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Abstract

A 3-connected graph G is called weakly 4-connected if min (|E(G1)|, |E(G2)|) ≤ 4

holds for all 3-separations (G1, G2) of G. A 3-connected graph G is called quasi

4-connected if min (|V (G1)|, |V (G2)|) ≤ 4. We first discuss how to decompose a

3-connected graph into quasi 4-connected components. We will establish a chain

theorem which will allow us to easily generate the set of all quasi 4-connected

graphs. Finally, we will apply these results to characterizing all graphs which do

not contain the Pyramid as a minor, where the Pyramid is the weakly 4-connected

graph obtained by performing a ∆Y transformation to the octahedron. This result

can be used to show an interesting characterization of quasi 4-connected, outer-

projective graphs.

v



Chapter 1
Introduction

1.1 Overview

In graph theory, determining H minor-free graphs is an important problem. In

Section 1.5, we will outline some of the known results in this area. The problem

that we will address is how to characterize H minor-free graphs where H is a weakly

4-connected graph. A common approach to solve such problems is to reduce the

problem to graphs of a comparable connectivity. In our case, we will decompose

the graphs into quasi 4-connected components. In Section 1.3, we outline two

decompositions that we will perform on the graph as well as results about minor

relationships between the quasi 4-connected components and the original graph.

Finally, we look at two applications of these results. First, we solve the problem

of characterizing Pyramid minor-free graphs. In Section 1.5, we explain why this

graph is interesting to study and overview the characterization results. Finally,

in Section 1.6, we explain how the characterization of Pyramid minor-free graphs

leads to a characterization of outer-projective graphs. We begin with Section 1.2

where we introduce some of the main terminology that will be used throughout

the dissertation.

1.2 Preliminaries

We will begin by introducing some general graph terminology that will be utilized

throughout the dissertation. A more thorough explanation of terminology used can

be found in [6], [10], or [25].
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A graph G = (V,E) is an ordered pair consisting of a finite set V of vertices

of G along with a finite multiset E of edges of G. We utilize the notation V (G)

and E(G) to represent the vertices and edges respectively of graph G. The number

of vertices in the graph is referred to as the order of the graph, while the number

of edges is the size of the graph. Edges in E(G) are usually denoted by e = uv,

where u, v ∈ V (G). If e = uv, then vertices u and v are said to be incident with

edge e. Since the two vertices are joined by an edge, we also say that vertices u and

v are adjacent. For convenience, we will usually refer to an edge by its endpoints,

so in this instance we can refer to edge e by uv. It is possible to have multiple

edges between the same pair of vertices. These edges are called parallel edges.

We can also have an edge that starts and ends at the same vertex. These edges are

called loops. If a graph contains neither parallel edges nor loops, then the graph

is called simple. For distinction, graphs that do allow parallel edges and loops are

sometimes called multigraphs. There are several ways that we can talk about the

vertices that are adjacent to a given vertex v. First, we can discuss the number of

edges incident to v. This is called the degree of vertex v, denoted either degG(v)

or simply deg(v). Note that in a simple graph, the degree of a vertex is the same as

the number of vertices adjacent to that vertex. In multigraphs, each parallel edge

is counted once in computing the degree of its incident vertices; loops are counted

twice. We can also talk about the vertices that are adjacent to v. If u is adjacent

to v, we say that u and v are neighbors, or that u is in the neighborhood of

vertex v. The neighborhood of a vertex v in a graph G, denoted NG(v) (or simply

N(v)) is the set of vertices in G that are adjacent to v.

Graphs are very nicely represented pictorially. We use dots to represent each

vertex. If two vertices are adjacent, we connect them with a line (an edge). We will

2



use the following pictorial representations of graph P1 and graph P2 as shown in

Figure 1.1 to illustrate some of the above concepts.

Figure 1.1: Graphs P1 and P2, respectively

We begin by noting that these are actually two drawings of the same graph.

This graph is called the Pyramid and is a graph that we will see again later.

To see that these two graphs are actually the same, we can check some of the

properties that we discussed above. We can easily check that both graphs are of

order seven and size twelve. We can also see that both graphs are simple as neither

one contains loops or parallel edges. Now, let us consider the vertex labeled v1. We

can first check the degree of this vertex in both graphs. We see that degP1(v1) =

degP2(v1) = 4. Further, we can see that NP1(v1) = NP2(v1) = {v2, v3, v4, v5}. We can

perform similar checks for the other six vertices in the two graphs to see that they

have matching degrees and neighborhoods in both representations. Therefore, our

two drawings really are the same graph. In general, the drawing P1 is preferable

to the drawing P2. First, P1 is drawn in a symmetric manner. We can see that

vertices v1, v2, and v3 are all similar. We will discuss this similarity in more detail

later. Additionally, there are no crossing edges in P1, that is, the edges of P1 only

intersect at vertices. This means that P1 actually shows a plane embedding of

the Pyramid. A graph which can be drawn in the plane without crossing edges is

3



called a planar graph. We note that although P2 does not show a plane embedding

of the Pyramid, it is still a planar graph since we can draw it in the plane without

crossing edges.

There are several families of graphs which have a special structure. Here, we

define some of the common ones that we will see later on. First, we consider

the path on n vertices, Pn for n ≥ 1. This graph has vertex set V (Pn) =

{v1, v2, . . . , vn} and edge set E(Pn) = {vivi+1|1 ≤ i ≤ n − 1}. We can extend this

graph to the cycle on n vertices, Cn by adding the single edge v1vn to Pn. We

will also consider the complete graph on n vertices, Kn for n ≥ 1. This graph

has vertex set V (Kn) = {v1, v2, . . . , vn} with edge vivj present in the graph for all

i 6= j. Finally, we will consider the family of wheels. The wheel graph Wn, for

n ≥ 3 is the graph on n+ 1 vertices consisting of a cycle of order n for which every

vertex in the cycle is adjacent to the single remaining vertex called the hub.

Next, we discuss some of the ways that two graphs can be related to each other.

First, we discuss further the concept of two graphs being the same. Two graphs

G and H are called isomorphic if there is a bijection f : V (G) → V (H) such

that vertices u and v are adjacent in G if and only if the corresponding vertices

f(u) and f(v) are adjacent in H. We note that if we consider the graph P1 from

Figure 1.1 and the same graph with labels v1 and v2 swapped, these two graphs

are isomorphic. For simplicity, we will say that these two graphs are the same.

Sometimes, we are only interested in considering a piece of graph. We call a graph

H a subgraph of graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G). If H is a subgraph

of G, but H 6= G, then H is called a proper subgraph of G. If we have a subgraph

H of G such that V (H) = V (G), then H is called spanning subgraph of G. A

subgraph H of G is called an induced subgraph if for each pair of vertices u and

v in H, uv ∈ E(H) if and only if uv ∈ E(G).

4



Again, we refer to graph P1 from Figure 1.1 for illustration of some of these

concepts. If we relabel the graph as shown in Figure 1.2 below, we note that there

is an isomorphism between the graph P ′1 as shown in Figure 1.2 and P1 as shown

in 1.1. We can simply map v1 in P ′1 to v2 in P1, map v2 in P ′1 to v1 in P1, and

map all other vi in P ′1 to the corresponding vi in P1. Again, we note that for all

practical purposes, both of the graphs are in fact the Pyramid graph so we make

no distinction between the different labelings.

Figure 1.2: Graph P ′1

We can also consider subgraphs of P ′1. The graph shown in Figure 1.3 is a

subgraph of P ′1. We can further note that this graph is also an induced subgraph

of P ′1. To check this, we simply need to ensure that all edges that existed between

vertices v1, v2, and v3 in P ′1 are also present in the subgraph.

In our discussion of results on graph decompositions, we will focus quite a bit

on the connectivity of the graph to be decomposed. Here, we explain some of the

terminology related to the connectivity of graphs. Let k ≥ 0 be an integer. A

k-separation of a graph G is a pair (G1, G2) of induced subgraphs of G such

that E(G1) ∪ E(G2) = E(G), V (G1) ∪ V (G2) = V (G), V (G1) − V (G2) 6= ∅,
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Figure 1.3: Subgraph of P ′1

V (G2)− V (G1) 6= ∅, and |V (G1) ∩ V (G2)| = k. Let |G| denote the order of graph

G. Let k ≥ 0 be an integer. A graph G is k-connected if |G| > k and G −X is

connected for every X ⊂ V with |X| < k. Equivalently, G is k-connected if |G| > k

and G has no k′-separation for all k′ < k. For k = 0, 1, 2, 3, we define k-sum as

follows. Let G1, G2 be disjoint graphs with more than k vertices. The 0-sum of

G1 and G2 is their disjoint union; a 1-sum of G1, G2 is obtained by identifying a

vertex of G1 with a vertex of G2; a 2-sum of G1, G2 is obtained by identifying an

edge of G1 with an edge of G2, where the common edge may or may not be deleted

after the identification; a 3-sum of G1, G2 is obtained by identifying a triangle of

G1 with a triangle of G2, where some of the three identified edges may be deleted

and some may be retained after the identification. It is clear that if G is a k-sum

of G1 and G2, then G has a k-separation. The converse is also true. Let (G1, G2)

be a k-separation (k ≤ 3) of a graph G. For i = 1, 2, let G+
i be obtained from Gi

by adding all edges between any two non-adjacent vertices in V (G1)∩ V (G2). Let

G′1 and G′2 be disjoint graphs which are isomorphic to G+
1 and G+

2 respectively.

Then, G is isomorphic to a k-sum of G′1 and G′2.

6



One important result that we can use to determine whether a graph is k-

connected is Menger’s Theorem. There are many versions of this theorem, so we

state the version that will be utilized in later results. We must introduce the con-

cept of internally disjoint u − v paths for this result. A u − v path in graph G is

a sequence of vertices of G starting at u and ending at v such that each vertex is

included at most once and consecutive vertices in the sequence are adjacent. Two

u − v paths are called internally disjoint if they have no vertices in common

aside from u and v.

Theorem 1.2.1 (Menger’s Theorem). Let G be a k-connected graph. Then, for

any pair of vertices u, v ∈ V (G), there are at least k pairwise-internally-disjoint

u− v-paths in G.

This theorem tells us that if G is a k-connected graph, then we should be able

to find k paths from any vertex u ∈ V (G) to any other vertex v ∈ V (G) such that

none of the paths have any vertices or edges in common (other than u and v of

course).

Let us refer once again to the graph P1 in Figure 1.1 for illustration of these

concepts. We can find a 3-separation of this graph. Let (G1, G2) be the induced

subgraphs of P1 defined as follows. Let V (G1) = {v4, v5, v6, v7} and E(G1) =

{v4v7, v5v7, v6v7}. Let V (G2) = {v1.v2, v3, v4, v5, v6} and E(G2) = {v1v2, v1v3, v1v4,

v1v5, v2v3, v2v4, v2v6, v3v6}. We can easily check that both of these subgraphs are

in fact induced. Further, we have included all vertices and edges from P1. V (G1)∩

V (G2) = {v4, v5, v6} which is a set of cardinality three. Therefore, we have a 3-

separation of P1. It is impossible to find any smaller separations in the graph P1.

Therefore, we can also say that P1 is 3-connected.
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One final relationship that we want to explore among graphs is the minor re-

lation. To talk about this relationship, we need to specify two graph operations.

First, let G be a graph with edge e = uv. We can consider the graph G′ formed from

the deletion of e from G, denoted G\e. The graph G′ = G\e has the same vertex

set as graph G, that is, V (G′) = V (G). The edge set E(G′) = {e ∈ E(G)|e 6= uv}.

For the second operation, we again consider a graph G with an edge e = uv. Now,

we wish to contract the edge e, an operation denoted by G/e. To obtain G/e, we

can delete the edge e and identify its two endpoints u and v. It is important to

note that even if G is a simple graph, we are not guaranteed that the graph G/e

will be simple. If we can obtain graph H through some series of edge deletions

and edge contractions on graph G, then we say that H is a minor of G, denoted

H ≤m G. Sometimes, vertex deletion, removing a vertex and all of its incident

edges from the graph, is included as a third allowable operation for forming graph

minors. We note that this operation is not required. If we wish to delete vertex v

from graph G, we can do so in two steps using edge deletion and edge contraction.

First, we delete all of the edges incident to v except for one. Then, we contract the

remaining edge that is incident to v. We would also like to note that if obtaining

minor H from G requires multiple edge deletions and edge contractions, then the

order in which we perform these operations is not important.

We can once again use graph P1 from Figure 1.1 to illustrate some of these

relationships. For example, if we consider P1\v1v2, we get the first graph shown in

Figure 1.4. Note that all we have done here is remove the edge between vertices

v1 and v2. The second graph shown in Figure 1.4 is P1/v1v2. The vertex labeled v∗

is the vertex that we get from identifying v1 with v2. Note that there is an edge

from v∗ to every vertex that was adjacent to either v1 or v2. In the case of v3 and

v4, there are two edges between each of these vertices and v∗. This is because each

8



of these vertices was adjacent to both v1 and v2 in P1. We can also say that each

of the graphs pictured in Figure 1.4 is a minor of P1.

Figure 1.4: Graphs P1\v1v2 and P1/v1v2

One practical way to consider a graph H ≤m G is to model the minor H in G.

Lemma 1.2.2. Let H be a minor of G. Since vertices of H are obtained by con-

tracting connected subgraphs of G, there must exist a set {Wv : v ∈ V (H)} of

pairwise disjoint subsets of V (G) and a set {fe : e ∈ E(H)} of edges of G such

that the following two properties hold:

1) G[Wv], the subgraph of G induced by Wv, is connected for every v ∈ V (H),

and

2) If e = uv ∈ E(H), then fe is an edge between Wu and Wv.

We say that the minor H is modeled in G by {Wv} and {fe}. Often, when we

are trying to show that G has an H minor it is convenient to find a model of H in

G.

1.3 Graph Decompositions

Graph decompositions are a powerful tool commonly used in the study of graph

theory. Decomposition results are very useful because they allow us to study the

9



structure of the graph. The general purpose of performing a decomposition is to

decompose the graph into smaller pieces that are generally better connected than

the original graph and allow for more effective analysis of the original graph. We

also hope to be able to have a unique decomposition. Sometimes, we can prove

results on the components of the decomposition which in turn allows us to prove

results about the original graph. Decomposition results have a long history in the

study of graphs.

In 1932, Hassler Whitney proved the uniqueness of a decomposition of 1-connected

graphs [26]. In this decomposition, the graph is uniquely decomposed into 2-

connected pieces. Whitney called graphs separable if they had such a decom-

position and non-separable otherwise. In his paper, he was able to prove many

results about both separable and non-separable graphs. Each component of Whit-

ney’s decomposition was in fact a subgraph of the original graph.

Naturally, decomposition results have been explored for graphs of higher connec-

tivity. In 1966, Tutte decomposed 2-connected graphs into cleavage graphs [24].

