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ABSTRACT 

Treatment for maternal hyperglycemia is limited on account of safety concerns 

for the fetus. Our previous work has shown that inclusion of resistant starch in the diet 

decreases body fat accumulation in rodents, increases GLP-1 at both the gene 

expression level and plasma levels, and improves glucose tolerance in STZ-induced 

diabetic mice. However, studies concerning dietary resistant starch and maternal 

hyperglycemia are scarce. In this project, we examined the effects of dietary resistant 

starch in pregnant Goto-Kakizaki (GK) rats to improve glycemic control. We 

hypothesized that 1) dietary resistant starch could improve maternal glycemic control in a 

type 2 diabetes model –GK rat; 2) the favorable changes in dams would benefit offspring 

in terms of glucose metabolism. 

Two animal experiments were conducted to test the hypotheses. In study 1, the 

female GK rats were randomly grouped to receive an energy control diet or resistant 

starch diet. The aged matched female Wistar rats were fed an energy control diet, serving 

as glycemia control.  After 10 weeks on the assigned diets, all the female rats were mated 

with male Wistar rats and became pregnant. Fasting glucose concentration and fasting 

insulin concentration were measured on the 16th gestation day. In study 2, the offspring 

from different dams were fed on a chow diet until they reached 8 weeks old.  At the end 

of the studies, body fat, glucagon-like peptide -1 (GLP-1), pancreatic insulin content,  

cecum pH, cecal short chain fatty acids levels, cecal butyrate producing bacterial profiles 

and ß cell mass were measured. 

 Resistant starch fed GK rats had decreased body fat, improved insulin 

sensitivity (HOMA-IR), increased cecal short chain fatty acids and butyrate producing 

bacterial levels, and elevated plasma GLP-1. Also, GK rats on RS diet showed higher 



 xi

beta cell mass compared with EC fed GK rats. Body weight and food intake were not 

changed by resistant starch. Offspring born to RS fed dams had lower fasting blood 

glucose and increased pancreatic insulin content. The feeding of RS to pregnant GK 

rats did not show negative impact on pup’s growth and fetus survival rate. The 

conclusions are that dietary resistant starch was able to improve maternal 

hyperglycemia control in pregnant GK rats and decreased fasting glucose of their 

offspring without negative influences on growth and fetus survival rate.  
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CHAPTER 1 

INTRODUCTION 

The worldwide prevalence of diabetes has risen dramatically during the past two 

decades, especially in the United States. The 2007 national diabetes fact sheet (CDC, 

2007) showed that 7.8% of the total population has diabetes, which is a 0.8% increase in 

two years (7.0% in 2005). With the incidence of diabetes hitting an all-time high, 

maternal hyperglycemia is becoming a health threat to pregnant women. Among 23.6 

million people who suffer from diabetes at all ages, 23.5 million are age 20 and older, 

11.5 million are women, a high portion of  which are young patients whose ages fall in 

the range of 20 to 39, which happens to be the period of child bearing. In 2007, 281,000 

new cases of diabetes were diagnosed in people aged from 20 to 39 years old (CDC, 

2007).  Maternal hyperglycemia not only brings negative impacts to pregnant women, but 

also an independent risk factor for negative fetus/infant’s health conditions. Currently 

limited treatments are available for the safety concerns of the fetus. Therefore, it is 

important and urgent to find effective interventions to maternal hyperglycemia.  

Resistant starches are non-digestible fermentable dietary fibers that resist 

digestion in the small intestine, but are fermented in the large intestine. It has been shown 

that adding resistant starch to diets produces several health benefits, including lower body 

fat storage (Shen et al, 2009; Keenan et al, 2006), and decreasing plasma glucose in 

rodents (Zhou et al, 2008). However, the knowledge on dietary resistant starch and 

maternal hyperglycemia is incomplete.   

In addition to the conventional effects as dietary fiber, such as diluting the energy 

density of the diet and causing discomfort in the gut,  resistant starch fed animals were 

also found to have significantly higher levels of glucagon-like peptide -1 (GLP-1) 
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( Keenan, et al. 2006; Zhou et al. 2006).  The action of GLP-1,   as a potent incretin, 

includes stimulating proinsulin gene expression (Drucker et al, 1987), inhibiting glucagon 

secretion (Nauck et al, 2002), mediating glucose-dependent insulin secretion via their 

receptors expressed on beta cells (Drucker, 2006), inhibiting gastric acid secretion and 

delaying gastric emptying(Baggio et al, 2004), as well as promoting an increase in 

pancreatic β-cell mass through enhancing beta cell proliferation and inhibiting 

apoptosis(Stoffers et al, 2003;Wang et al, 2002). GLP-1 was shown to be able to delay 

the onset of diabetes and improve pancreatic insulin content and total beta-cell mass in 

GK rats when applied postnatally for 5 days (Tourrel et al, 2002). GLP-1 also was 

reported to reduce apoptosis in human islets (Farilla et al, 2003). A GLP-1 receptor 

agonist demonstrated similar effects. Exendin-4 not only improved glucose tolerance in 

diabetic rats via expansion of beta cell volume (Xu et al, 1999), but also prevented the 

development of diabetes in rats exposed to intrauterine growth retardation (Stoffers et al, 

2003). 

   The GK rat is a non-obese, polygenic model of type 2 diabetes derived from 

Wistar rats by selective breeding for slightly impaired glucose tolerance (Goto et al, 

1975). This type of rat is characterized by moderate hyperglucemia, hypoinsulinaemia, 

normolipidaemia and impaired glucose tolerance which is thought to be the results 

primarily of reduced beta cell mass and a defective insulin response to glucose (Portha, 

2005; Movassat et al, 1997; Movassat et al, 2007; Movassat et al, 1995). This model 

provides great opportunity to investigate the impact of dietary resistant starch on 

pancreatic beta cells.  

Over the years, there has been a growing body of evidence indicating that 

intrauterine exposure to a hyperglycemic environment increased the risk of diabetes and 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16815798#bib104�
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16815798#bib230�
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16815798#bib230�
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obesity for offspring later in their life in addition to any genetic transmission (Pettitt et al, 

199; Waterland et al, 1999; Boney et al, 2005). A study also revealed that glycaemic 

control in GDM pregnancies was an effective way to prevent impaired glucose tolerance 

in childhood. Even minimal intervention made a difference (Malcolm et al, 2006).  

The current studies have been conducted to address the following questions: what 

would be the effects of dietary resistant starch on glycemic control in the pregnant GK rat? 

If there is improvement this should occur by improving insulin sensitivity through 

reducing body fat or through the involvement of GLP-1on pancreatic beta cell 

functioning or both? Will the intervention influence their offspring? Will the possible 

discomfort in gastricintestinal tract due to high levels of fermentation induced by dietary 

resistant starch exert negative impact on gestation and the pup’s growth? The hypotheses 

for this work are that 1) dietary resistant starch will improve maternal glycemic control in 

the GK rat– type 2 diabetes model and the elevation of GLP-1 might be an important 

factor invovled; and 2) the favorable changes in the dams will benefit the offspring in 

terms of glucose metabolism. 
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CHAPTER 2 

REVIEW OF LITERATURE 

2.1 Resistant Starch  

2.1.1 General Introduction 

Resistant Starches are dietary carbohydrates that resist digestion in the small 

intestine and reach the large intestine where they are fermented by bacteria to produce 

short chain fatty acids. Dietary resistant starches have been identified as possessing a 

variety of health benefits, which include decreasing plasma cholesterol and triglycerides, 

increasing satiety, producing anticancer effects, improving glucose tolerance, and 

consistently reducing body fat both in rodents and humans. (Zhou et al, 2008; Keenan et 

al, 2006; Brown 2004; Robertson et al, 2003; Shen et al, 2009).  

However, the levels of resistant starch consumption have been progressively 

decreasing due to modern milling and food processing methods, especially in developed 

countries. Data show that in medieval Europe, the average intake of resistant starch was 

as high as 50-100 g/day (Birket 1997). And currently the estimated number for 

consumption of RS in developing countries is 30-40 g/day (Baghurst et al, 2001), 

whereas only 3-8 g daily are consumed by people in developed countries (Baghurst et al, 

2001; Brighenti et al, 1998; Dyssler et al, 1994). 

The term resistant starch (RS), was first coined in 1982 (Ritter et al, 1989). RS is 

divided into four subcategories: RS1, RS2, RS3, and RS4. RS1 represents starch in whole 

grains that are in a physically inaccessible form. RS2 is a type of starch, such as 

ungelatinized starch, which is tightly packed in a radial pattern in starch granules and 

resists digestion. The high amylose cornstarch used in the current study is an example of 

a RS2.  RS3 is the type of starch that is most resistant to digestion. The starch fitting in 
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this category is mainly retrograded amylose formed in the process of cooling the 

gelatinized starch and can escape the digestion of pancreatic amylase almost totally. RS4 

includes structurally modified starch by chemical treatment linking amylose strands. In 

our study, the starch used is composed of 60% amylose and 56% RS.         

Recently dietary fermentable fibers have shown potential in the anti-diabetes field 

as a natural agent (Robertson et al, 2005; Park et al, 2004; Zhang et al, 2007). Our 

previous works show that dietary resistant starch possesses favorable impacts on gut 

hormone profiles, including promoting GLP-1 release consistently, a potent anti-diabetic 

incretin (Zhou et al, 2006). Also we demonstrated body fat was consistently lower in 

resistant starch fed animals compared to control animals fed the same energy density diet 

in rodents (Keenan et al, 2006; Shen et al, 2009). Additionally, we explored the effect of 

RS on glucose metabolism and found it lowers fasting glucose, fasting insulin and 

improves glucose intolerance (Zhou et al, 2008). Thus, resistant starch might be an 

alternative agent in diabetes treatment. 

2.1.2 Resistant Starch and Glycemic Control 

2.1.2.1 Animal Studies 

• Feeding Resistant Starch Decreases Body Fat Accumulation in Rodents  

Several studies demonstrated that rodents fed resistant starch had a significantly 

lower body fat (Shen et al, 2009; Keenan et al, 2006; Zhou et al, 2009). The RS induced 

body fat decrease is greater as higher levels of RS are in the diet and the longer the time 

of consumption. This has been shown in two different strains of rats (Wistar unpublished 

data; SD:Keenan et al, 2006) and in C57BL/6J mice (Zhou et al, 2009).  

• Dietary Resistant Starch Lowers Fasting glucose, Fasting insulin and Improves 
Glucose Tolerance 

 
 C57BL/6J Mice fed RS had a significantly lower fasting glucose and insulin at 6 
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weeks (our unpublished data) .Diabetic mice induced by streptozotocin (STZ) were fed 

RS or control diet for 14days. Compared to the STZ injected mice fed control diet, the 

blood glucose levels and the area under the curve (AUC) during the OGTT significantly 

decreased (P<0.05) in STZ induced diabetic mice on the RS diet (Zhou et al, 2008). A 

study with 12 weeks of feeding dietary resistant starch to male GK rats inhibited glucose 

dependant insulintropic polypeptide (GIP) mRNA expression in the small intestine, 

improved fasting glucose level, but there was no significant change of GIP in the 

circulation (Shimada et al, 2008). Dietary RS also showed a positive effect on glycemic 

control in diet induced obese rats in a short interventional duration of 4 weeks. Aziz et al 

found that a high amylose starch diet, compared with an amylopectin rich diet, led to 

reduced fat mass, less incremental AUC of OGTT,  decreased fasting serum glucose, 

insulin, leptin, a higher insulin sensitivity index (QUICKI),  and an elevated mRNA 

expression of UCP-1(Aziz et al, 2009) 

• Dietary Resistant Starch Increases Circulating Gut Hormones 

Elevated plasma GLP-1 was observed in both normal SD and diet induced obese 

rats fed resistant starch (Shen et al, 2009; Aziz et al, 2009). And the GLP-1 increase is 

consistent over a 24 hour period (Zhou et al, 2008). Gene exxpression data from our 

group also verified that dietary RS dramatically up-regulated the expression of the GLP-1 

gene in rat cecal cells compared to rats consuming an energy control diet (Zhou et al, 

2006).  

2.1.2.2 Human Studies  

• Effect of RS on Glucose Metabolism 

 Long Term Studies  

Several human studies have been published regarding the effect of RS on  
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glucose metabolism. Among these studies different participants were recruited, however, 

the beneficial effects on metabolism were consistent and promising.   

Early in 1995 de Roos et al found RS3 decreased insulin secretion while 

supplementation of RS2 resulted in lower appetite scores. In their study, 24 healthy males 

were supplemented with glucose, RS2 and RS3 for one week respectively and 48- hours 

of urine was collected to determine C-peptide for the last 2 days of each week. Satiety 

and food intake were measured using visualized analogue scale and a 24 hour recall 

method (de Roos et al, 1995). 

In 2005, Robertson et al conducted a single-blind, crossover dietary intervention 

study in 10 healthy subjects that were given 30 g resistant starch per day for four weeks 

(Robertson et al, 2005). The resistant starch was in a form of  Hi-Maize 260 at 50 g/d (30 

g type 2 RS and 20 g rapidly digestible starch), and the placebo was  20 grams of Amioca 

starch which consisted of only rapidly digestible starch. The two starches were added to 

participants’ habitual diet, separated by a 4-wk washout period. After RS treatment, 

insulin sensitivity became higher compared with placebo treatment when assessed by 

euglycemic-hyperinsulinemic clamp (p=0.03), and when using a meal tolerance test, it 

was 33% higher (p=0.05), skeletal muscle glucose clearance was also significantly higher 

(p=0.027).  With resistant starch supplementation, subcutaneous abdominal adipose 

tissue nonesterified fatty acid (NEFA; P = 0.02) and glycerol (P = 0.05) release were 

lower than with placebo. However, plasma GLP-1 and leptin concentrations were not 

significantly changed. Systemic acetate and propionate concentrations were significantly 

higher (by repeated measure) as well as fasting plasma ghrelin with RS intervention. 

A similar study in overweight subjects was published by Park et al in 2004 (Park 

et al, 2004). It was a double –blind randomized study. The investigators recruited 25 
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overweight participants (defined by over 120% of their ideal weight), 12 in treatment and 

13 in control, feeding them either amylose 24g each day for 21 days or the same amount 

of regular corn starch with regular meals. At the end of the study, participants 

supplemented with RS had lower total serum cholesterol, LDL-cholesterol, and fasting 

serum glucose concentration (p<0.05). 

Robertson and her coworkers did another randomized, crossover study in 

overweight individuals with metabolic syndrome in 2009 (Robertson et al, 2009). They 

recruited 10 overweight individuals with metabolic syndrome and fed them 40 grams of 

resistant starch from Hi-maize per day for 4 weeks, and control regular starch for another 

4 week, set apart by a washout period. By using an arteriovenous difference method, they 

found the glucose clearance in forearm skeletal muscle was increased by 68% with 

resistant starch supplementation. Moreover, the subjects who consumed RS had improved 

hepatic insulin sensitivity and peripheral insulin sensitivity as well. These parameters 

were all measured by the hyperinsulinemic-euglycemic insulin clamp and the indirect 

meal tolerance test. The results of the latter also showed consumption of RS can reduce 

fasting insulin levels, postprandial insulin responses to the meal, and fasting free fatty 

acids concentrations. 

Another study was done in 20 metabolic syndrome subjects with 40 grams a day 

of resistant starch or placebo supplement (0 g/day) for 12 weeks by the same group 

(Johnston et al, 2010). Resistant starch consumption improved insulin sensitivity 

measured by euglycaemic-hyperinsulinaemic clamp, compared with the placebo group (P 

= 0.023). However, this change was not accompanied by the alteration of fat storage in 

muscle, liver or visceral depots and inflammatory markers.  

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Johnston%20KL%22%5BAuthor%5D�
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A randomized, crossover study in type 2 DM patients was conducted by Zhang et 

al in 2007(Zhang et al, 2007). Forty type 2 diabetics were randomly assigned into group 

A and group B. At stage I, group A received 30 g resistant starch from Hi-maize per day 

for four weeks and group B served as control.  In stage II, the two groups switched onto 

the opposite treatments for the same period of time. With consumption of resistant starch, 

fasting blood glucose, post prandial blood glucose, total cholesterol, and triglycerides 

were significantly lower in the intervention group (P < 0.05). The insulin sensitivity 

index calculated with fasting glucose and insulin concentrations was higher in the 

intervention group than in the control group (P < 0.05) as indirectly measured by a meal 

tolerance test. 

 Short Term Studies 

Robertson and her coworkers evaluated the short term effect of dietary resistant 

starch on glucose metabolism in healthy subjects in 2003 (Robertson et al, 2003). In this 

single-blind, crossover dietary intervention study, 10 healthy subjects were given a basal 

diet either supplemented with 100 gram Himaize (consisting of 60 g RS and 40 g rapidly 

digestible starch) or with 40 g of rapidly digestible starch for 24 hours. The starch was 

mixed with jelly and served. Insulin sensitivity was assessed by meal tolerance test in 

combination with the minimal model index. Prior RS consumption led to decreased 

glucose excursion during the 5 hour MTT test as well as the insulin concentration. 

Systemic insulin sensitivity was improved significantly (p=0.028).  No significant effects 

of dietary RS on plasma GLP-1, short-chain fatty acids and plasma triacyglycerol were 

observed. 

A double-blind, placebo-controlled, crossover dietary intervention study was 

performed in participants with fasting blood glucose between 100mg/dl and 140mg/dl 
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(Yamada et al, 2005). Twenty subjects ingested bread either containing 6 gram of RS3 or 

no RS separated by 2 weeks. Blood was drawn from subjects for blood glucose and 

insulin measurement prior to ingestion and 0.5, 1, 1.5 and 2 hours following ingestion.  

According to their fasting blood glucose, they were divided into a borderline group 

(blood glucose≥111mg/dl) and a normal group. Postprandial blood glucose increase was 

reduced significantly at 1 hour and 1.5 hour after ingestion of RS bread compared with 

placebo.  So was the insulin response. However, these changes occurred in the borderline 

group and not in subjects from the normal group.  

Achour and coworkers recruited 8 healthy subjects and gave them two test meals 

at 0800 and 2200 respectively in a 27 hour period (Achour et al, 1997). The test meal 

consisted of either 50g pre-gelatinized corn starch or 50g retrograded corn starch. As a 

placebo-controlled, crossover dietary intervention study, the subjects had two test periods, 

with one week interval between. The diet composition for the test meal and placebo meal 

was the same except for the starch type.  However, they didn’t count the difference in 

metabolized energy between these two starches. An 8-hour period right after ingestion of 

the first meal was designated as the absorptive period. The postabsorptive period was 

defined as a 3 hour duration 10 hours after consumption of the second test meal. Fasting 

blood glucose, insulin, glycerol, fatty acids, acetate and breath hydrogen, breath methane 

were measured.  

Blood glucose and insulin were lower with ingestion of retrograded starch in the 

absorptive stage. No other siginificant differences were observed in blood acetate, free 

fatty acids, respiratory quotient, breath hydrogen and breath methane. Blood glycerol was 

lower after ingestion of pre-gelatinized starch. In the postabsorptive period blood glucose 

and insulin were not different between the two meals. However, other measurements 
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were significantly higher or lower (glycerol) with retrograded corn starch except for the 

free fatty acids concentration. They reported that fermentation occurred for 24 hours after 

consumption as indicated by elevation of breath hydrogen and blood acetate. The result 

was consistent with Liljeberg’s observation in 1999 that a 4 –hour digestion was not long 

enough to observe fermentation of RS (Liljeberg et al, 1999). 

