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ABSTRACT 

Despite advanced therapeutic strategies for post-myocardial infarction (MI) patients, 

many ultimately develop congestive heart failure (CHF), rendering the disease a major cause of 

death in the United States. MI is associated with an acute increase in sympathetic nervous system 

activity, becoming persistent in CHF patients. Increased pro-inflammatory cytokines (PICs) 

following MI are implicated in the pathogenesis of CHF. The increase in tumor necrosis factor 

(TNF), a primary PIC, correlates closely with heart disease severity. Moreover, central PIC 

production increases post-MI, and can affect the brain’s cardiovascular regulatory regions that 

control sympathoexcitation. Therefore, understanding how PICs modulate sympathoexcitation is 

important for development of new therapeutics. Recent studies underscore the importance of 

central NADPH oxidases in the pathogenesis of hypertension. However, the role of central 

NADPH oxidase-induced reactive oxygen species (ROS) production in the development of CHF 

remains limited. In this dissertation, the hypothesis that central PICs induce ROS production and 

modulate sympathoexcitatory neurons of the paraventricular nucleus (PVN) is explored through 

an array of selective animal models combined with novel technologies for sympathoexcitation 

and cardiovascular function assessment. The effect of the TNF blocker, pentoxyfylline, was 

investigated on the expression of the catalytic subunits of NADPH oxidase (Noxs) in the PVN 

neurons and on the sympathetic activity in CHF rats. Additionally, effects of TNF inhibition on 

central nitric oxide were explored, as this ROS restrains sympathoexcitation. More specifically, 

central TNF was inhibited to understand the interaction between superoxide and nitric oxide in 

the PVN neurons during CHF. TNF knock-out mice were also used to study the effect of TNF on 

volume overload associated with CHF. Finally, to understand the role of peripheral TNF on the 

PVN’s sympathoexcitatory neurons, and to exclude the effects of neurohormones in CHF, human 

recombinant TNF was injected 5-days systemically to achieve the levels observed following MI 
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in conjunction with ROS and angiotensin II type-1 receptor blockers. These studies provide new 

evidence that TNF induces oxidative stress in the PVN through an AT1R mediated mechanism in 

CHF, and offers new insight into the sympathoexcitatory mechanisms in the brain possibly 

involved in the pathogenesis of CHF. 
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CYTOKINES AND CARDIOVASCULAR DISEASE 

Cardiovascular disease has been the leading cause of mortality among Americans over 

the last few decades. Current epidemiological studies indicate that there were approximately 1.2 

million American adults who suffered from at least one type of cardiovascular disease in 2008 

and that 1 of every 2.8 deaths in the United States is from a cardiovascular event (Rosamond et 

al., 2008). Inflammation has become one of the main themes involved in the pathogenesis of 

cardiovascular diseases, including myocardial infarction, ischemia-reperfusion injury, 

myocarditis, atherosclerosis and congestive heart failure (Mehra et al., 2005). Following acute 

myocardial infarction, systemic response is associated with increased expression of 

inflammatory cytokines, such as tumor necrosis factor-α (TNF), interleukin-1β (IL-1β) and 

interleukin-6 (IL-6), both in the blood and myocardium (Torre-Amione et al., 1995). According 

to the ‘cytokine hypothesis of heart failure’, the progression of heart failure is, at least in part, a 

result of the direct toxic effects exerted by elevated cytokines (Seta et al., 1996). TNF, IL-1β and 

IL-6 are pro-inflammatory cytokines that damage myocytes and exert negative inotropic effects 

on the heart (Shan et al., 1997). IL-10, on the contrary, is an anti-inflammatory cytokine that 

protects cardiac function via inhibition of TNF and IL-6 production (Wang et al., 1995). The 

progression of heart failure, thus, is dependent upon the balance between the production of TNF 

and IL-10 following the initial insult. 

Tumor Necrosis Factor in Congestive Heart Failure. TNF, a multifunctional pro-

inflammatory cytokine originally identified as a factor associated with the necrosis of tumor 

tissue triggers other cytokine and chemokine production, induces expression of cell adhesion 

molecules, and causes cytotoxicity. This pleiotrophic cytokine exists either as a membrane bound 

pre-protein or, after being cleaved from its pre-protein by metallopreoteinases, as a mature 

soluble TNF (Gearing et al., 1994).  Both, membrane and soluble TNFs can form homotrimers 
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which are essential for activation of TNF receptors. TNF actions are initiated by binding to a low 

affinity 55 kD receptor, TNFR1 or a high affinity 75 kD receptor, TNFR2. These receptors, 

when stimulated by certain factors, are shed into the circulation and become soluble receptors. 

The soluble form of receptors act as a buffer by binding to the circulating TNF and preventing 

their toxic effects, but can release the TNF into circulation when exposed to stress inducing 

stimuli, exasperating the effects of TNF (Feldman et al., 2000). 

Both types of TNF receptors are identified in non-failing (Torre-Amione et al., 1995) and 

failing human myocardium (Torre-Amione et al., 1996). However, normal myocardium does not 

produce TNF, whereas stressed myocardium expresses significant amounts of TNF. Feldman’s 

laboratory developed a line of mice that harbored a transgene effecting cardiac-specific 

overexpression of TNF alpha. This mouse line was generated using the cardiac-specific alpha 

myosin heavy chain (alpha-MHC) promoter producing a phenotype with dilated cardiomyopathy 

accompanied by increased inflammation (Kubota et al., 1997). These findings were further 

confirmed by Bryant and colleagues (Bryant et al., 1998), who over-expressed TNF in hearts of 

transgenic mice, and determined that they expressed a phenotype characterized by systolic 

dysfunction, cardiac inflammation, ventricular dilatation, congested tissue, and increased 

mortality. Additionally, either a single bolus, or continuous infusion of TNF, can induce LV 

dysfunction and remodeling in various animal models (Bozkurt et al., 1998; Bradham et al., 

2002; Kimura et al., 2006). These studies suggest that overproduction of TNF by cardiac 

myocytes is sufficient to cause severe cardiac disease. When the stress-activated cytokines in the 

myocardium exceed
 
the limit which can be utilized by the local cellular receptors in an 

autocrine/paracrine capacity, they become blood borne and enter
 
the systemic circulation, 

causing some of the additional adverse effects
 
associated with cytokines. Levine et al., first 

recognized in 1990 that circulating levels of TNF were elevated in patients with end-stage heart 
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failure (Levine et al., 1990). Subsequent studies further suggested that there was a direct 

relationship between circulating TNF levels and functional heart failure classification (Torre-

Amione et al., 1996).  

In heart failure, the expression of cytokines parallels the expression of classical 

neurohormones (Ferrari et al., 1995). However, increased circulating cytokine levels were 

observed prior to that of neurohormones (El-Menyar, 2008), suggesting them as potential 

stimulators of the vicious cycle of congestive heart failure.  

SYMPATHOEXCITATION AND HEART FAILURE 

Unregulated neurohumoral excitation is the hallmark of congestive heart failure (Francis 

et al., 2001; Zucker et al., 2004; Negrao and Middlekauff, 2008). This increase in 

neurohormones is initially targeted to improve cardiac function, but persistent elevation results in 

a generalized increase in sympathoexcitation, enhanced renal sodium and water reabsorption, 

and decreased renal perfusion resulting in the activation of a number of peptides including those 

of the renin-angiotensin system (RAS) (McKinley et al., 2001).   

