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ABSTRACT 

Clostridium difficile (C. difficile) is regarded as the major cause of infectious 

diarrhea in humans after antimicrobial treatment. C. difficile has been reported to be 

widely isolated from food animals and meat. The main purpose of this study was to 

characterize C. difficile isolates from retail fresh vegetable (lettuce), test the 

antibiotic-resistance property using five common clinical-selected antibiotics 

(metronidazole, vancomycin, clindamycin, erythromycin, and cefotaxime). Lettuces 

(grown in California, Arkansas, and Louisiana) were purchased from retail stores. 

Toxigenic C. difficile was isolated from 13.8% (41/297) of the lettuce samples. 

Among the toxigenic isolates, 82.9% (34/41) only produce toxin B, and 17.1% (7/41) 

produced both toxin A and toxin B. Under the treatment of the five antibiotics, the 

virulence C. difficile isolates were identified as having antibiotic resistance to 

metronidazole, vancomycin, and erythromycin. The present study reports the highest 

toxigenic C. difficile yield rate from varieties of retail vegetables (lettuce) in the USA. 

The antibiotic resistance to metronidazole, vancomycin, and erythromycin of the 

isolated C. difficle from varieties of retail lettuces could lead to public health 

concerns.  

 

 



 

1 

CHAPTER I．Introduction to Clostridium difficile 

1.1 Clostridium difficile  

Clostridium difficile (C. difficile), a species of Gram-positive, spore-forming, 

and anaerobic bacteria, causes diarrhea and more serious intestinal conditions such as 

pseudomembranous colitis in humans (Monaghan et al. 2013). The name given to this 

organism was because it was difficult to isolate and grew slowly when being cultured. 

According to the Center for Disease Control and Prevention (CDC), C. difficile has 

been listed as an immediate health threat, and C. difficile infection (CDI) induces 

250,000 hospitalizations and 14,000 deaths per year. There are typically three 

manifestations of CDI development: asymptomatic carrier state, colitis with or 

without pseudomembranes, and fulminant colitis.  

1.2 History of C. difficile 

C. difficile was first identified in 1935 in the common intestinal colonic flora 

of newborn infants(Hall and O'Toole, 390-402). At first, it was known as Bacillus 

difficile, because it was difficult to grow outside of anaerobic broth culture. It was so 

frequently isolated from the feces of newborn infants that it was regarded as part of 

the infants’ gut microbiota at that time. However, subsequent studies indicated its pure 

broth cultures could lead to experimental animal death if being injected(Snyder 1937). 

Thus, C. difficile was believed as non-pathogenic to humans. Not until the late 1970s 

were the biological activities of its toxins defined, and C. difficile toxins were linked 
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to pseudomembranous colitis (PMC), proving it to be a human pathogen(Bartlett et al. 

1978a).  

In 1893, the definition of pseudomembranous colitis (PMC) was first raised by 

Finney (Bartlett et al. 1978b) as a post-operative complication. PMC (Figure 1) is 

described as multiple yellow discrete patches (Figure 1) growing on the surface of 

colon mucosal (Nelson et al. 1994) ,which microscopically reveals partially destroyed 

mucosal layer glands covered with fibrin and inflammatory polymorph nuclear 

leukocytes (Nelson et al. 1994). The residues of colonic glands are able to become 

necrotic and inflamed. Besides, the submucosa may also become contaminated with 

the increasing amount of vasculature and inflammatory cells, which are responsible 

for water loss and subsequent diarrhea (Nelson et al. 1994). The pseudomembrane is 

considered as having the ability of growing over and replacing the normal colonic 

mucosa concerning bacterial toxins (Bartlett et al. 1978b). 

PMC was not commonly diagnosed until the increasing usage of antimicrobial 

agents in the 1950s, when PMC was known as a common complication with high 

mortality rates (Nelson et al. 1994). At first, Staphylococcus aureus was regarded as 

Figure 1. Pseudomembranous colitis.  
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the reason to cause PMC by the Gram staining of plaques. Later, the stains revealed 

many Gram positive cocci in clusters (Bartlett et al. 1978b).  This theory was also 

supported by the knowledge of staphylococcal enterotoxins produced by S. aureus 

causing enteric disease, and the clinical improvement when treating those patients 

suffering from PMC with vancomycin instead (Bartlett et al. 1978b). Because of the 

failure of imitating the effects that were occurring in humans using animal models 

infected with S. aureus, other potential causes of the origin of PMC were pursued 

continuously (Bartlett et al. 1978b). The true explanation of these infections stayed 

unknown, and was not being associated with C. difficile until two decades later when 

the connection between the toxins A and B of C. difficile and PMC was revealed 

(Bartlett et al. 1978b). 

In the 1960s, anaerobic bacteria were related to the formation of aposteme, 

and several new antibiotics were developed to target them. Clindamycin was 

especially effective for intestinal infections caused by anaerobic bacteria (Bignardi 

1998). However, there was a common side effect of clindamycin treatment---diarrhea, 

which some patients severely suffered from and progressed to PMC in a lot of cases 

(Bignardi 1998). This antibiotic-associated diarrhea was not only seen with 

clindamycin, but also with other broad spectrum antimicrobials, so it was named as 

antibiotic associated diarrhea (AAD) (Bignardi 1998). After C. difficile toxins were 

identified in patients suffering from colitis, the linkage among C. difficile, antibiotic 

usage and PMC was established (Bartlett et al. 1978b). 
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Based on the association of antimicrobial use, PMC and C. difficile, 

researchers began to exploring a toxin responsible for the diarrhea associated with C. 