• Dietary Resistant Starch and Maternal Hyperglycemia   

So far there is no study available that has investigated the effect of RS on 

maternal hyperglycemia.  However, there is evidence that dietary fiber intake was 

strongly and inversely associated with gestational diabetes risk (n=13,110; 8 year follow- 

up) (Zhang et al, 2006).   A low glycemic index diet has also been shown to significantly 

decrease birth size, birthweight, and ponderal index of infants born to healthy mothers 

(Moses et al, 2006). Table 2.1 summaries published human studies of glycemic index and 

Maternal Hyperglycemia. 

Table 2.1 Summary of published human studies of glycemic index and maternal 
hyperglycemia 
 
Purpose  Participant 

# 
Diet Results Reference

LOW GI vs 
high(conventional 
high-fiber) 
If reduce the need 
of insulin  

63 GDM  (9/31) 29% vs 
59%(19/32) 
9/19 stop insulin after 
changing to LGI diet 

Moses et 
al, 2009 

52% CHO 
composed of low 
and moderate 
glycemic index in 
controlling GDM 
condition  

31 GDM 
76% OB, 
24% OW 

52% 
carbohydrates ,  
30% of fat, 
18% of 
proteins 
4 months 

GLU :146 +/- 37 vs 90 
+/- 5 mg/dL 
Hb1 A c: 7.1 +/- 1.2 and 
5.0 +/- 0.7 

Monroy 
et al, 
2008 

The association 
between total 
dietary fiber 
consumptions and 
GDM  

758 GDM prospective 
cohort study 
in the Nurses' 
Health Study 
II 

10-g/day ↑~26% ↓ in 
risk; 5-g/day ↑  in cereal 
or fruit fiber ~ 23% (9-
36) or 26% (5-42) ↓ 

Zhang et 
al, 2006 
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Improving 
glucose tolerance, 
insulin sensitivity 
and lipids file by 
changing the 
glycaemic index 
(GI) and dietary 
fibre (DF) content 
of their bread  

7 IGT  
With 
previous 
GDM 

Crossover 
study  
Low GI/high 
DF vs high 
GI/low DF for 
3 week 

Improved insulin 
economy based on the 
lowered insulin 
responses to the 
intravenous glucose 
challenge (35%) 
No changes in fasting 
levels of glucose, 
insulin, HDL-cholesterol 
or TG. 

Ostman 
et al, 
2006 

influence of 
different 
glycemic index 
diet on infant 
birth weight, fetal 
growth, and 
biomarkers of 
carbohydrate 
metabolism  

1,082 
health 
pregnant 
women 

Prospective 
cohort study in 
The Camden 
Study 

glycemic index was 
positively related to 
maternal Hb1Ac 
(ß=0.004)and plasma 
glucose(ß=0.163),p<0.05 
 
 

Scholl et 
al, 2004 

Trial 1: high-fiber 
diets compared 
with normal 
pregnancy diets 
Trial 2&3: LGI 
diet compared 
with high 
glycaemic index 
diet 

Trial 1:25  
 
Trial 2&3: 
87 

Meta-analysis Trial1: no difference 
Trial2&3: fewer large 
for gestational age 
infants; lower ponderal 
indexes: lower maternal 
fasting glucose levels 

Review 
(Tieu et 
al, 2008) 
 

Whether higher 
dietary fiber 
intake (water 
soluble and 
insoluble) is 
associated with 
lower insulin 
requirements and 
better glycemic 
control  

141 
pregnant 
with 1-
DM 

Observational 
study 
Total fiber 

1. Higer fiber 
intake(20.5g/d)vs lower 
fiber intake(8.1g/d) 
required 16%~18% less 
insulin. 
2. fiber intake was not 
associated with FBS and 
Hb1Ac 
 

Kalkwarf 
et al, 
2001 

 

2.1.2.3 Possible Mechanisms  

The mechanism involved in improving glycemic control by resistant starch is not 

completely understood. As a part of the diet, RS potentially has three major effects 

(Keenan et al, 2006): metabolizable energy dilution, a bulking effect and fermentation to 

(Table 2.1 con’d) 
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produce short-chain fatty acids and increase PYY and GLP-1 through nutrient-gene 

interactions.  Resistant starch dilutes the energy density of the diet, which may contribute 

to better glycemic control by reducing caloric intake.  However, in our previous studies, 

we balanced the energy density in the two diets, RS and EC, to exclude the effects of 

energy dilution, and still obtained a similar outcome.  Another assumption is that 

fermentation of resistant starch causes discomfort in the gut, which leads to decreased 

food intake and less glycemic load after meals. Nevertheless, resistant starch fed animals 

ate the same or more food than controls (Keenan et al, 2006; Zhou et al, 2008), which 

counters the previous assumption. The data from our lab showed dietary resistant starch 

reduced body fat, increased fatty acid oxidation and promoted energy expenditure in 

rodents (Zhou et al, 2008). However, failure of fermentation wiped out the effects (Zhou 

et al, 2009). We also demonstrated gene expression and plasma levels of GLP-1 and PYY 

were elevated in the large intestine where fermentation occurs (Zhou et al, 2006). Thus, 

the fermentation of resistant starch in the large intestine by gut microflora, which 

produces the increase of short chain fatty acids and consequent increase of gut hormones , 

might be considered as a major factor for RS improving glucose metabolism.  

• Fermentation in the Gut  

The process of fermentation of RS in the large intestine involves several groups 

of bacteria. When RS reaches the hind gut, bacteria such as Bacteroides thetaiotaomicron 

(Bacteroides spp), Bifidobacterium longum (Bifidobacterium spp) and some 

Lactobacillus spp (Bird et al, 2000; Xu et al, 2003a; Louis et al, 2007b) will adhere to the 

surface of starch molecules and begin to convert RS into their fermentation products. The 

end products of Bifidobacterium spp and Lactobacillus spp in fermenting RS are lactate 

and acetate, whereas acetate, propionate and succinate are produced by Bacteroides spp 
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(Duncan et al, 2002; Louis et al, 2007a). However, fermentation does not end here. These 

products are intermediate metabolites that will be further converted to butyrate by other 

bacterial species (Duncan et al, 2004a; Duncan et al, 2004b). 

 The majority of the butyrate producing bacteria belongs to Clostridium cluster 

IV/C. leptum group and Clostridium cluster XIV /Clostridium coccoides–Eubacterium 

rectale group (Louis et al, 2007a; Sato et al, 2008).  Some of them are capable of utilizing 

acetate to produce butyrate, such as Coprococcus spp. and Roseburia spp. of Clostridium 

cluster XIV and Faecalibacterium prausnitzii of Clostridium cluster IV (Duncan et al, 

2002; Cani et al, 2007a). Others like Eubacterium hallii and Anaerostipes caccae are able 

to catalyze both the D and L isomers of lactic acid to butyrate (Duncan et al., 2004b), 

whereas Eubacterium limosum can convert lactate into acetate and butyrate with the 

presence of Bifidobacterium longum (Sato et al, 2008).  

• Increase of Glucagon-Like Peptide -1 

It is reported that resistant starch fed animals have significantly a higher level of 

glucagon-like peptide -1 (GLP-1) (Keenan, et al. 2006; Zhou et al. 2006). GLP-1 is a 

satiety peptide yielded from the pre-proglucagon gene product in the L enteroendocrine 

cells of the distal intestine (Badman et al, 2005) 

GLP-1 has several forms in the circulation. The inactive forms, GLP-11-36 and 

GLP-11-37   , are cleaved from preproglucagon, depending on whether the C-terminal 

glycine is present. Further N-terminal truncation is required to produce the biologically 

active forms, GLP-17-36   and GLP-17-37 (Mojsov et al. 1986).  

GLP-1 is released into the circulation in a biphasic manner in proportion to the 

calories ingested (Orskov et al. 1994). The early phase release seems to be mediated by a 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16815798#bib160�
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16815798#bib188�
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neuroendocrine reflex, whereas the latter is a result of the presence of undigested 

nutrients present in the lumen of the ileum or large intestine with L-cells.  

The action of GLP-1,  as a potent incretin, including mediating glucose-dependent 

insulin secretion via their receptors expressed on beta cells (Drucker, 2006), stimulating 

proinsulin gene expression (Drucker et al, 1987), inhibiting glucagon secretion (Nauck et 

al, 2002), inhibiting gastric acid secretion and delaying gastric emptying(Baggio et al, 

2004), as well as promoting an increase in pancreatic β-cell mass through enhancing beta 

cell proliferation and inhibiting apoptosis(Stoffers et al, 2003;Wang et al, 2002).  

GLP-1 was shown to be able to delay the onset and improve the severity of 

diabetes in GK rats when given postnatally. GK rats with daily injections of glucagon-

like peptide-1 (400 microg x kg(-1) x day(-1)) from day 2 to day 6  exhibited higher  

pancreatic insulin content and total beta-cell mass than control rats. There were long term 

effects observed in the same study: lower basal plasma glucose and slightly increased 

glucose stimulated insulin secretion were found two months later in treated GK rats 

(Tourrel et al, 2002). GLP-1 also was reported to reduce apoptosis in human islets 

(Farilla et al, 2003). A GLP-1 receptor agonist demonstrated similar effects. Extendin-4 

not only improved glucose tolerance in diabetic rats via expansion of beta cell volume 

(Xu et al, 1999), but also prevented the development of diabetes in rats exposed to 

intrauterine growth retardation (Stoffers et al, 2003).   

• Short Chain Fatty Acids (SCFA) 

The main products of fermentation of dietary fibers in the mammalian gut are 

SCFA including acetate, propionate, and butyrate (Morita et al, 1999). The typical ratios 

of acetate to propionate to butyrate in feces are 3:1:1(Duncan et al, 2002). Normally, 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16815798#bib104�
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16815798#bib230�
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16815798#bib230�
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acetate is circulating in the bloodstream in a concentration around 100–150 µM, 4–5 µM 

for propionate, and 1–3 µM for butyrate (Wolever et al, 1997). 

A supplement of sodium butyrate facilitated fatty oxidation and increased energy 

expenditure in mice; it protected mice from insulin resistance and hyperglycemia in diet 

induced obesity (Gao et al, 2009). As one of the products from fermentation, it is 

speculated that butyrate might be a key factor to mediate the RS signal to regulate 

glucose metabolism. RS probably increases butyrate producing bacteria in the lower gut. 

The elevated butyrate appears to stimulate GLP-1 expression and release from L-

enterocytes through HDAC inhibition (Zhou et al, 2006). Increased GLP-1 signals to the 

hypothalamus to upregulate hypothalamic POMC (Shen et al, 2009) which is an 

important neuropepetide in promoting energy expenditure (Santini et al, 2009). In 

addition, GLP-1 was reported to induce cAMP in hepatocytes (Ding et al, 2006), so it 

may upregulate peroxisome proliferator–activated receptor (PPAR)-γ coactivator (PGC)-

1α activity through the PKA-CREB pathway (Puigserver et al, 2003; Lin et al, 2005). 

PGC-1α is a transcription coactivator, which controls energy metabolism by targeting 

several transcription factors of genes involved in fatty acid oxidation and mitochondrial 

function which are essential in glucose metabolism (Lin et al, 2005).  

After being transferred to blood stream, butyrate fed in the diet may directly 

activate PGC-1α and uncoupling protein (UCP)-1 in brown fat, PGC-1α and adenosine 

monophosphate-activated protein kinase (AMPK) in muscle and liver cells (Gao et al, 

2009). In the muscle, PGC-1α increases fatty acid metabolism (Lin et al, 2002). In brown 

fat, PGC-1α enhances adaptive thermogenesis through upregulation of UCP-1 expression 

(Puigserver et al, 1998). UCP-1 diverts energy from ATP synthesis to thermogenesis to 

increase energy expenditure. It has been shown that AMPK and p38 is responsible for 

http://diabetes.diabetesjournals.org/content/58/7/1509.full#ref-8#ref-8�
http://diabetes.diabetesjournals.org/content/58/7/1509.full#ref-9#ref-9�
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upregulating PGC-1α activity in the post-translational phase (Knutti et al, 2001; Jager et 

al, 2007). Butyrate was demonstrated to increase PGC-1α expression through both ways 

(Gao et al, 2009). In addition, AMPK is an important regulatory sensor promoting fatty 

acid oxidation and glucose metabolism (Gruzman et al, 2009).  

As a histone deacetylase inhibitor, butyrate may also activate PPARα in 

peripheral tissues. In vitro, butyrate enhanced the transcriptional activity of PPARα in a 

dosage dependent manner. PPARα plays a critical role in activation of mitochondrial β-

oxidation of fatty acids through regulation of genes encoding key enzymes such as 

carnitine palmitoyltransferase I, acetyl-CoA synthase and so on (Komatsu et al, 2010). 

PPARα interacts with PGC-1α in metabolically active tissues including liver, skeletal 

muscle, and brown fat and induces the expression of PPAR  target genes (Vega et al, 

2002). In liver and muscle, PGC-1α facilitates PPARα in the regulation of fatty acid 

oxidation. In liver, they cooperatively control glucose production (Berger et al, 2002; 

Francis et al, 2003). However, further study is needed to identify whether PPARα and 

PGC-1 are required for butyrate induced energy expenditure.  

2.2 Maternal Hyperglycemia 

2.2.1 Current Problems 

The worldwide prevalence of diabetes has risen dramatically during the past two 

decades, especially in the United States. The 2007 national diabetes fact sheet (CDC, 

2007) showed that 7.8% of the total population has diabetes, which is a 0.8% increase in 

two years (7.0% in 2005). Among 23.6 million people who suffer from diabetes at all 

ages, 23.5 million are age 20 and older, 11.5 million are women, quite a portion of  which 

are young patients whose ages fall in the range of 20 to 39, which happen to be the period 

of child bearing. In 2007, 281,000 new cases of diabetes were diagnosed in people aged 
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from 20 to 39 years old (CDC, 2007).  In context of the current diabetes prevalence, 

maternal hyperglycemia is becoming a health threat to pregnant women worldwide, 

which consists of diabetic pregnant women (majority is type 2 diabetes) and those 

diagnosed with Gestational Diabetes Mellitus (GDM). Maternal hyperglycemia not only 

brings negative impacts to pregnant women, but also is an independent risk factor for 

fetus/infant’s health conditions. Gestational diabetes mellitus, a special type of diabetes 

in pregnancy, is further elucidated as follows. 

2.2.1.1 Gestational Diabetes Mellitus 

GDM is defined as the onset of glucose intolerance in a pregnant woman who has 

not been diagnosed with diabetes before pregnancy. As a result of the increase in 

prevalence, the severe adverse outcomes it brings to both mothers and their offspring, and 

the limited treatment variety, GDM becomes a leading threatening factor to the health of 

young women and their babies. 

• Increase of GDM incidence 

   The incidence of GDM is growing. It has doubled over the last few years and the 

trend continues. In the United States, the rates per 1000 women have increased more than 

3.5-fold among those aged 15–24 and 4 –fold in the age range 25–34 (Baraban et al, 

2008). Data from the American Diabetes Association indicate gestational diabetes occurs 

in about 4% of all pregnant women, with 135,000 new cases in the USA each year 

(ADA.org). In 2006, the National Institute of Child Health and Human Development 

estimated that GDM affects nearly 7 percent of all pregnancies (NIH.gov). The 

prevalence of GDM has similar features to the obesity epidemic. 1. The incidence is 

higher in urban versus semi-urban and rural areas in a developing country. Seshiah et al 

conducted a study with a total of 41,513,960 participants in South India. They found the 



 19

prevalence was 17.8% women in urban, 13.8% in semi-urban, and 9.9% in rural areas 

(Seshiah et al.2008).  2. In the same ethnic groups, people who live in s developing 

country have a lower prevalence than those who immigrated to western countries (2.7% 

vs 7.3%) (Yang et al, 2002).  

• Adverse Outcomes 

GDM has severe effects on both mothers and their offspring. Mothers with GDM 

have an increased lifetime risk of developing type 2 diabetes mellitus (DM). According to 

data reported by CDC, 5 to 10 percent of women with GDM will be diagnosed as type 2 

DM right after pregnancy. Even for those women who return to a normal glucose 

metabolism, they still have a 20 to 50 percent chance of developing diabetes in the next 5 

to 10 years. (http://www.cdc.gov/diabetes/pubs/interim/background) 

As for the infant, GDM has a more complicated impact. In the short-term, infants 

born to parents with GDM have a higher chance of having macrosomia and 

consequenced dystocia, developing respiratory distress syndrome and jaundice, stillbirth, 

and dying in infancy. For the long-term, GDM is a significant risk factor for development 

of obesity and abnormal glucose metabolism in their late life (Metzger, 2007).  

It was shown that infants of GDM mothers had significantly greater skinfold 

measures as well as fat mass, even when they are not macrosomic, compared to those of 

mothers with normal glucose tolerance (Catalano et al, 2003). The increase of fetal 

adiposity is thought to be a predictor for obesity in early childhood (Simmons, 2008). 

The study of 552 Pima Indian offspring of GDM patients aged 5-24 yr showed that 

a 1 mM higher maternal 2-h glucose level resulted in a higher occurrence of diabetes in 

the offspring (odds ratio = 162) (Pettitt et al, 1991). The observation was not only limited 

to Pima Indians, but also occurs in the general population. Children who are exposed to 

http://www.cdc.gov/diabetes/pubs/interim/background�
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an intrauterine environment of a high glucose concentration are at increased risk of 

developing metabolic syndrome:  50% of the GDM group confirmed more than 2 

components of metabolic syndrome, which was significantly higher than the control 

group, 18% (Boney et al, 2005). One study revealed that glycaemic control in GDM 

pregnancies is an effective way to prevent impaired glucose tolerance in childhood. Even 

minimal intervention will make a difference (Malcolm et al, 2006). 

• Limited treatment variety 

So far, treatment for GDM is limited only to nutrition intervention and insulin. 

Nutrition therapy is the primary treatment for about 70-90% of women with gestational 

diabetes mellitus (Gunderson, 2004). It has been recognized as the cornerstone of therapy 

for GDM at worldwide conference (Metzger, 1998). The goal of nutrition therapy is to 

achieve a balance between adequate nutritional needs and optimal glycemic control. 

Although caloric restriction of 35-40 percent of total calories is effective for treatment for 

GDM (Major et al, 1998), ADA suggests that it should be done with great caution 

because of ketonemia and ketonuria, which can harm the fetus (American Diabetes 

Association, 2002). Moreover, compared to numerous treatments available for Diabetes, 

insulin is the only currently FDA approved medication for GDM. Therefore, new 

treatments for GDM are necessary.  

2.2.2 Mechanisms of Insulin Resistance in Maternal Hyperglycemia 

Insulin resistance is thought to be the potential pathophysiology for GDM 

(Buchanan et al, 2007).  Progressive insulin resistance is present during normal 

pregnancy due to elevated placental hormones and increased maternal adiposity (Barbour 

et al, 2007). It usually begins near mid-pregnancy and reaches to the levels approaching 

what seen in type 2 diabetes in the third trimester. Therefore, pregnancy is considered as 
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a "diabetogenic state "(Zavalza-Gómez AB et al, 2008). There is molecular evidence that 

with GDM there is greater insulin resistance than with normal pregnancy (table 2.2). So 

GDM occurs when people who already have a chronic insulin resistance background 

undergo the “diabetogenic state.” 