These cleavage graphs were either polygons, bonds (graph duals of polygons), or

3-connected graphs. In this decomposition, components were not necessarily sub-

graphs of the original graph. Each component was however a minor of the original

graph. In 1980, Cunningham and Edmonds showed that a 2-connected graph G has

a unique, minimal decomposition [9]. They further showed that each component

of the decomposition was prime (a graph which cannot be further decomposed in

a non-trivial manner), a polygon, or a bond. Their decomposition produced the

same canonical decomposition of the original graph as Tutte’s decomposition using

a different set of theorems. While Tutte defined the decomposition and established

some properties of the decomposition, Cunningham and Edmonds further showed

that the decomposition is characterized by some of the stated properties.

10



In 1993, Coullard, Gardner, and Wagner proved several results about decomposi-

tion of 3-connected graphs [8]. Their decomposition was based on the 3-separations

of the graph. Their decomposition result satisfied many properties, including unique-

ness. Their first result showed that every minimally 3-connected graph has a unique

minimal decomposition such that every component of the decomposition is either

cyclically 4-connected, a twirl, or a wheel. They further showed that every 3-

connected graph has a unique minimal decomposition with the property that no

member has a good split. Finally, they showed that a minimally 3-connected graph

does not have a good split if and only if it is either cyclically 4-connected, a twirl,

or a wheel.

The decomposition that we will show will decompose a 3-connected graph into

quasi 4-connected components. This decomposition is similarly based on the 3-

separations in the starting graph. However, the components of the decomposition

that we will be considering are different than those considered in the work of

Coullard, Gardner, and Wagner. We will be decomposing the starting graph into

components that are all quasi 4-connected. Additionally, we will see that it will be

possible for two different graphs to decompose into the same set of components.

In addition to these decomposition results, there have been many others which

decompose a graph into paths and cycles, decompose complete graphs into small

graphs, and focus on decomposition of hypergraphs. These are just a few examples

as graph decompositions is a widely studied area.

Aside from being interesting to mathematicians, these decomposition results

have many practical purposes. There are some algorithmic benefits to graph de-

composition. Decomposition of a graph allows us to “divide and conquer” to make

certain algorithms run more efficiently. For our decomposition, we will see a practi-

cal application to the study of graph minors. We will be able to completely classify
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H-minor-free graphs for a weakly 4-connected graph H in the event that we are

able to find the complete set of quasi 4-connected H-minor-free graphs.

Here, we preview some of the main decomposition results that we will cover

in detail in the next chapter. We will look at two operations that we can use to

decompose a graph into its quasi 4-connected components. The first operation will

be a fan reduction. This operation will reduce a large fan in our graph to a smaller

one. We will be able to prove the following theorem in relation to fan reductions:

Theorem 1.3.1. Let H be a weakly 4-connected graph such that H 6= Prism.

Let G be a 3-connected graph and let G′ be a fan-reduction of G. Then G is H

minor-free if and only if G′ is H minor-free.

This result gives us that if H is a minor of a graph G with a 3-separation (G1, G2)

where G2 is an arbitrarily large fan of size k ≥ 4, then it is also a minor of a graph

G′ with a 3-separation (G′1, G
′
2) where G′1 is almost exactly G1 (we may add at

most two new edges) and G′2 is a fan of size exactly three. The converse result also

holds. This result will be very useful to our application to graph minors.

The second operation in our decomposition will be the K4-split. There is a similar

theorem for K4-splits as relates to graph minors.

Theorem 1.3.2. Let H be a weakly 4-connected graph. Let (G1, G2) be a 3-

separation of a 3-connected graph G such that neither G1 nor G2 is a fan. For

i = 1, 2, let G+
i be the graph formed from a K4-split of G over {v1, v2, v3}. Then,

H is a minor of G if and only if H is a minor of G+
1 or G+

2 .

We note that performing a K4-split actually decomposes the graph into two

components unlike the fan reduction.

Since both of our decomposition operation have results related to graph minors,

it is natural that we explore applications of these results to graph minors. We note
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that the Pyramid, which we saw earlier in Figure 1.1, is a weakly 4-connected

graph. Therefore, the results of the previous two theorems apply to this graph.

If we can characterize quasi 4-connected H minor-free graphs for a weakly 4-

connected graph H, then we will be able to characterize the 3-connected H minor-

free graphs as well. The following theorem gives the construction.

Theorem 1.3.3. Let H be a weakly 4-connected graph such that H 6= Prism.

Then, 3-connected H minor-free graphs are precisely those graphs that are con-

structed from the quasi 4-connected H minor-free graphs by fan-extensions and

K4-sums.

1.4 A Chain Theorem

In 1996, Politof and Satyanarayana published many results on the structure of

quasi 4-connected graphs [22]. Since we are decomposing our graphs into quasi 4-

connected components, we wish to study the structure of quasi 4-connected graphs

in more detail.

Suppose H is a quasi 4-connected minor of a quasi 4-connected graph G. Then,

an (H,G) -chain is a sequence G1, G2, . . . Gk of quasi 4-connected graphs such that

G1
∼= H, Gk

∼= G, and for every i = 1, 2, . . . , k− 1, Gi+1 is a Gi-add, a Gi-split, or

a Gi-straddle as defined below.

A Gi-add is the addition of a single edge to Gi. We add this edge in such a way

that the resultant graph is still simple, that is, we do not add any loops or parallel

edges. A Gi-split replaces a vertex v of degree at least four in Gi by two adjacent

vertices v′ and v′′ and joins all neighbors of v to exactly one of v′ or v′′ such that

both v′ and v′′ have degree at least three. The requirement that both vertices have

degree at least three ensures that our graph remains 3-connected. A Gi-straddle
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replaces an edge uv where uv is contained in a triangle uvw of Gi in which u, v,

and w all have degree at least four by a new vertex x which is joined to u, v, and

w. Here again, we have specific degree requirements to ensure that we will produce

a 3-connected graph after performing this operation.

In their paper Politof and Stayanarayana provided a recursive theorem for gen-

erating the set of all quasi 4-connected graphs from a set of base graphs using the

three operations we described. We will look at their theorem later as well as prove

the following refinement of their theorem:

Theorem 1.4.1. For every quasi 4-connected graph G /∈ {W3,W4,W5}∪{Ln,Mn :

n ≥ 8}, there exists a (W4, G)-chain.

The families of graphs Ln and Mn will be defined in Section 3.1.

1.5 Pyramid Minor-Free Graphs

The problem of characterizing H minor-free graphs is another long studied problem

in graph theory. This problem has been solved for all 3-connected graphs with at

most eleven edges [14]. If we consider graphs on twelve edges, this problem has

been solved for three of them. First, it has been solved for the octahedron which is

a 4-connected graph [11]. It has also been solved for the two internally 4-connected

graphs on twelve edges, namely the Cube and the Wagner graph M8. There are

exactly two other graphs on twelve edges that are weakly 4-connected. One graph,

which is a minor of the Petersen graph, was characterized by Adam Ferguson in

[15]. The other is the Pyramid graph. This graph is pictured in Figure 1.1. One

of the main goals of this work is to present a characterization of graphs which

are Pyramid minor-free. Not only is the Pyramid one of the smallest 3-connected

graphs H for which H minor-free graphs have not yet been characterized, it is a
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graph which we encounter in other areas as well. First, Geelen and Zhou [17] showed

that we can construct all weakly 4-connected matroids from ladders and tridents.

The Pyramid is the only trident which we can represent graphically meaning it is

one of the most basic weakly 4-connected graphs. Further, the Pyramid represents

an excluded minor for a special class of graphs called Feynman 5-splitting graphs

[5]. Further, this graph also appears in [12] as a forbidden minor for the class

of 3-connected graphs of pathwidth at most three. We will also see in the next

section that the Pyramid is an excluded minor for outer-projectivity. We will use

our decomposition results combined with the chain theorem for generating quasi 4-

connected graphs to completely characterize the set of Pyramid minor-free graphs.

We will use the results to classify completely the set of graphs which are Pyramid-

minor-free. We will classify these graph using two theorems.

Theorem 1.5.1. Quasi 4-connected, Pyramid-minor-free graphs are graphs in M

along with 31 isolated graphs.

For now, we simply say that M is an infinite family of graphs. We will explore

this family in great detail later on. We will also explicitly show all of the isolated

graphs mentioned. This theorem is the first step to a complete classification.

Thus far, we have said nothing about Pyramid-minor-free graphs of lower con-

nectivity. We address this issue in another theorem.

Theorem 1.5.2. Pyramid-minor-free graphs are precisely those graphs formed

from a series of 0, 1, 2-sums, K4-sums, and fan extensions performed on graphs

in M, the 31 isolated graphs from the previous theorem, K1, K2, C2, and C3.

Now, we have a means of constructing all of the Pyramid-minor-free graphs if

we can simply find all of the quasi 4-connected, Pyramid-minor-free graphs. We

will do precisely this is a later chapter.
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1.6 Outer-projective Graphs

A graph G is called outer-projective if it can be drawn in the projective plane

so that there is a face which meets all vertices of G. Let G + v denote the graph

obtained from G by adding a single vertex v to the graph which is adjacent to all of

the original vertices of G. It is easy to check that G is an outer-projective graph if

and only if G+ v is a projective graph. Forbidden minors have been characterized

for projective graphs. Therefore, it is interesting to study the forbidden minors

for outer-projective graphs as well. We will be able to use our characterization of

Pyramid minor-free graphs in order to characterize outer-projective graphs.

Theorem 1.6.1. Let G be a quasi 4-connected graph. Then, the following are

equivalent:

a) G is outer-projective.

b) G is Pyramid, G12,4, G12,5, G12,7, and G14,2 minor-free.

c) G is Pyramid minor-free and G is not one of the thirty-one graphs listed in

Theorem 4.3.8

The graphs G12,4, G12,5, G12,7, and G14,2 will be shown in Chapter 5 and are given

by their edge listings in the Appendix.
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Chapter 2
Quasi 4-connected Graphs

2.1 Preliminaries

In this chapter, we will discuss how to decompose a 3-connected graph into its quasi

4-connected components. We will also discuss how to reconstruct the 3-connected

graph G from its quasi 4-connected components.

Before we start discussing quasi 4-connected graphs in great detail, we first define

what it means for a graph to be quasi 4-connected.

Let G be a 3-connected graph. We say that G is quasi 4-connected if for every

3-separation (G1, G2) of G, either G1 or G2 has exactly four vertices.

Suppose G is a quasi 4-connected graph with a 3-separation (G1, G2). Without

loss of generality, we may assume that G2 has exactly four vertices. Since (G1, G2)

is a 3-separation, we know that |V (G1) ∩ V (G2)| = 3 Therefore, there is exactly

one vertex that is contained in G2 that is not also contained in G1. Alternatively,

there is no limit on the number of vertices in G1\G2. The graph shown in Figure

2.1 illustrates what a typical 3-separation of a quasi 4-connected graph looks like.

Figure 2.1: A typical 3-separation of a quasi 4-connected graph
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We note a few additional properties of the separation. First, there are three

edges incident to the vertex in V (G2)\V (G1). This vertex is adjacent to each of

the vertices in V (G1)∩ V (G2). All three of these edges must be present, otherwise

our graph cannot possibly be quasi 4-connected as it is not even 3-connected. The

red edges indicate edges that may be present in the graph. We can have any subset

of these edges in the graph and our separation still satisfies the condition for quasi

4-connectivity.

Now that we know what a quasi 4-connected graph looks like, we will consider

two operations that decompose a 3-connected graph into quasi 4-connected com-

ponents.

2.2 Decomposition Operations

First, we will consider graphs that have a special 3-separation. Let G be a 3-

connected graph with 3-separation (G1, G2). For k ≥ 3, we call G2 a fan of size

k if V (G1) ∩ V (G2) = {v0, v1, vk}, V (G2)\V (G1) = {v2, v3, . . . vk−1}, and E(G2) =

{v0vi|2 ≤ i ≤ k − 1} ∪ {vjvj+1|1 ≤ j ≤ k − 1} ∪ F , where F is a subset of

{v0v1, v0vk, v1vk}. We will call this special kind of 3-separation a fan separation

of G. We can see in Figure 2.2 what a typical fan separation looks like in a graph.

We note that any subset of the red edges in the graph may be present and the

given separation is still a fan separation.

If a 3-connected graph G has a fan separation where the fan is of size k ≥ 4,

one decomposition that we can perform is actually reducing the size of the fan.

Let x, y be cubic vertices of G such that the only five edges incident with them

are xy, ux, vy, wx,wy. A fan reduction gives us a new graph which is obtained

from G− {x, y} by adding one new vertex z, three new edges uz, vz, wz and also
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Figure 2.2: A fan-separation

two other edges wu,wv if they were not already edges of G. Figure 2.3 shows an

application of fan reduction.

Figure 2.3: Application of Fan Reduction

This operation is actually related to fan separation. We call this operation a fan

reduction since it can be used to reduce any fan of size k ≥ 4 to a fan of size

exactly three. Consider the graph G shown in Figure 2.4.

We note that this graph has a fan separation where the fan is of size k. We

first consider the 3-separation of G over {v0, v1, v4}. We note that this too is a

fan separation where the fan is of size exactly four. Further, this 3-separation has

precisely the structure described in the definition of fan reduction. Therefore, we

may apply the fan reduction operation. In doing so, we delete vertices v2 and v3

from G. We add a new vertex v∗ to G and add edges v0v∗, v1v∗, and v4v∗ to G. We

note that the original 3-separation of G over the vertices {v0, v1, v4} is still a fan

separation, but now the fan has size exactly k − 1. If k − 1 is still at least four,
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Figure 2.4: Reduction of a Large Fan

we may continue to perform fan reductions in exactly the same manner. When we

can no longer apply fan reductions, our graph will be exactly the graph G′ shown

in Figure 2.4. In both G and G′, the red edges denote edges that may or may not

be present in the graph. The edge v1vk will be an edge in G′ if and only if it is an

edge in G.

The second decomposition operation that we will use will be applied to any

3-separation which is not a fan separation. Let G be a graph with 3-separation

(G1, G2) such that V (G1)∩ V (G2) = {v1, v2, v3}. For i = 1, 2, let G+
i be the graph

obtained from Gi by adding a new vertex v4, adding three new edges v1v4, v2v4, v3v4,

and adding edges v1v2, v1v3, v2v3 if they were not already present in Gi. We call this

operation a K4-split of G over {v1, v2, v3}. Note that unlike fan reduction where

we started with a single graph and still had a single graph after the reduction,

K4-split takes a single graph and decomposes it into two graphs. It is worth noting

that G+
i is not necessarily a minor of the original graph G.

We illustrate the process for performing a K4-split on a graph in a series of

figures. First note the graph in Figure 2.5.

