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Abstract 

Several members of the spotted fever group (SFG) of Rickettsia are transmitted to the 

host through infected ixodid (hard) ticks, which can serve as both vectors and reservoirs. 

Multiple studies have demonstrated that ticks secrete proteins into the bite site of the host that 

suppress innate and adaptive immune responses. While this suppression of immune responses is 

beneficial to the tick, it may also be beneficial to the transmitted Rickettsia. We hypothesize that 

Rickettsia utilize the tick’s ability to alter the host immune response at the tick feeding site to 

successfully establish infection. In the current study, we analyzed how the tick transmission 

influenced the response to Rickettsia infection by comparing the innate immune response 

following intradermal versus tick-inoculation of R. amblyommii in the skin. In particular, we 

analyzed mRNA expression of Toll-like receptor (TLR) and TLR adaptor/effector genes as well 

as proinflammatory cytokines and chemokines. Data was analyzed using One-way ANOVA and 

Newman-Keuls post tests. The results of this study are the first to delineate the 

immunomodulatory milieu associated with rickettsial infection during the natural route of tick 

exposure.
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Chapter 1: Introduction 

Rickettsia is a gram-negative bacterium that causes a variety of diseases, including Rocky 

Mountain spotted fever. The primary vectors for rickettsial transmission are ticks, which act as 

reservoirs and hosts. Infected ticks transmit Rickettsia to humans through their saliva during 

blood meal acquisition. Tick saliva present at the bite site contains multiple proteins that can 

influence innate and adaptive immune responses in the skin. However, the impact of tick 

transmission on the innate and adaptive immune response to Rickettsia infection is unknown. 

The primary cell type that recognizes bacterial infection in skin is the Langerhans cell (LC) a 

type of dendritic cell present in the epidermis of the skin. Immature LCs capture antigen, process 

antigen and then migrate to the draining lymph node to present antigen to T cells. As such, LCs 

act as a bridge between the innate and adaptive immune system. LCs detect bacterial infection by 

recognition of Pathogen-associated molecular patterns (PAMPs), repeated structures expressed 

by microbes and not normally found in vertebrates. These PAMPs are recognized by Pattern-

recognition receptors (PRRs), expressed on LCs which include membrane-bound Toll-like 

receptors (TLRs) as well as cytoplasmic RNA-helicase and NOD proteins. Though bacterial 

recognition by LCs is considered the first line of immune reaction in skin, in-vitro studies have 

shown that some bacteria can suppress the innate immune response to avoid inflammatory 

reaction and early elimination by the host during bacterial infection.  An analogous situation 

occurs during tick feeding, where ticks can feed for extended period of time on the vertebrate 

host without causing any significant immune response. This immune-suppression by ticks may 

influence Rickettsia transmission during tick blood meal feeding. In the present study, we 

analyzed the innate immune response during tick transmission of Rickettsia versus intradermal 
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(ID) inoculation of Rickettsia. Mice were either infested with uninfected ticks, infected ticks or 

injected ID with Rickettsia. Tissues were collected after five to seven days post infection and 

mRNA expression of a number of innate and adaptive immune response genes were measured 

using Real-time PCR. The hypothesis is that Rickettsia utilize the tick’s ability to alter the host 

immune response at the tick feeding site to successfully establish infection. The objective of this 

study was to determine how tick transmission of Rickettsia altered the innate immune response 

compared to direct Rickettsia inoculation.  
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Chapter 2: Literature Review 

2.1: Rickettsia and Rickettsioses 

Rickettsia is a genus of non-motile, rod shaped, gram negative, obligate, intracellular 

bacteria of eukaryotic cells that replicate mainly inside the cytoplasm of endothelial cells. 

Rickettsiae belong to the order Rickettsiales and family Rickettcieae (Raoult and Roux, 1997). 

There are two antigenically defined groups of Rickettsia, Spotted fever group and Typhus group 

associated with human infection.  In nature, rickettsioses are zoonoses and cause human diseases 

in United States and around the world (Baron, 1996), they are entirely arthropod-borne, with 

ticks, mites, lice and fleas being the main vectors. Rickettsia can cause a variety of diseases 

including Rocky Mountain spotted fever (RMSF) caused by R. rickettsii, rickettsial pox caused 

by R. akari, Oriental spotted fever caused by R. japonica, murine typhus caused by R. typhi and 

epidemic typhus caused by R. prowazekii. RMSF can cause certain neurological disorders, 

whereas other rickettsial diseases can result in pulmonary and renal failure, myocarditis and 

gangrene of the fingers, ear lobes, toes and external genitalia. Fatality can occur due to RMSF if 

the disease is not diagnosed at an early stage and if the patient is not treated promptly (Parola et 

al., 2005). 

Ticks are the major vectors of Rickettsia and also serve as reservoirs. Ticks can transmit 

the bacteria during blood meal acquisition or through feces (Raoult and Roux, 1997). With the 

exceptions of epidemic typhus, humans are not mandatory hosts for maintaining the Rickettsia 

life cycle (Azad and Beard, 1998). Transmission from one tick to another can happen 

transovarially (from infected mother to its offspring) or transstadially (maintenance of infection 

throughout different stages of the tick life cycle) (Fig. 1). Rickettsia sp. remains in a dormant 
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stage in tick host and are activated during blood meal feeding. While feeding, the bacteria are 

transmitted to the vertebrate host through tick saliva and infect the endothelium lining the small 

blood vessel (Murray et al., 2005) 

 

Fig. 1 Life cycle of Ixodid ticks. Taken from 

http://www.entm.purdue.edu/publichealth/print/insects/tick.html 

 

2.2: Rickettsial Pathogenesis and Host Defense Mechanism against Rickettsial Infection 

Vertebrate hosts are infected with Rickettsia sp. entirely through tick bite. The clinical 

pathogenesis caused by Rickettsia sp. is purely from the disseminated infection and damage to 

the endothelial cells, which are the primary cell type infected. Rickettsia sp. replicates inside 
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endothelial cells and induces oxidative stress (Valbuena et al., 2002; Walker and Ismail, 2008). 

Rickettsial inoculation in skin through tick saliva can take two possible pathways to infection, 

and the severity of pathogenesis depends on which pathway is followed. Specifically, Rickettsia 

can either migrate directly to the capillaries and to lymphatic circulation or can migrate to the 

subcutaneous area of the skin. The former pathway leads to rapid dissemination of Rickettsia. 

The latter pathway activates the innate immune response via recognition of Rickettsia by 

Langerhans cell (LCs). Rickettsial infection also activates the endothelial cells which in turn 

induce the secretion of pro-inflammatory cytokines, chemokines, and adhesion molecules, 

suggesting that endothelial cells are associated with activation of the innate immune response 

(Valbuena et al., 2002). The primary cells acting against the rickettsial infection are natural killer 

cells, which produce interferon-gamma (IFN-γ). Tumor-necrosis factor alpha (TNF-α) and IFN-γ 

are the primary cytokines responsible for bacterial clearance and protecting the host against 

infection (Valbuena et al., 2002; Walker and Ismail, 2008).  

The initiation of innate immune response to Rickettsia infection in the skin has not been 

extensively studied. There are many innate immune response molecules that are important during 

bacterial infection, and for recognition and response of host cells to infection. This includes 

several pattern recognition receptors (For example, TLRs, peptidoglycan receptor proteins or 

PGLYRPs, triggering receptor present on myeloid cells or TREM-1) and response molecules like 

Pro-platelet basic protein (Ppbp), heme-oxygenase-1(Hmox-1), interleukin-1beta (IL-1β), 

Caspase-1 (Casp-1), and Interleukin-6 (IL-6), which induce an array of immune response 

reactions protecting against bacterial infection. The main objective of the research project was to 

study the influence of tick transmission on the host response to rickettsial infection. 
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2.3: Role of Langerhans Cells in Immunity: Bridge between Innate and Adaptive 

Immunity: 

 

Fig. 2 Link between Innate and Adaptive Immunity. 

Taken from http://research.dfci.harvard.edu/innate/innate.html 

 
As a primary defense organ, skin represents a physical barrier between the environment 

and the body. The components in the skin that contribute to the immune response are collectively 

termed as Skin Associated Lymphoid Tissue (SALT) (Schwarz, 2003). Within the epidermal 

layer of skin, reside LCs, a subtype of dendritic cells (DC). LCs are characterized by the 

presence of Birbeck granules in their cytoplasm and presence of CD1a molecules. Langerin 

(CD207), which is a trans-membrane type-II C-type lectin, acts as a marker for LCs and DCs. 

Langerin can translocate lipids from bacterial cell wall to the Birbeck granules inside the cell 

(Valladeau et al., 2000; Koch et al., 2006). DCs detect components of different pathogens 
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through specialized cell surface receptors, PRRs or by macropinocytosis (Nakagawa and Bos, 

2001), process the bacterial components and then migrate to T cell zones in the draining lymph 

node to activate the naïve T cells. The activation of T cells occurs through antigen presentation 

by major histocompatibility complex I and II on T cells (MHCI and MHCII) on DCs to T cell 

receptors on T cells as well as stimulation of CD80 and CD86 expressed on APCs (Fig. 2) (Moll, 

2004).  

Despite their role in pathogen recognition, LCs appear to have only poor recognition of 

invading bacteria in the skin. In vitro studies showed that LCs responded weakly to bacterial 

peptidoglycan (PGN) and do not respond to lipopolysaccharide (LPS) (Takeuchi et al., 2003). 

When LCs were challenged with LPS, and lipoteichoic acid were unable to up-regulate the 

maturation markers like CD86 and CD83 (van der Aar et al., 2007). In addition to poor 

responsiveness to bacterial product, some bacteria can suppress the maturation of DCs. For 

example, Mycobacterium leprae can suppress DC maturation/activation in vitro (Murray et al., 

2007). 

2.4: Pattern Recognition Receptors (PRRs) Involved in Pathogen Recognition and 

Inflammation 

A plethora of immune responses are generated in response to microbial infection, all 

intended to eliminate the invading microbe (Figure. 3). Innate immunity to bacterial infection 

mainly relies on the recognition of PAMPs by PRRs (Kumagai et al., 2008). These PRRs can be 

classified into four groups: (i) TLRs, for example, TLR2, TLR4, TLR9 (ii) C-type lectin 

receptors (CLRs) for example, TREM-1, C-type lectin domain family 7, member A or CLEC7A 

(iii) NLRs (NOD [nucleotide binding and oligomerization domain]-like receptors and (iv) RLRs 
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(RIG-I [retinoic acid-inducible gene-1]-like receptors) (Palsson-McDermott and O'Neill, 2007); 

(Kumagai et al., 2008). Recognition of PAMPs by PRRs can activate several downstream 

signaling cascades and ultimately alter gene expression (Palsson-McDermott and O'Neill, 2007) 

to induce production of antimicrobials (Fig. 3). 

 

 

 

 

 

Fig. 3 Different PRRs, Their Signaling Molecules and Adaptor Molecules. Taken from 

Palsson-McDermott and O’Neill, 2007 

2.4.1: Toll-like Receptors and Their Role in Innate Immunity 

Toll-like receptors are one of the major PRR families of the innate immune system. Toll 

protein was first discovered in the fruit fly, Drosophila (Krutzik et al., 2001). Initial studies 

demonstrated a role for Toll in dorsal-ventral polarity in Drosophila, however later studies 

indicated that Toll contributes to anti-fungal immunity. Further studies identified 13 murine and 

10 human “toll-like” receptors (Kumagai et al., 2008) and each TLR recognizes a specific 

bacterial or viral component. Structurally, TLRs are Type I trans-membrane proteins with the 

cytoplasmic portion very similar to IL-1 receptor, called the Toll-IL-IR or TIR domain. The 
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extracellular portion contains leucin-rich repeats (LRR) and differs from the IL-1R (Akira, 

2001).  