Table 2.2 Comparison of normal pregnancy and gestational diabetes in terms of insulin 
resistance  
  GDM Normal 

pregnancy 
 

Insulin stimulated 
Glucose transport 
          Muscle (Friedman, 1999) 

 
     
65% ^↓ 

 
 
40% *↓                

 
Change of glut4 
protein is 
undetectable 
 

          Adipose(okuno, 1995) GLUT4 ↓↓  ↓  
Tyrosine phosphorylation  
of IR ^( Friedman, 1999) 
 
Activity of IR  
pretreated with insulin(shao,2000a)* 
 

↓ 
            

 
     ↓↓    
   Partially restored 
by alkaline 
phosphatase 

 
 

_ 
 
 
↓ 

Restored to normal 

 

IR-1 protein* 
     Muscle(Friedman, 1999) 
 

 
           ↓↓ 

 
↓ 

 

     Adipose(Catalano,2002)  
 

             ↓ No change  

                      Antepartum 
                      Postpartum  

        52%↓ 
   Back to 
normal 

No change 
No change 

  

Serine phosphorylation  
of IRS-1^ (Barbour, 2006) 
 

   62% ↑ 
   S-IRS-1/Total IRS-1 

_  

P85αmonomer(Catalano,2002) 
 
 

              ↑* ↑*  

^ compare with normal pregnancy;  * Compare 
with non- 
pregnant obese 
women    

  

 

 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Zavalza-G%C3%B3mez%20AB%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
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 2.2.2.1 Pregnancy Induced Insulin Resistance  
 

Insulin resistance identified in pregnancy returns to normal soon after pregnancy 

and so do the signaling changes in women with normal glucose tolerance. These findings 

suggest that pregnancy per se is capable of inducing insulin resistance. As for mechanism, 

several lines of evidence suggest that the physiological insulin resistance induced by 

pregnancy could be caused by post-receptor defects and appear to be multifactorial (Boyd 

et al, 2007).  Normally, insulin binds to the α subunit of the insulin receptor, and 

catalyzes autophosphorylation of the β-subunit of the insulin receptor at tyrosine residues, 

then the activated receptor docks the insulin receptor substrate and tyrosine 

phophorylates this protein, followed by recruiting of P85 of phosphatidylinositol 3-kinase 

(PI3), production of PIP3 and signaling for GLUT4 translocation (Aguirre et al, 2002).  

However, in pregnant women, a significant decrease in insulin receptor tyrosine 

phosphorylation in muscle has been identified. In the light of evidence that the tyrosine 

phosphatase activity and receptor number are not changed (Friedman et al, 1999, Shao et 

al, 2000a), and the pretreating insulin receptor with alkaline phosphatase could restore 

insulin’s ability to activate tyrosine phosphorylation of the insulin recepotor (Shao et al, 

2000b), it is suggested that increased serine phosphorylation of the insulin receptor and 

subsequently competitively downstream insulin signaling plays an important role. At the 

level of insulin receptor substrate-1(IRS-1), strong evidence is also presented for 

activated IRS-1 serine phosphorylation (Qiao et al, 2002). IRS-1 serine phosphorylation 

is not only able to accelerate its degradation, but also dampen PI3 kinase activity by 

inhibiting recruitment of P85 subunit. Possible mechanisms include 1. Excessive 

nutrients such as amino acid and glucose during pregnancy stimulate p70 S6K expression, 

which increases serine phophorylation (Shah et al, 2006); 2. TNF- α augmented by both 
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placenta and expanded adipose tissue during pregnancy upregulates JNK, and this can 

catalyze phosphorylation on serine residues (Aguirre et al, 2000); 3. Both TNF- α and 

growth hormone can suppress expression of peroxisome proliferator activated recptor 

which is a transcription factor for adiponectin (Masternak et al, 2005, Qiao et al, 2005). 

Aditionally, a decreased adiponectin level leads to increased activity of the mTOR 

pathway, which also contributes to serine phosphorylation (Tzatsos et al, 2006).  

 In addition, the increased amount of the free p85α subunit of PI3 kinase appears 

to be involved in the post receptor defects (Barbour et al, 2005). PI3 kinase has two 

subunits, the regulatory p85α subunit and catalytic p110 subunit. IRS has to bind with 

p85α- p110 heterodimer to activate this enzyme and produce PIP3. P85α monomers 

block IRS docking the p85α- p110 heterodimer (Biddinger et al, 2006).  Placental growth 

hormone appears to be involved in the accretion of P85α monomers (Barbour et al, 2002).   

2.2.2.2 Role of Placenta in Insulin Resistance  
 

The placenta is a complicated and crucial fetal organ for fetal growth. It is in 

contact with both maternal and fetal circulations through different surfaces. Therefore, it 

could be influenced by changes of regulatory factors present in the two circulations and 

as a feedback produces hormones and cytokines to act on mother and fetus (Desoye et al, 

2007). 

Normally, during gestation the placenta synthesizes and releases a variety of 

cytokines which contribute to the low grade systemic inflammation, and together with 

hormones secreted by the placenta as well, are necessary to induce maternal insulin 

resistance (Barbour et al, 2004). This physiological insulin resistance in late pregnancy is 

a critical adaptation designed to ensure the growing fetus has an adequate supply of 

nutrients by blunting maternal glucose uptake. 
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However, in a pregnancy complicated with diabetes mellitus, the abnormal 

maternal metabolic environment may stimulate the overexpression of cytokines and 

inflammatory- related genes in the placenta and this results in the increased circulating 

concentrations of inflammatory cytokines (Hauguel-de Mouzon et al, 2006). There are a 

high amount of insulin receptors expressed in the placenta. It has been suggested that, 

during the pregnancy, altered maternal insulin lead to abnormal synthesis and secretion of 

hormones and cytokines by the placenta by interacting with the syncytiotrophoblast, and 

this contributes to maternal insulin resistance (Desoye et al, 2007). 

A variety of hormones secreted from the placenta and circulated in high 

concentrations have been shown to be able to influence the insulin sensitivity in 

peripheral tissues and induce insulin resistance during pregnancy; Estrogen, progesterone,  

human placental lactogen (hPL), and human placental growth hormone (hPGH) are 

reported to be involved in the process. (Barbour et al, 2004; Nagira et al, 2006; Kühl , 

1998; Reis et al, 1997; Ryan et al, 1988).  

In surgical postmenopausal monkeys, estrogen and medroxyprogesterone acetate 

treatment led to enlarged adipocytes and diminished insulin sensitivity (Shadoan et al, 

2007). It was suggested that a post-receptor mechanism of activation of JNK mediated by 

the membrane estrogen receptor (ER) pathway and the subsequent serine phosphorylation 

of IRS1 probably contribute to estrogen induced insulin resistance in 3T3-L1 adipocytes 

(Nagira et al, 2006). Estradiol also decreased insulin sensitivity by down- regulating 

muscle glucose transport 4 (GLUT4) in vivo; when at high concentrations similar to that 

in pregnancy, it reduced GLUT4 expression by 30% at both mRNA and protein levels. 

Time- and dose-dependent responses were observed as well in the L-6 cell line. (Barros 

et al, 2008);  

http://care.diabetesjournals.org/content/30/Supplement_2/S112.full#ref-13�
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The knockout of the progesterone receptor was reported to promote beta-cell 

proliferation and improve insulin secretion in response to glucose injection in female 

mice which overall showed ameliorated glucose homeostasis (Picard et al, 2002). In vitro, 

progesterone was shown to inhibit glucose transport as well as reduce glycogen synthesis 

and glycolysis regardless of the presence of insulin in muscle (Leturque et al, 1989). The 

mechanism studies indicated that the inhibition was obtained by suppressing multiple 

steps of insulin signaling which included decrease of IRS1 expression and suppression of 

the PI3-kinase independent pathway of TC10 activation (Wada et al, 2010). 

It has been postulated that human placental lactogen (hPL) is the major placental 

hormone which reprograms the occurrence of insulin resistance. Human placental 

lactogen (hPL) rises 30-fold during pregnancy (Brelje et al, 1993). As early as in 1967, 

hPL was indicated to induce peripheral insulin resistance in normal male subjects (Beck 

et al, 1967). Placental lactogen was considered one of the hormones that were related to 

the postreceptor defect of insulin signaling during pregnancy (Ryan et al, 1988).  The 

opposite result occurred with ovine placental lactogen’s failure to deteriorate glucose 

metabolism in skeletal muscle (Leturque, 1989). However, overall supportive evidence of 

hPL as the key factor in insulin resistance during pregnancy is sparse. On the contrary, 

more and more studies suggest the main effect of hPL is to induce the pregnancy-

associated growth of pancreatic islets and insulin secretion (Yamashita et al, 2000; 

Handwerger et al, 2000; Brelje et al, 1993).    

Human placental growth hormone (hPGH) is another placental hormone related to 

the occurrence of pregnancy –induced insulin resistance, and is so far the most likely 

hormonal candidate which mediates the insulin resistance in pregnancy (Barbour  et al, 

2004). Human placental growth hormone rises up to eightfold during pregnancy and is 

http://care.diabetesjournals.org/content/30/Supplement_2/S112.full#ref-13�
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free from regulation by growth hormone release hormone (GHRH) (Handwerger et al, 

2000). Severe peripheral insulin resistance was observed in transgenic mice 

overexpressing placental growth hormone (Barbour et al, 2002). Further research 

indicated this insulin resistance was due to the increased expression of one of the subunits 

of PI 3-kinase, p85 monomer, and subsequent disruption of PI 3-kinase activation in 

skeletal muscle. (Barbour et al, 2004). PI 3-kinase activation is a critical step in the 

insulin signaling pathway whose product is required for propagating signals for GLUT4 

translocation. Phosphorylated insulin receptor substrate 1 (IRS-1) must dock regulatory 

p85  subunit and the catalytic p110 subunit as a heterodimer in order to activate the 

enzyme (Wymann et al, 1998). p85  competes with the heterodimer to bind IRS-1 at a 

specific binding site and effectively prevents the access of the heterodimer to IRS-1 once 

it succeeds (Barbour et al, 2004). The p85α heterozygous deletion mice (p85α +/–) 

demonstrated p85α is a key mediator in the placental growth hormone’s induction of 

insulin resistance. Placental growth hormone caused overexpression of p85α, diminished 

insulin stimulated PI 3-kinase activity and increased insulin resistance in wild type mice; 

whereas p85α+/–mice were protected from its influence as evidenced by maintained 

global insulin sensitivity and PI 3-kinase activity ((Barbour et al, 2005). 

In addition to hormones, the human placenta also synthesizes virtually all known 

cytokines which may contribute to the inflammation in the whole body (Telejko et al, 

2010). Kirwan and colleagues investigated the correlation between insulin sensitivity and 

placental products that included tumor necrosis factor α (TNF-α), leptin, cortisol, human 

chorionic gonadotropin, es-tradiol, progesterone, human placental lactogen, and prolactin 

in pregnancy. They reported that in humans, among all variables they studied, only the 

circulating plasma TNF  produced by the placenta was inversely correlated highly with 
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in vivo insulin sensitivity, while hPGH was not included in this study (Kirwan et al, 

2002). In obese pregnant women a similar association was observed between increased 

TNF-α in peripheral blood and insulin resistance (Challier et al, 2008). Infusion of TNF-α 

in rat led to increased global insulin resistance, and blunted glucose uptake when 

incubated with human skeletal muscle cells in culture (Frost et al, 2005).  

Possible mechanisms were suggested. The first is that TNF-α is able to act as a 

serine threonine kinase to catalyze insulin receptor (IR) and IRS-1 serine phosphorylation 

which in turn inhibits their tyrosine phosphorylation (Barbour et al, 2006; Catalano et al, 

2002).  TNF - α activated JNK, which can phosphorylate IR and IRS-1 on serine residues 

(Rui et al, 2001). The second possible mechanism is that TNF- α has been shown to 

suppress PPAR  expression in the 3T3-L1 cell line and inhibit adipocyte differentiation 

(Zhang et al, 1996).  PPAR-γ is a transcription factor, expressed in adipose tissue, and is 

essential in regulation of insulin sensitivity, adipicyte differentiation, and lipid storage 

(Joosen et al, 2006; Zeghari et al, 2000; Schoonjans et al, 1996). One of its important 

target genes is adiponectin (Qiao et al, 2005).  Adiponectin is viewed as an endogenous 

insulin-sensitizer due to its favorable effect on glucose homeostasis through its receptors 

in skeletal muscle and liver (Hara et al, 2005).  Several studies indicated that circulating 

adiponectin level decreased in obesity and insulin resistance animal models (Arita et al, 

1999). Epidemiology studies show an inverse correlation between plasma adiponectin 

concentrations and the degree of insulin resistance in obesity, type 2 diabetes, and GDM 

(Weyer et al, 2001; Worda et al, 2004; Cseh et al, 2004)).   

Leptin is another placenta cytokine widely studied.  Although adipose tissue 

secretes leptin as does the placenta during gestation, it is suggested that the major 

changes in leptin in pregnancy are attributed to placental leptin production (Bajoria, et al, 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WBK-4FYGBBM-1&_user=884346&_coverDate=06%2F17%2F2005&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1203743206&_rerunOrigin=google&_acct=C000047322&_version=1&_urlVersion=0&_userid=884346&md5=7763530f681d905071e86e7b86f366c3#bib3�
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2002). Several studies reported leptin was correlated negatively with insulin sensitivity in 

normal pregnant women and gestational diabetics ( McIntyre et al, 2010; Mastorakos et al 

et al, 2007).  However, divergent findings about cytokines and insulin sensitivity are not 

scarce which may be due to variation in experiment design, methods adopted, and 

different subjects recruited. (Briana et al, 2009). 

Further study is still needed to explore later steps in the insulin-signaling pathway 

and examine the complicated cytokine and hormone crosstalk between placenta and 

enlarged adipose tissue. 

2.3 Beta Cell Dysfunction 
 

Impaired beta cell function as well as tissues insulin resistance are two etiologic 

factors in type 2 diabetes, which counts for 90-95% of total diabetes. It was thought 

insulin resistance was the primary cause because it was more frequently reported 

preceding beta cell dysfunction in the pathogenesis of type 2 diabetes (Gerich et al, 1999). 

Besides, insulin resistance is highly correlated with both BMI and type 2 diabetes, 

therefore, it may link overweight with increasing glycemia (Balkau et al, 2002). It also 

appears to induce beta cell dysfunction through beta cell exhaustion (Leahy et al, 2005). 

However, Gerich and co-workers found impaired beta cell secretion were present in non-

diabetic first degree relatives of type 2 diabetes patients (Gerich et al, 2003). Moreover, 

compared with controls, the first degree relatives exhibited reduced first and second 

phase insulin secretion but no difference in insulin resistance (Pimenta et al, 1995). 

Albeit there is still gap in our knowledge, it is well accepted that progressive beta call 

dysfunction is a necessary condition in the occurrence of diabetes (Marchetti et al, 2008). 

2.3.1 Reduced Beta Cell Mass 

Normally there are about one million islets of Langerhans which constitute 

http://care.diabetesjournals.org/search?author1=H.+David+McIntyre&sortspec=date&submit=Submit�
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 approximately 2% by weight of the human pancreas (Bonner-weir et al, 2005). Several 

types of endocrine cells coexist in the islets. Insulin secreting beta cells represent 60-80%, 

glucagon secreting alpha cells are around 20%, pancreatic polypeptide containing PP 

cells ~15%, somatosatin delta cells ~ 10%, and ghrelin secreting cells ~1% ( Wierup et al, 

2002; Rhodes et al,2005). The beta cell mass is changed at different stages of life as a 

result of dynamic balance among replication, size modification, neogenesis, and 

apoptosis (Dor et al, 2004). 

Although it was suggested that beta cell mass reduction is present in all type of 

diabetes, studies yielded discrepant results due to the limited access to human pancreas 

tissue, especially for type 2 diabetes (Stefan et al, 1982; Saito et al, 1978. Sakuraba et al, 

2002). Recently, studies with available pancreas specimens from surgery and post-

mortem samples, supported that beta cell mass is reduced in type 2 diabetes. Butler and 

his co-workers  obtained 124 pancreatic autopsy samples from obese with/without 

diabetes , lean with /without diabetes and obese with impaired fasting glucose and 

examined their beta cell mass together with cell proliferation and apoptosis. They found 

obese non diabetics had a 50% increase in relative beta cell volume and an increased 

neogenesis from ductal tissue versus lean non diabetics; obese patients with diabetes or 

impaired fasting glucose were associate with a 63% and 40% deficit respectively, 

compared with obese non diabetics; lean patients with diabetes had a 41% less relative 

beta cell volume than lean controls. Another important finding in this study is that the 

reduction of beta cell mass is attributed to increased frequency of apoptosis other than 

diminished replication (Butler et al, 2003). Marchetti et al. also observed elevated 

apoptosis by  significantly increased activity of cysteine-aspartic acid protease (caspase) 

3 and caspase 8 in human diabetic beta cells, and metformin was reported to be able to 
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reduce cell death and  normalize caspase 3 and caspase 8 activity as well (Marchetti et al, 

2004).  

2.3.2 Impaired Insulin Secretion Function 
 
The reduction of beta cell mass does not solely cause the progression of type 2 

diabetes because in rodents with experimental pancreatectomy the removed up to 50% of 

tissue still maintained normal glycemia.   Therefore, alterations of insulin secretion 

become another interest of research. It has been extensively reported that multiple 

alterations of insulin release exist in type 2 diabetics which are characterized by a 

defective insulin response to glucose (Kahn et al, 2003; Del et al, 2002; Lin et al, 2002). 

Normally, glucose stimulated insulin release is biphasic process with a short early phase 

and much longer second phase (Henquin et al, 2000; Del et al, 2002). In type 2 diabetics, 

the commonly found alterations are reduced or absent first phase insulin secretion in 

response to intravenous glucose, blunted release in the second phase, and delayed 

response to an ingestion of a mixed meal (Kahn et al, 2003; Del et al, 2002). In addition, 

the pulsatile pattern of insulin release is disrupted instead of taking place every 8-10 

minutes superimposed on low frequency oscillations (Porksen et al, 2002; Schmitz et al, 

2002). 

According to a well recognized hypothesis, under physiological circumstance, 

glucose stimulates insulin secretion through the following steps (Marchetti et al, 2008). 

First, glucose enters beta cell with aid from transmembrane protein glucose transport 2, 

and undergoes catabolism via glycolysis and the Krebs cycle, which produces reducing 

equivalents.  The reducing equivalents then are transferred to the respiratory chain, also 

called the electron transport chain, to form a proton gradient across the inner 

mitochondrial membrane which couples the electron transport chain with oxidative 
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phosphorylation and results in synthesis of ATP. Secondly, augmented ATP 

concentrations increase the ATP/ADP ratio which leads to the closure of the ATP-

regulated K+ channels. Next the depolarization of cell membrane opens voltage-

dependent Ltype Ca 2+ channel which causes an influx of calcium ions. Finally, the 

elevated cytoplasmic calcium ion promotes exocytosis of insulin granules.  The 

alterations of mitochondrial in type 2 diabetics have been indicated as one mechanism of 

the impaired glucose stimulated insulin secretion in addition to decreased expression of 

the glut2 gene and reduced activity of glucokinase (Del Guerra et al, 2005). Beta cell 

mitochondria in type 2 diabetes have a higher density volume and become swollen with 

undefined membranes (Welsh et al, 2005; Anello et al, 2005). 

 

Figure 2.1 Mechanisms of glucose-induced insulin secretion (Marchetti et al, 2008) 
 

Besides, ATP concentrations were lower as well as the ATP to ADP ratio. 

However, the protein expression of two mitochondrial complexes of respiratory chain, 

complex1 and 5, were found increased in diabetic beta cells. An increase of uncoupling 

protein -2 (UCP-2) protein expression was also reported in this study (Anello et al, 2005). 
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Taken together, it is suggested that the activated UCP-2 might be a key factor leading to 

lower ATP production and eventually insulin secretion impairment.  

UCP-2 protein expression can be activated by superoxide (Krauss et al, 2003).  

Several markers of oxidative stress, nitrotyrosine and 8-hydroxy-2-deoxyguanosine, were 

shown higher in type 2 diabetes than control. Both of the markers were also found 

correlated with the severity of defective insulin secretion in response to glucose (Del 

Guerra et al, 2005). Other evidence indicating the involvement of oxidative stress include 

reduced expression of manganese-superoxide, increased expression of protein kinase c- 

beta2 and nicotinamide adenine dinucleotide phosphate reduced-oxidase (reactive oxygen 

species producing enzymes) in diabetic islet cells (Marchetti et al, 2004; Del Guerra et al, 

2005). Decrease of the nitrotyrosine level and improvement of glucose stimulated insulin 

secretion were observed when islets of type 2 diabetes were incubated with metformin  

for 24 hours in vitro (Marchetti et al, 2004).Antioxidants improved  impaired beta cell 

function and apoptosis in isolated islets exposed to elevated glucose (Kaneto et al, 1996). 