Let us consider the 3-separation shown in Figure 2.6.
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Figure 2.5: Performing a K4-split

Figure 2.6: A 3-separation

Both sides of this 3-separation have exactly five vertices. Therefore, this graph

is not quasi 4-connected. We also note that neither side of the 3-separation is a

fan. If we did have a fan on one side of the separation, we would simply perform

a fan reduction first. We will perform a K4 split of this graph over the three red

vertices.

First, we separate the graph into two components. A copy of each of the red

vertices is present in both components as shown in Figure 2.7.

Figure 2.7: Splitting the Graph into Two Pieces
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Finally, we add the required new vertex to each component as well as the required

new edges. The two components generated from this K4-split can be seen in Figure

2.8. It can be easily verified that each of these components is quasi 4-connected. If

we had one or more components that were not quasi 4-connected, we would simply

perform another K4-split to the necessary component(s).

Figure 2.8: Two Components generated from the K4-split

Now that we have these two operations, we are ready to decompose a 3-connected

graph into its quasi 4-connected components. We follow the steps as listed to

achieve the decomposition:

1) Identify a fan separation in graph G.

2) If the size of the fan is greater than three, perform fan reductions until it is

reduced to a fan of size exactly three.

3) Repeat steps 1 and 2 until the only fan separations left are those with fans

of size exactly three.

4) Identify a 3-separation (G1, G2) in the graph where both sides of the separa-

tion have more than four vertices.

5) Perform a K4-split over the vertices in V (G1) ∩ V (G2).

6) Repeat steps 4 and 5 until all components of the decomposition are quasi

4-connected.
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The components that are generated from Steps 1-6 are the quasi 4-connected

components of graph G. For any 3-connected graph G, we achieve a unique de-

composition from 1-6.

We would like to note that it is possible to reconstruct graph G from its quasi

4-connected components. This also requires two operations. First, let w be a cubic

vertex of G such that NG(w) = {x, y, z} and both xy and yz are both edges of

G. A fan extension of G is obtained by splitting the vertex w into two adjacent

vertices u and v such that u is adjacent to both x and y and v is adjacent to both

y and z. Edges xy and yz may be preserved in the extended graph or we may

choose to delete them, provided none of x, y, or z has degree less than three after

the edge deletions. We note that when performing fan extensions, we may produce

more than one graph as the result. We refer back to Figure 2.3 for illustration. If

we start from the graph on the right and apply a fan extension, the graph on the

left is one possible graph which can be generated by this operation. We note that

there are three other graphs that could possibly be generated by performing this

fan extension.

We also have an operation that can reverse a K4-split. Let G be a graph with 3-

separation (G1, G2) such that V (G1)∩V (G2) = {v1, v2, v3}, V (G2)−V (G1) = {v4},

and all possible edges between v1, v2, v3, v4 are present. Let H be a graph with 3-

separation (H1, H2) such that V (H1) ∩ V (H2) = {u1, u2, u3}, V (H2) − V (H1) =

{u4}, and all possible edges between u1, u2, u3, u4 are present. The K4-sum of G

and H, denoted G⊕K4 H, is obtained from G\{v4} and H\{u4} by identifying ui

with vi for i = 1, 2, 3 and possibly deleting some of the identified edges. Again, we

may be required to keep some of the edges to ensure the identified vertices all have

degree at least three. This operation almost reverses a K4-split. Note that a K4-

sum could actually produce more than one graph. In fact, there are six possibilities
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for the resultant graph depending on which of the identified edges we choose to

delete. Therefore, if we start from a graph G, perform a K4-split, and then perform

a K4-sum on the two components, we have six possible graphs that our result could

be. G is one of those six graphs.

We can see the process of performing a K4-sum by reversing Figures 2.8 through

2.5. First, we start with two graphs that each contain a 3-separation where one

side of the separation is K4 as seen in Figure 2.8. Then, we delete vertex from

each component that is contained solely on the K4 side of the separation. Note,

we actually get the graphs shown in Figure 2.9.

Figure 2.9: Reconstructing a Graph via K4-sum

We do not remove any of the edges between the three remaining vertices of the

K4 yet. Then, we identify the remaining K4 vertices of one component with the

remaining K4 vertices from the second component. Then, we may remove any of

the identified edges. One possible graph that we could generate in this way is the

graph pictured in Figure 2.5.

There are many ways we could choose to decompose a 3-connected graph. Why

choose this way? It turns out that the graphs generated from either a fan reduction

or a K4-split have some interesting properties in relation to the original starting

graph. We will explore some of these properties now.

24



The property that we will be exploring relates to finding a weakly 4-connected

graph H as a minor in both the original graph G and the components of the

decomposition. We call a 3-connected graph G weakly 4-connected if for every

3-separation (G1, G2) of G, either G1 or G2 has at most four edges.

Theorem 2.2.1. Let H be a weakly 4-connected graph such that H 6= Prism

(shown in Figure 2.10).

Figure 2.10: The Prism

Let G be a 3-connected graph and let G′ be a fan reduction of G. Then, G is H

minor-free if and only if G′ is H minor-free.

We will require several lemmas to prove this result.

First, since we will be concerned with 3-connected graphs for these results, the

following theorems of Seymour and Tutte will be useful. The first result of Seymour

will help us ensure that our graphs remain 3-connected. The second result of Tutte

gives an easy way to identify whether certain graphs are 3-connected.

Lemma 2.2.2. Let e be an edge of a 3-connected graph G with |G| ≥ 5. Then,

either G/e is obtained from a 3-connected graph by adding parallel edges or G\e is

obtained from a 3-connected graph by subdividing edges. [23]

Lemma 2.2.3. A graph is 3-connected if and only if it is obtained from a wheel

by repeatedly adding edges and splitting vertices. [14]
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The next two lemmas can help us find a specific minor in a given graph provided

that the graph has a special structure.

Lemma 2.2.4. Let H be a graph with all vertices of degree at least three. If H is

a minor of a graph G with a vertex v of degree two whose adjacent edges are e1

and e2, then H is a minor of G/ei for i = 1 or 2.

Proof. Suppose neither e1 nor e2 can be contracted to obtain an H-minor. Then

we must delete either e1 or e2 to form the minor since H has no vertices of degree

two. Suppose, without loss of generality, that we delete edge e1. Now v has degree

one. Therefore, we must delete or contract e2 to form the minor since H has no

vertices of degree one. However, deletion or contraction of e2 will produce the same

graph. Therefore, we can form the H-minor by contracting e2.

Lemma 2.2.5. Let H be a simple graph. If H is a minor of a graph G with parallel

edges e1, e2, then H is a minor of G\ei for i = 1 or i = 2.

Proof. Suppose neither e1 nor e2 can be deleted to obtain an H-minor. Then, we

must contract either e1 or e2 to form the minor since H has no parallel edges

or loops. Suppose, without loss of generality, that we contract edge e1. Now e2

is a loop. Therefore, we must delete or contract e2 to form the minor since H

has no loops. However, deletion or contraction of e2 will produce the same graph.

Therefore, we can form the H-minor by deleting e2.

Before proving the theorem, we consider finding a weakly 4-connected minor in

two graphs both of which have fan separations with a specific structure.

Lemma 2.2.6. Let H 6= W3 be a weakly 4-connected graph. Let w be a cubic vertex

of a graph G such that NG(w) = {x, y, z} and xy, yz ∈ E(G). If H is a minor of
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G, then at least one of wx,wy, wz, xy, xz must be deleted or contracted to form the

minor H.

Proof. Suppose none of wx,wy, wz, xy, xz is deleted or contracted to form the

minor H. Then, we can consider w, x, y, z as vertices of H. The vertices x, y, z are

all still distinct vertices since H is a simple graph. Let H1 = H\w. We consider

two cases.

Case 1: |H1| = 3. If the only vertices in H1 are x, y, z, then the only edges which

can be in E(H1) are {xy, xz, yz} which means H would have to be W3. All of these

edges must be contained in H1, otherwise H would not be 3-connected, so H = W3

is the only possibility.

Case 2: |H1| ≥ 4. Let H2 be the subgraph of H induced by {w, x, y, z}. Then,

(H1, H2) is a 3-separation of H. Since H is a weakly 4-connected graph, side H1

must have four or fewer edges since H2 has at least five edges. If a single vertex

u is in V (H1) but not in V (H2), then u must have degree at least three since H

is 3-connected. But this would mean that |E(H1)| ≥ 5 which contradicts H being

weakly 4-connected. Similarly, it is not possible for H1 to contain more than four

vertices.

Therefore, we must delete or contract at least one of wx,wy, wz, xy, xz in order

to obtain the H-minor.

Lemma 2.2.7. Let H /∈ {W3, Prism} be a weakly 4-connected graph. Let u, v be

cubic vertices of a graph G such that F = {uv, ux, uy, vy, vz} is the set of edges

in G that are incident with u or v. If H is a minor of G, then at least one of the

edges from F must be deleted or contracted to form the minor H.

Proof. Suppose no edge from F is deleted or contracted to form the minor H. Then,

we can consider u, v, x, y, z as vertices of H. We first note that x, y, z are distinct
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vertices in H. The pairs x, y and y, z are distinct since H is simple. The only other

possibility is if there is a xz-path which is contracted to form new vertex w. In this

case, {w, y} forms a 2-separation of H, which contradicts H being 3-connected,

unless H = W3 which is disallowed by assumption.

Now, let H1 = H\{u, v}. We consider two cases.

Case 1: |H1| = 3. If the only vertices in H1 are x, y, z, then the only edges which

may be contained in E(H1) are xy, xz, yz. In fact, all of these edges must contained

in E(H1), or else H would not be 3-connected. However, in this case H = W4 which

is not a weakly 4-connected graph.

Case 2: |H1| ≥ 4. Let H2 be the subgraph of H induced by {u, v, x, y, z}. Then,

(H1, H2) is a 3-separation of H. Since H is a weakly 4-connected graph, side H1

must have four or fewer edges since H2 has at least five edges. If a single vertex

q is in V (H1) but not it V (G2), then q must have degree at least 3 since H is 3-

connected. This means that |E(H1)| = 3 or 4. If |E(H1)| = 3, x has degree 2, which

would mean that H is not 3-connected. Therefore, it must be that |E(H1)| = 4.

The only graph of this type which is 3-connected (and also weakly 4-connected)

is the Prism. It is not possible for H1 to contain more than four vertices, as the

resulting graph H would not be weakly 4-connected as both H1 and H2 would need

to have at least five edges to maintain 3-connectedness.

Therefore, at least one edge in F must be deleted or contracted to form the

minor H.

Proof of Theorem 2.2.1. Case 1: H = W3: Since G is 3-connected, by Theorem

2.2.3, G must contain a W3-minor.
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Let G′ be the graph generated from a fan reduction of G. We will see later that

this graph is also guaranteed to be 3-connected. Therefore G′ must also always

contain a W3 minor.

Therefore, we can conclude that the theorem must hold for H = W3.

Case 2: Now, we may assume that H 6= W3. Suppose H is a minor of G. Let

x and y be cubic vertices of G such that the only five edges incident with either

of them are xy, ux, vy, wx,wy. According to Lemma 2.2.7, at least one edge of

{wx,wy, ux, xy, vy} must be deleted or contracted to form the H-minor. We con-

sider the possibilities. Contraction of ux or vy yields a graph which is a minor

of G′. Contraction of wx, wy, or xy yields parallel edges. By Lemma 2.2.5, we

may delete one of the parallel edges and still contain the H-minor. The resulting

graph is a minor of G′. Therefore, we assume that we cannot contract any edges in

{wx,wy, ux, xy, vy} to form the H-minor. However, regardless of which edge we

delete, we get at least one vertex of degree two. Then, by Lemma 2.2.4, we can

contract one of the edges adjacent to the degree two vertex to form the minor, a

contradiction. Therefore, H must be a minor of G′.

Let G′ be the graph generated from a fan reduction of G. Now assume that H is

a minor of G′. According to Lemma 2.2.6, at least one edge of {uw, vw, uz, vz, wz}

must be deleted or contracted to form the H-minor. We consider the possibilities.

Deletion of uw or vw yields a graph which is a minor of G. Deletion of uz, vz, or wz

will result in z being a degree two vertex. By Lemma 2.2.4, we may contract one of

the adjacent edges and still contain the H-minor. By Lemma 2.2.5, if we form any

parallel edges, we may delete one and still contain the H-minor. In any case, the

resulting graph will be a minor of G. Therefore, we assume that we cannot delete

any edges to form the H minor. However, regardless of which edge we contract, we
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get a set of parallel edges. Then, by Lemma 2.2.5, we can delete one of the edges

to form the H-minor, a contradiction. Therefore H must be a minor of G.

We note that H = Prism is actually an exception to Theorem 2.2.1, with the

counterexample shown in Figure 2.11 where the first graph is G and the second is

G′.

Figure 2.11: Prism as a Counter-example to Theorem 2.2.1

It is easy to check that the Prism is a minor of G but is not a minor of G′.

There is a similar minor result for our second decomposition operation.

Theorem 2.2.8. Let H be a weakly 4-connected graph. Let G be a 3-connected

graph with a 3-separation (G1, G2) such that V (G1) ∩ V (G2) = {v1, v2, v3} and

neither G1 nor G2 is a fan. For i = 1, 2, let G+
i be the graphs formed from a K4-

split of G over {v1, v2, v3}. Then, H is a minor of G if and only if H is a minor

of G+
1 or G+

2 . (Graphs G+
1 and G+

2 are illustrated in Figure 2.12.)

We will need the following lemma to prove this result.

Lemma 2.2.9. Let G be a 3-connected graph with 3-separation (G1, G2) such that

G1 ∩G2 = {x, y, z}. If G2 does not contain the graph F (as shown in Figure 2.13

as a minor, with vertices x, y, and z preserved, then G2\z is an xy-path. [12]
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Figure 2.12: Graphs G+
1 and G+

2

Figure 2.13: Graph F

Proof of Theorem 2.2.8. Case 1: H = W3 Since G is 3-connected, it contains H =

W3 by Theorem 2.2.3. In both G+
1 and G+

2 , the subgraph induced by v1, v2, v3, and

v4 is exactly W3, so both of these graphs contain W3 as a minor.

Case 2: H 6= W3 Suppose H is a minor of either G+
1 or G+

2 . Without loss of

generality, we may assume H is a minor of G+
1 . Since H is weakly 4-connected,

we know that one side of any 3-separation of H may contain at most four edges.

Since H is not W3, at least one vertex from G1 must be used to form the minor. To

avoid having both sides of the corresponding 3-separation of H from having too

many edges, at least one of {v1v2, v1v3, v1v4, v2v3, v2v4, v3v4} must be either deleted

or contracted. Suppose, first, that we delete either v1v4, v2v4, or v3v4 to form the

H-minor. Now v4 is a degree two vertex and by Lemma 2.2.4, we may contract

one of the adjacent edges and still have a graph which contains that H-minor.