The LRR portion on TLRs recognizes PAMPs while the cytoplasmic portion is 

responsible for transducing the signal and activating transcription factor NF-κB, which 

ultimately leads to the induction of an array of pro-inflammatory genes (Shimazu et al., 1999). 

The LRR of different TLRs recognize different PAMPs. For example, TLR4 recognizes 

lipopolysaccharide (LPS) from Gram-negative bacteria, TLR9 recognizes unmethylated DNA 

containing repeated CG motifs, and TLR2 recognizes bacterial peptidoglycan (Pasare and 

Medzhitov, 2004; Lebre et al., 2007; van der Aar et al., 2007). 

 

Fig. 4 Toll-like Receptors and Their Signaling Pathway. Taken from Takeda and Akira,  

2004. 
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Once TLRs recognize microbial components, they induce signals to activate other 

intracellular proteins including transcription factor NF-κB (Fig. 4). This signaling induces the 

up-regulation of molecules necessary for the maturation of the DCs (Pasare and Medzhitov, 

2004). Microbial recognition by TLRs also induces DCs to produce co-stimulatory molecules 

like CD40 and cytokines and chemokines, for example, LPS or CpG DNA recognition and 

subsequent signaling can induce DCs to secrete IL-12. 

TLR Signaling Pathway:  

TLRs recognize different pathogens through their LRR domain, signal through the TIR 

domain and recruit downstream regulatory adaptor molecules to initiate signaling (Fig. 5). TLR 

initiate signaling through either the MyD88-dependent or MyD88-independent pathways (Muzio 

and Mantovani, 2001).  

 

Fig. 5 Toll-like Receptor Signaling; Taken from Roses et al, 2008 



 

11 

 

 

Fig. 6 Recognition of LPS via TLR4 and Activation of Both MyD88-dependent and 

Independent Pathway. Taken from Vogel et al, 2003. 

TLR4 utilizes another pathway which is MyD88-independent and occurs through another 

adaptor molecule called TIR-containing adaptor protein (TIRAP) (Horng et al., 2001). TL4 can 

utilize both MYD88-dependent and independent pathway (Fig. 6) and the induction of MYD88-

independent pathway by TLR4 leads to the secretion of IFN-β (Bagchi et al., 2007). A third 

adaptor molecule is also involved in the toll signaling called TIR domain-containing adaptor 

inducing IFN- β or TRIF. TLR3 can only utilize MYD88-independent pathway via TRIF and 

leads to the secretion of IFN-β, TNF- and IL-6 (Yamamoto et al., 2003; Bagchi et al., 2007). 
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Recognition of Bacterial Lipopolysaccharide by TLR4: 

Gram-negative bacteria contain LPS as an outer membrane component and can cause 

endotoxic shock. The main component responsible for the biological activity of LPS is lipid A 

(Akira, 2001). Recognition of LPS in mainly mediated by TLR4, LPS- binding protein, CD14, 

and MD2 (Schnare et al., 2000; Miyake, 2007) and initiates signaling at the cell membrane 

(Ahmad-Nejad et al., 2002). Recognition of LPS via TLR4 complex induces oligomerization of 

TLR4, leading to further activation of downstream regulatory molecules.  

LPS bound to the bacterial cell wall has poor immunogenicity. Instead, LPS released 

from the bacterial membrane binds lipid-binding protein (LBP), an acute phase protein, and acts 

like a shuttle protein (Miyake, 2007) and helps bring the LPS to macrophages. LBP can be either 

soluble or plasma membrane-bound (Fig. 7) (Miyake, 2007). LBP forms a complex with another 

host protein called CD14 (Dauphinee and Karsan, 2006). Certain types of bacterial LPS, i.e the 

smooth-form of LPS from the bacteria Enterobactriaceae, accessory molecule CD14 is required 

(Freudenberg et al, 2008) to transfer the LPS from LBP to TLR4. Other type of LPS do not 

require CD14 for delivery of LPS to TLR/MD2 complex (Dauphinee and Karsan, 2006). 

TLR4 alone is not enough to initiate recognition to bacterial LPS; it requires another 

indispensible co-stimulatory molecule called Myeloid Differentiating factor 2 (MD2). MD2 is 

attached physically to the extracellular domain of TLR4 on the cell surface (Akira, 2001) 

together with TLR4, recognizes a variety of Gram-negative bacteria. Without CD14 or LBP, 

binding of LPS to the TLR4/MD2 complex is poor. MD2 regulates both LPS binding to TLR4 

and TLR4 clustering (Miyake, 2007). TLR4 activation may lead to activation of both MyD88 
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dependent or MyD88-independent pathway and subsequently activation of NF-κB (Dauphinee 

and Karsan, 2006).     

 

Fig. 7 LPS Recognition through TLR4 and the MYD88-dependent Pathway of TLR 

Signaling. Taken from Villar et al, 2004 

Recognition of LPS and PGN by TLR2:   

TLR2 is present on the cell surface of many immune cells, like monocytes, macrophages, 

and dendritic cells (Royet and Dziarski, 2007). TLR2 can recognize various bacterial cell wall 

components, prominent among which are lipopeptides (LP), lipoteichoic acid, PGN and LPS. 

TLR2 is unique among the TLRs in the sense that it signals as a heterodimer in association with 

either TLR1 or TLR6 (Buwitt-Beckmann et al., 2006). Unlike TLR4, which recognizes only the 

LPS monomer, TLR2 can recognize LPS when LPS is present only in large amounts. Like 

TLR4, TLR2 also needs CD14 to initiate signaling after recognition of the PAMPs (Wetzler, 

2003).  
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Recognition of Bacterial CpG DNA by TLR9:   

Bacterial DNA has strong immunostimulatory effect and is able to stimulate 

proinflammatory cytokines. Bacterial DNA and vertebrate DNA differ highly in their CpG DNA 

content (CG island is a short stretch of DNA where "p" simply indicates that "C" and "G" are 

connected by a phosphodiester bond). In vertebrates, CpG motifs are flanked by two purines on 

the 5' and two pyrimidines on the 3' end. Another important difference is that vertebrate DNA is 

mostly methylated, whereas bacterial CpG DNA is unmethylated. The unmethylated CpG DNA 

motifs in the bacterial DNA act as PAMPs and are recognized by TLR9. The immunostimulatory 

activity of CpG DNA can activate the antigen presenting cells like dendritic cells, B cells and 

macrophages via MYD88-dependent signaling pathway (Schnare et al., 2000; Krieg, 2002). 

Unlike TLR2 and TLR4, TLR9 signaling is not dependent on CD14. Another difference between 

TLR2 and 4, and TLR9 is that TLR9 initiates signaling in the endosomal compartments only 

after endocytosis of CpG DNA (Ahmad-Nejad et al., 2002).  

Negative Regulation of TLR Mediated Signaling by TOLLIP:  

While TLRs are essential in controlling pathogen infection, the immune response also 

maintains a negative control to avoid any unnecessary reaction. TOLLIP is a small regulatory 

adaptor molecule in the TOLL pathway thought to regulate the TLR pathway by binding or 

interacting with the TIR domain of TLR2 and TLR4 (Wetzler, 2003; Didierlaurent et al., 2006). 

Tollip can also bind to IRAK1 and suppress the kinase activity. TOLLIP is constitutively 

expressed in unstimulated immune cells (Didierlaurent et al., 2006).  
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2.4.2: Peptidoglycan Recognition by Peptidoglycan Receptor Proteins (PGLYRPs) 

Peptidoglycan is a key component of almost all bacteria, but not eukaryotic cells. Thus, 

peptidoglycan serves as a good target for pattern recognition (Dziarski and Gupta, 2006). The 

recognition of PGN is mediated by a receptor molecule called peptidoglycan receptor protein or 

PGRP (Liu et al., 2001), which is a PAMP recognition molecule and therefore belongs to the 

pattern recognition receptor family. PGRPs were first discovered in insects and later found in 

mammals. Initially the four forms of Peptidoglycan receptor protein were termed PGRP-S for 

‘short’, PGRP-L for ‘long’, PGRP-1α and PGRP-1β for ‘intermediate’. However, the names 

were recently changed to Peptidoglycan Recognition Protein 1, 2, 3 and 4 (PGLYRP1, 

PGLYRP2, PGLYRP3 and PGLYRP4) respectively for mouse and humans (Dziarski and Gupta, 

2006; Lu et al., 2006). PGLYRPs kill bacteria by preventing cell wall peptidoglycan synthesis 

and by binding to the peptidoglycan precursor molecules (Dziarski and Gupta, 2006). 

PGLYRP1, PGLYRP3 and PGLYRP4 are constitutively expressed in areas that are always in 

contact with the environment including skin, oral epithelial cells, mucous membrane, and eyes, 

where they act as effective bactericides. PGLYRP1 is a soluble protein, present in bone marrow 

and almost exclusively expressed in the granules of polymorphonuclear leukocytes. PGLYRP2 is 

expressed in intestinal follicle-associated epithelial cells and is also constitutively expressed in 

liver where it is secreted from the liver in to the blood stream. It cleaves the stem peptide from 

the glycan chain of peptidoglycan (Lu et al., 2006). The expression of PGLYRP3 and PGLYRP4 

in skin and oral epithelial cells increases in response to bacterial infection. The activation of 

PGLYRP3 and PGLYRP4 are thought to be mediated via TLR2, TLR4, Nod1, and Nod2 (Fig. 8) 

(Dziarski and Gupta, 2006). 



 

16 

 

 

Fig. 8 Recognition of Peptidoglycan. Taken from Royet & Dziarski, 2007 

2.4.3: Triggering Receptor Present on Myeloid cells (TREM-1) as a PRR in Bacterial 

Infection  

TREM-1, is a C-type lectin protein, is a member of the immunoglobulin super-family and 

is exclusively expressed on blood neutrophils and monocytes. Once bound to its ligands, i.e LPS 

or lipoteichoic acid, the intra-cellular domain of TREM-1 associates with the signal transduction 

molecule DAP-12, which is a TYRO protein tyrosine kinase binding protein. Monocytes and 

neutrophils up-regulate TREM-1 upon stimulation with LPS, heat-killed Gram-negative bacteria, 

Gram-positive bacteria, or fungi (Bouchon et al., 2000). LPS stimulation leads to TREM-1 

mediated degranulation of neutrophils and induces secretion of several inflammatory chemokines 
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and cytokines, including IL8, TNF-α and MCP-1, as well as up-regulate expression of adhesion                                                              

molecules. TREM-1 is activated on cells stimulated via TLR ligands and TREM-1 silencing 

leads to the attenuation of the adaptor proteins MyD88, CD14 and IL-1β (Ornatowska et al., 

2007), suggesting a role for TREM-1 in regulating TLR signaling. 