Autonomic Regulation of Sympathoexcitation in Heart Failure. Heart failure is unique 

among conditions activating the immune system, in the sense that the central effects of the 

circulating cytokines, acting to regulate the peripheral immune response, are superimposed on, or 

at least coincidental with, the central effects of the RAS in acting to preserve volume and 

pressure within a compromised cardiovascular system.  Changes in venous volumes of less than 

1% are signaled to the brain via the afferent venous volume receptors utilizing autonomic nerves 

and contribute to the pressure and volume adjustments through the neuroendocrine system 

(Gupta et al., 1966; Coote, 2005).  Similarly, the nucleus tractus solitarius (NTS) of the medulla 

oblongata is the integral site for the afferent vagal fibers and baroreceptor afferents. The volume 

signal originating in the NTS travels to the hypothalamus to influence the magnocellular 
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peptidergic neurohypophyseal neurons of the paraventricular nucleus (PVN), which play a key 

role in neuroendocrine control of fluid balance. In addition, the parvocellular neurons of PVN 

send axons to sympathetic outflow centers in the rostral ventrolateral medulla (RVLM) and 

intermediolateral cell column of the spinal cord, which maintains tonic sympathetic vasomotor 

outflow.  

Besides the systemic baroreceptors and chemoreceptors, the subfornical organ (SFO), 

organum vasculosum lamina terminalis (OVLT), and area postrema (AP) are unique blood-brain-

barrier-deficient regions, also known as circumventricular organs (CVOs), that are primary 

sensors for blood-borne neuropeptides such as cytokines (Ericsson et al., 1995) and AngII (Potts 

et al., 1999). Neural pathways originating from these sensory CVOs project into an extensive 

neural network that is responsible for mobilizing the various systems responsible for maintaining 

homeostasis, i.e. vasopressin release, autonomic responses, and ingestive behaviors (Wallace 

Lind et al., 1984; Ferguson and Kasting, 1988). SFO sends direct projections to the 

magnocellular neurosecretory cells of the SON and PVN and the parvocellular neurons of the 

PVN (Miselis, 1981; Jhamandas et al., 1989). The magnocellular neurons of the SON and PVN 

are sites for vasopressin and oxytocin synthesis and fibers from these two regions project to the 

neurohypophysis where the hormones are released into the circulation to exert their peripheral 

effects. The parvocellular neurons of the PVN send axons to the RVLM and IML regions of the 

brain that regulate sympathetic outflow and baroreflexes (Dampney, 1994). Thus, this evidence, 

demonstrating that cytokine and AngII-sensing nerve cell bodies project to magnocellular and 

parvocellular hypothalamic nuclei, neurohypophyseal tracts, the ventrolateral medulla and 

brainstem, led to the hypothesis that these neuropeptides in the central nervous system function 

as modulators in cardiovascular regulatory networks.  
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Central Pro-inflammatory Cytokines and RAS in Sympathoexcitation. Intravenous LPS, 

TNF (Ohashi and Saigusa, 1997) and IL-1 (Saindon et al., 2001) have been shown to increase 

sympathetic discharge.  It is interesting to note that in normal animals, acute and chronic 

injection of TNF increases renal sympathetic activity (RSNA) (Saigusa, 1990) and production of 

AngII (Bataillard et al., 1992). It has been well established that circulating levels of cytokines 

and neuropeptides, like AngII, are elevated in CHF. Already, we have reported that treatment of 

HF rats with a TNF binding agent, or transcription inhibitory factors, attenuates neuro-humoral 

excitation (Kang et al., 2008). These findings suggest a direct role for TNF in inducing 

sympathoexcitation. 

REACTIVE OXYGEN SPECIES AND HEART FAILURE 

Reactive oxygen species (ROS) encompass a variety of diverse chemical species that are 

considered as toxic by-products of cellular metabolic processes designed to reduce molecular 

oxygen. ROS includes free radicals such as superoxide (O2
•-
), nitric oxide (NO

•
), or hydroxyl 

radicals (HO•), as well as non free radicals such as H2O2, while the antioxidant systems includes 

host defense enzymes (catalase, superoxide dismutase, glutathione peroxidase, etc.), vitamins 

and other molecules (thioredoxin/thioredoxin reductase, glutathione/glutathione reductase, etc.) 

(Lambeth, 2004). Nitric oxide (NO•), and its oxidized form, peroxynitrite (ONOO-), result from 

a reaction between NO• with either O2
•-
 or HO•, also represent ROS, but are often referred to as 

reactive nitrogen species (RNS). At physiological concentrations, ROS have certain desirable 

effects. They act as second messengers in various cellular functions. Local ROS production also 

regulates enzymatic function, and plays a role in signal transduction (redox signaling). ROS were 

also shown to be essential for cell proliferation and growth, stimulate DNA synthesis and induce 

expression of protooncogenes such as c-fos, c-jun, and c-myc (Rao and Berk, 1992). But at high 
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concentrations, ROS are capable of inducing oxidation and damage of macromolecules, proteins, 

lipids, mitochondria and DNA, thereby leading to cell damage, apoptosis and necrosis.  

Multiple lines of evidence suggest that ROS contribute significantly to the hypertrophy 

and remodeling mechanisms in heart failure. ROS production is triggered in cases of repetitive 

ischemia-reperfusion, increased pro-inflammatory cytokine levels, auto-oxidation of 

catecholamines, and synthesis of catecholamines. Some important sources of ROS in left 

ventricular hypertrophy (LVH) and congestive heart failure (CHF) are xanthine oxidase, 

mitochondria, uncoupled nitric oxide synthases, NADPH oxidases and infiltrating inflammatory 

cells. Evidence from the past decade shows that ROS derived from NADPH oxidase are involved 

in redox signaling. Furthermore, increased NADPH oxidase(s) activity and expression were 

identified in the myocardium of patients with both ischemic and non-ischemic heart failure 

(Heymes et al., 2003; Maack et al., 2003; Nediani et al., 2007). 

NADPH Oxidase Enzyme Complex as a Source of Superoxide. The classical phagocytic 

NADPH oxidases, first identified in neutrophils, are involved in oxidative burst aiding in host 

defense against microbes and in phagocytosis (Roos et al., 2003; Lambeth, 2004). These multi-

subunit enzymes consist of the membrane-bound flavocytochrome comprising a catalytic Nox 

subunit and p
22phox

 subunit, and 4 cytosolic regulatory subunits, p
40phox

, p
47phox

, p
67phox

, and the 

small GTP-binding protein Rac. Electron transfer occurs from NADPH to molecular oxygen at 

the catalytic site, resulting in the formation of superoxide. In the last decade, several isoforms of 

functional NADPH oxidases were identified in various non-phagocytic cell types. Some of the 

agonists/stimuli related to myocardial remodeling and heart failure that activate NADPH 

oxidases are G-protein coupled receptor agonists including AngII and endothelin (Duerrschmidt 

et al., 2000; Li and Shah, 2003), cytokines such as TNF (Frey et al., 2002; Li et al., 2002), 
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growth factors, mechanical forces (Hwang et al., 2003) and hypoxia-reoxygenation (Kim et al., 

1998). 

There are 5 Nox isoforms (Nox1–5), expressed in a tissue-specific manner. Each NADPH 

oxidase isoform contains a catalytic Nox subunit (which facilitates electron transfer) and a 

smaller p22
phox

 subunit that associate to form a heterodimeric cytochrome. This association is 

important for the stabilization of the enzyme complex, as well as to bind to the other subunits. 

Some of the isoforms, such as Nox1 and Nox2, require additional protein subunits for activation 

of the enzyme. Nox2 (known previously as gp91
phox

) is the isoform that comprises the core of the 

classical phagocytic NADPH oxidase, but is now known to also be expressed in several other 

cell types, such as cardiomyocytes (Bendall et al., 2002) and fibroblasts (Pagano et al., 1997). 

Nox2 requires four other subunits for activation, including p47
phox

, p67
phox

, p40
phox

 and the small 

GTP-Rac. The activation of Nox1-containing oxidase is highly similar to that of Nox2, although 

it is believed to involve homologues of p67
phox

 and p47
phox

, known as NOXA1 and NOXO1, 

respectively (Lambeth, 2004). On the contrary, the activation of Nox4 is distinct in that it does 

not appear to require any of the conventional regulatory subunits (Ambasta et al., 2004; Martyn 

et al., 2006). The mechanisms responsible for regulating Nox4 activity remain poorly 

understood.  