Contracting either of the adjacent edges will result in a set of parallel edges. By
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Lemma 2.2.5, we may delete one of the parallel edges and still contain the H-minor.

The resulting graph, G+
1 \v4, is always a minor of G unless G2 is exactly the fan of

size three which it cannot be by assumption. Therefore, we may assume that we

cannot delete any of v1v4, v2v4, or v3v4 to form the H-minor. Contraction of any of

the six edges will always result in a set of parallel edges. By Lemma 2.2.5, we can

delete one of the parallel edges and still contain the H-minor. We could have found

the H-minor by deleting the edge first. One edge in the parallel edge pair will be

either v1v4, v2v4, or v3v4 regardless of which edge in the graph was contracted.

Therefore, we assume that we do not contract any edges to form the H-minor.

If we delete either v1v2, v2v3, or v1v3, we must delete or contract something else

from {v1v2, v1v3, v1v4, v2v3, v2v4, v3v4} since otherwise H is not weakly 4-connected.

This means we can only delete a second edges of v1v2, v2v3, or v1v3. Suppose the

resulting graph is also not a minor of G. Suppose without loss of generality that

the edge of v1v2, v2v3, and v1v3 which remains is v1v2. Then, by Lemma 2.2.9, since

G is 3-connected G2\v3 is a path from v1 to v2. If G2\v3 consists on only a single

edge from v1 to v2, then G+
1 is always a minor of G unless G2 is exactly the fan

of size 3 which it cannot be by assumption. Suppose then that there are n ≥ 1

vertices other than v1 and v2 on this path. Then, since G is 3-connected, G2 would

have to be the fan of size n + 2 which it cannot be by assumption. Therefore, H

must be a minor of G.

Now, suppose H is a minor of G. By Lemma 1.2.2, we can find a model {{Wv}, {fe}}

of H in G.

Let V0 = V (G1)∩V (G2) and let Z be the set of vertices v of H with Wv∩V0 6= ∅.

Then |Z| ≤ |V0| = 3. We first observe that there do not exist vertices w, x, y, z ∈

V (H) with both Ww and Wx contained in V (G1)\V0 and both Wy and Wz contained

in V (G2)\V0. Suppose otherwise. Since V0 separates Ww and Wx from Wy and Wz
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in G, Z separates w and x from y and z in H which means that H has an l-

separation with l = |Z| ≤ 3 which separates w and x from y and z. If l < 3, then

this contradicts H being 3-connected. If l = 3, then H has a 3-separation which

has at least two vertices on each side of the separation and thus at least five edges

on each side of the separation (otherwise H is not 3-connected). This contradicts

H being weakly 4-connected. Therefore, we may assume, without loss of generality,

that there is at most one vertex w such that Ww is contained in V (G1)\V0.

Now, we consider two possibilities for |Z|.

|Z| < 3: If |Z| < 3, then we note that there can be no vertex w in H such

that Ww is contained in V (G1)\V0. Otherwise, H would have a k-separation with

k = |Z| < 3 which separates w from the rest of H, contradicting H being 3-

connected. Therefore, no vertices of the H-minor are contained entirely in G1\G2.

The only thing which may be contributed to the minor from G1\G2 are edges

between vertices in Z. Since all edges between vertices in Z are accounted for in

G+
2 ,the H-minor is contained in G+

2 .

|Z| = 3: We will now show that we can find a model of H in G+
2 . Any Wv that

are contained in G2 will also be contained in G+
2 . Any edges fe that are contained

in G2 are again also contained in G+
2 . The vertices v1, v2, v3 in G can be modeled

by the vertices v1, v2, v3 in G+
2 . Finally, if we do have a Ww contained in V (G1)\V0,

then it is modeled by the single vertex w in G+
2 \V (G2)\{v1, v2, v3}. All possible

edges between w, v1, v2 and v3 are present in G+
2 . Therefore, H is a minor of G+

2 .

(Note: For this direction we did not need that G is a 3-connected graph).

This theorem tells us that if we perform any K4-split on a 3-connected graph G,

then any weakly 4-connected minors H of G are contained in a component of the
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K4-split. Likewise, if we can find an H minor in one of the components generated

from a K4-split, this means there was an H minor in the original graph G.

Finally, we wish to show that by performing fan extensions and K4-sums on

the quasi 4-connected H minor-free graphs, we can in fact generate all of the

3-connected H minor-free graphs. We do so with the following theorem.

Theorem 2.2.10. Let H be a weakly 4-connected graph such that H 6= Prism.

Then, 3-connected, H minor-free graphs are precisely those graphs that are con-

structed from the quasi 4-connected, H minor-free graphs by fan-extensions and

K4-sums.

Proof. Let G be any 3-connected, H minor-free graph. Then, we can easily de-

compose G into its quasi 4-connected components as previously described. We are

guaranteed by Theorems 2.2.1 and 2.2.8 that each of the quasi 4-connected com-

ponents that we generate will also be H minor-free. We know that we can reform

G through some series of the operations fan extension and K4-sum.

Now, we wish to show that performing some series of fan extension and K4-

sum on quasi 4-connected, H minor-free graphs will always yield a 3-connected, H

minor-free graph. Again, we are guaranteed by Theorems 2.2.1 and 2.2.8 that the

resultant graph will be H minor-free. We now show that the resultant graph will

also be 3-connected.

First, we consider performing a fan extension on a quasi 4-connected graph as

shown in Figure 2.14.

We will show that there are still three internally disjoint paths between every

pair of vertices. First, we consider w2 to w3. There is an edge between those two

vertices, so that constitutes one path between them. There is also the path w2w0w3.

Finally, there is a path starting at w2 going to w1 which passes through G1 to w4
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Figure 2.14: Fan Extension

and ending at w3. It is easy to check that these paths are in fact internally disjoint.

Now, we check w0 to w2. There is an edge between these two vertices, so that is

one path between them. There is also the path w0w3w2. Finally, there is a path

starting at w0, going through vertices in G1 to w1 which is adjacent to w2. Again,

we may easily verify that these paths are disjoint. A similar argument shows that

there are three internally disjoint paths between w0 and w3. Next, we check w2 to

any vertex contained in G1. We note that in the original graph, there were three

internally disjoint paths from v2 to any vertex in G1. We can easily replicate those

paths in the extended graph. A similar argument holds to show three internally

disjoint paths from w3 to a vertex in G1. Now, we consider two vertices both

contained in G1. There were three internally disjoint paths between any such pair

in the original graph. If all three of these paths were contained entirely in G1,

then those same paths exist in the extended graph. If any of the paths leave G1,

they must travel through one of the center vertices out of G1 and back through a

second of the center vertices. Therefore, there can be only one such path of this

type. Whichever path it took out of G1 and back can be easily replicated in the

extended graph. Now, we consider w0 to any vertex in G1. We note that there

were three internally disjoint paths from v0 to any vertex in G1 in the original

graph. If all of the edges on the path were contained exclusively in G1, then we

can easily replicate those paths in the extended graph. There can be at most two
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such paths that were had edges not exclusively contained in G1, one which passed

through v1 and one which passed through v3. Since in the extended graph, we have

similar paths from w0 to w1 and w0 to w4, we could replicate either of these paths.

Therefore, there are still three internally disjoint paths in the extended graph.

Now, we consider w1 to w4. If both edges w0w1 and w0w4 exist, then finding three

internally disjoint paths is easy. Therefore, we may assume that one of these edges

does not exist, say w0w4. Then, w4 must have two neighbors u1 and u2 in G1. We

note that there must be two internally disjoint paths P1 and P2 from w1 to u1

and two internally disjoint paths Q1 and Q2 from w1 to u2. Therefore, starting at

u1, we may travel along P1 until the first time we intersect one of the Qi paths.

Without loss of generality, suppose we intersect Q1. Then, we travel on Q1 the rest

of the way until we reach w1. The second path is Q2 which is completely disjoint

from the first path. Finally, we may take the path through w2 and w3. This type of

argument will be the basis for the remainder of our arguments. Now we consider

w1 to any vertex in G1. At most two of the paths between these vertices can pass

through edges not exclusively contained in G1. If, the edge w0w1 is present, we can

replicate both of those paths in the extended graph. Otherwise, w1 must have two

neighbors in G1 and we can form two internally disjoint paths as in the previous

case. This argument also works to show paths from w4 to any vertex in G1. Again

for w1 to w0, we may assume the edge between them is not present, otherwise

finding the three paths is easy. Therefore, w1 must have two neighbors in G1 and

we can therefore find two internally disjoint paths which are both disjoint from the

w1w2w0 path. This argument also works for w0 and w4. Finally, we consider w1 to

w2. One path between them is the edge between them. If w0w1 is an edge, then

finding the paths is easy. Otherwise w1 must have two neighbors in G1. Each of

these neighbors has two internally disjoint paths from it to w0 and two internally
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disjoint paths from it to w4. Using these paths we can find a path from w1 to w0

and a path from w1 to w4 such that the pair of paths is internally disjoint. This

method also can be used to show w2 to w4, w1 to w3, and w3 to w4.

Now, we show that after performing a K4-sum, on two quasi 4-connected graphs

that the resulting graph is 3-connected. Consider K = G⊕K4H. We show that there

are three internally disjoint paths between every pair of vertices in K. Consider

two vertices from G that were not a part of the K4 that we summed over. There

were three internally disjoint paths between these two vertices in G. At most one

such path could have used edges from the K4. This path can be replicated using

edges from H. Therefore, three paths still exist. A similar argument holds for two

vertices in H not contained in the K4. Now consider a vertex u from G and v from

H, neither of which was contained in the K4. We can find three disjoint paths in G

from u to each of the three remaining K4 vertices, and can find similar paths in H

from v to each of the K4 vertices. If we link these paths at the three K4 vertices,

then we have three internally disjoint paths from u to v. Now, we consider paths

that begin, end, or both at the K4 vertices. Consider one vertex u that is one

of the K4 vertices and a vertex v that is not. We may assume that none of the

edges between the K4 vertices is present since otherwise finding the paths is easy.

Therefore, u must have degree at least three. It may have either two neighbors in

G and one in H or vice versa. Either way, we can find internally disjoint paths

through these three vertices as in the fan extension case. Finally we consider that

u and v are both K4 vertices. First, we show that if none of the three edges is

deleted during the K4-sum, then we can find the three internally disjoint paths.

By preserving all three edges, we automatically have two internally disjoint paths

between u and v. Also, we are guaranteed a path from u to v contained exclusively

in G which is disjoint from the other two, giving us the required three internally
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disjoint paths. Now, if we assume that one or more of the edges was deleted when

performing the K4-sum, we must make use of the result of Lemma 2.2.2 to show

3-connectivity. Let K be the graph G⊕K4 H without any of the edges deleted. We

know K is 3-connected. Lemma 2.2.2 says that for any edge e in K, either the

simplification of K/e is 3-connected or K\e is the subdivision of a 3-connected

graph. If we let e be one of the center edges, consider K/e. This graph has a clear

2-separation and therefore we know K\e must be the subdivision of a 3-connected

graph. Since the operation of K4-sum ensures all vertices have degree at least three

before an edge may be deleted, we know there can be no subdivided edges and K\e

must still be 3-connected. The same analysis holds for any of the other center edges

we wish to delete.

Since our decomposition results yield quasi 4-connected graphs as components,

we want to explore the structure of quasi 4-connected graphs further. In the next

section, we will see how we can algorithmically generate quasi 4-connected graphs.
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Chapter 3
A Chain Theorem for Generating Quasi
4-connected Graphs

3.1 The Chain Theorem

Chain theorems enable us to construct “all” of the graphs of a given connectivity

using a set of base graphs and one or more operations. To generate the entire set

of graphs of the given connectivity, we perform the given operations on the known

graphs in the set which generates more graphs in the set. We can then apply the

given operations to those graphs to generate more graphs which are in the set. This

process could go on infinitely if we keep generating new graphs by performing the

given operations. One well-known example of a chain theorem is for 3-connected

graphs.

Lemma 3.1.1. A graph G is 3-connected if and only if G can be constructed from

a wheel by repeatedly performing the two operations of adding a non-parallel edge

and splitting a vertex.

To generate 3-connected graphs, our base graphs are wheels. We have two op-

erations that we can use to generate more 3-connected graphs. We can either add

an edge or split a vertex.

Now that we know how to decompose a graph into its quasi 4-connected compo-

nents, we will take a closer look at the structure of a quasi 4-connected graph. In

particular, we will look at an algorithm that allows us to recursively generate the

set of quasi 4-connected graphs from a set of base graphs using three operations.

Suppose H is a quasi 4-connected minor of a quasi 4-connected graph G. Then,

an (H,G) -chain is a sequence G1, G2, . . . Gk of quasi 4-connected graphs such
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that G1
∼= H, Gk

∼= G, and for every i = 1, 2, . . . , k − 1, Gi + 1 is a Gi-add, a

Gi-split, or a Gi-straddle as defined below.

A Gi-add is the addition of a single edge to Gi. We add this edge in such a way

that the resultant graph is still simple, that is, we do not add any loops or parallel

edges. A Gi-split replaces a vertex v of degree at least four in Gi by two adjacent

vertices v′ and v′′ and joins all neighbors of v to exactly one of v′ or v′′ such that

both v′ and v′′ have degree at least three. The requirement that both vertices have

degree at least three ensures that our graph remains 3-connected. A Gi-straddle

replaces an edge uv where uv is contained in a triangle uvw of Gi in which u, v,

and w all have degree at least four by a new vertex x which is joined to u, v, and

w. Here again, we have specific degree requirements to ensure that we will produce

a 3-connected graph after performing this operation.

In generating quasi 4-connected graphs, we will encounter two infinite families of

graphs, all of whose members are quasi 4-connected. First, we have {Mn : n ≥ 8},

where Mn is the Möbius ladder on n vertices. This graph is the graph formed

from an even cycle of length n by adding edges {ij|1 ≤ i ≤ n
2
, j = i + n

2
}. We

will also have {Ln : n ≥ 8} or the circular ladder on n vertices. This graph is

the graph formed by taking two cycles of length n
2

and adding an edge between

corresponding vertices of the two cycles. These two graphs can be seen in more

detail in Figure 3.1 where we provide drawings of the circular ladder L8 and the

Möbius ladder M8 respectively.

Now we are able to look at the main structure theorem for quasi 4-connected

graphs. In 1996. Politof and Satyanarayana proved the following theorem:

Theorem 3.1.2. Suppose G is a quasi 4-connected graph. Then exactly one of the

following holds:
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Figure 3.1: A circular ladder and a Möbius ladder

(a) G is either W3, W4, or W5, or a circular ladder or Möbius ladder on n

vertices for some even n ≥ 8.

(b) G is obtained from a quasi 4-connected graph H by an application of one of

the following three operations.

1. The addition of an edge to H.

2. The replacement of a vertex u of degree ≥ 4 in H by two adjacent

vertices u′ and u′′ and joining all vertices in the neighborhood of u to

exactly one of u′, u′′, such that both u′ and u′′ will have degree ≥ 3.