2.4.4: Clec7a, Another PRR of Innate Immune System Recognizes Bacterial Component  

Clec7a is a C-type lectin PRR expressed by several antigen presenting cells, including 

monocytes, macrophages and dendritic cells. Clec7a acts as an antigen binding molecule for 

APCs. Clec7a acts a receptor for carbohydrates in the bacterial cell wall in a calcium dependent 

manner, where the binding of carbohydrate is mediated by a conserved Ca
2+

 (Willcocks et al., 

2006). 

2.5: Recognition of Bacterial Components by PRRs Leads to Inflammatory Response 

Which Is Mediated by a Variety of Soluble Factors 

2.5.1: TLR Activation Leads to the Activation of Caspase-1 and Subsequent Production of 

IL-1β  

Activation of TLR2 and TLR4 leads to the activation of NF-κB and also activates a pro-

apoptotic signal leading to cell death (Ruckdeschel et al, 2004). MyD88 contains a death domain 

(DD) and associates with Fas-associated death domain protein (FADD) to signal through NF-κB 

and activate the downstream apoptotic pathway. FADD can bind cytoplasmic cysteine protease 

Caspase-8 and initiate apoptosis. Caspase-1, a cysteine protease, also called IL-1β- converting 

enzyme (ICE) is constitutively synthesized as a 45-kDa pro-enzyme called pro-caspase-1. Pro-

caspase-1 undergoes proteolytic cleavage to produce the mature enzyme, which takes place upon 

assembly of the “inflammosome” (Johansen et al., 2007), the caspase-activating complex 

(Martinon et al., 2002). Caspase-1 plays an important role in apoptosis and as well as in 
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inflammation. TLR2 and TLR4 also activate Caspase-1 and helps in cell death by apoptosis and 

by releasing IL-1β from dying cells (Aliprantis et al., 2000). In monocytic and endothelial cells, 

LPS binds to LBP, transfer to the TLR4 via soluble CD14 molecule and induce the production of 

caspase-1, which in turn augments the synthesis of IL-1β gene and release of mature IL-1β 

(Schumann et al., 1998).  

 

Fig. 9 Toll-like receptor, IL-1β and Caspase-1 Signaling. Taken from Sanchez-Alavez and 

Bartfai, 2007 

IL-1β acts against various invading pathogens and helps in host defense (Johansen et al., 

2007). In LPS-induced inflammation, IL-1β is a key molecule, secreted by cells of hematopoietic 

lineage (Brough and Rothwell, 2007). The cytoplasmic inactive precursor of IL-1β is secreted as 

a 31-kDa protein, lacking the secretion sequence. Activated Caspase-1 is responsible for the 

mature IL-1β processing by a single proteolytic cleavage. The mature, pro-inflammatory form of 

IL-1β is then secreted from the cells in response to pathogen interaction (Aliprantis et al., 2000). 
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As IL-1β is only found in the inflammatory cells just prior to release, it has been proposed that 

processing and release of IL-1β must be tightly linked (Fig. 9) (Brough and Rothwell, 2007).    

2.5.2: During Inflammation Activated Platelets Can Produce Antimicrobial Peptides Like 

PPBP Which Can Kill Invading Microbes and Protect the Host Cell 

The skin is an effective barrier to protect hosts against the outside environment and 

pathogen attack. Both resident and infiltrating immune cells can secrete antimicrobial proteins, 

which help in clearing bacterial and fungal infection. Platelets can play an important role in 

microbial defense, as bacteria-platelet interaction activates platelets and induces secretion of an 

array of anti-microbial peptides (Fitzgerald et al., 2006), commonly called platelet microbicidal 

proteins (PMPs) (Mercier et al., 2000). Microbes induce platelets to release PMPs (Mercier et al, 

2000). Pro-platelet basic proteins (PPBP) are the major granular proteins in platelets and also the 

members of CXC chemokine family. Platelet basic protein (PBP), a derivative of PPBP, is a 

small ~14 KD protein that can give rise to several other derivatives, such as neutrophil-activating 

peptide-2 (NAPII), connective tissue-activating peptide-III (CTAPIII), thrombocidin 1 and 2 

(TC1 and TC2), after post-translational modifications. Many of the derivatives of PPBP belong 

to the cationic anti-microbial peptide (CAMPs) family and can kill bacteria and fungi (El-

Gedaily et al., 2004). 

2.5.3: Role of Heme Oxygenase-1(HMOX-1/HO-1) 

Heme oxygenase is a rate limiting enzyme that catalyses the degradation of heme to 

produce biliverdin, which is subsequently modified to bilirubin (Rydkina et al., 2002; Rushworth 

et al., 2005). Several stimuli, such as bacterial LPS and pro-inflammatory cytokines, can induce 

the production of HMOX-1. For example, rickettsial infection of cells causes oxidative damage 
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leading to the production of HMOX-1 as an anti-oxidative defense mechanism. Hmox-1 provides 

cytoprotective effects to the injured cells through the production of bilirubin, which is an 

important antioxidant (Rushworth et al., 2005).  

2.5.4: IL-6 Is a Key Molecule During Acute Inflammation and Acts as “Immunological 

Switch” between Innate and Adaptive Immunity

 
IL-6 is a pleotropic cytokine that performs various functions during acute inflammation 

and is elevated during inflammatory response (Gabay, 2006). IL-6 plays a dual role as both a 

pro- and anti-inflammatory cytokine during pathogen interaction (Dube et al., 2004). During 

chronic inflammation, IL-6 acts mostly as a pro- inflammatory cytokine (Gabay, 2006). It has 

been suggested that multiple aspects of IL-6 activity are required for the transition between 

innate and adaptive immunity (Fig. 10). IL-6 also acts as a switching molecule between acute 

and chronic inflammation by influencing the major cell type at the site of inflammation. 

Neutrophils are the major inflammatory cells during acute microbial infection and secrete 

various oxygen metabolites and active enzymes to help in destroying the infected cells and 

protecting the surrounding cells against injury. These secretory molecules can be toxic to the 

surrounding cells if they are secreted for a prolonged duration. To protect the surrounding cells 

and tissues from such damage, IL-6 promote apoptosis of the neutrophils and recruits 

macrophages, which subsequently phagocytose the apoptotic neutrophils and replace the cell 

population with inflammatory macrophages (Gabay, 2006). Thus, IL-6 removes the early 

neutrophil population from the site of inflammation and replaces it with a sustained monocytic 

response (Dube et al., 2004; Jones, 2005; Gabay, 2006). Additionally, IL-6 contributes to B-cell 

differentiation, immunoglobulin secretion, and T-cell activation (Dube et al., 2004; Gabay, 
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2006). During intracellular infection of Listeria monocytogenes and Mycobacterium 

tuberculosis, IL-6 plays a protective role (Dube et al., 2004). 

Fig. 10 Possible Role Played by IL-6 in the Shift from Acute to Chronic Inflammation: 

Taken from Gabay, 2006. 
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2.6: Interferon-gamma Receptor1 (IFN-γR1) Is Another Membrane Receptor Which Binds 

to IFN-γ and Elicits Immune Response Against Invading Pathogen  

IFN-γ is a type II interferon that drives the immune response towards the Th1 pathway. It 

is produced by T lymphocytes and natural-killer cells. It can also increase the expression of 

Major histo-compatibility complex I and II (MHC-I and MHC-II) on several cells, including 

mononuclear phagocytes, endothelial cells and epithelial cells. IFN-γ also induces the 

differentiation of immature myeloid precursors into mature monocytes and regulates 

immunoglobulin class switching on B cells (Farrar and Schreiber, 1993). IFN-γ binds to its 

receptors IFN-γR1 (the ligand-binding chain) and IFN-γR2 (the signal-transducing chain). 

Binding of IFN-γ to IFN receptors activates the JAK-STAT signaling pathway. IFN-γR1 is 

expressed on several cell surfaces like macrophages, monocytes, T cells, B cells, NK-cells and 

endothelial cells. It has been shown that various pathogens can modulate the effect of IFN-γ by 

down-regulating the expression of IFN-γR1 (Singhal et al., 2007; Glosli et al., 2008). The 

activation of IFN-γR1 makes it more sensitive to IFN-γ, so less IFN-γ is required to elicit the 

necessary immune response. Up-regulation of IFN-γR1 occurs due to TLR-Chlamydia 

interaction (Shirey et al., 2006), suggesting that pathogen interaction with TLRs can further 

modulate the expression of IFN-γR1 and subsequent binding of IFN-γ. 

2.7: Host’s Response to Tick Infestation 

The innate immune reaction to a tick bite results in the infiltration of mononuclear cells, 

basophils, and eosinophils in guinepigs and predominant infiltration of neutrophils in dogs 

(Ferreira et al., 2003). The acquired immunity to tick bite has been studied in detail and has 

shown that tick infestation polarizes the immune response towards TH2 pathway. For example, 
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splenocytes from Ixodes scapularis infested mice secreted high amount of IL-4, which is TH2 

type cytokine but reduced amount of IL-2 as well as the IFN-γ which is a TH1 cytokine (Muller-

Doblies et al., 2007). 

2.8: Immunomodulatory Effect of Tick Saliva 

Ixodid ticks can feed on a vertebrate host for several days to weeks. To avoid the host’s 

immune mediated rejection, tick saliva introduces an array of pharmacologically active 

molecules during feeding (Schoeler and Wikel, 2001). Ticks can modulate both innate and 

adaptive immune response of the host (Wikel, 1996). This immune-modulation by tick saliva 

ensures successful blood meal acquisition for longer duration. Tick saliva can suppress the host’s 

immune response in a variety of ways (Schoeler and Wikel, 2001). It can modulate complement 

activation, natural-killer cell function, antibody production, T lymphocyte proliferation, and 

cytokine elaboration by macrophages and T lymphocytes. It can also suppress the expression of 

IL-1 and TNF-α (Wikel, 1996) and inhibits the DC activation and maturation. Tick saliva also 

contains a wide array of immunomodulatory and anti-coagulatory compounds, which play a 

major role maintain blood feeding on the vertebrate host. An in vitro study demonstrated that the 

presence of tick saliva can impair the differentiation and terminal maturation of DCs in culture. 

Even very small amounts of diluted (≈80-fold) tick saliva (16µg/ml) can inhibit DC 

differentiation substantially. When DCs were cultured alone with LPS, they could up-regulate 

MHC class II as well as co-stimulatory molecules CD40, CD80, CD86 and CD54 on their 

surface. However when DCs were cultured with LPS and tick saliva, the cell surface expression 

of co-stimulatory molecule was abolished (Cavassani et al., 2005). To activate the T cell 
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response, DCs need to pass two signals, one from MHC class II and T cell receptor complex 

contact, and another one through co-stimulatory signal. If DCs present antigens to T cells, in 

absence of appropriate co-stimulation, the T cells become unresponsive to further stimulus, a 

state known as anergy (Janeway et al., 2001). In addition to down-regulation of co-stimulatory 

molecules the addition of tick saliva significantly down-regulates the expression of CCR5. This 

down-regulation of chemokine receptors was not unilateral since CCR1 and CCR3 were 

unaltered. Interestingly, tick saliva not only reduces the expression of CCR5, but also reduces the 

number of DCs expressing CCR5 (Oliveira et al., 2008). Thus, during infestation tick saliva can 

modulate the immediate immune response in skin. This synergistic immunomodulation will help 

Rickettsia to be easily disseminated while the tick is feeding on the vertebrate host for several 

days. 
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Table.1 Possible Influence of Tick Saliva in Suppression of Host’s Cytokine 

Response (Wikel, 1996) 
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Chapter3: Materials and Methods 

3.1 Solutions 

Media for cell culture 

10% FBS/DMEM solution was made by adding 25 ml of FBS (Fetal Bovine Serum, Collected in 

Central America. Catalogue no. SV30014.03) to 225 ml of DMEM (Dulbecco’s Modified Eagle 

Medium 1X, 4.5 g/l D-glucose, L-Glutamine, Sodium pyruvate (GIBCO, Invitrogen). The 

solution was mixed completely and stored at 4°C. 