Li et al. (2002) reported that the subunit expression of NADPH oxidase and its activity is 

increased in parallel with the activation of MAPKs. An increase in the expression of the subunits 

Nox2 and p22
phox

 was also observed after MI both in human (Krijnen et al., 2003) and animal 

myocardium (Fukui et al., 2001). Nox2 plays an important role in contractile dysfunction, while 

Nox4 is important in the development of LVH. A small GTP-binding Rac1, which is important 

in the activation of NADPH oxidase, is involved in ANG II-induced cardiomyocyte hypertrophy 

(Pracyk et al., 1998). Potential redox sensitive downstream targets include Ras, c-Src, MAPKs 
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(ERK1/2, p38MAPK, JNK), p90SRK, PI3K, Akt, AP-1, NFkB, hypoxia-inducible factor-1 (HIF-

1) and others (Cave et al., 2005).  

 

 

Figure 1. Non-phagocytic NADPH Oxidase may contain Nox1 or Nox4 as homologues for the 

catalytic subunit gp
91phox

/Nox2. Superoxide is produced intracellularly and may require the 

presence of all cytosolic subunits. 

Inflammation and NADPH Oxidases in the Central Nervous System. The 

phagocytic/microglial NADPH oxidase is known to be largely involved in the oxidative damage 

induced in Alzheimer’s disease. The oxidative damage in CNS is generally manifested by lipid 

peroxidation and formation of protein oxidation products that are toxic to neurons. In 

Alzheimer’s disease, when stimulated by inflammatory stimuli or fibrillar β-amyloid, the 

NADPH oxidase in the microglia is activated, initiating a series of intracellular signaling 

cascades responsible for release of ROS and RNS (Akiyama et al., 2000).  In addition, the 

astrocytes, cells that can release pro-inflammatory cytokines TNF and IL-β, and nitric oxide 

(NO), also produce NADPH oxidase-dependent ROS. Abramov and colleagues, using 

astrocyte/neuronal co-cultures examined that β-amyloid particles induce oxidative stress in 
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astrocytes resulting in neuronal cell death. Furthermore, recent studies have implicated neuronal 

NADPH
 
oxidase in causing neurotoxicity and neuronal cell death. For example, presence of 

Nox2 in cultures of cortical and sympathetic neurons has been reported and Nox4 expression is 

also found upregulated in the brain cortex following cerebral ischemia (Vallet et al., 2005). 

Recent reports also indicate the importance of gp
91phox

/Nox2 and Nox4 in the regulation of 

cerebral vascular tone (Chrissobolis and Faraci, 2008). 

Accumulating evidence show that schizophrenic patients suffer from diminished 

antioxidant defenses in the brain. Recently, the role of IL-6 cytokine has been identified in 

ketamine induced NADPH oxidase activation in the brain, leading to dysfunction of a subset of a 

GABAergic phenotype of fast-spiking parvalbumin-interneurons, thus causing the pro-psychotic 

effects of ketamine (Behrens et al., 2008). Although the role of cytokines in the pathophysiology 

of many inflammatory brain diseases has been well studied, current knowledge on cytokine 

activated forms of NADPH oxidases expressed in the cardiovascular regulatory centers in the 

brain in CHF remain limited. 

AngII Induced NADPH Oxidase Activation in the Central Nervous System. Recent studies 

from Griendling’s laboratory identified angiotensinII as a potential activator of NADPH oxidase 

in vascular smooth muscle cells (Lyle and Griendling, 2006; Lee and Griendling, 2008). 

Subsequently, they, along with others, showed that SOD mimetics dramatically lowered blood 

pressure in AngII, but not norepinephrine-induced, hypertension (Laursen et al., 1997; 

Schnackenberg et al., 1998). Studies from Davisson’s lab showed that intracerebroventricular 

injection of AngII modulated blood pressure and drinking behavior are mainly mediated through 

increased O2
•−

 produced in the SFO (Zimmerman et al., 2002). Notably, intracerebroventricular 

injection of adenoviral vectors that expressed Mn-SOD or Cu/Zn-SOD blocked these effects of 

AngII.  
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The AngII type-1 receptors (AT-1Rs), the major receptor subtype, is predominantly 

expressed in central regions that secrete vasopressin and control sympathoexcitation, including 

the VLM, NTS and PVN (Bunnemann et al., 1992; Johren et al., 1995).  In addition, AT-2 

receptors expressed in forebrain, brainstem and hypothalamus were also shown to be related to 

blood pressure regulation (Johren et al., 1997). Intracerebroventricular injection of AngII was 

shown to increase systemic blood pressure (Davisson et al., 1998; Davisson et al., 2000). 

Additionally, AngII-induced ROS in the RVLM are shown to modulate sympathetic nerve 

activity and cardiovascular function in CHF (Mayorov et al., 2004; Gao et al., 2005). AngII also 

increased the expression of gp
91phox

/Nox2 and p
47phox

 in the RVLM, suggesting that AngII actions 

are mediated by NADPH oxidase induced ROS. Blockade of AT-1Rs in the PVN (Han et al., 

2007) and RVLM (Mayorov et al., 2004) attenuated the generation of ROS, contributing to 

decreased sympathetic activity in CHF. 

Furthermore, Chan et al. showed that AngII-induced superoxide produced via NADPH 

oxidases increased the phosphorylation of p38
 
MAPK and/or ERK1/2 in the RVLM, but not 

JNK. These increases in the RVLM were attenuated by application of a flavin oxidase inhibitor, 

DPI, antisense oligonucleotides that target p
22phox

 and p
47phox

 mRNA, or tempol.  They also 

observed that DPI, tempol and a p38MAPK inhibitor attenuated the frequency of glutamate-

sensitive excitatory postsynaptic currents and the blood pressure increase induced by AngII 

(Chan et al., 2005).  

Additionally, several studies report a cross-talk between pro-inflammatory cytokines and 

the RAS in both humans and animals. These studies show that treatment with angiotensin II 

(AngII) resulted in elevation of TNF-α in isolated heart preparations (Frolkis et al., 2001), while 

pre-treatment with losartan, an AT-1R blocker, attenuated the TNF-α biosynthesis induced by 

AngII (Gurlek et al., 2001), suggesting that AT-1R expression is closely related to that of TNF-α 
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in the heart (Tsutamoto et al., 2000; Gurlek et al., 2001). These studies explain an apparent 

interaction between cytokines and AngII in the periphery. However, the cytokine-AngII 

interaction in the PVN of CHF animals is currently unexplored. 

Nitric Oxide in Sympathetic Regulation of Heart Failure. Functional studies suggest that 

apart from AngII, nitric oxide (NO) within the PVN and SON, as an atypical neurotransmitter, 

can elicit multiple actions and play a crucial role in the regulation of sympathetic tone. NO 

synthase (NOS) positive neurons are detected primarily in the PVN and SON regions. 

Electrophysiological studies indicated that administration of a NO donor into the PVN 

siginificantly reduced BP, HR, and RSNA (Horn et al., 1994; Zhang et al., 1997), while the 

converse has resulted with administration of a NO blocker (Zhang et al., 1997), suggesting the 

role of NOS positive neurons in the PVN. The message and the number of nNOS positive 

neurons were shown to be substantially decreased in CHF (Patel et al., 1996; Zhang and Patel, 

1998). On the contrary, overexpression of nNOS in the rostral ventrolateral medulla (RVLM) 

normalized the reduced baroreflexes in CHF, suggesting the role of central NO in baroreflex 

function (Wang et al., 2003). 

More recent evidence shows that ROS decrease NO bioavailability, which is an important 

factor in the pathology of many disease processes (Cai and Harrison, 2000). All cell types in the 

brain, in response to inflammation, produce significant amounts of NO via inducible nitric oxide 

synthase (iNOS) that acts synergistically with superoxide producing NADPH oxidase to kill 

neurons by formation of OONO-. Peroxynitrite can directly oxidize proteins, lipids and DNA 

and promote tyrosine nitration and nitrosylation of cysteine, resulting in enzyme and protein 

dysfunction, eventually leading to neuronal cell death. Formation of OONO- has been attributed 

in the pathogenesis of many CNS disorders. Moreover, non-cytotoxic concentrations of the 
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excitatory amino acid, glutamate has been shown to increase production of O2
•-
 and OONO- via 

induction of inflammatory mediators (Scott et al., 2007).  