difficile infection (CDI). First, toxin B was confirmed by neutralizing the toxin’s 

effect by using the antitoxin of Clostridium sordellii. Toxin B was lethal in animal 

testing, the ability of causing severe hemorrhage, and mucosal edema in the cecum of 

laboratory animals. During the process of purifying the toxin, a second toxin showed 

up, toxin A. However, injecting an equal amount of toxin A followed by the same 

route was not lethal in animal models, and only brought about focal hemorrhage 

(Taylor, Thorne, and Bartlett 1981). Purified toxin A was able to result in a disease 

pathology similar to CDI, while testing animals in the same condition, toxin B had no 

effect at that time. Thus, Toxin B was thought to have an effect on test animals only 

with the presence of toxin A (Mitchell et al. 1986b, Taylor, Thorne, and Bartlett 1981). 

However, a toxin A negative, toxin B positive strain was isolated in a CDI outbreak in 

Canada in 1998, and later these strains have been discovered frequently (Drudy, 

Fanning, and Kyne 2007). So it has been regarded that both toxins are now considered 

responsible for the pathology, although toxin A positive, toxin B negative strains have 

not been found to be naturally present. In 2009, laboratory created toxin-A positive, 

toxin B-negative mutants showing reduced pathology in a hamster model, where 

pathology in hamsters caused by toxin A-negative, toxin B positive mutants remained 

unaffected in severity (Lyras, O’Connor, et al. 2009). This result indicates that toxin B 



 

5 

is essential for C. difficile disease, and synergy effect along with toxin A may not be 

necessary (Lyras, O’Connor, et al. 2009). 

1.3 Toxins of C. difficile 

Those strains lack of the ability of producing toxins are not considered 

pathogenic. When nutrients are abundant, toxin production will be inhibited, while 

during the essential nutrients shortage, particularly biotin, toxin production will cause 

intestinal epithelial cells to rupture, releasing nutrients (Yamakawa et al. 1996). 

Pathogenic C. difficile produces two protein exotoxins, Toxin A, comprised of 2710 

residues (308.0 kDa), and toxin B, comprised of 2366 residues (269.6 kDa) (Kelly and 

LaMont 1998). Toxin A and toxin B (also called TcdA and TcdB), belonging to the 

large clostridial cytotoxins (LCT), can cause animal death, while toxin A, called 

enterotoxin, has been proven to cause fluid accumulation, and severe epithelial 

damage with hemorrhage and diarrhea in rabbit ileal loops (Mitchell et al. 1986a, 

Torres and Lonnroth 1989). After toxin A and toxin B gain access into cells, they exert 

an alteration of Rho proteins (a family of GTP-binding protein associated with actin 

polymerization, cytoskeletal architecture, and cell movement) and finally result in the 

depolymerization of actin filaments, disruption of the cytoskeleton, cell rounding, and 

cell death (Kelly and LaMont 1998). Both A and B toxins contain four domains 

(Figure 2): a receptor binding domain; an enzymatic domain; an autoproteolytic 

cleavage during toxin-processing domain; and a hydrophobic translocation domain 

responsible for transferring the enzymatic domain into the cytosol (Belyi and Aktories 
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2010). The C terminal receptor binding domains of the two toxins are different, 

allowing the toxins to attach to the corresponding intestinal epithelial cell receptors 

toxin A to the apical surface receptors, and toxin B to the basolateral surface receptors 

(Jank, Giesemann, and Aktories 2007).  

 

Figure 2. The model of toxin A and toxin B. 

The genes encoding toxin A and toxin B are part of the pathogenicity locus 

(PaLoc), a 19.6kb chromosomal segment consists of TcdA-E genes (Figure 3) which 

provides a base for C. difficile PCR genotyping (Warny et al. 2005). These genes 

encode toxin A (TcdA), toxin B (TcdB), a negative regulator (TcdC), a positive 

regulator (TcdD), and a holing-like protein (TcdE). Transcription analysis studies 

indicate that TcdA, B, D, E are transcribed both monocistronically and 

polycistronically (Hundsberger et al. 1997). This mode of transcription is clearly the 

prior condition of a high production of toxin A and toxin B (Hundsberger et al. 1997). 

While, during the logarithmic phase, the TcdC gene has strong expression, and the 

other four genes are in weak transcription. The inverse is observed during the 

stationary phase, implicating that TcdC negatively regulates toxin expression 

(Hundsberger et al. 1997). Yet, the presence of TcdC genes, including TcdA and TcdB, 
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has also been found outside the PaLoc in several C. difficile strains. As TcdD 

increases with TcdA, B, E, TcdD is recognized as a positive regulation promoting 

toxin expression. Thus, TcdC and TcdD might be key factors regulating the production 

of the two toxins.  

 

Figure 3. The pathogenicity locus. 

Both toxins stay stable from -20 to 37⁰C, but will lose activity at 56⁰C 

(Sullivan, Pellett, and Wilkins 1982). Yet, neither toxin has effect on intracellular 

levels of cyclic AMP or GMP (Kelly and LaMont 1998). In addition, neither toxin is 

found to have association with spore production (Arnon et al. 1984). One of the 

physicochemical properties of toxin A, after purification, is its large size (Lyerly, 

Krivan, and Wilkins 1988). It can cause huge damage to gut mucosa (Mitchell et al. 

1986a).  