Phosphate buffer saline (PBS):  

The working concentration for PBS was 0.137mM NaCl/2.7mM KCL/8mM Na2HPO4. To 

prepare this solution, 160 g of NaCl, 40 g of KCl, 28.8g Na2HPO4.2H2O and 4.8 g of KH2PO4 

were added to 1.97 L of Milli-Q™ H2O. The pH was adjusted to 7.5 with approximately 10-15 

ml of 5N NaOH. Milli-Q™ water was added to make the volume 2 L, and the solution was 

stirred until components mixed completely and stored at room temperature. 

Solutions for cytospin 

Rickettsiae were stained using Diff-Quick Stain set, (Dade Behring, catalog no. B4132-1A  

F4710/72) according to the manufacturer instructions. 

Rickettsia staining dye to check viability 

LIVE/DEAD BacLight Bacterial Viability Kit (Invitrogen, catalog no. L7012) 



 

27 

 

0.15 µl of Component A: SYTO 9 dye in DMSO 

0.15 µl Component B: Propidium Iodide in DMSO 

Component C: BacLight mounting oil for bacteria immobilized on membranes 

3.2 Vero Cell Stock Culture 

Vero cell stocks (ATCC no.CCL-81) were obtained from the Centralized Cell Culture 

Laboratory at the Louisiana State University, School of Veterinary Medicine.  

3.3 Mouse Srains 

BALB/C mice were purchased from the Division of Laboratory and Small Animal Medicine 

(DLAM), LSU, Veterinary Medicine Building and were maintained in animal care facilities in 

the Veterinary Medicine building. All animal experiments were carried out under the guidance of 

Louisiana State University’s Animal Care and Use Committee and the appropriate guidelines set 

forth by the National Institutes of Health. 

3.4 Amblyomma americanum Tick Colonies 

Uninfected and Rickettsia amblyommii-infected unfed tick colonies were obtained from a colony 

maintained by the Tick Research Lab, Department of Entomology, Texas A&M University 

(College Station, TX), which was founded with specimens originally collected in Sutton County, 

TX. The original colony of ticks is maintained without regular introduction of wild-caught ticks.  
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3.5 Rickettsia amblyommii Stocks 

The R. amblyommii (Darkwater strain) stock was a generous gift from Dr. Christopher D. 

Paddock, Infectious Disease Pathology Branch, Centers for Disease Control and Prevention, 

Atlanta, GA. 

3.6 Vero Cell Culture  

Frozen Vero cells (P7) were taken out of liquid nitrogen and allowed to thaw at 37°C for 5 

minutes. The cells were collected with a pipette from the tube and added to 10 ml of complete 

fresh media. pelleted at 150 x g for 5 minutes, the old media was discarded and the cell pellet 

was re-suspended in 5 ml fresh media, transferred to a T25 tissue culture flask, and incubated at 

34°C. All experiments were carried out in a Biological Safety Cabinet, class II, Type A2, using 

sterile technique. 

3.7 Splitting Uninfected Vero Cells  

When the cells were confluent, the media was removed and the cells were rinsed with 2 ml of 

0.25% Trypsin with EDTA. The flask was incubated at 34°C for 5 minutes to allow detachment 

of the cells which then were suspended in 4 ml of fresh media. Next, 2 ml of this mixture were 

added to a T75 flask along with 10 ml fresh media and the cells were incubated at 34°C for 2-3 

days until the cells formed an adherent monolayer.  

3.8 Infecting the Uninfected Vero Cell Culture 

Frozen Rickettsia amblyommii infected cells (P4) were taken out from a -80°C freezer and. The 

thawed cells were added to the uninfected Vero cell flask and incubated for an hour at 37°C. The 
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media was removed and replaced with fresh media. The flasks were incubated at 34°C for 2-3 

days until the cell monolayer was infected.  

3.9 Checking Infection by Cytospin  

 Infected flasks were taken out of the incubator and the inside corner of the flask was 

scratched with the tip of a pipette. The scratched cells were suspended in the media and 300 µl of 

this cell-media mixture was removed. Next, 100 µl of this was added to the top chamber of the 

Cytospin
®
 column and 200 µl to the bottom chamber. A dual-etched glass slide was placed at the 

end of the spin column and the cells were spun in the Cytospin
® 

centrifuge for 10 minutes at 

1000 x g. 

 After spinning the cells, the slide was removed from the chamber and allowed to air-dry. 

The slides were then fixed and stained using the Diff-Quick stain set. The slides were again air-

dried and observed under the microscope for intracellular infection (100X). Live bacteria, if 

present, appeared as rod-shaped purple structures located inside the cells. 

After the cells were infected the flasks were scraped to detach the cell layer. The cell 

suspension was lysed using a 5cc syringe attached to 27 gauge needle using 10 repetitions of the 

syringe uptake-expulsion cycle. The lysed cells were transferred to a centrifuge tube and 

centrifuged for 10 minutes at 275 x g at 4°C, and then filtered with a sterile 2 micron filter. 100 

µl of the cell suspension was removed and transferred to a 1.5 ml tube, and cells were peletted at 

1300 rpm at 4°C for 10 minutes to harvest the Rickettsia pellet. After discarding the supernatant, 

the pellet was re-suspended in 500 µl of 0.85% NaCl solution and spun at 13,000 x g at 4°C for 

10 minutes. The suspension was diluted with 0.85% NaCl solution to 1:30, and 100 µl of this cell 
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suspension was mixed with 0.3 µl of dye mixture (LIVE/DEAD kit, Solution A: Solution B=1:1) 

and incubated at room temperature in the dark for 15 minutes. 10 µl of the stained cell 

suspension was transferred to a bacterial counting chamber and observed under the microscope. 

Bacterial numbers (Rickettsia/ml) were recorded using the following formula: Rickettsial 

concentration = Rickettsia in 5 chambers x 5 x 0.05 x 10
6 
x dilution factor.  

3.10 Infestation of Mice with Amblyomma americanum Ticks 

 Infestation was done according to procedures described by Schoeler et al (1999). Briefly, 

BALB/C mice (male, 4-6 weeks of age) were harnessed with two 1.5 ml centrifuge tubes, cut in 

half and attached on both sides of their body as capsules with a 4/1 (w/w) mixture of calphonium 

(rosin) and beeswax. Mice were infested with ten tick nymphs (Infected/Uninfected) on either 

side. Empty capsules were used for the control group of mice. Nymphs were allowed to feed 

until fully engorged (5-7 days). After infestation, capsules were removed and mice were 

euthanized. Tissues were collected, snap frozen in liquid nitrogen, and then stored at -80°C for 

future use. 

3.11 Intradermal Inoculation of Mice with R. amblyommii 

 Mice were shaved as before and 1x10
5
 Rickettsia/ml in 50 µl solution was injected on 

each side. Capsules were added on each side on the inoculation site to maintain similarity with 

the tick infestation experiment. PBS was injected instead of bacterial culture in the control group. 

7 days after infection, capsules were removed and the mice were euthanized. Tissues were 

collected, snap frozen in liquid nitrogen and then stored in -80°C for future use. 
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3.12 RNA Processing for Real-Time PCR 

Isolation of RNA: Frozen skin tissues were brought to the workbench from the -80°C freezer in 

liquid nitrogen to avoid thawing of the samples. To grind the skin tissue into powder with 

minimal RNA loss, mortars and pestles were pre-chilled by pouring liquid nitrogen on them at 

least three times. The skin tissues were transferred from the liquid nitrogen container to the 

liquid nitrogen in the mortar. After waiting a few seconds the tissue was broken into small pieces 

using the pestle. Liquid nitrogen was poured to the mortar, and after a few seconds when the 

liquid nitrogen was almost evaporated, the tissues were very quickly ground into a semi-powdery 

form. This was repeated 2-3 times to convert the tissue completely into a powdery form. When 

the grinding was complete, mortars were kept at room temperature for approximately 10 minutes 

until water droplets were seen to form outside the mortars. Then, using a 1000 µl pipette, 1 ml 

Trizol (Invitrogen) was added to the mortars and the tissues were homogenized for another 30 

seconds with the pestle. The homogenate was transferred into 1.5 ml tubes and kept at room 

temperature for 2-3 minutes for the complete dissociation of the nucleic acids. 200 µl of 

chloroform was added in each tube and the tubes were vigorously vortexed for 30 seconds. 

Samples were kept at room temperature for another 2-3 minutes. Samples were then centrifuged 

at 10,000 x g for 15 minutes at 4°C in an Eppendorf table-top centrifuge to separate the organic 

phase from the RNA. The clear aqueous phase was transferred to another 1.5 ml tube and the 

RNA was precipitated by adding 600 µl of isopropanol to the tubes and mixing by pipetting up 

and down. Samples were incubated at room temperature for two hours and the RNA was peletted 

at 10,000 x g for 10minutes at 4°C. The supernatant was discarded and 1 ml ethanol was added 

to each tube, which were vortexed for few seconds to dislodge and wash the pellet. The RNA 
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was repelleted at 10,000 x g for 5 minutes. The supernatant was discarded and pellets were air 

dried under the hood for 5-10 minutes. Subsequently, the pellet was dissolved in 50 µl of DNase-

RNase-free water, incubated for 10 minutes on a dry heat block at 50°C, and finally vortexed, 

centrifuged briefly, and stored at -80°C. 

DNase Treatment: Extracted RNA was purified using Ambion DNase I enzyme and buffer to 

remove any residual DNA from the extracted RNA. A master mix was prepared by combining 65 

µl of RNase-free water, 10 µl DNase buffer and 15 µl (30 units) of DNaseI enzyme for each 

sample. 90 µl of this master mix was added to 10 µg of RNA sample (in a volume of 10 µl) in a 

1.5 µl centrifuge tube (total volume 100 µl). The master mix was mixed by pipetting up and 

down, briefly centrifuged and incubated for 30 minutes at 37°C. RNA was recovered using a 

Zymo RNA Clean-up kit (Zymo Research). 400 µl of RNA binding buffer was added to the tube, 

mixed thoroughly by pipetting up and down and was transferred to a Zymo-spin column. The 

column was centrifuged for 30 seconds at high speed (<10,000 x g). RNA was washed twice 

using the RNA wash buffer and again centrifuged at high speed (<10,000 x g) for 30 seconds. 

Finally RNA was eluted by adding 25 µl of RNase-free elution buffer to the column and 

centrifuging at 12,000xg for 10 seconds. Eluted RNA was stored at -80°C for downstream use. 

