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ABSTRACT 

The Gulf Coast region, principally Louisiana, leads the nation in oyster production.  The 

National Marine Fisheries Service reported that 19.7 million pounds of oyster meat, valued at 

$62.3 million dollars were harvested from the Gulf Coast region in 2010.  One of the main 

concerns for this industry is the health risk associated with the consumption of oysters, 

particularly for at-risk populations.  Oysters are filter feeders.  They tend to concentrate microbes 

present in surrounding waters, some of which can cause severe illness in susceptible humans.  

Among pathogens that contaminate the gastrointestinal system of oysters, Vibrio spp (especially 

V. parahaemolyticus and V. vulnificus) are of greatest concern.   

The overall goal of the proposed study was to develop a protocol for the production of 

high quality and safe frozen oyster products in steam venting packages that are microwavable.  

Based on this study, a combination of 100 g of frozen oyster meat with 200 g of frozen mixed 

vegetables provided retention of almost 95% of the meat’s moisture after 300 s of microwave 

cooking.  In addition, the achieving of an internal temperature of 90°C after 258 s of microwave 

cooking assured inactivation of naturally occurring pathogenic bacteria in oyster meat.  The 

study demonstrated that steam venting technology could be used to inactivate pathogenic 

bacteria in frozen oysters and oyster products cooked in the steam packages retained the texture 

and the desirable flavor composition traditionally associated with oysters.  
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CHAPTER 1 INTRODUCTION 

The Gulf Coast region, principally Louisiana, leads the nation in oyster production.  The 

National Marine Fisheries Service reported that 19.7 million pounds of oyster meat, valued at 

$62.3 million dollars was harvested from the Gulf Coast region in 2010 (NOAA, 2011).  Today, 

one of the main concerns for this industry is the health risk associated with consumption of 

oysters. 

Oysters are filter feeders.  They concentrate microbes present in surrounding waters, 

some of which can cause severe illness in humans (Cook, 2003; DePaola and others, 1997; Koo 

and others, 2006; Richards and others, 2010).  Since most oysters are eaten alive, raw, or poorly 

cooked, they can act as vectors for pathogenic microbes.  Among pathogens that contaminate the 

gastrointestinal system of oysters, Vibrio spp (especially V. parahaemolyticus (Vp) and V. 

vulnificus (Vv)) are of greater concern (CDC, 2013; Richards and others, 2010; Scallan and 

others, 2011).  V. vulnificus strains have been strongly associated with severe and life-threatening 

conditions in immunocompromised patients, especially those with chronic liver disease.  V. 

vulnificus is the second leading cause of seafood-related fatality in the U.S. (Andrews and others, 

2003; Haq and others, 2005). 

There is always a high consumer demand for oysters that are safe while retaining their 

original flavor, nutrient content, texture, and appearance.  In addition, these oysters are expected 

to be additive-free as well as presenting a longer shelf life (Horst and others, 2011).  A 

combination of rapid freezing and appropriate packaging can accomplish the later statement.  

The available freezing techniques, such as cryogenic freezing, provide a multitude of advantages.  

Cryogenic freezing is fast and thus reduces the weight loss during the freezing process while 

maintaining the overall quality closer to the freshest product.  Combining cryogenic freezing 
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with high barrier packaging and modified atmosphere packaging may increase the shelf life of a 

product compared to similar ones frozen with traditional freezing techniques. 

It is believed that with the emerging category of value added meal solutions the 

development of an oyster based, safe, frozen and ready-to-eat meal product using steam-venting 

microwavable packaging will create new opportunities for oyster processors to expand their 

market.  Ready–to-eat (RTE)-meals are available in a wide variety of recipes and they are 

consumed with increasing market share.  At the same time, consumer acceptance of these foods 

has been hindered by the perception that they lack freshness.  Additionally, consumers have 

gained knowledge regarding the content of the products they purchase, with the expectation that 

the meal would be nutritious, palatable and safe to eat (Peck and others, 2008).  To counter count 

the perception that the foods are lacking of freshness, the development of steamed meals have 

given a new dimension to RTE meals.  Steaming is a gentle, fat-free cooking method that 

maintains the natural moisture in foods.  This feature makes it an excellent choice for preparing 

delicate meals, especially those having seafood as a main ingredient.  Steaming protects against 

drying, keeping flavorful juices and nutrients inside the seafood, rather than letting them escape 

into the surrounding liquid. 

The overall goal from this study is to develop high quality and safe frozen oyster 

products in steam venting packages that are microwavable.  An integral part of this research will 

be the measurement of V. parahaemolyticus and V. vulnificus along the processing chain.  

Population levels of these bacteria will be carefully assessed at freezing, during frozen storage, 

and, more importantly, to assess the conditions required to achieve non-detectable levels through 

the process of microwaving. 
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CHAPTER 2 LITERATURE REVIEW 

Vibrio vulnificus and Vibrio parahaemolyticus, are free living, naturally occurring 

bacteria, not associated with pollution, which are changing the way raw oysters from the Gulf 

States are eaten.  These Vibrio sp. are common in the Gulf waters during the warmer months, and 

filter feeding shellfish such as oysters can accumulate them as they feed (USGAO, 2011).  

Especially V. vulnificus is of important interest for people with pre-existing medical conditions, 

which are considered “at risk” for severe blood infection (primary septicemia) that could cause 

death.  

Because oysters are usually eaten raw, special efforts are made to protect public health.  

The U.S. Food and Drug Administration (FDA) and coastal state governments oversee the 

National Shellfish Sanitation Program (NSSP), which sets standards for waters in which oysters 

are grown and requires those waters to be tested regularly. 

2.1 Foodborne diseases background 

Infectious diseases spread through food or beverages are a common, distressing, and 

sometimes life-threatening problem for millions of people in the United States and around the 

world.  Data acquired by active and passive surveillance as well as other sources by the Centers 

for Disease Control and Prevention (CDC) estimates that 31 identified pathogens cause 48 

million episodes of foodborne illnesses, 128,000 hospitalizations, and 3,000 deaths each year 

(Scharff, 2012).  The average cost per case of foodborne illness is $1,343 calculated from two 

different economic models, resulting in an aggregated annual cost of illness of $ 64.5 billion 

(Scharff, 2012).  Epidemics of foodborne diseases are not only a threat to public health but also 

erode consumer confidence in the causal food product and thus, impact the economic viability of 
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the industry.  Consequently, the added cost for this impact is conservatively estimated in 

economic models and does not accurately represent its true extension. 

Infectious agents associated with food-borne illnesses include bacteria, viruses, and 

parasites, and the illnesses caused by these agents range from mild gastroenteritis to life-

threatening syndromes.  The CDC through the Foodborne Disease Outbreak Surveillance System 

collects data on foodborne disease incidents submitted from all states and territories.  The most 

recent year for which data are finalized was for 2010 and a total of 9,024 cases were listed as 

foodborne disease outbreaks with 4,540 (50.3%) suspected or confirmed cases due to bacteria 

(CDC, 2011).  Foodborne illness cases due to bacteria have exceeded viral, parasitic, and 

chemical sources since 2007 as shown in Figure 2.1.  Previous to this year, reported data shows 

that viruses caused more foodborne illnesses, however, bacterial infections associated with 

foodborne illnesses have always required hospitalization or resulted in death (Figure 2.2).  

 
Figure 2.1: Graphical representation of foodborne disease outbreak cases sorted by etiological 

causes as reported by the CDC (CDC, 2006, 2011, 2010b, 2013) 
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Figure 2.2: Graphical representation of fatalities associated with foodborne disease outbreaks 

sorted by etiological causes as reported by the CDC (CDC, 2006, 2011, 2010b, 2013) 

Seafood is responsible for an important proportion of food-borne illness and outbreaks 

both in the United States and worldwide.  Seafood includes mollusks (e.g., oysters, clams, and 

mussels), finfish (e.g., salmon and tuna), marine mammals (e.g., seal and whale), fish eggs (roe), 

and crustaceans (e.g., shrimp, crab, and lobster).  Many of the detailed investigations of 

bacterial-related foodborne illnesses have focused on oysters, since they are often consumed 

uncooked (Iwamoto and others, 2010).  Raw oysters may contain a number of different harmful 

bacteria, and have been linked to serious illness and death.  As such, food safety experts and 

public health agencies have consistently warned of the serious potential risk created by these 

mollusks, when consumed uncooked. 

2.2 Risks associated with consumption of oysters 

In general, seafood-associated infections are caused by a variety of bacteria, viruses, and 
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environments.  Vibrio species are characterized as Gram-negative, rod-shaped or curved rod-

shaped, halophilic bacteria.  In 2009, according to the Cholera and Other Vibrio Illness 

Surveillance (COVIS) system, of the 825 cases of vibriosis (excluding toxigenic V. cholerae) 

217 (26%) were from Pacific Coast states, 256 (31%) from Atlantic Coast states, and 101 (12%) 

from non-coastal states (Figure 2.3) (COVIS, 2011).  In those states sharing waters from the Gulf 

of Mexico, the Vibrio species most frequently reported were V. vulnificus (27%) and V. 

parahaemolyticus (21%), followed by V. alginolyticus (19%), and non-toxigenic V. cholerae 

(13%). 

On the other hand, in non-Gulf Coast States V. parahaemolyticus (58%) exceeded V. 

alginolyticus (14%), V. vulnificus (7%), and non-toxigenic V. cholerae (7%).  Detailed 

investigation of these cases showed that improperly prepared or mishandled shellfish was the 

primarily cause of infection.  More specifically, in cases reporting eating a single seafood item, 

consumption of oysters was the principal vector in 48% of the cases, of which 94% consumed 

them raw.   

Oysters are more inherently risky than other seafood commodities owing to many factors, 

including the nature of the environment from which they come, their mode of feeding, the season 

during which they are harvested, and how they are prepared and served (Horst and others, 2011).  

The pathogens most commonly associated with their raw consumption are Vibrio 

parahaemolyticus and Vibrio vulnificus.  Related infections are acquired through ingestion or 

through exposure of an open wound to seawater.  V. parahaemolyticus has been associated with 

sporadic infections and outbreaks of gastroenteritis while V. vulnificus infections occur almost 

exclusively as sporadic cases in the United States (COVIS, 2011).  
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Clinical features most often associated with V. parahaemolyticus infection include watery 

diarrhea, abdominal cramps, nausea, and vomiting.  Wound infections and septicemia occur less 

commonly (Painter and others, 2013; Scallan and others, 2011).  Although V. parahaemolyticus 

is recognized as a major cause of seafood-borne gastroenteritis, most strains of this species are 

not pathogenic to humans (Iwamoto and others, 2010).  V. vulnificus is particularly virulent, 

especially among patients with liver disease and iron storage disorders, who are at increased risk 

of invasive disease.  V. vulnificus infections can lead to sepsis and severe wound infections.  

Severe infections, such as bloodstream and wound infections, require prompt antimicrobial 

therapy.  The case fatality rate is about 50% for bloodstream infections and 25% for wound 

infections (Iwamoto and others, 2010).  

The Food and Drug Administration (FDA) is the governmental agency responsible for 

ensuring oyster safety and works with the Interstate Shellfish Sanitation Conference (ISSC), 

which includes representatives from the FDA, states, and the shellfish industry to establish 

guidelines for sanitary control of the shellfish industry.  The FDA and the ISSC have the 

common goal of reducing Vibrio related illnesses, especially from V. vulnificus.  Joint forces of 

both entities concentrate to produce a significant reduction during the warmer months of the 

year.  Cases of vibriosis (excluding toxigenic V. cholerae), have a definite peak time during the 

summer months (Figure 4).  Most cases occur from May to September, with the greatest number 

during July and August (COVIS, 2011, 2007, 2008, 2009).  Accordingly, the same trend 

observed in Figure 2.4 agrees with the numbers of reported illnesses caused by the consumption 

of oysters. 
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Figure 2.3: Number of cases of Vibrio infections (excluding toxigenic V. cholerae), by state, 

2009 (n=825 in 42 states) (COVIS, 2011) 

Since 2004, the FDA’s and the ISSC’s efforts have been primarily aimed at consumer 

education, however, tangible success on reducing the number of illnesses related to consumption 

of raw oysters has not been achieved.  In 2010, the FDA called oyster harvesters to implement 

time and temperature controls to ensure that oysters are cooled to specific temperatures within a 

specified time frame to reduce V. vulnificus growth and thus decrease the incidence of foodborne 

illnesses originated by the consumption of raw oysters.  However, direct evaluation of the 

effectiveness of these measures has not being assessed either by the FDA or ISSC (USGAO, 

2011).   
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Figure 2.4: Number of cases of vibriosis by month of illness onset, 2009 (n=825 in 42 states) 

(COVIS, 2011) 

It has been suggested by state governments and oyster industry officials that 100 percent 

compliance with the controls is highly unlikely and thus the FDA has proposed the mandatory 

requirement to use postharvest processing technologies and methods as the only alternative to 

eliminate the risk of foodborne illnesses due to raw oyster consumption as observed in 

California.  California, unlike Gulf Coast states, requires that all raw Gulf Coast oysters 

harvested during the summer and sold in the state be processed to reduce V. vulnificus to 

nondetectable levels. This requirement has reduced V. vulnificus illnesses in California to nearly 

zero. 

2.3 Existing Post-harvest Process Technologies for Controlling Vibrio vulnificus and 

 Vibrio parahaemolyticus in oysters 

Post-harvest processing (PHP) technologies for oysters are continually being developed 

to provide safer oysters to consumers.  Alternatives offered by modern technology are focus to 

promote quality, food safety, and extension of the shelf life of oysters.  Some of the post-harvest 
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processing technologies currently being investigated are irradiation (electric beam irradiation, X-

ray, cobalt and microwave technology) (Jakabi and others, 2003; Mahmoud, 2009), high salinity 

treatment (Larsen and others, 2013), and value added product (smoked, char-grilled, steamed, 

pickled, marinated or pre-cooked convenience meals) (Horst and others, 2011).  However, 

applicable PHP methods are those that have been determined to reduce Vibrio vulnificus and 

Vibrio parahaemolyticus, by >3.52 log and by > 4 log respectively, to nondetectable levels (<30 

MPN/gram) (FDA, 2009).  These PHP methods are, to a certain degree, economically feasible 

for summer-harvested Gulf oysters intended for the raw half-shell market.  FDA-approved 

applicable PHP methods include mild-heat pasteurization, high hydrostatic pressure (HHP) 

processing, and cryogenic individual quick freezing (IQF) with extended frozen storage. 

2.3.1 Mild-Heat Pasteurization 

This PHP process was developed and patented in 1995 by AmeriPure in Franklin, 

Louisiana (Horst and others, 2011).  In general, this process comprises a mild heating of oysters 

in the shell, followed by a rapid cooling.  The internal temperature of the oysters rises high 

enough to reduce the loads of Vibrio sp. bacteria to nondetectable levels without cooking them 

during the time of exposure.  First, oysters are washed, individually banded in order to avoid 

extreme loss of internal juices, arranged in racks, and then submerged in water at 52°C (126°F) 

for 24 minutes.  Temperature and time have been validated through several studies (Andrews and 

others, 2000) showing reduction of bacterial loads with minimal cooking of the meat.  The 

process continues with a cold shock by dipping the trays into iced water at 4.44°C for 15 min, 

finalizing with packaging the oysters either for half shell or shucked to extract the meat.  

Pasteurization of oysters gives several advantages to the processors.  Oysters processed 

by this method are claimed to have high moisture content with shucking yields increased by 15 
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to 30 percent relative to untreated oysters (Andrews and others, 2000; Muth and others, 2000).  

The shelf life is extended from one week for untreated oysters to three weeks under refrigeration.  

Another advantage of this type of PHP process is its versatility.  The process can be adjusted to a 

small- or large- scale to fit the needs of an individual processing plant.  However, the processing 

temperature and time alter the desirable organoleptic characteristics that make oysters so unique 

and appreciated. 

2.3.2 High Hydrostatic Pressure 

Pressurization processing applied to oysters was initiated in 1999 in Houma, LA.  The 

process was developed and patented by Motivatit Seafoods.  The process inactivates vibrios and 

spoilage bacteria in shellfish and facilitates the shucking of oysters (Kural and others, 2008; Li 

and others, 2009; Murchie and others, 2005).  Vibrio sp. are much more sensitive to pressure 

than most of other bacteria due to the complexity of Gram-negative’s cell membrane which can 

be inactivated by pressure levels ranging from 200 to 350 MPa.  Bio-membranes are the main 

sites affected by pressure.  High pressure disrupts membrane function due to phase transition 

causing leakage through the inner and outer membranes as well as inactivation or disruption of 

key enzymes (Cook, 2003; Koo and others, 2006).  During the pressurization and de-

pressurization cycles the adductor muscle is detached from the inner walls of the shell which 

opens the oysters and facilitates the extraction of the meat (He and others, 2002).   

The process starts with cleaning, washing, sorting or grading the oysters, then banding 

and containerizing, usually by placing in a stainless steel cylinder, undergoing pressurization for 

4-6 minutes.  Following treatment, oysters intended for the raw half-shell market are boxed and 

iced with their bands on and oysters intended for shucking are shucked and packed in containers. 
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High Hydrostatic Pressure technology offers food processors several advantages over 

other processing methods.  Oysters are treated evenly throughout, regardless of their shape and 

size in a relatively short time in comparison to mild-heat pasteurization (Murchie and others, 

2005).  The system is considered to be energy efficient (Muth and others, 2011) and produces 

safe-to-eat oysters that retain the appearance, flavor, texture and nutritional qualities similar to 

untreated fresh oysters (Murchie and others, 2005) with a shelf-life of almost 30 days (He and 

others, 2002) under refrigerated conditions.  The extracted oyster meat possesses good shape and 

appearance, looking slightly more voluminous and juicy.  These characteristics are derived 

because of the preservation of the adductor muscle.  There is a higher retention of moisture when 

the adductor muscle of the oyster is not cut from the shell, providing shucking yields of 25–50% 

(Murchie and others, 2005).  The main drawback from the high hydrostatic process is not related 

to safety or quality of the oysters but to economic factors.  The initial capital investment to 

acquire the equipment alone is considerable, making it affordable to only consolidated large-

scale processors (Muth and others, 2011). 

2.3.3 Cryogenic Individual Quick Freezing  

Freezing is a common preservation technique for foods in general and oysters in 

particular.  Freezing oysters to extend shelf life was first applied in 1989 and rapidly popularized 

in Australia, Canada, New Zealand, and especially in the United States.  Aside from the resulting 

decrease of microorganisms including Vibrio sp. bacteria to nondetectable levels, extended shelf 

life is a major selling point of the process (Muth and others, 2011).  Gram-negative bacteria are 

more susceptible to freezing compared to Gram-positive.  Freezing temperatures drastically 

disrupt membrane transport mechanisms, which are intricate due to complexity of the 

membrane’s structure, altering functional metabolic and enzymatic processes (Archer, 2004).   
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Preparatory steps to cryogenically freeze oysters include cleaning, rinsing, and shucking 

of incoming shellstock.  Then oysters on the half shell are placed on specially designed trays and 

loaded onto a freezer tunnel where they are rapidly frozen using liquid carbon dioxide or liquid 

nitrogen.  Processing temperature ranges between - 40°C to - 30°C with retention times of 8 to 

12 minutes (Motivatit Seafoods, 2013).  A common practice after freezing is the application of a 

mist of water on top of the oysters which freezes into a glaze of ice on contact.  Glazing protects 

the product against quality deterioration that can occur during frozen storage (Sundararajan and 

others, 2011).  After glazing, the oysters are stored in wax-coated corrugated boxes and placed in 

a freezer for a period of time sufficient to achieve non-detectable levels of Vibrio spp (Muth and 

others, 2011). 

One of the main advantages of this process is the convenience it provides to costumers.  

Establishments which do not have trained staff who are able to properly shuck oysters may 

benefit from this process which permits the serving of raw oysters on the half-shell.  For this 

purpose, the oysters are simply removed from their packaging and raised to the desired serving 

temperature before they are served to the consumer.  Also, cryogenically frozen oysters have 

longer shelf-life than any other post-harvest process technology keeping most of the flavor and 

appeal of non-processed oysters between six and twelve months under frozen storage (Berne, 

1996; Songsaeng and others, 2010), and thus, it is a common practice among oyster processors to 

freeze oysters from the winter harvest, which yields higher quality oysters (particularly in the 

Gulf of Mexico), and then offered for sale during other times of the year. 

Adoption of this technology has also disadvantages.  The cryogenic freezing of oysters is 

not recommended during the warmer months of the year, especially in the Gulf Coast area.  Gulf 

operations that have cryogenic freezing equipment very rarely freeze summer-harvested oysters 
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because of quality issues (Muth and others, 2000; Mary K. Muth and others, 2011; Motivatit 

Seafoods, 2013).  During the summer, oysters present lower weights because of spawning as 

well as possessing a grainy or poor texture (Gullian and others, 2009) making them not a less 

desirable product to freeze.  They also have a dark color, deviating from their normal creamy 

appearance, making them unacceptable for half shell presentation which has been verified by 

consumer acceptance studies (Posadas and others, 2011).  Capital investment in equipment is not 

as expensive as in High Pressure Processing (Muth and others, 2011); however, oyster 

processors that implemented this technology have had to augment the size of their facilities to 

accommodate frozen storage warehouses.  In addition, an efficient supply of liquid carbon 

dioxide or liquid nitrogen may become a burden when the physical location of the plant is away 

from distribution centers or they are not easily accessible for delivery.  In such cases, where there 

is not a guaranteed supply of these gases, this technology should not be considered. 

2.4 Effect of freezing on V. vulnificus and V. parahaemolyticus 

2.4.1 Survival of Microorganisms during Freezing 

Laboratory studies on freezing microorganisms in simple aqueous solutions has allowed 

investigators to study the direct effects of freezing without the interventions of undesired 

variables and has simplified the isolation and enumeration processes following freezing 

treatments (Koo and others, 2006; Mahmoud, 2009).  However, the actual mechanism of freeze 

damage to the cells has not been defined yet, and scientists have different theories as to what is 

affecting the survival of microorganisms during freezing, frozen storage, and thawing. 

Factors expected to cause damage to cells during freezing are: low temperatures, 

formation of intracellular ice, formation of extracellular ice, intracellular solute concentration, 

and extracellular solute concentration.  All of these factors will be affected by the rate of 
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freezing. It must be noted that damage can also occur during thawing.  The rate of thawing will 

affect the extent of damage as well (Lund and others, 2000). 

Cellular damage during freezing has been widely explained under the ‘two-factor’ 

hypothesis of freezing injury due to the osmotic behavior of cells during freezing.  Hypertonic 

damage at slow rates of cooling and lethal intracellular ice formation at high rates of cooling 

describe the freezing response of many cell types.  In a review about the freezing of biological 

systems (Ken and others, 2004), it is explained that cells generally undergo supercooling, by 

remaining unfrozen at -10 or -15º C, even when the medium around them has ice.  Since the 

vapor pressure of supercooled water is higher than that of ice, cells need equilibrium.  For slowly 

cooled cells or cells with high water permeability, equilibrium will be reached by transferring 

internal water to external ice, resulting in dehydration.  However, if the cell membrane has low 

water permeability or the cells are cooled rapidly, equilibrium will be achieved when a substance 

(colloids or dissolved substances) acts as a nucleus for intracellular ice formation.  The critical 

rate that defines slow and fast cooling is specific for each cell and depends on its permeability to 

water and on the ratio of the cell volume and its surface area (Ken and others, 2004).  

Regardless of how the equilibrium is achieved, cells will be subjected to “solute effects”, 

which refers to intracellular and extracellular solute concentration that may cause a precipitation 

of the solutes, if their solubilities are exceeded, and result in a change in pH, that can be 

detrimental to cells.  Slowly cooled cells will be exposed to this effect for a longer time (Mazur, 

1970).   

Formation of intracellular ice produces small crystals that have high surface energies, 

which will be reduced by growing or by fusing with other small ice crystals.  The rate of this 

process will be higher in smaller crystals and at higher temperatures, so this process is very 
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important during warming (Goswami, 2010).  In fact, it was found that the size of the crystals is 

a function of initial crystal size, storage temperature and time, and that crystal growth is 

detectable in temperatures as low as -45ºC (Goswami, 2010).  The formation of large ice crystals 

is lethal to cells in most cases and death seems to occur as a result of the extraction of bound 

water from vital structures and from proteins (Damodaran and others, 2008).  It has been 

suggested that the optimum freezing rate range for cell survival is one that will be slow enough 

to prevent intracellular ice formation, but fast enough to prevent the cell from being affected by 

prolonged exposure to concentrated solutes (minerals, metals, etc).  However, for some cells, 

there is no optimum range (Mazur, 1970). 

Responses to freezing stress have been extensively studied in a large diversity of 

organisms such as prokaryotes, plants or animals (Lalaymia and others, 2012; Panoff and others, 

1998; Rivals and others, 2007).  Response to freezing stress is often passive and leads to a 

decrease in viability and metabolic activity that is associated with cryoinjury (Panoff and others, 

1998; Thieringer and others, 1998).  DNA denaturation is also listed as a possible cause of death 

after freezing and thawing.  DNA damage and fragmentation occurs due to the presence of 

reactive oxygen species (ROS) (Riesco and others, 2012).  ROS include free radicals, which are 

active oxidizing agents, and these peroxidation products are highly deleterious and can produce 

both DNA strand breaks and base modification which includes single- and double-strand breaks, 

abasic sites, and base damage.  At low temperatures, repair mechanisms will probably be slow 

and the extent of the damage may impair various vital functions. 

2.4.2 Cold Adaptation of V. vulnificus and V. parahaemolyticus 

Numerous studies have investigated the response of V. vulnificus to low temperatures 

(Bryan and others, 1999; Johnston and others, 2002; McGovern and others, 1995; Quevedo and 
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others, 2005) focusing on the viable but nonculturable (VBNC) state induced in V. vulnificus 

when subjected to the unfavourable conditions of low temperatures.  The VBNC state is a 

dormancy state in which the bacteria fail to form colonies on routine bacteriological media 

growth, but will remain alive and capable of renewing metabolic activity (Oliver, 2005).  It was 

believed that the general inability to isolate estuarine vibrios during the winter months or from 

colder waters was due to the sensitivity of these bacteria to cold temperatures.  However, studies 

have presented evidence that the bacteria, although unable to be cultured, have entered into 

VBNC state in response to the reduced temperatures (Johnston and others, 2002). 

Results from these investigations (Bryan and others, 1999; Johnston and others, 2002; 

Oliver, 2005; Panoff and others, 1998; Thieringer and others, 1998) suggest that V. vulnificus can 

have improved tolerance to colder temperatures by keeping the cultures at the intermediate 

temperature of 15°C before final storage at 6°C.  This adaptation was possible by the 

development of cold-adaptive protein(s), which differ from those found in E. coli.  In addition, 

the protein that was not present before the temperature downshift and appeared increased by a 

factor of 35 one hour after the temperature change.  These largely differ in apparent molecular 

mass and isoelectric point from cold shock proteins found in other bacteria (McGovern and 

others, 1995). 

Finally, the authors investigated the effect of the intermediate 15°C temperature before 

freezing, and showed that the “pre-cooled” bacteria had an overall 2.2 log higher viability than 

the one frozen directly from room temperature.  This result suggests that submitting the bacteria 

to refrigeration temperatures may be counter-productive for freezing as a postharvest process to 

reduce V. vulnificus in oysters. 
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Vibrio parahaemolyticus also shows tolerance to colder temperatures as Vibrio vulnificus 

with previous exposure to low temperatures.  The effect of cold shock on the survival of V. 

parahaemolyticus subjected to subsequent lower temperatures (5 and -18ºC) showed that 

regardless of the cold shock treatment, survival of V. parahaemolyticus increased when stored at 

these low temperatures (Johnston and others, 2002; Lin and others, 2004).  In fact, studies on the 

morphological changes of V. parahaemolyticus under cold and starvation stresses attribute this 

tolerance to the rapid and drastic changes on the shape and structure of the cell (Chen and others, 

2009).  Under concomitant cold and carbon starvation, V. parahaemolyticus’ cells entered the 

viable but nonculturable state and their shape changed from rod-like to coccoid.  Electron 

microscopy revealed characteristic features in the cells such as a densely stained peripheral part 

and lightly stained central part of cytoplasm along with a thick peptidoglycan cell wall. 

2.4.3 Previous freezing studies with Vibrio vulnificus and Vibrio parahaemolyticus 

Several studies have been conducted to evaluate the effect of freezing on Vibrio 

vulnificus and Vibrio parahaemolyticus in oysters as well as in suspension media.  Freezing 

studies using Vibrio parahaemolyticus has been less extensive when compared to those of Vibrio 

vulnificus due to the ability of this pathogen to cause primary sepsis in certain high-risk 

populations since it is fatal in 50% of cases (Iwamoto and others, 2010).  In general, freezing 

studies report a reduction of these bacteria in oysters and oyster meat which vary depending on 

the freezing method employed. 

Parker and others (Parker and others, 1994) reported significant reductions of 3 to 4 logs 

in Vibrio vulnificus in oysters injected with 10
6
 CFU/g and then frozen at -20ºC in an air blast 

freezer.  Greater reduction was observed in sets of oyster samples that were vacuum packed.  

Most reductions occurred within the first 7 days and continued to decline during storage.  
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However, after 30 days, 2 logs of the bacteria were still detected and, after 70 days, some 

samples still contained 1 log. 

The effects of cryogenic freezing on Vibrio vulnificus was studied by Mestey and 

Rodrick (Mestey and others, 2003).  Whole and half-shell oysters were frozen using CO2 (-67ºC) 

and liquid nitrogen (-91ºC) followed by frozen storage.  The study demonstrated that there was a 

lower number of recoverable V. vulnificus when CO2 was used for freezing of half shell oysters.  

For whole oysters, bacterial levels were undetectable after 14 days for carbon dioxide and after 

21 days, in most cases, for liquid nitrogen.  Recoverable numbers for half-shell oysters were 

lower at all storage intervals, were undetectable after 14 days for both methods, and a few times 

only after 7 days.  Muntada-Garriga and others (Muntadagarriga and others, 1995) reported that 

viable cells of V. parahaemolyticus (10
5-7

CFU/g) in oyster homogenates were completely 

inactivated by freezing at -18 and -24°C for 15 to 28 weeks depending on initial populations of 

the microorganism and freezing temperatures. 

Su and others (Liu and others, 2009) investigated the effects of cryogenic freezing using 

liquid nitrogen (-95.5ºC) followed by frozen storage, on reducing V. parahaemolyticus in half 

shell Pacific oysters.  Oysters were frozen in a cryogenic tunnel with a retention time of 12 

minutes.  The population of bacteria in the oyster declined slightly by 0.22 log MPN/g after the 

freezing process.  Frozen storage studies at -10, -23 and -30°C found that the population of the 

bacterium decreased faster in oysters stored at -10 than at -23 or -30°C.  Holding half-shell 

Pacific oysters at -10°C for three months or at -23°C for four months was capable of achieving a 

greater than 3-log (MPN/g) reduction of V. parahaemolyticus in the Pacific oyster from starting 

at 10
5
 MPN/g inoculum. 