Toxin B, as a cytotoxin, is believed to be as lethal as toxin A, but less stable 

than toxin A (Arnon et al. 1984, Banno et al. 1984). It brings generous nonspecific 

responses in mammalian cells, such as the loss of intracellular potassium, decrease in 

protein synthesis, and decrease in synthesis of ribonucleic and deoxyribonucleic acids 

(Pothoulakis et al. 1986, Rihn et al. 1985). It induces rounding cells 100-10000 times 

more severe than toxin A in many cell types (Chaves-Olarte et al. 1997).  
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C. difficile transferase (CDT), a third toxin (aka, binary toxin), is an 

actin-specific ADP-ribosyltransferase; it was first proposed by Popoff et al. together 

with a few C. difficile strains in 1988 (Perelle et al. 1997, Popoff et al. 1988, Stubbs et 

al. 2000). Other similar toxins are produced by other species such as: iota toxin from 

Clostridium perfringens (Stiles and Wilkins 1986),Clostridium botulinum 

ADPribosyltransferase C3 (Aktories, Weller, and Chhatwal 1987),and Clostridium 

spiroforme toxin (CST) (Simpson et al. 1989). The CDT toxin structure is composed 

of two separate proteins encoded by genes cdtA and cdtB, where A is the enzyme 

component and B is the receptor binding and translocation component. Cells 

contaminated by CDT toxin present depolymerization of F actin, leading to cell 

rounding. Additionally, the formation of surface microtubules displays in these cells 

that have been shown to raise the possibility of C. difficile adherence. This increased 

adherence to the cell surfaces may promote colonization, adding to the virulence of 

these CDT producing strains (Schwan et al. 2009). It was shown that C. difficile 

strains which produce CDT toxin in addition to toxins A and B tend to be more 

virulent, especially the hypervirulent PCR ribotype 027 and 078 strains. Nonetheless, 

some C. difficile strains only produce CDT toxin without toxins A and B; there is no 

strong evidence indicating a hypervirulent strain (Stubbs et al. 2000). 

1.4 Sporulation of C. difficile 

C. difficile’s ability to produce infectious endospores assists both its 

survivability outside and inside of its host. Sporulation forms when reproduction of 
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vegetative cells suffers from nutrient deprivation or undesirable conditions. The 

metabolically inactive property of the spores gives them the ability of being resistant 

to antimicrobial treatments, heat, radiation, desiccation and chemical treatments. Thus, 

spores are resistant to the majority of cleaning products used in healthcare facilities 

(Gerding, Muto, and Owens 2008). The spore formation of C. difficile grants the 

bacteria fecal oral transmission in healthcare facilities, either directly from patient to 

patient, or by transmission from the hands of health care personnel (Lawley et al. 

2009, Underwood et al. 2009). Researchers found spores are frequently spread by 

flushing toilets or changing the bed sheets contaminated with feces from C. difficile 

patients (Best et al. 2010, Donskey 2010, Roberts et al. 2008). 

Prokaryote sporulation is an evolutionary performance to protect species 

survival. Spore formation allows cells to wait until environmental conditions become 

suitable for them to switch back to their vegetative form and continue growing (De 

Hoon, Eichenberger, and Vitkup 2010). The process of sporulation has been 

thoroughly studied in Bacillus subtilis; its process may also be applied to C. difficile.  

Sporulation can be divided into seven separate stages (Figure 4). The process starts 

with stage I, where the vegetative cell grows in size and replicates its DNA followed 

normally by cell division resulting in stage 0. Different from a normal binary cell 

division, the cell is divided into two unequal parts called stage II during the 

sporulation process. The larger portion is considered as the mother cell, and the 

smaller portion is the fore spore. In stage III, the fore spore then becomes immersed in 
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the mother cell, continuing the process of growing to a mature spore at the same time. 

In stage IV, peptidoglycan forms the cortex layer of the fore pore, separating the two 

cells. Calcium dipicolinate synthesized by the mother cell is concentrated in the spore 

core, stabilizing the DNA. Diplocolinic acid and calcium enable the spore to become 

resistance to heat and oxidizing agents (Setlow 2007). During stage V, an outer 

protein layer is formed to coat the outer membrane. The spore turns to be mature in 

stage VI, along with finishing coat synthesis, dehydration, and lysis of the mother cell 

wall by the action of lytic proteins. Accordingly, the dormant spore is released (De 

Hoon, Eichenberger, and Vitkup 2010, Paredes, Alsaker, and Papoutsakis 2005). 

 

Figure 4. Stages of Sporulation. 
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1.5 Epidemiology 

C. difficile infection stands in the first place in the cause of antibiotic 

associated diarrhea, having a percentage of 10-25% of all cases (Bartlett 2002). 

Carriage and colonization rates vary widely between different patient groups. Among 

the normal adult population, C. difficile asymptomatic carriage is estimated at 2-3%, 

but much higher in those frequently exposed to healthcare environments (Barbut and 

Petit 2001). Concerning the newborns, they are highly susceptible to acquiring C. 

difficile, given the fact that they have no protective normal gut flora to inhibit 

colonization. Normally, the acquisition of C. difficile in newborns is considered to be 

gained from the child’s mother flora or the newborn nursery environment 

(TABAQCHALI et al. 1984). Carriage rates in newborns born in hospitals have been 

appeared to be as high as 70% (Kato et al. 1994, TABAQCHALI et al. 1984). 

Carriage rates are also showed to be higher in healthcare providers and high risk 

patients that have been hospitalized or received antibiotics (Barbut and Petit 2001, 

Giannasca and Warny 2004). It is reported that approximately one-third of the 

long-term healthcare facility residents asymptomatically carry C. difficile (Simor et al. 

