streaked. 

Picking Colonies 

96 well templates were filled with 100 μL APW with separate templates for TCBS and 

APW. The TCBS agar targets Vibrio parahaemolyticus (green smooth colonies). Three colonies 

were picked from each plate using a toothpick and placed in three different wells labeled with the 

corresponding block on a reference sheet. The mCPC agar targets Vibrio vulnificus (flat yellow 

colonies with a transparent rim). Three colonies were also picked from each of the mCPC plates 

and put in the 96 well plates. The templates were incubated overnight. 
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Replicate Plating 

The templates were removed from the incubated and stamped onto T1N3 (1% Trypton, 

3% NaCl, 2% agar) plates using a metal 48-prong stamp, isopropanol, burner, and PBS. Label 

the T1N3 plates to match the corresponding template (Figure 13). The stamp was first sterilized 

by being dipped in the isopropanol and placed over the burner, do this twice the first time. The 

stamp was then placed in the PBS to cool the prongs before being set in half of the template to 

collect the colonies. Once in the template the stamp was removed and set on the corresponding 

T1N3 plate and gently wiggled to ensure the colonies were transferred. This process was repeated 

for each half and the other templates. The T1N3 plates were incubated overnight. The 96 well 

templates were stored in a -20°C freezer after adding 100 μL TSB + Glycerol to protect the 

colonies. 

 

Figure 13 Reference chart for the 96 well templates. 

TCBS and mCPC were stamped onto separate templates because of different probes used 

when confirming the bacteria.  
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Vibrio verification 

The T1N3 plates were removed from the incubator and lift the colonies using filter paper. 

The filter paper is processed using the method laid out by Nordstrom and DePaola (2003) to 

probe and verify colonies. The processed filter (Figure 14) paper can verify if the bacteria from 

the oysters are Vibrio parahaemolyticus and Vibrio vulnificus. 

       

Figure 14 Completed Vibrio probes. 

The purple colonies on each filter confirm the presence of Vibrio parahaemolyticus. This 

method takes longer to prepare and perform than Real-Time PCR. 

Results 

The total Vibrio parahaemolyticus results had a significant difference in the sampling 

months (p<.001) but not a significant difference in the treatments (p=0.4715). The amount of 

bacteria present in July was much higher than in May as shown in Figure 15. The graphs of the 

individual months (Figure 16) display how closely the bacteria numbers were for treated 

compared to the controls. 

The total Vibrio vulnificus data followed a similar pattern as total V. parahaemolyticus. 

The sampling months were significantly different (p<0.001) and the treatments were not 
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significantly different (p=0.2617). Figure 17 demonstrates how the bacteria levels were much 

lower in September than in May or July. 

Pathogenic Vibrio parahaemolyticus were low so no significant differences were found 

for sampling month (p=0.3716) or treatment (p=0.7885). The data is shown in Figure 15-Figure 

18 and Table 2. 

 

Figure 15 Total Vibrio parahaemolyticus throughout the three testing periods. 

There was a significant difference between the sampling months (p<.001) showing the 

vibrio levels greatly increase during the warmer summer months as seen in Figure 15. However, 

there was no significant difference between the oysters that were iced and the control. 

 

Figure 16 Total Vibrio parahaemolyticus for the months of May, July, and September. 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

H IS R0 R7 R14

V
ib

ri
o

 p
a

ra
h

a
em

o
ly

ti
cu

s 
(L

O
G

 M
P

N
/g

) 

Sampling Point 

Avarage of Total Vibrio parahaemolyticus  

May Control

May Iced

July Control

July Iced

Sept. Control

Sept. Iced



 25 

 The treated and controlled vibrio levels stayed consistent for each month. The bacteria 

were more abundant in July and September as seen in Figure 16. A significant difference is seen 

in the sampling months (p<.001) but there was not a significant difference in the treatments 

(p=0.4715).  

 

Figure 17 Total Vibrio vulnificus results for the three trials run in May, July, and September 

2015. 

There was a significant difference in the sampling months (p<.001) with a higher V. 

vulnificus count in May and July. The treatment was not statistically significant (p=0.2617) 

showing the treated and control bacterial counts were similar for each month. 