3. The replacement of an edge uv, where uv is contained in a triangle uvw

of H with degH(z) > 3 for all z ∈ {u, v, w}, by a new vertex x and

joining it to u, v, and w. [22]

Basically, theorem 3.1.2 tells us that for every quasi 4-connected graph G, there

exists an (H,G)-chain with H ∈ {W3,W4,W5} ∪ {Ln,Mn : n ≥ 8}. The three

graphs W3, W4, and W5 indicated in the theorem are the three smallest wheels.

Using this result, we can establish the following:

Theorem 3.1.3. For every quasi 4-connected graph G /∈ {W3,W5} ∪ {Ln,Mn :

n ≥ 8}, there exists a (W4, G)-chain.
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Proof. Suppose there is a counterexample. Let G be a counterexample with the

least number of edges. By Theorem 3.1.2, there exists an (H,G)-chain with H ∈

{W3,W5} ∪ {Ln,Mn : n ≥ 8}. It follows from the minimality of G that G must be

an H-add, an H-split, or an H-straddle. We consider the possibilities.

If H = W3, there are no edges that can be added. There are also no vertices of

degree four, so we may not perform a split or straddle. Thus, G does not exist.

If H = W5, G could be an H-add or an H-split. Neither of the two H-splits

are quasi 4-connected. Therefore, G must be an H-add. Let v0 be the hub ver-

tex of H and let v1, v2, v3, v4, v5 by the vertices on the cycle of H. We cannot

add any edges with v0 as an endpoint. Therefore, we may assume that the edge

added is v1v3. Then, G′ = G\v0v2 is weakly 4-connected and is not a graph in

{W3,W5} ∪ {Ln,Mn : n ≥ 8}. By minimality of G, there must be a (W4, G)-chain,

a contradiction.

If H = Ln or Mn, then G must be an H-add since H is cubic. In this case, we

make the following observation. Let e = xy be a rim edge of H and let x′, x′′, y, y′′

be as shown in Figure 3.2.
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Figure 3.2: Structure of Graph H

Let z denote the new vertex of H/e. Then, {z, x′′, y′′} is a 3-cut of H/e which

separates x′ and y′ from the rest of the graph. This means that H/e cannot be

quasi 4-connected. However, it is straightforward to show that {z, x′′, y′′} is the
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only 3-cut of H/e that separates H/e into two pieces which each have at least two

vertices not contained in the other part.

Now suppose G = H + uv. We prove that H has a rim edge e = xy such that,

under the above labeling, uv is between x′y′ and H−{x, y, x′, y′, x′′, y′′}. Then, the

uniqueness of the 3-cut {z, x′′, y′′} implies that G/e is quasi 4-connected.

If v /∈ {v1, v3}, then xy = v0v1 satisfies our requirement. If v = v1 or v = v3 6= v4,

then xy = v0v2 satisfies our requirement. Finally, if v = v3 = v4, then H is the

cube and e = v2v5 is a rim edges which satisfies our requirement.

Since G/e has a degree four vertex, G/e cannot belong to {W3,W5} ∪ {Ln,Mn :

n ≥ 8}. By minimality of G, there must be a (W4, G)-chain, a contradiction.

3.2 Small Quasi 4-connected Graphs

We can apply the chain theorem to begin generating quasi 4-connected graphs.

Here, we show a few lemmas which find the sets of quasi 4-connected graphs on a

small number of edges. We show quasi 4-connected graphs on up to eleven edges

and explain the process for finding the larger quasi 4-connected graphs.

Lemma 3.2.1. The quasi 4-connected graphs containing nine or fewer edges are

W3, W4, K5\e, Prism, and K3,3 as shown in Figure 3.3.

Figure 3.3: Quasi 4-connected Graphs on Nine or fewer edges
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Proof. From Theorem 3.1.2, both W3 and W4 must be included on this list. We

may generate further graphs on this list by performing adds, splits, or straddles

to W4. There is only one (non-isomorphic) way to add an edge to W4. It produces

the graph above labeled K5\e. There is only one vertex of degree at least four in

W4. There are two (non-isomorphic) ways in which we can split that vertex. This

yields the two graphs above labeled Prism and K3,3.

We will continue in the same way to determine the quasi 4-connected graphs

with a higher number of edges. As a general first step when we are trying to find

the list of quasi 4-connected graphs on n edges, we will apply adds and splits to

the list of quasi 4-connected graphs on n−1 edges and apply straddles to the list of

quasi 4-connected graphs on n− 2 edges. It is possible that doing so may generate

isomorphic graphs, in which case we only keep one copy. It is also possible that

we may produce graphs which are not quasi 4-connected in which case we remove

them from the list.

Lemma 3.2.2. The quasi 4-connected graphs containing ten edges are K5, Prism+

e, K3,3 + e, and W5 as shown in Figure 3.4.

Figure 3.4: Quasi 4-connected Graphs on Ten edges

Proof. To generate the quasi 4-connected graphs on ten edges, we will need to

perform adds and splits to the three nine edge graphs from the previous lemma.

We will also need to perform straddles on W4. Finally, we add W5 to our list.

There is only one edge which can be added to K5\e. This yields the graph labeled
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K5 above. There is only one (non-isomorphic) way to add an edge to the Prism.

It is given by the graph above labeled Prism +e. There is also only one (non-

isomorphic) way to add an edge to K3,3. It is given by the graph above labeled

K3,3 + e. All vertices in both the Prism K3.3 have degree three, so we cannot split

vertices in either of these graphs. We may, however, split a vertex in K5\e. There

are two (non-isomorphic) ways to do so. One yields Prism +e and the other yields

K3,3 + e. Since both of these graphs are already in the list, we do not need to add

them again. We note that since W4 only has one vertex of degree at least four, so

we cannot perform any straddles on this graph. Finally, we add W5 to complete

our list.

Lemma 3.2.3. The quasi 4-connected graphs containing eleven edges are W5 + e,

K⊥3,3, Oct\e, and K‡3,3 as shown in Figure 3.5.

Figure 3.5: Quasi 4-connected Graphs on Eleven edges

Proof. To generate the quasi 4-connected graphs on eleven edges, we will need to

perform adds and splits to the ten edge graphs from the previous lemma. Since

K5 is a complete graph, we cannot add any edges to it. There are three (non-

isomorphic) ways to add an edge to Prism +e. They are W5 + e, K⊥3,3, and Oct\e.

There are two (non-isomorphic) ways to add an edge to K3,3 + e. One is a graph

which we have already generated, namely K⊥3,3. The other is K‡3,3. There is one
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(non-isomorphic) way to add an edge to W5. It produces W5 + e. We now move on

to splitting vertices in the ten edge graphs. There is only one (non-isomorphic) way

to split a vertex in K5. It yields K⊥3,3. There are three (non-isomorphic) ways to split

a vertex in Prism +e. However, none of these three graphs is quasi 4-connected.

Therefore, we do not include them in our list. There is one (non-isomorphic) way

to split a vertex in K3,3 + e. However, it also produces a graph which is not quasi

4-connected and is also left off of our list. Finally, there are two (non-isomorphic)

ways to split a vertex in W5. Again, neither of these graphs is quasi 4-connected,

so they are also left off of our list. There is one way to perform a straddle in K5\e.

It produces K‡3,3. The straddle operation cannot be applied to either Prism or K3,3,

so our list is complete.

Now that we have generated a few sets of small quasi 4-connected graphs, we

can easily extend the same process to finding larger quasi 4-connected graphs. We

note that we can write computer programs implementing the recursive algorithm

to find these sets of graphs for us. In some sense this is more efficient as it keeps

track of the graphs for us, can be made to automatically remove isomorphic graph

copies, can be made to remove the graphs that are not quasi 4-connected from the

list, and ensures that we do not omit any graphs from our list.
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Chapter 4
Pyramid Minor-Free Graphs

4.1 Introduction

Decomposition results are generally very useful when it comes to trying to char-

acterize H-free graphs for a graph H of a given connectivity. For example, we can

consider the following result related to connected graphs.

Lemma 4.1.1. If H is connected, then H minor-free graphs are precisely 0-sums

of connected H minor-free graphs.

We can consider each connected component of a disconnected graph as a com-

ponent of the graph decomposition. If we consider this decomposition of a dis-

connected graph G, then G contains an H minor, where H is a connected graph,

precisely when H is contained in at least one of the connected components of

G. This simplifies the problem of finding the H minor to finding it in a single

connected component.

There are similar results for graphs of higher connectivity.

Lemma 4.1.2. (i) If H is 2-connected, then H minor-free graphs are precisely

0-, 1- sums of loops, K1, K2, and 2-connected H minor-free graphs.

(ii) If H is 3-connected, then H minor-free graphs are precisely 0-,1-, 2-sums of

loops, K1, K2, C2, C3, and 3-connected H minor-free graphs.

These results are very useful to us. If we want to be able to characterize Pyramid

minor-free graphs, these lemmas tell us that it is sufficient to characterize all of

the 3-connected, Pyramid minor-free graphs. Using the results of the previous two
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chapters, it is actually sufficient for us to be able to characterize all of the quasi

4-connected, Pyramid minor-free graphs. We can use the operations of K4-sum and

fan extension to generate from those all of the 3-connected, Pyramid minor-free

graphs.

In the previous section, we generated all quasi 4-connected graphs on at most

eleven edges. We note that since the Pyramid is a twelve edge graph, all of these

quasi 4-connected graphs are necessarily Pyramid minor-free. In generating quasi

4-connected graphs, we noted two infinite families, namely Ln and Mn. One of

these infinite families, Mn, gives rise to an infinite family of quasi 4-connected,

Pyramid minor-free graphs which we will explore in detail.

4.2 An Infinite Family of Pyramid Minor-Free Graphs

When describing quasi 4-connected graphs with no Pyramid minor, we have one

infinite family of graphs, namely the graphs in theM class of graphs. We say that

a graph G belongs to M if it is a Möbius ladder or a quasi 4-connected minor

of any Möbius ladder. Recall that we defined a Möbius ladder as an even cycle

1, 2, . . . , n of rim edges plus chord edges ij where 1 ≤ i ≤ n
2

and j = i + n
2
.

We note that all graphs inM can be formed from Möbius ladders by contracting

rim edges. Therefore, we may still talk about rim and chord edges for any graph

M ′ in M by simply considering the smallest Möbius ladder M which contains it

as a minor. We simply identify the rim and chord edges in M and perform the

necessary contractions to yield M ′. Any rim edges from M that remain are rim

edges in M ′ and likewise any chord edges from M that remain are chord edges in

M ′.
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We will first show that the Pyramid is not contained in this class of graphs.

Then, we will show that performing any of the three operations listed in Theorem

3.1.2 will either yield a larger graph in theM class of graphs or will yield a graph

that is outside of the class because it is no longer quasi 4-connected or contains a

Pyramid minor.

Lemma 4.2.1. Let M be a graph in the class M. Let xx′ and yy′ be two distinct

chords in M . Then either xx′ and yy′ cross or they are incident.

Proof. Let us call any two distinct chords parallel if they do not cross and are not

incident. Suppose xx′ and yy′ are parallel in M . Since M was formed by contracting

rim edges of some Mn, it follows that if we reverse the contraction operation on

M , we should get Mn. However, xx′ and yy′ will remain parallel regardless of how

many rim edges we uncontract. We know that Mn has no parallel chords, thus a

contradiction. Chords xx′ and yy′ must either cross or intersect.

Using this result, we can very easily see that the Pyramid is not a graph in M.

The Pyramid has exactly one Hamiltonian cycle up to symmetry. With respect

to this cycle, the Pyramid has two pairs of parallel chords as seen in Figure 4.1.

Therefore, it cannot be in M.

Figure 4.1: Hamiltonian Cycle of Pyramid showing Parallel Chords
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Now, we will explore a few properties of graphs in M which will be useful in

later proofs.

Consider any vertex u in a graph M inM. We will denote the degree of vertex u

by du. Then, we can let uui for i = 1, 2, . . . k denote all of the chords incident with

vertex u, where u1, u2, . . . uk are enumerated in the order they appear clockwise on

the rim. There are a few facts we can easily discuss about these vertices.

Lemma 4.2.2. Let u be a vertex of a graph M in M as described above. The

following hold for M :

a) {u1, u2, . . . , uk} is a consecutive set and dui
= 3 for all 1 < i < k.

b) du ≤ 5 for every u.

c) If du = 5, then du1 ≥ 4 and du3 ≥ 4.

d) If du = 4, then du1 ≥ 4 or du2 ≥ 4.

Proof. a) First suppose {u1, u2, . . . , uk} is not a consecutive set. Then, we may

assume without loss of generality that there is a vertex v between u1 and

u2 on the rim on M that is not adjacent to u. Then, vvi would be parallel

to either uu1 or uu2 for any chord vvi which is impossible by Lemma 4.2.1.

Now suppose that there exists a ui for 1 < i < k such that dui
> 3. We

may assume that du2 > 3. We know u2 is adjacent to u, u1, and u3. Let w

be another neighbor of u2. Then, wu2 is parallel to either uu1 or uu3 which

again contradicts Lemma 4.2.1.

b) Otherwise, {u, u1, uk} is a 3-cut which has at least two vertices on each side

of the separation violating M being quasi 4-connected.
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c) Otherwise either {u, u0, u3} or {u, u1, u4} is a 3-cut which again violates M

being quasi 4-connected.

d) Otherwise {u, u0, u3} is a 3-cut which again violates M being quasi 4-connected.

In describing graphs in M we will read vertices clockwise around the rim. We

will use u → v → w to indicate that after we read u from the rim we will read v

before reading w. We will use (u,w) to denote the set of all vertices v such that

u→ v → w.

Lemma 4.2.3. Let x→ u→ y′ → x′ → v → y → x for a graph M in M. Let xx′

and yy′ also be chords in M . If there are no chords between vertices in (x, y′) and

vertices in (x′, y), then (x, y′) = {u} and (x′, y) = {v}.

Proof. Suppose there is a vertex v′ such that x′ → v → v′ → y. Suppose there

are no chords between vertices in (x, y′) and vertices in (x′, y). Then u must be

adjacent to either x′ or y. By symmetry, we assume ux′ is a chord in M . Then both

v and v′ must both be adjacent to y′ since the only other option is that they are

adjacent to x and thus parallel to ux′ which we know is impossible. This means

y′ has degree five by Lemma 4.2.2 part b. Therefore, by Lemma 4.2.2 part c, v

must have degree at least four. However, to avoid parallel chords v must either

be adjacent to u or a vertex in (u, y′) and would thus be adjacent to a vertex in

(x, y′), a contradiction.