2002). 

1.6 Risk factors associated with C. difficile infection (CDI) 

The key risk factor associated with development of CDI is the treatment with 

antibiotics. More than 90% of all CDI cases happen during or following treatment 

with antibiotics (Barbut and Petit 2001). Apart from aminoglycosides, almost every 
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other antibiotic would lead to some risk of progression from asymptomatic 

colonization to CDI (Sunenshine and McDonald 2006). Exposure to antibiotics may 

develop to CDI, but the infection could be delayed for up to 8 weeks after antibiotics 

are consumed (Johnson and Gerding 1998b, Kelly, Pothoulakis, and LaMont 1994). A 

majority of CDI cases involved the use of clindamycin, fluoroquinolones, or third 

generation cephalosporins (Gerding 2004). It is supported that limiting the use of 

these antibiotics could significantly reduce the healthcare acquired infections (HAI) 

concerning C. difficile (Carling et al. 2003). It is vital for individual healthcare 

institutions to be aware of the sensitivity and resistance patterns of C. difficile isolates 

that rely on their environment and patient population. If an isolate in an institution 

shows its resistant to clindamycin, then the use of clindamycin should be highly 

restricted (Owens et al. 2008, Pear et al. 1994). On the other side, if a patient’s C. 

difficile organisms are routinely sensitive to a specific antimicrobial, then the use of 

that antibiotic should be encouraged (Donskey 2010).  

There are several high risk populations, whose who are the elderly, immune 

dysfunctional, pregnant, and those frequently exposed to healthcare environments. 

Patients older than 65 years of age or with severe underlying illness are vulnerable to 

CDI (Barbut and Petit 2001, Bignardi 1998). The reason of this may also be 

associated with more frequency of hospitalization, decreasing immune function, and 

an increased likelihood to be treated with antibiotics. Accordingly, patients living in 
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long-term healthcare facilities are generally older, and having higher chance of being 

exposed to increased antibiotics (Sunenshine and McDonald 2006).   

The disease progression can vary from patient to patient, depending on their 

immune response to CDI. Those patients that produce high antibody titers to toxin A 

usually only develop diarrhea, and have a higher possibility of resolving without 

reoccurrence. On the contrary, failure to produce adequate antibodies to toxins results 

in increased risk for complications and recurrent infections (Kelly 1996, Kyne et al. 

2001). Besides, asymptomatic carriers normally have high antibody titers to toxin A, 

and are unlikely to develop severe symptoms when exposed to antibiotics (Salcedo et 

al. 1997).  

Prior to the emergence of hypervirulent strains of C. difficile, pregnant women 

share an unusual high occurrence rate of CDI, with some minor symptoms not 

involving hospitalization. Now there is an increased frequency and severity of disease 

is associated with CDI in peripartum women, leading to increased colectomies, 

stillbirths and maternal deaths (Rouphael et al. 2008). Those patients admitted to 

hospitals have increased rates of asymptomatic colonization despite of progress to 

infection. Cultures on a variety of surfaces in healthcare facilities have been tested 

and demonstrated high levels of C. difficile contamination (McFarland et al. 1989). In 

screenings of patients upon admission, it has been found that carriage rates have a 

range between 5.9 to 11%, which is higher than the normal distribution in adults of 2 

to 3%.  Infection rates differ among patient groups depending on other risks factors, 
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but overall the rate is between 4 to 21% in a non-outbreak environment. A study in 

one hospital demonstrated an acquisition rate of 13% for patients hospitalized for 1-2 

weeks; the rate increased to 50% based on the hospitalized patients for more than a 

month (Calabi et al. 2002). Approximately 63% of these patients would become 

asymptomatic carriers. What’s more, studies of outbreaks have found acquisition rates 

can rise to as high as 32%, especially when highly susceptible patients are involved 

(Barbut and Petit 2001). It is found that the time needed to treat patients, those who 

developed CDI while being treated for another issue at the same time, could be 

increased by 3.6 days in the hospital, at an estimated cost of over 1 billion dollars in 

the U.S. per year (Kyne et al. 2002). 

1.7 Treatment for CDI 

The first step in treatment of CDI is to stop the current offending antibiotic if 

possible, or switch to another antibiotic with a narrower spectrum. Using this method, 

nearly 25% of diarrhea from mild CDI would be resolved without further 

complication (Barbut et al. 2000). Subsequently, supportive therapy should be 

followed to rehydrate and replace electrolytes, especially in patients with severe 

diarrhea. Antiperistaltic drug therapy should be avoided to limit patients’ exposure to 

C. difficile toxins, which may result in the development of toxic megacolon 

(McFarland 2005). Because of the rise of hypervirulent strains, some physicians may 

treat with antibiotics until CDI has been ruled out by laboratory testing (Bartlett and 

Gerding 2008). 
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Clindamycin is an effective treatment for serious anaerobic infection, but was 

used so widely that it has been gradually losing its efficiency (Kabins and Spira 1975). 

To date, when diarrhea and colitis caused by C. difficile are severe, there are some 

other common effective treatments which are oral metronidazole and oral vancomycin 

(Kelly and LaMont 1998). Besides, ampicillin, amoxicillin, and cephalosporins are 

also some common alternatives concerned with C. difficile (Kelly and LaMont 1998).   

C. difficile strains produce a binary toxin (CDT), apart from toxin A and toxin 

B, and they exhibit a resistance to fluroquinolones and erythromycin (Cartman et al. 

2010). Moreover, treating asymptomatic carriers with metronidazole or vancomycin is 

not ideal, for the treatment may extend the carrier state (Johnson et al. 1992). 