 



20 

 

2.4.4 Assessment of air blast and cryogenic freezing of oyster meat 

Oyster purists would claim that oysters are intended to be eaten raw and freshness is 

mandatory when the briny flavors of the sea are mostly desired.  Under this premise, oysters 

would not be considered as a seafood item suitable for freezing.  However, frozen oysters are 

commercially available as cryogenically individually quick frozen half-shell oysters and frozen 

sucked oyster meats.  Oyster meats frozen either individually or in blocks yield a product which 

are used in cooked dishes. 

The freezing of oyster meats using conventional freezers is a well-established process in 

the United States and Japan (Horst and others, 2011).  The shucked meats are thoroughly washed 

with water to remove sand, grit and other shell debris, drained to remove excess water, and 

frozen in an air blast freezer before packing.  However, the use of cryogenic freezing for oyster 

meat is a rare practice between oyster processors.  The production cost of this process is 

considered to be high in terms of the end use of the final product where pursuing of oyster flavor 

is more important than appearance.  However, the emerging consumer tendency of ready-to-eat 

(RTE) food items might change this perception and more attention should be paid to improve the 

overall quality of frozen oyster meat. 

There is always a high consumer demand for oysters that are safe while retaining their 

original flavor, nutrient content, texture, and appearance.  In addition, these oysters are expected 

to be additive-free as well as possessing a longer shelf life.  Since the oyster industry is so 

important to Louisiana’s economy, it is necessary to protect the consumers’ confidence in the 

product.  A combination of cryogenic freezing and appropriate packaging can accomplish the 

later statement as well as helping to penetrate into the ready-to-eat market.  A scientific approach 

designed to evaluate the quality and safety concerns during the freezing (air blast and cryogenic) 
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of oyster meat is necessary to establish the foundations for the development of RTE oyster meat 

products.  Specifically, these studies were customized to target V. vulnificus and V. 

parahaemolyticus; the pathogens which are a threat to oyster consumers. 

2.5 Modified atmosphere packaging in food applications 

Benefits of extending the shelf life of food by modifying the atmosphere of the storage 

unit have been extensively studied since first demonstrated by the work of Kidd and West (Kidd 

and others, 1933) in 1936.  The prolonged shelf life extension was accomplished by the 

substitution of air with other gases for the storage of fresh produce in a controllable atmosphere.  

Headspace gas modification started to appear 30 years later at the packaging level, and it was 

branded as modified atmosphere packaging (MAP) (Del Nobile and others, 2012).   

Process-wise, MAP is defined as placing a perishable product in a package, removal of 

atmospheric air by vacuum or flushing, and replacing it by a pre-determined gas or mixture of 

gases with a composition different than air, followed by sealing the package (Kropf, 2004).  

After closing the packaging there is no additional manipulation of the internal environment.  The 

headspace composition may change during storage.  This is the critical difference when 

compared to controlled atmosphere systems (CA), where continuous monitoring of the 

environment is necessary to maintain a stable gas atmosphere and other conditions (Del Nobile 

and others, 2012). 

Extensive studies have been performed using MAP in a variety of commodities, i.e. 

produce, poultry and meat products.  Most of these studies have the common factor of tailoring 

mixtures of gases, either to enhance or avoid the development of organoleptic characteristics.  

The MAP conditions protect products against deteriorative effects, which may include 

discoloration, off-flavor and off- odor development, nutrient loss, texture changes, and other 
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measurable factors.  However, the predominant concern is related to bacterial growth, which is 

most often the limiting factor of shelf life.  Thus, an important objective of MAP systems is to 

minimize the changes that those attributes experience throughout the storage of the product. 

The utilization of MAP in seafood has also been studied as a tool to extend shelf life 

during cold or chilled storage.  In recent years, customers’ interest in fresh, mildly preserved, and 

conveniently packed seafood products has increased.  As a result of this demand, application of 

MAP in seafood has been customized to account for the origin of the raw material, temperature 

and type of cold storage, gas mixtures, and packaging materials (Gunsen and others, 2010).  

However, despite the numerous studies on this topic, there are few published studies about the 

effects of MAP on shellfish, and no data are available, to the best of my knowledge, on oyster 

meat packed in modified atmospheres. 

The present study was mainly initiated to evaluate the effects of MAP on the quality 

retention of oyster meat in a ready-to-cook form, frozen cryogenically with liquid nitrogen and 

stored at -20ºC for six months.  The effect of MAP on the shelf life was assessed primarily by 

comparing the volatile flavor compounds of fresh oyster meat with the different MAP treatments. 

2.5.1 Principal gases used in modified atmosphere packaging of foods 

The three main gases used in MAP are nitrogen (N2), oxygen (O2), and carbon dioxide 

(CO2).  Additionally, carbon monoxide (CO) has become of special interest to the meat industry 

which has required more research.  Each gas has a role and importance which are related to the 

gas’ specific properties. 

Nitrogen is an inert gas that is tasteless, colorless and odorless.  Chemical characteristics 

of this gas include a lower density than air, low solubility in water and fat and it is 

nonflammable.  Nitrogen is used to replace oxygen and prevent package collapse, to retard 
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oxidative rancidity and inhibit growth of aerobic microorganisms.  However, no direct effect of 

N2 on microbial growth has been observed and, as a result, it has no impact on anaerobic bacteria 

(Arvanitoyannis and others, 2012a). 

Oxygen, is a colorless, odorless gas that has a relatively low solubility in water, supports 

combustion (is explosive) and is very reactive with a wide variety of biological compounds 

(Grebitus and others, 2013).  Oxygen inhibits the growth of anaerobic microorganisms, but 

promotes the growth of aerobic microbes.  Additionally, oxygen is responsible for several 

undesirable reactions in foods, including oxidation and rancidity of fats and oils, rapid ripening 

and senescence of fruits and vegetables, staling of bakery products, and color changes (Del 

Nobile and others, 2012). 

In addition to O2 and N2, CO2 is the other gas used in significant amounts in MAP 

systems.  Carbon dioxide is a colorless gas with a slightly pungent odor and greater solubility in 

water than nitrogen and oxygen.  CO2 has been utilized as a preservative for fresh produce, meat 

and poultry for over 100 years and, consequently, its use in MAP systems has been studied 

extensively. 

Carbon dioxide is considered as the centerpiece of MAP systems due to its ability to 

inhibit a wide range of microorganisms (Arvanitoyannis and others, 2012a).  (Garcia-Gonzalez 

and others, 2009) determined that CO2 has a greater inhibitory effect on Gram negative bacteria, 

which grow rapidly on seafood, than it does on Gram positive.  The mechanism of action 

depends on the gas dissolution in the food that reduces the pH, thus inhibiting microbial growth. 

Although the pathway through which CO2 exerts its inhibitory effect on bacteria is not 

yet fully understood, it is known that the gas dissolves readily in water and will produce carbonic 

acid (H2CO3) in solution (Kropf, 2004).  Carbonic acid will then cause a drop in meat pH and, in 
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turn, negatively affect microbial growth.  Carbon dioxide can also penetrate into microbial cells, 

disrupting the cell membrane (Del Nobile and others, 2012) where the bicarbonate ion, a 

dissociation product, changes cell permeability, and affects metabolic processes. 

In MAP studies utilizing CO2, it has been shown that its effects are usually related to the 

concentration of CO2 in the food and not to its concentration in the package headspace.  Thus, 

the gas that affects the food and the microorganisms is the one that dissolves in the food and not 

the one in the headspace (Arvanitoyannis and others, 2012a; Caleb and others, 2013; Chae and 

others, 2011; Grebitus and others, 2013; Kim and others, 2012). 

2.5.2 General considerations using MAP to extend shelf life of food products 

Application of MAP to extend shelf life depends on the mixture of the gases employed.  

The optimum level of each gas depends on different aspects, such as product characteristics, 

respiring surface area, storage conditions, and package barrier properties (Rodriguez-Aguilera 

and others, 2011, 2009a, 2009b).  Furthermore, different considerations need to be taken in 

account when working with respiring and nonrespiring food to optimize the selection of gas 

headspace. 

Antimicrobial effects in nonrespiring food can be achieved by making carbon dioxide the 

predominant gas in the headspace composition (Arvanitoyannis and others, 2012a).  Addition of 

nitrogen is commonly practiced to avoid the package collapsing effect due to the high solubility 

of carbon dioxide  (Conte and others, 2013).  Pure nitrogen is usually employed in food with low 

water activity, especially in those with relatively high lipids content like breakfast cereals.  

Although, these products are less susceptible to microbial spoilage, enzymatic and chemical 

reactions can occur and results in deterioration (Klensporf-Pawlik and others, 2009). 
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For respiring food, such as horticulture produce, more than one aspect should be kept in 

mind before selecting the proper gas combination.  Storage under reduced oxygen and elevated 

carbon dioxide partial pressures are commonly used to reduce respiration rate, metabolic activity, 

and ethylene sensitivity, thus increasing shelf life (Wang and others, 2011).  On the other hand, 

extremely low levels of oxygen and/or high levels of carbon dioxide have to be avoided because 

they induce anaerobic metabolism with the possibility of off-flavor generation, and/or the risk of 

anaerobic microorganism proliferation (Del Nobile and others, 2012).  Therefore, the most 

relevant applications of the usage of MAP in respiring foods are those where the development of 

the desired headspace is created as a result of the product’s respiration (passive MAP) (Costa and 

others, 2011; Kudachikar and others, 2011).  Under passive MAP conditions, the respiration of 

the product and the gas permeability of the film are the two factors that influence the change in 

gas composition of the environment surrounding the product (Conte and others, 2013). 

MAP techniques have expanded and are now used on a wide range of fresh or chilled foods, 

including raw and cooked meats and poultry, fish, fresh pasta, fruit and vegetables and more 

recently coffee, tea and bakery products.  The major advantages and disadvantages on the 

adoption of these techniques at retail and processing levels are listed in Table 2.1.  

2.5.3 Previous studies of MAP applied to seafood 

Several methods have been used by the food processor to slow down or inhibit 

deteriorative changes in seafood, including chilled storage, freezing, heat processing, drying, and 

the use of chemical additives and preservatives.  However, the increasing consumer concern 

regarding preservatives as well as the demand for fresh products has forced the food industry to 

seek alternative methods of food preservation.  Seafood is a highly perishable food which has a 

relative short shelf life.   
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Table 2.1 Advantages and disadvantages of MAP as they apply to fresh products (Conte and 

others, 2013) 

Advantages of MAP for the consumer  Disadvantages of MAP 

 

Increased shelf life allowing less frequent 

loading of retail display shelves 

  

Capital cost of gas packaging machinery 

Reduction in retail waste  Cost of gases and packaging materials 

Improved presentation-clear view of product 

and all round visibility 

 Cost of analytical equipment to ensure 

that correct gas mixture are used 

Hygienic stackable pack, sealed and free 

from product drip and odor 

 Cost of quality assurance systems to 

prevent distribution of leakers 

Reduction in production and storage costs 

due to better utilization of labor, space and 

equipment 

 Increase of pack volume which will 

adversely affect transport costs and retail 

display space 

Increased distribution area and reduced 

transport costs due less frequent deliveries 

 Benefits of MAP are lost once the pack 

is opened or leaks 

Little or no need of chemical preservatives   

Centralized packaging and portion control   

 

Modified atmosphere packaging is a system that offers a way of extending the shelf life 

of seafood products, maintaining quality and inhibiting bacterial growth. 

Studies on the application of MAP in seafood can be grouped in two main areas.  The first one is 

related to the extension of shelf life, while the second one targets the improvement of quality 

aspects in products that underwent processes such as salting, smoking, and curing.  In general 

terms, MAP has been utilized as a supplement to ice or refrigeration to extend the storage shelf-

life of fresh seafood products which has led to a greater variety of products.  Fresh fish and other 

fresh seafood products are highly susceptible to spoilage from postmortem microbial growth, 

biochemical endproducts (e.g., enzymes) resulting from the microbial growth, or combinations 

of both (Arvanitoyannis and others, 2011). 
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The higher water and free amino acid content along with the lower content of connective 

tissue as compared to other flesh foods lead to the more rapid spoilage of fish (Masniyom, 2011).  

Moreover, shellfish flesh containing higher carbohydrate and lower nitrogen content can be used 

as a nutrient source for microbial growth.  Immediately after death, several biochemical and 

enzymatic changes are triggered in seafood muscles, especially with improper handling.  

Therefore, spoilage in fish and shellfish depends on species and chemical components 

(Masniyom, 2011). 

It has been widely reported that the use of high barrier films along with modified 

atmosphere packaging containing CO2 effectively inhibits bacterial growth during refrigerated 

storage of packaged fresh fishery products.  The first extensive research on seafood stored in 

CO2 was reported in the early 1930s in the United Kingdom, the United States of America and 

Russia (Stansby and others, 1935).  In a 100% CO2 atmosphere, fish were kept fresh 2-3 times 

longer than the control fish in air at the same temperature.  Elevated CO2 levels between 40% 

and 100%, have been shown to inhibit normal Gram negative spoilage bacteria (ie Pseudomonas, 

Listeria, Salmonella, Alteromonas, Shewanella, Moraxella and Acinetobacter) in fish from cold 

and temperate waters (salmon, atlantic cod, swordfish, european sea bass, carp, rainbow trout) 

(Hansen and others, 2009; Hovda and others, 2007; Hudecova and others, 2010; Kykkidou and 

others, 2009; Lauzon and others, 2009; Noseda and others, 2012; Oguzhan and others, 2012; 

Pantazi and others, 2008; Poli and others, 2006; Provincial and others, 2013; Tryfinopoulou and 

others, 2002; Yilmaz and others, 2009) doubling or tripling shelf life at refrigerated 

temperatures. 

The effects of mixtures of oxygen, carbon dioxide, and nitrogen have been also studied in 

ready-to-cook seafood products (hake fillets, yellow gurnard fillets, chub mackerel fillets, 
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shrimp, mussels, and entire eviscerated cuttlefish) (Arvanitoyannis and others, 2011; Kamadia 

and others, 2013; Qian and others, 2013; Speranza and others, 2009; Ulusoy and others, 2011) 

showing an increase in the sensorial shelf life ranging from about 95% to 250%.  Results have 

shown that sensorial quality was the subindex that limited their shelf life.  In fact, based 

primarily on microbiological results, samples under MAP remained acceptable up to the end of 

storage (that is, 14 days), regardless of seafood type.  In these studies, lower concentrations of 

CO2 were desired to avoid unpleasant effects on some sensorial parameters of the packed product 

such as excessive exudate, softening of texture, and discoloration. 

The synergistic effect between MAP and storage temperatures has been addressed by 

several researchers to maximize the effect of MAP in shelf life of seafood products (Table 2.2).  

Based on sensory evaluation, super chilled storage alone (-2ºC to 0ºC) compared with traditional 

chilled storage (4ºC - 6ºC) increased the shelf life of Cod loins from 9 to 17 days.  Chilled MAP 

increased the shelf life from 9 to 14 days, and when MAP and super chilled storage were 

combined, the shelf life was further extended to 21 days (Wang and others, 2008).   

In addition, this study and several other ones (Bøknæs and others, 2000; Fernandez and 

others, 2010; Li and others, 2011; Penney and others, 1994; Torrieri and others, 2011) clearly 

demonstrates the need for strict temperature control during storage.  Temperature abuse (above 

8ºC) causes the shelf life to shorten due to microbial activity, especially from psychotropic 

microorganisms, but also opens the door for possible growth of food poisoning microbes such as 

Clostridium bolulinum (Garcia de Fernando and others, 1995).  C. botulinum produces toxin in 

many different atmospheres, but is unable to grow at temperatures below 3.3ºC.   

In previously processed seafood (boiled/cooked, salted, smoked, etc.), MAP also 

significantly increases the shelf life of the final product.  Furthermore, in such cases, MAP is 
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reported to improve other quality aspects such as color stability, texture, and reduction of fatty 

acids oxidation.  Concentrations of CO2 between 50% and 70% coupled with nitrogen, increased 

the shelf life of seafood salad from 4 to 7 months at a storage temperature of 2 ± 2ºC (Gunsen 

and others, 2010).   

Table 2.2 Shelf life extension of fish and fishery products under MAP (Masniyom, 2011) 

Fish and fishery products 

Storage 

temperature 

(ºC) 

MAP 

condition 

CO2:O2:N2 

Shelf 

life 

(days) 

References 

Mediterranean Swordfish 4 40:30:30 12 (Pantazi and others, 2008) 

Pearlspot 2 60:40:0 10 (Sankar and others, 2008) 

Cod -0.9 50:5:45 21 (Wang and others, 2008) 

Sea Bass 4 60:10:30 13 (Kostaki and others, 2009) 

Atlantic Salmon 2 90:0:10 22 (Fernandez and others, 2010) 

Mediterranean Swordfish 4 50:5:45 13 (Kykkidou and others, 2009) 

Atlantic Salmon 1.2 60:0:40 15 (Hansen and others, 2009) 

Sea Bass 4 60:0:40 18 (Provincial and others, 2010) 

 

Determination of thiobarbituric acid reactive substances (TBARS), which measure the 

level of fatty acids oxidation, and sensory evaluation, determined that MAP seafood salad was 

edible until the 7
th
 month of storage as compared to air-packed.  MAP with combined 80% 

CO2:10% O2:10% N2 gases prevented a pH rise, purge loss, and texture toughening while 
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minimizing oxidative changes in precooked, shell-less red claw crayfish tails stored at 

refrigerator temperature.(Chen and others, 2008).  Stability in color, texture and considerable 

extension of shelf life was also observed in MAP smoked blue cod (Penney and others, 1994).  

Product in carbon dioxide filled packs remained acceptable when stored at 3ºC and -1.5ºC after 

49 and 113 days respectively (3.5 and 4.0 times larger than in control samples packed 

aerobically).  Extension of shelf life in CO2 samples was attributed to a significant extension of 

the lag phase before spoilage micro flora proliferation commenced and to the selection of low-

spoilage-potential lactic-acid-bacteria-dominated flora. 

Although elevated concentrations of carbon dioxide extend shelf life of diverse seafood 

products by its effects on spoilage bacteria, negative effects on quality and sensory attributes 

have been reported in pearl spot (Etroplus suratensis Bloch) (Lalitha and others, 2005).  CO2 

flush packed products had less desirable odor, texture and flavor with an increase in exudates 

which lead to a less acceptability.  This may be due to a greater loss of the water holding 

capacity (WHC) of the muscle protein at lower pH values (Masniyom, 2011).  The combination 

of other treatments helped to overcome the exudate losses in fish kept under MAP such as 

addition of sodium chloride (Fuentes and others, 2012), which increased the WHC, in salmon 

when compared to air packed samples.  Also, to improve the quality of desalted cod, phosphate 

brining was used as a pretreatment before MAP (Rotabakk and others, 2009) which significantly 

increased the weight of the portions as compared to the control group.  Polyphosphates and 

polyanion might interact with the positive charges of the protein molecules to increase the net 

negative charge, resulting in the increased water uptake ability.  As a result, the repulsive forces 

between protein molecules may increase, leading to the increased water retention (Masniyom, 

2011).   
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There is also a general concern related to the safety of MAP in fish products in relation to 

the potential for growth and toxin production by C. botulinum (Sankar and others, 2008).  

Contamination of seafood with C. botulinum may arise from marine and fresh water 

environments, and thus the facultative anaerobic conditions often encountered in MAP low acid 

foods (pH > 4.6) can be favorable to growth and toxin production by the bacteria if the suitable 

storage temperatures prevail.  C. botulinum type E, nonproteolytic and psychrotrophic strain, can 

grow and produce toxin at low temperatures (Sankar and others, 2008).  Trout and salmon 

samples kept in MAP at 10, 15, and 20ºC and inoculated with spores of C. botulinum spoiled 

before they became toxic (Cann, 1984).  However, toxin has been found in MAP or vacuum 

packed flounder fillets prior to the fish being spoiled (Arritt and others, 2007).  As discussed 

before, the storage temperature plays a major role in the extension of shelf life, but it also sets the 

margin of safety between sensory spoilage and onset of C. botulinum growth as reported in 

prolonged storage of MAP salmon at abusive temperatures (above 8ºC) that may present a public 

health hazard because toxin formation preceded sensory spoilage (Peck and others, 2008).  

Temperature control of MAP seafood has become one of the major challenges for retail stores, to 

the extent of acquisition of sophisticated temperature sensor devices attached to packaging to 

monitor temperature abuse (Masniyom, 2011). 

2.5.4 MAP and frozen seafood 

Temperature abuse of seafood packed under modified atmosphere conditions and stored 

at super chilled or chilled temperatures is probably one of the main causes of complaints from 

customers.  MAP fish products are described as being spoiled and exhibit a typical amine-like 

odor developed from microbial activity (Bøknæs and others, 2000).  Most recent reviews on the 

shelf life extension of fish and fishery products by modified atmosphere packaging (Conte and 
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others, 2013; Del Nobile and others, 2012; Masniyom, 2011; Sivertsvik and others, 2002) 

compile in great detail the effects of MAP on the microbial reduction, retention of fresh quality 

characteristics, synergistic effect with storage temperature, and safety issues, however, the effect 

of MAP in seafood during frozen storage for extended periods was not addressed. 

The few available studies of MAP and frozen storage have been developed to explore 

consumer demands for conveniently packaged seafood products (Bak and others, 1999; Bøknæs 

and others, 2000; Bono and others, 2012).  Overall better quality in relation to color stability, 

lipid oxidation and shrimp meat toughening was achieved in boiled shrimp packed in nitrogen 

atmosphere and stored at -17ºC for 12 months (Bak and others, 1999) in containers resistant to 

the puncture of the shrimp horns.  The effects of photooxidation in astaxanthin (red color in 

shrimp) and lipid oxidation were minimal in samples stored under MAP conditions.  The distinct 

red color in shrimp remained in MAP samples even with prolonged exposure to fluorescent light.  

Packaging in atmospheric air resulted in pronounced lipid oxidation during frozen storage as 

compared to packaging in modified air, almost 4 times greater based on TBARS values.  In both 

cases, the exclusion of oxygen in the package did not trigger chemical reactions for degradation 

of astaxanthin and fatty acid oxidation by photooxidation extending the shelf life of the product 

by 50%. 

An interesting study authored by Bøknæs et al (Bøknæs and others, 2000) was performed 

to explore the effect of freshness and frozen storage on sensory characteristics, trimethylamine 

(TMA) development, water holding capacity (WHC), and microbial content of fresh cod fillets 

packed in trays under a mixture of 60% CO2:40% N2.  The authors suggest that the degree of 

freshness coupled with MAP extends shelf life by improving sensory attributes and considerably 

reducing spoilage microorganisms in thawed MAP cod fillet production.  This conclusion was 
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obtained after comparing fresh cod samples that were MAP packed and frozen by air blast 

freezing with samples stored aerobically at 0ºC for 7 days before MAP packing followed by 

freezing.  Both sets of samples were stored at -20 and -30ºC for 6 weeks.  Cod fillets were then 

thawed and transferred for chill storage at 2ºC for 17 days.  In general, significantly lower values 

of TMA and high sensory scores were measured in samples stored at -20ºC without exposure to 

aerobic environment prior MAP, but no significant difference in WHC was found between any 

sets of samples.  Inactivation of a specific spoilage microorganism (P. phosphoreum) occurred 

during frozen storage because it was not detected during chill storage of cod samples.  

Development of frozen storage odor and taste was most pronounced for thawed chilled MAP 

fillets with 7 days of aerobic chill storage prior to MAP and freezing which was related to the 

production of compounds associated with lipid oxidation.   

The application of combined preservation techniques is considered as a future alternative 

in the stability of foods in general and seafood in particular (Kerry, 2012).  The study and 

application of combined techniques has already shown promising results in shellfish.  

Techniques such as the application of bactericides, irradiation, and ozonation (Arvanitoyannis 

and others, 2012a; FDA, 2005; Kerry, 2012) continue to be explored due the tremendous interest 

expressed in this area.  Alternative decontamination/disinfection have demonstrated a great 

potential to decrease pathogenic bacteria, yet the effects against viruses is questionable (Kerry, 

2012).  There is a need to acquire knowledge on the effect of MAP methods towards viruses due 

to a global concern of increasing infections and outbreaks attributed to viruses transmitted by 

food. 

Although an increase in shelf life and improvement in quality are concluded from studies 

of MAP in frozen storage, this alternative is still not included, and not even mentioned, as a 
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viable option in any of the recent publications dedicated to advances in MAP (Arvanitoyannis 

and others, 2012b; Conte and others, 2013; Del Nobile and others, 2012; Kerry, 2012).  Probably 

the main cause may reside in the considerable extra cost and amount of effort manufacturers 

would have to go through when dealing with MAP products.  According to US regulations, all 

manufacturers producing products with reduced oxygen content or protective atmosphere have to 

set up critical control points regarding both the gas content and the seal integrity (FDA, 2005).  

Usually MAP is carried out at the level of retail packs, and food processors and manufacturers 

are free of this responsibility. 

2.6 Microwave cooking/heating 

The major uses of the microwave oven in the United States (U.S.) beginning in the 1990s 

was mainly for reheating or defrosting foods, cooking vegetables, preparing snacks, preparing 

meals for one person, or quickly preparing traditionally long-cooking foods (Happel, 1992).  

Microwave heating is not considered by most as a cooking method.  However, the microwave 

oven has become a very important appliance in the modern kitchen.  In fact, data from the 2009 

US Department of Energy, Residential Energy Consumption survey, indicate that 95.9% of 

consumers own a microwave oven and 39% use it to prepare at least one meal every day (USEI, 

2009). 

2.6.1 Fundamentals of microwave heating 

2.6.1.1 The microwave oven  

The invention of the microwave oven has an interesting history.  In 1946, Dr. Percy 

LeBaron Spencer, an American engineer working for the Raytheon company was exploring the 

use of a magnetron to produce microwaves in a radar system to locate Nazi airplanes during 

World War II (Bih, 2003).  During the manufacturing of the magnetrons, at some stage, many 
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tubes simultaneously were allowed to radiate into space creating a “hot environment” which led 

to perform a series of experiments using different food items inside a metal box (Osepchuk, 

2009).  He found that the energy entering the metal box was unable to escape, thereby creating a 

higher density electromagnetic field, rising the temperature of the food very rapidly. 

In 1947, Raytheon built the "Radarange
®
", the first commercially available microwave 

oven (Bih, 2003).  It was 1.8 m (5ft 11in) tall, weighed 340 kilograms (750lb) with a cost of 

about US$5,000 ($51,408 in today's dollars) each.  Between 1952 and 1955, Tappan introduced 

the first home model priced at $1295.  The world first 115-volt countertop, domestic oven was 

introduced in 1967.  The 100-volt microwave oven, was under $500 and smaller, safer and more 

reliable than previous models (Bih, 2003).  However, the use of the microwave oven in the 

American household started to increase in the late 1970s by the introduction of models with 

electronic touch controls, automatic temperature settings, and the capability to defrost. 

Since then, advances in microwave ovens include employing more sensors to regulate 

temperature and automatic features to decrease programing.  The development of digital displays 

has allowed the delivery of more information to the consumer while microwaving (when to stir, 

uncover, add salt, etc.).  Furthermore, microprocessors and packaging has reduced preparation 

steps on the part of the consumer.  Bar code readers are one of these possible features where the 

oven is set up by scanning the product’s packaging, which pre-program the heating instructions 

(Lodgher and others, 2012).  State of the art microwave ovens are totally computerized and can 

cook, bake and roast almost any food by microwave-assisted convection hot-air capabilities; 

however, these types of ovens are niche products due to high prices and complex technology-

dependent communication systems which deviate from the concept of practicability. 
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2.6.1.2 Microwaves 

Microwaves are located between 300 MHz and 300 GHz on the electromagnetic 

spectrum (Fig. 5).  Microwave heating is defined as the heating of a substance by 

electromagnetic energy operating in that frequency range (Dekruijf and others, 1994).  The high 

frequency range, which also can be used for heating, is very large and it can be subdivided into 

kHz high frequency (10 kHz < f < 1 MHz) and MHz high frequency (1 MHz < f < 300 MHz).  

The latter range is used when referring to high frequency heating.  Only restricted microwaves or 

high frequencies are allowed for heating in industrial, scientific, and medical applications which 

are the so-called ISM frequencies (Galema, 1997). 

Of these, only 2450 MHz is commonly used for food processing in Europe, while 915 

MHz dominates in the United States (but also 2450 MHz and 5800 MHz are permitted) and 896 

MHz in the United Kingdom (Galema, 1997; Venkatesh and others, 2004).  Although higher 

frequencies are not in active use, it has been suggested that by combining higher frequencies 

with lower frequencies (infrared) it would be possible to get surface browning when 

microwaving food (Decareau, 1992). 

 

Figure 2.5: The electric spectrum and the ISM frequencies (Peräniitty, 1988) 
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2.6.1.3 Dielectric heating 

The dielectric properties of a material describe the interaction with electromagnetic 

radiation (Bih, 2003) .  Electromagnetic waves, such as microwaves, contain electric and 

magnetic field components.  The electric field component applies a force on charged particles 

and as a result they migrate or rotate.  Natural biological materials absorb only the electric part of 

the electromagnetic field.  Food materials are practically non-magnetic, as they contain only 

trace amounts of magnetic material, such as iron and cobalt (Sosa-Morales and others, 2010).   

Many molecules have a permanent dipole moment, and orientation (dipolar) polarization 

is due to the partial alignment of these dipoles.  Water is a dipole and is usually a major 

component in biological materials.  In a microwave or high frequency field, the dipoles try to 

follow the rapidly changing field.  The concerted forces applied by the electric and magnetic 

components of microwaves change rapidly in direction (2.4 X 10
9
 per second) causing warming 

because the assembly of molecules, e.g., a liquid or a semi-solid, cannot respond instantaneously 

to the changing direction of the field.  This creates friction which manifests itself as heat, which 

is known as dielectric heating (Galema, 1997).  

Dielectric properties are the most important physical properties associated with 

microwave heating since the dielectric behavior of foods affect their heating characteristics.  

Knowledge of the dielectric properties of foods is essential in research, modeling and 

development of thermal treatments based on radio frequency (RF) and microwave (MW) energy.  

These properties provide information about the interaction between the foodstuff and electric 

fields.  In food products, the dielectric properties are primarily determined by their chemical 

composition and, to a much lesser extent, by their physical structure.  The influence of water and 
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salt (or ash) content depends to a large extent on the manner in which they are bound or 

restricted in their movement by the other food components. 