STATEMENT OF THE PROBLEM AND SPECIFIC AIMS 

Increased circulating levels of cytokines lead to increased production of ROS and AngII, 

resulting in the progression of heart failure.  It has been demonstrated that the PVN and RVLM 

of the CNS play a key role in the regulation of sympathetic outflow and progression of 

cardiovascular disease. Peripheral cytokines can act on specialized brain regions known as 

circumventricular organs, which lack a blood-brain-barrier, altering central cardiovascular 

outputs including sympathoexcitation, release of vasopressin, and dampening of baroreflexes.  

In addition, cytokines produced in the PVN and RVLM of the brain may also alter 

cardiovascular and body fluid homeostasis. In order to better understand the central actions of 

cytokines in the development of sympathoexcitation and to identify novel, central therapeutic 

targets of the disease, it is essential to investigate the signaling mechanism(s) of cytokines in the 

central nervous system. 

Recent work in hypertension has identified ROS produced by NADPH oxidase as key 

signaling intermediates of AngII in the PVN and SON. Furthermore, decreased NO in these key 

central cardiovascular regulatory centers results in sympathoexcitation. However, the role of 

NADPH oxidase-derived ROS in cytokine signaling in neurons within the CNS, and the role of 

centrally produced ROS in cytokine-induced changes in sympathetic outflow and body fluid 

balance, has not been studied. Therefore, we tested the hypothesis that the O2
•-
-NO interaction 

via the activation of AT1Rs are key signaling molecules and mediate the cardiovascular actions 

of cytokines acting in the central nervous system. Furthermore, we hypothesize that 

dysregulation of cytokine/AngII/ROS signaling in the brain is involved in the pathogenesis of 

congestive heart failure. 
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In order to explore our hypothesis, we performed a series of in vivo experiments 

integrated with cardiovascular physiological, molecular and immunohistochemical techniques. 

Aim 1: Determine the role of TNF in mediating oxidative stress in the PVN and inducing 

sympathoexcitation in congestive heart failure. 

Aim 2: Investigate the effects TNF on nitric oxide in the PVN, and its effect on 

sympathoexcitation in heart failure. 

Aim 3: Examine the effects of TNF upon the superoxide-nitric oxide interaction and 

AT1R expression in the sympathoexcitatory neurons of the PVN, and upon volume overload in 

congestive heart failure. 

Aim 4: Determine the chronic systemic treatment effects of TNF in inducing oxidative 

and nitrosative stress in the heart and the PVN, and understand the mechanism by which 

increased TNF in the PVN contributes to increased oxidative stress and sympathoexcitation.  
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CHAPTER 2 

TNF-α BLOCKADE DECREASES OXIDATIVE STRESS IN THE 

PARAVENTRICULAR NUCLEUS AND ATTENUATES SYMPATHOEXCITATION IN 

HEART FAILURE RATS
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INTRODUCTION 

Congestive heart failure is characterized by a generalized state of neurohumoral 

excitation that contributes to progressive deterioration of cardiac function resulting in the 

premature death of patients.  In the past, most of the treatments were aimed at blocking this 

exaggerated neurohumoral excitation by using β-adrenergic receptor antagonists, angiotensin 

converting enzyme inhibitors, and angiotensin receptor blockers in heart failure (HF) patients.  

These treatments have considerably reduced mortality and morbidity, however the clinical course 

of CHF is still progressive, hence the need for innovative approaches to therapy. 

In addition to neurohormones, the activation of proinflammatory cytokines such as TNF-

α is known to play a role in the pathogenesis of cardiovascular disease.  These cytokines are 

increased with the severity of heart disease and are of prognostic significance.  Despite the 

abundant evidence that TNF-α contributes significantly to cardiac dysfunction in heart failure in 

animal models, the results of two large clinical trials using etanercept, a truncated, soluble TNF 

receptor antagonist (RENAISSANCE) and infliximab (RECOVER), a TNF-α blocking antibody, 

were largely negative (Mann et al., 2004). However, Pentoxyfylline (PTX), a phosphodiesterase 

inhibitor, which also blocks cytokine expression, has been found to be promising in small 

clinical trials (Sliwa et al., 2002). In addition to elevating intracellular cyclic AMP, PTX 

increases the production of prostacyclins and vasodilatory eicosanoids (Myers et al., 1994; 

Schermuly et al., 2001) and depresses the production of TNF-α (Strieter et al., 1988). 

The concept of targeting brain production of neurohormones is relatively new and 

understudied.  Recent evidence from our lab suggests that cytokines are not only increased in the 

circulation and LV tissues, but also in the hypothalamus of CHF rats (Francis et al., 2004). We 

also showed that cardiac sympathetic afferents contribute to hypothalamic production of 

cytokines and that the vagal efferents regulate the peripheral production of cytokines, thus 
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suggesting a nervous system link in the activation of cytokines in CHF (Francis et al., 2004). In 

the brain, the PVN of the hypothalamus is an important center regulating cardiovascular and 

fluid homeostasis. Electrophysiological studies show that stimulation of PVN results in increased 

sympathetic activity(Kannan et al., 1989). PVN neuronal activity is increased in HF rats. 

Injection of TNF-α into the PVN or rostral ventrolateral medulla (RVLM) increased sympathetic 

activity suggesting a direct role of TNF-α in sympathetic activity(Zhang et al., 2003). 

Nevertheless, the mechanisms by which cytokines contribute to the sympathoexcitation in heart 

failure are not known.  

Oxidative stress plays an important role in the progression of CHF. Both in vitro and in 

vivo studies have associated TNF-α as an important contributor to oxidative stress, either directly 

or indirectly, by decreasing coronary or systemic perfusion resulting in cardiac dysfunction. 

Furthermore, TNF-α modulates the activity and expression of NAD(P)H oxidases (Noxs), a 

potential source of reactive oxygen species (ROS) in cardiovascular disease. NAD(P)H oxidase 

is a multisubunit enzyme complex that consists of two membrane subunits, p22phox and Nox2, 

and four cytoplasmic subunits, p40phox, p47phox, p67phox and Rac1. The catalytic subunit of 

NAD(P)H oxidases is Nox2, and few isoforms of Nox2, such as Nox1 and Nox4, are found in 

cardiomyocytes and neurons. The role of TNF-α in eliciting NAD(P)H oxidase subunit 

expression in CHF is relatively unknown. 

Taken together, it is evident that TNF-α contributes significantly to oxidative stress and 

sympathoexcitation in the pathogenesis of CHF. To understand the mechanistic link between 

CHF induced production of cytokines, and neurohumoral excitation, we hypothesized that 

increased levels of TNF-α in CHF may modulates the expression of Nox2 or its isoforms in the 

PVN and contributes to the exaggerated sympathetic activity. In this study we used PTX to block 
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the production of cytokines both at the center and the periphery, as it is the only available drug 

known to cross the blood-brain barrier (BBB).  

METHODS 

Animals. Adult male Sprague-Dawley rats weighing 350–375
 
g were used for this study. 

 
They 

were housed in temperature (23 ± 2°C) and light-controlled
 
(lights on between 7 AM and 7 PM) 

animal quarters and were provided
 
with water and rat chow ad libitum. The experimental

 

procedures were approved by the Louisiana State University Institutional Animal Care and Use 

Committee.
  

Experiment Protocol. Rats underwent coronary artery ligation (CAL) to induce HF under 

ketamine + xylazine anesthesia (90 and 10 mg/kg
 
IP), or Sham operation (Sham), as described 

previously (Francis et al., 2001). Induction of HF was confirmed
 
by transthoracic 

echocardiography 24 hours after recovery from surgery and
 
the rats were assigned to different 

treatment groups. Thereafter, HF or SHAM rats
 
were chronically injected with PTX (30 mg/kg 

daily IP; in 10% ethanol), or vehicle (10% ethanol alone) for 5 weeks. A second echocardiogram 

was obtained at the end of
 
the treatment protocol and the rats were sacrificed under isoflurane 

anesthesia; plasma and other tissues were collected for further analysis. 