Reverse Transcription: 15 µl of master mix was prepared using the iScript cDNA Synthesis Kit 

(BioRad) by adding 10 µl nuclease-free double distilled water, 4 µl 5X iScript Reaction mix, and 

1 µl of reverse transcriptase (iScript RT) for each sample. This master mix was added to 

approximately 1µg of RNA sample in a 0.5ml tube. 1 µl of water was added instead of the RNA 

sample in the no-RT control tubes. Positive control was used by serially diluting RNA sample in 
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1:5, 1:25, and 1:125 dilutions. Tubes were placed in a MJ Research PTC Thermal Cycler and run 

under the following conditions: 25°C for 5 minutes, 42°C for 30 minutes, 85°C for 5 minutes and 

20°C hold. After completion, 60 µl of nuclease free water was added to the cDNA sample, 

vortexed, centrifuged and stored in -20°C until further use. 

3.13 SuperArray Real-Time PCR 

SuperArray PCR analysis was performed using the Mouse Innate and adaptive immune 

response  Pathway PCR Array kit (PAMM-052) from SABiosciences. 

RT
2 

First Strand Synthesis: SABiosciences SuperArray RT
2
 First Strand kit (Cat. No. C-03) was 

used to perform the first strand cDNA synthesis reaction. 10 µl of RT cocktail was added to 10 

µl of genomic DNA elimination mixture, mixed gently by pipetting up and down and incubated 

at 42
°
C for 15 minutes. Next, this mixture was heated at 95°C for 5 minutes to degrade the RNA 

and to inactivate the reverse transcriptase. After this, 91 µl of ddH20 was added to each 20 µl of 

cDNA synthesis reaction and mixed well and the tube was kept on ice until the next step or 

stored at -20°C until further use. 

SuperArray Real-Time PCR: A PCR cocktail was prepared by mixing 1275 µl of 2X SuperArray 

RT
2
 qPCR master mix, 102 µl of diluted first strand cDNA synthesis reaction and 1173 µl 

ddH2O to make a final volume of 2550 µl. 25µl of the experimental cocktail was added to each 

well of the PCR array 96 well array plate with a multi-channel pipette. The plate was vortexed 

for 30 seconds and then centrifuged for 15 minutes at 1500xg at 4
°
C. For each sample, 10 µl of 

the first-strand cDNA synthesis cocktail was added to appropriate wells of the 384-well PCR 

array plate with a multi-channel pipette. The plate was covered with a DNase-RNase free film 
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and centrifuged for 15 minutes at 1500 rpm at 4
°
C. Reactions were carried out on an Applied 

Biosystems 7900 real-time thermocycler. The data was analyzed with the SDS 2.2.2 software 

(Applied Biosystems). Gene expression was quantified using the cycle number at which each 

sample reached a fixed fluorescence threshold (CT) during the annealing step.  

3.14 Real-Time PCR 

For  Quantitative Real-time PCR analysis, primers were designed by using the Primer3 

web utility (http://frodo.wi.mit.edu/) and confirmed by blasting the primer pairs against the 

National Center for Biotechnology Information (NCBI: http://blast.ncbi.nlm.nih.gov/Blast.cgi) 

website. Primers were diluted to working concentration (100 µM) before performing real-time 

PCR (Table 2). A master mix was prepared using iTaq SYBR Green Supermix with Rox  (Bio-

Rad, catalog no. 172-5850) by combining 17.5 µl 2x iTaq Green Supermix with Rox, 1.75 µl of 

forward and reverse primers (1.8 µM final concentration) and 9 µl RNase free water for a total 

volume of 30 µl per sample. Samples with no reverse transcriptase (RT) were run to check for 

genomic DNA contamination. 5 µl (10 ng) of appropriate cDNA sample and 30 µl of master mix 

was added to each well of a 96-well plate. Water was used as a no-DNA control. The 96-well 

plate was always kept on a cooler plate. After adding the template and master-mix, the plate was 

covered with a DNase-RNase free film, vortexed for 30 seconds, and centrifuged for 5 minutes at 

1500 x g at 4°C. The film cover was removed and the samples were transferred to a 384-well 

plate (Applied Biosystem) in triplicate using a Matrix electronic repeating pipette (Matrix 

technologies). Plates were again covered with a DNase-RNase free film cover, and spun at 

1500xg for 5 minutes at 4°C. Reactions were carried out on an Applied Biosystems 7900 real-
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time thermocycler and data was analyzed with the SDS 2.2.2 software packages (Applied 

Biosystems). Gene expression was quantified using the cycle number at which each sample 

reached a fixed fluorescence threshold (CT). Samples without RT were either unamplified or had 

at least 1,000-fold lower expression than the actual samples. Gapdh was used as a house keeping 

gene and to control variations in RNA concentrations between samples. Data were represented as 

the percent difference in CT value (log2) of each sample subtracted from Gapdh CT value (∆CT= 

CT Gapdh- CT gene of interest).  

3.15 Statistical Analysis 

The GraphPad Prism Software (GraphPad Software, San Diego, CA) was used to statistically 

analyze the data. 
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Table.2 List of Primers Used in this Study 

Genes Forward primer Reverse primer 

Gapdh TGCACCACCAACTGCTTAGC TGGATGCAGGGATTCACT 

TLR2 CTCCCACTTCAGGCTCTTTG GCCACTCCAGGTAGGTCTTG 

TLR4 GGCAGCAGGTGGAATTGTAT AGGATTCGAGGCTTTTCCAT 

TLR9 ACTTCGTCCACCTGTCCAAC TCATGTGGCAAGAGAAGTGC 

MYD88 CATGGTGGTGGTTGTTTCTG CTGTTGGACACCTGGAGACA 

TRAF6 GCCCAGGCTGTTCATAATGT CGGATCTGATGGTCCTGTCT 

MAPK8 CGGAACACCTTGTCCTGAAT GAGTCAGCTGGGAAAAGCAC 

TOLLIP CCACTGTCTGGCTAGGCTTC AGCAGTGAGGGCTAATGTGG 

IFNGR1 TCCTCCACCCTGATCATCTC AGACTTACGGCTGGCTTTGA 

CLEC7A GGAATCCTGTGCTTTGTGGT ATTCTGTGGGCTTGTGGTTC 

CD80 CCTTGCCGTTACAACTCTCC CAGGCCCAGGATGATAAGAG 

CD86 CTCCTCCTTGTGATGCTGCT GCCTTCACTCTGCATTTGGT 

CD207 GGTCGTGTGGACAACATCAG TGCATCTGAACCTCAGCATC 

CCR1 TCAAAGCATGACCAGCATCTA CTTGTAGTCAATCCAGAAAGGTAAA 

CCR5 CGAAAACACATGGTCAAACG GTTCTCCTGTGGATCGGGTA 

CASP-1 CACAGCTCTGGAGATGGTGA GGTCCCACATATTCCCTCCT 

IL-1β CCCAAGCAATACCCAAAGAA GCTTGTGCTCTGCTTGTGAG 

HMOX-1 TGCTCGAATGAACACTCTGG TCCTCTGTCAGCATCACCTG 

PPBP CATCCCTTCCCCTTTCATTT TCCGTTGCAATTGACCACTA 

LY96 CCAATGGATTTGTGCATGTT GGCACAGAACTTCCTTACGC 

PGLYRP3 GCCACAGTGATGTGTCCAAC CGACGGGACTGTAGCATTTT 

LBP GGCTGCTGAATCTCTTCCAC TAAGGCTGCAGGTCAGAGGT 

IL-6 CCGGAGAGGAGACTTCACAG TCCACGATTTCCCAGAGAAC 

TREM-1 TTCACAGGAGGAGCTGAGGT GAGCACATCCCCAAGATGAT 
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Chapter 4: Results 

4.1: Expression of Several Innate and Adaptive Immune Response Genes in Skin During 

Rickettsial Infection via Intradermal Inoculation As Well As Tick Transmission 

To investigate how tick transmission impacts the host immune response to Rickettsia 

infection, we compared the mRNA expression of a number of host-response genes in skin tissue 

of mice infected with Rickettsia by either intradermal inoculation or by tick transmission.  For 

gene analysis we utilized real-time PCR arrays to examine the mRNA expression of 84 different 

immune response genes.  Skin tissue from 3-5 mice inoculated with 1x10
5
 Rickettsia/ml by 

intradermal (ID) inoculation were compared to skin tissue from 3-5 mice infested with Rickettsia 

infected ticks.  A time point of 5-7 days post inoculation/infestation was utilized to allow the 

transmission of bacteria from the tick and the development of an immune response to Rickettsia 

infection. Interestingly, there was a significant difference in mRNA expression of a number of 

immune response genes. mRNA expression for several inflammatory  genes were higher in the 

tick-infested mice compared to ID inoculated mice, including genes whose products play 

important roles in pathogen recognition (Fig. 11, right side of graph).  An additional group of 

genes had significantly lower mRNA expression in the tick infested mice compared to the ID 

inoculated mice (Fig. 11, left side of graph). Several of the genes with increased mRNA 

expression following tick transmission included: cytokines Ccl2, Il1b, Il6 and Il10; inducible 

nitric oxide synthetase, Nos2, as well as the stress response gene, Hmox1 (Fig. 11). mRNA for 

these genes are often transcribed following immune cell activation. Several PRR-related genes 

also had higher levels of mRNA with tick transmission of Rickettsia compared to ID inoculation.  

This included TLRs (Tlr1, Tlr4) as well as a C-lectin receptor (Clec7a) and genes whose 
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products are involved in binding of LPS to TLRs (Lbp, Ly96) (Fig. 11). This suggests that tick 

transmission may increase the expression of several host response proteins necessary for the 

detection of Rickettsia infection. However, mRNA expression of several genes involved in the 

signal transduction of PRRs including Ikbkb, Irak1, Irak2, Mapk8, Traf6 and Tollip had 

significantly lower levels of mRNA with tick transmission of Rickettsia compared to ID 

inoculation (Fig. 11). Decreased mRNA and subsequent protein production of these molecules 

could inhibit the activation of cells following PRR stimulation. Other than the genes responsible 

for inflammation, we studied the mRNA expression of several other chemokines including Ccr1, 

Ccr5 responsible for LC migration to skin during inflammation, and the co-stimulatory 

molecules those are expressed during LC maturation including Cd80 and Cd86. There was a 

general trend for upregulation of the mRNAs of all the four genes in the tick infested group, 

again suggesting a role played by tick saliva during infestation. 
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Figure. 11 mRNA expression of innate and adaptive immune response genes using 

SABioscience SuperArray. For ID inoculation, mice were inoculated with 50µl of Rickettsia 

amblyommii.  Seven days following ID inoculation, skin tissue at the site of 

inoculation/infestation was removed and processed for RNA isolation. cDNA was generated 

from RNA and analyzed by quantitative real-time PCR analysis.  Data is presented as a volcano 

plot, with the fold difference in gene expression in tissue samples from Rickettsia inoculated id 

and Rickettsia transmitted via tick on the X axis and the P value of a t-test for the difference 

between the groups (three to five mice per group). 
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Fig. 12 Diagram showing the possible role of pattern recognition receptors (PRRs), their adaptor 

molecules and other innate immune genes during rickettsial infection and tick bite: PAMP (LPS, 

Peptidoglycan, CpG DNA) recognition by the PRRs (TLR2, TLR4, TLR9, TREM-1 and 

CLEC7A) and other cell surface receptors like IFNGR1 leads to the activation of the adaptor 

molecules. The activation of these adaptor molecules in turn activates the downstream signaling 

molecule leading to the activation of transcription factor NF-κB. The activated NF-κB can 

transcribe several cytokines as well as stress-induced genes which can cause inflammation.  
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Fig. 13 Bridge between the innate and adaptive immune system by Langerhans cells. LCs are the 

major antigen presenting cells in skin. During microbial infection immature LCs can up-regulate 

several chemokine receptors like CCR1 and CCR5 and migrate to the site of infection, (i.e. skin), 

where they capture several microbial components and up-regulate another set of chemokine 

receptors like CCR7 and migrate from skin to the draining lymph node to present the antigen to 

the T-cells.  
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4.2: Expression of the PRRs and Their Adaptor Molecules During Tick Bite and Rickettsial 

Infection  

4.2.1: mRNA Expressions of Toll-like Receptor 2, 4 and 9 (Tlr2, 4, 9), the Major PRRs in 

Gram Negative Bacterial Recognition 

 

Figure. 14 mRNA expression of Toll-like receptors in skin [(A) Tlr2, (B) Tlr4, (C) Tlr9]. Mice 

were either infested with infected ticks, uninfected ticks or needle inoculated with Rickettsia. 