Amyloidosis may play a role in the pathology of diabetes. Epidemiological studies 

found a high prevalence of amyloidosis in type 2 diabetes patients and a significant 

correlation between pancreatic amyloid formation and Hba1c (Zhang et al, 2003; 

Westermark et al, 1987). Pancreatic amyloid plaques formation is a feature of type 2 

diabetes histopathology (Clark et al, 1987). The beta cell is almost the only cell that 

expresses the islet amyloid polypeptide gene. The protein is co-secreted with insulin. It is 

still not clear what kind of role amyloid plays in the pathogenesisi of type 2 diabetes.  

Possibly, the high concentration of islet amyloid polypeptide which leads to the 

formation of amylodosis is caused by increased production of insulin secondary to 

hyperglycemia (Hoppener et al, 2006; Ritzel et al, 2007).  
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Glucotoxicity may also be involved in diabetes. Prolonged exposure to elevated 

glucose was demonstrated to exert a slow but irreversible effect on beta cells which 

enhances apoptosis and exacerbates glucose stimulated insulin secretion (Robertson et al, 

2000). Chronic hyperglycemia might decrease insulin gene transcription through its 

negative impact on beta-cell specific transcription factors (Kaiser et al, 2003). Also 

chronic oxidative stress was suggested as at least part of the mechanism underlying 

glucotoxity (Tanaka et al, 1999). 

Lipotoxicity is also a factor.  Free fatty acids are necessary to maintain normal beta 

cell function; however, elevated fatty acids could inhibit islet gene expression such as 

GLUT-2 partially through transcript factor pancreatic-duodenum homeobox-1(Gremlich 

et al, 1997). Lipotoxicity requires the presence of concommitant hyperglycemia to affect 

beta cell function.  Accumulation of long chain fatty acyl CoAs and increased production 

of ceramide might mediate the deleterious effects of elevated free fatty acids (Prentki et 

al, 2006). 

Another fator is inflammation. Increased numbers of macrophages were found in 

diabetic pancreatic islet (Ehse et al, 2007). Exposure to a type 2 diabetes milieu resulted 

in human islets to release inflammatory factors such as interlukin 6, interlukin 8, and 

macrophage inflammatory protein, which activated migration of monocytes and 

neutrophils (Ehses et al, 2007). Further research is needed to determine whether 

inflammation is a causal factor.   

2.4 Animal Models of Type 2 Diabetes 

2.4.1 General Introduction 

The incidence of type 2 diabetes has reached a new record high and brings serious 

socio-economic burdens. Over the last years, numerous researchers have been motivated 
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to devote their efforts to the study of diabetes, and intense efforts have been performed 

which greatly advances our knowledge. Appropriate experimental models are essential to 

facilitate the research. The animal models of type 2 diabetes can be classified into five 

categories: spontaneously or genetically derived, chemicals induced, diet induced, 

surgical manipulation, and genetically engineered (Srinivasan et al, 2007). Due to the 

advantages of reduced cost, ease of maintenence and breeding, most available models are 

based on rodents. A list of animal models was summarized in table 2.1 and the Goto-

Kakizaki Rat (GK) which was used in this dissertation would be discussed in detail. 

Table 2.3 Summary of animal models of type 2 diabetes (adapted from Srinivasan et al, 
2007) 

Model class Name  Obese  Origin  
   
Genetically 
derived  

ob/ob mouse 

(lepob) 

Yes  
 

Monogenic defect of 
leptin gene on 
chromosome 6 in 
C57BL/6J or C57BL/KS 
mice. Autosomal 
recessive mutation 

 db/db mouse 

(leprdb) 

Yes  Monogenic defect of 
leptin receptor gene on 
chromosome 4 in 
C57BL/KSJ mice. The 
C57BL/KSJ -
leprdb/+develops diabetes 
during pregnancy. 
Autosomal recessive 
mutation 

  

KK  mouse 

(kuo Kondo) 

 

 

Yes  

 

 

 

Polygenic  model from 
selective inbred for large 
body size in Japan 
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KK/Ay  mouse 

(yellow KK obese 
mouse) 

 

 

New ZealandObese 
mouse(NZO) 

 

 

Tsumara Suzuki 
Obese Diabetes  
mouse (TSOD) 

 

Zucker Fatty Rat 

(leprfa) 

 

Yes  

 

 

 

 

Yes 

 

 

Yes 

 

 

 

Yes 

 

Was developed from 
cross breeding of Ay/a 
(dominant  mutation) 
mice with one of the 
inbred KK strains 

 

An inbred strain of 
polygenic model 
selected for agouti coat 
color 

Polygenic origin inbred 
from obese male ddY 
strain 

 

mutation of a single 
autosomal recessive 
gene on chromosome 

5(fa) 

 

 Zucker 
Diabetic Rat 
(ZDF) 

Otsuka Long 
Evans 
Tokushima 
Fatty 
Rat(OLETF) 

Obese Rhesus 
Monkey 

Cohen 
Diabetic Rat 

 

 

    Yes (less than      
ZFR) 

 

         Yes  

 

 

     Yes  

 

     No 

 

Substrain of ZFR inbred 
for hyperglycemia 

 

Polygenic rat model by 
selective breeding from 
out bred colony of Long 
Evans 

 

 

Special model 
genetically susceptible 
to carbohydrate-rich 
diet by selective inbred  

 

(Table 2.3 Con’d) 
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No 

 

 

No 

 

 

 

Polygenic model 
obtained from selective 
inbreeding of Wistar for 
abnormal glucose 
tolerance 

Autosomal dominant 
mutation in the insulin II 
gene 

 

 

 

 

 

 

 

 

Diet induced  

 

 

 

 

 

 

 

 

 

 

 

 

Chemically 

 Induced 

 

 

 

Goto-Kakizaki 
Rat(GK)   

 

Akita Mouse(non 
obese mutant 
C57BL/6) 

 

 

Sand Rat  

 

 

 

 

C57BL/6J Mouse   

 

 

 

Acomys Calirinus  

 

 

 

 

 

Alloxan (ALX) 

 

 

 

Yes  

 

 

 

 

Yes  

 

 

 

Yes  

 

 

 

 

 

No 

 

 

Develops obesity and 
diabetes when in 
captivity and fed on 
Chow diet (high energy 
compared to its low 
energy vegetable diet) 

 

Easy to induce obesity 
and diabetes by high fat 
diet. This model reflects 
both genetic and 
environmental 
influrences  

When on high energy 
diet and placedcaptivity, 
it gains weight and 
exhibits impaired 
glucose induced insulin 
secretion with marked 
beta cell hypertrophy.  

Induce beta cell necrosis 
in rabbits early in 
1943.Almost replaced by 
STZ due to several 
limitations (short half-
life; only stable in acid; 
variant success rate in 
inducing diabetes; 

(Table 2.3 con’d) 
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Surgical models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Streptozotocin(STZ) 

 

 

Goldthioglucose 
obese diabetic mouse  

 

 

 

 

Partial 
pancreatectomy 

 

Bilateral Uterine 
Artery Ligation 

 

 

 

 

 

Ventromedial 
Hypothalamus 
Dietary Obese 
Diabetic Rat 

 

 

 

 

 

No  

 

 

Yes 

 

 

 

 

 

No 

 

No  

 

 

 

 

 

 

Yes 

ketosis and mortality are 
high. 

Glucosamine derivative 
of nitrosourea. Low dose 
multiple injection or in 
combination with other 
treatments. 

Targeted transported to 
ventromedial 
hypothalamus, cause 
necrosis and develop 
subsequent hyperphagia 
etc. after 16weeks of 

injection. High mortality 
and long duration limit 
its application in 
research 

70-90 % dissection of 
pancreas. Now it is very 
useful in pancreatic 
regeneration research 

Intrauterine growth 
retardation induced by 
insufficient 
uteroplanceta blood flow 
leads to hyperglycemia 
and impaired beta cell 
function in offspring. 
Not practical in diabetes 
research except for 
certain studies. 

 

Induced by high fat high 
sucrose diet plus 
bilateral electrolyte 
lesion of VMH 

 

(Table 2.3 con’d) 
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Genetically 

engineered  

 

 

 

   

Particular model is 
generated by altering the 
expression of certain 
gene or deleting the 
endogenous gene in 
order to specifically 
investigate the role of 
the gene in development 
of diabetes 

 

2.4.2 Goto-Kakizaki Rat (GK)  

 The GK rat is a polygenic model of type 2 diabetes derived from Wistar rats in 

Japan. Goto and his coworkers performed oral glucose tolerance tests (OGTT) in 211 

normal Wistar rats and selected 9 pairs of rats with the highest blood glucose levels as a 

foundation breeding stock in the 1970s (Goto et al, 1975). After five generations of 

repeated selective breeding for slightly impaired glucose tolerance, a new model of non-

obese, non-insulin dependent diabetes was developed. Since the ninth generation, GK rats 

began to be inbred to conserve glucose intolerance and impaired glucose-induced insulin 

secretion (Galli et al, 1996; Östenson et al, 2001). Up to this date, besides the Japanese 

colony, other colonies have been established with breeding pairs from Japan worldwide, 

most notably in Paris and Stockholm. Optimal housing conditions with a humidity of 

40~60% and temperature of 25~26 oC are essential to breed GK rats (Malaisse-Lagae et 

al, 1997).  

 The GK rat is characterized by moderate hyperglycemia, hypoinsulinemia, 

normolipidemia and impaired glucose tolerance which is thought to be the results 

primarily of reduced beta cell mass and a defective insulin response to glucose (Portha, 

2005; Movassat et al, 1997; Movassat et al, 2007; Movassat et al, 1995). Extensive 

(Table 2.3 con’d) 
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studies in the Paris GK rats have shown that the beta cell deficit started at fetal age 16 

days which led to a more than 50% reduction of beta cells at birth compared with normal 

Wistar rats (Miralles et al, 2001). Poor proliferation and enhanced apoptosis of 

undifferentiated ductal cells were detected in the GK fetus at embryonic age 16-20 days 

and the decreased pool of endocrine precursors was speculated to contribute to the 

defective beta cell neogenesis (Miralles et al, 2001; Calderari et al, 2007). In addition, 

insulin like growth factor 2 (IGF-2) production was demonstrated crippled and might 

account for the retarded beta cell growth (Serradas et al, 2002). Interestingly, maternal 

food restriction (65% restriction) during the last week of gestation improved beta-cell 

mass and pancreatic IGF-2 levels in GK fetuses, indicating an epigenetic effect 

(Fernández-Millán et al, 2009). After birth, GK rats present continuously less beta cell 

mass. The total beta-cell mass was only 35% of that in age matched control pancreases 

on day 4, 30% on day 7 and 37% on day 14(Movassat et al, 1997). The pancreatic 

insulin content was also reduced to as low as 31–40%. Despite this, during this period, 

GK neonates exhibited normal basal plasma glucose and glucagon levels until they were 

4 weeks old. When the GK rats reach 8 weeks of age, they exhibit marked 

hyperglycaemia and slightly low fasting plasma insulin with total beta cell mass reduced 

by more than 60% (Movassat et al, 1997).The loss of beta cell mass was ameliorated by 

the glycemia lowering drugs glucosidase inhibitor or GLP-1/exendin-4 in adult and 

postnatal GK rats (Koyama et al, 2000; Tourrel et al, 2002).  

The islet morphology of GK rats is characterized by the presence of ‘starfish 

shaped’ islets. In the pancreas of normal Wistar rat, beta cells form a core localized in 

the center of the islet whereas non-beta cells envelop a peripheral, continuous mantle. 

The boundary is well defined (figure 2.2). In GK rats, the ‘starfish shaped’ islet is 
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featured by irregular capsules with disrupted architecture caused by transverse strands of 

connective tissue (figure 2.3). The changes in islet morphology are rare in neonatal and 

young GK rats, but increase as the animal ages (Suzuki et al, 1992). Several anomalies 

were observed existing in the ‘starfish shaped’ islets including inflammatory marker 

such as major histocompatibility complex (MHC) II and macrophage-associated 

antigens (CD68), overexpression of IGF-2, and these might partially account for the 

changes that occurr (Homo-Delarche et al, 2006; Hoog et al, 1996; Hoog et al, 1997).  

 

Figure 2.2 Normal shaped islet (Shafrir, 2007) 

 

Figure 2.3 Starfish shaped islet (Shafrir, 2007) 
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The GK rat was generated by selective inbreeding which indicates its hereditary 

nature. From cross-breeding studies with GK and Wistar, it suggested that genes from 

both parents are necessary for the manifesting of the GK rat to be fully expressed in the 

offspring (Serradas et al, 1998).As a polygenetic model of diabetes multiple genes are 

involved in the developing of diabetic features in the GK rat. To present, several loci 

were found susceptible to glucose intolerance and impaired insulin secretion through 

linkage analysis (Galli et al, 1996; Gauguier et al, 1996). Niddm1/Nidd/gk, which resids 

on chromosome1, causes defective insulin secretion and is regarded as a main 

contributor to postprandial hyperglycemia. Another less important locus 

Niddm2/Nidd/gk2 is located on chromosome 2 and influences both fasting and 

postprandial glycemia. Weight1.bw/gk1 is on chromosome 7 and is linked to body 

weight. Although currently there is no diabetic gene that has been identified in the 

aforementioned chromosomal loci, genes coding for mitochondrial glycerol-3-phosphate 

dehydrogenase, insulin-degrading enzyme, and uncoupling protein 2 were suggested as 

candidates (Fakhrai-rad et al, 2000; Koike et al, 1996; Kaisaki et al, 1998). However, so 

far no locus associated with beta cell mass has been found , and the beta cell mass was 

reported intact in Niddm1 subcongenics ( Granhall et al, 2006), which raises a question 

about whether the genotype alteration is directly linked to low beta cell mass . 

There is a growing body of evidence that indicates that impaired beta cell function 

is another major pathologic character present in pancreatic islet of GK rats. Compared 

with islets form normal Wistar, those from GK rats showed inappropriately reduced 

insulin secretion in response to glucose (Mosén et al, 2005; Galli et al, 1996; Mosén et al, 

2008). It is generally accepted that glucose induces insulin secretion through following 

steps. First, glucose enters the beta cell with aid from transmembrane protein glucose 
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transport 2, then produces ATP after a series of reactions (glycolysisand Kreb 

cycle).Secondly, the augmented ATP concentration increases the ATP/ADP ratio which 

leads to the closure of the ATP-regulated K+ channels. Next the depolarization of the 

cell membrane opens voltage-dependent Ltype Ca 2+ channel which causes an influx of 

calcium ions. Finally, the elevated cytoplasmic calcium ion promotes exocytosis of 

insulin granules.  Any defects in this pathway will result in the diminished insulin 

secretion response to glucose. Glucose transport 2 was found underexpressed in GK rats, 

but this is unlikely to be the only causal factor (Ohneda et al, 1993). Several defects in 

the main enzymes that catalyzed oxidative glycolysis have been reported which 

consisted of reduced activity of FAD linked glycerol phosphate dehydrogenase 

(Fabregat et al, 1996), pyruvate dehydrogenase (Zhou et al, 1995), and pyruvate 

carboxylase (MacDonald et al, 1996).  However, the decreased enzyme activity was 

restored when glucose was normalized by insulin (MacDonald et al, 1996). In addition, 

over expression of FAD linked glycerol phosphate dehydrogenase in GK rats didn’t 

correct altered insulin secretion (Ueda et al, 1998). Other possible mechanisms are 

suggested such as dysfunction of lysosomal glycogenolytic enzymes (Salehi et al,1999), 

anomaly of glucose-heme oxygenase-carbon monoxide signaling pathway (Mosén et al, 

2005), reduced NADH/NAD ratio by enhanced activity of adenylyl cyclase III (Abdel-

Halim et al, 1993) which further studies are needed to verify. 

 Arginine, a nonglucose insulin secretagogue, was shown to induce an increased 

pancreatic insulin response in GK rat (Hughes et al, 1994; Abdel-Halim et al, 1993). 

However, Portha and his co-workers reported that in the absence of glucose arginine 

failed to induce a normal insulin response in GK rats as it did in the control rats (Portha 
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et al, 1991).Therefore, arginine stimulated insulin secretion might also be disturbed in 

GK rats.  

It has been proposed that the reduced beta-cell mass and impaired function in the 

GK model are ascribed to an interaction of multiple pathogenic factors: (i) defects in 

several genes account for weakened insulin secretion; (ii) decreased beta-cell neogenesis 

and/or proliferation due to an epigenetic influence of gestational metabolic programming 

in the pancreas; and (iii) secondary loss of beta-cell differentiation due to chronic 

exposure to hyperglycemia (Portha et al, 2009; Portha, 2005). 

Insulin sensitivity in GK rat has been studied using the hyperinsulinemic-

euglycemic clamp in vivo and in tissues such as liver, muscle and adipose tissue in vitro. 

Suzuki et al. utilized the clamp in combination with a tracer to show that the 

disregulation of hepatic fructose-2,6-bisphosphate and subsequent elevation of  hepatic 

glucose production was the main reason for mild insulin resistance in GK rats (Suzuki et 

al, 1992). Other defects featured by a decrease of receptor number with normal tyrosine 

kinase activity and attenuated inhibition of insulin on glucagon-induced hepatic glucose 

production were also observed (Doi et al, 2001). In skeletal muscle, the blunted 

conversion of glucose to glycogen due to chronic activation of protein kinase C was 

regarded as one of the contributors to insulin resistance (Avignon et al, 1996).  In 

addition, several defects in the postreceptor insulin signaling pathway were 

demonstrated in adipose tissue and skeletal muscle that included the impaired insulin –

stimulated tyrosine phosphorylation of insulin recptor substrate-1 (Begum et al, 1998), 

and attenuated PI3K activated Akt kinase (Krook et al, 1997). Interestingly, the Akt 

kinase acvitity was able to be restored after nearly normalization of glycemia in GK rats, 

which suggested that the impaired insulin sensitivity in extrahepatic tissues is probably 
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secondary to hyperglycemia (Krook et al, 1997). These observations as well as the 

pathological progress in insulin-mediated muscle glucose transport with aging indicate 

the supporting role of insulin resistance and the leading effect of a beta-cell secretory 

defect in the development of diabetes in the GK rats. 

2.5 Methods of Measuring Insulin Sensitivity 
 

Systemic (whole body) insulin resistance is determined by insulin sensitivity in 

the insulin target tissues, which include muscle, heart, liver, and fat. Muscle insulin 

resistance is a major portion of systemic insulin resistance. Several factors are known to 

induce insulin resistance. These include obesity, lipodystrophy, genetic background, 

inflammation, free fatty acids/intermediates, ectopic fat in muscle, endoplasmic reticulum 

stress, oxidative stress, hyperinsulinemia, mitochondrial dysfunction and aging. 

The insulin resistance can be measured with a combination of markers that 

represent characteristics of insulin resistance. These include hyperinsulinemia, decreased 

glucose infusion rate, hyperglycemia, impaired glucose tolerance and so on.          .  