Fortunately, many studies on the dielectric properties of agricultural and biological 

materials have been reported for different frequency ranges, temperatures, and moisture contents 

(Ryynanen and others, 1996; Shaheen and others, 2012; M. E. Sosa-Morales and others, 2010; 

Venkatesh and others, 2004).  Literature data is mostly limited to food ingredients and their 

components.  However, for complex multicomponent systems the dielectric properties must be 

measured or estimated, or from a practical approach, utilization of temperature sensors 

distributed uniformly in the food could guide the choosing of ingredients and their mixing based 

on temperature profiles (Decareau, 1992; Dekruijf and others, 1994). 

2.6.2 Effects of microwave distribution in microwave ovens 

Even heat distribution is very important in microwave cooking/heating.  One useful 

property of microwaves is that they reflect on metal surfaces (Bih, 2003).  After microwaves 

have been generated by the magnetron, they are directed towards a metal spinning propeller to be 

distributed into the oven chamber.  The oven chamber is covered with metal as well and thus 

microwaves continue bouncing around in the chamber until randomly absorbed by the product 

(Bloomfield, 2013).  To improve the distribution of microwaves around the food, the carousel, or 

turntable, is one of the earliest methods of increasing temperature uniformity inside a microwave 

oven.  Furthermore, mathematical models have been developed and the exact role of the carousel 

in improving heating uniformity has been studied (Geedipalli and others, 2007). 

Additionally, constructive and destructive interferences between microwaves also cause 

uneven heating in the food (Meier and others, 1998).  Microwaves interfere with each other and 

the resulting electric field, at certain location in the microwave chamber, causing the sum of 
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individual electric fields to develop uneven thermal patterns.  A constructive interference will 

impart more kinetic energy to polar molecules in the food due to positive interaction of electric 

fields resulting in points of higher temperature.  In contrast, lower localized increase in 

temperature will occur when the resulting electric field is less (destructive interference) at the 

neighboring point (Bloomfield, 2013).  These effects have been observed and have also been 

described as surface effects better known as ‘hot’ spots. 

Several studies have established that other factors affect microwave heating, besides the 

oven (design and field distribution), and depend on uneven dielectric properties of foods, food 

geometry and thickness, packaging, and placement in the microwave oven (Fakhouri and others, 

1993; Geedipalli and others, 2007; Manickavasagan and others, 2006; Ryynanen and others, 

1996; Sosa-Morales and others, 2010; Vadivambal and others, 2010).  Simulation of microwave 

heating by mathematical models and verified by thermal analysis have shown that hot spots or 

maximum temperature values occur in the center of spheres and at the surface, while center 

temperatures reached the highest values in cylinder-shaped food.  In cubes and brick shaped 

products microwave energy concentrates in the corners, giving rise to hot spots (Campañone and 

others, 2005; Geedipalli and others, 2007).  In addition, the uneven heat distribution in food, 

especially in multicomponent food, creates a common physical effect described as the pressure 

cooker effect (Galema, 1997).  Localized 'hot spots' increase the temperature while the bulk 

temperature remains low creating pockets.  Inside the pockets, the pressure increases by the 

phase change of water from liquid to gas due to heating.  The pressure release is accompanied by 

a loud popping sound, displacing food particles many times outside of the packaging which is an 

undesired outcome. 
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2.6.3 Food safety in microwavable foods 

The microwave oven has become a very important appliance in the modern kitchen.  

Microwave heating is not considered by most as a cooking method but a way to heat food 

products in a short period of time.  Microwaveable foods are a group of ready-made, 

prepackaged, frozen, or prechilled products that can be consumed with minimal preparation. 

The uneven heat distribution in microwave ovens is the main concern related to 

microbiological quality in food.  Microbiological safety is often achieved by heating and thus if 

the food product is not adequately heated pathogenic microorganisms may survive.  For 

precooked, ready-to-eat products, microwave cooking is a preferred method of food preparation 

because it can quickly warm the products prior to consumption; however, some products may 

contain raw meats, particularly raw pork, beef, and poultry meats that are potentially 

contaminated with foodborne pathogens (Huang and others, 2010). 

Outbreaks of foodborne salmonellosis have been reported in Canada in connection to the 

consumption of undercooked microwavable products which contained raw or partially cooked 

poultry meat (MacDougall and others, 2004).  In this case, consumer misconceptions of frozen 

product considered to be precooked contributed to the risk of infection, and clear labels 

identifying the product as raw poultry were needed.  In the United States, four outbreaks of 

salmonellosis were reported from 1998 through 2006 associated with raw, frozen, microwavable, 

breaded, pre-browned, stuffed chicken products(Smith and others, 2008).  As in the previous 

case, some affected individuals thought the product was precooked.  In addition, most of them 

did not follow package cooking instructions, and none took the internal temperature after 

microwaving.  Although modification of labels, verification of cooking instructions by the 
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manufacturer, and notification to alert the public were implemented after the first outbreaks in 

1998, these measures did not prevent the following outbreaks. 

The concerns regarding foodborne illnesses originated from consumption of products 

which have microwave heating as the last step before consumption.  This has been the base for 

many studies aim at specific pathogens.  Inactivation of Salmonella sp and Listeria sp. has been 

evaluated in a variety of products such as whole chickens, ready-to-eat products, popcorn, and 

fresh vegetables.  In whole products, like chicken carcasses (1.8 kg), the inability of microwave 

ovens (seventeen units from various commercial suppliers) to uniformly heat the product was 

verified by temperature probes and the presence of viable Listeria sp. found in 5.74% of the 

chickens after cooking (Farber and others, 1998).  Factors such as wattage, cavity size, and the 

presence or absence of a turntable were not significant in the survival of Listeria sp.  However, 

in small sized chicken products, temperature distribution was improved and inactivation was 

successful (Jamshidi and others, 2009).  Also, a 5-log reduction in Salmonella was achieved in 

popcorn after microwaving following the manufacturer’s instructions (Anaya and others, 2008) 

as well as in jalapeno peppers and coriander foliage after 25 seconds and 10 seconds respectively 

reaching 63ºC in a 950 W microwave oven.  In addition, inactivation of Salmonella was also 

achieved in sliced meat microwaved for 4 minutes followed by a standing time of 2 minutes 

(Levre and others, 1998).  Samples were inoculated with 10
7
 cells/g and no viable cells were 

recovered from both core and surface samples.  On the other hand, some results showed that 

preset controls in microwave ovens are not safe enough when reheating contaminated foods.  

Survival of Salmonella typhimurium was evaluated in different types of baby food and it was 

found that 47.8% of food samples were positive for the contaminant using conventional settings 

while in a microwave with preset controls it was 93.3% (Tassinari and others, 1997).   
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Another recognized foodborne pathogen that has been the object of studies in 

microwavable food is E. coli O157:H7.  Fecal contamination becomes a major route that 

contributes to foodborne infections associated with this pathogen and is commonly associated 

with raw or undercooked foods (Sargeant and others, 2003).  In whole, and in 20-g portions of 

chicken breast both inoculated with 10
5
 – 10

6
 cfu/g of this bacterium, elimination occurred at full 

power only after 35 seconds (73.7ºC) in the meat portions, however, viable cells were recovered 

from whole chickens after 22 minutes of cooking (variable temperature 60.2ºC -92ºC) 

(Apostolou and others, 2005).  The correlation between time of exposure and microwave power 

intensities to eliminate E. coli O157:H7 was established in bovine minced meat inoculated with 

10
7
 – 10

9
 cfu/g (Quesada and others, 2003).  The number of survival bacteria diminished as the 

time and temperature increased, however, a prolonged exposure was necessary for the complete 

inactivation, especially at lower power levels causing undesirable organoleptic characteristics. 

Microwave heating in a smart microwave oven, which provides continuous and 

adjustable output, was evaluated in the survival of a cocktail of pathogens inoculated in catfish 

fillets as part of a microwavable meal (Sheen and others, 2012).  Listeria monocytogenes (4-

strain cocktail), E. coli O157:H7 (5-strain cocktail), and Salmonella sp (6-strain cocktail) were 

surface inoculated onto 110 g catfish fillets.  After 2 minutes of 1250 W of microwave heating 

(80ºC -90ºC), 4 to 5 log CFU reductions of each of the pathogen were obtained.  The results also 

showed that E. coli O157:H7 was more sensitive to microwave heating than Listeria 

monocytogenes and Salmonella sp.   

Research on microwave heating shows that infection hazards linked to microwaved 

cooked food can be avoided by following adequate procedures concerning exposure time, 

temperature, and post heating hold time.  However, general instructions cannot be applied to new 
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products and the industry must responsibly perform testing and deep examination of food 

products to determine the extent to which microwave cooking is safe for these products. 

2.6.4 Properties of microwave heated foods – sensory and nutritional aspects 

Recent publications on microwave heating and sensory attributes are focused on the use 

of microwave-assisted steps in the processing of food rather than on household applications.  

However, sensory comparison between conventional and microwave heating or cooking is the 

principal focus of the majority of studies targeting household microwavable products.  In 

addition, the majority of these studies have been on reheating or cooking vegetables, pasta 

dishes, and meats.  While comparing these studies and their results, outcomes differ greatly even 

in similar types of products, which is dependant on the experimental design.  Techniques used 

for sensory evaluation vary from simple difference tests with well-trained panels to large 

consumer tests.  Nutritional quality in microwave heated and cooked food has also been studied.  

The same tests were performed as in sensory studies where researchers compared cooking 

methods and the retention or loss of specific components (nutrients).  

Reviews on sensory and nutritional quality of microwave cooking indicated that early 

research reported inferior quality of microwave cooked products.  Many later, better-controlled 

studies show that microwave cooking compares favorably to conventional cooking which is 

attributed to advances in microwave oven design and packaging (Ohlsson and others, 1982; 

Risch, 2009).  Studies on vegetables showed that there were no differences in visual color, 

texture scores, and chroma in microwaved-blanched broccoli florets (Brewer and others, 1995) 

or carrots and green cabbage (Rennie and others, 2010) when compared to conventional 

blanching.  Furthermore, it was found that microwaved blanched samples retained more nutrients 

(reduced ascorbic acid content) with similar results obtained in tomatoes (Begum and others, 
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2001), potatoes (phenolic constituents) (Barba and others, 2008), onions ( antiplatelet agents) 

(Cavagnaro and others, 2012), and in beans, brinjal, knol-khol, and radish (different nutrients) 

(Kala and others, 2006).  Retention of vitamins (retinol, beta-carotenes, thiamin, riboflavin, 

niacin, and ascorbic acid) was also higher after cooking chicken, lamb chops, fish, cassava, taro, 

and plusami in a microwave oven when compared to other cooking methods (Kumar and others, 

2006). 

The lack of browning during microwave cooking makes an obvious difference in meat 

when this parameter is part of sensory evaluation.  However, when it is excluded, no differences 

are found in tenderness of beef between different cooking methods, if the final temperature is the 

same (Hoskins, 1986).  This is also corroborated by similar studies in buffalo meat patties (Nisar 

and others, 2010) and chicken meat (Mendiratta and others, 1998).  In fact, microwaved cooked 

samples scored high in juiciness irrelevant of their fat content.  To obtain higher overall sensory 

scores in microwaved cooked meat products, improvement in color has been achieved by the use 

of additives and marinates (Perez-Juan and others, 2012).  Furthermore, tenderness and juiciness 

were also enhanced by the use of the same. 

Some authors have studied the changes on fatty acid composition and lipid oxidation to 

assess warmed-over flavor (WOF) in meat products.  WOF, or reheated flavor, is caused by the 

oxidation of fatty acids during refrigerated storage (Cheng and others, 2007).  The effect of 

microwave heating on the perception of WOF seems to vary depending on the nature of the meat 

and the way it was cooked.  For example, no difference in WOF was found in roast beef slices 

reheated in microwave and conventional ovens (Johnston and others, 1980).  In contrast, 

maximum WOF was produced in microwave cooking of pork compared to pan-frying, grilling, 

conventional cooking in water (Satyanarayan and others, 1992).  However, addition of natural 
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and synthetic antioxidants have shown an ability to control WOF during refrigerated storage and 

minimal perception was observed during reheating regardless of the method utilized 

(Jayathilakan and others, 2007). 

Most recent studies have been focused on the effect of cooking methods on the fat 

content and fatty acid composition of meat due to their importance for quality and nutritional 

values.  Microwave cooking provided higher contents of fatty acids than boiling and grilling, 

which likely resulted from the higher moisture loss (Alfaia and others, 2010; Nisar and others, 

2010).  It was observed that samples increased the percentages of mono- and saturated- fatty 

acids related to raw meat.  Interestingly, the results showed that heating decreased the 

polyunsaturated fatty acids to saturated fatty acids ratio but did not change its n-6/n-3 index.  In 

addition, the thermal procedures induced only slight oxidative changes in meat immediately after 

treatment but hardly affected the true retention values of its individual fatty acids.  Similar results 

were observed in chicken and meat patties when cooked using a microwave oven (Echarte and 

others, 2003; Sharma and others, 2005). 

Published studies of consumer acceptance of microwave cooked or reheated products are 

few and variations on the methods are large.  Shrimp cooked at different microwave powers and 

times were evaluated for color, flavor, texture, juiciness, and overall acceptability using a nine-

point hedonic scale (Gundavarapu and others, 1998).  Nearly 80% of the consumers were willing 

to buy shrimp cooked at 240 W (24% power level) for 140 seconds and with a 120 seconds 

holding before serving based on tenderness and appearance.  Consumer’s willingness to purchase 

precooked microwavable-reheatable top round steak processed from different grades was higher 

in samples that were marinated and tenderized (McWatters and others, 1999).  The 

marination/tenderization process increased the flavor ratings of steaks, regardless of grade. 
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On another note, researchers have also investigated the effect of cooking techniques, 

including microwave cooking, to assess the reduction and/or elimination of antibiotics, 

chemotherapeutics, and antimicrobial additives used in chicken farming (Javadi, 2011; Javadi 

and others, 2011a, 2011b; Lolo and others, 2006; Tarbin and others, 2005; Zhang and others, 

2005).  Most of these studies concluded that heat processes cannot annihilate the total amount of 

these chemicals in chicken meat samples, but they can only decrease their amounts.  Also, the 

development of heterocyclic amine compounds (HCAs), which are potent mutagens and possible 

human carcinogens that are formed during heating of protein-rich foods, has been studied in fish, 

chicken, and beef products (Jung and others, 2009; Oz, 2010; Oz and others, 2010; Sugimura and 

others, 2004).  While some of these studies favor and encourage the usage of microwave ovens 

for cooking due to low occurrence of HCAs (Jung and others, 2009; Sugimura and others, 2004), 

others reported higher contents of these compounds in microwaved samples of fish than in other 

meats suggesting to avoid microwave-cooking from a health perspective (Oz and others, 2010).  

A more careful review of these studies shows significant variability in sample preparation and 

handling protocols, and specifically in microwave cooking, when samples are cooked for the 

same time intervals in ovens differing in wattage, the resulting product is completely different 

which makes it difficult to draw a conclusive opinion. 

2.6.5 Influence of packaging in microwavable foods 

The three primary functions of packaging materials are to provide protection, utility, and 

communication in three different environments.  The environments are physical, atmospheric, 

and human (Lockhart, 1997).  Advances in packaging have evolved to provide for all three 

functions efficiently in all three environments.  However, one of the critical aspects for the 

success of food packaging is to quickly adapt to the human’s lifestyle.  In the U.S., the 
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consumer’s experience of increased time constraints, nutritional awareness, and the desire for 

foods that taste and smell like they were cooked in a conventional oven have changed 

microwavable foods.  The concept of microwave cooking has evolved from simply heating food 

in a shorter time to be an integral part of the way people live. 

In microwave cooking, packaging composition and geometry affect heating.  The 

incorporation of material components in the packaging (active packages), such as metal foil or 

strips, modify the microwave field and result in a more uniform heating or browning of a food 

product.  Passive packages are transparent to microwaves and do not affect the heating pattern 

and thin materials do not either absorb or reflect microwaves (Guillard and others, 2010).  There 

are a multitude of different microwave packaging formats which are adaptable to distribution 

channels, product type, pack size and point of consumption.  However, round or oval shapes with 

vertical sides and round edges are the common characteristics shared in the majority of them, 

which minimizes corner and edge overheating during microwaving.  These effects are one of the 

major problems in microwave heating due to the concentration of high intensity of 

electromagnetic fields in these areas (Knoerzer and others, 2009; Risman and others, 1987; 

Zhang and others, 2001).  Even rectangular packages possess rounded corners and edges to 

decrease the influence of these effects (Ryynänen and others, 2001).  

The most important package requirements for microwave heating are the following: 

legible and easy to follow instructions, thermal resistant, especially at temperatures between –

20ºC and 120ºC, be grease- and waterproof and protect the food during transport and storage 

(Robertson, 2012).  In addition, packages should be user friendly (stable and easy to handle even 

after heating with minimal risk of injury), and the lid/film must be easy to remove (Datta and 

others, 2013).  Furthermore, the package must be suitable with regard to health (material 
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migration) and sensory aspects (no off-taste imparted to the product) (Thambiraj and others, 

2013).  The material should be microwave transparent, except when it is used to shield the food 

or to modify the microwave field.  The most commonly used microwave transparent materials 

are plastic packages (mono- or multi-layer polymers), plastic-coated cardboard or fiber trays, and 

glass packages (Risch, 2009). 

2.6.6 Steam-venting technology in microwave cooking 

Steam meals are ready-to-eat (RTE) meals composed of raw and semi-cooked 

ingredients, which get cooked during microwave heating and have become increasingly popular 

in the last two decades, particularly in metropolitan areas (Mejia and others, 2011).  The 

development of steamed meals has given a new dimension to RTE meals. The products are 

packed in a sealed plastic container in a gas mixture and consumers cook the meals at home 

before consumption. 

The proven challenge in RTE meals is food safety related to the inability of microwave 

ovens to heat evenly (Allan, 2009; Ramaswamy and others, 1992; Vadivambal and others, 2010).  

There is a particular concern when steamed meals are composed of raw (meat, seafood, and 

vegetables) and semi-cooked ingredients (rice, pasta or noodles).  In commercially produced 

steam meals, microwave oven cooking prior to consumption is the only protective step against 

pathogenic microorganisms in raw meat, seafood, and vegetables, which may have a significant 

effect on food safety.  It is known that inappropriate home cooking, particularly with the use of a 

microwave oven, has caused food borne illnesses (MacDougall and others, 2004; CDC, 2008; 

Smith and others, 2008). 

Self-venting technology has rapidly developed via several different approaches to be 

applied in steamed meals for microwave cooking.  The packaging is designed so that steam 
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builds during the cooking process.  This technology utilizes the concept of pressurized steam 

cooking inside sealed plastic pouches or containers that have a self-venting release adaptation 

(Mast, 2000).  Steam-venting technology for microwave cooking has been engineered to regulate 

cooking quality through controlled package expansion in conjunction with proprietary self-

venting mechanisms.  Pouches, flowpacks and lidded trays are the most common presentations 

(Fowle and others, 2005). 

During microwave cooking, food items absorb radio waves and are heated by dielectric 

heating.  Rise in temperature, rapidly heats up the water content of the food, producing steam.  

Positive pressure is created in the package by the production of steam and microwaving 

simultaneously resulting in reduced cooking time and evenly distributed heat (no hot spots).  The 

package distends with the increase of the internal pressure and provides a visual indication that 

cooking is occurring while maintaining a temperature between 100ºC to about 105ºC (Mast, 

2000).  The general description of microwave cooking using steam-venting technology is shown 

in figure 6.  

Many of the self-venting and steaming systems are variations on the same theme.  

Confidence in the functional ability of the system rely on one (or a combination of) partial or 

complete de-lamination, rupturing, peeling or a strategically placed hole or series of holes 

(Fowle and others, 2005).  In each case there is a build-up of pressure inside the pack to start the 

process.  For instance, to simulate the ‘pressure cooker’ effect in a microwave oven, the package 

consists of a heat and pressure resistant deep polypropylene tray with a lidding film having a 

one-way steam release valve (Keller, 2003).  During cooking, which takes between four and five 

minutes, the tray and lid expand until the pressure reaches 1.2 to 2.5 bar, while the one-way 

valve is activated at a predetermined internal pressure to vent off excess steam. 
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Figure 2.6: a) Overall view of a household microwave oven, b) Microwave cooking schematic 

showing the steam production (1) , built up (2), and release at constant pressure (3) 

Self-venting is also achieved with co-extruded films like a 2-ply PET/PE laminates 

(Polymers, 2010).  Steam-venting occurs as the laminating adhesive dissolves when exposed to 

steam, preventing the pack from bursting while maintaining a constant pressure during cooking.  

This mechanism can be incorporated into roll-stock, lidding or pre-made pouches.  Both peel and 

non-peel versions are available with anti-fog and high-barrier properties suitable for chilled and 

frozen conditions.  Another proprietary variant from the co-extruded laminate is the use of 

micro-perforation technology in the lidding film (Lin, 2009).  The film is treated with a series of 

laser- perforated holes, which are covered by a peelable label that is removed prior to cooking.  

The perforation matrix is designed for optimal cooking for different products.  

2.6.7 Product development of microwave ready oyster meat-based meals 

There is not much literature dealing with the design of dinners for microwave heating but 

some general guidelines and workshops have been developed by packaging manufacturers 
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(Cryovac, 2013).  In addition, investigations on placement, composition, and geometry of the 

food provide useful information for developing microwaveable food (Bows and others, 1990; 

Ryynanen and others, 1996).  The results from these studies show that placement gives the most 

notable effect regarding heat distribution.  The temperature distribution could be balanced partly 

by taking advantage of edge and corner heating intensification (Ryynanen and others, 1996).  

This could explain the distribution of food items in many of the available microwavable products 

in two or three compartments in multiple component meals. 

From the food safety point of view, microwave cooking using steam venting technology 

could assure the inactivation of harmful organisms.  In general, each thermal process must be 

considered in its own right and it is important to choose the organism most likely to carry the 

greatest risk.  However, control and uniformity of temperature is crucial to achieve lethality.  At 

a temperature of 70ºC for two minutes the outcome is roughly the same as 43 min at 60ºC and 

less than 10 seconds at 80ºC based on calculations for Clostridium botulinum, related to F, Fo, 

and z-values (Fowle and others, 2005).  During microwave cooking using steam-venting 

technology, the temperature is maintained between 100ºC and 105ºC throughout the entire 

cooking period.  This can be considered to be enough to produce a safe product based on section 

3-401.12 of the 2009 edition of the FDA Food Code which requires that raw animal foods, 

including seafood, heated via microwave energy must attain an internal temperature of at least 

73.8ºC (165ºF) (USFDA, 2009).   

In seafood products, steaming is a process that usually provides desirable characteristics.  

Steaming is a gentle, fat-free cooking method that retains the natural moisture of foods.  This 

feature makes it an excellent choice for preparing delicate meals, especially those having oysters 

as the main ingredient.  It is believed that with the emerging category of value added meal 
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solutions the development of oyster-based product will create new opportunities for oyster 

processors to expand their market. 
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CHAPTER 3 EFFECTIVENESS OF CRYOGENIC AND AIR BLAST FREEZING 

ON REDUCING PATHOGENIC-OYSTER ASSOCIATED BACTERIA 

AND THEIR IMPACT ON QUALITY RELATED 

CHARACTERISTICS IN OYSTER MEAT 

3.1 Introduction 

 The pathogens most commonly associated with the consumption of raw oysters are 

Vibrio parahaemolyticus (Vp) and V. vulnificus (Vv) (CDC, 2006, 2011, 2010a, 2010b, 2013).  

These Vibrio spp. are free living and naturally occurring in the Gulf waters during the warmer 

months.  Filter feeding shellfish such as oysters can accumulate these bacteria and act as vectors 

for foodborne illnesses.  V. vulnificus has been strongly associated with severe and life-

threatening conditions in immunocompromised individuals, especially those with chronic liver 

disease, and is the second leading cause of seafood-related fatalities in the U.S. (Haq and others, 

2005).  However, infections due to V. parahaemolyticus have increased worldwide in recent 

years.  In the U.S., improperly prepared or mishandled shellfish is the primary cause of V. 

parahaemolyticus infections in territories with no coastal areas, exceeding V. vulnificus cases 

(58% vs. 7%) (COVIS, 2011).  Infections caused by V. parahaemolyticus result in diarrhea, 

abdominal cramps, nausea, and vomiting.   

 Vibrio parahaemolyticus and V. vulnificus appeared to be sensitive to cold temperatures.  

These Vibrio spp. seem to enter viable but nonculturable (VBNC) state in response to low 

temperatures (Johnston and others, 2002), and thus freezing cannot be relied upon for immediate 

destruction of these bacteria.  Furthermore, tolerance to freezing temperatures has been reported 

with previous exposure of these bacteria to intermediate temperatures (8-15ºC) before 

refrigeration and freezing (Bryan and others, 1999; Chen and others, 2009; Lin and others, 2004; 

McGovern and others, 1995).  Parker and others (1994) reported significant reductions of 3 to 4 

logs in V. vulnificus in oysters injected with 10
6
 CFU/g and then frozen at -20ºC in an air blast 
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freezer.  Most reductions occurred within the first 7 days and continued to decline during 

storage.  However, after 30 days, 2 logs of the bacteria were still detected and, after 70 days, 

some samples still contained 1 log.  Muntadagarriga and others (1995) reported that viable cells 

of V. parahaemolyticus (10
5-7

CFU/g) in oyster homogenates were completely inactivated by 

freezing at -18 and -24°C for 15 to 28 weeks depending on initial populations of the 

microorganism and freezing temperatures. 

 Regulation for commercializing oysters requires that during transport, shell stock oysters 

must be cooled to an internal body temperature of 10ºC or less when transportation time exceeds 

2 h.  The regulation also requires that during processing and shipment, shucked oysters must be 

maintained at 7.2ºC or less (FDA, 2009).  However, documented cases have shown that 

temperature abuse is often the main cause in the development of foodborne illnesses in oysters 

(USGAO, 2011).  Commercialization of adequately packaged and frozen oyster meat could 

provide an alternative to reduce the incidence of foodborne illnesses related to consumption of 

raw oysters. 

 Freezing is a much preferred technique to preserve food for long periods of time.  It 

permits the preservation of flavors and nutritional properties of foods more effectively than 

storage above the initial freezing temperature.  It also provides the advantage of minimizing 

microbial or enzymatic activity.  Extended shelf life is a major selling point of freezing which is 

convenient and practiced for oysters cryogenically frozen on the half shell.  The freezing of 

oyster meat using conventional freezers is also a well-established process in the United States 

and Japan (Horst and others, 2011), however, the end use of the product is for preparation of 

stews and other dishes. 
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 Safe oysters with maximum retention of original flavor, nutrients, texture, and 

appearance are difficult to obtain and thus they have high consumer demand.  In addition, these 

oysters are expected to be additive-free as well as possessing a longer shelf life.  Since the oyster 

industry is vital to Louisiana’s economy, it is necessary to protect the consumers’ confidence in 

the product.  This study was therefore conducted to determine if differences exist in the 

inactivation of V. vulnificus and V. parahaemolyticus when inoculated oyster meat is frozen by 

conventional (air blast) and cryogenic freezing, followed by storage in a microwavable package 

with a continuous evaluation of quality.  Evaluation of the quality and safety concerns during the 

freezing (air blast and cryogenic) of oyster meat could provide information to establish the 

foundations for the development of possible ready-to-eat oyster meat products. 

3.2 Materials and methods 

3.2.1 Wild caught oysters 

 Gulf oysters (Crassostrea virginica) were purchased from a supplier in Houma, 

Louisiana.  The oysters were harvested off the coast, iced on board the vessel and then 

transported to Louisiana State University Agricultural Center Food Processing Pilot Plant.  

Oysters were scrubbed under running water to remove mud and debris adhering to the shell, 

allowed to drain and refrigerated at 4ºC for 2 h to obtain temperature uniformity.  Shucking was 

conducted aseptically with an ethanol-sterilized shucking knife and the meat was collected in one 

large sterile bag.  Then the oyster meat was divided into two groups.  One of these groups was 

designated for inoculation with the vibrio species while the other one was analyzed for quality 

characterization.  All experimental samples and controls were processed within 36 h of 

harvesting.  
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3.2.2 Vibrio strains and inoculation 

 Three clinical strains of Vibrio vulnificus (ATCC
®

 27562, 7184, and 1007) and one strain 

of Vibrio parahaemolyticus (ATCC
®
 17802) were used to assess the effect of air blast freezing 

and cryogenic freezing on these bacteria.  Cultures were obtained as -70ºC frozen stocks from 

the Louisiana State University Department of Food Science culture collection.  Vibrio vulnificus 

and Vibrio parahaemolyticus strains were grown separately and maintained at 37ºC for 12 h in 

sodium chloride solutions of Bacto nutrient broth (Difco Laboratories, Detroit, MI) at 2% and 

3% (wt. /wt.) respectively.  After 18 h, cultures produced approximately 10
6
 CFU/mL for Vibrio 

vulnificus and 10
7 

CFU/mL
 
for Vibrio parahaemolyticus.  Approximately 1800 g of oyster meat 

per treatment was weighed in sterile bags and then inoculated with both cultures to obtain 10
6 

CFU of each vibrio species per g of meat.  After inoculation the meat was left in the bag for 15 

min at room temperature under a bacteriological hood.  Inoculation effectiveness was verified by 

triplicate analysis of samples consisting of 12 oysters per sample.  

3.2.3 Oyster meat freezing  

 Air blast freezing (AB) and cryogenic freezing (CF) with liquid nitrogen were used as 

freezing methods in this study.  Before freezing, the oyster meat was placed on aluminum trays 

containing approximately 25 g each.  Air blast freezing was carried out in an air blast freezer 

(Master-Bilt Products, New Albany, Mississippi) at -20ºC with an average air velocity of 4.9 ± 

1.9 m/s.  The air velocity was measured in 25 different points (Taylor 3132 Jewelled 

anemometer) inside the freezer and then averaged.  The oyster meat was frozen until the 

temperature at the center of the oyster meat reached -20ºC. The temperature of the circulating air 

and of the center of samples was monitored and measured using U12 stainless temperature 

loggers (Homo
®

, Onset Computer Corporation, Bourne, MA). 
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 To cryogenically freeze the oyster meat, a cabinet-type cryogenic freezer (AirLliquide, 

Houston, Texas) employing liquid nitrogen with an operation temperature of -123.3ºC was used.  

Freezing was carried out until the geometrical center reached -20ºC.  The temperature was 

monitored at one second intervals and recorded using a temperature data logger and type K 

thermocouples (Comark
®
, Comark Limited, Stevenage, Herts, UK).  Cryogenically and air blast 

frozen oyster meat samples were packed in polypropylene trays containing 6 aluminum pans per 

tray, film sealed and stored at -20°C. 