Now that we have established some basic properties of graphs in M, we want

to establish what happens when we apply any of the operations from part b of

Theorem 2.1 to a graph in M.
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Theorem 4.2.4. Let M be a graph in the class M with at least 8 edges such that

M is not the graph N shown in Figure 4.2. Let M ′ be a quasi 4-connected graph

generated by adding an edge to M . Then, either M ′ is also a graph in M or M ′

contains a Pyramid minor.

Figure 4.2: Graph N

Proof. Let M be a graph in M. Let M ′ = M + xy. First, there must be chords

xx′ and yy′ such that x → y′ → x′ → y. Choose chord xx′ such that (x′, y) is as

short as possible. If no such pair of chords exists, then by Lemma 4.2.1, x′y must

be a chord. Since xy is not an edge of M , there must be a vertex w such that

y → w → x which means that zx′ is an edge. By Lemma 4.2.2 parts b and c, there

exists another chord xx′′ which will either contradict Lemma 4.2.1 or minimality

of (x′, y).

Now, we will choose x′ and y′ such that xx′ and yy′ are chords and (x, y′) and

(x′, y) are minimized.

We can first establish that there must be a chord zz′ such that x→ y′ → z′ →

x′ → y → z → x. Suppose there is no such chord. Since x and y are non-adjacent,

let z be an vertex in (y, x). By Lemma 4.2.1, z must be adjacent to either x′ or

y′, say x′. Now, any chord incident with x must be incident with either y or a

vertex in (x′, y) by Lemma 4.2.1. We already know xy is not an edge and having x

adjacent to a vertex in (x′, y) would contradict the minimality of (x′, y). Therefore,
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x must have degree exactly three. Therefore, by Lemma 4.2.2, part d, z must have

degree at least four. This means that zy′ must also be an edge and y similarly has

degree exactly three. Since z was an arbitrary vertex in (y, x), it follows that z

is the only vertex in (y, x). It also follows that x′y′ is an edge of G. Since G has

at least eight vertices, we may assume that there exist vertices u and v such that

x′ → u→ v → y. Edges in (x, y′) can be contracted so that ux and vy′ are edges.

Then, M ′ has a Pyramid minor.

Next we show that either (x, y′) or (x′, y) must be empty. Suppose neither is

empty. There can be no edge from a vertex in (x, y′) to a vertex in (x′, y), otherwise

M ′ contain a Pyramid minor. By Lemma 4.2.3, (x, y′) = {u} and (x′, y) = {v}.

Note that u is adjacent to either x′ or y. By minimality of (x, y′), we know that

ux′ is a chord. Then vy′ must also be a chord. Further, both u and v must have

degree exactly three which means both x and y must have degree at least four.

If (y′, z′) is non-empty, then it contains a vertex w which must be adjacent to y.

This graph has a Pyramid minor. Thus, both y′z′ and x′z′ are edges. Therefore,

xz′ and yz′ must also be edges. By Lemma 4.2.2 part a, zx and zy are also edges.

By assumption, M is not this graph, a contradiction.

Finally, we will show that both (x′, y) and (x, y′) are empty and therefore M ′ is

a graph in M. We will begin by assuming that xy′ is an edge and (x′, y) contains

a vertex v. Then, v must be adjacent to either x or y′. By minimality of (x′, y),

vy′ must be a chord and v has degree exactly three. If (y′, z′) contains a vertex u,

then u must be adjacent to a vertex u′ in (y, z). Note that u′ can be contracted to

either y or z. In either case, M ′ contains a Pyramid minor. Therefore, y′z′ must

be an edge. By a similar argument, z′x′ is also an edge. If we choose v with (x′, v)

minimal, then x′v must be an edge by minimality of (x′, y). Furthermore, vy is also

an edge because otherwise y′ would have degree five which would mean v must have
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degree at least four which it does not. Therefore, y has degree at least four and z′y

is a chord. If (y, z) is non-empty, it contains a vertex w which must be adjacent

to z′ which implies z′ has degree five and zx′ must be a chord. In this case, we

again have a Pyramid minor in M ′. Thus yz must be an edge. Since our graph has

at least eight vertices, (z, x) must contain a vertex u which must be adjacent to

either z′ or x′. In either case, we again get a Pyramid minor in M ′.

Now, we will consider a similar result for the operation of splitting a vertex.

Theorem 4.2.5. Let M be a graph in M with at least nine vertices. Let M ′ be

a quasi 4-connected graph generated from M by splitting a vertex x. Then, either

M ′ is also a graph in M or M ′ contains a Pyramid minor.

Proof. We will first consider splitting a vertex x of degree four in M . Suppose the

neighbors of x are x0, x1, x2, and x3 arranged counterclockwise around the rim. We

can split vertex x into x and x∗ in three ways.

If x is adjacent to x0 and x2 and x∗ is adjacent to x1 and x3 in M ′, then M ′ is

in M.

Now suppose x is adjacent to x0 and x1 and x∗ is adjacent to x2 and x3 in M ′.

Since x has degree four in M , then at least one of x1 and x2 also has degree four.

We let x1 have degree four. Therefore, x1x3 must be an edge. There must be a

chord yy′ in M that crosses both xx1 and xx2. Otherwise, since x1 could have at

most one other neighbor and x2 could also have at most one other neighbor, M

could have at most seven vertices, a contradiction. We will choose the chord yy′

such that neither y nor y′ is a neighbor of x. Such a chord exists, otherwise M

could not possibly have nine vertices. We can assume that y′ is in (x0, x1) and y is

in (x2, x3). First, we assume x3 has degree at least four. Any chords from x3 must

be adjacent to a vertex in (y′, x1) or to y′ itself. If x3 is adjacent to a vertex in
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(y′, x1), then M ′ contains a Pyramid minor. Therefore, x3y
′ is a chord and there

can be no vertices in (y′, x1). Any vertex in (y, x3) must be adjacent to y′. If such

a vertex exists, then y′ has degree five, so y must have degree at least four. Then,

M ′ will contain a Pyramid minor. Therefore, there can be no vertices in (y, x3).

There must be at least one vertex u in x0, y
′) and at least one vertex v in (x2, y),

otherwise M cannot have nine vertices. If there exists a pair u, v such that u and

v are adjacent, then M ′ contains a Pyramid minor. If there is no such pair, then

u could be adjacent to y making v adjacent to x0 or u could be adjacent to x2

making v adjacent to y′. In either case, M ′ contains a Pyramid minor. Therefore,

x3 must have degree exactly three. Any vertex z in (y′, x1) must be adjacent to

either y or a vertex in (y, x3). If z is adjacent to y, then y has degree four in M .

Therefore, either y′ or z must have degree at least four. Any valid edge from y′ or

z results in M ′ having a Pyramid minor. If z is adjacent to a vertex z′ contained

in (y, x3), then M ′ again contains a Pyramid minor. Therefore, there can be no

vertices in (y′, x1). Any vertex w in (y, x3) must be adjacent to either y′ or x1. If w

is adjacent to x1, then x1 has degree five in M requiring w to have degree at least

four. So w must also be adjacent to y′. Then, M ′ again contains a Pyramid minor.

So, w must be adjacent to y′ and w has degree exactly three. This means y′ has

degree four in M and so y must also have degree at least four. Whichever vertex

y is adjacent to results in M ′ having a Pyramid minor. Therefore, there can be no

vertices in (y, x3). Now, we can again choose a vertex u and v as before and will

be able to similarly find a Pyramid minor.

Finally, we assume that x is adjacent to x0 and x3 and x∗ is adjacent to x1 and

x2. Similar to the previous case, we may assume x1x3 is an edge. By the same

argument, we again have a chord yy′ which cross both xx1 and xx2 such that

neither y nor y′ is a neighbor of x and y′ is in (x0, x1) and y is in (x2, x3). There
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must be at least one chord edge leaving x0. It can either go to x2 or to a vertex in

(y, x2). In either case, we have a Pyramid minor.

Now, we consider splitting a vertex of degree five. Suppose the neighbors of x

are x0, x1, x2, x3, and x4 arranged counterclockwise around the rim. We can split

x into x and x∗ six non-isomorphic ways. If x is adjacent to x0 and x3 and x∗ is

adjacent to x1, x2, and x4, then M ′ is still in M.

For the other five cases, we note that since x has degree five in M , both x1 and

x3 must have degree at least four. Therefore, both x0x3 and x1x4 must be chords

in M .

We also note that M must have a chord yy′ which crosses all of xx1, xx2, and

xx3, otherwise M could not have nine vertices. We also note that we can find yy′

such that neither y nor y′ is a neighbor of x for the same reason. We let y′ be in

(x0, x1) and let y be in (x3, x4). Now, we consider M ′ as the following splits:

(1) x is adjacent to x0 and x1; x
∗ is adjacent to x2, x3 and x4

(2) x is adjacent to x0 and x2; x
∗ is adjacent to x1, x3 and x4

(3) x is adjacent to x0 and x4; x
∗ is adjacent to x1, x2 and x3

(4) x is adjacent to x1 and x2; x
∗ is adjacent to x0, x3 and x4

(5) x is adjacent to x1 and x3; x
∗ is adjacent to x0, x2 and x4

In all of these cases, M ′ contains a Pyramid minor.

Theorem 4.2.6. Let M be a graph in M with at least eight vertices. Let M ′ be

a quasi 4-connected graph generated from M by straddling a triangle in M . Then,

either M ′ is also a graph in M or M ′ contains a Pyramid minor.
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Proof. It is impossible that we could have a triangle formed by three rim edges,

two rim edges and a rung edge, or three rung edges. Therefore, our triangle must

have two rung edges x1x2 and x1x3 and one rim edge x2x3. Since x2 and x3 have

degree at least four, there must be chords x3x4 and x2x5 such that xx4 and xx5

are also edges. There must be a chord yy′ such that y is in (x4, x2) and y′ is in

(x3, x5). Otherwise, M can have at most seven vertices. We can split the triangle

in three ways. If we subdivide x2x3 with vertex v with x1 adjacent to v, then M ′ is

still in M. If we subdivide x1x2 with v where x3 adjacent to v or if we subdivide

x1x3 with v where v is adjacent to x2, then M ′ contains a Pyramid minor found

by contraction of yy′.

4.3 Pyramid-free Graphs

We can continue generating quasi 4-connected graphs using adds, splits, and strad-

dles from the graphs in Lemmas 3.2.2 and 3.2.3. Now, in addition to generating

isomorphic graphs and graphs which are not quasi 4-connected, we may also gen-

erate graphs that contain a Pyramid-minor. We may also delete those, since any

larger graph generated from a graph containing the Pyramid will itself contain

the Pyramid. The remainder of the results in this paper were verified using two

independently written Mathematica programs. The results of this programming

are outlined in a few lemmas.

Lemma 4.3.1. There are seven quasi 4-connected, Pyramid minor-free graphs on

twelve edges as listed in Appendix A.

Proof. We begin by generating the list of unique graphs which can be formed

from adding an edge or splitting a vertex in one of the eleven edge graphs. We

also generate the list of unique graphs which can be formed from straddling a
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triangle in one of the ten edge graphs. Between the two lists, we have eighteen

total graphs. We must ensure that both the circular ladder and the Möbius ladder

on twelve edges are present, so we add them to the list, giving us twenty graphs.

We delete duplicate copies of isomorphic graphs, bringing the total number to

nineteen graphs. We delete any graphs which contain a Pyramid minor which

leaves eighteen total graphs. Finally, we remove those graphs which are not quasi

4-connected giving a final list of seven unique, quasi 4-connected, Pyramid minor-

free graphs on twelve edges.

Lemma 4.3.2. There are eight quasi 4-connected, Pyramid minor-free graphs on

thirteen edges as listed in Appendix A.

Proof. We begin by generating the list of unique graphs which can be formed from

adding an edge or splitting a vertex in one of the twelve edge graphs. We also

generate the list of unique graphs which can be formed from straddling a triangle

in one of the eleven edge graphs. Between the two lists, we have thirty-two total

graphs. We delete duplicate copies of isomorphic graphs, bringing the total number

to twenty-eight graphs. We delete any graphs which contain a Pyramid minor which

leaves twenty-three total graphs. Finally, we remove those graphs which are not

quasi 4-connected giving a final list of eight unique, quasi 4-connected, Pyramid

minor-free graphs on thirteen edges.

Lemma 4.3.3. There are fourteen quasi 4-connected, Pyramid minor-free graphs

on fourteen edges as listed in Appendix A.

Proof. We begin by generating the list of unique graphs which can be formed

from adding an edge or splitting a vertex in one of the thirteen edge graphs. We

also generate the list of unique graphs which can be formed from straddling a
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triangle in one of the twelve edge graphs. Between the two lists, we have sixty-four

total graphs. We delete duplicate copies of isomorphic graphs, bringing the total

number to fifty-six graphs. We delete any graphs which contain a Pyramid minor

which leaves thirty-three total graphs. Finally, we remove those graphs which are

not quasi 4-connected giving a final list of fourteen unique, quasi 4-connected,

Pyramid minor-free graphs on fourteen edges.

Lemma 4.3.4. There are fifteen quasi 4-connected, Pyramid minor-free graphs on

fifteen edges as listed in Appendix A.

Proof. We begin by generating the list of unique graphs which can be formed from

adding an edge or splitting a vertex in one of the fourteen edge graphs. We also

generate the list of unique graphs which can be formed from straddling a triangle

in one of the thirteen edge graphs. Between the two lists, we have one hundred and

fifty total graphs. We must ensure that both the circular ladder and the Möbius

ladder on fifteen edges are present, so we add them to the list, giving us one hundred

and fifty-two graphs. We delete duplicate copies of isomorphic graphs, bringing the

total number to one hundred and thirty-one graphs. We delete any graphs which

contain a Pyramid minor which leaves forty-six total graphs. Finally, we remove

those graphs which are not quasi 4-connected giving a final list of fifteen unique,

quasi 4-connected, Pyramid minor-free graphs on fifteen edges.

Lemma 4.3.5. There are thirteen quasi 4-connected, Pyramid minor-free graphs

on sixteen edges as listed in Appendix A.

Proof. We begin by generating the list of unique graphs which can be formed from

adding an edge or splitting a vertex in one of the fifteen edge graphs. We also

generate the list of unique graphs which can be formed from straddling a triangle
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in one of the fourteen edge graphs. Between the two lists, we have two hundred and

forty-eight total graphs. We delete duplicate copies of isomorphic graphs, bringing

the total number to two hundred and twenty-one graphs. We delete any graphs

which contain a Pyramid minor which leaves fifty-four total graphs. Finally, we

remove those graphs which are not quasi 4-connected giving a final list of thirteen

unique, quasi 4-connected, Pyramid minor-free graphs on sixteen edges.

Lemma 4.3.6. There are ten quasi 4-connected, Pyramid minor-free graphs on

seventeen edges as listed in Appendix A.