Antibiotics are regarded as the most important risk factor for C. difficile-associated 

diarrhea by reducing ‘colonization resistance’ of the bowel, allowing subsequent 

colonization, and infection with C. difficile (Johnson and Gerding 1998a). Thus, using 

proper antibiotic is of crucial importance, and is also the most effective treatment of C. 

difficile infection. 

Besides, probiotics containing one or several living beneficial microbes have 

also been a popular treatment, either serving as addition to antibiotic therapy or as a 

replacement for antibiotic treatment. The advantages of probiotics are: multiple 

mechanisms of acting on pathogens, benefit to host immune system, survival to host 

colon, no drug interaction, and low risk to the patient, while the drawbacks of 

probiotics are: poor quality control, poor standardization, few clinical trials, possible 
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infections with immunocompromised patients, and sometimes adverse reactions in 

patients (McFarland 2009). 

1.8 C. difficile in food 

C. difficile infection (CDI) essentially occurs in clinic environments, while the 

majority of patients infected by C. difficile are asymptomatic carriers, and one of the 

known risk of infection is sharing a hospital room with an infected patient (Johnson et 

al. 1990). However, in the community, C. difficile is increasingly found among young 

and relatively healthy individuals (Hensgens et al. 2012). In the environment, such as 

soil and water, C. difficile commonly exists. Nevertheless, its presence in numerous 

animals is also ubiquitous, and similar PCR ribotypes are found, particularly ribotype 

027 and ribotype 078 (Rodriguez et al. 2013, Hensgens et al. 2012). Accordingly, 

there may be a potential for transmission from food to humans.  

Community-associated C. difficile infection is increasingly regarded as a 

potential foodborne disease, especially in food animal. A study from USA, examining 

samples from stores in the Tuscon, Arizona area, found isolation of C. difficile from 

37 of 88 samples, including ground beef (13/26), summer sausage (1/7), ground pork 

(3/7), braunschweiger (10/16), chorizo (3/10), pork sausage (3/13), and ground turkey 

(4/9) (Songer et al. 2009). Ribotype 078 was the majority strain, and the rest belonged 

to ribotype 027 (Songer et al. 2009).  

Though infection with retail meat is most compelling, infection with other 

food products may be equally fatal, particularly for those that are not cooked before 
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eating. A research from South Wales described 71% of C. difficile isolates from 

vegetables were toxigenic (al Saif and Brazier 1996b). Reported CDIs associated with 

salad-used-vegetables have also been found in France and Scotland (Bakri et al. 2009, 

Eckert, Burghoffer, and Barbut 2013). 

 

 

 

 

CHAPTER II．Prevalence and antibiotic resistance of C. 

difficile in lettuce 

2.1 Introduction 

Clostridium difficile (C. difficile), a species of Gram-positive, spore-forming, 

and anaerobic bacteria, is the causative reason of Clostridium difficile-associated 

diarrhea (CDAD) and can lead to more serious disease such as pseudomembranous 

colitis, toxic megacolon, and even death in humans (Monaghan et al. 2013). 

Pathogenic C. difficile produces two protein exotoxins, toxin A, comprised of 2710 

residues (308.0 kDa), and toxin B, comprised of 2366 residues (269.6 kDa) (Kelly and 

LaMont 1998). Toxin A and B (also called TcdA and TcdB), the primary makers of 

Clostridium difficile infection (CDI), belong to the large clostridial cytotoxins (LCT). 

In addition to toxin A and B, C. difficile strains produce a binary toxin, called C. 
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difficile toxin (CDT). However, only about 6% of C. difficile isolates produce the 

binary toxin, and these are toxinotype variants (Geric et al. 2004). 

In earlier studies, toxin A was regarded as the predominant virulence factor, 

and toxin B alone, without the present of toxin A did not cause disease (1994, 

Pothoulakis et al. 1986) (Voth and Ballard 2005).  As a result, the mechanism of 

toxin B in disease is not well explored as the role of toxin A. With the discoveries of 

some toxinA-toxinB+ strains (King, Mackin, and Lyras 2015), toxin B was reported to 

contribute to the C. difficile–associated diseases, and it was regarded as the essential 

virulence contributor (Lyras, O'Connor, et al. 2009).  

C. difficile infection (CDI) essentially has occured in a clinic environment, 

however, community-associated C. difficile infection is increasingly regarded as a 

potential foodborne disease, especially in food animals (Rodriguez et al. 2014). 

Though infection with retail meat is most compelling but has not been proven 

(Rodriguez et al. 2013), infection with other food products may be equally fatal, 

particularly for those that are not cooked before eating (Weese 2010). Pathogenic C. 

difficile isolated from vegetables has been reported in Europe (al Saif and Brazier 

1996b), while in United States, there is limited research focusing on ready-to-eat 

vegetable such as lettuce. Modified atmphosere packing and storage condition of 

lettuce could promote the growth of anaerobic bacteria such as C. difficile (Doulgeraki, 

Paramithiotis, and Nychas 2011). Furthermore, there are various possible sources of 

lettuce contamination with C. difficile, all of which are likely to be ultimately human 
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or animal, such as soil, fertilizer (manure), water, processing environments, and 

human hands (Simango 2006, Rodriguez et al. 2013, Weese 2010).   