3.2.4 Thermodynamic considerations -Energy removal rate and freezing rate 

 The freezing rate (ºC/min) of the oyster meat was estimated as [(Final freezing 

temperature, Tf (ºC) - Initial freezing temperature, To (ºC))/Total freezing time (min)].  The 

amount of heat that has to be removed from the oyster meat in a particular time to decrease its 

initial internal temperature (To) to a predetermined final temperature (Tf) is the energy removal 

rate (Q).   

Energy removal rate was calculated using heat capacity relations from thermodynamic 

laws with the following assumptions: (1) water was the only substance that would freeze, (2) the 

measured internal temperature was equivalent to the overall temperature of the oyster meat, and 

that (3) water crystallization into ice takes place at the internal freezing temperature Tif.   The rate 

of heat transfer from the surface of the product to the cooling medium was calculated using 

equation (1): 

    Q =  
    

 
                                                                                        [1] 

where Q = the rate of heat transfer expressed in kJ/s, t = time taken for freezing in s and    is the 

product heat load (kJ) calculated as          (     )       (      ) .  In this 

equation   corresponds to the weight of frozen oyster meat (kg), To is the initial temperature of 
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the oyster meat, Tif  is the initial freezing point temperature, and Tf is the final freezing 

temperature.  To, Tif, and Tf , in both freezing processes were determined from the freezing curves 

of oyster meat constructed from the temperature recordings.  

 Latent heat (L) was calculated as L= xiL
’
 ,where L

’
 is the latent heat of fusion of water 

(333.6 kJ/ kg) and xi is the weight fraction of ice given by xi = (       ) (
      

     
), where xwu is 

the weight fraction of water, xs is the weight fraction of solute, B is bound water/kg solute, which 

is expressed as B= b- 0.5
  

  
, where Mw and Ms are the molecular weight of water and molecular 

weight of solutes and b is the constant (b = 0.32 was reported for fish by Schwartzberg (1976), 

Pham (1987), Murakami and others (1989), and de Reinick (1996).  The molecular weight of 

solutes was calculated as           (
  (     )

   (    )
), and Xw was the mole fraction of water of the 

oyster meat. Xw was calculated as, ln(Xw) =        (
  (      )

   
 ) where R was the ideal gas 

constant = 8.314 J/ mol K and temperature was expressed in K. 

 The specific heat (kJ/kg K) of the fresh and frozen oyster meats were calculated using 

Siebel equations (Singh, 1993).  

  Cpu = 0.837+3.349Xw                                                               [2] 

  Cpf = 0.832+1.256 Xw                                                                               [3] 

where Cpu = specific heat of fresh oyster meat (kJ/kg K); Cpf =  specific heat of frozen oyster 

meat (kJ/kg K); and Xw = is the moisture fraction of fresh oyster meat.  

3.2.5 Microbiological analysis 

 Microbiology analysis was performed on the oyster meat samples right after freezing (0 

time), and after 1, 2, 3, 7, 30, and 60 days of frozen storage.  The samples were allowed to thaw 

for 12 h inside a refrigerator maintained at 4ºC before analysis.  Identification and quantification 
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of Vibrio vulnificus and Vibrio parahaemolyticus species was performed by direct plating 

procedure for the enumeration of total and pathogenic Vibrio vulnificus and Vibrio 

parahaemolyticus in oyster meats as described by Cook D. and others (2000).   

Each 450-g oyster meat sample (two trays) was divided into three sub-samples and 

analyzed independently.  Each sub-sample was weighed in a Whirl-pak® bag (Nasco, Salida, 

CA, U.S.A.) having 150 g of oyster meat (an average of 12 oysters). The oyster meat was 

macerated (Stomacher 400, Tekman Co., Cincinnati, Ohio) for one minute in 450 mL of 

phosphate-buffered saline solution (PBS) to yield an oyster homogenate (dilution 1:3).  One 

hundred microliters of serial tenfold dilutions (10 
-1

  to 10 
-4

) was then pipetted into Petri dishes 

containing 12-15 mL of Vibrio vulnificus agar (VVA) prepared according to online U.S. Food & 

Drug Administration Bacteriological Analytical Manual (BAM, 2001).  The Petri dishes were 

incubated inverted at 35ºC for 16 h.  To confirm identity as V. vulnificus or V. parahaemolyticus 

colonies were blotted directly onto filter paper (Whatman #541).  Following growth, two copies 

of each Petri dish were made by blotting with filter paper, one copy for the identification and 

quantification of V. vulnificus and the other for V. parahaemolyticus.  Colony blots were lysed 

and the deoxyribonucleic acid (DNA) of each colony fixed in situ, then hybridized with gene 

probes specific for the assayed species. Hybridization was performed using 5 pmol of alkaline 

phosphatase conjugated 5’ amine-C6 (designated “X”) DNA probes targeting either the V. 

vulnificus cytolysin gene (vvh; 5'-XGA GCT GCT ACG GCA GTT GGA ACC-3') or the V. 

parahaemolyticus thermolabile hemolysin gene (tlh; 5'-XAA AGC GGA TTA TGC AGA AGC 

ACT G-3') (Integrated DNA Technologies, Coralville, Iowa).  After washing and color 

development, enumeration was performed by visual counting of positive colonies (purple color). 
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3.2.6 Inactivation kinetics 

 Isothermal analysis of survival data was used to calculate D (decimal reduction time), and 

k (inactivation rate) values.  D and k were determined by the linear regression from the 

expression of Singh (Singh, 1993) 

                                       

ln t

o

N
kt

N

 
  

               or          
10log t

o

N t

N D

 
  

                                  [4] 

where No was the initial number of microorganisms and Nt  was the number of microorganisms at 

time t.  The calculated D-values from isothermal datasets were used to predict survival of 

microorganisms and compare with experimental results by following equation (Eq. 5). 
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T

t
N N

D
 

                                                          [5] 

3.2.7 Freezing loss and frozen storage loss determination 

 The freezing weight loss of the frozen oyster meat during cryogenic (CF) and air blast 

(AB) freezing was determined from the weights of the oyster meat before and after freezing.  

After freezing, the samples were immediately weighed in a digital laboratory scale (Ohaus, 

model H-3830, NJ, USA.).  The freezing weight loss was expressed as percentage as shown in 

the following formula (Eq.6): 

(     -    )
%    100

    

weight of fresh oyster meat weight of frozen meat
Freezing loss x

weight of fresh oyster meat


                      [6] 

 Frozen storage weight loss was determined from the weights of the oyster meat after 

freezing and at the end of 1, 15, 30, 90, and 180 days of frozen storage.  The samples were 

removed from storage and immediately weighed.  The frozen storage weight loss was expressed 

as percentage as shown in the formula (Eq.7): 
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(  -  after freezing)
%     100

  

frozen weight weight
Frozen storage loss x

weight after freezing
                                      [7] 

3.2.8 Determination of microstructure of frozen oyster meat  

 Oyster meat samples were examined through light microscopy (LM) and scanning 

electron microscopy (SEM) to observe the effect of cryogenic and air blast freezing on the oyster 

meat, both on the surface as well as internally.  These samples were compared to samples of 

meat from fresh oysters (control).  Immediately after freezing, samples of oyster meat were 

collected from each freezing method and allowed to thaw for 12 h inside a refrigerator 

maintained at 4ºC.   

Samples for LM were embedded in Tissue-Tek optimal cutting temperature compound 

(Sakura Finetek Inc.), and snap-frozen in liquid nitrogen.  Sectioning was performed on a 

microtome-cryostat (Leica CM 1850 Frigocut).  Samples were cut transverselly to the adductor 

muscle fibers to observe the spaces left by ice crystals in the tissue.  After cryosectioning, cross-

sections (16-μm thick) were observed under an optical microscope (Leica DMRXA, Leica 

Microsystems Inc., USA) using differential interference contrast (DIC).   

The images were captured by a digital camera (SensiCam QE, Cooke Corporation, 

MI,USA) and treated using image analysis software (Slidebook 5, Intelligent Imaging 

Innovations, Inc., Denver, CO, USA) to standardize pixilation while calibration was performed 

using a micro rule.  Cross-section area was used to compare and evaluate the effect of the 

freezing technique on the tissue and ice crystal formation.  The cross-sectioned area refers to the 

surface area of the cross-section of an object (ice crystal or muscle fiber).  For the purpose of this 

study, the surface of more than 50 objects of ice crystals voids and 50 objects of muscle fibers 

were evaluated by image processing and analysis software (ImageJ 1.44p, National Institutes of 

Health, USA). 
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For the SEM analysis, whole oyster meats were cut transversely in 2.5% glutaraldehyde 

in 0.1M cacodylate buffered fixative, pH 7.2, and then held in same fixative at room temperature 

for 2 h.  All specimens were first washed with 0.1M cacodylate buffer 3X for 20 min each, and 

then washed with deionized water for 5 min twice.  The samples were then dehydrated with a 

serial concentration of 50–100% ethanol, for 20 min each.  Materials were critical point dried 

with liquid CO2 in a Denton CPD, mounted on aluminum SEM stubs, coated with 

gold:palladium 60:40 in an EMS550X sputter coater, and imaged with JSM-6610 high vacuum 

mode SEM (JEOL Ltd., Tokyo, Japan). 

3.2.9 Quality characterization of oyster meat 

3.2.9.1 Proximate analysis of oyster meat 

 Fresh shucked oyster meat was analyzed for moisture, protein, lipid, and ash.  The oyster 

meat was analyzed in triplicate for moisture and ash contents using the AOAC standard methods 

930.15 and 942.05, respectively (AOAC International, 2005).  Three batches of oyster meat 

obtained from 25 oysters were collected and homogenized separately in a Waring® commercial 

laboratory blender for 60 s at high speed.  To calculate moisture content, approximately 5 g 

samples were dried at 105°C for 24 h in a draft oven.  The weight loss was used to calculate the 

moisture content of the sample.  A 3 g sample size was incinerated at 550°C for 24 h and the ash 

content was expressed as a percentage. 

 The lipid content was determined in triplicate using dichloromethyl ether with an FAS-

9001 fat extractor analyzer (CEM Corporation, NC, USA).  To measure protein, the nitrogen 

content was first determined in triplicate by the Dumas combustion method using a Leco 

TruSpec® Nitrogen Analyzer (LECO Corporation, St. Joseph, MI).  The protein content was 

then calculated as percent nitrogen times 6.25. 
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3.2.9.2 Color of oyster meat 

 Evaluation of color was performed on the ventral body (belly section) of individual 

oyster meat (3 measurements per oyster meat, 3 oyster meat per sample) using a Hunter LabScan 

Colorimeter (Labscan XE, Hunter Associates laboratory, Inc., Reston, Virginia, USA).  Standard 

background and calibration tiles were used: white tile (CIE illuminant D65 10 ° observer, 2002) 

and black tile (no company specification).  An optical aperture of 1.7 cm was used. L*, a*, and 

b* values were recorded (with L* representing the lightness on a scale of 0 (dark) to 100 (white), 

+ a* for redness, −  a* for greenness, + b* for yellowness and −  b* for blueness).   

 `Samples were analyzed after 1, 15, 30, 90, and 180 of frozen storage.  Total color 

difference (ΔE*) was also calculated to quantify the overall color difference of the different 

oyster meat samples compared to fresh oyster meat.  Mean L*, a*, and b* values were used to 

determine the ΔE* between CF, BF and fresh oyster meat, using equation (8)  

                                                 ΔE* =                                               [8] 

3.2.9.3 Characterization of frozen oyster meat for moisture and lipid oxidation 

 Oyster meat samples were analyzed for moisture and lipid oxidation before freezing and 

after 1, 15, 30, 90, and 180 days of frozen storage.  Oyster meat (600 g) of from each treatment 

was allowed to thaw for 24 h in a refrigerator maintained at 4°C and then homogenized for 60 s 

at high speed in a Waring® commercial laboratory blender.  The homogenized samples were 

used for the analysis of moisture and thiobarbituric acid reactive substances (TBARS).  

Triplicate samples were analyzed for moisture content by drying in a draft oven at 105°C for 24 

h (AOAC International, 2005). 

 TBARS analysis was assayed following the method of Lemon (Lemon, 1975) and 

expressing the results in mg of malondialdehyde (MDA) per kg of sample.  All chemicals were 

2 2 2( *) ( *) ( *)L a b    
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purchased from Sigma Chemical Co, St. Louis, MO, USA.  Reagents were prepared following 

the protocol and the analysis was performed using 30 g of blended oyster meat.  Extraction 

solution (60 mL) was mixed with blended oyster meat for 30 s in a Waring® commercial 

laboratory blender at low speed.  The resulting homogenate was filtered through a Whatman 

No.1 filter paper.  The clear filtrate was then mixed with the TBA solution, placed in boiling 

water for 60 min, cooled and the absorbance was measured at 530 nm using a U-3000 

spectrophotometer (Hitachi, Tokyo, Japan).   

3.2.10 Statistical Analysis 

 Means values from six measurements and/ or triplicate analysis were reported.  Statistical 

analysis was done using the SAS (Statistical Analysis System) software (version 9.2) (SAS 

Institute Inc., Cary, NC, and U.S.A).  Data was analyzed by Analysis of variance (ANOVA) 

following Tukey’s studentized range test (p < 0.05).   

3.3 Results and discussion 

3.3.1 Energy Removal Rate, Freezing Rate and Freezing Time 

 Collected temperature data and related thermodynamic calculations that describe the 

freezing processes are contained in Table 3.1.  Oyster meat cryogenically frozen (CF) with liquid 

nitrogen from 4ºC to -20.2ºC required 1.67 min.  On the other hand, it required 27.9 min to 

freeze oyster meat in an air blast (AB) freezer operated with an average air velocity of 4.9 ± 1.9 

m/s at similar initial and final temperatures.  The calculated heat transfer rate for 1 kg of oyster 

meat in air blast and cryogenic freezing were 1.25 ± 0.20 and 23.73 ± 0.79 J/s, respectively. 

 The type of freezer clearly influenced the freezing time, freezing rate, and consequently 

the energy removal rate.  The overall rate of freezing for any object is a function of the driving 

force and resistances involved in the process.  CF oyster meat was frozen almost seventeen times 
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faster than AB.  The reason is attributed to the enormous temperature driving force available in 

cryogenic freezing (Goswami, 2010).  The freezing driving force was the difference in 

temperature between the cooling medium (operating temperature in the cabinet of -123ºC) and 

the oyster meat (4ºC).  In contrast, the blast freezer employed air cooled to -20ºC which provided 

a lower temperature driving force and thus the freezing time was much longer.  The freezing rate 

of AB oyster meat was 0.57 ºC/min and 9.58 ºC/min for CF oyster meat.  The two freezing rates 

for air blast and cryogenic freezing were therefore in the ratio of 16.8:1.  Freezing relates to the 

product quality since it considers the time for ice formation (Goswami, 2010).   

Table 3.1 Thermodynamic related data and calculations for freezing oyster meat 

 

Air blast 

freezing (AB) 

Cryogenic 

freezing (CF) 

Initial temperature, To (ºC) 4.04 ± 0.5 4.00 ± 0.40 

Initial freezing temperature, Tif (ºC) - 0.56 ± 0.7 - 1.3 ± 0.3 

Final freezing temperature, Tf (ºC)  - 20.1 ± 0.2 - 20.2 ± 0.3 

Specific heat capacity of unfrozen oyster 

meat, Cpu (kJ/kg K) 
4.18 ± 0.02 4.13 ± 0.10 

Specific heat capacity of frozen oyster meat, 

Cpf  (kJ/kg K) 
2.03 ± 0.05 2.01 ± 0.02 

kg bound water per kg solute, B 0.28 ± 0.002 0.28 ± 0.002 

Weight fraction of ice, xi 0.70 ± 0.006 0.67 ± 0.006 

Latent heat, L (kJ/kg) 233.51 ± 2.12 224.93 ± 2.05 

Product heat load,    (kJ) 174.321 ± 2.95 165.05 ± 1.95 

Freezing time, (min) 27.9 ± 0.86
 

1.67 ± 0.52
 

Freezing rate, (ºC/min) 0.57 ± 0.08
 

9.58 ± 0.41
 

Heat removal rate, Q (J/s)  1.25 ± 0.20
 

23.73 ± 0.79
 

 

 High rates of freezing generate a larger number of small ice crystals, while slow freezing 

gives a smaller number of large ice crystals.  Slow freezing gives more time for the water 
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molecules to move to the growing nuclei, resulting in large-size crystals (Damodaran and others, 

2008).  Large ice crystals pierce the cell membrane causing damage to the cells.  This damage is 

greater at low freezing rates (Alizadeh and others, 2007). 

  

Figure 3.1: Freezing curves (left) air blast freezing and (right) cryogenic freezing 

 As can be seen in Figure 3.1, air blast freezing kept the oyster meat in the critical zone (0 

to -5ºC) for a longer period of time when compared to cryogenic freezing (888 s and 24 s 

respectively).  In addition to the formation of large ice crystals, an increase in protein 

denaturation and breakdown of lipids have been reported to occur in prolonged critical regions 

due to the concentration of solutes and enzymatic activity (Kolbe and others, 2007).  In contrast, 

the very short critical zone observed in cryogenic freezing could lead to an increased rate of 

crystal formation dominating over the rate of crystal growth, and thus formation of small crystals 

was expected.  In this regard, the size and the distribution of ice crystals during the cryogenic 

freezing of oyster meat may have had a less effect on cellular damage and product quality than in 

air blast freezing. 

A high quality frozen product could be obtained by a better understanding of the freezing 

process.  Freezing is an unit operation in which heat is extracted from a product, lowering 

product’s temperature and converting most of the product’s free moisture to ice.  This needs to 
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occur sufficiently fast so that the product will experience a minimum degradation of quality.  

Having specific and detailed information on the product’s behavior during freezing, desired 

freezing time, freezing rate, and energy removal rate could help in the designing or selection of 

the right equipment to optimize production schedule and costs. 

3.3.2 Survival of Vibrio vulnificus and Vibrio parahaemolyticus during freezing and frozen 

storage 

 The log reduction of viable cells from Vibrio vulnificus immediately after AB and CF 

freezing of oyster meat was approximately 0.95 and 1.39 respectively (day 0).  On the other 

hand, a log reduction of 0.73 and 0.70 was observed for Vibrio parahaemolyticus, respectively, 

in AB and CF freezing processes (Table 3.2). 

 Population of V. vulnificus had a greater log reduction in CF oyster meat samples than in 

AB freezing.  On the other hand, the freezing process (CF and AB) did not have an effect in the 

reduction of of V. parahaemolitycus.  During frozen storage, inactivation of V. vulnificus 

occurred after 30 days regardless of the freezing process; however, survivors of V. 

parahaemolyticus were still detected at this time only in AB frozen samples.  No detection of 

survivors was possible after 60 days of frozen storage at -20ºC in both AB and CF frozen 

samples.  

 These results suggest that exposing both Vibrio spp to low temperatures during freezing 

affected the survival of viable cells during frozen storage.  The higher log reduction of V. 

vulnificus after cryogenic freezing suggests that this process caused more damage to the cells 

than air blast freezing.  The low temperatures probably injured cells that were not able to survive 

and form colonies.  The survival of V. parahaemolyticus after 30 days of frozen storage observed 

only in AB frozen samples suggests that CF affected this species as well; although no significant 
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difference in log reduction was observed immediately after freezing when comparing freezing 

processes. 

 A possible explanation for the response and inactivation of V. vulnificus and V. 

parahaemolyticus by different freezing processes as well as in frozen storage might be due to the 

combination of cold shock and the formation of intracellular ice crystals.  As described by Bryan 

and others (1999), V. vulnificus lacks adaptive cold shock proteins which mediate the tolerance 

to cold temperatures and thus making it more sensitive to low temperatures.  Critical cellular 

physiological processes and encoding of genes necessary for the survival of the cell cannot take 

place, and thus, it can be suggested that, during cryogenic freezing, the exposure to lower 

temperatures in shorter periods of time affects V. vulnificus more drastically than in air blast 

freezing. 

Table 3.2 Effect of freezing and frozen storage at -20ºC in the logarithmic reduction of Vibrio 

vulnificus and Vibrio parahaemolyticus (log10 CFU/g) in oyster meat  

            

  Vibrio vulnificus
x 

  Vibrio parahaemolyticus
x 

            

Time, days Air blast Cryogenic   Air blast Cryogenic 

            

0 0.95 ± 0.20
Be 

1.39 ± 0.06
Ae

   0.73 ± 0.17
Af

 0.70 ± 0.32
Ae

 

1 1.24 ± 0.10
Ade

 1.50 ± 0.03
Ade

   1.16 ± 0.10
Bfe

 1.86 ± 0.22
Ad

 

2 1.55 ± 0.18
Ad

 1.90 ± 0.10
Ad

   1.69 ± 0.20
Be

 2.51 ± 0.14
Acd

 

3 2.17 ± 0.32
Bc

 2.91 ± 0.21
Ac

   2.38 ± 0.22
Ad

 3.00 ± 0.10
Ac

 

7 3.76 ± 0.09
Bb

 4.29 ± 0.05
Ab

   4.03 ± 0.31
Ac

 4.31 ± 0.26
Ab

 

30 Not detected*
Aa

 Not detected*
Aa

   4.74 ± 0.22
Bb

 Not detected*
Aa

 

60 Not detected*
Aa

 Not detected*
Aa

   Not detected*
Aa

 Not detected*
Aa

 
    Time = 0 refers to the time immediately after freezing, when samples reached -20ºC (effect of  freezing) 

    xInitial  inoculation level of 6.0 log10CFU/g for each vibrio species 

   abcdeMeans with different exponents in each column indicates significant difference 
    AB

Means with different exponents in each row indicate significant difference 

* Non-detectable levels (≥ 6 log reduction) 



85 

 

 V. parahaemolyticus has been reported to have a greater tolerance to low temperatures 

than V. vulnificus due to rapid and drastic morphological changes during cold stress (Chen and 

others, 2009).  The authors observed that most of the rod-shaped cells of V. parahaemolyticus 

shrunk and became coccoid when stored at 4ºC.  The reduction in size was believed to be a 

means of minimizing the requirements for cell maintenance, and protects non-spore-forming 

bacteria against environmental stresses.  This could explain V. parahaemolyticus’ 30-day 

survival during frozen storage only after air blast freezing.  Freezing time during air blast 

freezing (almost 17 times slower than cryogenic freezing) coupled with the lower freezing rate 

may have allowed a higher number of cells to adapt and survive for a longer period of time.   

The shorter freezing time and higher freezing rate in cryogenic freezing might have not given 

this advantage which can be corroborated by the absence of survivors in samples frozen by this 

process after 30 days of frozen storage. 

 Although cold-shock adaptive responses play an important role in the inactivation of both 

Vibrio spp., formation of intracellular ice during frozen storage could have had a greater effect in 

the reduction of bacterial counts.  The size of the crystals is a function of initial crystal size, 

storage temperature, and storage time.  At higher frozen storage temperature, such as in this 

study, ice crystal growth is faster (Seminario and others, 2011); and, ultimately, intracellular ice 

crystal growth and the damage to the cell might be the causes of inactivation of the Vibrio spp. in 

oyster meat during frozen storage, which is supported by studies authored by Shen and others 

(2009).  According to Shen and others, the reduction of V. parahaemolyticus in shucked oysters 

is more effective at higher frozen storage temperatures.  The results suggest that reduction to 

non-detectable levels was obtained in samples stored at -18ºC after 75 days, while at -30ºC of 

frozen storage, the population decreased from 5.46 log MPN/gram to 0.38 log MPN/gram in the 
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same period of time.  For this study, the reductions of Vibrio spp. in oyster meat after freezing 

and during frozen storage was attributed to larger intracellular ice crystal growth formed in the 

cells at the  frozen storage temperature of -20°C than at a lower temperature (-30°C), which 

caused greater cell damage by ice crystals at a higher than at a lower temperature. 

3.3.3 Inactivation kinetics 

 First order isothermal analysis of survival data during storage at -20ºC for each triplicate 

treatment yielded D and k values as shown in Table 3.3.  The results show that there is no 

significant difference in D values for V. vulnificus for samples frozen by the different freezing 

processes.  In contrast, D values calculated for V. parahaemolyticus were significantly different. 

Table 3.3 First order isothermal analysis of inactivation of Vibrio vulnificus and Vibrio 

parahaemolyticus (log10 CFU/g) in oyster meat  

  Vibrio vulnificus
 

  Vibrio parahaemolyticus
 

            

 

Air blast Cryogenic   Air blast Cryogenic 

            

D-value 

(days) 
2.43 ± 0.16

A
 2.27 ± 0.01

A
 

 
8.54 ± 0.18

A
 2.11 ± 0.09

B
 

      

k (days
-1

) 0.95 ± 0.06
 A

 1.02 ± 0.01
 A

  0.27 ± 0.01
 A

 1.09 ± 0.05
 B

 

      

R
2 

0.988 ± 0.01 0.983 ± 0.01  0.832 ± 0.01 0.951 ± 0.04 
    AB

Means with different exponents in each row indicate significant difference 

 Although V. vulnificus showed a significant difference in log reduction immediately after 

freezing between CF and AB freezing, the calculated D values suggest that the inactivation of V. 

vulnificus during frozen storage was not affected by the freezing process for this species and an 

average of 2.35 days were needed to produce a 1-log reduction of this species when stored at -

20ºC. 

 The significant difference found between the D values for Vibrio parahaemolyticus might 

suggest that the freezing process had an effect on survival of colonies during frozen storage 
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which corroborates that air blast freezing could provide opportunity for cold-shock adaptation to 

V. parahaemolyticus cells.  Although the inactivation of V. vulnificus at cold temperatures has 

been reviewed by several authors (Andrews and others, 2000a; Bryan and others, 1999; Quevedo 

and others, 2005; Rodrick, 2009), there are very few studies quantifying the effect of freezing 

and frozen storage on the survival of V. vulnificus.  Inactivation of V. vulnificus in phosphate-

buffered saline solutions at low temperatures by Seminario and others (2011) shows that D 

values for V. vulnificus become smaller at higher frozen storage temperatures.  At -10ºC, the D 

value was calculated as 2.22 days, while for -35 and -80ºC the corresponding D values were 

27.52 and 549 days respectively.  The larger D values at lower frozen temperatures was 

attributed to the reduced intracellular ice crystal growth which caused less cellular damage, and 

thus higher probability of survival.  Published D values for V. parahaemolyticus during frozen 

storage were not found to compare with the results obtained from this study.  However, the 

effectiveness of frozen and chilled storage on the survival of V. parahaemolyticus has been 

addressed (Chen and others, 2009; Muntadagarriga and others, 1995; Shen and others, 2009) and 

discussed previously in this document.   

While the first order equation did a fairly good job of describing inactivation of Vibrio 

vulnificus during storage at -20°C regardless of the freezing process, as shown in Figure 3.2, it 

became evident that inactivation of Vibrio parahaemolyticus during storage did not follow first 

order inactivation kinetics after air blast freezing.  The fitting of the curve for the inactivation of 

V. parahaemolyticus in samples frozen in the air blast freezer had the lowest correlation value, 

and probably an alternative model could be used to fit the experimental data.  
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Figure 3.2: First order isothermal inactivation during frozen storage at -20ºC of V.vulnificus (Vv) 

(top) and V. parahaemolyticus(Vp) (bottom) after cryogenic (Cryo) and air blast (AB) freezing 

A prediction of the time needed to obtain a reduction from 6.0 log CFU/g to non-

detectable levels of the Vibrio spp. in oyster meat during frozen storage can be calculated from 

the plots of the first order equation (Fig 3.2).  According to the plots, a complete inactivation of 

V. vulnificus after air blast and cryogenic freezing could be expected to happen after 13 and 11 

days respectively.  On the other hand, after cryogenic freezing, V. parahaemolyticus could be 

inactivated after 13 days of frozen storage at -20ºC, and between 50 and 60 days if frozen in an 

air blast freezer. 
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3.3.4 Freezing and frozen storage losses 

 The weight loss due to the freezing of oyster meat for AB and CF was 1.77 ± 1.50% and 

0.76 ± 0.28 % respectively, calculated using the formula described in Eq. 6.  Air blast frozen 

oyster meat samples lost 2.3 times more than those frozen cryogenically.  During frozen storage, 

weight loss increased in both CF and AB frozen samples (Table 3.4).  AB oyster meat samples 

showed a gradual increase in weight loss during the first 30 days of frozen storage, however, 

significant weight losses were observed after 90 days.  In contrast, the weight loss from CF 

oyster meat samples was stable after 30 days of frozen storage, and significant weight losses 

were observed only after 90 days of frozen storage.  After 180 days of frozen storage at -20ºC, 

AB frozen samples had the most weight loss (8.17%), which was 2.5 times higher than samples 

frozen with liquid nitrogen (3.17%). 

Table 3.4 Weight loss of frozen oyster meat during frozen storage  

Time, days Frozen storage loss % 

Air blast Cryogenic 

1 1.9 ± 0.2
Ac

 0.33 ± 0.12
Bc

 

15 2.1 ± 0.3
Ac

 0.51 ± 0.2
Bbc

 

30 3.1 ± 0.2
Abc

 0.86 ± 0.6
Bbc

 

90 5.4 ± 3.1
Aab

 2.3 ± 0.9
Ba

 

180 8.2 ± 0.7
Aa

 3.2 ± 2.1
Ba

 

   
abc

Means with different exponents in each column indicates significant difference 
    AB

Means with different exponents in each row indicate significant difference 

 

 Weight losses during freezing and frozen storage of unprotected food products are due to 

surface ice sublimation (Campanone and others, 2006).  During freezing, food surface 

dehydration occurs due to the difference in water vapor pressure.  The temperature at the food’s 

surface is higher than the environment temperature (freezer temperature) and thus the surface 

water vapor pressure is also higher.  When a freezing process takes longer time to reduce this 
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difference in water vapor pressure, an extended dehydration occurs damaging the food surface, 

which corroborates the higher weight loss in oyster meat samples frozen in the air blast freezer. 

 On the other hand, weight loss during frozen storage is attributed to the temperature 

fluctuation as a result of the thermal cycling of refrigeration units.  These temperature 

fluctuations affect food surface temperature.  The changes in food surface temperature affect ice 

sublimation; therefore, affecting the cumulative weight loss of the product.  Furthermore, the size 

and distribution of ice crystals can retard or accelerate the sublimation process (Searles and 

others, 2001).  The freezing process dictates ice crystal morphology and size distribution.  Small 

numbers of large ice crystals develop during slow freezing processes.  In contrast, large numbers 

of small ice crystals occur during fast freezing (cryogenic freezing).  Large ice crystals are 

unstable; they melt and recrystallize more easily resulting in moisture migration to the surface 

followed by ice formation.  Temperature fluctuation causes the sublimation of the surface ice, 

making the moisture migration almost a continuous process.  This effect could explain the larger 

weight loss observed in oyster meat samples frozen by air blast freezing during frozen storage.   