2.5.1 Direct Measures 
 
2.5.1.1 Euglycemic Hyperinsulinemic Clamp 

 The euglycemic hyperinsulinemic clamp is regarded as the "gold standard" for 

measuring whole body insulin sensitivity (Muniyappa et al, 2008). It directly measures 

glucose utilization promoted by insulin in the steady state. In this method, insulin is 

infused at a constant rate after an overnight fast to raise blood insulin concentration to 

certain level that is higher than that in the fasting phase, which is the origin of 

‘hyperinsulinemia’. This hyperinsulinemia results in suppression of hepatic glucose 

production and increase of glucose disposal in skeletal muscle and adipose tissue. In the 

meanwhile, 20% dextrose is administered intravenously to maintain euglycemia which is 
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monitored by frequently using glucose analyzed every 5 to10 minutes. Considering that 

there is no net glucose change in the steady state given that the hyperinsulinemia can 

suppress hepatic glucose production completely, the glucose infusion rate (GIR) that is 

needed to maintain euglycemia status would be equal to the glucose disposal rate. 

However, the clamp method is based on assumptions: 1.hyperinsulinemia suppresses 

hepatic glucose production entirely; 2.a steady state condition is achieved at the end of 

the procedure; 3. insulin infusion rate is properly chosen for the target population in 

terms of insulin sensitivity. GIR is usually needed to be normalized for fat-free mass. 

Sometimes GIR is adjusted for the blood glucose concentration in the steady state 

condition, and the difference in insulin concentration between the fasting stage and the 

steady state condition where is formulated as GIR/ (G ×ΔI). This is the insulin index 

derived from clamp.  

The clamp requires blood sample collection, and the procedure per se is very 

complicated and time consuming, which limits its application in large-scale human and 

animal studies.  

2.5.1.2 Insulin-suppression Test (IST) 

  The insulin-suppression test is another method besides the clamp that directly 

measures metabolic insulin sensitivity/resistance. It measures the ability of exogenous 

insulin to drive glucose utilization in peripheral tissues under steady-state circumstance 

provided with complete inhibition of endogenous insulin secretion (Harano et al, 1978). 

In this procedure, patients fasted overnight receive i.v. somatostatin at a constant rate 

(250 μg/h) or the somatostatin analogue octreotide (25 μg bolus, followed by 0.5 μg/min) 

to achieve a full suppression of endogenous secretion of insulin and glucagon. 

Simultaneously, sustained infusions of exogenous insulin (25 mU/m2/min) and glucose 
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(240 mg/m2/min) into the same antecubital vein over 3 h are performed to obtain steady 

states of plasma insulin and plasma glucose. Blood samples from the other forearm are 

collected every 30 minutes for the first 150 minutes and then every 10 minutes for a half 

an hour after initiation of the infusions. The second period is usually considered as the 

steady –state phase. The steady-state plasma glucose (SSPG) concentration and steady-

state plasma insulin (SSPI) concentration are determined at this stage. Considering that 

the universal insulin infusion rate for all subjects would result in generally similar SSPIs, 

insulin sensitivity is inversely related to the SSPG values. The formula calculated in IST 

is ISI (dl · kg–1 · min–1) = [glucose infusion rate (mg kg–1 · min–1)/SSPG (mg/dl)] × 

103. Similar as the clamp, IST is based on several assumptions: 1. somatostatin infusion 

is sufficient to suppress endogenous secretion of insulin and glucagon; and 2.hepatic 

glucose production is completely inhibited.  Although IST  has its advantages over clamp 

such as it is easier to achieve a steady-state condition, less labor intensive, it is still not 

practical in the clinical care setting and large studies. And some errors may be introduced 

in cases like type 2 diabetics and extremely insulin sensitivity individuals.  

In addition to the aforementioned direct measures of insulin sensitivity, two 

indirect measures are presented below. 

2.5.2 Indirect Measures 

2.5.2.1 Minimal Model 

 Minimal model is a mathematical model with 2 coupled differential equations 

and 4 parameters. The first equation represents plasma glucose dynamics and the second 

equation describes insulin dynamics in two separated compartments.  

It allows calculating insulin sensitivity in a dynamic state on the basis of 

concentrations of glucose and insulin collected from a “frequently sampled intravenous 
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glucose tolerance test” (FSIVGTT).  During this 3-hour procedure, a bolus of glucose 

(0.3g/kg body weight) is administered intravenously over 2 minutes in an overnight 

fasted patient at time 0. Blood samples are collected for plasma insulin and glucose 

which are used to generate the index of insulin sensitivity (SI) and glucose effectiveness 

(SG) and obtain information about β-cell function (Bergman et al, 2002). SI is defined as 

fractional glucose disappearance per plasma insulin unit, and SG is the ability of glucose 

to inhibit hepatic glucose production and mediate glucose disposal independent of 

increased insulin. In humans, the peak insulin induced by FSIVGTT overlaps the glucose 

effectiveness period, as well as the inadequate endogenous insulin secretion in diabetics, 

a modified FSIVGTT was developed with infusion of exogenous insulin or tolbutamide 

over 5 minutes at 20 minutes after the glucose bolus (Quon et al, 1994; Saad et al, 1997). 

This minimal model analysis has been demonstrated to be comparable to the 

clamp in healthy subjects (Beard et al, 2007), and has been used in relative large scale 

study (Howard et al, 1996). However, it lumps together insulin’s ability of suppressing 

hepatic glucose production and accelerating glucose disposal, so it is less accurate in 

insulin resistant subjects. 

2.5.2.2 Oral Glucose Tolerance Test/Meal Tolerance Test 

 Being abbreviated as OGTT/MTT, it is a dynamic test to measure glucose 

intolerance and obtain indirect information of insulin sensitivity when combined with 

other assay. The procedure is much simpler and is widely applied in the clinical setting to 

diagnose type 2 diabetes (ADA, 2007) After an overnight fast, blood is drawn for glucose 

and insulin at 0, 30, 60, and 120 minutes preceded by an oral 75 gram glucose load or 

standard meal. It is important to note that, glucose tolerance is a comprehensive outcome 
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involving insulin secretion, other hormones, and insulin sensitivity. It is not equivalent to 

insulin sensitivity. 

Simple surrogate measures of insulin sensitivity have been proposed and assessed 

against the clamp.   

2.5.3 Surrogate Indexes from Fasting Steady State 

2.5.3.1 HOMA Model 

 The homeostatic model assessment (HOMA) uses a set of empirically derived 

nonlinear equations to estimate insulin resistance and beta-cell function from fasting 

glucose and insulin data. The approximation equation yielded from this model to 

determine index of insulin sensitivity is HOMA-IR: Glucose (mmol/l) x Insulin (µU/mL) 

/22.5. The result calculated from this equation has a good linear correlation with results 

from the euglycemic clamp method (Radziuk, 2000) 

2.5.3.2 Quantitative Insulin Sensitivity Check Index (QUICKI)  

 QUICKI is another mathematical equation used to estimate insulin sensitivity 

based on a log transform of the product of the fasting blood glucose and plasma insulin 

concentrations. It was developed upon the discovery that the data from the first 20 

minutes of an FSIVGTT was adequate to generate a reliable index for insulin sensitivity 

as that determined by a reference glucose clamp (Katz et al, 2000). Additional log 

transformation was taken to maintain linear correlation with the clamp in diabetics. 

QUICKI showed better linear correlation with the clamp than the HOMA and minimal 

model methods (Cobelli et al, 1998; Katz et al, 2000). QUICKI, as a simple, accurate 

index of insulin sensitivity as well as one of the most thoroughly evaluated is appropriate 

for large scale studies. 

QUICKI=1/[log(fasting insulin, u U/ml)+log( fasting glucose, mg/dl)] 
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2.5.4 Surrogate Indexes from Dynamic Test 

Based on glucose and insulin data from OGTT, IVGTT, MTT, or OGTT/MTT 

combined minimal model, a number of indexes have been developed, such as the Insulin 

sensitivity index-Matsuda, Avignon index, oral glucose insulin sensitivity index, and Gutt 

index. Many of these indexes correlate well with the glucose clamp estimates of SI (Gutt 

et al , 2008; Mari et al, 2001; Matsuda et al, 1999).  The advantage of the dynamic test 

based surrogates is to be able to get both data about insulin secretion and insulin action at 

same time. However, the decision of choosing fasting surrogates or dynamic surrogates 

depends on research interest. 

ISI(Matsuda) = 10,000/ [(Gfasting x Ifasting) x (GOGTTmean x IOGTTmean)] 

Gutt index= MCR/log MSI = m/MPG/log MSI.  The glucose uptake rate in 

peripheral tissues m = [75,000 mg + (Glucose0 – Glucose120) x 0.19 x BW]/120 min, 

The metabolic clearance rate (MCR) = m/MPG (mean of the glucose concentration at 0 

and 120-min of the OGTT). MSI stands for mean serum insulin (mU/l) is the mean 

plasma insulin concentrations at 0- and 120-min of the OGTT. 

2.5.5 Measures in Animal 

As in human, the euglycemic-hyperinsulinemic clamp is also the ‘gold standard’ 

for measuring whole body insulin sensitivity in animals. However, especially in rodents, 

due to the lack of true physiologic fasting state and a small blood volume, the clamp is 

not easy to conduct. Intraperitoneal glucose tolerance test (IPGTT) and insulin tolerance 

test (ITT) are two frequently used methods of measuring glucose tolerance and insulin 

sensitivity in rodents (Gao et al, 2009). Although they can’t estimate insulin sensitivity as 

precisely as the clamp does, they are still the method of choice when insulin sensitivity is 

of secondary interest or the clamp is infeasible. 

http://ajpendo.physiology.org/cgi/content/full/294/1/E15#R63#R63�
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In animals, HOMR-IR and QUICKI also have been validated by examining 

correlations with the reference glucose clamp method (Cacho et al, 2008; Lee et al, 2008). 

The equation is HOMA-IR: Glucose (mg/dl) x Insulin (µU/mL) /2430. Overall, these two 

surrogates provide a reliable and simple estimate of formal measures of insulin sensitivity 

with variability and discriminant power comparable to the clamp when applied to rats and 

mice (Cacho et al, 2008). 

2.6 Adiponectin 

Aiponectin is a 244- amino acid protein encoded by gene located on chromosome 

3q26 (Ruan et al, 2003). It is produced mainly by white adipose tissue, tracely by brown 

adipose tissue, liver, muscle etc. (Vienngchareun et al, 2002).  Adiponectin is the most 

abundant adipose tissue derived hormone and the average plasma concentration in 

humans ranges from 5~30 ug/ml, about 1000 times more than leptin (Berg et al, 2002). In 

the circulation adiponectin exists in multimers, high-molecular-weight isoform, medium-

molecular-weight hexamers, and low-molecular-weight trimers, among which the high-

molecular-weight is proposed to be more biologically active than other forms 

(Heidemann et al, 2008; Lara-Castro et al, 2006). Adiponectin has a profound insulin 

sensitizing effect as well as anti-inflammatory and antiatherogenic effects. It also 

promotes food intake as the result of action in the hypothalamus (Kubota et al, 2007). 

The plasma adiponectin level is found negatively correlated with visceral adiposity, 

insulin resistance, type 2 diabetes, and cardiovascular disease (Aso et al, 2006; Li et al, 

2009). However, in the growing stage, adiponectin is initially increased with the 

accumulation of adiposity and then begins to decrease as the mice reach adulthood 

(Ziemke et al, 2010). A diet rich in whole grain, consumption of nuts, coffee and 

moderate alcohol ( Mantzoros et al, 2006), peroxisome proliferator-activated receptor 
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agonist (Combs et al, 2002; Tonelli  et al, 2004) and physical training (Bluher et al, 

2006;Bluher et al, 2007) are shown to be associated with an increase of plasma 

adiponectin concentrations. 

Two 7-transmembrane proteins with external C terminal and internal N terminal 

regions have been identified as receptors for adiponectin (Yamauchi et al, 2003). 

Although both receptors are globally present, Adipo R1is highly expressed in muscle 

while Adipo R2 is dominant in the liver. AdipoR1 knockout mice exhibit increased 

adiposity, decreased glucose tolerance, physical activity, and energy expenditure. On the 

contrary, AdipoR2 deficiency resulted in increased physical activity and energy 

expenditure, lowered plasma cholesterol levels, and an enlarged brain size. These mice 

are resistant to HFD-induced obesity and glucose intolerance (Bjursell et al, 2007).  The 

adiponectin concentration in the blood stream is in proportion to the expression of Adipo 

R2 in subcutaneous fat whereas it is negatively related to the expression of Adipo R1/R2 

in muscle; however, in insulin resistance the expression of the receptors in both location 

was increased (Bluher et al, 2006; Bluher et al, 2007).  

Adiponectin mainly signals through AMP-activated protein kinase to exert its 

beneficial effects on the above mentioned diseases after binding to the receptors 

(Yamauchi et al, 2002).  Several other signaling pathways are also proposed as mediators. 

Pathways involved include mTOR, nuclear transcription factor-kB, STAT3, and JNK 

(Averous et al 2006; Miyazaki et al, 2005; Tomas et al, 2002). 

Accumulating evidence supports linkage between altered circulating adiponectin 

and insulin resistance /type 2 diabetes. Lower plasma total adiponectin was not only 

shown associated with increased insulin resistance (Stefan et al, 2002), but also was 

found in type 2 diabeteics compared with BMI- matched controls (Hotta, et al, 2000). In a 
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meta-analysis  including thirteen prospective studies with a total of 14 598 subjects and 

2623 type 2 diabetics, it was observed that adiponectin levels were inversely associated 

with the risk of developing type 2 diabetes. The relative risk of type 2 diabetes for each 

one unit increment of adiponectin was 0.72 indicating a protective role of adiponectin in 

the occurrence of type 2 diabetes (Li et al, 2009). Animal studies also were in accordance 

with observations in humans. Adiponectin knockout mice showed notable insulin 

resistance on a high fat, high sucrose diet; a supplement of adiponectin improved this 

insulin resistance (Maeda et al, 2002). A similar insulin resistance reversal effect was 

reported when physiologic doses of adiponectin were replenished to a lipoatrophic mouse 

model (Yamauchi et al, 2001). 

In most epidemiological studies it is the total immunoreactive adiponectin that was 

assessed rather than the multimeric forms of adiponectin. One study reported that 

although the total adiponectin was significantly related to glucose intolerance, the ratio of 

high molecular weight to total was a tighter indicator in Indo-Asian males (Fisher et al, 

2005). However, contradictory results have shown that total adiponectin was not 

correlated with insulin sensitivity whereas the ratio of high molecular weight to total was 

positively correlated (Pajvani et al, 2004). Lara-Castro et al found total adiponectin, high 

molecular weight, low molecular weight, and high to total ratio were all significantly 

associated with the insulin stimulated glucose disposal rate. Moreover, all these 

indicators were positively correlated with reduced central fat distribution and augmented 

fat oxidation rate. Regarding the lipoprotein profile, high molecular weight and total were 

related to favorable changes. After further analyisis, the authors concluded the quantity of 

high molecular weight was the primary factor for all these relationships (Lara-Castro et al, 

2006).   
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Maternal circulating  adiponectin was also found lower in pregnant women with 

gestational diabetes (Csehet al, 2004; Ranheim et al, 2004;  Kinalski  et al, 2005; Ategbo 

et al, 2006;).  Low plasma adiponectin is also proposed as a risk factor for gestational 

diabetes. Women with adiponectin concentrations less than 6.4 ug/ml at the 13th week of 

gestation had a 4.6-fold increased risk of developing gestational diabetes in later 

pregnancy (Williams et al, 2004). A recently published study explored the distribution of 

adiponectin multimers in gestational diabetes patients (Mazaki-Tovi et al, 2009). The 

results revealed that maternal serum of total, high, medium, low, and high/total were 

decreased in pregnant women with GDM compared to weight matched normal pregnant 

controls. Furthermore, all multimers were not different between obese/overweight GDM 

patients and normal weight GDM patients, albeit the former usually have lower 

concentrations than the latter without the presence of GDM. In addition, interventions 

such as insulin and glyburide displayed no impact on the concentrations and relative 

distribution of adiponectin multimers.  

Patients with coronary heart disease had lower plasma adiponetin levels than age 

and BMI matched controls (Ouchi et al, 1999).  In a case control study conducted in male 

patients, it was shown that an adiponectin concentration less than 4ug/ml was related to a 

2 fold increase of incidences of coronary heart disease and it was independent of other 

risk factors (Kumada et al, 2003).  Additionally, high adiponectin levels were indicated as 

having an inverse association with occurrences of acute myocardial infarction in men 

(Pischon et al, 2004). In cardiac hypertrophy caused by pressure overload in three types 

of mice, adiponectin-deficient, wild-type and diabetic db/db mice, a supplement of 

adiponectin conveyed by adenovirus attenuated the severity of the condition, and the 

inactivation of AMPK blunted these effects (Shibata et al, 2004). Furthermore, 
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adiponectin prevented plaque rapture by increasing both RNA and protein expressions of 

tissues inhibitor of metalloproteinase in macrophages through the promotion of interlukin 

-10 synthesis. Tissue inhibitor metalloproteinase can stabilize plaque by suppressing 

matrix metalloproteinase (Kumada et al, 2004). Adiponectin also inhibited vascular cell 

adhesion molecule1and intracellular adhesion molecule1, thereby prevented monocytes 

from binding to vascular endothelial cells (Ouchi et al, 2000).   Besides, adiponectin 

suppressed smooth muscle cell migration and proliferation in vascular remodeling by 

inhibiting mitogen activated protein kinase (Arita et al, 2002). Adiponectin shows 

protective features on cardiovascular disease as positively correlated with favorable lipid 

profile (high HDL and low apoB100, triglycerides) (Schulze et al, 2005) and facilitating 

endothelial nitric oxide synthesis (Chen et al, 2003). 

2.7 Physiological Role of UCP-1 

2.7.1 Coupling and Uncoupling 

The mitochondrion is a membrane-enclosed organelle in most eukaryotic cells 

(Henze et al, 2003). It is composed of compartments which include an outer membrane, 

inner membrane, intermembrane space, cristae and matrix. The small molecules such as 

glucose and ions are able to permeate the outer membrane freely. However, the inner 

membrane is nearly impermeable to all molecules since it does not contain porins 

(Herrmann et al, 2000). The notable membrane potential across inner membrane is 

established by the electron transport chain. 

Electron transport chain is located in the inner membrane. It contains Complex I, II, 

III and IV. In Complex I (NADH dehydrogenase or NADH: ubiquinone oxidoreductase), 

two electrons are delivered from NADH to ubiquinone (Q) which is a lipid-soluble 

carrier and can diffuse freely in the membrane. Simultaneously, Complex I translocates 



 55

four protons from matrix to intermembrane space across the inner membrane. Complex II 

(Succinate dehydrogenase or succinate-coenzyme Q reductase) is involved in both citric 

acid cycle and the electron transport chain (Oyedotun et al, 2004). It catalyzes succinate 

oxidation to fumarate. The electrons derived from succinate oxidation were transferred to 

an ubiquinone, which reduces the ubiquinone to an ubiquinol (QH2). Complex III 

(coenzyme Q : cytochrome c — oxidoreductase or cytochrome bc1 complex) delivers 

two electrons from QH2 to cytochrome C. Concomitantly, four protons are pumped from 

the mitochondrial matrix into the intermembrane space ( Crofts et al, 2004;Kramer et 

al,2004). Complex IV (cytochrome c oxidase) transfers four electrons from four 

molecules of cytochrome c to oxygen and produces two molecules of H2O. 

Simultaneously, four protons are pumped across inner membrane to intermembrane space.  

With continuously pumping protons from the matrix to the intermembrance space 

by complex I, III and IV, a proton gradient or membrane potential cross the inner 

membrane is formed. This gradient is used by ATP synthase, which also locates in the 

inner membrane, to produce ATP through oxidative phosphorylation. Accumulated 

protons in the intermembrance space return to the matrix through ATP synthase which 

acts similar to an ion channel. Free energy released by the proton reflux fuels the ATP 

synthesis ( Boyer et al, 1997; Yoshida etal, 2001). During the process, the electron 

transport chain is coupling with oxidative phosphorylation via its formed proton gradient.  