Echocardiographic Assessment of LV Function. A first echocardiography was performed 24h 

after coronary artery ligation followed by a second echo at the end of 5week study as described 

previously (Francis et al., 2004). In brief, transthoracic echocardiography was performed under 

ketamine anesthesia, using a Toshiba Aplio SSH770 (Toshiba Medical, Tustin, California) fitted 

with a PST 65A sector scanner (8 MHz probe) which generates two dimensional images at a 

frame rate ranging from 300-500 frames per second. LV end diastolic volume (LVEDV) and 

ejection fraction (EF) were computed using the area length method. The portion of the LV that 

displays akinesis was electronically planimetered and expressed as a percent of the total LV 
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silhouette to estimate the size of the ischemic zone (% IZ).   Only rats with large infarct (% IZ  

45%) were used for the study. LV fractional shortening (FS %) was calculated using the 

following equation FS % = [(LVDD-LVESD)/LVEDD] x 100. Tei index was determined from 

Doppler recordings of LV inflow and outflow as described previously (Dujardin et al., 1998). 

From mitral inflow, isovolumetric relaxation time and isovolumetric contraction time were 

measured. Ejection time was measured from LV outflow velocity curve recorded from long-axis 

view. The Tei index was calculated using the equation, Tei index = (isovolumetric relaxation 

time + isovolumetric contraction time)/ventricular ejection time. 

Detection of ROS in the Heart and Brain. ROS were detected using Dihydroethidium (DHE) 

staining. DHE is a fluorogenic probe, which in presence of ROS is converted to ethidium 

bromide that intercalates with nuclear DNA, resulting in a punctuate appearance. The rats 

received an intracardiac injection of DHE at a dose of 80 μg/kg body weight. Hearts and brains 

were harvested, placed into freezing mold with Tissue-Tek® OCT (Sakura Finetek, Torrance, 

CA), snap frozen with liquid nitrogen, sectioned on a cryostat and placed on slides. Cryosections 

(12 μm) were immediately viewed and imaged under epifluorescence with a Zeiss Axiovert 200 

microscope using an Ethidium Bromide (EtBr) compatible filter set (Chroma Filters #41006); 

images were captured with an Olympus Q Capture 5 camera and Q Capture Pro software.   

Extraction of PVN by Laser Capture Microscopy (LCM). LCM was conducted in a 

dehumidified room (humidity ≤35%), and was kept to less than 30 min per slide to reduce the 

loss in recovery of intact RNA. A 7.5 μm laser spot size was used to capture the PVN, at a power 

range of 65–80 mW and pulse duration of 550–750 μs. This combination of parameters allowed 

efficient retrieval of the entire PVN area and a consistent lifting efficiency of >80%. The number 

of laser ‘shots’ used for each sample was kept constant at 1400. These parameters secured a 

sufficient and near constant amount of input RNA for comparative real-time RT-PCR analyses 



28 

 

and protein for western blotting. All experiments were performed no less than five times with 

five different animals. 

Measurement of Circulating TNF-α. At the end of the 5-week study, one group of rats was 

sacrificed by decapitation with guillotine under deep anesthesia by isoflurane and approximately 

4 mls of trunk blood was collected in heparinized tubes. Plasma samples obtained by 

centrifugation of heparinized blood at 4ºC (Beckman-Coulter) at 2500 rpm for 15 min were used 

for estimation of circulating TNF-α and catecholamines. Circulating levels of TNF-α were 

quantified using commercially available rat TNF-α ELISA kit (Biosource, Camarillo, CA) as 

described previously (Tei et al., 1995; Francis et al., 2003). 

Estimation of Circulating Catecholamine Levels. Plasma norepinephrine (NE) and 

epinephrine (EPI) were measured using high performance liquid chromatography (HPLC) as 

described previously (Francis et al., 2001) with minor modifications in plasma sample 

preparation.  Plasma samples were prepared by adding activated alumina, Tris buffer, EDTA and 

internal standard DHBA, along with 0.5 ml of rat plasma.  The samples were centrifuged and 

supernatant separated and rinsed twice in ultra pure water and filtered through a Millipore filter 

(Ultrafree MC UFC30GV00, Millipore Corp). Samples were filtered and injected into an Eicom 

HTEC-500 system fitted with an HPLC-ECD. 

Renal Sympathetic Nerve Activity (RSNA). One set of rats were subjected to recording of 

RSNA. The left kidney was exposed by left retroperitoneal flank incision. The renal sympathetic
 

nerves were identified under a dissecting microscope, isolated free of the surrounding connective
 

tissue, and placed on a pair of platinum recording electrodes.
 
Once an optimal signal-to-noise 

ratio was achieved, the electrode
 
and the renal nerve were covered with a dentistry impression

 

material (Coltene President). The signal was amplified with a Grass P511 band-pass amplifier 

with
 
low-frequency cutoff set at 30 Hz and high-frequency

 
cutoff at 3 kHz. The amplified and 
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filtered signal was
 
channeled to an audio

 
amplifier-loudspeaker (Grass model AM 8 audio 

monitor) for auditory
 
evaluation, and to a rectifying voltage integrator for quantification

 
(Grass 

model 7P10). The integrated voltage signals were acquired by a commercially available data 

aqusition system
 
(Acknowledge for Windows; Biopack, Santa Barbara, CA). Minimum and 

maximum RSNA was detected using a intravenous bolus administration of phenylephrine (20 

g/kg) and sodium nitroprusside (SNP; 100g/kg), respectively. At the end of the experiment the 

background noise, defined as the signal recorded postmortem, was subtracted from actual RSNA 

recorded, and subsequently expressed as percent of maximum (in response to SNP).  

RNA Isolation and Real-time RT PCR. Total RNA was extracted from the LV and 

microdissected PVN using TRIzol reagent (Invitrogen), and reverse transcribed using oligo dT 

and reverse transcriptase.  Expression levels
 
of Nox1, Nox2, Nox4, TNF-α, and IL-1β mRNA

 

were determined using specific rat primers shown in table 1. GAPDH was used as housekeeping 

gene. Real-time RT–PCR (qRT–PCR) was performed in 384 well PCR plates using Bio-Rad 

PCR Master Mix (The iTaq
 
SYBR

TM
 Green Supermix with ROX) and the ABI Prism 7900 

sequence
 
detection system (Applied Biosystems). The PCR cycling

 
conditions were as follows: 

50°C for 2 min, 95°C for 10 min, followed by
 
40 cycles (15 s at 95°C, 1 min, at 60°C).   A 

dissociation step (15 s at 95°C, 15 s at 60°C and 15 s at 95°C) was added to check the melting 

temperature of specific PCR product.  

Table 2.1. Sequence of Primers Used in Real-time RT-PCR. 

Primer Sense Antisense Genebank ID 

TNF-α 3′-GTCGTAGCAAACCACCAAGC-5′ 5′-TGTGGGTGAGGAGCACATAG-3′ D00475 

IL-1β 3′-CTGTGACTCGTGGGATGATG-5′ 5′-AGACCTGACTTGGCAGAGGA-3′ NM_031512 

Nox 1 3′-CCCTGGAACAAGAGATGGAC-5′ 5′-AATTGGTCTCCCAAAGGAGGT-3′ NM_053683 

Nox 2 3′-CGGAATCCTCTCCTTCCT-5′ 5′-GCATTCACACACCACTCCAC-3′ AF298656 

Nox 4 3′-TTCTACATGCTGCTGCTGCT-5′ 5′-AAAACCCTCCAGGCAAAGAT-3′ AY027527 

                                        

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=220920
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?cmd=Retrieve&db=nucleotide&list_uids=13928691&dopt=GenBank&term=interleukin++IL-1+mrna+rattus++&qty=1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=16758499
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=16876539
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=13236841
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Western Blot Analysis of Nox Subunits. Protein was extracted from LV samples and laser 

captured PVN samples in ice-cold buffer (10 mM Tris·HCl pH 7.4, 1 mM EDTA, 1% NP-40, 

0.1% sodium deoxycholate,
 
and 0.1% SDS) containing a protease inhibitor cocktail (Roche). The 

protein content in the
 
supernatant was determined using a detergent compatible protein assay

 

(Bio-Rad). Protein samples (25µg) were resolved in a 10%
 
SDS-polyacrylamide gel along with a 

molecular weight marker and then
 
transferred to polyvinylidene

 
difluoride (PVDF) membrane. 