 Weight loss is a very important quality parameter in frozen food products that could be 

used to estimate economic losses of the product during frozen storage.  Commercially, weight 

loss during frozen storage is more important than the one caused during freezing process 

(Campanone and others, 2005). 

3.3.5 Observation of microstructure by scanning electron microscopy (SEM) and light 

microscopy (LM) 

 Microstructures of oyster meat after freezing using air blast and cryogenic freezing in 

comparison with fresh oyster meat (control) are shown in Figure 3.3.  The smooth surface of 

fresh oyster meat observed on the SEM images was lost after freezing.  In AB frozen samples, 
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the integrity of the surface was damaged and large deep cracks can be observed.  The surface on 

CF frozen oyster meat was less damaged after freezing. 

 

SEM  

(surface) 

Light microscopy  

(cross section) 

  

  

  
Figure 3.3: Scanning electron images of the surface (left) and light microscopy micrographs of 

the cross-section (right) of oyster meat after freezing.  (a) SEM of control, (b) SEM of AB, (c) 

SEM of CF, (d) LM of control, (e) LM of AB, (f) LM of CF  

 According to Figure 3.3, the size of the cracks was smaller, and they appeared to be 

superficial without causing extensive disruption of muscle tissue compared to the air blast frozen 

samples.  The change in appearance of the surface after freezing is attributed to sublimation of 

a 

b 

c 

d 

e 

f 



92 

 

ice, which leaves the product dehydrated, porous and spongy (Goswami, 2010).Sublimation of 

ice can affect the entire surface and penetrate deeply into the product, especially in slow freezing 

processes.  Food products with high water content are more affected by this phenomenon 

reducing water holding capacity during thawing.  In this regard, the rate of freezing has an 

important role in controlling the quality of frozen food products.The muscle fibers of the 

unfrozen fresh oyster meat demonstrated relatively uniform, compact, and regular shapes in the 

cross-section (Figure 3.3).  The cross-section area of muscle fibers was 106 ± 35 μm
2
, which was 

smaller than values reported for other seafood muscle fibers (Alizadeh and others, 2007).  After 

freezing, the compact muscle fiber network was deformed by the formation of ice crystals.  

Observing the muscle fibers in oyster meat after air blast freezing, the majority of the area was 

occupied with the cross-section of ice crystals larger than the muscle fibers (Table 3.5).  Slow 

freezing processes usually damage the texture of foods due to the large and extracellular ice 

crystals formed.  In addition, considerable cellular shrinkage occurs in slow freezing processes 

due to osmotic behavior resulting in dehydration (Ken and others, 2004).  This means that the 

muscle tissue was seriously deformed.  

 The light microscopy images from cryogenic freezing show evenly sized distribution 

between muscle fibers and ice crystal cross-sections.  More numerous and smaller ice crystals 

were formed.  Although there is a significant difference in the muscle fiber cross-section area 

between fresh and cryogenically frozen samples, it is clear that the muscle fibers’ integrity was 

better preserved when compared to air blast frozen samples (Table 3.5).Rapid freezing, in 

comparison to conventional freezing processes, on the microstructure of muscle tissues in 

salmon (Alizadeh and others, 2007; Kaale and others, 2013), shrimp (Sriket and others, 2007), 

and pork (Martino and others, 1998), has demonstrated that the size and distribution of ice 
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crystals have a direct impact on the quality of the final product.  Freezing processes with lower 

freezing rates, less than 1.7ºC/min, produced larger as well as irregular ice crystals, resulting in 

the deformation of muscle tissue.  Comparatively, the higher freezing rates (>8.33ºC/min), 

significantly improved the microstructure of ice crystals (size, formation and location) which 

improved texture, lowering drip loss, and increasing sensory scores. 

Table 3.5: Muscle fibers and ice-crystal equivalent cross-section area (μm
2
) in oyster meat frozen 

by air blast and cryogenic freezing 

  Fresh Air blast freezing Cryogenic freezing 

        

Muscle fibers, μm
2 

106 ± 35
C 

708 ± 254
Ab 

505 ± 167
Ba 

Ice crystals, μm
2
 

 
4042 ± 2064

Aa 
941 ± 522

Ba 

        

   
abc

Means with different exponents in each column indicates significant difference 
    AB

Means with different exponents in each row indicate significant difference 

3.3.6 Effect of freezing on the quality of oyster meat 

3.3.6.1 Proximate analysis 

 The moisture and protein content of fresh oyster meat were found to be 88.32 ± 1.9 % 

and 8.16 ± 0.52 %, respectively.  Fat content was found to be 1.54 ± 0.18 and the content of ash 

was 0.73 ± 0.10.  The proximate composition of oyster meat is summarized in Table 3.6.  Season 

variability has an effect on the composition of oysters due to metabolic activities resulting from 

complex interactions among food availability, environmental conditions, growth and 

reproductive cycles (Lira and others, 2013).  Moisture values have been reported to be 75 -77% 

in oysters harvested during warmer months, with protein contents of 10.5-11.5%, and 2.6 – 2.8 

% in ash (Cruz-Romero and others, 2008; Linehan and others, 1999).  On the other hand, 

Anthony and others (1983) and Lira and others (2013) reported higher values for moisture 

(82.8%), protein (13%), fat (2.5%), and ash (1.5%) in winter oysters.  The moisture content 

measured in this study is higher compared to the cited articles; however, oyster meat utilized in 
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this study, shucked from oysters harvested between December and January, was larger and 

possibly retained more water. 

Table 3.6: Proximate composition of oyster meat 

  Composition (wet basis) 

Moisture (%)
 

88.32 ± 1.9 

Protein (%) 8.16 ± 0.52 

Fat (%) 1.54 ± 0.18 

Ash (%) 0.73 ± 0.10 

 

3.3.6.2 Analysis of oyster meat color (L*, a*, b*, ΔE*) 

 The color of oyster meat varies according to species, season, diet, and environmental 

conditions.  Biological processes that take place during summer months (spawning) cause 

oysters to have a dark color, deviating from their normal creamy appearance.  In frozen storage, 

color changes in seafood products can be attributed to degradation of pigments, enzymatic 

browning, and lipid oxidation (Songsaeng and others, 2010).  In this study, the instrumental color 

analysis of fresh oyster meat presented the following values: L* (lightness) of 54.72 ± 2.18, a* 

(redness) of 1.02 ± 0.49 and b* (yellowness) of 10.82 ± 1.24.  Considerable color variation did 

not take place during frozen storage as observed in Table 3.7.  Regardless of the freezing 

process, all color indicators presented only slight fluctuations.   

 Denaturation of myofibrillar and sarcoplasmic proteins have been reported to cause color 

changes in oyster meat during high-pressure (HP) processes by the increase of L* values (Cruz-

Romero and others, 2008).  Several other studies on HP-treatment of oysters validate the increase 

in whiteness of oyster tissue with increasing pressure (Hsu and others, 2010; Murchie and others, 

2005); however, subsequent evaluation of the color variation during frozen storage has not been 

performed.  Color parameter variations during refrigerated storage of oysters in studies 
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performed by Fratini and others (2013) to test the effects of lagoon-farmed oysters with a 

finishing period in the sea were attributed to acclimation-shock, with no relation to the storage 

temperatures.   

Table 3.7: Color (L*, a* and b* values) of frozen oyster meat during frozen storage 

Time, 

Days 

     

 L* a* b* ΔE* 

1 AB 

CF 

 

51.16±4.72
A
 

52.09±5.56
A
 

1.36±0.98
A
 

1.37±0.63
A
 

10.79±1.58
A
 

11.61±1.70
A
 

13.67±4.32
A
 

10.54±5.34
A
 

15 AB 

CF 

 

51.30±5.02
A
 

49.44±3.18
A
 

2.41±0.10
A
 

1.05±0.78
A
 

12.49±0.11
A
 

10.58±0.81
A
 

13.57±6.35
A
 

15.35±5.29
A
 

30 AB 

CF 

 

53.34±1.25
A
 

53.99±1.33
A
 

1.58±0.73
A
 

1.45±0.71
A
 

13.41±2.29
A
 

12.03±1.93
A
 

10.82±3.62
A
 

10.39±2.96
A
 

90 AB 

CF 

 

53.20±4.43
A
 

53.34±1.25
A
 

1.77±0.35
A
 

1.58±0.73
A
 

11.57±0.72
A
 

13.41±2.29
A
 

10.60±2.46
A
 

10.82±3.62
A
 

180 AB 

CF 

48.60±5.72
A
 

51.04±1.68
A
 

0.87±0.45
A
 

1.66±0.62
A
 

10.45±0.87
B
 

15.02±2.84
A
 

15.16±7.61
A
 

13.48±4.29
A
 

    AB
Means with different exponents in each column indicate significant difference 

 When assessing the quality of frozen oysters by visual evaluation, no significant changes 

in the appearance of frozen oyster meat were reported by Songsaeng and others (2010) when 

comparing freezing processes.  In this study, oyster meat was frozen by contact-plate (CPF) and 

individual quick freezing (IQF), followed by frozen storage at -20ºC for 12 months.  However, 

IQF samples reported an increase in yellowness at a faster rate than that of CPF.  This 

discoloration was attributed to lipid oxidation, but the direct assessment was not performed.  

According to Songsaeng and others (2010), formation of pigments was the result of ionic 

condensation of primary amino groups of protein with conjugated unsaturated aldehydes or 

similar reactive lipid oxidation products that are produced by the cleavage of unsaturated 

hydroperoxides.  
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 The general color stability observed during frozen storage (Table 3.7) could probably be 

explained by the protection offered by the packaging.  The characteristics of the package utilized 

in this study contributed to maintain quality properties by minimizing the negative effects of 

temperature fluctuation and air circulation during frozen storage.  The oxygen (O2) and carbon 

dioxide (CO2) permeability of the trays (3,500 and 10,000 cm
3
/m

2
atm/24h respectively), 

categorize the trays as a high barrier material.  During frozen storage, in the case of unpackaged 

foods, these undergo mass transfer with the environment.  Therefore, apart from water freezing, 

surface ice sublimes, altering the sensory characteristics of the products.  This leads mainly to 

quality decay and to general appearance spoilage, for instance, changes in color, taste, and 

texture (Bøknæs and others, 2000; Campanone and others, 2006). 

3.3.6.3 Moisture content of oyster meat during frozen storage 

 The moisture content of oyster meat frozen by air blast and cryogenic freezing processes 

did not changed significantly during the first 30 days of frozen storage.  In AB frozen samples, a 

significant decrease in moisture was observed at day 90 which was expected since formation of 

ice was observed in the packaging.  Ice began to accumulate in the inner side of the film at day 

60 and continued to occur until the end of the study.  In contrast, samples of oyster meat frozen 

cryogenically did not yield ice formation in the packaging.  It can be assumed that the decrease 

of moisture content in air blast frozen samples probably was caused by the evaporation of water.  

The moisture content of the oyster meat during frozen storage is reported in Table 3.8.  

Evaporation of water in products stored at low temperatures is affected by several factors.  Some 

of these factors are intrinsic to the food (surface exposure, insulation barriers such as fat layers, 

area to volume ratio, etc.), while others to the packaging and environmental conditions 

(Campanone and others, 2005).  However, being that the freezing process was the only variant 
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between sets of samples, it is probable that it had an influence in the moisture loss, related to the 

development and nature of ice crystals evidenced by the microscopic analysis of oyster meat 

tissues.  The temperature fluctuation during the cycles of the refrigeration unit may have caused 

more sublimation resulting in loss of moisture from samples frozen by air blast.  

Table 3.8: Moisture content (wet basis) of oyster meat during frozen storage 

 1 15 30 90 180 

AB 87.25±0.37
Aa

 87.16±1.22
Aa

 86.76±0.24
Aa

 81.57±1.99
Bb

 79.21±1.35
Bb

 

CF 88.28±2.66
Aa

 87.91±2.28
Aa

 87.83±2.56
Aa

 88.01±1.96
Aa

 86.05±0.77
Aa

 
    AB

Means with different exponents in each row indicate significant difference 

   
ab

Means with different exponents in each column indicates significant difference 

 Retention of moisture is important in the commercialization of oysters.  Water loss 

affects the appearance and hence consumer acceptance, especially in oysters on the half shell 

where palatability is enhanced by the juiciness of the meat.  In addition, excessive water loss 

causes concentration of solutes which may accelerate lipid oxidation and protein denaturation.  

Glazing oysters after freezing is a common practice in industry to protect the meat from 

dehydration during frozen storage. 

3.3.6.4 Lipid oxidation of oyster meat during frozen storage 

 TBARS values increased during frozen storage in both air blast and cryogenic frozen 

oyster meat samples.  The initial average value of TBARS in fresh oysters was 1.15 ± 0.70 mg 

MDA/kg which increased to 2.64 ± 0.27 and 2.35±0.15 after one day of frozen storage in air 

blast and cryogenic frozen samples respectively.  TBARS values increased more rapidly in AB 

frozen samples than in CF (Table 3.9) during frozen storage.  Lipid oxidation (TBARS values) 

increased from 2.64 to 10.96 for AB samples, while in CF samples lipid oxidation was reported 

to increase from 2.35 to 5.15 at the end of storage.  After 180 days of frozen storage, AB samples 
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had almost twice the amount of malonaldehyde (MDA) than CF samples.  Significant differences 

in TBARS values between samples frozen by AB and CF were initially observed after 30 days of 

frozen storage.  The difference in TBARS values between AB and CF samples were more 

obvious after 90 days of frozen storage.  This time frame coincides with observations of 

increased moisture loss in AB samples which could explain the faster development of lipid 

oxidation.  The higher moisture loss than in CF samples could produce an increased 

concentration of solutes (minerals, metals, etc.) that led to the acceleration of autooxidation of 

lipids.  During lipid oxidation, unstable hydroperoxides form and decompose into shorter chain 

hydrocarbons and these final products are detected by the TBA test as TBARS. 

Table 3.9: Lipid oxidation expressed as TBARS (mg MDA/kg) of oyster meat frozen by air blast 

and cryogenic freezing during frozen storage 

 1 15 30 90 180 

Air blast 2.64±0.27
Da

 3.29±0.38
Da

 5.93±0.31
Ca

 7.96±0.92
Ba

 10.96±1.05
Aa

 

Cryogenic 2.35±0.15
Ba

 2.53±0.47
Ba

 3.19±0.38
Bb

 4.70±0.64
Ab

 5.15±0.81
Ab

 
    AB

Means with different exponents in each row indicate significant difference 

   
ab

Means with different exponents in each column indicates significant difference 

 A uniformed criterion related to acceptable TBARS values in seafood, and especially in 

oysters, before objectionable odor/taste can be detected, as expression of lipid oxidation, has not 

been clearly established.  Connell (1990) states that clean and pleasant flavors in fish are better 

perceived when MDA values do not exceed 1-2 mg/Kg.  However, values of 8 mg MDA/Kg are 

acceptable for Schormüller (1968) and (Koral and others, 2010) in smoked salmon, and between 

3-4 mg MDA /Kg is regarded as good quality limits for Yanar (2007) in catfish.  TBARS values 

as high as 12 mg/Kg have been reported by Cruz-Romero and others (2008) in oyster meat after 

20 days of storage in ice (2º C) with no reference to perception of unpleasant appearance, flavors 

or aromas. 
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 The results in Table 3.9 clearly show that CF frozen oyster meat had lower TBARS 

values than AB samples which indicates that the freezing process had an influence in the 

inhibition of lipid oxidation.  Hypothetically, CF frozen oyster meat probably would have a 

higher score in flavor evaluation studies from samples after 180 days of frozen storage; however, 

before 90 days, it is very probable that no differences in flavor could have been perceived.  This 

hypothesis was not verified by sensory evaluations. 

3.4 Conclusions 

 The reduction of V. vulnificus and V. parahaemolyticus to nondetectable levels after air 

blast and cryogenic freezing followed by frozen storage at -20ºC was possible.  Cryogenic 

freezing was more efficient in reducing V. parahaemolyticus based on calculated D values.  The 

shorter freezing time and lower temperatures in CF did not allow V. parahaemolyticus’ colonies 

to adapt and survive as it was observed in AB samples.  The freezing process had an effect on the 

inactivation of V. vulnificus sp.  A greater log reduction in V. vulnificus was obtained in CF 

oyster meat immediately after freezing than in AB.  This study demonstrates, once again, the 

advantage of cryogenic freezing in comparison to air blast freezing which is important in 

products with high moisture content.  Microscopy observation of oyster meat samples revealed 

that the higher freezing rate in cryogenic freezing produced a large amount of smaller ice crystals 

homogenously distributed throughout the sample.  In addition, less surface and tissue damage 

than in air blast frozen samples were observed.  The lower freezing rate in air blast freezing 

produced larger ice crystals resulting in serious deformation of muscle tissue.  The quality of 

oyster meat was affected by the damage produced by the formation of the ice crystals.  This was 

reflected in larger weight and moisture losses during frozen storage in air blast frozen samples.  

In addition, the extent of lipid oxidation in oyster meat was also affected by the freezing 
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processes.  TBARS values increased more rapidly in air blast than in cryogenic frozen samples.  

Color in all samples was not significantly affected. 
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CHAPTER 4 STUDY OF THE EFFECTS OF MODIFIED ATMOSPHERE ON 

VOLATILE COMPOUNDS, AMINO ACIDS, AND QUALITY OF 

OYSTER MEAT (CRASSOSTREA VIRGINICA) PACKED IN 

MICROWAVABLE TRAYS DURING FROZEN STORAGE 

4.1 Introduction 

 For generations, the oyster industry has been one of the economic engines in the coastal 

communities of the Gulf of Mexico.  The National Marine Fisheries Service reported that 19.7 

million pounds of oyster meat, valued at $62.3 million were harvested from the Gulf Coast 

region in 2010 (NOAA, 2011).  There will always be a high consumer demand for oysters that 

are safe but still retain their original flavor, nutrient content, texture, and appearance.  In 

addition, these oysters are expected to be additive-free as well as presenting a long shelf life.  

Modified atmosphere packaging (MAP), along with refrigeration, have become increasingly 

popular preservation techniques, which have brought major changes in storage, distribution and 

marketing of raw and processed products to meet consumer demands.   

 In recent years, customers’ interest in fresh, mildly preserved, and conveniently packed 

seafood products has increased.  As a result of this demand, application of MAP in seafood has 

been customized to account for the origin of the raw material, temperature and type of cold 

storage, gas mixtures, and packaging materials (Gunsen and others, 2010).  Most recent reviews 

on the shelf life extension of fish and fishery products by modified atmosphere packaging (Conte 

and others, 2013; Del Nobile and others, 2012; Masniyom, 2011; Sivertsvik and others, 2002) 

compile in great detail the effects of MAP on the microbial reduction, retention of fresh quality 

characteristics, effect of the synergistic effect with storage temperature, and safety issues. 

However, the effect of MAP in seafood during frozen storage for extended periods has not been 

sufficiently addressed. 
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 The few available studies of MAP and frozen storage have been developed to explore 

consumer demands for conveniently packaged seafood products (Bak and others, 1999; Bøknæs 

and others, 2000; Bono and others, 2012).  The use of nitrogen has produced better color 

stability, lipid oxidation and texture in boiled shrimp stored at -17ºC for 12 months (Bak and 

others, 1999).  Longer shelf life for chilled retail display was achieved in whiting, mackerel and 

salmon packed in 30%N2:40%CO2:30%O2 and 60%N2:40%CO2 respectively, when samples 

were stored at -30ºC for 3 days compared to MAP samples (same gas compositions) with no 

frozen storage.  Sensory tests indicated that MAP samples with frozen storage were still 

acceptable after 7 days, which was 2 days longer than in samples with no frozen storage. 

 Combining MAP and frozen storage could probably maintain the overall quality of oyster 

meat more than frozen storage alone.  The inclusion of a modified atmosphere should be 

beneficial during frozen storage to products undergoing microwave cooking.  This combination 

could improve the retention of flavors, texture and appearance.  The present study was mainly 

initiated to evaluate the effects of MAP in the quality retention of oyster meat in a ready-to-cook 

form, frozen cryogenically with liquid nitrogen and stored for six months at -20ºC.  The effect of 

MAP on the shelf life was assessed primarily by comparing the volatile flavor compounds and 

key quality tests.  

4.2 Materials and methods 

4.2.1 Oyster meat handling, packaging and storage conditions  

 Fresh oysters were obtained from a local seafood company from Baton Rouge, Louisiana.  

The oysters were shucked and the meats were cryogenically frozen until reaching an internal 

temperature of -20°C using liquid nitrogen in a cryogenic chamber (Ultra-freeze, Air Liquide 

Industrial U.S. LP).  After freezing, oyster meat samples were packaged in microwavable trays.  

The capacity of the trays was 1,392 mL having the dimensions of 195 X 140 X 51 mm with a 
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thickness of 0.5 mm.  The oxygen (O2) and carbon dioxide (CO2) permeability of the trays were 

3,500 and 10,000 cm
3
/m

2
atm/24h, respectively.  Trays were sealed with a flexible packaging 

film with O2 and CO2 permeability of 140 and 350 cm
3
/m

2
atm/24h respectively.  Each tray 

containing approximately 300 g was packed in a modified atmosphere.  Three sets of samples 

were prepared, (1) 100% CO2 (MAP-CO2), (2) 100% N2 (MAP-N2), and (3) 100% air (AIR) as 

control.  The ratio between the volume of the gas and weight of oyster meat (G/P ratio) was 5:1 

(v/w)(1,392 mL/300g).  Food grade CO2, N2, and air gases were used to pack the product in a 

Multivac T-200 tray sealer (Multivac Inc, Kansas, MO).  All samples were stored at -20 ± 1°C in 

a freezer for 6 months and three trays from each treatment were removed periodically at 1, 15, 

30, 90, and 180 days for evaluation.  Analyses were performed at these times, unless otherwise 

stated. 

4.2.2 Headspace Gas Analysis 

 Headspace gas composition was measured at each sampling time using an oxygen/carbon 

dioxide analyzer (Quantek Instruments, model 902D, Grafton, MA).  The gas analyzer was 

programmed to extract three mL of gas from the package’s headspace for analysis. 

4.2.3 Physical and chemical tests 

 Oysters were thawed for 24 h at 4°C and analyzed for color, which was measured on the 

ventral body of individual oysters, (L*, a*, b*, ΔE*), moisture content (%) (AOAC International, 

2005), and TBARS (mg malonaldehide/kg sample)(Lemon, 1975). 

4.2.4 pH determination 

 pH was measured using a pH meter model SB70P (VWR, Radnor, PA, USA) after 

homogenizing 5 g of sample in 50 mL deionized water for 10 s in a Waring® commercial 

laboratory blender.  Three measurements were carried out on each sample, and the results were 

expressed as the average of them. 
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4.2.5 Drip loss 

 Drip loss of oyster meat was estimated according to the method of Liu and others (2013).  

After thawing, the oyster meat was removed from the trays and the liquid was collected and 

weighed.  Drip loss was expressed as g of collected liquid / 100 g of weight of oyster meat before 

freezing (raw oyster meat). 

4.2.6 Texture analysis 

 Texture was measured using a texture analyzer (Instron model 5544, Norwood, MA) 

equipped with a 10-blade Kramer shear attachment.  The analysis was performed using a 2 kN 

load cell in compression mode at 2 mm/s.  Thawed oyster meat was used for the texture analysis 

by filling the shear cell up to two thirds of its capacity and positioned opposite to the alignment 

of the blades.  Data were collected and analyzed using the texture analyzer software (Merlin v. 

5.31).  The maximum force needed to cut trough was recorded as compressive strength (MPa).  

4.2.7 Amino acid analysis 

 Amino acid profiles were determined by the AAA Service Laboratory Inc., Boring, OR.  

A freeze-dried sample was hydrolyzed with 6N HCl and 2% phenol at 110ºC for 22 h.  Amino 

acids were quantified using a Beckman 6300 analyzer with post-column ninhydrin derivatization.  

Only the most common 16 amino acids were analyzed in this study and reported as milligrams of 

amino acid/gram of protein (mg aa/g protein).  This analysis was performed at 30, 90, and 180 

days of frozen storage. 

4.2.8 Volatile profile  

 Volatiles developed by each treatment were obtained by headspace solid-phase micro 

extraction (HSSPME) and separated in a gas chromatograph (GC) (CP 3800 Varian), equipped 

with a flame ionization detector, on a capillary column coated with SPB-5 stationary phase (60m 

x 0.25 mm, 0.25 mm film thickness) (Supelco, Inc).  The extraction was performed following the 
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protocol by Zhang. and others (2010) with some modifications.  Oyster meat (50 g) was 

homogenized using a Waring® commercial laboratory blender with 50 mL of 0.04 g/mL sodium 

chloride solution.  The sample was transferred to a 125-mL double neck flask and 1-mL of 

methyl isobutyl ketone (2 ppm) was added as internal standard followed by HSSPME exposure 

for 30 min at 25ºC to extract the volatiles.  During time of exposure, the sample was gently 

agitated by flushing nitrogen into the flask through the lateral neck.  Volatiles were collected 

using a 75 μm (partially crosslinked phase) carboxen/polydimethylsiloxane fiber (Sigma-

Aldrich, needle size 23 ga, for use with manual holder).  Finally, oyster volatiles were thermally 

desorbed by inserting the fiber into the GC injector set at 250°C for 30 s in splitless mode using 

helium as carrier gas at a column linear flow of 1.5 mL/min.  The initial temperature of the GC 

oven was held at 40ºC for 5 min.  Then, the temperature was increased by 8ºC/min to a final 

temperature of 200ºC and held for 1 min.  The mass spectrometer (MS) (Saturn 2000 MS, 

Varian) detector was operated at an ionization voltage of 70 eV and ion source temperature of 

200ºC.  The volatile compounds were identified by comparison of the mass spectra and retention 

time of their standards and National Institute of Standards and Technology data base library.  

This analysis was performed in fresh oyster meat and after 180 days of frozen storage. 

4.2.9 Statistical analysis 

 The collected data were analyzed using SAS version 9.2 (SAS, Version 92, SAS Institute 

Inc., Cary, NC., USA). One-way analysis of variance (ANOVA) was used to detect statistical 

differences (P≤0.05) Means values from six measurements and/ or triplicate analysis were 

reported.  Statistical following Tukey’s studentized range test (p < 0.05). 

4.3 Results and discussion 

4.3.1 Headspace composition 
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 MAP-N2 and control (AIR) packages maintained their shape during frozen storage.  In 

MAP-CO2, the trays started to lose shape (imploding) at day 60 and all MAP-CO2 packages were 

completely collapsed after 150 days.  Changes in the headspace composition in MAP-CO2 

packages were noticeable after 30 days of frozen storage (Table 4.1).  In addition, an increase in 

oxygen composition was observed which continued rising until the end of the storage period for 

both MAP-N2 and MAP-CO2.  The trays used in this study consist of high barrier structures to 

oxygen and carbon dioxide, however, the oxygen transfer rate (OTR) of the film is much lower, 

and thus diffusion of oxygen into the package through the film from surrounding air may have 

caused the increasing in oxygen composition.   

Table 4.1: Headspace gas composition during frozen storage 

Days of Storage at -20°C 

  0 15 30 90 180 

 Assay      

 AIR 

%O2 19.9 ± 0.2
A 

19.2 ± 0.2
B 

19.8 ± 0.2
A 

18.9 ± 0.2
B 

15.3 ± 0.2
C 

%CO2 1.2 ± 0.1
B 

1.2 ± 0.1
B 

1.2 ± 0.1
B 

1.5 ± 0.2
A 

0.6 ± 0.1
C 

%N2 78.9 ± 0.2
B 

79.6 ± 0.2
B 

79 ± 0.5
B 

79.6 ± 0.3
B 

84.1 ± 0.5
A 

MAP-CO2 

%O2 0.3 ± 0.1
D 

0.3 ± 0.1
D 

0.7 ± 0.1
C 

1.2 ± 0.1
B 

2.7 ±0 .2
A 

%CO2 99.1 ± 0.8
A 

99.1 ± 0.8
A 

99.3 ±0.5
A 

99.4 ± 0.5
A 

95.5 ± 0.6
B 

%N2 0.6 ±0 .1
B 

0.6 ±0 .1
B 

0 ± 0.0
C 

0 ± 0.0
C 

1.8 ± 0 .4
A 

MAP-N2 

%O2 0.3 ± 0.1
B 

0.3 ± 0.1
B 

0.5 ± 0.2
B 

0.7 ± 0.2
B 

1.7 ± 0.2
A 

%CO2 0.3 ± 0.2
B 

0.3 ± 0.1
B 

0.2 ± 0.2
B 

0.6 ± 0.2
A 

1.1 ± 0.3
A 

%N2 99.4 ± 0.2
A 

99.4 ± 0.2
A 

99.3 ± 0.3
A 

98.7 ± 0.2
A 

97.2 ± 0.3
B 

ABCD
Mean values in the same row with different exponents indicate significant difference 

AIR = control (compressed air), MAP-CO2 = 100% carbon dioxide, MAP-N2 = 100% nitrogen 

 Changes in headspace oxygen composition were also observed in AIR and MAP-N2 but 

these were reported at the 180-day evaluation, which means that the permeation of oxygen into 
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the packages occurred in the last 90 days of frozen storage.  As in MPA-CO2, the increase in 

oxygen concentration could have occurred by diffusion of oxygen through the film in MAP-N2 

samples.   

 MAP-N2 reported an increase in the concentration of carbon dioxide; however, possible 

sources for this increase are uncertain.  Diffusion form surrounding air is not likely to have 

occurred due to the very low concentration of CO2 in air (0.03% v/v) (Leakey, 2009) and is a 

current topic of investigation.   

 In nonrespiring foods, variation in headspace composition during chilled storage, 

especially in carbon dioxide, is attributed to microbial activity (growth or death) and absorption 

into the tissue.  Yesudhason and others (2010) and Dufresne and others (2000) observed an 

increase in CO2 concentration due to an increase of aerobic mesophilic bacteria in air-packed 

seer fish stored between 0 and 2ºC.  In contrast, the gradual decrease in CO2 during frozen 

storage in MAP samples with high CO2 composition was attributed to absorption of CO2 into the 

tissue (Arvanitoyannis and others, 2012b; Sivertsvik and others, 2004).  This phenomenon is 

commonly reported in MAP studies utilizing concentrations of CO2 higher than 60% 

(Arvanitoyannis and others, 2012a; Sivertsvik and others, 2002; Yesudhason and others, 2010).   

In the current study, the collapsing of MAP-CO2 samples was expected; however, determination 

of the time needed to happen was uncertain due to the decrease in solubility of CO2 at low 

temperatures. 