 

Figure 18 Total Vibrio vulnificus for May, July, and September. 
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The treated and controlled vibrio levels alternate having higher levels at different 

sampling points, giving overall similar results. There is no significant difference between the 

treated and untreated oysters for Vibrio vulnificus (p=0.2617). However, there was a significant 

difference between the sampling months (p<0.001) with much lower bacteria levels in 

September than in May or July.  

Table 2 The pathogenic Vibrio parahaemolyticus results for the three trials run in May, July, and 

September. 

Pathogenic Vibrio parahaemolyticus (MPN/g) 

MH1 0 

 

JH1 0.3 

 

SH1 0.92 

MH2 0.36 

 

JH2 0 

 

SH2 0 

MH3 0 

 

JH3 0 

 

SH3 0.36 

MHR1 0 

 

JHR1 0 

 

SHR1 0 

MHR2 0 

 

JHR2 0 

 

SHR2 0 

MHR3 0.36 

 

JHR3 0 

 

SHR3 0.36 

MHR4 0 

 

JHR4 0.3 

 

SHR4 0 

MHR5 0.3 

 

JHR5 0 

 

SHR5 0 

MHR6 0 

 

JHR6 0 

 

SHR6 0 

MHR7 0 

 

JHR7 0 

 

SHR7 0 

MHR8 0 

 

JHR8 0 

 

SHR8 0 

MHR9 0 

 

JHR9 0 

 

SHR9 0 

MS1 0 

 

JS1 0 

 

SS1 0 

MS2 0 

 

JS2 0 

 

SS2 0 

MS3 0 

 

JS3 0.36 

 

SS3 0 

MSR1 0 

 

JSR1 0 

 

SSR1 0.36 

MSR2 0 

 

JSR2 0 

 

SSR2 0 

MSR3 0 

 

JSR3 0 

 

SSR3 0 

MSR4 0 

 

JSR4 0.92 

 

SSR4 0.3 

MSR5 0 

 

JSR5 0.61 

 

SSR5 0 

MSR6 0 

 

JSR6 0 

 

SSR6 0.3 

MSR7 0 

 

JSR7 0 

 

SSR7 0 

MSR8 0 

 

JSR8 0 

 

SSR8 0 

MSR9 0 

 

JSR9 0 

 

SSR9 0 

 

The numbers of pathogenic vibrio in the oysters were very low and icing the oysters did 

not make a difference. The analysis did not show a statistical significance between the two 
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treatments (p=.7885). The labels for each sample had to be condensed and a shorthand was 

created where the first letter depicted which month the sample was collected (M=May, J=July, 

S=September). The second letter groups the samples into iced or un-iced categories (H=Control, 

S=Iced). Samples with R1-3 were taken as soon as the oysters were put in refrigeration. The 

labels R4-6 and R7-9 corresponded with the 7 and 14 day sampling respectively. 

Results from the oyster mortality tests showed a higher level of oyster gaping for iced 

oysters as shown in Figure 19-Figure 21. The iced oysters mortality must be ≤15% compared to 

the controls for this process to be successful. The rate of oyster mortality can potentially be 

altered with lessening the stress on the oysters by slowing the cooling rate and not circulating the 

water. The oyster mortality can also be affected by the oysters remaining moist for extended 

periods of time after the harvest. The mortality results for the iced oysters in May, July, and 

September were higher than the 15% allowed limit above the controls. 

 

Figure 19 Oyster mortality in May 
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The oyster mortality for May showed the number of oysters that were gaping (open or 

hollow sounding) after 7 and 14 days in refrigeration. The results showed a 159% increase in 

mortality of treated versus control. 

 

Figure 20 Oyster mortality in July 

The oyster mortality for the second trial in July greatly increased from May. The results 

showed a 127% increase in mortality of treated versus control seen in Figure 20. 

 

Figure 21 Oyster mortality in September 
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The oyster mortality in the third trial showed the control sacks with a 250% increase in 

mortality of treated versus controls. 

Discussion 

 Total Vibrio parahaemolyticus results showed the amount of bacteria present in July was 

much higher than in May as shown in Figure 15. The graphs of the individual months display 

how closely the bacteria numbers were for treated compared to the controls. 