Microcentrifuge capsules were placed on all mice for tick containment and at the ID inoculation 

sites and mice with capsules only and PBS injection were used as control groups. Mice were 

infected/infested for 5-7 days, euthanized and skin tissues were collected. RNA was extracted 

and processed for quantitative real time PCR analysis and values were calculated relative to 

expression of Gapdh controls. Data are the means ±SEM, n=3-5 mice per group. Statistical 

analysis was done by one-way ANOVA using Newman-Keuls post test. *p <0.05; **p <0.01; 

and ***p <0.001 

To study the expression of immune response genes in detail that were either upregulated 

or downregulated in the SuperArray data, gene-specific quantitative real-time PCR was 

performed for each gene of interest (Table 2). Transcription of Tlr4 and Tlr2 was upregulated in 

the tick transmitted group compared to the ID inoculated Rickettsia group (Fig. 14). Analysis of 

all groups indicated that infected and uninfected tick infestation groups had higher expression of 

both the Tlr genes compared to the ID inoculated Rickettsia group, suggesting that ID 

inoculation of Rickettsia did not induce expression of Tlr2 and Tlr4. As such, it may be that tick 

saliva rather than bacterial infection can induce the expression of Tlr2 and Tlr4 mRNA. 
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In contrast, Tlr9 mRNA expression was decreased in both the tick infested groups 

compared to the capsule only tissues. Between the experimental groups, Tlr9 mRNA expression 

was higher in the tick transmitted Rickettsia group compared to the ID inoculated Rickettsia 

group, although by a small difference (p <0.05). Thus, mRNA expression for Tlr2, Tlr4 and Tlr9, 

three TLRs involved in bacterial recognition, were higher in skin tissues of tick-transmitted 

Rickettsia than ID transmitted Rickettsia. 

4.2.2: Expression of the Adaptor Molecules Involved in Toll Signaling (MYD88, TRAF6, 

MAPK8, TOLLIP)  

4.2.2.1: Myd88 mRNA was Upregulated in the Tick Transmitted Group Compared to the 

Rickettsia Infected Group 

 

Figure. 15 mRNA expression of the adaptor molecule Myd88 involved in Toll signaling in skin. 

Experiment was performed as previously described in Fig. 4. Data are the means ±SEM, n=3-5 

mice per group. Statistical analysis was done by one-way ANOVA using Newman-Keuls post 

test. *p <0.05; **p <0.01; and ***p <0.00 

Activation of TLRs after pathogen recognition requires the recruitment of the adaptor 

protein MYD88 to induce the signal to activate the MAP kinases and transcription factor NF-κB 

(Dunne and O'Neill, 2003). Data analysis showed significantly higher Myd88 mRNA expression 

in the tick transmitted groups than the ID Rickettsia infected group (Fig. 15).  
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4.2.2.2: Expression of Traf6 and Mapk8 mRNA was Unaltered in All the Groups 

   

Figure. 16 mRNA expression of the adaptor molecule Traf6 involved in Toll signaling in skin. 

Experiment was performed as previously described in Fig. 4. Data are the means ±SEM, n=3-5 

mice per group. Statistical analysis was done by one-way ANOVA using Newman-Keuls post 

test. *p <0.05; **p <0.01; and ***p <0.001 

         

 

Figure. 17 mRNA expression of the adaptor molecule Mapk8 involved in Toll signaling in skin. 

Experiment was performed as previously described in Fig. 4. Data are the means ±SEM, n=3-5 

mice per group. Statistical analysis was done by one-way ANOVA using Newman-Keuls post 

test. *p <0.05; **p <0.01; and ***p <0.001 

The activation of NF-κB in the TLR pathway also requires two other molecules, TRAF6 

and MAPK8, which act as signaling mediators in the toll signaling pathway. The activation of 

TRAF6 subsequently leads to the activation of several other downstream signaling molecules 

and eventually activation of MAPK8 (also known as JNK), which is a member of the MAP 

 

 



 

45 

 

kinase family (Armant and Fenton, 2002; Akira, 2003). In the data, the expression of both Traf6 

and Mapk8 mRNA was unaltered (Fig. 16 and 17). Thus, although mRNA expression of Tlr2, 

Tlr4 and Myd88 were significantly increased in the tick infested group, not all components of the 

signaling pathway have increased mRNA. 

4.2.2.3: mRNA Expression of Tollip which is a Negative Regulator of Toll Signaling was 

Also Unaltered in All the Groups 

TOLLIP acts as a negative regulator of the toll signaling pathway and is believed to be 

responsible for IL-1R/TLR signaling termination (Didierlaurent et al., 2006). SuperArray 

analysis demonstrated a substantial difference in gene expression between ID inoculated 

Rickettsia and tick-transmitted Rickettsia, although, by quantitative Real-Time PCR analysis, 

neither tick infestation nor rickettsial infection had any effect on Tollip mRNA expression (Fig. 

18). 

 

Figure. 18 mRNA expression of the adaptor molecule Tollip involved in Toll signaling in skin. 

Experiment was performed as previously described in Fig. 4. Data are the means ±SEM, n=3-5 

mice per group. Statistical analysis was done by one-way ANOVA using Newman-Keuls post 

test. *p <0.05; **p <0.01; and ***p <0.001 
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4.2.2.4: Expression of LPS Binding Protein (Lbp) and Md2 mRNA was Highly Upregulated 

in the Infected Tick Group 

  

Figure. 19 mRNA expression of Lbp involved in LPS recognition in Toll signaling pathway in 

skin. Experiment was performed as previously described in Fig. 4. Data are the means ±SEM, 

n=3-5 mice per group. Statistical analysis was done by one-way ANOVA using Newman-Keuls 

post test. *p <0.05; **p <0.01; and ***p <0.001 

  

Figure. 20 mRNA expression of Md2/Ly96 involved in the delivery of LPS to the TLRs in skin. 

Experiment was performed as previously described in Fig. 4. Data are the means ±SEM, n=3-5 

mice per group. Statistical analysis was done by one-way ANOVA using Newman-Keuls post 

test. *p <0.05; **p <0.01; and ***p <0.001 

During bacterial infection, LBP helps to extract the LPS from Gram-negative bacterial 

cell walls and delivers them to the TLR4-Ly96/MD2 complex. Figures 19 and 20 demonstrate 

that mice infested with Rickettsia-infected ticks had significantly high mRNA expression of both 

Lbp and Ly96/Md2 compared to the needle inoculated Rickettsia group and uninfected tick 
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group. As both of the adaptor molecules help in the efficient delivery of the bacterial LPS, this 

suggests that during infected tick infestation, these two molecules are upregulated for better 

bacterial recognition and subsequent delivery of LPS to the TLRs molecule to activate the TLR 

pathway via TLR2 and TLR4. 

4.3: mRNA Expression of the Non-TLR PRRs Trem-1, Clec7a and Pglyrp3  

TREM-1, PGLYRP3 and CLEC7A are PRRs other than TLRs. All three PRRs recognize 

different components of bacteria. TREM-1 is a PRR belonging to the immunoglobulin 

superfamily that recognizes several components of bacteria (Bleharski et al., 2003; Colonna and 

Facchetti, 2003). CLEC7A, a C-type lectin receptor acts as an antigen binding molecule during 

host response to pathogen interaction (Willcocks et al., 2006). PGLYRP3 is the molecule 

responsible for bacterial peptidoglycan recognition (Liu et al., 2001).  

  

Figure. 21 mRNA expression of Trem-1(A), Pglyrp3 (B) and Clec7a (C). Experiment was 

performed as previously described in Fig. 4. Data are the means ±SEM, n=3-5 mice per group. 

Statistical analysis was done by one-way ANOVA using Newman-Keuls post test. *p <0.05; **p 

<0.01; and ***p <0.001 

Similar to the Tlr2 and Tlr4 mRNA expression, Trem-1 (Fig. 21A) and Clec7a (Fig. 21B) 

mRNA expression was also increased with tick infestation. The increased mRNA expression of 

these genes may indicate the recruitment of dendritic cells to the site of the tick infestation or the 
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activation of dendritic cells or endothelial cells at the site of tick bite. Trem-1 mRNA was also 

increased by Rickettsia infection in association with tick transmission (Fig. 21A). This result 

indicates that Trem-1 mRNA is upregulated only in response to Rickettsia when transmitted via 

tick saliva. Increased Trem-1 mRNA expression in addition to TLR expression may increase the 

anti-bacterial responses of cells that express both TREM-1 and TLRs, including neutrophils and 

monocytes. The inflammatory reaction is more robust in cells expressing these receptors (i.e., 

TLRs and TREM-1) than in the cells expressing only TLRs, like endothelial cells. In contrast 

Pglyrp3 mRNA was significantly upregulated in the needle inoculated Rickettsia group 

compared to the tick infestation groups. Tick infestation suppressed the Rickettsia-induced 

Pglyrp3 mRNA expression (Fig. 21C). 

4.4: Recognition of Bacterial Components by PRRs Leads to the Production of Several 

Innate Immune Genes which Help to Protect the Host Cell and the Host from the Infection 

4.4.1: Expression of Casp-1 mRNA Was Upregulated in the Uninfected Tick Group 

Compared to the Rickettsia Infected Group, Whereas IL-1β mRNA Was Upregulated in the 

Infected Tick Group  

  

Figure. 22 mRNA expression of Il-1b (A) and Casp-1 (B). Experiment was performed as 

previously described in Fig. 4. Data are the means ±SEM, n=3-5 mice per group. Statistical 

analysis was done by one-way ANOVA using Newman-Keuls post test. *p <0.05; **p <0.01; 

and ***p <0.001 
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Bacterial recognition by TLR molecules and subsequent activation of MYD88 leads to 

the increased production of the inflammatory cytokine IL-1β (Armant and Fenton, 2002). 

Likewise, IL-1β mRNA was also upregulated in the tick transmitted group as compared to the ID 

Rickettsia group (Fig. 22A).  

Casp-1 is the regulatory molecule of IL-1β and it also helps in cell death by apoptosis and 

host survival. mRNA expression of the Casp-1 gene was highly upregulated (p<0.001) in the 

uninfected tick group compared to the Rickettsia infected tick group (Fig. 22B). This is 

consistent with the increased expression of Il-1β in the infected tick group. Although the 

production of mature IL-1β is dependent on Casp-1, regulation during tick infestation is not 

identical. 