4.3.2 Color (L*, a*, b*, ΔE*) of oyster meat 

 MAP had no significant effect on L*, a*, b* values during frozen storage with the 

exception of day 1 as shown in Table 4.2.  At day 1, the L* values for MAP-N2 and MAP-CO2 

were significantly different which could be attributed to surface dehydration caused by the 
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freezing process.  Although instrumental color analysis did not show any differences in color 

between treatments during frozen storage, a visual difference in lightness in MAP-CO2 samples 

was observed when compared to AIR and MAP-N2.  The whiteness in MAP-CO2 analyzed after 

90 and 180 days of frozen storage had a visual contrast to samples from other treatments.  The 

number of analyzed samples was increased in the attempt to verify the difference, however, the 

results from L* (lightness) values showed no significant difference between treatments.  In this 

study, the instrumental color analysis of fresh oyster meat presented the following values: L* 

(lightness) of 54.72 ± 2.18, a* (redness) of 1.02 ± 0.49 and b* (yellowness) of 10.82 ± 1.24.   

 Color stability during frozen storage in MAP seafood has also been reported by Bak and 

others (1999).  Boiled shrimp packed in nitrogen atmosphere and stored at -17ºC for 12 months 

showed constant concentrations of astaxantin, which gives the distinct red color in shrimp; 

however, the reduction of astaxantin occurred in packages containing oxygen (control) causing a 

change in color.  It was suggested that the non-significant variations in color and appearance of 

shrimp was due to the exclusion of oxygen in the package which did not trigger the chemical 

reactions for the degradation of astaxanthin and fatty acid oxidation.  Color changes during 

frozen storage occur often by the development of yellow pigment formation as result of the 

reaction between protein and oxidized lipids (Masniyom, 2011).  The color changes of cuttlefish 

were accompanied with the development of rancid odors during frozen storage (Thanonkaew and 

others, 2006).  Thiansilakul and others (2010)  reported that the off-color development in seabass 

(Lates calcarifer) and red tilapia (Oreochromis mossambicus × O. niloticus) were correlated with 

lipid oxidation during 15 days of iced storage in samples with 60% CO2 composition .  

 The results from instrumental color measurements suggest that oyster meat performed 

well during frozen storage regardless of the gas composition.  The non-significant differences in 
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color could probably provide information about lipid oxidation in oyster meat.  In this regard, the 

extent of oxidation probably was not high enough to produce color changes as suggested in 

previous studies in seafood during frozen storage.  In addition, the properties of the packaging, 

could have contributed to maintain color stability by minimizing the negative effects of 

temperature fluctuation and air circulation during frozen storage decreasing surface dehydration 

(Bøknæs and others, 2000; Campanone and others, 2006). 

Table 4.2: Color evaluation of oyster meat during frozen storage 

  Days of storage 

 Treatments 1 15 30 90 180 

 
L* 

AIR  
MAP N2 

MAP CO2 

 

52.75±3.42
ABa

 
48.03±1.00

Ba
 

58.22±4.94
Aa

 

 

50.99±5.39
Aa

 
51.66±2.77

Aa
 

53.81±7.27
Aa

 

 

49.70±2.58
Aa

 
46.05±6.99

Aa
 

49.17±1.50
Aa

 

 

49.26±1.11
Aa

 
50.69±9.19

Aa
 

46.55±1.03
Aa

 

 

49.22±2.07
Aa

 
52.69±5.20

Aa
 

54.28±4.65
Aa

 

 

a* AIR  
MAP N2 

MAP CO2 

 

2.20±0.96
Aa

 
1.33±0.32

Aa
 

0.77±0.96
Aa

 

 

1.71±0.57
Aa

 
2.07±1.10

Aa
 

2.43±0.38
Aa

 

 

1.91±0.82
Aa

 
1.25±0.65

Aa
 

2.70±1.06
Aa

 

 

1.63±1.20
Aa

 
0.89±0.40

Aa
 

2.17±2.02
Aa

 

 

1.58±0.33
Aa

 
0.72±1.47

Aa
 

0.79±0.64
Aa

 

 
b* AIR  

MAP N2 

MAP CO2 

 

12.55±1.66
Aa

 

9.92±0.65
Aa

 

10.65±1.75
Aa

 

 

11.30±1.91
Aa

 

10.37±0.88
Aa

 

12.08±2.55
Aa

 

 

13.77±2.10
Aa

 

9.46±2.86
Aa

 

11.34±1.64
Aa

 

 

11.25±2.40
Aa

 

10.93±2.19
Aa

 

11.24±1.57
Aa

 

 

12.23±1.87
Aa

 

10.52±4.01
Aa

 

14.74±1.72
Aa

 

 
ΔE* AIR  

MAP N2 

MAP CO2 

12.33±4.02
ABa

 

16.76±1.93
Aa

 

4.84±4.51
Bb

 

13.79±6.62
Aa

 

13.17±4.92
Aa 

11.14±4.96
Aab

 

15.49±4.38
Aa

 

18.28±7.54
Aa

 

15.15±0.45
Aa

 

14.23±2.01
Aa

 

12.99±8.82
Aa

 

16.89±2.51
Aa

 

14.23±3.31
Aa

 

11.49±5.76
Aa

 

10.35±3.17
Aab

 
       

    AB
Means with different exponents in each column indicate significant difference 

   
ab

Means with different exponents in each row indicates significant difference 

4.3.3 Moisture content of oyster meat  

 The moisture content of oyster meat showed no significant differences in AIR, MAP-

CO2, and MAP-N2 during frozen storage.  In addition, a decrease in moisture content in all 

treatments was not observed when compared to the initial moisture content (Figure 4.1).  MAP-

CO2 and AIR samples displayed erratic behavior in moisture content which was not observed in 

MAP-N2.  The initial average moisture content in oyster meat was 88.32 ± 1.90% decreasing to 
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87.45 ± 1.24%, 88.19 ±1.56%, and 88.59 ±1.76% in AIR, MAP-N2 and MAP-CO2, respectively 

after 30 days of frozen storage.  At the end of the storage period, the moisture contents of the 

treatments were 87.53 ± 1.19%, 87.19 ±1.41%, and 89.25 ±1.05% in AIR, MAP-N2 and MAP-

CO2, respectively. 

 

Figure 4.1: Moisture content (w/w%) of oyster meat in AIR, MAP-CO2, and MAP-N2 during 

frozen storage at -20ºC 

 The erratic variation in moisture content, especially in AIR was attributed to the 

formation of frost inside the packaging.  The development of frost was inconsistent.  The frost 

was observed to appear and disappear throughout frozen storage in most of the AIR trays but not 

in MAP-CO2 or MAP-N2.  The increase in moisture content at those periods of time could 

possibly be caused by the melting of the frost followed by re-absorption of water by the tissue, 

which affected the outcome of the results.  Temperature fluctuation is a common problem during 

frozen storage, as it produces excessive frost in air-packed products due to ice sublimation, 

reducing the moisture content and giving an overall appearance of poor quality (Bak and others, 

1999).   
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4.3.4 pH of oyster meat 

 Significant change in pH was observed in MAP-CO2 during storage (Figure 4.2).  The 

initial pH values of oyster meat were close to neutrality (pH = 6.82 ± 0.02).  The measured pH 

values in MAP-CO2 slowly decreased to 6.42 ± 0.07 after 30 days.  At the end of the storage 

period (180 days), pH values for MAP-CO2 were reported as 6.12 ± 0.06.  On the other hand, 

there was no significant difference in pH values between AIR and MAP-N2, however, a decrease 

was observed over time reaching values of 6.67 ± 0.05 and 6.57 ± 0.06 respectively at the end of 

storage.   

 

Figure 4.2: Evolution of pH in oyster meat in AIR, MAP-CO2, and MAP-N2 during frozen 

storage at -20ºC 

 Provincial, Gil, Guillén, and others (2010) reported a decrease in pH values in MAP 

samples of sea bass stored at 4ºC with high contents of CO2 in the package.  The drop in pH was 

attributed to the absorption of CO2 on the fillet surface and a subsequence ionization of the 

carbonic acid.  Similar results were previously reported by Tiffney and others (1982) where a 

decrease in pH values, as low as 6.09 in fish in 100% CO2, was attributed to the absorption of 
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CO2 into the fish’s tissue verified by the collapsing of the packaging and decrease in headspace 

concentration.  In contrast, a rise of pH values has also been reported to occur in MAP seafood 

during storage (Pastoriza and others, 1996).  Alkaline compounds like ammonium, 

trimethylamine and other biogenic amines are produced and accumulate as a consequence of 

bacterial growth causing muscle damage (Ruiz-Capillas and others, 2005).   

 The initial collapsing of MAP-CO2 packages observed at day 60 of frozen storage was 

possibly an indication of absorption of CO2 into oyster meat and, coincidentally, the pH values 

were reported lower according to Figure 4.2.  The measurement of pH is an important quality 

indicator.  A sharp and quick decrease in tissue pH could suggest reduction of the CO2 

proportion in the gas mixture, however, an increase in pH could be attributed to deterioration by 

spoilage bacteria.   

4.3.5 Drip loss of oyster meat 

 Drip loss refers to the most loosely bound water in muscle, and it is mainly associated 

with the structure of muscle and muscle cells, denaturation and degradation of proteins, and the 

rigor state of muscle (Huff-Lonergan and others, 2005).  According to the results, MAP did not 

have an effect on drip loss.  There were no significant differences between AIR, MAP-CO2, and 

MAP-N2 (Table 4.3). During storage, the drip loss continued to increase gradually to the point 

that significant differences were observed between the first and last day of frozen storage. 

In several MAP studies in seafood stored between 0 and 2ºC, it has been found by various 

authors that, the higher the levels of CO2, the higher the drip loss (Masniyom, 2011; Pastoriza 

and others, 1996).  This may be due to a greater loss of the water holding capacity of muscle 

protein at lower pH values.  Dalgaard and others (1993) observed an increase in drip loss during 

modified atmosphere (MA) storage of cod fillets.  Pastoriza and others (1998) observed 
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increased exudation in MA-packaged fish after 7 days of storage.  Fey and others (1982) found 

increased drip losses for red hake, chinook salmon and to a lesser extent, sockeye salmon stored 

in 60% CO2:21% O2:19% N2 compared to air-packaged products.   

Table 4.3: Drip loss (g drip liquid/100g sample) of oyster meat during frozen storage 

 Days of storage at -20ºC 

Treatments 1 15 30 90 180 

Air 0.33±0.15
Ab

 0.43±0.12
Aab

 0.51±0.12
Aa

 0.67±0.10
Aa

 0.76±0.12
Aa

 

MAP N2 0.38±0.14
Ab

 0.43±0.04
Aab

 0.39±0.14
ABab

 0.66±0.10
Aa

 0.70±0.15
Aa

 

MAP CO2 0.38±0.12
Ab

 0.47±0.05
Aab

 0.55±0.08
Aab

 0.63±0.16
Aa

 0.77±0.12
Aa

 
    AB

Means with different exponents in column row indicate significant difference 

   
ab

Means with different exponents in each row indicates significant difference 

 All the above mentioned MAP studies were performed in seafood products stored at 

temperatures above freezing where the effect of the gases could produce more observable and 

measurable changes.  Information on the effect of MAP on drip loss in seafood during frozen 

storage could not be found to compare to the results obtained from this study.  This could be 

explained by the fact that drip loss during frozen storage of muscle tissues is studied in relation 

to the effects of freezing processes and temperature fluctuation during frozen storage.  Under this 

premise, the extent of liquid loss from any frozen food after thawing has been attributed to the 

rupture of cell structure and tissue by ice crystal growth during freezing (Goswami, 2010; 

Songsaeng and others, 2010).  Furthermore, storage at frozen temperature may lower the water 

holding capacity of tissue.  In addition, drip loss has been reported to increase as storage time 

increases caused by damage to muscle fibers by ice crystals resulting in leakage of various 

organelles during thawing (Benjakul and others, 2003).  An accumulative drip loss below 2% 
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(w/) during frozen storage is regarded as very satisfactory (Kolbe and others, 2007) which means 

that all treatments performed well during frozen storage.  

4.3.6 Lipid oxidation of oyster meat 

 AIR samples resulted in pronounced lipid oxidation during the last 90 days of frozen 

storage as compared to packaging in modified air.  This can be seen from Fig. 4.3, where the 

TBARS in oyster meat packed in AIR were significantly higher than TBARS in MAP-CO2 and 

MAP-N2.  For samples packed in modified air, there was no significant change in TBARS 

observed after 15 days of frozen storage.  

 

Figure 4.3: Lipid oxidation measured by determination of TBARS (mg malonaldehyde/kg) of 

oyster meat packed in AIR, MAP-CO2, and MAP-N2 during frozen storage at -20º C 

 The lower levels of TBARS recorded in the MAP-CO2 and MAP-N2 after 90 days of 

frozen storage were probably due to the exclusion of oxygen.  The higher level of O2 in AIR 

probably caused an increase of oxidative processes.  This observation is also in agreement with 

the results reported in the case of shrimp stored at -15ºC using low oxygen concentrations (Bono 

and others, 2012). 
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Lipid oxidation is one of the most relevant degradation processes involved in seafood 

deterioration which is caused by endogenous activities and microbial enzymes.  Fatty acids, 

particularly polyunsaturated fatty acids, are affected by oxidation, producing off-odors and off-

flavors unpleasant to the consumer (Fernandez and others, 1997).  TBARS values in seafood 

before objectionable odor/taste can be detected, as expression of lipid oxidation seems to vary 

according to seafood species.  Consumption limits for TBARS have been reported to be 7-8 mg 

MDA/kg and a TBARS value less than 3 mg MDA/kg indicates a perfect quality material 

(Schormüller, 1968).  Connell (1990) states that clean and pleasant flavors in fish are better 

perceived when malonaldehyde (MDA) values do not exceed 1-2 mg/kg.  No referral to 

perception of unpleasant appearance, flavors or aromas was reported by Cruz-Romero and others 

(2008) in oyster meat after 20 days of storage in ice (2ºC) with TBARS values as high as 12 

mg/kg  

4.3.7 Texture of oyster meat 

 Compressive strength (CS) was tested in oyster meat as an index of tenderness/firmness.  

The CS value for fresh oyster meat was measured as 18.1 ± 1.5 Mpa.  The results showed that 

AIR samples had lower CS values as compared to MAP-CO2 and MAP-N2 only during the first 

30 days of frozen storage (Table 4.4).  After this period of time, similar CS values for AIR and 

MAP-N2 were reported, showing no significant differences.  There was an interaction between 

MAP-CO2 and storage time for oyster meat after 30 days.  The CS of oyster meat increased with 

increasing storage time much higher than in AIR and MAP-N2.  Both AIR and MAP-N2 samples 

after 180 days of frozen storage had lower CS than MAP-CO2, but not as low as fresh oyster 

meat. 
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 Texture is a valued indicator of freshness for oysters.  In this study, the increase in CS 

observed in oyster meat in 100% CO2 could possibly be related to temperature fluctuation during 

frozen storage and absorption of CO2 into the tissue.   

Table 4.4: Compressive strength (Mpa) as measurement of texture in AIR, MAP-CO2, and MAP-

N2 oyster meat during frozen storage 

 Days of Storage at -20° C 

Treatments 1 15 30 90 180 

AIR 19 ± 1.7
Ab

 19 ± 1.6
Bb 

22 ± 2.1
Bb 

27 ± 1.8
Ba 

29 ± 3.7
Ba 

MAP-CO2 19 ± 1.2
Ac

 24 ± 1.8
Ab 

26 ± 1.2
Ab 

32 ± 2.6
Aa 

36 ± 3.8
Aa 

MAP-N2 18 ± 1.1
Ab

 22 ± 1.5
Aab 

24 ± 1.8
Aab 

27 ± 2.3
Ba 

29 ± 2.9
Ba 

                 AB
Means with different exponents in each column indicate significant difference 

            
abc

Means with different exponents in each row indicates significant difference 

 The toughening of seafood products during freezing and cold storage is well documented 

(Campanone and others, 2001; Sørensen, 2006).  Changes such as protein denaturation, cross 

linking, loss in water holding capacity, and solubility are reported to affect the texture in fish 

during frozen storage.  Salmon from frozen storage was firmer, less juicy and more fibrous 

(Refsgaard and others, 1998).  Temperature fluctuation during frozen storage lead to moisture 

loss in the form of increased drip (Gormley and others, 2002) in a variety of frozen products 

which increased toughness.   

 MAP treatments with concentrations of CO2 of 100% in raw whiting, mackerel and 

salmon (Fagan and others, 2004) had higher shear values than treatments with a mixture of 60% 

N2:40% CO2 which corroborates the results from Randell and others (1995) on the effect of 

gas/product ratio and CO2 concentrations on the shelf life of MA fish.  The toughening of 

samples was correlated to the decrease in pH by the absorption of CO2 into tissues making it 

rubbery due to surface protein denaturation. 
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 The decrease in pH observed in MAP-CO2 samples might have produced a similar effect 

on the surface of oyster meat by the absorption of CO2 which was reflected in the increased 

values of CS.  

4.3.8 Amino acid profile of oyster meat 

 Essential amino acids were used for nutritional quality evaluation between MAP 

treatments during frozen storage.  The amino acid compositions of oyster meat did not suffer 

significant changes in AIR, MAP-CO2 and MAP-N2 during frozen storage; however, lower 

contents of lysine (Lys) and arginine (Arg) were reported after 180 days in all treatments.  

Methionine (Met) content was also lower in AIR after 180 days (Table 4.5).  The essential amino 

acids in oyster meat constituted approximately 31.4 – 32.6 per cent of total amino acids which is 

in agreement with results from Ridlington and others (1979), Ozden and others (2011), and the 

USDA (2013) in amino acid analysis of oysters.  Glutamic acid (Glu) was found to be the most 

abundant amino acid in oyster.  A 3-oz. serving of steamed oysters provides 1.55 g of aspartic 

acid (USDA, 2013).  Glutamic acid is also known as glutamate and its primary role is that of a 

neurotransmitter that relays messages throughout your brain and influences memory.  However, 

excessive amounts can result in diseases such as Amyotrophic lateral sclerosis (ALS), or Lou 

Gherig's disease (Aristoy and others, 2012).  Aspartic acid (Asp) was the second most abundant 

amino acid in oyster meat.  According to Topo and others (2009) consuming 3 grams of D-

aspartic acid for 12 days significantly increased participants' testosterone levels, so this amino 

acid may be beneficial for strength training athletes or those deficient in testosterone.  A 3-oz. 

serving of steamed oysters provides 1.55 g of aspartic acid (USDA, 2013).   
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Table 4.5: Amino acid profile (mg aa /g protein) of oyster meat during frozen storage 

   30 days  
 

 90 days  
  180 

days 
 

 Fresh Air 
MAP 

CO2 

MAP 

N2 

 
Air 

MAP 

CO2 

MAP 

N2 
 Air 

MAP 

CO2 
MAP N2 

Asparagine 113.6
A 

115.7
A 

113.7
A 

113.8
A  114.2

A 
112.7

A 
113.7

A 
 116.1

A 
114.4

A 
113.4

A 

Threonine 48.5
A 

48.2
A 

48.2
A 

49.1
A  48.2

A 
48.8

A 
47.4

A 
 48.5

A 
48.1

A 
47.9

A 

Serine 46.9
A 

46.8
A 

46.1
A 

46.7
A  46.8

A 
46.3

A 
46.7

A 
 46.6

A 
46.8

A 
47

A 

Glutamic acid 164.6
A
  164.8

A
  166.2

A 
164.7

AB
   162.7

AB 
160.2

AB 
162.8

AB 
 163.4

A 
159.7

AB 
163

A 

Proline 41.6
A 

41.9
A 

41.1
A 

42.2
A  42.4

A 
42.8

A 
42.9

A 
 43.1

A 
43.1

A 
41.7

A 

Glycine 45.7
AB 

46.8
AB 

46.8
AB 

48.2
AB  50.9

AB 
53.1

AB 
50.8

AB 
 55.7

AB 
57.6

A 
54.4

AB 

Alanine 57.9
B 

57.2
B 

55.4
B 

57.1
B  60.4

B 
58.1

B 
58.2

B 
 68.2

A 
64.5

AB 
64.4

AB 

Valine 50.6
A 

51.1
A 

50.5
A 

50.4
A  50.5

A 
51.1

A 
50.3

A 
 49.1

A 
48.4

A 
48.4

A 

Methionine 19.4
AB

  19.1
AB 

21.4
AB 

22.4
AB  18.7

B 
25.4

AB 
24.9

AB 
 18

B 
29.6

A 
30.1

A 

Isoleucine 47.8
A 

46.8
A 

46.2
A 

47.1
A  46.3

A 
46.5

A 
45.7

AB 
 45.7

AB 
45.1

AB 
45.5

AB 

Leucine 85.7
A 

85.1
A 

86.2
A 

86.2
A  82.1

AB 
84.5

AB 
83.1

AB 
 80.8

B 
80.3

B 
81.1

B 

Tyrosine 42.1
A 

42.2
A 

41.8
A 

42.1
A  41.4

A 
42.4

A 
41.9

A 
 40.7

AB 
40.9

AB 
40.3

AB 

Phenylalanine 41.7
A 

41.6
A 

42.1
A 

42.1
A  40.8

A 
41.2

A 
41.3

A 
 40.5

AB 
39.4

AB 
38.6

AB 

Histidine 20.5
B 

22.8
B 

23.4
AB 

22.7
B  25.4

AB 
26.2

A 
26.7

A 
 26.5

A 
27.2

A 
27.2

A 

Lysine 86.3
A 

85.2
A 

85.9
A 

85.8
A  80.7

B 
72.4

C 
77.4

B 
 74.4

C 
69.9

C 
71.1

C 

Arginine 87.1
A 

84.7
AB 

85.1
AB 

79.4
C  88.5

A 
88.4

A 
86.2

A 
 83

C 
85.6

AB 
86.1

AB 

AB
Mean values in the same row with different exponents indicate significant difference 
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 Arginine (Arg), Lysine (Lys), and Leucine (Leu) were found in similar amounts 

constituting the next most abundant amino acids in oyster meat.  Arginine aids in the production 

of nitric oxide, which helps blood vessels to dilate.  This can make arginine helpful for 

conditions in which poor blood flow is responsible for adverse effects such as clogged arteries 

and vascular swelling (Sartoretto and others, 2013).  Lysine aids in the absorption of calcium and 

can help make collagen, a structural component of skin and connective tissues.  Diets low in 

protein could led to lysine deficiency, which can cause nausea, fatigue, slowed growth, 

reproductive disorders and anemia (Grygiel-Gorniak and others, 2012).  Leucine has been 

reported to enhance endurance and promote increased strength and is marketed as a nutritional 

supplement for athletes due to its physiological effects (Crowe and others, 2006).  The content of 

these amino acids in a 3-oz. serving of oysters is between 1.0 and 1.2 grams each (USDA, 2013). 

4.3.9 Volatile profile components in AIR and MAP oysters 

 The analysis of aroma in oysters is a convenient means of checking their quality.  The 

aromatic perception indicates to the consumer their state of freshness, necessary for the 

acceptability of the product.  The identification of volatiles by the analytical determination of the 

individual compounds using gas chromatography coupled with mass spectrometry show an 

increase in acceptability to assess freshness in seafood (Fratini and others, 2012). 

 Analysis of volatile compounds by HSSPME showed slight variability between 

treatments.  Table 4.6 lists the most potent volatile compounds found in fresh oyster meat and 

MAP samples after 180 days of frozen storage.  The volatiles were grouped according to their 

most likely origin.  A total of 22 volatile compounds were extracted in fresh oyster meat and AIR 

(180 days) which are in agreement with Zhang. and others (2010).  In MAP-CO2 and MAP-N2, 

the extracted volatile compounds were 22 and 15 respectively.  Higher number of volatile 
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compounds were identified by Pennarun and others (2003), identifying 73 volatile compounds in 

raw oysters by vacuum hydrodistillation.  A total of 52 were identified by Piveteau and others 

(2000) using a dynamic headspace volatile concentrator.  The higher number of volatile 

components relied on the extraction and collection procedures which are time consuming and 

require expensive consumables.  The analytical method developed by Zhang. and others (2010)  

which was followed in this study, provides quick, reliable, and sufficient information to 

characterize the fresh aroma characterization in oyster meat.  

 In the current study, among the identified volatiles shown in Table 4.6, the origin of 19 

compounds was established.  Most of them (10 volatile compounds) came from the degradation 

of fatty acids.  Eight compounds came from the degradation of n-3 fatty acids (Piveteau and 

others, 2000) and they were present in all treatments.  Alcohols and ketones were in the highest 

proportions.  The main ones were 1-penten-3-one, 1-penten-3-ol, and (Z,Z)-1,5-octadien-3-ol.  

This result is consistent with the large amount of n-3 poly unsaturated fatty acids (PUFAs) found 

in oysters along with the fact that n-3 PUFAs are very sensitive to oxidation.  In oysters most of 

the volatiles arising from n-3 PUFAs are formed through enzymatic processes (Josephson, 1991).  

The 20:5 n-3 and 22:6 n-3, which are the main n-3 PUFAs in oysters, have been reported to be 

the most likely substrates for enzymatic oxidation producing mainly aldehyde and alcohol 

volatile compounds (Josephson and others, 1985).   

 Two compounds were identified which were the product of the oxidation of n-6 PUFAs.  

Among them, pentanoic acid was found only in MAP-CO2.  The low proportion of these fatty 

acids in oysters accounts for the lower quantity of volatiles.   

.  
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Table 4.6: Volatile compounds (μg/100 g sample) identified in fresh oyster meat and MAP treatments 

   After 180 days of frozen storage at -20º C 

      

Compound Origin Fresh AIR MAP-CO2 MAP-N2 

PUFA oxidation      

1-penten-3-one n-3 3.34
A 

3.16
A 

3.03
A 

3.11
A 

(E,E,Z)-1,3,5-octatriene n-3 2.21
A 

2.16
A 

1.13
A 

2.32
A 

1-penten-3-ol n-3 2.86
A 

2.44
A 

2.36
A 

2.52
A 

(E,Z)-2,6-nonadienal n-3 1.13
B 

3.01
A 

2.02
A 

3.22
A 

(Z)-2-penten-1-ol n-3 2.19
A 

2.54
A 

1.16
A 

2.16
A 

(Z,Z)-1,5-octadien-3-ol n-3 3.40
A 

3.16
A 

2.18
A 

2.86
A 

3-methyl-2-butenal n-3 1.16
A 

1.05
A 

1.22
A 

1.25
A 

14-octadecenal n-3 1.21
A 

0.99
A 

1.12
A 

1.16
A 

pentanoic acid n-6 0.0
B 

0.0
B 

1.55
A 

0.0
B 

1-octen-3-ol n-6 1.63
A 

1.45
A 

1.88
A 

1.55
A 

      

fatty acid oxidation      

2,4-octadiene Lipids 0.63
B 

2.16
A 

0.00
B 

1.85
B 

(E,E,E)-1,3,6-octatriene Lipids 0.16
B 

3.18
A 

2.14
A 

1.02
A 

(Z,Z,Z)-1,3,5-octatriene Lipids 1.1
B 

3.22
A 

2.66
A 

1.25
B 

3-octanone Lipids 1.15
B 

4.22
A 

3.85
A 

0
B 

      

Amino acid degradation      

dimethyl disulfide Amino acid 2.42
A 

0.45
B 

1.12
A 

1.86
A 

      

Carotenoid degradation      

toluene carotenoids 1.15
A 

1.89
A 

1.25
A 

1.36
A 

6-methyl-5-hepten-2-one carotenoids 0.54
A 

0.63
A 

0.88
A 

0.99
A 

Cedren – 13-ol, 8 – carotenoids 3.58
A 

2.21
A 

2.85
A 

3.01
A 

      

Miscellaneous origin      

benzaldehyde miscellaneous 2.54
A 

2.07
A 

2.33
A 

2.74
A 

3-pentanone miscellaneou 0.52
A 

0.33
A 

0.32
A 

0.45
A 

p-xylene polysaccharide 0.45
A 

0.33
A 

0.38
A 

0.38
A 

AB
Mean values in the same row with different exponents indicate significant difference 
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Four aliphatic-hydrocarbon compounds arising from fatty acid (lipid) oxidation were 

identified but only 3 were present in MAP-CO2.  From these, (Z,Z,Z)-1,3,5-octatriene may have 

arisen from the dehydration from (Z,Z)-1,5-octadien-3-ol (Josephson, 1991). 

 Dimethyl sulfide was the only one volatile arising from amino acid degradation.  

Dimethyl sulfide is one of the most important aromas that characterize oysters, often described 

as the most odorant compound that relates to freshness (Nguyen and others, 2012)Dimethyl 

sulfide has been reported to derive from the oxidation of methanethiol which is a bacterial 

degradation product of methionine (Josephson and others, 1985; Zhang and others, 2010).   

 The identified volatiles coming from carotenoid oxidation were 3 compounds.  The 

carotenoids may have originated from plant constituents in the diet of the oysters.  Many seafood 

creatures have ripe seagrass seeds in their diet which contain these compounds, and hence they 

are found in the adult flesh (Piveteau and others, 2000).   

 Three volatile compounds having miscellaneous origins were identified.  From these, 

benzaldehyde may have arisen from amino acid degradation (Piveteau and others, 2000).  The 

synthesis of 3-pentanone could be possible in environments rich in lipids (Piveteau and others, 

2000), and p-xylene may originate from degradation of polysaccharides (Akbar and others, 

2012).   

 Trimethylamine (TMA) was not identified as a volatile compound in any of the 

treatments.  TMA is a derivative of ammonia with a typical rotten fish odor at lower 

concentration and of an ammonia-like odor at higher concentrations (Yesudhason and others, 

2010).  Perception of TMA in seafood is often associated with decomposition and spoilage.  

With the appearance of TMA, a strong offensive and disgusting odor describes the deterioration 
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of seafood.  In this study, such descriptors were not observed when opening the trays to prepare 

samples for the extraction of volatiles. 

4.4 Conclusions 

 The present study demonstrated that oyster meat packed in modified atmosphere could 

have some advantages in maintaining its quality for longer periods of frozen storage at -20ºC.  

Nitrogen could give an overall better quality in relation to moisture content stability, lipid 

oxidation, package integrity, and the product’s appearance than carbon dioxide and air.  

 Absorption of CO2 in the oyster meat caused implosion of the package after 60 days of 

storage with a complete collapse after 150 days.  In addition, the CO2 absorption produced a 

decrease in pH which could negatively affect texture and appearance if storage was prolonged 

more than 180 days.   