In addition to ATP synthase, accumulated protons in the intermembrane space are 

able to return to the matrix through some other ion channels such as uncoupling protein1 

(UCP-1) ( Kozak et al, 1998; Nicholls et al, 1978). The uncoupling process produces lots 

of heat instead of ATP like like a short circuit.  
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2.7.2 Thermogenesis of UCP-1 

UCP-1 (Thermogenin) is highly present in brown adipose tissue which is only 

found in mammals. The main activity of UCP-1 is to generate heat via non-shivering 

thermogenesis, which plays an important role in heat generation of hibernating and 

newborn mammals (Rial et al, 2009). The mitochondrial proton circuit caused by UCP-1 

leads to fast substrate oxidation without ATP production. Fatty acids are the major 

messengers to activate UCP-1, which is inhibited by purine nucleotides.  

Brown adipose tissue (BAT) is scattered in the body such as interscapular, 

surrounding the kidneys and aorta (Mattson et al, 2010). The heat generated by UCP-1 is 

transferred to the body easily since BAT is much vascularized (Smith et al,1964). Cold 

exposure is able to increase vascularization of BAT via stimulating angiogenesis (Asano 

et al,1999). That will increase the heat diffused through the body. 

2.7.3 UCP-1 and Diabetes 

Diabetic rats induced by alloxan injection had significantly decreased UCP-1 

expression (Vasilijevic et al, 2010). A leucine-deficient diet reduced abdominal fat mass 

in mice. That may be mediated by induced expression of UCP-1 in BAT (Cheng  et al, 

2010). IKKepsilon knockout mice are protected from high-fat diet-induced obesity and 

whole-body insulin resistance. These mice show increased energy expenditure and 

thermogenesis via enhanced expression of the UCP-1 (Chiang et al, 2009). 

Recently, substantial depots of BAT were identified in a region extending from the 

anterior neck to the thorax (Cypess et al, 2009). UCP-1 was detected in the BAT. The 

amount of BAT is inversely correlated with body-mass index, especially in older people, 

and age, indicating a potential role of brown adipose tissue in the adult human 

metabolism. 
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2.8 Gut Microbiota and Metabolism 

2.8.1 Normal Human Gut Microbiota 

The human gastro-intestinal tract contains numerous microorganisms, known as 

‘microbiota’, of which bacteria are the most dominant and largely diverse. The gastro-

intestinal tract flora is essential in maintaining normal gut function and host’s health, 

such as forming a physical barrier which is critical in the development of mucosal and 

systemic immune systems and salvaging energy from dietary compound escaping 

digestion in the upper gastro-intestinal tract. Studies using germ free mice have shown a 

lack of gut microbiota made the animal more susceptible to infection, to having reduced 

digestive enzyme activity, and have less serum immunoglobulin levels (Shanahan et al, 

2002). However, the digestive system microbiota also consists of potentially pathogenic 

bacteria.  

The composition of the gut microbiota is so complicated and individualized that 

our understanding was largely limited by technical issues until the 16S ribosomal RNA 

gene based approaches facilitated the process.  There is a growing body of evidence that  

the indigenous gut microbiota is established during the first year of life (Xu et al, 2003; 

Gronlund et al, 1999; Favier et al, 2002; Midtvedt et al, 1992).  In the uterus the gastro-

intestinal system of a fetus is germ free. At birth as the infant is exposed to the bacteria 

from the mother’s vagina, feces, skin and the environment, the intestinal colonization 

commences and progresses dramatically from sterility to broad mixtures of microbes 

(Edwards et  al, 2002; Xu et al, 2003). The colonization is influenced by several factors, 

such as the mode of delivery, diet and environmental hygiene level (Gronlund et al, 1999). 

Cesarean infants have a delayed colonization with Bifidobacterium spp and Lactobacilli 

spp up to 30 days whereas vaginally delivered infants normally start colonization with 



 58

Bifidobacterium spp 3-4 days after birth (Kurokawa et al, 2007). Moreover, cesarean 

infants have a reduced number of bacteria compared with naturally delivered infants 

(Morelli, 2008). Bifidobacterium spp and Enterobacteriaceae are two early colonizers. 

Breast-fed infant digestive tracts are dominated with Bifidobacterium spp, whereas 

Enterobacteriaceae  is prominent in formula-fed infant digestive tracts along with 

Bacteroides spp and the Clostridia spp family (Tannock et al., 1990; Mountzouris et al, 

2002). Besides, the addition of solid food to the breast-fed infant caused a significant 

change in composition of the gut flora; however, it didn’t have the same impact in the 

formula-fed infant (Stark et al, 1982). Gestational age is another factor influencing 

colonization. Studies show premature infants underwent delayed colonization with more 

virulent species (Kosloske et al, 1994; Orrhage et al, 1999). 

During the weaning stage and thereafter, intestinal microflora changes rapidly and 

it takes up to 24 more months for the gut microbiota to complete the transformation to 

adult-type with unique and diverse groups of flora (Zoetendal et al, 1998). After the 

adult-type microbiota is formed, it remains quite constant during a considerable period of 

lifespan (up to 7th decade), with some fluctuation around the core colonies (Ley et al, 

2006). Upon aging, the composition begins to change with a dramatic decrease of 

protective bacteria i.e. Bifidobacterial species and increase of enterobacteria which are 

considered detrimental bacteria (Mitsuoka et al, 1982; Hopkins et al, 2001).  The ratio of 

Firmicutes/Bacteroidetes was also reported increased with age as well as the Bacteroides 

species richness; despite the age-related reduction in the Bacteroides number (Mariat et al, 

2009).  

In the adult, the microbial community residing in the human body outnumbers 

total host cells by ten-fold, and consists of at least 1014 bacteria which belong to up to 
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1000 different species(Cani et al, 2007). The microbiome is about 100 times more than 

the human genome (Kurokawa et al, 2007). Although the microbiota in the gastro-

intestinal tract has large variability between individuals (Eckburg et al, 2005), the 

predominant bacteria divisions are relatively constant, and the majority of the bacterial 

population (>90%) is anaerobes. The dominant bacterial phyla are Firmicutes, 

Bacteroidetes and Actinobacteria (Backhed et al, 2005).  Firmicutes contains over 200 

genera. It is the largest bacterial phylum in the adult human gastro-intestinal tract. 

Species belonging to this phylum include Lactobacillus, Mycoplasma, Bacillus, 

Eubacterium and Clostridium (Zoetendal et al, 2006; Backhed et al, 2005). The 

Bacteroidetes includes about 20 genera among which Bacteroides is potent for digesting 

otherwise indigestible dietary polysaccharides in the distal intestinal habitat of adult 

humans (Xu et al, 2003). Actinobacteria and Firmicutes are gram-positive whereas 

Bacteroidetes is gram-negative; fluorescent in situ hybridization (FISH) rather than RNA 

gene sequencing is currently the only technique to detect Actinobacteria (Zoetendal et al, 

2006).  

As mentioned above, the gut microflora differs remarkably from one person to 

another. Among multiple host and external factors which influence the composition of 

the core microbiota, genetic makeup is the most important determinant. Studies 

demonstrated that identical twins have greater similarity of gut microbiota than those of 

unrelated individuals, even though the twins live separately (Turmbaugh et al, 2009). To 

the opposite, biologically unrelated people who spent life together for a long time didn’t 

show a significant resemblance in the composition of gut bacterial communities 

(Zoetendal et al, 2001). 
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The distribution of the bacterial population is uneven in different parts of the 

gastro-intestinal tract. The large intestine has the largest number of bacteria with an 

average of 1011-1012, and most of them are anaerobes from three prominent divisions in 

human gut. The mouth contains around 1010 microflora with more than 500 bacterial 

species and is the habitat of the second largest population of bacteria (Tlaskalova-

Hogenova et al, 2004). Most of the bacterial species are hindered by the acid digestive 

fluid and pancreatic secretions in the stomach and proximal intestine. There are about 

101-103  bacteria present in the stomach  among which the most common microbe is  

Gram negative Helicobacter pylori(Tlaskalova-Hogenova et al, 2004). 

 

Figure 2.4 The phylogenetic tree of the most frequently detected phylotypes in human 
faeces using 16S rRNA gene sequencing (Vrieze et al, 2010) 
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  It is an opportunistic pathogen and regarded as a contributor to gastric ulcers and 

gastric cancers.  Although the small intestine harbors 104-107 bacteria, which the majority 

is Firmicutes such as Lactobacilli, Bacilli and Gram positive Coci, it is usually 

considered ‘relativly sterile’ due to a number of nonimmune and immune factors such as 

pancreatic juice, constant movement, and secretory immunoglobulin A (Kleinman et al, 

2008). Figure 2.5 visualized the distribution of bacteria in various parts of the gut.  

 

 

 

Figure 2.5   Distribution of microflora in gut (adapt from Tsukumo et al, 2009) 

2. 8. 2 Gut Microbiota and Energy Metabolism 

Type 2 diabetes and Obesity are two metabolic diseases that are becoming 

epidemics not only in developed western countries but also in developing countries.  

Obesity per se is shown to be a causal factor for type 2 diabetes that is evidenced by 

interventional weight reduction and decrease of diabetes incidence in multiple studies 

(Laville et al, 2009; Horton et al, 2010; Fujioka et al, 2010). Numerous studies have shed 

light on the combination of variable environmental and genetic factors as causal factors 
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in the development of these two metabolic diseases.  Excessive energy intakes as well as 

decreases of physical activity are two common external factors. However, within families, 

some individuals are more prone to have diet-induced weight gain and hyperglycemia, 

even though they were exposed to similar nutritional circumstances (Turmbaugh et al, 

2009; Hill et al, 1998; Christakis et al, 2007; Tappy et al, 2007). Such observations 

suggested apart from traditional triggers, other novel factors also are involved.  Over the 

last several years, there is growing evidence of gut microbiota as a potential 

environmental factor in the control of energy homeostasis (Ley et al, 2005; Ley et al, 

2006; Turnbaugh et al, 2006; Backhed et al, 2007).  

2.8.2.1. Evidence of Association between Gut Microbiota and Metabolic Diseases 

A number of studies have revealed the composition of gut microflora changes in 

obesity and diabetes. Larsen et al reported the proportion of Firmicutes was significantly 

lower in diabetics compared to the control group and the reduction in Clostridium ssp 

was the main reason for the decrease. Although, phyla Bacteroidetes and Proteobacteria 

were not observed significantly enriched in the diabetic group, the authors found a 

positive correlation between the ratio of Bacteroidetes to Firmicutes and blood glucose 

(Larsen et al, 2010). Ley and coworkers analyzed 5,088 bacterial gene sequences and 

found variation in gut microbita between obese and lean mice. Obese mice demonstrated 

a reduction in Bacteroidetes at 50% and proportional elevation in Firmicutes compared 

with lean mice (Ley et al, 2005). Similar findings observed in human, obese people tend 

to have fewer Bacteroidetes and more Firmicutes than lean people. Moreover, loss of 

weight after being on a hypocaloric diet resulted in the reversal of microflora in obese to 

that observed in lean (Ley et al, 2006; Tumbaugh et al, 2008). Interestingly, it was the 

number of Bateroidetes not energy intake that correlated with weight loss (Nadal et al, 
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2008). However, not all studies supported the ‘high Firmicutes/low Bacteroidetes’ 

hypothesis (Zhang et al, 2009; Duncan et al, 2008). Duncan et al reported no difference in 

Firmicutes to Bacteroidetes ratio between obese and lean subjects, neither significant 

relationships existing between the ratio and BMI.  Schwiertz and co-workers presented 

similar results. They suggested that the amount of SCFA produced might be important 

rather than the ratio of bacteria (Schwiertz et al, 2010).  

 

Figure 2.6 Proportion of Firmicutes and Bcteroidetes in lean and obese (Tsukumo et al, 
2009) 
 

Studies of germ-free mice and microbiota transplantation further demonstrated 

how gut microbiota affects the energy metabolism. Gordon’s group found that germ-free 

mice had higher energy intake but exhibited 40% lower body weight, 42% less total body 

fat and a 47% reduction of gonadal fat compared with conventional mice with the same 

age and genetic background. Interestingly, after colonized with gut microflora from 
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conventional mice, the germ-free mice gained 60% in body fat along with increased 

insulin resistance within 2 weeks (Backhed et al, 2004). To test whether microflora 

profile is critical in the fat gain, the germ-free mice were transplanted with gut microflora 

from ob/ob mice and lean mice, respectively. They showed that the microbiota from 

ob/ob mice resulted in a greater fat gain than that from lean mice. They also confirmed 

that ob/ob microbiota recipients had higher relative abundance of firmicute than lean 

microbiota recipients (Tumbaugh et al, 2006).  

2.8.2.2. Mechanisms underlying the Association between Gut Microbiota and 
Metabolic Diseases 
 

• Energy Harvesting Theory 

 One of the biological functions of microflora is to digest otherwise indigestible 

dietary compound (polysaccharides), thereby they provide extra energy to the host. The 

different composition of microflora observed in lean and obese provoked a hypothesis 

that the gut bacteria from obese may be more efficient in extracting additional energy 

from the diet.  Backhed and colleagues showed that the microbiota of obese mice had 

more gene encoding enzymes for breaking down polysaccharides and underwent more 

fermentation. There were fewer calories left in the feces of obese mice (Backhed et al, 

2004). However, it still remains unclear if such a small amount of additional energy 

extraction could lead to a sufficient weight gain within a short period of time. Besides, 

non-digestible fiber has been reported to decrease body weight, reduce body fat and 

improve diabetes (Cani et al, 2006; Shen et al, 2009). Therefore, this observation is not in 

accordance with the hypothesis of “increased energy harvesting by bacteria” contributing 

to obesity.  

• Induction of Low Grade Inflammation 

Obesity and type 2 diabetes are characterized by a low grade inflammation 
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 (Wallen et al, 2005). A recent study showed toll like receptor 4 was involved in the 

inflammation response triggered by fatty acid following a high fat diet. A high fat diet 

failed to induce inflammation in toll like receptor 4 knockout mice (Shi et al, 2006). Cani 

and colleagues found toll like receptor 4 was a coreceptor for lipopolysaccharides (LPS) 

and LPS was a potent inducer of inflammation derived from breaking down of gram 

negative bacteria in gut (Cani et al, 2007b). Therefore, they proposed that LPS is a gut 

microbiota related triggering factor for inflammation. They demonstrated that continuous 

low rate infusion of LPS caused weight gain and insulin resistance. The CD14 knockout 

mice, lacking the LPS receptor, did not exhibit the same changes (Cani et al, 2007a). 

CD14, is a glycosylphosphatidylinositol (GPI)-anchored protein expressed by 

macrophages (MΦ) and neutrophils, involved in production of proinflammatory 

cytokines in response to bacterial lysate or purified agonists such as LPS (Sahay et al, 

2009). They also reported that a high fat diet led to a reduction of bifidobacteria, an 

increase of gram negative to gram positive ratio which was associated with a significant 

elevation of LPS in plasma, blunted insulin sensitivity and diabetes (Cani et al, 2007b). 

LPS was found higher in type 2 diabetes patients than age matched non-diabetics (Creely 

et al, 2007). Several studies have indicated that modulation of the gut bacterial population 

could be effective in improving glycemic control and insulin sensitivity. Using gram 

negative targeted antibiotics such as norfloxacin and ampicillin improved whole body 

glucose tolerance and reduced hepatic steatosis/ fatty liver diseases through modification 

of gut microbiota (Membrez et al, 2008). Dietary intervention with preboitics increased 

Bifidobacteria which was negatively correlated with LPS concentration and positively 

correlated with improved glucose tolerance and glucose stimulated insulin secretion in 

high fat induced obese mice (Cani et al, 2007c).  
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• Modulation of Energy Homeostasis through Regulating Host Genes 

 Studies of germ-free mice have indicated the addition of microbiota prompted the 

host to produce glucose and triacyglycerol in the liver. Fasting-induced adipose factor 

(FIAF) was a key modulator involved in this fat storage. FIAF can inhibit lipoprotein 

lipase activity, therefore, when it is suppressed by gut microbiota , the activated 

lipoprotein lipase promotes release of fatty acids and triacyglycerol which are taken up 

by adipose tissue(Backhed et al, 2004). In addition, Backhed and colleagues observed 

that the fatty acid metabolism was increased in germ-free mice. They demonstrated two 

possible mechanisms that 1) elevated FIAF stimulated the synthesis of peroxisome 

proliferator activated receptor gamma coactivator which up-regulates expression of gene 

encoding enzymes in fatty acid oxidation; 2) increased level of AMP-activated protein 

kinase activity which would promote fatty acid oxidation (Backhed et al, 2007). 

Modulation of gut microbiota via specific dietary fibers and subsequent upregulation of 

gut peptide gene expression as well as elevation in plasma is another mechanism 

proposed (Zhou et al, 2006; Zhou et al, 2009;Cani et al, 2006). Gut hormone such as 

GLP-1 and PYY are well documented in favor of weight loss and glycemia control 

(Drab.2010; Horton et al, 2010; Gautier et al, 2008). 
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CHAPTER 3 
 

DIETARY RESISTANT STARCH IMPROVES MATERNAL GLYCEMIC 
CONTROL IN GOTO-KAKIZAKI RAT 

 
3.1 Introduction 

With the explosion of diabetes reaching epidemic proportion, maternal 

hyperglycemia is becoming a health threat to pregnant women worldwide, which consists 

of diabetic pregnant women and those diagnosed with Gestational Diabetes Mellitus 

(GDM). Maternal hyperglycemia increases risks in labor for mothers. Studies also 

showed by contributing to the abnormal fetal environment, maternal hyperglycemia may 

predispose offspring to develop metabolic disorders (Hillier et al, 2007; Boney et al, 

2005). Approaches for treatment of maternal hyperglycemia are limited due to safety 

concerns for the fetus.  

RS are dietary carbohydrates that resist digestion in the small intestine and reach 

the large intestine where they are fermented by bacteria to produce short chain fatty acids. 

We  have shown that feeding resistant starch decreases body fat accumulation in rodents, 

increases gut GLP-1 gene expression  and plasma level,  and improves glucose tolerance 

in STZ-induced diabetic mice (Keenan et al, 2006; Zhou et al, 2006; Zhou et al, 2008). 

However, the effects of dietary resistant starch on maternal hyperglycemia remain 

unknown. In this study, therefore, we measured the impact of RS feeding on improving 

glycemic control in pregnant type 2 diabetes rats-GK rats. Additionally, we focused on 

identification of the primary factors underlying the mechanism involved.  

3.2 Methods and Materials 

 3.2.1 Animals and Diet 

Twenty female Goto-Kakizaki rats aged 5 weeks and weighing 80~100g along 

with 10 age matched female Wistar rats at the beginning of the study, were obtained from 
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Charles River (Wilmington, MA). They were housed individually in hanging wire-mesh 

cages in a temperature-controlled room (22±1 oC) on a 12 h/12 h light/dark cycle with the 

light on at 7am. Rats were acclimated for 1 week to a powdered diet and to the cages. 

Water and assigned diet were available ad libitum during the experiment except as noted. 

The protocols were approved by the Pennington Biomedical Research Institutional 

Animal Care and Use Committee. 

The composition of the two experimental diets used in this study is listed in Table 

3.1. The resistant starch (RS) diet contained 30% (weight/weight) resistant starch (Hi-

Maize® cornstarch; National Starch & Chemical Co., Bridgewater, NJ).  The equal 

energy density control (EC) diet had 100% amylopectin cornstarch (Amioca®; National 

Starch and Chemical Co.) as the carbohydrate source and equal energy density as the RS 

diet (3.3kcal/g) by using non-fermentable cellulose (Dyets, Bethlehem, PA) to dilute the 

energy density.  