 The Vibrio vulnificus Figure 17 demonstrates how the bacteria levels were much lower in 

September than in May or July. 

 Pathogenic Vibrio parahaemolyticus was not flourishing in this area. The data presented 

was raw since the levels were too low to transform. With the minimal bacteria, there was not a 

significant difference in the months or treatment. 

 The analysis of the gaping data showed a statistical significance between the iced and 

controlled oyster sacks (p<.001). There was also a significant difference between the sampling 

months (p=.0014). Several factors could have influenced these results including salinity of the 

water at harvest, the oysters remaining wet from being dunked in the ice-slurry, and shock from 

being chilled so quickly. Further work is needed to improve this design and process. 

Conclusion and Future Work 

The first objective was to find a difference between mortality of iced vs. un-iced oysters 

while held in cold storage for 7 and 14 days. The data showed an increase of gaping for iced 

oysters over the controls rejecting the null hypothesis that the two would be equal. The second 

objective was to decrease the Vibrio levels by rapidly cooling the oysters immediately after 

harvesting. The bacteria levels were not significantly different so we fail to reject the null 

hypothesis. 
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The mortality rates were not acceptable for this test. Design improvements need to be 

made to try to improve these numbers. Possible reasons for these results include the oysters not 

being dry after going through the ice-slurry, salinity of the ocean when harvesting being low 

because of a storm the previous day, and shock from extreme change in temperature in a short 

time. A new design for a chilling unit could include a system to dry the oysters after the ice-

slurry to avoid gaping from moisture. The new system would also be enclosed to prevent the 

cool air from escaping while handling the oysters between the ice-slurry and storage. 

The insulation of the current design was more than sufficient for the tested use. The ice 

did not have to be added to the ice-slurry during any of the harvests. However, since this unit is 

designed for smaller boats, the new system would need to be lighter. The weight of the lid would 

be a problem for repeated use since lifting 450+N is not ideal for everyday use. Ideally the 

storage should also be protected from temperature change by having a separate lid so cool air is 

not lost every time the icing chamber is opened for a new batch of oysters. The design still has a 

few problems that can be improved on in the future. 
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CHAPTER 3 : THERMODYNAMIC PROPERTIES OF EASTERN OYSTERS  

Introduction 

A large problem with the consumption of oysters is the possibility of food poisoning from 

eating un-cooked oyster meat (Su and Liu 2007). The oysters must be cooled while whole to 

preserve the shelf life and ensure a live oyster when sold in-the-shell (Wheaton 2007). The 

cooling of Eastern Oysters (Crassostrea virginica) depended greatly on the thermal properties of 

the shell. 

Two methods were investigated to rapidly cool oysters; a static ice-slurry and a 

circulating ice-slurry. The ice water was circulated using a submersible sump pump with a hose 

attached. This method added forced convection by circulating the water and transferring the heat 

by fluidic motion (Bejan 2013). The forced convection changed the rate of cooling and the total 

time to cool the oysters. The third objective focused on finding the difference in the heat transfer 

of an oyster in static vs. circulating water.  

Materials and Methods 

The oysters were connected to thermocouples as described in Chapter 2, one inserted into 

the oyster and one connected to the outside of the shell. The oysters were placed in a plastic 

mesh sack similar to the ones used during the actual testing/harvest and submerged into an ice-

slurry for 20 minutes to obtain a full temperature profile.  

The width of the oyster shell was used instead of the length to get a more accurate 

thermodynamic profile. An average width of the shell was taken from Shays and Wheaton 

(1980). The heat transfer coefficients for an oyster in static and circulating water were calculated 

using Figure 22 for a sphere since an oyster is an irregular shape. 
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Figure 22 Center temperature history for a sphere (from Welty et al. 1976) 

 The thermal diffusivity and thermal conductivity of Eastern Oysters were provided by 

Gomez-Martinez et al. (2002) and used with the following equations to determine the X and Y 

axis of Figure 22 to determine the relative resistance. 

   
     
     

 

Where, Tc = oyster temperature at a relative time,  

T∞ = water temperature, T0 = initial oyster temperature. 