People are more likely to become infected with C. difficile with the use of 

antibiotics, not only because antibiotics disrupt the normal intestinal flora, resulting in 

C. difficile colonization (Kyne et al. 2002), but also C. difficile has been found to be 

resistance to several antibiotics (Owens et al. 2008, Gerding 2004). Antibiotics are 

used to treat bacterial infections, but some antibiotics are found to be ineffective in 

treating the infection of anaerobic bacteria including C. difficile (Lyerly, Krivan, and 

Wilkins 1988). Clindamycin is an effective treatment for serious anaerobic bacterial 

infections, but has been used so widely that it is now gradually losing its efficiency 

(Kabins and Spira 1975). To date, when diarrhea and colitis caused by C. difficile are 

severe, the common effective treatments are oral metronidazole and vancomycin 

(Kelly and LaMont 1998).  

In this study we determined the prevalence and antibiotic resistance of C. 

difficle in lettuce. 

2.2 Materials and Methods 

2.2.1 Sample preparation  

Lettuces, harvested in California, Arkansas, and Louisiana, were continuously 

purchased from retail stores and tested from September 2014 to March 2015. The 

lettuce samples were grown in Salinas, California; Bentonville, Arkansas and Baton 

Rouge, Louisiana. The types of lettuce sample purchased from California, Arkansas, 
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and Louisiana were iceberg lettuce, butter lettuce, and romaine lettuce, respectifully. 

In all, 297 lettuce samples were tested, and for each state, 99 samples were tested (8 

lettuce samples for per month in September, Ocotober, November 2014; 10 lettuce 

samples in December 2014; 15 lettuce samples in January 2015; 20 lettuce samples in 

Feberary 2015; 30 lettuce samples in March 2015)  

Brain Heart Infusion broth (BHI) (BD) supplemented with 0.1% sodium 

taurocolic acid and C. difficile selective supplement (Sigma-Aldrich), containing 

cefoxitin (8 µg/ ml) and D-cycloserine (250 µg/ ml), was used to enrich C. difficile 

isolates, for isolation from the lettuce samples. For each lettuce sample, 60 ml sterile 

BHI supplemented broth and 40 g lettuce were blended together in a filter bag; the 

collection from each sample was done in duplicate. Every filter bag was incubated 

anaerobically by a GasPakTM EZ Anaerobe Pouch System at 37 ⁰C for 10 days.  

2.2.2 Isolation C. difficile 

After the samples were incubated for 10 days, the sample broth in the filter 

bag was transferred into sterile test tubes. To detect the presence of C. difficle, 

BBL™ Clostridium difficile Selective Agar (BD) plates were used, 2 plates per filter 

bag. The plates were reduced anaerobically under room temperature for 24 hours 

before use. Then 0.1 ml of the collected supernatant was streaked onto the selective 

plates under a certified bacteria safety hood and the inverted plates were incubated 

anaerobically, with the anaerobe pouch system mentioned above, at 37 ⁰C for 48 

hours. C. difficile colonies were identified by their morphological and fluorescence 



 

21 

properties under long wavelength UV (380 nm) within one hour in the presence of 

oxygen. The positive C. difficile colonies emitted a yellow fluorescence. For further 

research, the C. difficile colonies of each lettuce sample isolated from the C. difficile 

selective plates were collected and stored in –80ºC freezer.   

2.2.3 DNA extraction 

Right after the colonies of C. difficile were observed on the plates, DNA 

extraction was conducted according to the instructions of a commercial DNA 

extraction kit (MO-BIO UltraClean® Microbial DNA Isolation Kit). Three colonies 

from each plate were collected into a sterile 2 ml centrifuge tube. Then the microbial 

cells were resuspended in provided bead solution, they were added to a bead beating 

tube containing beads, followed by lysis solution. With a combination of heat, 

detergent, and mechanical force against specialized beads, the cellular components 

were lysed. C. fifficile DNA was release from the lysed cells, and bound to a silica 

Spin Filter. After washing the filter several times, the DNA was recovered in the 

provided DNA-free Tris buffer. Extracted DNA was stored at −20 ⁰C until real-time 

PCR was performed. 

2.2.4 Real-time PCR assays for toxin A and B  

Non-repeat regions on toxin A and toxin B genes are commonly chosen as 

amplifying-segments in real-time PCR assays. For toxin A detection assay, the primers 

and the probe described by Luna et al. were utilized (Luna et al. 2011); for toxin B 

detection, the real-time PCR method was performed with the primers and the probe 



 

22 

specific to determine the virulence of C. difficile isolates in lettuce, which is described 

by van den Berg et al (van den Berg et al. 2005)(Table 1). The total volume of each 

reaction mixture for the Real-time PCR was 25 µl. For the toxin A assay, each 

amplification mixture consisted 12.5 µl Bio-Rad iQTM Supermix (2x), 0.6 µM forward 

primer (tcdAF), 0.6 µM reverse primer (tedAR), 0.1 µM hydrolysis probe (tcdATM), 

PCR grade water, and a 6.25 µl DNA sample. For the toxin B assay, each final 

reaction mixture included 12.5 µl Bio-Rad iQTM Supermix (2x), 0.25 µl of 10 µM 

forward primer (398CLDs), 0.5 µl of 10 µM reverse primer (399CLDs), 0.5 µl of 10 

µM 551CLD-tq-FAM probe, 0.25 µl of 0.1M MgCl2, 8.5 µl PCR water, and 2.5 µl 

DNA template. Amplification was performed using a Cepheid SmartCycler II system 

(Sunnyvale). The cycling program of the toxin A assay was as following: 1 cycle of 

95°C for 10 min; 45 cycles of 95°C for 10 min, 57°C for 20 s, and 72°C for 10 s. For 

toxin B assay, after the reaction mixtures were initially heated for 3 minutes at 95 ⁰C, 

they went through 45 cycles. Each cycle possessed a 30 s denaturation step at 94 ⁰C, a 

30 s annealing step at 57 ⁰C, and a 30 s extension step at 72 ⁰C. Positive and negative 

controls were run in each trial. The extracted DNA (2.5 µl) from a toxin A positive 

toxin B positive C. difficile strain (ATCC 43255) was employed as the positive control, 

and the PCR grade water (2.5 µl) was served as the negative control. 