The membranes were blocked at RT for 1h in 1% casein in PBS-T. Blots were then incubated 

overnight at 4°C with the following primary antibodies: Nox1 (1:1000 dilution), and Nox2 

(1:1000 dilution) (Santa Cruz Biotechnology). GAPDH (1:1000 dilution) was used as internal 

control. Bound primary
 
antibodies were detected with a horseradish peroxidase–labeled

 

secondary antibody (1:20,000; 1 hour) and enhanced chemiluminescence
 
(AmerSham). The band 

intensities were quantified
 
using Kodak ID 3.6 imaging systems and normalized with GAPDH 

levels.
 
 

Localization of TNF-α and Nox Subunits by Immunohistochemistry. Brain and heart tissue 

were fixed in 4% paraformaldehyde and cut into 8μm thick-sections, then pretreated with 0.3% 

hydrogen peroxide and 0.1% sodium azide in PBS for 10 min to inhibit endogenous peroxidase 

activity. These sections were washed twice in PBS and incubated in blocking medium (1% BSA 

and 10% normal goat serum in PBS) for 10 min. The sections were then treated with respective 

primary antibodies Nox1 (1:100 dilution), Nox2 (1:100 dilution), Nox4 (1:100 dilution) and 

TNF-α (1:100 dilution) (Santa Cruz Biotechnology) and incubated overnight at 4C. The sections 

were again washed twice in PBS and incubated with secondary antibody, a peroxidase conjugated 

IgG antibody for 30 min. Bound antibodies were detected with streptavidin-peroxidase complex 

using 0.2 mg/ml 3,3'-diaminobenzidine tetrahydrochloride in PBS containing 0.003% hydrogen 

peroxide. Negative control sections were incubated with secondary antibody alone. 
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Statistical Analysis of Data. All results are expressed as mean ± SEM. For statistical  

analysis of the data, one-way ANOVA followed by Bonferroni's post hoc test, was performed  

 using GraphPad Prism version 4.00 for Windows, GraphPad Software, San Diego, California, 

 USA, to determine differences among groups. A p value of less than 0.05 was considered 

 statistically significant. 

RESULTS 

Effect of PTX Treatment on Survival of CHF Rats. A total of 101 rats were subjected to CAL 

or Sham surgery and subsequently assigned to three sets of animals, one set for 

immunohistochemistry, the second for mRNA, and the third for western blot analysis. The 

average survival within 24h of surgery was 80% in the rats undergoing CAL and 100% in the 

Sham group.  Over the five week study, 2 of the CHF rats and 2 of the CHF+PTX rats died prior 

to the designated time point, while none of the Sham animals died during the investigation.  

Thus, over the course of the five weeks, PTX treatment had no apparent influence on the survival 

(Table 2.1). 

Effect of PTX on ROS Production in HF. ROS production in the heart and brain was assessed 

by DHE fluorescence (Fig. 2.1). As indicated by the punctate staining of the nuclei, CHF- 

induced an increase in ROS production in the heart and brain tissues.  In contrast, PTX inhibited 

CHF-induced ROS production. 

Effect of PTX on LV Function. Table 2.1 shows LV function in rats as measured by 

echocardiography.  Compared to Sham animals, CHF rats had reduced LVEF and increased 

LVEDV and increased volume/mass ratio. There was no significant difference in the HR 

between the two CHF groups.  The average %IZ in both the CHF groups was >56% with a range 

of 50-58% before and after the treatments. At the end of the five weeks, Tei index was increased 
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by 59.38% and LVEF further declined by 21.21 % in the CHF group. In contrast, treatment with 

PTX in the CHF group prevented further decline in LVEF and decreased Tei index. 

 

 

 

 

 

 

 

Fig.2.1. Detection of Reactive Oxygen Species (ROS) by dihydroethidium (DHE) staining. 

Under identical imaging conditions, production of superoxide is elevated significantly in the 

heart (top) and brain (bottom) compared with Sham and pentoxifylline (PTX)-treated rats. 

Effect of PTX on Cytokine Production in HF. To determine the effect of PTX treatment on 

CHF induced production of TNF-α in the heart and PVN, we determined mRNA transcript levels 

by real-time RT-PCR in the LV tissue, and in the PVN isolated using laser capture micro 

dissection. Circulating levels of TNF-α were also measured by ELISA to estimate the anti-

cytokine effects of PTX. As shown in figure 2.2A, the elevated levels of circulating TNF-α 

found in CHF rats were restored to near normal levels with PTX-treatment. The LV of CHF rats 

showed increased levels of TNF-α (~3.7 fold increase) when compared with those of PTX-

treated rats (~1.7 fold increase), although the levels did not exactly reach the levels of Sham rats 

(Figs. 2.2B and 2.2C).  

To further ascertain the anti-cytokine effects of PTX in CHF rats, the protein levels of 

TNF-α were assessed in the LV and PVN by immunohistochemistry. Immunohistochemistry 

revealed that elevated levels of TNF-α in CHF were significantly attenuated by treatment with 
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PTX (Fig. 2.2D).  These results show that the TNF-α expression is significantly inhibited by 

PTX both in the LV and the PVN of CHF rats.  

Table 2.2. Echocardiographic Findings 

 Sham 
Sham + 

PTX 
MI 24 h CHF 5 wks 

CHF + PTX 5 

wks 

n 18 18 48 23 23 

HR 415 ± 12.0 410 ± 5.00 409 ± 12.0 418 ± 6.00 411 ± 10.0 

IVSD (mm) 1.52 ± 0.05 1.55 ± 0.04 1.22 ± 0.09 1.14 ± 0.08* 1.53 ± 0.10
#
 

IVSS (mm) 2.80 ± 0.09 2.72 ± 0.08 1.76 ± 0.12* 1.67 ± 0.13* 2.00 ± 0.16* 

LVDD (mm) 6.41 ± 0.18 6.33 ± 0.14 7.75 ± 0.40 10.91 ± 0.72* 8.99 ± 0.17*
,#
 

LVDS (mm) 3.03 ± 0.18 3.01 ± 0.06 5.92 ± 0.45* 8.12 ± 0.63* 7.80 ± 0.86* 

PWD (mm) 1.67 ± 0.05 1.74 ± 0.08 1.17 ± 0.04* 1.26 ± 0.12* 1.45 ± 0.06 

PWS (mm) 2.66 ± 0.10 2.70 ± 0.06 1.87 ± 0.12* 1.85 ± 0.15* 2.17 ± 0.07* 

%EF 83.7 ± 0.90 84.6 ± 1.20 34.0 ± 0.20* 26.0 ± 1.20* 33.2 ± 2.40*
,#
 

%FS 52.94 ± 1.96 51.79 ± 1.30 24.45 ± 2.34* 15.42 ± 1.26* 23.42 ± 2.41* 

%IZ 0 0 54.9 ± 1.80 58.9 ± 2.60 55.8 ± 3.10 

Tei 0.46 ± 0.02 0.44 ± 0.02 0.34 ± 0.03 0.51 ± 0.04 0.32 ± 0.03*
,#
 

LVEDV (µl) 548 ± 56 520.3 ± 48.5 865 ± 40.2* 1015 ± 93.6* 868 ± 103*
,#
 

Values are means ± SE; IVSD, Interventricular septal thickness at end-diastole; IVSS, 

Interventricular septal thickness at end-systole; LVDD, Left ventricular internal diameter at end-

diastole; LVDS, Left ventricular internal diameter at end-systole; PWD, Posterior wall thickness 

at end-diastole; PWS, Posterior wall thickness at end-systole; %FS, percent fractional shortening 

*P < 0.05, compared with Sham group 

#P < 0.05, compared with CHF 5 wks group 

Modulation of Expression of Nox1, Nox2 and Nox4 in HF. The mRNA expression of the 

NAD(P)H oxidase subunits Nox2 and its isoforms (Nox1 and Nox4), were assessed by real-time 

RT-PCR. CHF induced a ~6, 10 and 4 fold increase in Nox1, Nox2 and Nox4 in the LV (Figs. 