Proof. We begin by generating the list of unique graphs which can be formed from

adding an edge or splitting a vertex in one of the sixteen edge graphs. We also

generate the list of unique graphs which can be formed from straddling a triangle

in one of the fifteen edge graphs. Between the two lists, we have two hundred and

ninety-two total graphs. We delete duplicate copies of isomorphic graphs, bringing

the total number to two hundred and sixty-six graphs. We delete any graphs which

contain a Pyramid minor which leaves fifty total graphs. Finally, we remove those

graphs which are not quasi 4-connected giving a final list of ten unique, quasi

4-connected, Pyramid minor-free graphs on seventeen edges.

Lemma 4.3.7. There are fifteen quasi 4-connected, Pyramid minor-free graphs on

eighteen edges as listed in Appendix A. Further, all fifteen of these graphs are in

the class M.

Proof. We begin by generating the list of unique graphs which can be formed from

adding an edge or splitting a vertex in one of the seventeen edge graphs. We also

generate the list of unique graphs which can be formed from straddling a triangle

in one of the sixteen edge graphs. Between the two lists, we have two hundred and
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ninety-eight total graphs. We must ensure that both the circular ladder and the

Möbius ladder on eighteen edges are present, so we add them to the list, giving us

three hundred graphs. We delete duplicate copies of isomorphic graphs, bringing

the total number to two hundred and seventy-five graphs. We delete any graphs

which contain a Pyramid minor which leaves forty-five total graphs. Finally, we

remove those graphs which are not quasi 4-connected giving a final list of fifteen

unique, quasi 4-connected, Pyramid minor-free graphs on eighteen edges. Further,

we can verify that each of these graphs is in fact a minor of some Möbius ladder

and is therefore in M.

We can combine the results of the Lemmas 4.3.1 through 4.3.7 to state the

following theorem:

Theorem 4.3.8. Quasi 4-connected, Pyramid-free graphs are graphs in M along

with 31 isolated graphs as shown in Figure 4.3.

Figure 4.3: Thirty-one Pyramid minor-free graphs not in M

All quasi 4-connected, Pyramid-free graphs on eighteen edges were determined

to be graphs in M. Additionally, each of these graphs has at least nine vertices.
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Therefore, the previous section tells us that any larger graph generated from these

graphs that are quasi 4-connected and Pyramid-free will also be inM. Since there

is one graph on seventeen edges on our list that is not inM, we check any straddles

which can be applied to this graph. Any quasi 4-connected, Pyramid minor-free

graph resulting from a straddle of this graph is a graph on nineteen edges which

belongs to the family M with at least nine vertices. Therefore, we do not need to

generate larger graphs as all of the quasi 4-connected, Pyramid-free graphs with

more than seventeen edges will always be in M.

Theorem 4.3.9. Pyramid-minor-free graphs are precisely those graphs formed

from a series of 0, 1, 2-sums, K4-sums, and fan extensions performed on graphs

in M, the 31 isolated graphs from Theorem 4.3.8, K1, K2, C2, and C3.

We note that all of the quasi 4-connected, Pyramid-free graphs up to eighteen

edges generated by our Mathematica programs are given in Appendix A by their

edge listings. In this appendix, graphs denoted with (*) represent the thirty-one

isolated graphs not in the family M that are depicted in Figure 4.3.
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Chapter 5
Outer-projective Graphs

5.1 Introduction

A graph G is called outer-projective if it admits a drawing on the projective

plane so that there is a face meeting all vertices of G. It is easy to check that

the class of outer-projective graphs is minor-closed. Therefore, we have interest in

determining the set of forbidden minors for the class of outer-projective graphs.

A related problem is to determine the forbidden minors for outer-planar graphs.

This problem can be easily solved by applying Kuratowski’s Theorem. For any

graph G, let G + v denote the graph obtained from G by adding a single vertex

v to the vertex set and adding an edge from each of the vertices of G to v. That

is, V (G + v) = V (G) ∪ {v} and E(G + v) = E(G) ∪ {vvi|vi ∈ G}. Then, G is

outer-planar if and only if G + v is planar. From Kuratowski’s Theorem, we can

therefore say that G is outer-planar if and only if G + v is {K5, K3,3} minor-free.

This is equivalent to saying that G is {K4, K2,3} minor-free. This gives us the set

of forbidden minors for the class of outer-planar graphs.

We can use the same approach to characterize the forbidden minors for the class

of outer-projective graphs. It is easy to check that G is an outer-projective graph

if and only if G+ v is projective. Glover, Huneke, and Wang [18] found 103 graphs

that were irreducible for the projective plane in 1979. Archdeacon [2] showed that

this list was complete in 1980. Mahader showed in [20] that 35 of these graphs are

minor-minimal, which was also implicitly stated in Archdeacon’s work.
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Therefore, it is straightforward to determine the forbidden minors for outer-

projective graphs. This problem has been solved, in this way, by Archdeacon,

Hartsfield, Little, and Mohar [3]. In this chapter, we will prove a stronger result.

We will determine the forbidden minors for k-connected (k = 1, 2, 3) and quasi

4-connected outer-projective graphs.

5.2 3-connected, Outer-projective Graphs

Let A be the set of all minor-minimal, non-projective graphs. For k = 1, 2, 3, let

Ak denote the set of k-connected members of A. As noted in the previous section,

|A| = 35. We point out that |A1| = 32, |A2| = 29, and |A3| = 23. Robertson,

Seymour, and Thomas proved the following result which is unpublished. A short

proof can be found in [13].

Lemma 5.2.1. For k = 1, 2, 3, a k-connected graph G is projective if and only if

G is Ak minor-free.

This result will allow us to easily determine forbidden minors for 1- and 2-

connected outer-projective graphs. We will do so using two lemmas.

Lemma 5.2.2. Suppose |G| > k. Then G is k-connected if and only if G + v is

(k + 1)-connected.

Proof. Let G be a graph such that |G| > k. Suppose G is k-connected. This means

that G has k pairwise internally disjoint paths between every pair of vertices x and

y in V (G). Now, consider G + v. This graph still has the same set of k pairwise

internally disjoint paths between x and y. There is also a new xvy path which is

clearly internally disjoint from each of the other k paths. Therefore, G+v has k+1

pairwise internally disjoint paths between every pair of vertices x, y in V (G). We
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must also determine k+1 internally disjoint paths from v to any vertex u ∈ V (G).

One simple path is simply the edge uv. We note that since G was k-connected, u

must have at least k neighbors in G. Therefore, we have at least k paths from v to

each neighbor of u to u. These are all clearly internally disjoint paths. Therefore,

we may conclude that G + v is (k + 1)-connected.

Now assume that G+v is (k+1)-connected. This means G+v has k+1 pairwise

internally disjoint paths between each pair of vertices x and y. Now, we consider

the graph G obtained by deleting v. Of the k + 1 pairwise internally disjoint paths

between x and y at most one could have passed through vertex v. Therefore, there

are still at least k pairwise internally disjoint paths between each pair of vertices

in G, and therefore G is k-connected.

Lemma 5.2.3. Suppose G + v contains a minor H. Then, H has a vertex x such

that G contains H − x as a minor. Conversely, if G contains H − x as a minor

for some vertex x of H, then G + v contains H as a minor.

Proof. Suppose G + v contains an H minor. If G also contains an H minor, it

clearly contains an H − x minor for any x ∈ H. Otherwise, we wish to consider a

model ({Gu}, {fe}) of H in G+ v. Choose x such that v is a vertex in Wx. We can

find Wu in G for all u ∈ V (H)−{x}. All necessary edges fe between these Wu are

also present. Therefore G must contain an H − x minor.

Now suppose G contains an H−x minor for some vertex x ∈ H. Now, we consider

a model ({Gu}, {fe}) of H − x in G. We can easily replicate in G + v all Wu such

that u ∈ V (H − x). All edges fe between these Wu are also still present. Finally,

we can let Wx be the single vertex v. Since this vertex is adjacent to everything,

we can keep the edges necessary for forming the H minor and simply delete the

rest giving us an H minor in G + v.
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For k = 0, 1, 2, let Bk denote the set of minor minimal graphs in {G − v : G ∈

Ak+1 and v ∈ V (G)}. We can easily check that |B0| = 32, |B1| = 29, and |B2| = 23.

Additionally, B1 and B2 are precisely the 1-connected and 2-connected members

of B0 respectively.

Theorem 5.2.4. A graph G is outer-projective if and only if G is B0 minor-free.

[2]

Proof. G is not outer-projective. ⇔ G + v is not projective. ⇔ G + v contains a

graph H ∈ A1 as a minor by Lemma 5.2.1. ⇔ G contains a graph H − x as a

minor where H ∈ A1 and v ∈ V (H), by Lemma 5.2.3. ⇔ G contains a graph in

B0 as a minor.

Theorem 5.2.5. A connected graph G is outer-projective if and only if G is B1

minor-free.

Proof. Let G be a connected graph. Then, G + v is 2-connected by Lemma 5.2.2.

G is not outer-projective. ⇔ G + v is not projective. ⇔ G + v contains a graph

H ∈ A2 as a minor by Lemma 5.2.1. ⇔ G contains a graph H − x as a minor

where H ∈ A2 and v ∈ V (H), by Lemma 5.2.3. ⇔ G contains a graph in B1 as a

minor.

Theorem 5.2.6. A 2-connected graph G is outer-projective if and only if G is B2

minor-free.

Proof. Let G be a 2-connected graph. Then, G+v is 3-connected by Lemma 5.2.2.

G is not outer-projective. ⇔ G + v is not projective. ⇔ G + v contains a graph

H ∈ A3 as a minor by Lemma 5.2.1. ⇔ G contains a graph H − x as a minor

where H ∈ A3 and v ∈ V (H), by Lemma 5.2.3. ⇔ G contains a graph in B2 as a

minor.
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Ding and Iverson [13] identified a set A4 of 23 internally 4-connected graphs and

proved the following result:

Lemma 5.2.7. An internally 4-connected graph G is projective if and only if G is

A4 minor-free.

We let B′3 denote the set of minor-minimal graphs in the set {G− v|G ∈ A4 and

v ∈ V (G)}. It is routine to determine all the members of B′3. We note that B′3 has

18 graphs. These graphs are shown in Figure 5.1.

Figure 5.1: Graphs in B′3

Since graphs in A4 are internally 4-connected, graphs in B′3 are internally 3-

connected, that is that such a graph G is 2-connected and for every 2-separation

(G1, G2) of G, at least one of G1, G2 is K1,2.

Theorem 5.2.8. An internally 3-connected graph G is outer-projective if and only

if G is B′3 minor-free.

Proof. Let G be an internally 3-connected graph. Then, G + v is internally 4-

connected. G is not outer-projective. ⇔ G+ v is not projective. ⇔ G+ v contains

a graph H ∈ A4 as a minor by Lemma 5.2.7. ⇔ G contains a graph H − x as a
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minor where H ∈ A4 and v ∈ V (H), by Lemma 5.2.3. ⇔ G contains a graph in

B′3 as a minor.

In order to determine all of the 3-connected forbidden minors, we require the

following lemma:

Lemma 5.2.9. Let G be a 3-connected graph with a minor H such that |H| ≥ 4.

Suppose x ∈ V (H) is incident with precisely two edges xx1 and xx2 where x1 6= x2

and x1x2 /∈ E(H). Then, G has a minor isomorphic to one of the following two

graphs H ′:

(i) H ′ is obtained from H by adding an edge xy where y ∈ V (H)− {x, x1, x2};

(ii) For some i ∈ {1, 2}, H ′ is obtained from H + xxi by splitting vertex xi such

that the two edges between x, xi are no longer in parallel and both of the two

new vertices have degree at least four.

Proof. Let ({Gu}, {fe}) be a model of H in G. Without loss of generality, we

may assume that each Gu is a tree in which each leaf is incident with some fe.

For i = 1, 2, let the end of fxxi
in Gx be ti. Since G is a 3-connected graph and

|H| ≥ 4, we know that G−{t1, t2} has a path P with one end in Gx and the other

end p in the union of Gu over all u ∈ V (H − x). If p belongs to some Gu with

u ∈ V (H)−{x, x1, x2}, then (i) holds. Therefore, we may assume that Gxi
contains

p for one of i ∈ {1, 2}. Let T be the component of Gxi
− ti that contains p. If T is

incident with a single fe, then (i) holds once again since x1x2 /∈ E(H). Therefore,

T is incident with at least two edges fe. In this case a minor satisfying (ii) can be

obtained by contracting each Gu for u 6= xi, and contracting the two components

of Gxi
\tit′i, where tit

′
i is the edge between ti and T . The vertex corresponding to
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T clearly has degree at least four. By symmetry, the other vertex must also have

degree at least four.

This lemma allows us to determine all forbidden minors for 3-connected outer-

projective graphs.

Theorem 5.2.10. Let B3 consist of the nine graphs shown in Figure 5.2 . A 3-

connected graph G is outer-projective if and only if G is B3 minor-free.

Figure 5.2: Graphs in B3

Proof. We can easily check that each graph G in Figure 5.2 is not outer-projective.

For each of these graphs we consider G + v. In each of these graphs we can find

one of Archdeacon’s obstructions to projectivity as a minor. Since G + v is not

projective, G cannot be outer-projective. Therefore, every outer-projective graph

is B3 minor-free.

Conversely, suppose G is B3 minor-free. If G is not outer-projective by Theorem

5.2.8, G must contain a graph H ∈ B′3 as a minor. For each vertex of degree two
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in H, we can apply Lemma 5.2.9. Examining all possible cases shows that G must

contain a graph from B3 as a minor.

5.3 Quasi 4-connected, Outer-projective Graphs

In the preceding section, we saw that increasing connectivity gave us a shorter list

of excluded minors for outer-projectivity. In this section, we show that for quasi

4-connected, outer-projective graphs, there is essentially only one forbidden minor.

Theorem 5.3.1. Let G be a quasi 4-connected graph. Then, the following are

equivalent:

a) G is outer-projective.

b) G is B4 minor-free (Graphs in B4 are shown in Figure 5.3).

c) G is Pyramid minor-free and G is not one of the thirty-one graphs listed in

Theorem 4.3.8

Figure 5.3: Graphs in B4: Pyramid, G12,4, G12,5, G12,7, and G14,2

Proof. First, we show that (a) implies (b). We show that all five graphs mentioned

in part (b) are not outer-projective by showing that those graphs plus a vertex

contain one of Archdeacon’s obstructions to being projective. First, consider the

Pyramid. If we consider Pyramid +v, this graph contains B7 from Archdeacon’s

list. Since Pyramid +v is not projective, Pyramid cannot be outer-projective. We

consider the same for the other four graphs. G12,4+v contains B1, G12,5+v contains
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A2, G12,7 + v contains C4, and G14,2 + v contains D12, where B1, A2, C4, and D12

are all on Archdeacon’s list of obstructions to being projective. Therefore, none

of the graphs listed in part (b) is outer-projective. This means that since G is an

outer-projective graphs it cannot contain any of those five graphs since the family

of outer-projective graphs is minor closed.