4.4.2: Expression of Hmox1/Ho-1 and Ppbp mRNA Was Upregulated in the Infected Tick 

Group Compared to Other Groups 

 

 

Figure. 23 mRNA expression of Hmox-1. Experiment was performed as previously described in 

Fig. 4. Data are the means ±SEM, n=3-5 mice per group. Statistical analysis was done by one-

way ANOVA using Newman-Keuls post test. *p <0.05; **p <0.01; and ***p <0.001 

Heme-oxygenase-1 (HMOX-1) is catalytically very active and responsible for degrading 

heme to carbon monoxide, free iron and biliverdin. HMOX-1 is considered to be a very sensitive 
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indicator of oxidative stress in endothelial cells (Kushida et al., 2002; Yachie et al., 2003). In 

addition to this, a direct link exists between LPS, TLR4 and HMOX-1. Expression of HMOX-1 

was significantly inhibited in TLR4 mutant mice (Song et al., 2003). The data also shows a 

correlation between Tlr4 and Hmox-1 mRNA expression, as both are upregulated in the 

Rickettsia-infected tick group. However, unlike Tlr4, Hmox-1 mRNA expression was 

upregulated in the Rickettsia-infected tick group and was not upregulated in the uninfected tick 

group (Fig. 23).  

 

Figure. 24 mRNA expression of Ppbp. Experiment was performed as previously described in 

Fig. 4. Data are the means ±SEM, n=3-5 mice per group. Statistical analysis was done by one-

way ANOVA using Newman-Keuls post test. *p <0.05; **p <0.01; and ***p <0.001 

Platelet basic protein (PBP) is a granular protein formed from platelets, which is derived 

from pro-platelet basic protein (PPBP). PBP in turn gives rise to several other derivatives that 

serve as anti-microbial peptides involved in bacterial killing. As shown in Fig.24, mRNA 

expression of Ppbp was highly upregulated in the infected tick group compared to the 

uninfected, as well as the ID inoculated Rickettsia group. However, Rickettsia were unable to 

induce the secretion of Ppbp mRNA when injected intradermally. As such, is possible that the 

induction of Ppbp is suppressed when Rickettsia is injected intradermally but that Rickettsia and 
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tick saliva together present multiple stimulators (i.e. TLR stimulatory effectors) that results in 

increased PPBP production. 

4.4.3: Expression of Il-6 mRNA Was Highly Upregulated in Response to Uninfected Tick 

Infestation Compared to Infected Tick Infestation and Intradermal Rickettsial Infection 

IL-6 acts as a pleotropic cytokine and regulates various functions, including 

inflammation, acute-phase response, and differentiation of B-cells into antibody-producing 

plasma cells. Although IL-6 can serve as both a pro- and anti-inflammatory molecule, it has been 

shown that during intracellular infection by Listeria monocytogenes and Mycobacterium 

tuberculosis, IL-6 plays a protective role (Dube et al., 2004; Hume et al., 2006). Il-6 mRNA was 

upregulated in the uninfected tick group compared to the capsule-only group, but was decreased 

in the Rickettsia-infected tick group (Fig. 25). Thus, it is possible that Rickettsia infection 

suppresses Il-6 mRNA expression induced by tick infestation. 

 

Figure. 25 mRNA expression of Il6. Experiment was performed as previously described in Fig. 

4. Data are the means ±SEM, n=3-5 mice per group. Statistical analysis was done by one-way 

ANOVA using Newman-Keuls post test. *p <0.05; **p <0.01; and ***p <0.001 
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4.5: Expression of the Non-PRR Receptor Ifngr1 mRNA Was Unaltered in All the Groups 

IFNGR1 is expressed by NK cells and Th1 cells. Increased Ifngr1mRNA in the skin 

could suggest an increase in the presence of NK cells or Ifngr1 mRNA at the site of tick bite or 

Rickettsia infection. SuperArray analysis indicated that Ifngr1 mRNA was expressed at a greater 

level in the tick-transmitted Rickettsia group than in the ID inoculated Rickettsia group. 

However, real time PCR analysis did not demonstrate significant change in Ifngr1 mRNA 

expression in any of the groups (Fig. 26). 

 

Figure. 26 mRNA expression of Ifngr1. Experiment was performed as previously described in 

Fig. 4. Data are the means ±SEM, n=3-5 mice per group. Statistical analysis was done by one-

way ANOVA using Newman-Keuls post test. *p <0.05; **p <0.01; and ***p <0.001 

4.6: Role of Langerhans Cells as APCs During Rickettsial Infection and Tick Bite 

4.6.1 Expression of Langerin/Cd207 mRNA Was Upregulated in the Uninfected Tick Group 

Langerin is considered to be the Langerhans cell marker and is only present on LCs. 

Apart from being a marker, it was shown that langerin can act as an endocytic receptor and 

potent inducer of Birbeck granules. Langerin binds to mannose-containing antigens from 

pathogens and delivers them to the Birbeck granules in LCs (Mizumoto and Takashima, 2004).  

 



 

53 

 

The expression of Langerin/Cd207 mRNA was upregulated in the uninfected tick group 

compared to both infected tick and needle inoculated Rickettsia group (Fig. 27). This could 

indicate an increased presence of LCs at infected tick bite site or an increase in Cd207 mRNA by 

LCs at the site of infestation. Interestingly, Rickettsia infection did not enhance the tick-induced 

upregulation of Cd207mRNA, but instead suppressed Cd207 mRNA expression. 

 

  

Figure. 27 mRNA expression of Cd207. Experiment was performed as previously described in 

Fig: 4. Data are the means ±SEM, n=3-5 mice per group. Statistical analysis was done by one-

way ANOVA using Newman-Keuls post test. *p <0.05; **p <0.01; and ***p <0.001 

4.6.2: mRNA Expression of the Co-stimulatory Molecules Cd80 and Cd86 Present on APCs 

Were Upregulated in the Tick Infested Group Compared to the Needle-inoculated 

Rickettsia Group 

CD80 and CD86 are the co-stimulatory molecules present on LCs and various other 

APCs in skin. Without these co-stimulatory molecules, LCs are unable to activate T cells and 

instead induce a state of anergy (reviewed by Daniel, L. Muller, 2000). In vitro studies have 

shown that while LPS alone can up-regulate the expression of CD80 and CD86, the addition of 

tick saliva can suppress the response of these molecules (Cavassani et al., 2005). 
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In the current study, tick infestation induced an up-regulation of Cd80 and Cd86 mRNA 

compared to the needle-inoculated Rickettsia group (Fig. 28). Cd80 mRNA was upregulated in 

skin from Rickettsia-infected tick infestation, while Cd86 mRNA was not. This suggests that 

during tick infestation and rickettsial infection, both molecules are differentially regulated on the 

APCs, and that in general there is an up-regulation of these molecules in presence of tick 

infestation. 

 

Figure. 28 mRNA expressions of Cd80 (A) and (B) Cd86. Experiment was performed as 

previously described in Fig. 4. Data are the means ±SEM, n=3-5 mice per group. Statistical 

analysis was done by one-way ANOVA using Newman-Keuls post test. *p <0.05; **p <0.01; 

and ***p <0.001 

4.6.3: mRNA Expression of the Chemokine Receptor Ccr1 and Ccr5 Present on LCs Was 

Also Upregulated in the Tick Infested Group Compared to the Needle-inoculated Rickettsia 

Group 

LCs are the major APCs in skin, resides in the epidermis that respond to different 

chemokines during inflammation. These cells then migrate from the bloodstream to the site of 

inflammation. Immature and mature LCs express different chemokine receptors on their surface 

during their recruitment in skin and later during migration from the skin to draining lymph node. 

CCR1 and CCR5 are expressed during their migration from the blood stream to the skin. 
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Figure. 29 mRNA expressions of chemokine receptor Ccr1 (A) and Ccr5 (B). Experiment was 

performed as previously described in Fig. 4. Data are the means ±SEM, n=3-5 mice per group. 

Statistical analysis was done by one-way ANOVA using Newman-Keuls post test. *p <0.05; **p 

<0.01; and ***p <0.001 

In this study, both Ccr1 and Ccr5 mRNA were upregulated in the tick infested group 

compared to the needle- inoculated Rickettsia group (Fig. 29). Possibly tick infestation results in 

the recruitment of LCs to the site of infection which results in higher levels of Ccr1 and 

Ccr5mRNA expression. 
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Chapter 5: Discussion 

In this study, we have analyzed the modulation of innate immune response genes in skin 

following rickettsial infection through either intradermal inoculation or tick transmission. First, 

SuperArray Real-Time PCR was performed to identify the differentially expressed mRNA of the 

innate and adaptive immune genes following intradermal versus tick transmission of Rickettsia. 

Next, Real-Time qPCR was utilized to confirm these results and to identify whether uninfected 

tick or Rickettsia-infected tick infestation was responsible for differences in mRNA expression. 

mRNA of Hmox1, Il6, Ppbp, Md2, Lbp, Tlr4 Trem1, Il-1β and Clec7a genes were found to be 

upregulated in the infected tick group and not in tick infestation alone, whereas mRNA of Casp1, 

Il6, Cd207, Ccr1 and Cd86 genes were upregulated in the tick infested group. 

While the general trend is towards an agreement between these the SuperArray and Real-

Time confirmation results, not all the results were similar between the two techniques. The 

mRNA expression of Ifngr1, Traf6, Mapk8 and Tollip were unchanged in the traditional Real-

Time PCR, but their expression was downregulated in the ID inoculated Rickettsia group in the 

SuperArray data. The mRNA expression of Hmox1, Pglyrp3, Ppbp, Lbp, Tlr4 and Trem1 were 

similar in both SuperArray and traditional Real-Time PCR. Discrepancies arising between the 

SuperArray and the quantitative Real-Time PCR data might be due to the technical differences 

between the procedures, as experimental reagents, cDNA preparation protocols as well as the 

primers used for amplification were different in each case. In addition, the length of the RT 

reaction time was also different, which might have resulted in different cDNA amounts. The 

differences in primer concentrations between the two sets of primers and in the PCR reaction 

volume might influence the results too. Again, given the sensitive nature of both these 
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techniques, some other factors which may cause non-trivial differences are the differences in 

ionic strength of the buffers used and last, but not the least, human pipetting error. In the current 

study we found that tick feeding and Rickettsia both can modulate the host immune response in a 

variety of ways. Interestingly, in some cases, tick-transmitted Rickettsia exerted different 

immune response compared to the ID inoculation. These differences in expression induced via 

ID-inoculated and tick-transmitted Rickettsia might be due to the fact that Rickettsia might 

induce different immune response depending on the route of transmission, as has been shown 

with Borrelia burgdorferi (Roehrig et al., 1992). Differences in gene expression profile or 

surface protein expression of Rickettsia can induce different immune response during infection. 

Another possibility might be that when Rickettsia are transmitted via ticks, some of the 

rickettsial proteins or components are masked by the tick salivary gland proteins, allowing the 

bacteria to exploit the immunomodulatory properties of the tick saliva. 