2.3A, B and C), respectively. A similar increase was also seen in the PVN of CHF rats (~28, 15 

and 6 fold increase, respectively) for Nox1, Nox2 and Nox4 compared to the Sham group (Figs. 

2.3D, E and F). PTX treatment in the CHF group significantly reduced the expression of these 

subunits in both the LV and PVN.  
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Fig.2.2. Tumor Necrosis Factor (TNF)-α Levels. A: PTX inhibited congestive heart failure 

(CHF)-induced production of circulating TNF-α (*P<0.05). B and C: CHFinduced mRNA 

expression of TNF- α inhibited by PTX in the left ventricle (LV; B) and the paraventricular 

nucleus (PVN; C). D: Immunohistochemistry photomicrographs of TNF-α in the LV and PVN. 

 

Protein expression for Nox1, Nox2 and Nox4 was measured in the LV and PVN by 

Western blot analyses. Unfortunately, we did not get a good signal on the Western blot with the 

commercially available Nox4 antibody. As shown in figures 2.4A and 2.5A, CHF rats treated 

with PTX exhibited a decrease in the protein expression of Nox1and Nox2 in the LV and PVN 

(Figs. 2.4B and 2.5B).  
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Immunohistochemistry also revealed an increased expression of Nox1, Nox2 and Nox4 in 

the LV of CHF rats as compared to Sham and those treated with PTX (Figs. 2.4C, 2.5C and 2.6, 

respectively). In the PVN, Nox1 was predominantly detected in the magnocellular neurons of 

CHF rats (Fig. 2.4C).  Nox2 and Nox4 expression was increased both in the magnocellular and 

parvocellular neurons of the PVN of CHF rats.  Treatment with PTX reversed all these changes 

in the PVN of CHF rats (Figs. 2.5C and 2.6). 

 

 

 

Fig.2.3. Effect of PTX 

Treatment on mRNA Levels of 

NAD(P)H Oxidase Subunits 

[Nox1 (A), Nox2 (B), and Nox4 

(C)] in the LV and PVN [Nox1 

(D), Nox2 (E), and Nox4 (F)] 

of Experimental Rats. Levels 

of Nox1, Nox2, and Nox4 were 

elevated in the LV and PVN of 

CHF rats compared with the 

Sham and PTX-treated 

rats. *P <0.05. 

 

 

 

Effect of Blocking Cytokines on Sympathetic Activity. Plasma epinephrine and 

norepinephrine levels were significantly increased (995.5±89 and 576±56 pg/ml, respectively; 

p<0.05) in the CHF rats. Following inhibition of cytokines with PTX, these catecholamine levels 

were decreased significantly (347±42 and 192.9±29 pg/ml, respectively; p<0.05). These levels 
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showed a significant difference when compared to those of Sham rats (225±30 and 193±40 

pg/ml, respectively; p<0.05) (Fig. 2.7A). 

Figure 2.7B shows a raw tracing from a vehicle treated CHF rat and PTX treated CHF 

rat.  Figure 2.7C shows RSNA as a percent of maximum response to the hypotension induced by 

intravenous injection of SNP. RSNA response to hypotension was maximum in CHF rats treated 

with vehicle when compared to that of PTX-treated CHF rats.  There was no difference in the 

RSNA activity in vehicle and PTX treated Sham rats in response to hypotension. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig.2.4. Effect of PTX Treatment on Protein Expression of Nox1 Subunit. Representative 

Western blot and densitometric analysis of Nox1 in the LV (A) and PVN (B). ***P<0.001 vs. 

Sham; 
###

P <0.001 vs. CHF. Immunohistochemical localization of Nox1 in the LV and PVN of 

CHF rats (C).  
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DISCUSSION 

The major findings of this study are 1) The expression of the NAD(P)H oxidase subunits, 

Nox1, Nox2 and Nox4 were elevated in the LV and the PVN of CHF rats, 2) administration of 

PTX, a blocker of proinflammatory cytokine production, normalized the enhanced NAD(P)H 

oxidase subunit and TNF-α expression, both in the PVN and the LV, and 3) PTX also decreased 

the circulating catecholamine levels and RSNA, indicators of sympathetic activity, in CHF rats. 

These findings suggest that the cytokines play a role in inducing oxidative stress in the PVN, 

thereby contributing to the increased sympathetic activity in CHF rats. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.5. Nox2 Protein Expression. Representative blot and densitometric analysis of LV (A) and 

PVN (B). ***P <0.001 vs. Sham; ###P< 0.001 vs. CHF. C: photomicrographs showing 

expression of Nox2 in the LV and PVN of CHF rats. PTX attenuated Nox2 subunit expression 

both in the LV and PVN of CHF rats. The sections shown are representative of results from 3 

different experiments. Magnification is X100 in top and X400 in bottom. 
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Pentoxifylline and LV Function. Cytokines are produced locally in the myocardium in 

response to stimuli such as hemodynamic pressure overload and myocardial ischemia or 

infarction (Torre-Amione et al., 1996; Baumgarten et al., 2002). Several clinical studies have 

shown that  PTX decreases proinflammatory cytokine production and improves LV function in 

CHF patients (Sliwa et al., 1998; Skudicky et al., 2001; Sliwa et al., 2002; Bahrmann et al., 

2004; Sliwa et al., 2004). In this study also, we show that treatment with PTX in CHF rats 

resulted in a significant improvement in LVEF and prevented an increase in the Tei index, an 

indicator of systolic dysfunction. The Tei index is a combination of contraction and relaxation 

time intervals constituting an overall index of LV function as assessed by Doppler 

echocardiography. The Tei index has been shown to have prognostic importance in dilated 

(Dujardin et al., 1998) and restrictive cardiomyopathies (Harjai et al., 2002), and also in acute 

myocardial infarction (Moller et al., 2001). The Tei index has a narrow range in normal subjects 

and seems to progressively increase with deterioration of LV function (Dujardin et al., 1998). 

TNF-α exerts a negative inotropic effect on the contractility of the ischemic heart in hamsters, 

dogs, and humans (Finkel et al., 1992) by interfering with calcium homeostasis, and thus 

interfering with contraction-excitation coupling (Meldrum et al., 1998). PTX has been 

demonstrated to exert protective effects on ischemic myocardium by reducing TNF-α production 

(Zhang et al., 2005). In the present study, we saw a deterioration of LV function in the vehicle 

treated CHF rats as indicated by decreased EF and increased Tei index.  We also observed an 

increase in LVDD and LVEDV, which indicate a decrease in LV contractile function. Treatment 

with PTX improved LV contractile function in our study that could be due to a combined 

reduction in cytokines and oxidative stress.  This is supported by our observation that PTX 

treatment decreased ROS production.  It has been shown that the surviving myocytes in the 

infarcted region are potential sources of cytokines, which may contribute to the progression of 
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CHF (Irwin et al., 1999).  This study further shows that PTX, by virtue of its anti-cytokine 

activity, exerts its role in  improving  the  systolic function in CHF, which is comparable to other 

studies (Irwin et al., 1999; Skudicky et al., 2001; Gurantz et al., 2005). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.6. Photomicrographs Showing Expression of Nox4 in the LV (top) and PVN (bottom). 