Table 1. Primers and probes for real-time PCR detection of C. difficile toxin A and B 

Primers and probe Nucleotide sequence (5’- 3’) 
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Toxin A tcdAF GGTAATAATTCAAAAGCGGCT 

 tcdAR AGCATCCGTATTAGCAGGTG 

 tcdATM FAM-AGCCTAATACAGCTATGGGTGCGAA-

AMRA 

Toxin B 398CLDs GAAAGTCCAAGTTTACGCTCAAT 

 399CLDas GCTGCACCTAAACTTACACCA 

 551CLD-tq-FAM  FAM-ACAGATGCAGCCAAAGTTGTTGAAT

T-TAMRA 

 

2.2.5 Antibiotic resistance detection  

The standard NCCLS (National Committee for Clinical Laboratory Standards) 

broth microdilution MIC (minimal inhibitory concentration) test was performed for 

the toxigenic isolates to determine the effect of following antibiotics, clindamycin, 

vancomycin, metronidazole, erythromycin, cefotaxime. For each toxigenic isolates, 

the broth microdilution MIC test was conducted in duplicate. The Mueller-Hinton 

broth (BD) was used, and the pH was adjusted between 7.2 and 7.4. Within 15 min of 

adjusting the inoculum broth to the turbidity of a 0.5 McFarland standard, the 

inoculum suspension was diluted to a final concentration of 5 x 104 CFU/ 0.1 ml well. 

Results were recorded after 20-24 h incubation, and NCCLS interpretive criteria was 



 

24 

used to interpret the results: clindamycin, susceptible, ≤2 μg/ml, resistant, ≥ 8 μg/ml; 

vancomycin, susceptible, ≤2 μg/ml, resistant, >2 μg/m; metronidazole, susceptible, ≤8 

μg/ml, resistant, ≥ 32 μg/ml; erythromycin, susceptible, ≤0.5 μg/ml, resistant, ≥ 8 

μg/ml; cefotaxime, susceptible, ≤8 μg/ml, resistant, ≥ 64 μg/ml.  

2.3 Results and Discussions 

2.3.1 Isolation C. difficile  

From Clostridium difficile Selective Agar (CDSA) test, 52 (52.5%) C. difficile 

isolates were detected in 99 California lettuce samples; 44 (44.4%) C. difficile isolates 

were detected 99 Arkansas lettuce samples; 61 (61.6%) C. difficile isolates in 99 

Louisiana lettuce samples (Table 2). Since the selective plates do not have the ability 

to differ the toxigenic isolates from the non-toxigenic ones. The detection of toxin A 

and B was followed to identify the toxigenic strains.  

Table 2. Clostridium difficile isolated from California, Arkansas, and Louisiana 

lettuce samples between September 2014 and March 2015 

State 

tested 

 Sep Oct Nov Dec Jan Feb Mar Total (%) 

California PO

S 

2 5 7 3 7 11 17 52 (52.5%) 

N 8 8 8 10 15 20 30 99 

Arkansas PO 0 5 7 2 8 6 16 44 (44.4%) 
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S 

N 8 8 8 10 15 20 30 99 

Louisiana PO

S 

0 3 6 3 8 16 25 61 (61.6%) 

N 8 8 8 10 15 20 30 99 

POS, the number of the sample having positive result from CDSA test. N, the total 

number of the sample tested. 

2.3.2 Real-time PCR assays for toxin A and B   

Since naturally occurring toxin A positive B negative isolates have not been 

reported so far (Lyras, O'Connor, et al. 2009), to determine the prevalence of the C. 

difficile isolates found in lettuce samples, toxin B real-time PCR assay was conducted. 

According to the results from toxin B detection (Table 3), 15 Clostridium difficile 

toxigenic isolates were detected in 99 samples from California; 10 Clostridium 

difficile toxigenic isolates were detected in 99 samples from Arkansas; 16 Clostridium 

difficile toxigenic isolates were detected in 99 samples from Louisiana.  

The samples were continuously purchased and tested from September 2014 to 

March 2015. To determine whether there is a close relationship between the 

temperatures of the months (Figure 5) and the frequency of the toxigenic isolates 

presence from California, Arkansas, and Louisiana, a linear regression model was 

tested. The p values of the results from California, Arkansas, and Louisiana were 
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0.645, 0.0561, and 0.6659 larger than 0.05. The hypnosis was denied, meaning there 

was no direct relationship between these two. 