5.1: Langerhans Cells and PRR Response to ID Inoculated and Tick Transmitted Rickettsia 

Langerhans cells are a type of dendritic cell in the skin epidermis that play a critical role 

as antigen presenting cells (Romani et al, 2003). LCs express many cell-surface receptors 

including TLR2, TLR1, TLR2, TLR3, TLR6 (Flacher et al., 2006), Fcγ, Fcε and 

langerin/CD207, which is C-type II lectin receptor and acts as a marker for LCs (Valladeau et al., 

2000). In several studies it was shown that LCs can trap tick salivary gland antigen in guinea 

pigs and present those antigens to the draining lymph nodes (Allen et al., 1979; Nithiuthai and 

Allen, 1985). Contrastingly, it was shown that tick saliva can impair the maturation, migration 

and antigen presenting capacity of skin DCs (Skallova et al., 2008). Data suggested that LCs may 
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be recruited to the tick bite site, because tick infested skin tissues showed an increased mRNA 

expression of the LC marker Cd207 and activation markers Cd80, Cd86, as well as the 

chemokine receptors Ccr1 and Ccr5. It might also be possible that LCs were activated in 

response to the tick bite and activated cells induced mRNA expression of the above genes. To 

explain whether LCs were able to migrate to the draining lymph node and present the antigens to 

T cells, further studies are needed to identify the expression of maturation a marker i.e CCR7, on 

LCs and the LC response in the draining lymph node. 

During inflammation and pathogen infection, immune cells including macrophages, 

neutrophils or basophils are recruited to the site of infection or inflammation to mount an 

efficient immune response. Different cell populations express different PRRs on their surface, for 

example, dermal endothelial cells express TLR2, TLR4 and TLR9 (Faure et al., 2000), whereas 

LCs do not express TLR4 or TLR9 and only monocytes and in vitro generated DCs express 

TLR4 (reviewed by (Iwasaki and Medzhitov, 2004). The mRNA expression of Tlr4 was high in 

the tick infested group, suggesting that cells expressing TLR4 were also recruited to the site of 

the tick bite other than LCs. 

The expression of the PRRs, including Clec7a and Trem-1, was high in the tick infested 

group compared to both the capsule only control and ID inoculated Rickettsia groups, which 

indicates that, apart from LCs, many other immune cells are also recruited at the site of tick bite 

including natural killer cells, macrophages and neutrophils which express the PRRs CLEC7A 

and TREM-1 on their cell surface. As TREM-1 and TLRs are expressed on neutrophils and 

monocytes, it is expected that Rickettsia-infected tick infestation will cause an increase in the 
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expression of Trem-1 and Tlr mRNA expression because both tick bites and Rickettsia infection 

cause an influx of neutrophils and monocytes (Sporn and Marder, 1996); reviewed by (Wikel, 

1999), which in turn might increase the mRNA expression of the above genes. 

The response of Tlr9 and Pglyrp3 mRNA was different than the response from the other 

PRRs. Tlr9 mRNA was downregulated in the tick infested tissues compared to the capsule-only 

control. It was shown that tick saliva can inhibit the maturation of DCs upon TLR9 ligation 

(Skallova et al., 2008), suggesting that the inhibition of DC maturation during tick infestation is 

due to the decreased expression of Tlr9 mRNA or to the unresponsiveness of TLR9 on DCs. 

Histological studies needed to evaluate the TLR9 response on DCs before concluding that ticks 

inhibit DC activity. Although Tlr9 mRNA expression was not influenced in the ID-inoculated 

Rickettsia group, its expression was higher in the Rickettsia-infected tick group. On the other 

hand, Pglyrp3 mRNA was highly upregulated in the ID inoculated Rickettsia group compared to 

the PBS control group. The Pglyrp3 mRNA expression was unaltered in the Rickettsia-infected 

tick group. This suggests that Rickettsia may influence the mRNA expressions of these two 

genes. 

During bacterial infection several other molecules help the PRRs in recognizing bacterial 

components. The molecule responsible for binding bacterial LPS is LPS-binding protein (LBP) 

(Tobias et al., 1986). Even low amounts of LBP can cause efficient binding to LPS and help to 

promote host’s inflammatory response through activation of TLR4 (Kitchens and Thompson, 

2005). In our data, Lbp as well as Md2 mRNA was upregulated in the tick infested group, 

especially in the Rickettsia-infected tick group compared to the capsule-only control. When the 
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ID inoculated Rickettsia group and tick-transmitted Rickettsia groups are compared, there was a 

significant upregulation in the Rickettsia-infected tick group. This difference could be due to 

different cell types in the skin tissues or a different level of cell activation. 

Similar to the Lbp and Md2 mRNA expression, Myd88 mRNA expression in the ID 

inoculated Rickettsia group was almost similar to its PBS control groups and its expression was 

higher in the tick infested group. The increased mRNA expression of Myd88 in the tick infested 

group might be due to the recruitment of different antigen presenting cells expressing TLRs and 

MyD88 during tick infestation which subsequently increased the MyD88 mRNA expression. In 

contrast to the high mRNA expression of Tlr2, Tlr4 and Myd88 during tick infestation, mRNA 

expression of Tollip, Trfa6 and Mapk8 were unaltered during both tick infestation and Rickettsia 

infection. The unaltered mRNA expression of the adaptor molecules, in spite of high PRR 

mRNA expression, might occur because the signal transduction genes are transcribed and 

translated at a high level, with a low turnover rate, and are not induced by the TLR mediated cell 

activation. It might also be possible that these genes are controlled by different signal cascades or 

are regulated differently on different cell types that might produce different amount of signal 

transduction genes mRNA. Further investigation is needed to see the protein expression level of 

the adaptor molecules to confirm their activation or inactivation. 

5.3: Tick-transmitted Rickettsia Infection Influenced the Expression of Ifngr1, Hmox-1, Il-

1β and Ppbp mRNA 

The recognition of microbial components by various PRRs, including TLRs, TREM-1, 

PGLYRP3, CLEC7A, as well as cytokine stimulation of cells via IFNGR1 induces the activation 

of immune cells including macrophages, dendritic cells, NK cell and neutrophils. The activated 
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cells subsequently synthesize and secrete several cytokines, including IL-1, TNF-α, IL-6, IFN-γ, 

chemokines, including MCP-1, CCL1, CCL17, CCL5, and several other components including 

Casp-1, HMOX-1, PPBP by these cells in an effort to fight the invading microbes and ultimately 

aid in efficient microbial killing. 

 Although the SuperArray data showed an increase in Ifngr1 mRNA in the tick-

transmitted Rickettsia group compared to the ID-inoculated Rickettsia group, the real-time PCR 

showed an unaltered expression of Ifngr1 mRNA expression. This might be due to the fact that 

as IFN-γ and TNF-α induced macrophage play a major role in Rickettsia killing (Feng and 

Walker, 2000). During tick-transmitted Rickettsia infection the increased amount of 

inflammatory cytokines TNF-α and IL-1 may enhance macrophage accumulation at the infection 

site which in turn increases the Ifngr1 mRNA expression or the cytokines actually activated the 

cells to express more IFNGR1 receptors. The activated IFNGR1 or the increased number of 

IFNGR1 receptors on macrophages can bind to IFN-γ and might induce activation of 

macrophages. 

Rickettsial infection can lead to an increased expression of both HMOX-1 and expression 

IL-6, as it was shown for HMOX-1 production in human endothelial cells infected with R. 

rickettsii (Rydkina et al., 2002) and IL-6 production in Rickettsia conorii infected human 

umbilical vein endothelial cells (HUVEC) showed increased amount of IL-6 production 

(Kaplanski et al., 1995). On the other hand, tick salivary gland extract can suppress the 

production of IL-6 in LPS activated cells (Fuchsberger et al., 1995). Interestingly, our data 

showed no significant change of Il-6 or Hmox-1 expression between the ID inoculated Rickettsia 
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and PBS control groups. Il-6 mRNA was highly upregulated in the uninfected tick group 

compared to the Rickettsia-infected tick group and Hmox-1 mRNA was highly upregulated in the 

Rickettsia-infected tick group. This indicates that Rickettsia is transmitted via tick, might be able 

to induce the upregulation of Hmox-1 mRNA and downregulation of Il-6 mRNA to further 

suppress the immune reactions induced by IL-6. 

Similar to Hmox-1 mRNA expression, Il-1β and Ppbp mRNA expression was also high in 

the tick-transmitted Rickettsia group compared to the ID-inoculated Rickettsia group and the 

uninfected tick group. Peripheral blood leukocytes treated with both LPS and salivary gland 

extract of Rhipicephalus appendiculatus salivary gland extract had reduced expression of IL-1β 

compared to only LPS treated cells (Fuchsberger et al., 1995). Enhanced expression of Ppbp and 

Il-1β mRNA in the tick-transmitted Rickettsia group might be due to the recruitment of different 

cell populations during uninfected tick and infected tick infestation, which in turn produces 

different levels of mRNA. 

Casp-1 is responsible for cleaving pro-IL-1β and pro-IL-18 to mature IL-1β and IL-18 as 

well as inducing apoptosis-mediated death (Miggin et al., 2007). Our result showed an up-

regulation of Casp-1 in the uninfected tick group compared to both infected tick and the ID 

inoculated Rickettsia group. This upregulation od Casp-1 in the uninfected tick is in contrast 

with a lack of Il-1 mRNA upregulation. Instead Il-1 is upregulated at a high level in the infected 

tick group. This was surprising as one would expect both IL-1β and Casp-1 to be upregulated on 

the same cell type and by the same promoter to make efficient production of active IL-1β. 
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In conclusion, the skin immune response during rickettsial infection, both via intradermal 

inoculation and tick transmission, induced the upregulation of a wide array of immune cells and 

molecules. Although we have demonstrated that tick infestation was able to upregulate the Tlr2 

and Tlr4 mRNA expressions, we were unable to conclude whether it caused the activation of the 

TLRs and the down-stream adaptor molecules to further activate NF-κB. While some cells and 

molecules were differentially regulated during the tick infestation and rickettsial infection, a 

consistent direction of modulation was observed for some genes when Rickettsia was transmitted 

via its natural route, i.e. tick saliva. This modulation could favor either rickettsial replication 

inside the infected cells or dissemination of Rickettsia into the blood to establish systemic 

infection. Although it is known that tick saliva can suppress a variety of immune responses 

including the modulation of complement activation, natural-killer cell function, antibody 

production, inhibition of T-lymphocyte responsiveness, and dendritic cell activation and 

maturation (reviewed in (Wikel, 1996), it is unclear at this point if Rickettsia is unilaterally 

taking advantage of the tick immune modulatory capabilities or if Rickettsia is also benefiting the 

tick in some way. Overall, our data suggests that the innate immune response to Rickettsia 

infection is substantially different in the skin when Rickettsia is transmitted via tick versus ID 

inoculation.  

As R. amblyommii is non-pathogenic to the human host, it is also possible that during 

intradermal injection of R. amblyommii, mice were able to clear the infection by 5-7 days, which 

was reflected in the low mRNA expression of several genes. Another possibility is that during 

rickettsial transmission via tick, tick delivered a much higher amount of Rickettsia to the mice 

compared to needle inoculation which is reflected in higher mRNA levels of the immune 
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response genes. To answer this question, further study should be done to standardize the 

rickettsial dose delivered via needle which is comparable to natural infection via tick. Infection 

with pathogenic Rickettsia, for example R. rickettsii or R. parkerii might help to understand the 

differences or similarities in immune response generated against the pathogenic and non-

pathogenic Rickettsia. Because gene expression from a specific cell population cannot be 

identified by the qPCR analysis of whole tissue, future studies will be needed to understand the 

detailed mechanism of how several PRRs and immune cells are modulated by Rickettsia when it 

is transmitted by ticks. 
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