  
  

   
 

Where, α = thermal diffusivity, t = time, 

x1 = radius of the oyster. 

  
 

   
 

Where, m = relative resistance, k = thermal conductivity, 

h = heat transfer coefficient, x1 = radius of the oyster. 
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 The temperatures were determined from the time-temperature trials using the 

thermocouple inserted into the oysters. The relative resistance was found with the center 

temperature history for a sphere table and used to determine the heat transfer coefficients for 

static and circulating water.  

Results 

The addition of forced convection by circulating the water increased the rate of cooling 

and lowered the total time to cool the oysters as shown in Figure 23 and Figure 24. Using the 

data collected by the thermocouples using the Campbell Scientific Micrologger and the code in 

APPENDIX A, a table of temperatures at specific times provided the data required to calculate 

the thermal properties of the oysters. The circulating water had a higher rate of heat transfer than 

the static water (hstatic = 141.21 W/m
2
 K, hcirculating = 247.116 W/m

2
 K. 

 

Figure 23 Chilling rate of oysters in static water 

y = 21.308e-0.001x 

R² = 0.9939 

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400

T
em

p
er

at
u

re
 (

°C
) 

Time (s) 

Static Water 

Internal O1

External O1

Internal O2

External O2

Internal O3

External O3

Trendline



 34 

 The thermocouples were inserted into the oysters shown in Figure 23 were submerged 

into a static ice-slurry for 20 minutes to develop a complete temperature profile of the cooling 

oysters. 

 

Figure 24 Chilling rate of oysters in circulating water 

 The process was repeated with a circulating ice-slurry with the results shown in Figure 

24.  

Discussion 

The time for the oysters to reach thermal equilibrium with the water was less for the 

circulating ice-slurry than the static. This is confirmed with the heat transfer data finding hstatic < 

hcirculating. Circulating the water and adding a second mode of heat transfer was beneficial to the 

time constraint and helped the efficiency of the process. The coefficient for heat transfer with 

natural convection was hstatic = 141.21 W/m
2
 K and forced convection brought the coefficient up 

to hcirculating = 247.116 W/m
2
 K. 
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Conclusion and Future Work 

The third objective was to determine if there was a difference in the heat transfer 

coefficient of an oyster in static vs. circulating water (H0: hstatic = hcirculating). The null hypothesis 

is rejected with the static ice-slurry having a lower heat transfer than the circulating ice-slurry. 

The added circulation of the water was more efficient at cooling the oysters. 

The data from this test is helpful for providing a more thorough understanding of thermal 

oyster properties. However, oysters are a biological organism and abrupt changes in environment 

can affect them negatively. A continuation of this research could determine the stress an oyster 

goes under when rapidly cooled to determine the best process for handling oysters that will limit 

vibrio growth, keep the oysters healthy, and simplify the procedure. 

  



 36 

CHAPTER 4 : CONCLUSION AND FUTURE WORK 

Project Summary 

The goal of this study was to test an on-board rapid chilling unit designed for small 

vessels to reduce Vibrio parahaemolyticus and Vibrio vulnificus in eastern oysters (Crassostrea 

virginica) during summer harvest while keeping oyster mortality to a minimum throughout the 

project. The reduced bacteria levels would create a market for triploid oysters during the spike in 

water temperature. This unit would also allow smaller vessels unable to fit a mechanical 

refrigeration unit on-board to continue harvesting when the time/temperature requirements 

become more stringent. The objectives were to determine if dipping the oysters in an ice-slurry 

affected the V. parahaemolyticus and V. vulnificus levels, the mortality after cold storage, and the 

thermal difference on cooling oysters of static and circulating water.  

The second chapter investigated the bacteria levels and mortality in iced and controlled 

oysters. The tests showed an increase of gaping for iced oysters over the controls. The difference 

was significant and on several occasions failed to meet the required 80% survival rate. The total 

V. parahaemolyticus and V. vulnificus levels were not significantly different between the iced 

and un-iced oysters. However, not all V. parahaemolyticus are pathogenic and the levels of 

pathogenic V. parahaemolyticus were found to be extremely low in this area. Pathogenic V. 

parahaemolyticus was also tested and since the levels were almost non-existent no significance 

could be found between the iced and un-iced oysters. Along with testing for bacteria, this study 

also examined the heat transfer of an oyster in static and circulating ice water. 