Although no significant differences were reported in most of the quality test performed between 

AIR and MAP-N2 (color, pH, texture, amino acid and volatile profiles), the stability to 

temperature fluctuations during frozen storage could be the factor that favors MAP-N2 over AIR 

for further development of microwavable oyster products.   
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CHAPTER 5 INACTIVATION OF VIBRIO VULNIFICUS AND VIBRIO 

PARAHAEMOLYTICUS IN CRYOGENIC FROZEN OYSTER MEAT 

USING STEAM VENTING TECHNOLOGY  

5.1 Introduction 

 Vibrio vulnificus and V. parahaemolyticus are the pathogens most commonly associated 

with the consumption of raw oysters and have become the leading cause of many outbreaks 

(CDC, 2006, 2011, 2010a, 2010b, 2013).  Several viable post-harvest techniques are available to 

reduce the bacterial load to innocuous levels.  By nature, Vibrio vulnificus and V. 

parahaemolyticus are relatively susceptible to heat, and thus the utilization of microwave heating 

could be an alternative to conventional heating with the advantage of its rapid heating rate. 

 Microwave heating is usually not considered as a cooking method but a way to heat food 

products in a short period of time.  The uneven heat distribution in microwave ovens is the main 

concern related to microbiological quality in food.  Microbiological safety is often achieved by 

heating and thus if the food product is not adequately heated pathogenic microorganisms may 

survive.  In addition to microbial safety concerns, microwave heating may induce texture 

damage due to uneven heating, poor yield due to moisture loss, and poor appearance (Mizrahi, 

2012). 

 Self-venting technology has rapidly developed via several different approaches in 

steamed meals for microwave cooking.  The packaging is designed so that steam builds during 

the cooking process.  This technology utilizes the concept of pressurized steam cooking inside 

sealed plastic pouches or containers that have a self-venting release adaptation (Mast, 2000).  

Steam-venting technology for microwave cooking has been engineered to regulate cooking 

quality through controlled package expansion in conjunction with proprietary self-venting 

mechanisms (Fowle and others, 2005).  During microwave cooking, food items absorb radio 

waves and are heated by dielectric heating.  Rise in temperature, rapidly heats up the water 



134 

 

content of the food, producing steam.  Positive pressure is created in the package by the 

production of steam and microwaving simultaneously resulting in reduced cooking time and 

evenly distributed heat (no hot spots).  The package distends with the increase of the internal 

pressure and provides a visual indication that cooking is occurring while maintaining a 

temperature between 100ºC to about 105ºC (Mast, 2000).  In addition, the production of steam 

and microwaving simultaneously results in reduced cooking time and evenly distributed heat 

which is an advantage in terms of food safety. 

 Microwave destruction of many microorganisms has also been reported, including: 

Bacillus cereus, Campylobacter jejuni, Clostridium perfringens, E. coli, Enterococcus, Listeria 

monocytogenes, Staphylococcus aureus, Salmonella enteridis, Salmonella sofia, Proteus 

mirabilis and Pseudomonas aeruginosa, Aspergillus niger, Penicillium and Rhizopus nigricans 

(Yaghmaee and others, 2005).  Rodriguez-Marval and others (2009) evaluated the inactivation of 

Listeria monocytogenes in frankfurters to evaluate different power and time combinations of 

microwave oven heating to provide information to industry which would help to develop 

labeling instructions or guidelines for reheating.  Similarly, research on the survival of L. 

monocytogenes, Salmonella spp. and E. coli O157:H7 on catfish fillets was performed by Sheen 

and others (2012) under different microwave power settings.  However, applying microwave 

energy combined with steam venting technology to reduce or eliminate potential foodborne 

pathogens in oyster meat products has not been investigated.   

 Application of steam venting technology during microwave cooking of oyster meat could 

remediate the common food safety issues related to oysters, but also could remedy the negative 

effects of microwave heating, which usually leads to reduced palatability, moisture loss, and 

lower product yield.  Therefore, the current research was focused on obtaining the necessary 
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information for the inactivation of Vibrio vulnificus and V. parahaemolyticus in inoculated 

samples of oyster meat packed in microwavable trays sealed with a film having steam venting 

capabilities.  The gathered information will be useful in the development of microwavable 

products having oyster meat as the main ingredient. 

5.2 Materials and methods 

5.2.1 Inoculation of oyster meat 

 Gulf oysters (Crassostrea virginica) were purchased from a seafood supplier in Houma, 

Louisiana and shucked to collect the meat.  Three clinical strains of Vibrio vulnificus (ATCC
®

 

27562, 7184, and 1007) and one strain of Vibrio parahaemolyticus (ATCC
®
 17802) obtained 

from the Food Safety/Food Microbiology laboratory at Louisiana State University Agricultural 

Center were used in this study.  Separate cultures of Vibrio vulnificus and Vibrio 

parahaemolyticus were incubated on sodium chloride solutions of Bacto nutrient broth (Difco 

Laboratories, Detroit, MI) at 2% and 3% (wt. /wt.) respectively, at 37ºC for 12 h.  Cells were 

allowed to reach stationary phase, as previously validated in Burnham and others (2009) until 

reaching 10
6-7

 CFU/mL in both Vibrio sp.  Oyster meat was then collected and weighed (800 

grams approximately) in sterile bags and then inoculated with both culture broths to obtain 10
6 

CFU of each vibrio species per gram of meat.  The meat was left in the bag for 15 min at room 

temperature under a bacteriological hood.  Inoculation effectiveness was verified by triplicate 

analysis of samples consisting of 12 oysters per sample. 

5.2.2 Freezing of oyster meat 

 The oyster meat was cryogenically frozen until reaching an internal temperature of -20°C 

using liquid nitrogen in a cryogenic chamber (Ultra-freeze, Air Liquide Industrial U.S. LP).  

After freezing, oyster meat samples were immediately packaged in high barrier polypropylene 

(PP) microwavable trays in portions of 50 and 100 g, designated as 50F and 100F respectively.  
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The trays were sealed with a flexible packaging film in a Multivac T-200 tray sealer (Multivac 

Inc, Kansas, MO) with nitrogen in the headspace.  All samples were then stored in a household 

freezer (Frigidaire, Martienz, GA) for 12 h to simulate household conditions prior to analysis.  

5.2.3 Temperature and pressure profiling during microwave cooking of oyster meat 

 Data collection of temperature and pressure during microwaving was performed in a 

Microwave Workstation (MW) (FISO Technologies Inc., Quebec, Canada) which included a 

1100 watts microwave oven and 2450 MHz equipped with a turntable.  Data were collected 

through the (MW) commander control.  Four fiber optic temperature sensors (FOT-L-SD-C1, 

FISO Tech. Inc. Canada) and one fiber optic pressure sensor (FOP-C2-F2, FISO Tech. Inc. 

Canada) was used in the current study.  Three of the temperature sensors were designated for 

measuring internal temperature in oyster meat and one for headspace temperature.  For this 

purpose, frozen oyster meat was carefully perforated with a 2 mm stainless steel drill in the 

fattest portion before packing.  For internal temperature measurement, the tip of the sensors (1, 2, 

and 3) were introduced in the center of the frozen oyster meat passing through the film and 

secured by special heat resistant septa to maintain the integrity of the.  The oyster meat with the 

temperature sensors was randomly distributed inside the tray.  For the headspace temperature and 

pressure measurements, the tip of the sensors (4 and 5, respectively) was carefully positioned in 

the center of the tray to avoid contact with the content in the package.  The configuration of the 

temperature and pressure sensors in the package is showed in Figure 5.1.  All tests were 

performed at 100% power with the turn table on.  The measurement of the temperatures and 

pressure during microwaving were monitored and recorded until 90°C.  This temperature was 

chosen as the maximum to avoid overcooking of the oyster meat. 
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 The time and pressure at which the packaging was observed to vent were obtained from 

the data collected from the pressure sensor readings.  The time of venting was determined by the 

quick pressure decrease from the pressure profile data during microwaving.  In addition, the 

internal temperature of the oyster meat and package headspace temperature were measured. 

a) 

 

b) 

 

Figure 5.1: a) Distribution of the internal temperature (1, 2, 3), pressure (4), and headspace 

temperature (5) sensors in the package, b) Schematic of the data collection using the Microwave 

Station  
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5.2.4 Reduction of Vibrio vulnificus and Vibrio parahaemolyticus in oyster meat during 

microwave cooking 

 A household microwave oven equipped with a turntable, and with maximum power 

output of 1100W and 2450 MHz was used under a bacteriological hood.  The trays containing 

50g and 100g of oyster meat were microwaved for 0, 10, 20, 30, 40, 50, 60, 70, and 80s, at high 

power (100%).  After microwaving, the trays were allowed to cool down for 2 min (standing 

time) for temperature equilibration.  Following the standing time, the oyster meat was weighed in 

Whirl-pak® bag (Nasco, Salida, CA, U.S.A.) and phosphate-buffered saline solution (PBS) was 

added to yield an oyster homogenate of 1:3 (w/v).  The mixture was homohenized (Stomacher 

400, Tekman Co., Cincinnati, Ohio) for one minute and then analyzed for the identification and 

quantification of Vibrio vulnificus and Vibrio parahaemolyticus species by direct plating 

procedure for the enumeration of total and pathogenic Vibrio vulnificus and Vibrio 

parahaemolyticus in oyster meats (FDA/Gulf coast Seafood Laboratory Vp-ISSC-3) following 

Cook and others (2000).  Trays containing 50 g and 100 g without film were used as controls to 

observe the effects of the film on the bacterial reduction.  These samples were identified as 50NF 

and 100NF respectively. 

5.2.5 Determination of moisture in oyster meat during microwave cooking 

 The moisture content of the oyster meat was measured during microwave heating at 10, 

20, 30, 40, 50, 60, 70, and 80s.  The trays were let stand for 1 min after each time segment before 

analysis.  The oyster meat was extracted from the trays and homogenized for 30 s at medium 

speed in a Waring® commercial laboratory blender.  The moisture content of the oyster meat 

was measured by drying  3 g of the homogenate in a draft oven at 105°C for 24 h (%) (AOAC 

International, 2005) in triplicate samples. 
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5.2.5 Statistical analysis 

 Means values from six measurements and/ or triplicate analysis were reported.  Statistical 

analysis was done using the SAS (Statistical Analysis System) software (version 9.2) (SAS 

Institute Inc., Cary, NC, and U.S.A).  Data was analyzed by Analysis of variance (ANOVA) 

following Tukey’s studentized range test (p < 0.05).   

5.3  Results and discussion 

5.3.1 Temperature and pressure profiling during microwave cooking of oyster meat. 

 Heat treatments are important methods to provide safe foods.  Conventional heat 

treatments involve the application of steam and recently microwave treatments have been studied 

and applied as they are considered to be fast, clean and efficient.  Optical fiber sensing is an 

excellent tool to measure the temperature during microwave treatments.  Optical fiber 

temperature and pressure sensing during the microwave cooking of 50 g of oyster meat is shown 

in Figure 5.2. 

 This figure depicts the evolution of the internal temperature of 50NF and 50F samples of 

oyster meat and the headspace temperature and pressure of the container in 50F during 

microwaving.  During microwave cooking at 100% power, 50F’s internal temperature profile 

showed a steep increase between -1ºC (20s) and 95º C (55s) and then it fluctuated between 95 

and 97ºC until microwaving cooking was stopped.  The heating caused thawing of the oyster 

meat to occur in a few seconds and then the rapid increase in internal temperature took place 

which is attributed to the absorption of microwaves and their interaction with the high water 

content of the oyster meat (Galema, 1997).  
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Figure 5.2: Temperature and pressure profiles of 50 g oyster meat during microwave cooking 

 Regarding the headspace temperature, it starts to increase when steam has been produced 

by the heating effect of the microwaves on the oyster meat, and it continues to rise and equalizes 

to that of the internal temperature.  Headspace and internal temperature got very close when the 

container was saturated with steam during the last 10 seconds of microwaving (Fig 5.2).  At this 

point the temperature of the oyster meat is the same both internally and upon the surface.  When 

comparing to the internal temperature profile of 50NF (control) the effect of the film on the 

gentle development of internal temperature is evident.  50NF showed very drastic heating 

profiles in internal temperature reaching 90ºC in 24 ± 3 s.  The quick rise in internal temperature 

in 50NF was probably attributed to rapid absorption of microwaves causing intense dehydration 

and further over heating of the solids.  It can be suggested that the film served as a protective 

barrier towards rapid moisture loss by decreasing the amount of microwaves absorbed in the 

oyster meat and thus ensuring a smoother increase of temperature.   
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 The pressure profile during microwave cooking of 50F can also be observed in figure 5.2.  

The internal pressure in the container started to increase as steam was produced by the dielectric 

heating effect of the microwaves on the oyster meat.  It can be observed that there is a clear 

correlation between the headspace temperature and internal temperature after 40 s of 

microwaving.  The headspace pressure started to increase when enough steam was produced, 

which was observed by the shift in slope in the headspace temperature profile.  The head space 

pressure continued to rise until reaching a breaking point at 1.4 psi after 61 ± 3 s.  At this point, 

the package’s film vented due to the weakening of the internal layer of the film.  The internal 

temperature of 50F was 99 ± 3ºC when venting occurred.  During these trials, the steam venting 

occurred at the corners of the trays.  Knoerzer and others (2009), Zhang and others (2001), and 

Risman and others (1987) reported that high intensity electromagnetic fields occur in the corner 

and edges of containers which increase the temperatures in those areas.  It can be suggested that 

higher temperatures developed in the corners, weakening the film and producing rupture of the 

film (venting).  After venting occurred, the release of steam did not affect the headspace 

temperature, which continued to increase according to Figure 5.2.  This could mean that steam 

continued to be produced and released in a control manner until the microwaving process was 

stopped.   

 After venting, the headspace pressure decreases to values close to the zero-reference 

pressure (atmospheric pressure).  The sporadic rising of headspace pressure after venting was 

provided by the special properties of the film (Polymers, 2010).  The internal layer of the film 

used in this study aligned with the border of the tray when the amount of steam released 

decreased due to cycling of the microwave oven.  This allowed the film to make contact with the 
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tray sealing it again.  However, venting occured at a lower pressure due to disruption of the 

original seal (Polymers, 2010). 

 

Figure 5.3: Temperature and pressure profiles of 100 g oyster meat during microwave cooking 

 Internal and headspace temperatures as well as pressure profiles for 100F and 100 NF 

showed the same trend as 50F and 50NF with some variations (Fig 5.3).  100NF showed similar 

rapid increase in temperature as in 50NF, however; the time to reach 90º C in 100F was 56 ± 2 s 

which is approximately 2.5 times longer than 50 NF. 

 In addition, the venting time and pressure were observed to occur at 94 ± 3 s and 0.73 ± 

0.3 psi respectively.  The venting time in 100F took 1.53 times longer than in 50F while venting 

pressure was 52% lower than in 50F.  Comparisons of treatments’ important microwave cooking 

events related to their temperature and pressure profiles are summarized in Table 5.1.  The 

prolonged time required in 100F to reach similar temperature values as that of 50F could be 

explained by the double amount of oyster meat in the tray.  Microwave heating times are directly 

related to the amount of product being heated (Geedipalli and others, 2007).  Vadivambal and 
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others (2010) reported that doubling the quantity of a product causes an increase in heating time 

of at least 50% to obtain similar internal temperature values.  This is related to the amount of 

energy absorbed in the product.  In a microwave oven most of the microwave power is directly 

absorbed by the food being heated (Vadivambal and others, 2010).  The rate of heating (heating 

power) is, therefore, fixed by the power of the oven.  The rate of temperature increase in the food 

is therefore inversely proportional to the mass of food multiplied by the specific heat capacity of 

the food.  This suggests that a double mass of food halves the rate of temperature rise, and the 

food would take as twice as long to reach the same temperature (Vadivambal and others, 2010). 

Table 5.1 Results of microwave cooking of oyster meat in steam venting packages 

Microwave cooking 50 g 100 g 

Venting, s 61 ± 3
B 

94 ± 3
A 

Internal temperature at venting, ºC 99 ± 3
A 

88 ± 4
B 

Head space temperature at venting, ºC 68.1 ± 8.4
B 

97 ± 3
A 

Venting pressure , psi 1.4 ± 0.3
A 

0.73 ± 0.3
B 

Time to reach 90ºC (Internal temp),s 59 ± 4
B 

98 ± 4
A 

    AB
Means with different exponents in each row indicate significant difference 

5.3.2 Inactivation of Vibrio vulnificus Vibrio parahaemolyticus in oyster meat during 

microwave cooking in steam venting packaging 

 The steam venting packaging had an effect on the time needed to inactivate both Vibrio 

spp.  The log reduction of V. vulnificus for 50NF and 50F during microwave cooking is shown in 

Table 5.2.  The reduction of V. vulnificus to nondetectable levels occurred after 20 s of 

microwave cooking of 50NF.  In contrast, it took 50 s to produce the same effect in 50F samples 

(Table 5.2).  However, in both treatments, the inactivation was believed to be caused by 

temperature.  The internal temperatures of the oyster meat as well as the temperature in the 

headspace for 50F are also included in this table.  It can be observed that the internal temperature 
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in 50NF was 48 ± 3ºC at 10 s and reached 80 ± 3ºC by 20 s of microwave cooking.  V. vulnificus 

is a temperature sensitive bacterium with an optimum growing temperature of approximately 

37ºC in appropriate levels of pH (6.5-7.0) and salinity (2%) (Ama and others, 1994; Andrews 

and others, 2000).   

Table 5.2 Effect of microwave cooking on the logarithmic reduction of Vibrio vulnificus
x
 (log10 

CFU/g) in 50 g of oyster meat  

Time, s 

Log reduction 

(50NF) 

Internal 

temperature, 

ºC  

Log reduction 

(50F) 

Internal 

temperature, 

ºC 

Headspace 

temperature, 

ºC 

0 1.72 ± 0.16
Ac

 -14 ± 2  0.57 ± 0.21
Ae

 -14 ± 2 17 ± 3 

10 3.86 ± 0.28
Ab

 48 ± 3  0.61 ± 0.20
Ae

 -5 ± 2 19 ± 3 

20 Not detected*
Aa

 80 ± 3  1.66 ± 0.23
Bd

 -1 ± 2 22 ± 4 

30 Not detected*
Aa

   2.44 ± 0.32
Bc

 21 ± 2 23 ± 4 

40 Not detected*
Aa

    3.62 ± 0.19
Bb

 60 ± 2 27 ± 4 

50 Not detected*
Aa

    Not detected*
Aa

 87 ± 2 49 ± 6 

60 Not detected*
Aa

    Not detected*
Aa

 100 ± 2 71 ± 3 

70 Not detected*
Aa

   Not detected*
Aa

 99 ± 2 93 ± 3 

    Time = 0 refers to the time  before microwaving, after 12 h in household freezer 

    50NF and 50F denote 50 g of oyster meat with no film and with film, respectively 

    
x
Initial  inoculation level of 6.0 log10CFU/g  

   
abcde

Means with different exponents in each column indicates significant difference 
    AB

Means with different exponents in each row indicate significant difference 

* ≥ 6 log reduction denotes nondetectable levels  

 Kaspar and others (1993) reported a reduction of 90% in V. vulnificus numbers when 

samples were held at 45ºC for six days, which indicated that the survival of V. vulnificus could 

be reduced at temperatures above 37ºC.  Heating oysters for 10 min in water at 50 C was 

adequate to reduce V.vulnificus to a nondetectable level (Cook and others, 1992).  This indicated 

that the temperatures reached during microwaving cooking were enough to inactivate V. 

vulnificus in 50NF.  In 50F the internal temperature at 40 s reached 60 ± 2ºC which may caused 

inactivation.  The significant log reduction observed between 20 and 30 s in 50F was possibly 

the result of other factors other than those related to thermal effects, which will be addressed 

later in this document. 
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 Inactivation of V.vulnificus in 100NF and 100F showed a similar pattern as in 50F and 

50NF.  V.vulnificus was inactivated after 50 s of microwave cooking in 100NF, and after 60 s in 

100F (Table 5.3).  The log reduction of V. vulnificus in 100F presented an interesting case.  It 

was observed that significant reduction occurred after 20 s, although the internal temperature was 

low.  The inactivation of V. vulnificus in 100F could be explained using the headspace 

temperature profile.  The exposure to higher temperatures developed in the headspace at 20, 30, 

40, and 50 s (38 ± 3, 44 ± 3, 50 ± 3, and 53 ± 2ºC, respectively) possibly caused the inactivation; 

especially in this study, where the inoculation of the Vibrio spp. was performed at the surface of 

the oyster meat.  

Table 5.3 Effect of microwave cooking on the logarithmic reduction of Vibrio vulnificus
x
 (log10 

CFU/g) in 100 g of oyster meat  

Time, 

s 

Log reduction 

(100NF) 

Internal 

temperature 

(100NF), ºC   

Log reduction 

(100F) 

Internal 

temperature 

(100F), ºC 

Head space 

temperature 

(100F), ºC 

0 0.33 ± 0.17
Ae

 -14 ± 1
 

  0.58 ± 0.21
Ae

 -14 ± 2
 

18 ± 2
 

10 0.61 ± 0.10
Ae

 -13 ± 3   0.58 ± 0.22
Ae

 -8 ± 2 30 ± 2 

20 1.69 ± 0.20
Ad

 -7 ± 3   0.62 ± 0.22
Be

 -1 ± 3 38 ± 3 

30 2.38 ± 0.22
Ac

 15 ± 4   2.35 ± 0.17
Bc

 0 ± 2 44 ± 3 

40 4.03 ± 0.31
Ab

 57 ± 4   3.71 ± 0.19
Bc

 15 ± 3 50 ± 3 

50 Not detected*
Aa

 80 ± 3   4.88 ± 0.18
Bb

 37 ± 3 53 ± 2 

60 Not detected*
Aa

 93 ± 3   Not detected*
Aa

 57 ± 4 59 ± 2 

70 Not detected*
Aa

   Not detected*
Aa

 70 ± 3 70 ± 3 

    Time = 0 refers to the time  before microwaving, after 12 h in household freezer 

    100NF and 100F denote 100 g of oyster meat with no film and with film, respectively 

    
x
Initial  inoculation level of 6.0 log10CFU/g  

   
abcde

Means with different exponents in each column indicates significant difference 
    AB

Means with different exponents in each row indicate significant difference 

* ≥ 6 log reduction denotes non-detectable levels (< 30 MPN/gram) 

 As well as V. vulnificus, Vibrio parahaemolyticus also was temperature sensitive, 

however it showed more heat resistance according to the results from microwaving cooking 

(Table 5.4).  Inactivation of V. parahaemolyticus in 50NF occurred at 30 s (102 ± 5ºC) which 

was 10 s more than V. vulnificus.  Similarly, nondetectable levels were reported at 50 s (87 ± 
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2ºC) in 50F, again, 10 s more than in V. Vulnificus.  The inactivation of V. parahaemolyticus in 

100 g of oyster meat showed similar patterns as shown in Table 5.5.  In 100 NF, the inactivation 

of V. parahaemolyticus occurred after 50 s of microwave cooking which correlated to an internal 

temperature of 80ºC, while reduction to nondetectable levels was reported after 60 s in 100F 

(57ºC).   

Table 5.4 Effect of microwave cooking on the logarithmic reduction of Vibrio parahaemolyticus
x
 

(log10 CFU/g) in 50NF and 50F  

Time, 

s 

Log 

reduction 

(50NF) 

Internal 

temperature, º C   

Log reduction 

(50F) 

Internal 

temperature, 

º C 

Head space 

temperature, º C 

0 0.43 ± 0.18
Ac 

-14 ± 2   0.43 ± 0.09
Ad

 -14 ± 2
 17 ± 3 

10 0.63 ± 0.28
Ac

 48 ± 3   0.45 ± 0.10
Ad

 - 5 ± 2 19 ± 3 

20 4.51 ± 0.17
Ab

 80 ± 3   1.48 ± 0.11
Bc

 -1 ± 2 22 ± 4 

30 Not detected*
Aa

 102 ± 5   1.61 ± 0.07
Bc

 21 ± 2 23 ± 4 

40 Not detected*
Aa

    3.76 ± 0.16
Bb

 60 ± 2 27 ± 4 

50 Not detected*
Aa

    Not detected*
Aa

 87 ± 2 49 ± 6 

60 Not detected*
Aa

    Not detected*
Aa

 100 ± 2 71 ± 3 

70 Not detected*
Aa

   Not detected*
Aa

 99 ± 2 93 ± 3 

    Time = 0 refers to the time  before microwaving, after 12 h in household freezer 

    50NF and 50F denote 50 g of oyster meat with no film and with film, respectively 

    
x
Initial  inoculation level of 6.0 log10CFU/g  

   
abcd

Means with different exponents in each column indicates significant difference 
    AB

Means with different exponents in each row indicate significant difference 

* ≥ 6 log reduction denotes non-detectable levels 

 Johnston and others (2002) report that V. parahaemolyticus had higher heat resistance 

properties than V. vulnificus after cold shock treatments  The authors observed that V. 

parahaemolyticus underwent morphology changes that might have contributed to its longer 

survival when exposed to higher temperatures, as high as 70ºC.  The authors observed that most 

of the rod-shaped cells of V. parahaemolyticus shrunk and became coccoid when stored at 4ºC.  

The reduction in size was believed to be a means of minimizing the requirements for cell 

maintenance, and protects non-spore-forming bacteria against environmental stresses.  It is 

possible that the exposure to low temperatures during freezing and short cold storage before 
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microwaving could have provided similar characteristics to V. parahaemolyticus in this study, 

and thus it could explain the resistance to inactivation during microwave cooking compared to V. 

vulnificus. 

Table 5.5 Effect of microwave cooking on the logarithmic reduction of Vibrio parahaemolyticus
x
 

(log10 CFU/g) in 100 g of oyster meat  

Time, 

s 

Log reduction 

(100NF) 

Internal 

temperature 

(100NF), º C   

Log reduction 

(100F) 

Internal 

temperature 

(100F), º C 

Head space 

temperature 

(100F), º C 

0 0.33 ± 0.18
Ae

 -14 ± 1
 

  0.58 ± 0.17
Af

 -14 ± 2
 

18 ± 2
 

10 0.61 ± 0.10
Ae

 -13 ± 3   0.72 ± 0.11
Af

 -8 ± 2 30 ± 2 

20 1.69 ± 0.20
Ad

 -7 ± 3   1.66 ± 0.23
Ae

 -1 ± 3 38 ± 3 

30 2.38 ± 0.22
Ac

 15 ± 4   2.44 ± 0.32
Ad

 0 ± 2 44 ± 3 

40 4.03 ± 0.31
Ab

 57 ± 4   3.62 ± 0.19
Ac

 15 ± 3 50 ± 3 

50 Not detected*
Aa

 80 ± 3   4.32 ± 0.20
Bb

 37 ± 3 53 ± 2 

60 Not detected*
Aa

 93 ± 3   Not detected*
Aa

 57 ± 4 59 ± 2 

70 Not detected*
Aa

   Not detected*
Aa

 70 ± 3 70 ± 3 

    Time = 0 refers to the time  before microwaving, after 12 h in household freezer 

    100NF and 100F denote 100 g of oyster meat with no film and with film, respectively 

    
x
Initial  inoculation level of 6.0 log10CFU/g  

   
abcdef

Means with different exponents in each column indicates significant difference 
    AB

Means with different exponents in each row indicate significant difference 

* ≥ 6 log reduction denotes nondetectable levels  

 The mechanisms of destruction of microorganisms through the action of microwaves are 

controversial.  It has been stated that inactivation of microorganisms by microwave is entirely by 

heat, through the same mechanisms as other biophysical processes induced by heat, such as 

denaturation of proteins, nucleic acids or other vital components, as well as disruption of 

membranes (Datta and others, 2000).  However, the current study produced bacterial reduction at 

sub lethal temperatures during microwave cooking contradicting the former statement.  The 

destruction of microorganisms during microwave heating has been linked to non-thermal effects, 

as a lower temperature is shown to cause killing of microorganisms (Dumuta-Codre and others, 

2010).   



148 

 

 Four predominant theories have been used to explain non-thermal inactivation by 

microwaves or "cold pasteurization": selective heating, electroporation, cell membrane rupture, 

and magnetic field coupling.  The selective heating theory states that solid microorganisms are 

heated more effectively by microwaves than the surrounding medium and are thus killed more 

readily.  Electroporation is caused when pores form in the membrane of the microorganisms due 

to electrical potential across the membrane, resulting in leakage.  Cell membrane rupture is 

related in that the voltage drop across the membrane causes it to rupture.  In the fourth theory, 

cell lyses occurs due to coupling of electromagnetic energy with critical molecules within the 

cells, disrupting internal components of the cell (Kozempel and others, 1998).  Although there is 

a controversy about the mechanisms of microwave-induced death of microorganisms, there is no 

doubt about the destructive effect of microwaves. 

5.3.3 Moisture of oyster meat during microwave cooking in steam venting packages 

 The utilization of steam venting packaging had an effect on the moisture behavior of 

oyster meat during microwave cooking.  The moisture in 50NF samples was observed to decline 

very rapidly from the initial moisture value of 89.46 ± 0.67 % (Figure 5.4).  After 25 s of 

microwave cooking 50NF samples were reported to have 39.2 ± 2.6% of moisture, at which time 

the internal temperature reached 90ºC.  There was also a decrease in moisture content in 50F.  As 

microwave cooking progressed, moisture content in 50F showed a steady decrease; however, the 

values of moisture content did not reached the values reported in 50NF.  The moisture content of 

50F was 75.67 ± 4.22 % when the internal temperature of the oyster meat reached 90ºC.  The 

internal temperature of 90º C was reached after 60 s.   

The moisture content in 100NF and 100F followed similar trend as in 50NF and 50F during 

microwave cooking.  Moisture content in 100NF at an internal temperature of 90ºC was 40.6 ± 
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2.3%.  This value is close to the one obtained in 50NF, with the difference that 100NF moisture 

content was reached after 60 s of microwave cooking instead of 25 s in 50NF.   

 

Figure 5.4: Moisture content (wet basis) 50F and 50NF during microwave cooking 

 The faster decrease in moisture in 50NF and 100NF could be explained by the absorption 

of microwave energy in the meat.  This effect can be verified by the sharp increase in internal 

temperature shown in Figures 5.1 and 5.2 for the treatments without film (50NF and 100NF).  

This absorption occurred so rapidly that the meat was severely damaged.  The abrupt increase in 

temperature caused disruption of tissue, and in some cases, the damage was so extensive that 

some pieces burst.  The higher standard deviation in moisture content observed in 50NF and 

100NF was caused by the effects mentioned above.  In contrast, samples with film (50F and 

100F) did not suffer damage.   

 It is probable that the steam produced during microwave cooking and trapped in the 

package by the film, could dissipate the direct absorption of microwaves by the meat.  