3.2.2 Experimental Design 

After one week of acclimation, GK rats were randomly grouped and divided into 

two diet treatment groups, resistant starch and energy control, stratified by their weight. 

Wistar rats served as a genetic control and were fed with energy control diet. The three 

groups of rats were fed their assigned diets throughout the experiment. Food intake and 

body weight were measured three times per week. After they were on the diets for 70 

days, the animals were mated with male Wistar rats by caging two opposite gender rats 

together. Pregnancy was confirmed by the presence of a vaginal plug.  The rats were 

sacrificed via decapitation when pups were weaned. Different fat pads (ovarian fat, 

perirenal fat, and remaining fat in the abdominal area, defined as abdominal fat) were
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Table 3.1. Experimental Diet Composition 

 

 

Ingredients                                Control                                             RS                

                                     grams             kcal                  grams               kcal     

 

100% amylopectin       424.5           1485.8                   0                      0 

High amylose starch                                                                          

60% amylose/                 0                 0                       530.7                 1486 

40%amylopectin 

Sucrose                       100               400                       100                   400 

Casein                         200               716                       200                   716 

Soybean oil                  70               591.5                     70                   591.5 

Cellulose                   156.2                0                         50                       0 

Mineral mix                 35               30.8                       35                    30.8 

Vitamin mix                10                38.7                       10                    38.7 

Choline chloride         1.3                 0                          1.3                     0 

L-cystine                     3.0               12                          3.0                   12 

                            1000 g/kg        3.3kcal/g                 1000 g/kg        3.3kcal /g         
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removed and weighed.  Total body fat used for body fat calculation was the sum of 

ovarian fat, perirenal fat, and abdominal fat.  The gastrointestinal (GI) tract was removed 

weighed after removal of mesenteric fat. Disemboweled weight was calculated by 

subtracting GI weight from body weight.  The weight of cecal contents was determined 

by subtraction of empty cecum weight from full cecum weight. 

3.2.3 Plasma Assays 

Blood was collected and centrifuged at 4000 X g for 20 minutes to extract serum. 

Serum GLP-1 was measured by radioimmunoassay with RIA kits from Linco Research 

Inc. (St. Louis, MO). To make the standard curve for GLP-1, 100 ul of the seven 

standards (10-1000pM) was mixed with 100ul GLP-1 antibody and 400ul assay buffer in 

tubes to incubate overnight at 4 oC. On the second day, 100 ul 125I-Rat GLP-1 was added 

into the mixture and incubated overnight at 4 oC. On day three, 10 ul Rabbit Carrier and 

1.0 cold precipitating reagent were pipetted into the tubes in turn. After following 

incubation and centrifugation, supernatant was decanted from the tubes and radiation 

counts were determined with a gamma counter. The counts were regressed on the GLP-1 

standard concentration to obtain the standard curve. For the sample measurement, the 

same procedure was performed. The GLP-1 concentration in each sample was calculated 

using the standard curve, expressed in pM. Serum insulin was measured using rat ELISA 

kits from Crystal Chem Inc (Downers Grove, Illinois). 

3.2.4 Immunohistochemical Staining and Morphometry 

Pancreases were removed from decapitated rats, weighed and fixed in 10% 

buffered neutral formalin for at least 48hours and embedded in paraffin. Each pancreatic 

block was sectioned serially at 5um throughout the length to avoid any bias. Twelve 
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pancreases were examined as total for three groups. Adjacent sections were obtained one 

in every 20 sections through the specimen and immunostained for insulin by 

immunofluorescent method (Movassat et al, 1997). The sections were deparaffinized and 

rehydrated in xylene substitute and ethanol. Blocking buffer was composed of 10% 

normal goat serum, 0.3% triton X-100 and phosphate-buffered saline. The primary anti-

insulin serum was purchased from Invitrogen Corporation (CA, USA). It was a guinea 

pig anti-porcine insulin serum with1:200 dilutions in PBS. The second antibody was 

Alexa Fluor 488 goat anti-guinea pig immunoglobulin at a concentration of 5 ug/ml 

diluted in PBS, also from aforementioned company. The sections were visualized using 

fluorescence microscopy. Counterstaining with haematoxylin was performed on each 

section to facilitate nuclear identification. Quantitative evaluation was performed using 

nanozoomer digital pathology software (Hamamatsu, Japan). The areas occupied by 

insulin positive cells as well as the area of the total pancreatic cells were analyzed in each 

section. The average percent of beta cells to the total pancreatic area of each section was 

calculated as relative beta cell density.   

3.2.5 Cecal Butyrate Producing Bacterial mRNA Expressions 

• DNA Extraction  

DNA was extracted using a QIAamp DNA Stool Mini kit (QIAGEN, Valencia, 

CA) using the manufacturer's instructions with slight modifications shown below. An 

amount of 180-220 mg cecal contents was weighted in a 2ml microcentrifuge tube and 

placed on ice. Buffer ASL, 1.4ml, was added to each sample and vortexed continuously 

for 1 min. The following steps were performed at room temperature. The suspension was 

heated for 5min at 95 oC, and then frozen in liquid nitrogen. The heat-freeze cycle was 
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repeated three times. After being vortexed for 15s and centrifuged at full speed for 1 min 

to pellet particles, 1.2 ml of supernatant was removed into a new 2ml microcentrifuge 

tube. One inhibitEX tablet was put into each sample and vortexed immediately and 

continuously for 1 min or until the tablet was completely suspended. The suspension was 

then incubated for 1 min at room temperature to allow the inhibitor to absorb the 

inhibitEX matrix. Centrifuging at full speed for 3 min before and after the supernatant 

was removed into a new 1.5 microcentrifuge tube. Proteinase K, 15 ul, was pipeted into a 

new microcentrifuge tube with 200 ul supernatant. After adding 200 ul buffer AL, the 

tube was incubated at 70 oC for 10 min. then the solution in the tube was mixed with 

200ul of 100% ethanol, and the lysate was put into a spin column.  The DNA was washed 

with 500ul buffer AW1 and 500ul buffer AW2 respectively; a one-minute spin at full 

speed was applied after a wash and a 3-minute spin for the last wash. Then the column 

was moved to a 1.5-ml collection tube, and 200 ul of buffer AE was added directly onto 

the fiber matrix. After a 1-minute incubation at room temperature, the cup was spun for 1 

min. For DNA quantification, 1.5 ul of sample DNA was used to detect the optical 

density (OD) at OD260 and OD280 using a nanodrop ND-1000 Spectrophotometer 

(NanoDrop Technologies, Inc. DE, USA).  

• Quantitative Real-time PCR 

The gene transcription for butyrate producing bacteria was determined using the 

SYBR® Green method of quantitative real–time PCR (qRT-PCR) assay, and results were 

expressed as a relative fold change of control. The sequences of the primers for targeted 

bacterial groups are listed in Table 3.2. Real time RT-PCR reaction mixture was 10 ul of 

total volume, including 3 µl of DNA sample, 5µl of 2X SYBR Green Master Mix 
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(Applied Bio systems, Foster City, CA,USA), 0.5 µl of reverse/forward primers at 10 µM, 

0.5 µl of bovine serum albumin (BSA)  (final concentration 2.5 mg/ml), and 0.5 µl of  

nuclease free water. All reactions were performed in sterile MicroAmp® optical 384-well 

reaction plates (Applied Biosystems, Foster City, CA). The reaction condition is 50°C for 

2 min, 95°C for 10 min for one cycle, then 40 cycles of 95°C for 15 s, 60°C for 1 min, 

then 78°C for 30 s. The dissociation step was included to verify specificity through 

analyzing the melting curve of the amplified product. 

3.2.6 Measurement of UCP-1 mRNA Expression 

RNA was extracted from brown adipose tissue using Trizol from Sigma (St. 

Louis, MO). The gene transcription for UCP-1was determined using real-time reverse 

transcriptase polymerase chain reaction, and results were expressed as a ratio to the 

expression of the constitutive gene cyclophilin. The sequence of the primers and probe 

for rat cyclophilin is listed in Table 3.2. The probe and primers for UCP-1  

 (assay identification no. Rn00562126_m1) were purchased from Applied Biosystems 

(Foster City, CA).Real time RT-PCR reaction mixture was 10 ul of total volume, 

including 9ng of sample RNA, 1 ul of 10 X Taqman buffer, 5.5mM MgCl2, dATP, 

dCTP, dUTP and dGTP each 0.3 mM, 500 nM forward primers, 500 nM reverse primers, 

200 nM Taqman probes, 7.5 U RNase inhibitor, 5 U MuLV reverse transcriptase, 0.3 U 

AmpliTaq Gold DNA polymerase and RNase-free H2O. Each sample was tested in 

duplicate. The one-step real-time reverse transcriptase polymerase chain reaction 

condition is 48 oC for 30 min, 95oC for 10 min for one cycle, 95 oC for 15 sec and 60 oC 

for 1 min for 40 cycles. 

 

https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=Rn00562126_m1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=UCP1&kwdropdown=ge&adv_kw_filter1=ALL&species=Rattus+norvegicus&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&uploadType=ID+List&adv_boolean3=AND&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfil�
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Table 3.2 The sequences of primers for real time RT-PCR. F: forward primer, R: 
reverse primer, P: probe. 

 
 
 

 

Gene                                                    Sequence                                                                        

16S universal primers             F - TGSTGCAYGGYYGTCGTCA 

                                                            R -ACGTCRTCCMCNCCTTCCTC  

Bifidobacterium spp                     F –GGGTGGTAATGCCGGATG 

                                                            R- TAAGCCATGGACTTTCACACC  

 Bacteroidetes                               F -GAA GGT CCC CCA CAT TG 

                                                            R- CAA TCG GAG TTC TTC  GTG  
 

Lactobacillus spp                       F -TGG ATG CCT TGG CAC TAG GA 

                                                           R- AAA TCT CCG GAT CAA AGC TTA CTT AT 

 

Clostridial cluster IV                    F- TTA CTG GGT GTA AAG GG  

                                                            R- TAG AGT GCT CTT GCG TA 
 

Clostridium cluster XIV               F- AAA TGA CGG TAC CTG ACT AA  
                                                            R- CTT TGA GTT TCA TTC TTG CGA 

      Cyclophilin                                  F-   5'CCCACCGTGTTCTTCGACAT3'      

                                                           R- 5'TGCAAACAGCTCGAAGCAGA 3' 

                                                           P- 5'CAAGGGCTCGCCATCAGCCG 3'  
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3.2.6 Oral Glucose Tolerance Test 
 

The oral glucose tolerance test was performed in female rats on the 16th day of 

gestation. After an overnight fast, a blood sample was collected for insulin measurement. 

Blood glucose was measured prior and 30, 60, 120 minutes after the administration of 

glucose (2.0 g/kg body weight) with a glucometer (Abbott Laboratories, North Chicago, 

IL). HOMA-IR was calculated to indicate insulin sensitivity. 

  3.2.7 Pancreatic Insulin Content 

Approximately 150mg of pancreas was weighed and placed into 2ml Acid-Ethanol 

solution (75% ethanol, 1.5%HCL 12N, 23.5% distilled water). After an overnight 

incubation at -20 oC, the tissue was homogenized at 4 oC and then underwent another 

overnight incubation at –20°C.  The diluted supernatant was used to determine insulin 

content by ELISA (Crystal Chem Inc., Downers Grove, Illinois, USA). 

3.2.8 Cecal Contents pH and Short Chain Fatty Acid Analysis 

Cecal contents (0.5 gram) was weighed and put into a plastic centrifuge tube with 

4.5 ml of distilled water. The sample was mixed throughly by vortex and pH was 

measured using a pH meter. The sample was centrifuged at 4°C at 8000 RPM for at least 

10 min and filtered through a Millipore syringe filter. The supernatant was transferred to a 

vial and the vial stored at 0OC until short fatty acids were quantitated by gas 

chromatography. 

3.2. 9 Statistical Analysis 

Data are presented as means ±SEM. Statistical analyses were performed using the 

Statistical Analysis System (SAS 9.1).  One way ANOVA and student ttest were used to 
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examine the influence of treatment on all measurements. Subgroup means were compared 

by Tukey’s method.  

3.3 Results  

 3.3.1 Fat Pads Weights 

Compared with GK rats fed the control diet, dietary resistant starch significantly 

decreased fat/disemboweled weight (p<0.05) (Figures 3.1).  

 3.3.2 Insulin Sensitivity and Fasting Glucose Levels 

Dietary resistant starch improved insulin sensitivity in pregnant GK rats as 

indicated by HOMA-IR. Also resistant starch fed pregnant GK rats had lower fasting 

glucose and fasting serum insulin concentrations compared with EC fed GK rats (p<0.05) 

(Figures 3.2). However there was no difference found in ΔAUC between these two 

groups.  

3.3.1 Immunohistochemistry and Pancreatic Insulin Content 

There were fewer islets in the GK groups than in normal Wistar rats; the GK-EC 

rats had the least. RS-GK rats had more pancreatic insulin than EC fed GK rats (p<0.05). 

The beta cell relative densities were 0.758 ±0.064% in Wistar rats, 0.301 ±0.024% in 

GK-EC rats, and 0.56±0.037% in GK-RS rat, respectively (p<0.05). In the GK-EC rats, 

the large islets displayed disrupted configuration, irregular capsules and cells of unevenly 

being stained with the anti-insulin sera. In contrast, islets in Wistar rats were round in 

shape, clearly boundary defined, and homogeneously stained beta cells (Figure 3.3). 

3.3.4 Cecal Content pH and Short Chain Fatty Acids  

The pH values for both cecal contents and feces were lower in RS fed pregnant GK 

rats, whereas the weights of full GI and cecal content were higher in RS fed pregnant GK 
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rats than EC fed GK rats (p<0.05) (Figure 3.4).   Short chain fatty acid concentrations 

including acetate, butyrate and propionate, were elevated in cecal contents of pregnant 

GK rats fed RS (p<0.05) (Figure 3.7). 

3.3.5 Microflora Expressions in Cecum 

The microflora engaged in converting resistant starch to butyrate are Bacteroides 

spp, Bifidobacterium spp, Lactobacillus spp, Clostridial cluster IV and Clostridial cluster 

XIV (Bird et al, 2000; Xu et al, 2003a; Louis et al, 2007b; Louis et al, 2007a; Sato et al, 

2008). The population of bacteria involved in butyrate production in the cecum was 

increased in RS fed pregnant GK rats. Bacteroides, Bifidobacterium, Lactobacillus and 

Clostridial cluster IV population were increased compared with those in EC fed GK rats 

(p<0.05) (Figure 3.5, 3.6).  No significant difference was observed in Clostridial cluster 

XIV.  

3.3.6 Serum GLP-1 Concentration and UCP-1 Gene Expression in BAT 

The total serum GLP-1 concentration was increased in GK rats fed with RS, 

compared with GK rats fed with EC (p<0.05) (Figures 3.8). There was a trend of 

increased mRNA expression of UCP-1 in brown adipose tissue of rats fed with RS 

(p=0.08).  

3.3.7 Food intake and Disemboweled Weight  

There were no statistical differences in food intake between control and RS fed rats. 

This demonstrated no or minimal discomfort with the consumption of resistant starch at 

the levels fed. Because RS fed rats had significantly heavier GI contents, the 

disemboweled body weight was used to exclude GI contents from body weight. There  
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Figure 3.1 Percentages of body fat/ disemboweled body weight in GK rats fed with 
resistant starch or energy control diet. Data are mean ± SEM for group of 10 rats.  * 
P<0.05 vs. EC treated GK rats.  
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Figure 3.2 Fasting glucose concentrations (a), fasting serum insulin levels (b) and 
HOMA-IR (c) measured on the 16th day of gestation in GK rats fed with RS or EC diet 
and Wistar rats fed on EC.  Data are mean ± SEM for group of 10 rats. * P<0.05 vs. EC-
GK.  
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Figure 3.3 Beta cell densities and pancreatic insulin contents in GK rats fed with RS or 
EC diet and Wistar rats fed on EC diet. Data are mean ± SEM. * P<0.05 vs. EC-GK.  
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Figure 3.4 Cecal content pH(a), feces pH values (b), full GI weight (c) and cecal content 
weight (d) in GK rats fed with RS or EC diet and Wistar rats fed on EC diet. Data are 
mean ± SEM for group of 10 rats. * P<0.05 vs. EC-GK.  
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Figure 3.5 Fold changes of Bacteroides spp (a) and Bifidobacterium spp (b) measured 
with RT-PCR in GK rats fed with RS or EC diet.  Data are mean ± SEM for group of 10 
rats. * P<0.05 vs. EC-GK.  
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Figure 3.6 Fold changes of Lactobacillus spp (a), Clostridial cluster IV(b) and Clostridial 
cluster XIV (c) were measured with RT-PCR in GK rats fed with RS or EC diet . Data 
are mean ± SEM for group of 10 rats. * P<0.05 vs. EC-GK.  
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Figure 3.7 Cecum short chain fatty acids concentrations were measured in GK rats fed 
with RS or EC diet and Wistar rats on EC for 18 weeks. Data are mean ± SEM for group 
of 10 rats.  * P<0.05 vs. EC- GK.  
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Figure 3.8 Serum total GLP-1 concentrations in GK rats fed with RS or EC diet and 
Wistar rats on EC diet for 18 weeks. Data are mean ± SEM for group of 10 rats.  * 
P<0.05 vs. EC- GK.  
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Table 3.3 Food intakes and disemboweled body weight  
 
 
Group                Cumulative food intake (g)       Disemboweled body weight (g)                                        

GK-EC              1442.0±36.0                               274±5.1 
GK–RS               1565.6±52.9                               262±6.55 
 
 
GK-EC:  GK rats fed control diet 
GK-RS: GK rats fed resistant starch diet 
Food intake and disemboweled body weight of GK rats fed with RS or EC diet for 18 
weeks. Data are mean ± SEM for group of 10 rats 
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was no significant difference for disemboweled body weight between control and RS fed 

rats (Table 3.3) 

3.4 Discussion 

In this study, we investigated the effects of dietary resistant starch on improving 

maternal hyperglycemia.  Our results demonstrated that dietary resistant starch increases 

insulin sensitivity and pancreatic beta cell mass in pregnant GK rats, a non obesity type 2 

diabetes model featured with reduced beta cell mass and defective insulin response to 

glucose (Portha, 2005; Movassat et al, 1997; Movassat et al, 2007; Movassat et al, 1995). 

Specifically, we measured fat pad changes, fasting insulin and glucose concentration, 

pancreatic insulin content and beta cell density in the pregnant GK rats in the context of 

resistant starch feeding.  To our knowledge, our findings provide the first direct evidence 

that dietary resistant starch alters pancreatic beta cell density in GK rats.   

Feeding resistant starch to pregnant GK rats significantly increased insulin sensitivity.  

The result is consistent with the observation that RS fed rats had reduced fat pads. The 

decreased body fat in RS fed rats is most likely the result of increased energy expenditure. 

Human studies have shown fatty acid oxidation is significantly increased after 

consumption of resistant starch (Higgins et al. 2004). Our previous data also suggested 

dietary resistant starch enhanced energy expenditure in mice (Zhou et al, 2008). It 

increased the expression of POMC in the arcuate nucleus of the hypothalamus in rats 

(Shen et al, 2009) which is critical in promoting energy expenditure (Xu et al, 2006), and 

increased protein expression of adiponectin in white adipose tissue (unpublished data). 