The third chapter explored the difference in the heat transfer coefficient of an oyster in 

static and circulating ice-slurries. The circulating ice-slurry was more efficient at cooling the 
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oysters since it had the second heat transfer method of forced convection to the already present 

conduction. 

 The data from this test is helpful for providing a more thorough understanding of oysters 

and their reaction to ice-slurry dips. This work and future endeavors are could provide an 

efficient process for safely harvesting oysters in the summer for smaller vessels. 

Future Work 

Modifications need to be made to try to improve oyster survival and bacterial levels. 

Possible reasons for these results include the oysters not being dry after going through the ice-

slurry, salinity of the ocean when harvesting being low, and shock from extreme change in 

temperature in a short time. A new design for the chilling unit would include a drying system for 

the oysters after the ice-slurry dip to avoid gaping from continued exposure to moisture. The new 

system would also prevent cool air from escaping when the lid was opened while handling the 

oysters between the ice-slurry and storage by being enclosed.  

The insulation of the current design was more than sufficient for the tested use. However, 

this unit was designed for smaller vessels and the weight was an issue. The unit was designed for 

insulation and to withstand rugged use, which resulted in the lid being extremely heavy and not 

ideal for everyday use. The new unit should have enough insulation to keep the oysters cool 

during the harvest and be designed with repeated use in mind, with lighter material to decrease 

the total weight. 

 Further investigations could also include more research into the effects icing has on 

oysters such as the stress an oyster goes through when rapidly cooled. Oysters are biological 

organisms and abrupt changes in the environment can affect them negatively. 
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APPENDIX A : PC208W LOG PROGRAM 

 

;{21X} 

; 

*Table 1 Program 

  01: 1.0000    Execution Interval (seconds) 

 

1:  Batt Voltage (P10) 

 1: 1        Loc [ BatVolt   ] 

 

2:  Internal Temperature (P17) 

 1: 2        Loc [ RefTemp   ] 

 

3:  Thermocouple Temp (DIFF) (P14) 

 1: 8        Reps 

 2: 1        5 mV Slow Range 

 3: 1        DIFF Channel 

 4: 1        Type T (Copper-Constantan) 

 5: 2        Ref Temp (Deg. C) Loc [ RefTemp   ] 

 6: 3        Loc [ RefTemp_2 ] 

 7: 1.0      Mult 

 8: 0.0      Offset 

 

4:  Do (P86) 

 1: 10       Set Output Flag High 

 

5:  Sample (P70) 

 1: 11       Reps 

 2: 1        Loc [ BatVolt   ] 

 

*Table 2 Program 

  02: 0.0000    Execution Interval (seconds) 

 

*Table 3 Subroutines 

 

End Program 

 

-Input Locations- 

1 BatVolt   5 1 1 

2 RefTemp   9 2 1 

3 RefTemp_2 13 1 1 

4 RefTemp_3 9 1 1 

5 RefTemp_3 9 1 1 

6 RefTemp_4 9 1 1 

7 RefTemp_5 9 1 1 

8 RefTemp_6 9 1 1 
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9 RefTemp_7 9 1 1 

10 RefTemp_8 25 1 1 

11 RefTemp_9 9 0 1 

12 RefTem_10 17 0 1 

13 _________ 0 0 0 

14 _________ 0 0 0 

15 _________ 0 0 0 

16 _________ 0 0 0 

17 _________ 0 0 0 

18 _________ 0 0 0 

19 _________ 0 0 0 

20 _________ 0 0 0 

21 _________ 0 0 0 

22 _________ 0 0 0 

23 _________ 0 0 0 

24 _________ 0 0 0 

25 _________ 0 0 0 

26 _________ 0 0 0 

27 _________ 0 0 0 

28 _________ 0 0 0 

-Program Security- 

0 

0000 

0000 
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Appendix B : SAS Program 

 
DATA data5; 

INPUT SM $ TRT $ SACK $ RT $ Y1 Y2; 