Microwaves excite water molecules by the effect of dielectric heating (Meier and others, 1998), 

and steam , which is water vapor, could absorb some of the microwave energy.  As a 

consequence, steam could be heated causing an increase in the headspace temperature.  The 
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increase in headspace temperature would not depend completely on the generation of steam by 

the heating of the product.  As a result, a more gradual and uniform heating effect would occur, 

this could explain the higher moisture retention in 50F and 100F without damaging the meat.  

5.4 Conclusions 

 Inactivation of Vibrio vulnificus and Vibrio parahamolyticus in cryogenically frozen 

oyster meat was successfully accomplished using steam venting packaging while maintaining 

satisfactory moisture content levels.  Total inactivation of both species was achieved after 50 s 

and 60 s of microwave cooking at 100% power in 50 g and 100 g of oyster meat, respectively.  

The temperature range necessary to reduce the pathogens to non-detectable levels were obtained 

by correlating the data collected by the Microwave Station and the results from microbiological 

test.  During microwave cooking, it was established that the inactivation of both pathogens in 

oyster meat can be achieved at internal temperatures between 70ºC and 80ºC.  

Optical fiber sensing was an excellent tool to measure the temperature during microwave 

treatments.  Precise measurement of temperatures for the inactivation of the targeted bacteria was 

possible.  Thus, the use of optical fiber sensors resulted to be useful to develop protocols for 

product development.  
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CHAPTER 6  DEVELOPMENT OF A MICROWAVABLE PRODUCT HAVING 

OYSTER MEAT AS THE MAIN INGREDIENT USING STEAM 

VENTING TECHNOLOGY 

6.1 Introduction 

 Microwaveable foods are a group of ready-made, prepackaged, frozen, or prechilled 

products that can be consumed with minimal preparation.  Conventional heat treatments involve 

the application of steam and recently microwave treatments have been studied and applied as 

they are considered to be fast, clean and efficient. 

 Self-venting technology has rapidly developed via several different approaches to be 

applied in steamed meals for microwave cooking.  Steam-venting technology for microwave 

cooking has been engineered to regulate cooking quality through controlled package expansion 

in conjunction with proprietary self-venting mechanisms (Fowle and others, 2005).  In addition, 

the production of steam and microwaving simultaneously results in reduced cooking time and 

evenly distributed heat.  From the food safety point of view, microwave cooking using steam 

venting technology could assure the inactivation of harmful organisms.  In general, each thermal 

process must be considered in its own right and it is important to choose the organism most 

likely to carry the greatest risk.  However, control and uniformity of temperature is crucial to 

achieve lethality.  At a temperature of 70ºC for two minutes the outcome is roughly the same as 

43 min at 60ºC and less than 10 seconds at 80ºC based on calculations for Clostridium 

botulinum, related to F, Fo, and z-values (Fowle and others, 2005).   

 In seafood products, steaming is a process that usually provides desirable characteristics.  

Steaming is a gentle, fat-free cooking method that retains the natural moisture of foods.  This 

feature makes it an excellent choice for preparing delicate meals, especially those having oysters 

as main ingredient.  It is believed that with the emerging category of value added meal solutions 

the development of oyster-based products will create new opportunities for oyster processors to 
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expand their market.  Therefore, the current research provides a protocol for the development of 

a microwavable product formulation that can retain high moisture, improve product yield, and 

maintain textural qualities in oyster meat as main ingredient. 

6.2 Materials and methods 

6.2.1 Experimental design and sample preparation 

 The guidelines to a microwavable product having oyster meat as the main ingredient 

were based on the results obtained from studies in chapter V in the inactivation of Vibrio 

vulnificus and Vibrio parahaemolyticus packed in microwavable trays with steam venting 

capability.  

Steam venting packages containing frozen oyster meat and frozen vegetables were 

developed based on the following criteria: 

1. The internal temperature of the oyster meat should reach 90ºC to assure food safety 

 within 300 s of microwave cooking 

2. The oyster products should maintain most of the fresh oyster’s meat quality 

characteristics related to the maximum retention of moisture in the meat, good appearance, and 

texture. 

 The experimental process design is depicted in the Figure 6.1.  The process of 

elimination/optimization of the microwavable product was performed by the evaluation of three 

parameters: a) overall product weight loss during microwaving, b) weight loss of oyster meat, 

and c) maximum retention of moisture in the meat. 

6.2.2 Freezing of oyster meat 

 Fresh oyster meat was obtained from a local seafood store in Baton Rouge, LA., and 

transported on ice to the Food Processing Pilot Plant, Louisiana State University Agricultural 

Center.  The oyster meat was drained and immediately arranged on aluminum trays which were 
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previously covered in aluminum foil and a freezer paper was used to cover the oyster meat.  A 

cabinet type cryogenic freezer with liquid nitrogen (Air liquid, Houston, Texas) was used for 

cryogenic freezing.  Three thermocouples (Comark®, Comark Limited, Stevenage, Herts, UK) 

connected to a data logger were used to monitor the temperature during freezing.  The 

thermocouples were inserted at the geometrical center of the oyster meat.  The oyster meat was 

frozen until the temperature at the center of the oyster meat reached -20ºC.  After freezing, the 

meat was collected in Ziploc bags and stored in a freezer at -20ºC. 

 

Figure 6.1: Flow diagram for the development of microwavable products containing oyster meat 

and frozen vegetables 
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6.2.3 Development of steam venting packages containing oyster meat and frozen 

vegetables 

 To retain the maximum amount of moisture in the oyster meat, preliminary experiments 

demonstrated that the inclusion of at least one more ingredient was necessary.  This ingredient 

would serve as main water source for microwave cooking.  Frozen mixed vegetables (MV) were 

utilized for this purpose and were purchased in a local store in Baton Rouge, Louisiana, and 

transported on ice to the Food Processing Pilot Plant at Louisiana State University Agricultural 

Center and stored at -20º C.  The mixture of vegetables contained carrots, broccoli, green beans, 

and corn.  Six combinations of oyster meat (OM) and MV were evaluated.  Trays were prepared 

with proportions of OM to MV of 1:1, 1:2, and 1:3 based on 50 g and 100 g of OM. 

6.2.4 Temperature and pressure profiling during microwave cooking of formulations 

 As a preliminary step, the internal temperature profile of OM was obtained for each of 

the six combinations.  Data collection of temperature and pressure during microwaving was 

performed in a Microwave Workstation (MW) (FISO Technologies Inc., Quebec, Canada) which 

included a 1100 watts microwave oven and 2450 MHz equipped with a turntable.  Data were 

collected through the (MW) commander control.  Fiber optic temperature sensors (FOT-L-SD-

C1, FISO Tech. Inc. Canada) and one fiber optic pressure sensor (FOP-C2-F2, FISO Tech. Inc. 

Canada) were used in the current study.  In addition to the internal temperature of the oyster 

meat, microwave cooking events such as venting time, pressure, and headspace temperature were 

collected.  For each combination, triplicate data were collected in three repetitions and averaged. 

6.2.5 Preparation of samples 

 Frozen MV and cryogenically frozen OM were weighed in trays and sealed in a Multivac 

T-200 tray sealer (Multivac Inc, Kansas, MO) using nitrogen as headspace gas.  The trays were 

stored at -20ºC.  Before testing, the trays were allowed to equilibrate for 24 h in a household 
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freezer (Frigidaire, Martienz, GA) to simulate household conditions.  All trials were performed 

in sets of five samples in three repetitions. 

6.2.6 Product weight loss during microwave cooking 

 The product (oyster meat + vegetables + tray with film) was weighed before and after 50, 

80, 110, 170, 200, 230, and 300 s of microwave cooking.  Two min of standing time were 

allowed after each period of time before weighing.  The weight loss was calculated following the 

formula (Eq.1): 

(     -      )
%    100

    

weight of product before microwaing weight of product after microwaving
Weight loss x

weight of product before microwaving
           [1] 

6.2.7 Oyster meat weight loss 

 After weighing of the product to measure weight losses, the oyster meat was extracted 

from the trays and weighed separately during the same period of time (50, 80, 110, 170, 200, 

230, and 300 s of microwave cooking).  The weight loss of the oyster meat was calculated by 

using the formula (Eq.2): 

(    -      )
%    100

   

weight of frozen meat weight of meat after microwaving
Weight loss x

weight of frozen meat
                            [2] 

6.2.8 Moisture content of the oyster meat 

 After the weighing of the oyster meat extracted from the trays, the meat was 

homogenized for 30 s at medium speed in a Waring® laboratory blender and 5 g of the 

homogenate were used for the analysis of moisture in triplicate.  The moisture content (%) of the 

oyster meat was measured by drying in a draft oven at 105°C for 24 h (AOAC International, 

2005). 
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6.2.9 Effect of steam venting technology properties in the quality of oyster meat 

 Two sets of 5 trays each were prepared with the combination 100:200.  Trays were 

identified as 100:200F (with film) and 100:200NF (no film).  The trays were microwaved for 50, 

80, 110, 170, 200, 230, and 300 s and let stand for 2 min after each period of time.  After the 

standing time, the meat was extracted from the trays and analyzed for moisture, color, and 

texture. 

6.2.10 Color of oyster meat 

 Color was measured during microwave cooking at 50, 80, 110, 170, 200, 230, and 300 s.  

The surface color of the oyster meat was measured with a Hunter LabScan Colorimeter (Labscan 

XE, Hunter Associates laboratory, Inc., Reston, Virginia, USA) on the ventral body of individual 

oysters.  Color was recorded as L*, a*, b*.  Triplicate samples were analyzed. 

Total color difference (ΔE*) was also calculated to quantify the overall color difference of the 

microwaved heated oyster meat compared to fresh oyster meat using the formula (Eq.3): 

                                                 ΔE* =                                               [3] 

6.2.11 Texture analysis of the oyster meat 

 Texture of the oyster meat was measured at 50, 80, 110, 170, 200, 230, and 300 s of 

microwave cooking.  A texture analyzer (Instron model 5544, Norwood, MA) equipped with a 

10-blade Kramer shear attachment was used to measure texture.  The analysis was performed 

using a 2 kN load cell in compression mode at 2 mm/s.  After two min of standing time, the 

oyster meat was removed from the trays and used for the texture analysis by filling the shear cell 

up to two thirds of its capacity and positioned opposite to the alignment of the blades.  Data were 

collected and analyzed using the texture analyzer software (Merlin v. 5.31).  The maximum force 

needed to cut through was recorded as compressive strength (MPa).  

2 2 2( *) ( *) ( *)L a b    
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6.2.12 Statistical analysis 

 The collected data were analyzed using SAS version 9.2 (SAS, Version 9.2, SAS Institute 

Inc., Cary, NC., USA). One-way analysis of variance (ANOVA) was used to detect statistical 

differences (P≤0.05) following Tukey’s studentized range test (p < 0.05). 

6.3 Results and discussion 

 The amount of product, venting time, and the time required to reach an internal 

temperature of 90ºC (T90) are correlated.  As the quantity of product increases, venting time 

increases and T90 increases as well.  Venting of the film in packages containing 50 g of oyster 

meat and frozen vegetables occurred at 82 ± 5, 102 ± 6, and 120 ± 9 s in 1:1, 1:2, and 1:3 MV 

proportions, respectively.  Similarly, T90 in packages containing 50 g of oyster meat with 

different MV proportions increased with increasing amount of product.  The internal temperature 

in these packages reached 90ºC after 90 ± 5 (1:1), 110 ± 9 (1:2), and 155 ± 8 (1:3).  The same 

trend of increasing venting time and the time to reach an internal temperature of 90ºC was 

observed in packages containing 100 g of oyster meat.  Venting of the film in packages 

containing 100 g of oyster meat and frozen vegetables occurred at 127 ± 3, 145 ± 5, and 179 ± 7 

s in 1:1, 1:2, and 1:3 MV proportions, respectively.  The internal temperature of these packages 

reached 90ºC after 190 ± 4 (1:1), 258 ± 3 (1:2), and 336 ± 10 (1:3), of microwave cooking. 

 According to Geedipalli and others (2007), the amount of product being heated in a 

microwave oven is directly related to microwave heating time.  During microwave heating most 

of the microwave power is directly absorbed by the food being heated.  The rate of heating 

(heating power) is, therefore, fixed by the power of the oven.  The rate of temperature increase in 

the food is therefore inversely proportional to the mass of food multiplied by the specific heat 

capacity of the food.  This suggests that a double mass of food halves the rate of temperature 
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rise, and the food would take as twice as long to reach the same temperature (Vadivambal and 

others, 2010). 

 The amount of product and the internal temperature at venting are inversely proportional 

(Table 6.1).  The internal temperature at venting shows a decrease with increasing amount of 

product.  This information is very important for the future development of heating instructions 

and warnings to the consumer.  The venting of the package could be perceived as if the product 

is ready to eat. 

Table 6.1 Microwave cooking events and conditions at venting time 

Oyster 

meat (g) 

Mixed 

vegetables 

(g) 

Venting 

time (s) 

Internal 

temperature

(ºC) 

Pressure 

(psi) 

 

Headspace 

temperature 

(ºC) 

Time to 

reach 90ºC 

(s) 

50 g     50 (1:1) 

  100 (1:2) 

  150 (1:3) 

82 ± 5
E 

102 ± 6
D 

120 ± 9
C 

88 ± 4
A 

72 ± 6
B 

69 ± 6
B 

1.5 ± 0.5
A 

1.2 ± 0.4
A 

1.2 ± 0.2
A 

77 ± 8
A 

74 ± 3
A 

74 ± 3
A 

90 ± 5
E 

110 ± 9
D 

155 ± 8
C 

       

100 g 100 (1:1) 

200 (1:2) 

300 (1:3) 

127 ± 3
C 

145 ± 5
B 

179 ± 7
A 

51 ± 1
C 

40 ± 5
D 

8 ± 1
E 

1.2 ± 0.6
A 

0.7 ± 0.1
A 

0.6 ± 0.2
A 

73 ±4
A 

74 ±1
A 

47 ±4
B 

190 ± 4
F 

258 ± 3
B 

336 ± 10
A 

       
    ABCDE

Means with different exponents in each column indicate significant difference 

 According to the results (Table 6.1), the headspace temperature at time of venting shows 

no significant differences between OM:MV combinations, with the exception of 100:300.  

Venting occurred when the headspace reached and average of 74ºC in all OM:MV combinations 

(100:300 not included).  Similarly there was no significant difference observed between OM:MV 

and venting pressure.  This means that, independently of the OM:MV combination, venting 

occurred when the headspace temperature reached 74ºC  (average) at 1.1 psi (average) which 

suggested that venting time is dependent of the headspace and pressure conditions.  The 

deviation found in the 100:300 combination could be attributed to the reduced headspace in the 
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package due to the higher amount of product in the tray which could have affected the film 

properties and thus the development of the venting conditions.   

 The relationship found between the venting time and the temperature in the headspace 

and pressure at which it happens was unknown; and it complements the technical information for 

the film used in this study. 

6.3.1 Product weight loss during microwave cooking 

 Trays with 100 g of oyster meat reported lower weight loss than those having 50 g of 

oyster meat during the 300 s of microwave cooking (Figure 6.2).  The highest weight loss 

occurred in trays with 50:50 OM:MV (47 ± 4.4%).  Bubbling was observed during microwave 

cooking of 50:50, 50:100, and 100:100 samples.  This effect was observed approximately after 

160 s in 50:50, 220 s in 50:100, and after 200 s in 100:100.  Bubbling was accompanied by the 

production of foam, probably produced by presence of soluble protein from the oyster meat.  The 

production of foam was more abundant in 50:50 which overflowed the package and thus 

produced the highest weight loss. Bubbling and/or production of foam were not observed in the 

other combinations.  Excluding the bubbling of liquid in 50:50, 50:100, and 100:100, the cause 

of weight loss in the packages in the other combinations could not be concluded by the 

observation of these graphs.  However, from the customer point of view, high probability of 

rejection would occur for trays containing 50:50, 50:100, and 100:100.  The excessive weight 

loss and poor performance would be very obvious. 

6.3.2 Oyster meat weight loss during microwave cooking 

 The calculation of the weight loss of oyster meat provides more information about the 

overall weight loss observed in the product (OM + MV + tray/film).  The oyster meat lost 
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between 70% and 75% of its weight in all packages containing 50 g of oyster meat as main 

ingredient (Figure 6.3). 

 

Figure 6.2: Weight loss (%) of the product during microwave cooking 

The addition of vegetables did not contribute to retain moisture in the meat which was 

possibly lost during microwave cooking.  The same situation could be observed for trays 

containing 100 g of meat and 100 g of vegetables.  In contrast, trays containing 100 g of meat 

with 200 and 300 g of vegetables performed well during microwave cooking showing lower 

oyster meat weight loss.  The meat weight loss in the combination of 100 g of meat with 200 g of 

vegetables was 33.89 ± 5.5 % after 300 s of microwave cooking.  On the other hand, the oyster 

meat in the combination of 100 g of meat and 300 g of vegetables lost 25.71 ± 4.9% of its weight 

which was the lowest of all treatments.   

 The heating efficiency in a microwave oven is determined by the dielectric properties in 

addition to thermal properties of foods (Sipahioglu and others, 2003).  Dielectric properties are 

the most important physical properties associated with microwave heating since the dielectric 

behavior of foods affects their heating characteristics.  Specifically, the dielectric constant (εr), 
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describes the ability of a material to store energy when it is subjected to an electric field (Sosa-

Morales and others, 2010).  

 Products with higher dielectric constant heat faster by the effect of microwave energy.  

The dielectric constant of vegetables and fruits decreases as temperature increases.  Most of the 

water in vegetables and fruits exists as free water, and the dielectric constant of free water 

decreases with temperature (Mudgett, 1995).  In addition, the higher the moisture content, the 

higher the dielectric constant. 

 

Figure 6.3: Oyster meat weight loss (%) in the package during microwave cooking 

 The vegetables in MV had close dielectric values, which range between 40 to 70 

(Sipahioglu and others, 2003).  At 10ºC, the corresponding εr is 70, while at 90ºC, the εr is 40.  

The decrease in the dielectric constant with increasing temperature agrees with Mudgett (1995).  

Oyster meat has been reported to have εr values of 65 (10ºC) and 50 (50ºC) (Hu and others, 

2005).   

 According to the results, equal proportion of meat to vegetable had a disadvantage during 

microwave cooking.  The difference in the dielectric constant at equal proportions of OM:MV 

could explain the elevated weight loss in 50:50, and 100:100.  As microwave cooking 
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progressed, MV heated faster at the beginning due to its higher εr; this is advantageous for OM 

because MV produced the initial steam.  However, with increasing temperature MV’s εr 

decreases to a possible lower value than OM’s εr which caused OM to heat faster and possibly 

reaching temperatures that could cause greater water loss. 

 In OM;MV proportions other than 50:50 and 100:100, the driving force for heating was 

mostly governed by the higher amount of vegetables.  The higher the proportion, the more steam 

was produced by the vegetables which protected OM from greater moisture loss. 

6.3.3 Moisture content in oyster meat during microwave cooking 

 The moisture in oyster meat was measured in both 100:200 and 100:300 combinations 

(Figure 6.4) which were the combinations that were not rejected due to high weight losses during 

microwave cooking.  According to the results, the combination 100:300 showed steady moisture 

content during microwave cooking.  The initial average moisture content of 89.46 ± 0.67% 

decreased to 87.54 ± 1.2%, while samples from the combination 100:200 had a moisture content 

of 84.1 ± 1.17%.  

 At this stage of the product development process, a decision was made between these last 

two alternatives.  Although 100:300 obtained the best results in all tests performed, this 

combination required 336.3 ± 10 s to reach the safety temperature of 90ºC which is out of the 

range of the established 300 s as a maximum time for microwave cooking.  Consequently, 100 g 

of oyster meat and 200 g of vegetables was the optimum combination that produced acceptable 

results. 
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Figure 6.4: Oyster meat moisture (%) in the package during microwave cooking 

6.3.4 Effect of steam venting technology properties in the quality of oyster meat 

 The moisture in 100:200NF had a noticeable decrease during microwave cooking.  After 

300 s, the moisture was 53.7 ± 8.9% (Figure 6.5).  In addition, large variation in the results was 

observed between samples, reflected by the standard error bars.  This variation could be the 

effect of uneven heating.  Some meat pieces showed extreme dehydration, which was also 

observed in some vegetables located at the corners of the trays.  The moisture in 100:200F had 

very slight variation.  After 300 s of microwave cooking the measured moisture was 85.2 ± 

2.5%.  The 100:200F had very good appearance.  The vegetables looked as if they were fresh 

steamed and the oyster meat was plump and juicy. 

 In general, cooking of meat products by microwave heating increases cooking losses as 

compared with conventional cooking and results in a significant difference in the texture of the 

product (Gundavarapu and others, 1998).  Product toughening during microwave cooking has 

been related to loss of moisture (Ohlsson and others, 1982).  This suggest that 100:200F samples 

should be less tougher than 100:200NF due to lower moisture loss.  However, according to Bih 
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(2003), moisture escaping from product as a steam may be partially condensed on colder 

surfaces and thus may add sogginess. 

 

Figure 6.5: Comparison in oyster meat moisture content (%) in 100:200 trays with and without 

film 

6.3.5 Color of the oyster meat during microwave cooking 

 During microwave cooking of meats, color changes are attributed to protein denaturation 

(cooked color).  The proteins denature and recombine, or coagulate, and meat becomes opaque 

and whitish (Mizrahi, 2012).  In this study, the instrumental color analysis of fresh oyster meat 

presented the following values: L* (lightness) of 64.72 ± 2.18, a* (redness) of 1.02 ± 0.49 and b* 

(yellowness) of 10.82 ± 1.24.  The L* values in 100:200NF decreased during microwave 

cooking.   

 After 110 s of cooking, the cream color changed to yellow-brown which was verified by 

the in b* values (Table 6.2).  The color of the oyster meat in 100:200F had a whiter tone when 

compared to fresh oyster meat (visual).  The L* values for 100:200F showed an increase between 

50 s and 200s, however; the values decreased at the end of the cooking period.  The overall color 
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change ΔE*, which correlates to the color of fresh oyster meat was lower in 100:200F samples.  

This suggests that the color in 100:200F was closer to the color of fresh oyster meat. 

Table 6.2 Color during microwave cooking  

Time, S      

 L* a* b* ΔE* 

50 100:200 F 

100:200 NF 

 

58.29±1.44
A
 

54.16±3.42
A
 

3.24±1.62
A
 

3.93±1.82
A
 

15.99±2.49
A
 

10.36±1.54
B
 

6.98±4.32
A
 

8.66±4.43
A
 

80 100:200 F 

100:200 NF 

 

65.83±2.38
A
 

49.44±3.18
B
 

3.53±0.69
A
 

3.01±1.01
A
 

18.91±1.43
A
 

20.36±1.56
A
 

9.67±6.35
B
 

19.06±6.18
A
 

110 100:200 F 

100:200 NF 

 

60.67±2.29
A
 

52.19±4.16
B
 

2.44±0.0.44
A
 

2.56±1.23
A
 

15.51±2.19
B
 

22.16±2.16
A
 

7.09±2.62
B
 

17.71±3.58
A
 

170 100:200 F 

100:200 NF 

 

66.65±3.04
A
 

47.14±4.25
B
 

2.87±0.53
A
 

1.85±1.56
A
 

16.25±1.80
B
 

23.51±2.19
A
 

7.19±2.46
B
 

19.98±5.62
A
 

200 100:200 F 

100:200 NF 

66.17±2.81
A
 

41.18±4.26
B
 

2.85±0.28
A
 

0.73±1.42
A
 

17.44±1.53
A
 

12.42±2.66
B
 

8.11±7.61
B
 

24.04±6.18
A
 

      

230 100:200 F 

100:200 NF 

59.92±3.38
A
 

38.84±5.86
B
 

2.89±1.07
A
 

0.23±1.02
A
 

17.63±2.55
A
 

6.02±3.12
B
 

8.95±7.61
B
 

28.53±6.16
A
 

      

300 100:200 F 

100:200 NF 

57.53±3.60
A
 

31.22±7.29
B
 

3.08±0.92
A
 

-0.12±0.82
B
 

18.06±0.73
A
 

7.44±3.01
B
 

16.81±7.61
A
 

31.38±7.42
B
 

      
    AB

Means with different exponents in each column indicate significant difference 

6.3.6 Texture of oyster meat during microwave cooking 

 As mentioned above, textural changes during microwave cooking were directly related to 

moisture loss.  Compressive strength (CS) was tested in oyster meat as an index of 

tenderness/firmness.  The CS value for fresh oyster meat was measured as 18.1 ± 1.5 Mpa.  The 

results show that 100:200NF samples had higher CS values as compared to 100:200F after 80 s 

of microwave cooking.  There was an interaction between CS and microwave cooking time.  The 

CS of oyster meat increased with increasing cooking time much higher in 100:200NF than 

100:200F which can be correlated to the drastic moisture loss observed in Figure 6.4.  However, 
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organoleptic evaluation of 100:200NF oyster meat revealed that some oysters had a rubbery 

consistency which suggests that the meat was over cooked.  These oysters were usually found at 

the edges and corners of the trays.  The larger CS values in 100:200NF were mainly the result of 

moisture loss. 

Table 6.3 Texture of oyster meat (compressive strength, MPa) during microwave cooking  

Microwave cooking time, s 

 50 80 110 170 200 230 300 

100:200 

FILM 
22 ± 2

Acd
 24 ± 1

Bcd 
23 ± 3

Bc 
27 ± 2

Bc 
29 ± 2

Bc 
36 ± 3

Ab
 53 ± 3

Ba 

100:200 

NO 

FILM 

24 ± 2
Af

 32 ± 4
Ae 

37 ± 4
Ae 

56 ± 7
Ad 

88 ± 8
Ac 

107 ± 24
Ab

 168 ± 2
Aa 

    AB
Means with different exponents in each column indicate significant difference 

   
abcdef

Means with different exponents in each row indicates significant difference 

 In 100:200F, protein denaturation during microwave cooking probably affected CS 

values more than the effect of the moisture loss.  During visual inspection of 100:200F, no over 

cooked meat was found.  

6.4 Conclusions 

 The development of steam venting microwavable products having frozen oyster meat as 

the main ingredient was successfully achieved.  From the different combinations of oyster meat 

and mixed vegetables, product combination of 1:1 having either 50 g or 100 g of oyster meat 

resulted in high product weight losses during microwave cooking due to the weight loss of the 

oyster meat while reaching an internal temperature of 90ºC.  Although the combination of 100 g 

of oyster meat and 300 g of mixed vegetables obtained the best results during the first stages of 

the product development process, this combination required 336.3 ± 10 s to reach the safety 

temperature of 90ºC which is out of the range of the established 300 s as a maximum time for 
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microwave cooking.  The optimum combination resulted from 100 g of oyster meat and 200 g of 

mixed vegetables which had low meat weight loss, good moisture retention, and textural 

properties closer to that of fresh oyster meat at the targeted internal temperature of 90ºC.  The 

venting time for this combination occurred at 145 ± 5 s of microwave cooking and reached an 

internal temperature of 90ºC after 258 ± 3 s.  More importantly, the internal temperature of 90ºC 

is considered high enough to inactivate pathogens naturally occurring in oysters such as Vibrio 

vulnificus and Vibrio parahaemolyticus.   

 This study also provided important information regarding the properties of the film that 

can be added to the technical specifications.  The results showed that the film vented when the 

headspace temperature was 74ºC and the pressure reached 1.1 psi.  In addition, it was also 

established that an important parameter in the formulation of microwavable products with oyster 

meat as the main ingredient, is the water balance from the meat related to other ingredients.   
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CHAPTER 7 SUMMARY AND CONCLUSIONS 

 This study evaluated the feasibility of using steam venting technology in the development 

of a microwavable product having frozen oyster meat as the main ingredient.  As first objective, 

cryogenic and air blast freezing techniques were evaluated in the reduction of specific pathogens 

that are of concern in the consumption of oyster meat (Vibrio vulnificus and Vibrio 

parahaemolyticus).  From these techniques, cryogenic freezing was more effective in the 

reduction of oyster-related pathogenic bacteria to nondetectable levels.  Moreover, the faster rate 

of freezing in cryogenic freezing resulted in considerable less muscle damage in the oyster meat 

improving moisture, and decreasing weight loss during frozen storage, as well as reducing lipid 

oxidation during frozen storage.   

 A quick frozen product may lose its advantages if not stored at proper conditions.  In this 

regard, the evaluation of the effects of modified atmosphere (MA) during long periods of frozen 

storage in the quality of oyster meat was studied.  Oyster meat packed in 100% nitrogen resulted 

with lower lipid oxidation than oyster meat packed in air after 180 days of frozen storage.  In 

addition, the rich nitrogen environment provided protection against the effects of temperature 

fluctuation during frozen storage which was reflected by stability in moisture content in the 

oyster meat.   

 The study demonstrated that steam venting technology could be used to inactivate 

pathogenic bacteria in frozen oysters and oyster products cooked in the steam packages.  The 

combined effect of microwaves and steam generated conditions under which lethality of Vibrio 

vulnificus and Vibrio parahaemolyticus in oyster meat was assured, while maintaining important 

sensory properties in the meat.   

  



172 

 

VITA 

Luis Espinoza earned a B.S. degree in Chemical engineering from the Universidad 

Nacional Autónoma de Honduras in 1995.  He received a Master degree in Civil and 

Environmental Engineering from Louisiana State University in 2004.  He also received a second 

Master degree in chemical engineering in 2008 at the University of Louisiana-Lafayette.  He 

joined the Department of Food Science at Louisiana State University as a Ph.D. student under 

the direction of Dr. Subramaniam Sathivel in 2009.  In 2012, he received the prestigious Institute 

of Food Technologies (IFT) Thermal Processing Specialists Scholarship.  In 2001, Luis received 

a Fulbright Scholarship for pursuing graduate education in the USA.  Luis received the 2012 

Gamma Sigma Delta Outstanding Graduate Student Merit Honor Roll Award.  In 2011, he won 

first place for presenting the paper "Effect of cryogenic and air blast freezing on pathogenic 

bacteria load associated with oysters and the quality of oyster meat” at the 2011 IFT-Refrigerated 

and Frozen Foods division graduate student paper competition.  He was also awarded the 2011 

Eurofins Laboratories, Louisiana IFT Gulf Coast Section Scholarship.  In 2010, Luis received a 

certificate of merit in recognition of being a finalist for presenting a paper entitled “Effects of 

Energy Removal Rate during Freezing on the Quality of Catfish Fillets at the 2010 IFT- 

Refrigerated & Frozen Foods Division Graduate Student Paper Competition. 


	Development of safe and ready to eat frozen oyster products using microwave steam-venting technology
	Recommended Citation

	DEVELOPMENT OF SAFE AND READY TO EAT FROZEN OYSTER PRODUCTS USING MICROWAVE STEAM-VENTING TECHNOLOGY