Table 3. The positive result from real-time PCR for toxin B detection of C. difficile 

isolates in California, Arkansas, and Louisiana between September 2014 and March 

2015 

State 

tested 

 Sep Oct Nov Dec Jan Feb Mar Total 

(%) 

California POS 2 1 3 1 0 5 3 15 

(15.2%) 

N 8 8 8 10 15 20 30 99 

Arkansas POS 0 2 1 1 2 4 0 10 

(10.1%) 

N 8 8 8 10 15 20 30 99 

Louisiana POS 0 2 0 1 0 11 2 16 

(16.2%) 

N 8 8 8 10 15 20 30 99 

POS, the number of the sample having positive result from toxin B real-time 

PCRassay. N, the total number of the sample tested. 
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The toxin A real-time PCR results were recorded, combined with the results 

from toxin B detection assay (Table 4). Overall, 41 toxigenic isolates were detected 

from 297 samples; and among the 41 toxigenic isolates, there were 7 toxin A negative 

toxin B positive isolates. The totally percentage of the toxigenic C. difficle isolates 

found in lettuce samples was 13.8%, this was higher than the other reported results 

(Al Saif and Brazier 1996a, Bakri et al. 2009, Metcalf et al. 2010, Rodriguez-Palacios, 

Ilic, and LeJeune 2014). Previous scientific studies have concentrated on testing 

several types of vegetables including lettuce for toxigenic C. difficle. A study 

conduction in 2014, tested 125 different vegetables that included 41 lettuce samples 

for toxigenic C. difficle. The vegetable samples were from several retail stores located 

in Ohio and had originated from several states in the USA and Mexico.  The results 

of their study found 1 positive toxigenic C. difficle isolate in the 41 lettuce samples 

Figure 5. The growth temperature of the sample lettuces harvested from California, 

Arkansas, and Louisiana between September 2014 and March 2015. 
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tested. (Rodriguez-Palacios, Ilic, and LeJeune 2014). Another study, reported 7.5% C. 

difficile prevalence in ready-to-eat salad in Scotland, they collected 40 packaged 

lettuce samples over one month from 7 different supermarkets (Bakri et al. 2009). 

These previous studies detected lower C. difficile prevalence in lettuce than this study 

possibly due to a small sample size and purchase location. (Bakri et al. 2009, Al Saif 

and Brazier 1996a, Metcalf et al. 2010, Rodriguez-Palacios, Ilic, and LeJeune 2014).  

In addition, contamination of lettuce with C. difficile spores would not only be 

due to attachment on the leaves from contaminated water or soil (Simango 2006), but 

also would widely exist in the downstream production chain including storage, 

transportation, and handling environments (Rodriguez et al. 2013). Since the same 

varieties and brand of lettuces tested for toxigenic C. difficle came from the same 

processor located in California, Arkansas, and Louisiana, if the processing 

environment was exposed to toxigenic C. difficile spores, it would largely increase the 

presence of the C. difficile spores on the lettuce samples and thus increase the 

prevalence. 

Table 4. Real-time PCR profile of C. difficile isolates in lettuce samples among the 

states tested 

State tested Toxin A - Toxin B + Toxin A + Toxin B+ Total positive 

samples (%) 

Californa, 

n=99 

3 12 15 (15.1%) 
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Arkansas, n=99 2 8 10 (10.1%) 

Louisiana, 

n=99 

2 14 16 (16.2%) 

Total 7/297 (2.4%) 34/297 (11.4%) 41/297 

(13.8%) 

 

2.3.3 Antibiotic resistance detection 

Five antibiotics, metronidazole, vancomycin, clindamycin, erythromycin, and 

cefotaxime (Table 5), were tested for the toxigenic C. difficile isolates. Among the 

antibiotics we tested, all the 41 isolates were resistant or intermediately resistant to all 

the 5 antibiotics, while 37 isolates and 26 isolates showed intermediately resistance to 

clindamycin and cefotaxime. The resistance and intermediately resistance properties 

of the isolates for clindamycin and cefotaxime were in accord with the findings from 

other C. difficile vegetable isolates (Bakri et al. 2009). However, metronidazole, 

vancomycin, and erythromycin did not have the susceptive effect to the isolates as 

being reported (Bakri et al. 2009, Metcalf et al. 2010). Since the antibiotic resistance 

property of C. difficile would vary depending on the location (Metcalf et al. 2010), the 

different antibiotics effect would be understandable. Since no antibiotic resistance 

pattern remain consistent enough to be used as a C. difficile strain marker (Tenover, 

Tickler, and Persing 2012), the different antibiotics effect in this study would be 
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understandable. Besides, two same toxigenic C. difficile isolates from the same kind 

of vegetable were reported to have different antibiotic susceptibility to a certain 

antibiotic (Metcalf et al. 2010).  

Table 5. Susceptibility of the C. difficile isolates to 5 antibiotics 

Agent 

MIC (μg/ml) No. (%) of isolates 

Range 50% 90% Susceptible Intermediate Resistant 

Metronidazole 0.125-80 >80 >80 0 (0) 0 (0) 41 (100) 

Vancomycin 0.25–4 4 >4 0 (0) 0 (0) 41 (100) 

Clindamycin  1-16 4 8 0 (0) 37 (90.2) 4 (9.8) 

Erythromycin  1-16 16 >16 0 (0) 0 (0) 41 (100) 

Cefotaxime 6-64 12 24 0 (0) 26 (63.4) 15 (36.6) 

50%, the antibiotic concentration when 50% growth of the tested C. difficle isolate 

inhibited. 90%, the antibiotic concentration when 90% growth of the tested C. difficle 

isolate inhibited.  

2.4 Conclusions 

The C. difficile isolated from the retail lettuce has a high possibility to be 

toxigenic. Although the public health relevance is still unclear, consumption retail 

vegetables as salad vegetable or without high-temperature processed might be a 

source of C. difficile infection. Treated with five different antibiotics, the C. difficile 

sample isolates expressed strong resistance to metronidazole, vancomycin, and 

erythromycin. This present research contributes in revealing a possible source of 

community-associated C. difficile infection. 
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