DATALINES; 

1 1 1 1 1.361727836 3.968482949 

1 1 1 2 2.176091259 3.662757832 

1 1 1 3 1.361727836 2.968482949 

1 1 1 4 0.875061263 2.875061263 

1 1 2 1 1.968482949 3.361727836 

1 1 2 2 1.968482949 3.875061263 

1 1 2 3 1.968482949 2.968482949 

1 1 2 4 1.968482949 2.633468456 

1 1 3 1 1.633468456 3.380211242 

1 1 3 2 1.875061263 3.662757832 

1 1 3 3 0.968482949 3.301029996 

1 1 3 4 1.301029996 3.662757832 

1 2 4 1 1.579783597 3.662757832 

1 2 4 2 1.633468456 4.662757832 

1 2 4 3 1.361727836 3.633468456 

1 2 4 4 0.968482949 2.968482949 

1 2 5 1 2.380211242 4.176091259 

1 2 5 2 2.662757832 4.380211242 

1 2 5 3 1.875061263 2.633468456 

1 2 5 4 2.380211242 3.176091259 

1 2 6 1 1.361727836 3.662757832 

1 2 6 2 1.361727836 4.041392685 

1 2 6 3 0.633468456 2.380211242 

1 2 6 4 0.968482949 2.579783597 

2 1 1 1 3.968482949 3.968482949 

2 1 1 2 4.380211242 4.662757832 

2 1 1 3 4.079181246 3.633468456 

2 1 1 4 4.380211242 3.361727836 

2 1 2 1 3.662757832 3.662757832 

2 1 2 2 4.176091259 3.968482949 

2 1 2 3 3.968482949 4.176091259 

2 1 2 4 3.361727836 2.968482949 

2 1 3 1 4.041392685 4.041392685 

2 1 3 2 3.633468456 3.662757832 

2 1 3 3 3.380211242 2.968482949 

2 1 3 4 3.633468456 2.662757832 

2 2 4 1 3.380211242 3.380211242 

2 2 4 2 3.662757832 3.380211242 

2 2 4 3 3.380211242 2.968482949 

2 2 4 4 3.380211242 3.662757832 

2 2 5 1 3.875061263 3.968482949 

2 2 5 2 3.662757832 3.875061263 

2 2 5 3 2.875061263 2.968482949 

2 2 5 4 3.176091259 3.176091259 

2 2 6 1 4.041392685 3.662757832 

2 2 6 2 3.662757832 4.041392685 

2 2 6 3 3.662757832 2.633468456 

2 2 6 4 3.662757832 2.633468456 

3 1 1 1 2.968482949 1.875061263 

3 1 1 2 2.322219295 1.875061263 
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3 1 1 3 2.633468456 0.968482949 

3 1 1 4 3.361727836 0.633468456 

3 1 2 1 2.968482949 1.968482949 

3 1 2 2 3.633468456 1.875061263 

3 1 2 3 2.633468456 0.633468456 

3 1 2 4 2.633468456 0.176091259 

3 1 3 1 2.875061263 0.462397998 

3 1 3 2 3.361727836 1.633468456 

3 1 3 3 2.361727836 0.968482949 

3 1 3 4 1.968482949 -0.522878745 

3 2 4 1 2.579783597 1.857332496 

3 2 4 2 3.380211242 1.380211242 

3 2 4 3 2.968482949 1.633468456 

3 2 4 4 2.633468456 0.875061263 

3 2 5 1 2.968482949 2.380211242 

3 2 5 2 2.875061263 1.968482949 

3 2 5 3 2.633468456 1.633468456 

3 2 5 4 1.875061263 0.968482949 

3 2 6 1 3.041392685 2.176091259 

3 2 6 2 3.633468456 1.361727836 

3 2 6 3 2.968482949 1.361727836 

3 2 6 4 2.361727836 1.633468456 

 

Run; 

 

Proc Mixed Data=data5; 

Class SM TRT SACK RT; 

Model Y1=SM|TRT|RT/ddfm=KR; 

Random SACK(SM*TRT); 

LSmeans SM|TRT|RT; 

Run; 

Quit; 
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