Now, we show (b) implies (c). It is easy to check that every graph on our list of

thirty-one graphs contains either G12,4, G12,5, G12,7, or G14,2 as a minor. Thus if our

graph is free of those four graph plus the Pyramid, it must be Pyramid-free and

cannot be on our list of thirty-one graphs.

Finally, we show (c) implies (a). If G is Pyramid-free and not one of the thirty-one

isolated graphs, then G must be inM. This implies that G is outer-projective.
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Appendix: Figure 4.3 Graphs by Edge
Listing

In this appendix, we list all of the quasi 4-connected graphs generated by our
Mathematica programs up to graphs on eighteen edges. We list each graph Gi,j,
the jth graph of size i, by listing all of the edges that are present in that graph.
The graphs denoted with (*) represent the thirty-one isolated graphs that are not
in the family M.

G6,1 = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

G8,1 = {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {1, 5}, {2, 5}, {3, 5}, {4, 5}}

G9,1 = {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}}

G9,2 = {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {2, 5}, {4, 5}, {1, 6}, {3, 6}, {5, 6}}

G9,3 = {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {1, 5}, {2, 5}, {3, 5}, {4, 5}, {1, 3}}

G10,1 = {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3}}

G10,2 = {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {2, 5}, {4, 5}, {1, 6}, {3, 6}, {5, 6}, {1, 3}}

G10,3 = {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {1, 5}, {2, 5}, {3, 5}, {4, 5}, {1, 3}, {2, 4}}

G10,4 = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 5}, {1, 6}, {2, 6}, {3, 6}, {4, 6}, {5, 6}}

G11,1 = {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3},
{1, 5}}

G11,2 = {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3},
{2, 4}}

G11,3 = {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3},
{2, 5}}

G11,4 = {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {2, 5}, {4, 5}, {1, 6}, {3, 6}, {5, 6}, {1, 3},
{1, 5}}

G12,1 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3}, {1, 5}, {2, 7},
{4, 7}, {1, 7}}
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G12,2 = {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3},
{1, 5}, {2, 4}}

G12,3 = {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3},
{1, 5}, {2, 5}}

(∗)G12,4 = {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3},
{2, 5}, {4, 6}}

(∗)G12,5 = {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {2, 5}, {4, 5}, {1, 6}, {3, 6}, {5, 6}, {1, 3},
{1, 5}, {3, 5}}

G12,6 = {{1, 2}, {2, 3}, {3, 4}, {5, 6}, {6, 7}, {7, 8}, {1, 5}, {2, 6}, {3, 7}, {4, 8},
{1, 4}, {5, 8}}

(∗)G12,7 = {{1, 2}, {2, 3}, {3, 4}, {5, 6}, {6, 7}, {7, 8}, {1, 5}, {2, 6}, {3, 7}, {4, 8},
{1, 8}, {4, 5}}

G13,1 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7},
{3, 8}, {5, 8}, {1, 8}}

(∗)G13,2 = {{2, 3}, {3, 4}, {3, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3}, {2, 7}, {4, 7}, {1, 7},
{1, 8}, {4, 8}, {5, 8}}

G13,3 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3}, {1, 5}, {2, 7},
{4, 7}, {1, 7}, {1, 2}}

(∗)G13,4 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3}, {1, 5}, {2, 7},
{4, 7}, {1, 7}, {2, 4}}

(∗)G13,5 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3}, {1, 5}, {2, 7},
{4, 7}, {1, 7}, {2, 5}}

(∗)G13,6 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3}, {1, 5}, {2, 7},
{4, 7}, {1, 7}, {4, 6}}

(∗)G13,7 = {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3},
{1, 5}, {2, 4}, {2, 5}}

G13,8 = {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3},
{1, 5}, {2, 4}, {3, 6}}
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G14,1 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7},
{3, 8}, {5, 8}, {1, 8}, {1, 2}}

(∗)G14,2 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7},
{3, 8}, {5, 8}, {1, 8}, {1, 5}}

G14,3 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7},
{3, 8}, {5, 8}, {1, 8}, {2, 4}}

G14,4 = {{2, 3}, {3, 4}, {3, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3}, {2, 7}, {4, 7}, {1, 7},
{1, 8}, {4, 8}, {5, 8}, {2, 8}}

(∗)G14,5 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 5}, {2, 7}, {4, 7},
{1, 7}, {2, 8}, {3, 8}, {1, 8}}

G14,6 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3}, {1, 5}, {2, 7},
{4, 7}, {1, 7}, {1, 2}, {2, 4}}

(∗)G14,7 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3}, {1, 5}, {2, 7},
{4, 7}, {1, 7}, {1, 2}, {2, 5}}

(∗)G14,8 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3}, {1, 5}, {2, 7},
{4, 7}, {1, 7}, {1, 2}, {3, 7}}

G14,9 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3}, {1, 5}, {2, 7},
{4, 7}, {1, 7}, {1, 2}, {4, 6}}

(∗)G14,10 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3}, {1, 5}, {2, 7},
{4, 7}, {1, 7}, {1, 2}, {5, 7}}

G14,11 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3}, {1, 5}, {2, 7},
{4, 7}, {1, 7}, {2, 4}, {6, 7}}

(∗)G14,12 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3}, {1, 5}, {2, 7},
{4, 7}, {1, 7}, {2, 5}, {4, 6}}

(∗)G14,13 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3}, {1, 5}, {2, 7},
{4, 7}, {1, 7}, {2, 5}, {5, 7}}

(∗)G14,14 = {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3},
{1, 5}, {2, 4}, {2, 5}, {3, 6}}
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G15,1 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7},
{3, 8}, {5, 8}, {1, 8}, {1, 2}, {1, 5}}

G15,2 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7},
{3, 8}, {5, 8}, {1, 8}, {1, 2}, {2, 4}}

G15,3 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7},
{3, 8}, {5, 8}, {1, 8}, {1, 2}, {6, 8}}

(∗)G15,4 = {{3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8},
{5, 8}, {1, 8}, {3, 9}, {4, 9}, {2, 9}}

(∗)G15,5 = {{2, 3}, {3, 4}, {3, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3}, {2, 7}, {4, 7}, {1, 7},
{1, 8}, {4, 8}, {5, 8}, {2, 8}, {4, 6}}

G15,6 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 5}, {2, 7}, {4, 7},
{1, 7}, {2, 8}, {3, 8}, {1, 8}, {1, 2}}

(∗)G15,7 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 5}, {2, 7}, {4, 7},
{1, 7}, {2, 8}, {3, 8}, {1, 8}, {3, 7}}

(∗)G15,8 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3}, {1, 5}, {2, 7},
{4, 7}, {1, 7}, {1, 2}, {2, 4}, {4, 6}}

(∗)G15,9 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3}, {1, 5}, {2, 7},
{4, 7}, {1, 7}, {1, 2}, {2, 5}, {3, 7}}

(∗)G15,10 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3}, {1, 5}, {2, 7},
{4, 7}, {1, 7}, {1, 2}, {2, 5}, {5, 7}}

(∗)G15,11 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3}, {1, 5}, {2, 7},
{4, 7}, {3, 7}, {2, 8}, {7, 8}, {1, 8}}

(∗)G15,12 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3}, {1, 5}, {2, 7},
{4, 7}, {1, 7}, {1, 2}, {4, 6}, {5, 7}}

G15,13 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3}, {1, 5}, {2, 7},
{4, 7}, {1, 7}, {2, 5}, {4, 6}, {5, 7}}

(∗)G15,14 = {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3},
{1, 5}, {2, 4}, {2, 5}, {3, 6}, {4, 6}}
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G15,15 = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {6, 7}, {7, 8}, {8, 9}, {9, 10}, {1, 6}, {2, 7},
{3, 8}, {4, 9}, {5, 10}, {1, 10}, {5, 6}}

G16,1 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7},
{3, 8}, {5, 8}, {1, 8}, {1, 2}, {1, 5}, {2, 4}}

G16,2 = {{3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8},
{5, 8}, {1, 8}, {1, 2}, {3, 9}, {4, 9}, {2, 9}}

G16,3 = {{2, 3}, {3, 4}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8}, {5, 8},
{1, 8}, {1, 2}, {2, 4}, {3, 9}, {4, 9}, {5, 9}}

G16,4 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7},
{3, 8}, {5, 8}, {1, 8}, {1, 2}, {2, 4}, {6, 8}}

G16,5 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8},
{5, 8}, {1, 8}, {6, 8}, {1, 9}, {6, 9}, {2, 9}}

G16,6 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8}, {5, 8},
{1, 8}, {1, 2}, {6, 8}, {1, 9}, {2, 9}, {6, 9}}

G16,7 = {{3, 5}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8}, {5, 8}, {1, 8},
{3, 9}, {4, 9}, {2, 9}, {3, 10}, {5, 10}, {4, 10}}

(∗)G16,8 = {{2, 3}, {3, 4}, {3, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3}, {2, 7}, {4, 7}, {1, 7},
{1, 8}, {4, 8}, {5, 8}, {2, 8}, {4, 6}, {5, 7}}

(∗)G16,9 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 5}, {2, 7}, {4, 7},
{1, 7}, {2, 8}, {3, 8}, {1, 8}, {1, 2}, {3, 7}}

(∗)G16,10 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 5}, {2, 7}, {4, 7},
{1, 7}, {2, 8}, {3, 8}, {1, 8}, {3, 7}, {5, 7}}

(∗)G16,11 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3}, {1, 5}, {2, 7},
{4, 7}, {1, 7}, {1, 2}, {2, 4}, {4, 6}, {5, 7}}

(∗)G16,12 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3}, {1, 5}, {2, 7},
{4, 7}, {1, 7}, {1, 2}, {2, 5}, {3, 7}, {5, 7}}

G16,13 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 3}, {1, 5}, {2, 7},
{4, 7}, {3, 7}, {2, 8}, {7, 8}, {1, 8}, {1, 2}}
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G17,1 = {{3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8},
{5, 8}, {1, 8}, {1, 2}, {1, 5}, {3, 9}, {4, 9}, {2, 9}}

G17,2 = {{3, 5}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8}, {5, 8}, {1, 8},
{1, 2}, {3, 9}, {4, 9}, {2, 9}, {3, 10}, {5, 10}, {4, 10}}

G17,3 = {{3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8},
{5, 8}, {1, 8}, {1, 2}, {3, 9}, {4, 9}, {2, 9}, {6, 8}}

G17,4 = {{1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8}, {5, 8}, {1, 8}, {1, 2},
{2, 4}, {3, 9}, {4, 9}, {5, 9}, {2, 10}, {4, 10}, {3, 10}}

G17,5 = {{2, 3}, {3, 4}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8}, {5, 8},
{1, 8}, {1, 2}, {2, 4}, {3, 9}, {4, 9}, {5, 9}, {3, 5}}

G17,6 = {{2, 3}, {3, 4}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8}, {5, 8},
{1, 8}, {1, 2}, {2, 4}, {3, 9}, {4, 9}, {5, 9}, {6, 8}}

G17,7 = {{2, 3}, {3, 4}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8}, {5, 8},
{1, 8}, {1, 2}, {2, 4}, {3, 9}, {4, 9}, {5, 9}, {8, 9}}

G17,8 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8}, {5, 8},
{6, 8}, {1, 9}, {6, 9}, {2, 9}, {6, 10}, {8, 10}, {1, 10}}

G17,9 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8},
{5, 8}, {1, 9}, {6, 9}, {2, 9}, {1, 10}, {6, 10}, {8, 10}}

(∗)G17,10 = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {1, 5}, {2, 7}, {4, 7},
{1, 7}, {2, 8}, {3, 8}, {1, 8}, {1, 2}, {3, 7}, {5, 7}}

G18,1 = {{3, 5}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8}, {5, 8}, {1, 8},
{1, 2}, {1, 5}, {3, 9}, {4, 9}, {2, 9}, {3, 10}, {5, 10}, {4, 10}}

G18,2 = {{3, 4}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8}, {5, 8}, {1, 8},
{1, 2}, {1, 5}, {3, 9}, {4, 9}, {2, 9}, {3, 10}, {4, 10}, {5, 10}}

G18,3 = {{3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8},
{5, 8}, {1, 8}, {1, 2}, {1, 5}, {3, 9}, {4, 9}, {2, 9}, {2, 4}}

G18,4 = {{3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8},
{5, 8}, {1, 8}, {1, 2}, {1, 5}, {3, 9}, {4, 9}, {2, 9}, {7, 9}}
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G18,5 = {{3, 5}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8}, {5, 8}, {1, 8},
{1, 2}, {3, 9}, {4, 9}, {2, 9}, {3, 10}, {5, 10}, {4, 10}, {6, 8}}

G18,6 = {{3, 5}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8}, {5, 8}, {1, 8},
{1, 2}, {3, 9}, {4, 9}, {2, 9}, {3, 10}, {5, 10}, {4, 10}, {7, 9}}

G18,7 = {{3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8},
{5, 8}, {1, 2}, {3, 9}, {4, 9}, {2, 9}, {1, 10}, {6, 10}, {8, 10}}

G18,8 = {{3, 4}, {3, 5}, {4, 5}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8},
{5, 8}, {1, 8}, {1, 2}, {3, 9}, {4, 9}, {2, 9}, {6, 8}, {7, 9}}

G18,9 = {{1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8}, {5, 8}, {1, 8}, {1, 2},
{2, 4}, {3, 9}, {4, 9}, {5, 9}, {2, 10}, {4, 10}, {3, 10}, {6, 8}}

G18,10 = {{1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8}, {5, 8}, {1, 8}, {1, 2},
{2, 4}, {3, 9}, {4, 9}, {5, 9}, {2, 10}, {4, 10}, {3, 10}, {8, 9}}

G18,11 = {{2, 3}, {3, 4}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8}, {5, 8},
{1, 8}, {1, 2}, {2, 4}, {3, 9}, {4, 9}, {5, 9}, {3, 5}, {6, 8}}

G18,12 = {{2, 3}, {3, 4}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8}, {5, 8},
{1, 2}, {2, 4}, {3, 9}, {4, 9}, {5, 9}, {1, 10}, {6, 10}, {8, 10}}

G18,13 = {{2, 3}, {3, 4}, {1, 6}, {2, 6}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8}, {5, 8},
{1, 8}, {1, 2}, {2, 4}, {3, 9}, {4, 9}, {5, 9}, {6, 8}, {8, 9}}

G18,14 = {{3, 5}, {4, 5}, {5, 6}, {2, 7}, {4, 7}, {1, 7}, {3, 8}, {5, 8}, {6, 8}, {1, 9},
{6, 9}, {2, 9}, {6, 10}, {8, 10}, {1, 10}, {2, 11}, {4, 11}, {3, 11}}

G18,15 = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}, {8, 9}, {9, 10}, {10, 11},
{11, 12}, {1, 12}, {1, 7}, {2, 8}, {3, 9}, {4, 10}, {5, 11}, {6, 12}}
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