We found the butyrate levels were elevated in the cecal contents of GK rats with the 

feeding of resistant starch. Gao and his coworkers reported that the addition of sodium 
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butyrate in diet led to improved insulin sensitivity, facilitated fatty oxidation and 

increased energy expenditure in mice; it protected mice from diet induced obesity (Gao et 

al, 2009). Different from the butyrate in diet, butyrate from fermentation has local effect 

in the lower gut where butyrate is avidly absorbed by the colonocytes and L-endocrine 

cells to stimulate GLP-1 expression (Zhou et al, 2006). Some butyrate may reach the liver 

to inhibit hepatic lypolysis (unpublished data). However, whether the butyrate from 

fermentation enters systemic blood is still uncertain. Therefore, the effect of the butyrate 

from fermentation may be indirect through the production of gut hormones. GLP-1 is 

reported to increase energy expenditure. Higher fasting plasma GLP-1 levels are 

associated with higher rates of energy expenditure and fat oxidation in human subjects 

(Osaka et al, 2005). It has also been reported that GLP-1 plays a role in postprandial 

energy expenditure and that GLP-1 stimulates POMC neurons in the arcuate nucleus via 

GLP-1 receptors (Ma et al, 2007). We found a trend of increased UCP-1 expression in 

resistant starch fed GK rats, compared with EC fed GK rats, which is in accordance with 

what Aziz et al reported. They observed a high amylose starch diet led to higher insulin 

sensitivity index (QUICKI), and elevated mRNA expression of UCP-1 in diet induced 

obese rats (Aziz et al, 2009). UCP-1 diverts energy from ATP synthesis to thermogenesis 

through which increases energy expenditure (Puigserver et al, 1998).  

Another major finding is that feeding resistant starch significantly increased 

pancreatic insulin content and beta cell density in pregnant GK rats. This result raises an 

interesting question: what causes such changes in resistant starch fed GK rats?  Resistant 

starch potentially has three major effects as a part of the diet: metabolizable energy 

dilution, a bulking effect, and fermentation to produce short-chain fatty acids and 
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increase GLP-1 (Keenan et al. 2006; zhou et al, 2008).  In our study, control and resistant 

starch diets have the same energy density, so the energy dilution effect can be excluded.  

The bulking effect is the prevention of food intake caused by gastrointestinal distension 

(Phillips et al. 2000).  But our results indicated there was no difference in food intake 

between resistant starch fed GK rat and EC fed rats. Thus, the hypothesis most likely for 

the mechanism of increased pancreatic insulin content and beta cell density was narrowed 

down to the fermentation of resistant starch and the subsequent increases of GLP-1.  

Elevated plasma GLP-1 was previously observed before in both normal SD and diet 

induced obese rats fed resistant starch (Shen et al, 2009; Aziz et al, 2009). The GLP-1 

increase is consistent over a 24 hour period in SD rats (Zhou et al, 2008). Gut gene 

expression data from our group also verified that dietary RS dramatically up-regulated 

the expression of the GLP-1 gene in rat cecal cells compared to rats consuming an energy 

control diet (Zhou et al, 2006). 

In order to clarify the process from dietary resistant starch fermentation 

accociated with increased production of GLP-1 in resistant starch fed pregnant GK rats, 

we investigated several important steps in fermentation. Firstly, we measured cecal and 

fecal  pH values, cecal content weight, and found the existence of fermentation 

demonstrated by the decrease of pH values as well as increased cecal content weight in 

resistant starch fed GK rats. Secondly, augmented butyrate producing bacterial 

population was confirmed except for Clostridial cluster XIV which might be due to its 

absolute reduction in type 2 diabetes (Larsen et al, 2010). Third, short chain fatty acids 

including acetate, butyrate and propionate were elevated in resistant starch fed GK rats. 
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Finally, an increase of plasma GLP-1 was indentified. Our previous study has indicated 

butyrate promoted GLP-1 expression in vitro (Zhou et al, 2006).  

The action of GLP-1,   as a potent incretin, includes stimulating proinsulin gene 

expression (Drucker et al, 1987), inhibiting glucagon secretion (Nauck et al, 2002). It 

also mediates glucose-dependent insulin secretion via their receptors expressed on beta 

cell (Drucker, 2006), inhibits gastric acid secretion and delays gastric emptying(Baggio et 

al, 2004), as well as promotes an increase in pancreatic β-cell mass through enhancing 

beta cell proliferation and inhibiting apoptosis (Stoffers et al, 2003;Wang et al, 2002).  

GLP-1 was shown to be able to delay the onset of type 2 diabetes and improve 

pancreatic insulin content and total beta-cell mass in GK rats when applied postnatally 

for 5 days (Tourrel et al, 2002). This hormone was also reported to reduce apoptosis in 

human islets (Farilla et al, 2003). A GLP-1 receptor agonist demonstrated similar effects. 

Extendin-4 not only improved glucose tolerance in diabetic rats via expansion of beta cell 

volume (Xu et al, 1999), but also prevented the development of diabetes in rats exposed 

to intrauterine growth retardation (Stoffers et al, 2003).  Further studies are needed for a 

conclusive determination for the role of increased GLP-1 in dietary resistant starch 

induced improvement on glycemic control in pregnant GK rats.   

 In conclusion, dietary resistant starch improved insulin sensitivity, pancreatic 

insulin content and beta cell density in pregnant GK rats. The increased production of 

GLP-1 resulting from fermentation of resistant starch was linked to the mechanism of 

improved glycemic control in pregnant GK rats.  Our findings provide further evidence 

that resistant starch works as a natural agent to treat maternal hyperglycemia. 

 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16815798#bib104�
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16815798#bib230�
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16815798#bib230�
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CHAPTER 4 
 

FEEDING DIETARY RESISTANT STARCH TO GOTO-KAKIZAKI RAT 
IMPROVES FASTING GLUCOSE IN OFFSPRING 

 
4.1 Introduction 

The observation of adult type 2 diabetics having higher incidence of type 2 

diabetes in mothers than that on the paternal side suggested the role of abnormal fetal 

environment in the development of metabolic disorders (Dorner et al, 1976). Over the 

years, there is a growing body of evidence indicating intrauterine exposure to a 

hyperglycemic environment increased the risk of diabetes and obesity for offspring later 

in their life in addition to genetic transmission (Ezekwe et al, 1980; Kasser et al, 1981; 

Hausman et al, 1982; Pettitt et al, 1991; Waterland et al, 1999; Boney et al, 2005). A 

study also revealed that glycemic control in GDM pregnancies is an effective way to 

prevent impaired glucose tolerance in childhood. Even minimal intervention will make a 

difference (Malcolm et al, 2006). 

RS are dietary carbohydrates that resist digestion in the small intestine and reach 

the large intestine where they are fermented by bacteria to produce short chain fatty acids. 

Previous work from our lab has shown that feeding resistant starch to pregnant GK rats 

improved insulin sensitivity and hyperglycemia. In this study, therefore, we investigated 

the offspring of GK rats that had been fed a RS diet or energy control diet from 6 weeks 

old throughout adult life and pregnancy. All offspring were weaned on a standard chow 

diet. Food intake, insulin sensitivity, pancreatic insulin content and beta cell mass of the 

offspring were determined. 

Due to its ability to resist being broken down completely by digestive enzymes, it 

was reported that dietary resistant starch in the diet was accompanied by gastrointestinal 
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effects including flatus, abdominal discomfort, and diarrhea, which could exert a negative 

impact on gestation and fetal growth (Grabitske et al, 2009).Therefore, pup size, the 

growth curve and fat pad weights were observed to elucidate these possibilities.  

4.2 Methods and Materials 

 4.2.1 Animals and Diet 

Twenty female Goto-Kakizaki rats aged 6 weeks from Charles River (Wilmington, 

MA) were housed individually and fed either the resistant starch diet or energy control 

diet for 10 weeks before they were mated. Ten age -matched female Wistar rats were fed 

the energy control diet.  All animals (GK-EC, GK-RS, and Wistar-EC) were in a 

temperature-controlled room (22±1 oC) on a 12 h/12 h light/dark cycle with the light on 

at 7am with free access to water and assigned diet. The protocols were approved by the 

Pennington Biomedical Research Institutional Animal Care and Use Committee. 

The composition of the two experimental diets used in this study is listed in Table 

3.1. The resistant starch (RS) diet contained 30% (weight/weight) resistant starch (Hi-

Maize® cornstarch; National Starch & Chemical Co., Bridgewater, NJ).  The equal 

energy density control (EC) diet had 100% amylopectin cornstarch (Amioca®; National 

Starch and Chemical Co.) as the carbohydrate source and an equal energy density as the 

RS diet (3.3kcal/g) by using non-fermentable cellulose (Dyets, Bethlehem, PA) to dilute 

the energy density.  

After rats in these three groups delivered, their pups were weighed and litter size 

reduced to 6 pups. Ten pups from each group were randomly chosen and raised to 8 

weeks old on standard chow diet (#5001, Dietlab, USA). Food intake and body weight 

were measured three times a week. Upon being decapitated, different fat pads 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Grabitske%20HA%22%5BAuthor%5D�
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(epididymal fat, perirenal fat, and abdominal fat) were removed and weighed.  Total 

abdominal body fat used for body fat calculation was the sum of epididymal fat, perirenal 

fat, and abdominal fat.  The gastrointestinal (GI) tract was removed and weighed after 

removal of mesenteric fat. Disemboweled weight was calculated by subtracting GI 

weight from body weight.  The weight of the cecal contents was determined by 

subtraction of empty cecum weight from full cecum weight. 

4.2.2 Plasma Assays 

Blood was collected and centrifuged at 4000 X g for 20 minutes to extract serum. 

Serum insulin was measured using rat ELISA kits from Crystal Chem Inc (Downers 

Grove, Illinois). 

4.2.3 Immunohistochemical Staining and Morphometry 

Pancreases were removed from decapitated rats, weighed and fixed in 10% 

buffered neutral formalin for at least 48hours and embedded in paraffin. Each pancreatic 

block was sectioned serially at 5um throughout the length to avoid any bias. Twelve 

pancreases were examined as total for three groups. Adjacent sections were obtained 

with one in every 20 sections through the specimen and immunostained for insulin by 

immunofluorescent method (Movassat et al, 1997). The sections were deparaffinized 

and rehydrated in xylene substitute and ethanol. Blocking buffer was composed of 10% 

normal goat serum, 0.3% triton X-100 and phosphate-buffered saline. The primary anti-

insulin serum was purchased from Invitrogen Corporation (CA, USA). It was a guinea 

pig anti-porcine insulin serum with a 1:200 dilutions in PBS. The second antibody was 

Alexa Fluor 488 goat anti-guinea pig immunoglobulin at aconcentration of 5 ug/ml 

diluted in PBS, also from the aforementioned company. The sections were visualized 
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using fluorescence microscopy. Counterstaining with haematoxylin was performed on 

each section to facilitate nuclear identification. Quantitative evaluation was performed 

using nanozoomer digital pathology software (Hamamatsu, Japan). The area occupied 

by insulin positive cells as well as the area of the total pancreatic cells was analyzed in 

each section. The average percent of beta cells to the total pancreatic area of each 

section was calculated as relative beta cell density.   

4.2.4 Oral Glucose Tolerance Test 
 

An oral glucose tolerance test was performed in pups when they were 56 days old. 

After an overnight fast, a tail vein blood sample was collected for insulin measurement. 

Blood glucose was measured prior and 120 minutes after the administration of glucose 

(2.0 g/kg body weight) with a glucometer (Abbott Laboratories, North Chicago, IL). 

HOMA-IR was calculated to indicate insulin sensitivity. 

     4.2.5 Pancreatic Insulin Content 

Approximately 150mg of pancreas was weighed and placed into 2 ml of Acid-

Ethanol solution (75% ethanol, 1.5%HCL 12N, 23.5% distilled water). After an 

overnight incubation at -20 oC, the tissue was homogenized at 4 oC and then underwent 

another overnight incubation at –20°C.  The diluted supernatant was used to determine 

insulin content by ELISA (Crystal Chem Inc., Downers Grove, Illinois, USA). 

   4.2.6 Cecal Content pH Measurement 

Cecal contents, 0.5 grams, were weighed and put into a plastic centrifuge tube with 

4.5 ml of distilled water. The sample was mixed throughout by vortexing and the pH was 

measured using a pH meter. 
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4.2.7 Statistical Analysis  

Data are presented as means ± SEM. Statistical analyses were performed using the 

Statistical Analysis System (SAS 9.1).  One way ANOVA and student ttest were used to 

examine the influence of treatment on all measurements. Subgroup means were 

compared by Tukey’s method.  

4.3 Results  

 4.3.1 Fat Pads Weights 

There were no significant differences found in percentages of body fat/ body 

weight between pups born to RS fed GK rats and EC fed GK rats (Figures 4.1).  

  4.3.2 Insulin Sensitivity and Fasting Glucose Levels 

Pups born to dietary resistant starch fed GK rats had lower fasting glucose 

compared with offspring from EC fed GK rats (p<0.05) (Figure 4.2). However there was 

no difference found in fasting serum insulin concentration, 2- hour glucose level and 

insulin sensitivity (HOMA-IR) between these two groups.  

 4.3.1 Immunohistochemistry and Pancreatic Insulin Content 

Pancreatic insulin content was increased in pups born to resistant starch fed GK 

rats compared to those born to EC fed GK rats. No significant difference was found in 

beta cell density between offspring from the two groups (Figure 4.3). 

4.3.4 Cecal Content pH  

The pH value for cecal contents was not significantly different between pups born 

to GK rats on the resistant starch or the EC diet.  Offspring from resistant starch fed GK 

rats showed lower weight of cecal contents (p<0.05) (Figure 4.4).  As indicated by cecal 

content weight and pH value, there was no fermentation difference in the cecum between  
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Figure 4.1 Different fat pads (epididymal fat, perirenal fat, and abdominal fat) were 
removed and weighed from pups from GK-RS, GK-EC and Wistar-EC dams.  Total body 
fat used for body fat calculation was the sum of epididymal fat, perirenal fat, and 
abdominal fat.   Data are mean ± SEM for group of 10 rats.   
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Figure 4.2 Fasting glucose and insulin concentrations as well as HOMA-IR were 
measured in 8 weeks old pups from GK-RS, GK-EC and Wistar-EC dams.  Data are 
mean ± SEM for group of 10 rats. * P<0.05 vs. EC-GK.  
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Figure 4.3 Pancreatic insulin contents (left) and Beta cell density (right) were measured 
in 8 weeks old pups born to GK-RS, GK-EC and Wistar-EC dams. Data are mean ± SEM. 
* P<0.05 vs. EC-GK.  
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Figure 4.4 Cecum content pH and cecum content weight were measured in 8 weeks old 
pups born to GK-RS, GK-EC and Wistar-EC dams.  Data are mean ± SEM for group of 
10 rats. * P<0.05 vs. EC-GK.  

 

 

Cecum Content

0

1

2

3

4

5

6

7

Wistar GK-EC GK-RS

w
ei

gh
t(

g)

Cecum pH

6

6.5

7

7.5

8

8.5

9

Wistar GK-EC GK-RS

 P
H

 



 100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.5 Growth curves of pups. No significant difference was detected between 
offspring of GK rats fed resistant starch and EC diet. Data are mean ± SEM for group of 
10 rats.   
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Table 4.1 Food intakes and disemboweled body weights of offspring  
 
 
Group                Cumulative food intake (g)    Body weight (g)                    Litter size                           

GK-EC              630.0±10.3                    268.7±5.9                           8.2±1.4 
GK–RS               596.1±28.6                    268.0±7.3                           9.11±1.6 
 
GK-EC:  Pups born to GK rats fed control diet 
GK-RS: Pups born to GK rats fed resistant starch diet 
There were no significant difference in food intake, body weight and litter size between 
pups born to control and RS fed GK rats. Data are mean ± SEM for group of 10 rats. 
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the two groups, so short chain fatty acids concentrations and microfloral population were 

not measured. 

4.3.5 Food intake and Body Weight  

There were no statistical differences in litter size between pups born to control and 

RS fed GK rats. It demonstrated no or minimal side effect on pregnancy with the 

consumption of resistant starch at the levels in their diet. No significant differences for 

body weight and food intake were found between offspring from control and RS fed GK 

rats (Table 4.1). No significant difference was detected in growth rate between offspring 

of GK rats fed resistant starch and EC diet (Figure 4.5). 

4.4 Discussion 
 

In this study, we investigated the effect of feeding dietary resistant starch to GK 

dams on glucose metabolism of their offspring. We demonstrate that offspring of GK rats 

fed resistant starch had lower fasting glucose levels and increased pancreatic insulin 

content compared with pups from dams fed the EC diet. In addition, we measured birth 

rate and growth of pups born to dams fed on both diets, and found there were no adverse 

effects observed on offspring when feeding resistant starch to dams. 

As we predicted, there was no carry over fermentation that occurred in the hind 

gut of pups born to resistant starch fed GK dams which was evidenced by the similar 

cecal content weight and pH values obtained in both offspring.  Therefore, the 

improvement of fasting glucose was not ascribed to postnatal elevation of short chain 

fatty acids, augmentation of GLP-1 and consequent enhanced insulin sensitivity.  

Moreover, we have shown that insulin sensitivity was not improved in pups of GK dams 

fed on resistant starch.   
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During the last few years, it has been suggested that the experience of 

hyperglycemia may contribute to an endocrine pancreas defect in the offspring (Simmons, 

2006). Although the development of diabetes in GK rats results from both genetic and 

environmental determinants, Gauguier and coworkers (Gauguier et al, 1994) reported that 

offspring of GK females crossed with Wistar males had a more marked hyperglycemia 

than those of Wistar females crossed with GK males, suggesting a role of the intrauterine 

environment. However, not all studies agreed with this conclusion (Abdel-Halim et al., 

1994). Gill-Randall and co-workers developed a rat embryo transfer technique to 

examine the weight of genetic factors and intrauterine hyperglycemia (Gill-Randall et al, 

2004). They showed that Wistar embryos implanted into the uterus of GK mothers were 

more hyperglycemic in adulthood than those tht were reared in Wistar mothers (Gill-

Randall et al, 2004), this clearly illustrating the notion that intrauterine hyperglycemic 

environment is a risk factor for developing hyperglycemia in offspring at adulthood. 

Impaired gene expression and disturbed organogenesis attributed to increased oxidative 

stress (Loeken et al, 2006; Zhao et al, 2005) and reduced angiogenesis induced by 

hyperglycemia (Larger et al, 2004) are potential mechanisms associated with this 

anomaly.  Tight glycemic control before conception and intensive glucose control 

maintained during pregnancy is suggested by ADA in order to reduce the prevalence of 

type 2 diabetes in offspring (American Diabetes Association, 2004).  

In this study, we showed that feeding resistant starch to GK dams resulted in 

lower fasting glucose and enhanced pancreatic insulin content. These favorable effects 

may result from the improvement of maternal hyperglycemia which in turn changes the 



 104

intrauterine environment. Our findings provide evidence to apply resistant starch as an 

intervention in prevention and treatment of diabetes. 
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CHAPTER 5 
 

CONCLUSIONS 
 

The work in this dissertation focuses on the effects of dietary resistant starch 

on glycemic control in pregnant GK rats and the impact passed on to their offspring. 

We measured fat pad changes, fasting insulin and glucose concentration, insulin 

sensitivity, pancreatic insulin content and beta cell mass in the pregnant GK rats in the 

context of resistant starch feeding. We showed that feeding resistant starch 

significantly improved fasting glucose, increased insulin sensitivity and pancreatic 

beta cell mass in pregnant GK rats, a non obesity type 2 diabetes model. We further 

demonstrated that feeding resistant starch to pregnant GK rats decreased fasting 

glucose of their offspring without negative influences on growth and fetus survival 

rate.  

We provide evidence to indicate that dietary resistant starch was able to 

improve pancreatic insulin content and beta cell mass in pregnant GK rats. The 

favorable effects of dietary resistant starch in pancreas islets might partly be through 

the elevation of GLP-1which is stimulated by increased cecal short chain fatty acid 

resulted from promoting gut butyrate producing microbes with resistant starch. Further 

work is needed to for a conclusive determination for the role of increased GLP-1 in 

dietary resistant starch induced improvement on glycemic control in pregnant GK rats.   
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