CHF increased the expression of Nox4 both in the LV and PVN of heart failure rats, whereas 

PTX treatment attenuated this increased expression. 

Cytokines and CNS in Congestive Heart Failure. When the stress-activated cytokines in the 

myocardium exceed the limit to be utilized by the local cellular receptors in autocrine/paracrine 

functions, they become blood-borne and enter the systemic circulation, causing some of the 

adverse effects associated with cytokines. One critical function of blood-borne cytokines is to 

stimulate self-production via a feed-forward mechanism.  These blood borne cytokines are large 

molecules and do not readily cross the BBB.  However, they can enter the brain through a 

saturable transport mechanism, or a passive transport mechanism via the circumventricular 

organ, where the BBB is either weak or absent.   Our previous studies showed that cardiac 



40 

 

 

sympathetic afferents are a potential mechanism for the induction of hypothalamic cytokines in 

CHF (Francis et al., 2004). Thus, the circulatory cytokines could induce inflammatory and 

sympathoexcitaory mediators in the brain that have been shown to be antagonized by a 

mineralocorticoid receptor blocker (Kang et al., 2006). The deleterious role of these stress-

activated cytokines in the progression of heart disease could be due to the direct toxic effects 

exerted by these cytokines on heart and circulation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.7. Sympathetic Activity. A: circulating norepinephrine (NE) and epinephrine (Epi) levels 

were significantly higher in CHF rats, whereas they were lower in those treated with PTX. 

*P<0.05 compared with Sham. B: and C: raw tracing showing renal sympathetic nerve activity 

(RSNA; B) and integrated RSNA (C) of CHF rats was higher in the vehicle-treated rats 

compared with the PTXtreated rats. *P<0.05 vs. Sham; 
#
P<0.05 vs. CHF. 
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The PVN of the hypothalamus is one of the five major regions in the brain controlling 

sympathetic outflow. It regulates sympathetic activity via its inputs from the nucleus tractus 

solitarius (NTS) (Swanson and Sawchenko, 1983) and efferent projections to the RVLM and 

intermediolateral column (IML) of the spinal cord (Pyner and Coote, 2000). The PVN is 

composed of two kinds of neurons (Swanson and Sawchenko, 1983); the larger magnocellular 

neurons projecting into the pituitary are responsible for humoral regulation of fluid balance, 

whereas the smaller parvocellular neurons projecting to other sites in the CNS are involved in 

mediating sympathetic activity (Patel, 2000).  

It has also been shown that many putative mediators, like prostaglandins, facilitate the 

transport of cytokines into the brain. These cytokines then stimulate the microglial cells in the 

brain to produce even more cytokines.  We have also shown that injection of prostaglandin-E2 

increased sympathetic activity in HF rats (Zhang et al., 2003). In this study, we show 

cardiosympathoexcitatory neurons of the PVN as yet another potential source of cytokines in 

CHF. Moreover, the enhanced sympathetic activity in HF rats was decreased in the present study 

concurrent with the administration of PTX as evidenced by attenuated circulating catecholamine 

levels and RSNA. To observe the effects of central administration of PTX on RSNA, we 

administered PTX (10µg/kg body wt.) chronically for 5 weeks using osmotic minipumps in a 

group of rats (n=8) through intracerebroventricular (ICV) cannulation in CHF rats. No 

significant difference in RSNA or other parameters was observed in the rats treated with PTX 

either peripherally or centrally (data not shown). This shows that intraperitonial administration of 

PTX exerts both central and peripheral effects. Though the antagonism of TNF-α was not 

successful in larger clinical trials (possibly due to the fact that the Etanercept could bind to only 

the circulating and not the membrane-bound tissue TNF-α) (Kelly and Smith, 1997),  a small 

clinical trial using PTX was successful in improving cardiac outcomes (Sliwa et al., 2002). Our 
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results in the present study strongly suggest that using PTX decreases the tissue-bound TNF-α in 

the PVN and LV. 

Oxidative Stress and CHF. Apart from cytokines, ROS have also been implicated in the 

pathogenesis of CHF. The NAD(P)H oxidases are one of the major sources of superoxide in the 

heart. This multisubunit enzyme complex consists of two membrane subunits, p22phox and 

Nox2, and four cytoplasmic subunits, p40phox, p47phox, p67phox and Rac1.  Nox2 is the 

catalytic subunit of NAD(P)H oxidase and it has other isoforms, namely Nox1 and Nox4, that 

substitute Nox2 in cardiomyocytes and neurons. 

NAD(P)H oxidases activated by Angiotensin-II, cytokines (eg.,TNF-α), endothelin-1 and 

mechanical forces are shown to play an important role in cardiovascular dysfunction (Griendling 

et al., 2000). Nox1 has been reported to be upregulated in TNF-α induced oxidative stress in 

coronary arteries of hyperhomocysteinemic rats (Ungvari et al., 2003), while Nox4 is 

upregulated in aortic smooth muscle cells treated with TNF-α (Moe et al., 2006). Nox2 is 

demonstrated to be elevated in human CHF (Heymes et al., 2003) and this was also confirmed in 

cardiomyocytes (Krijnen et al., 2003). In this study we show that Nox2 and its homologues, 

Nox1 and Nox4, are upregulated in the LV and PVN of CHF rats. These results are also 

positively correlated to the ROS production, as indicated by the DHE staining (Fig. 1). Inhibition 

of TNF-α production by PTX has reversed these changes, suggesting a role for cytokines in 

redox-sensitive signaling in CHF. 

PVN and supraoptic nucleus are most strongly implicated in the re-dox mechanisms in 

the post-MI neurodysregulation (Lindley et al., 2004).
 
In our study, we too show that there is 

increased ROS in the PVN, more specifically we show that ROS producing machinery is 

increased in the PVN of CHF rats.  Among the Nox’s shown, Nox1 is predominantly seen in the 

magnocellular neurons of the PVN. Thus, it is possible that Nox1 could play a role in regulating 
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neurohumoral mechanism contributing to CHF.  Interestingly, Nox4 expression is increased both 

in the magnocelluar and parvocellular neurons of the PVN.  Nox2 is also increased in the 

magnocellular and parvocellular neurons of PVN in CHF rats.  These finding suggests that 

expression of different Nox2 homologues in these cell bodies has a significant role in the 

pathogenesis of CHF and raises the possibility that Nox2 and Nox4 overexpression in the 

parvocellular neurons contribute significantly to neurohumoral excitation in CHF.  Further 

studies are needed to identify the role of these homologues in sympathoexcitation. 

Recent studies showed that microinjection of a NAD(P)H oxidase inhibitor into the PVN 

reduced the cardiac sympathetic afferent reflexes elevated by central ANG II or the epicardial 

application of bradykinins (Zhang et al., 2006). Coupled with
 
our findings that a cytokine 

blocker, PTX, inhibits CHF-induced Nox expression
 
in the PVN and LV, it suggests that oxidant 

signaling
 
via cytokines in the PVN may be involved in the reduction of catecholamine levels,

 
and 

RSNA in CHF. It is plausible that one might extrapolate that the effects of PTX observed in the 

PVN could be due to its other varied effects. However, from the precise anti-cytokine and anti-

oxidant effects of PTX observed in this study, it is convincing to conclude that decreased 

cytokines resulted in the reduction of NAD(P)H oxidase subunits in the PVN, and thus, 

sympathoexcitaion in CHF. 

In conclusion, this study clearly demonstrates that the CHF induced an increase in TNF-α 

in the PVN and in the LV contributes to the increased expression of NAD(P)H oxidase subunits, 

Nox1, Nox2 and Nox4. Treatment with PTX, an inhibitor of cytokine production, attenuated the 

mRNA and protein expression of these subunits and superoxide production, and also decreased 

circulating levels of catecholamines in CHF rats. Our results suggest that cytokine-induced 

oxidative stress in the central nervous system and in the periphery contribute to the 

pathophysiology of CHF.  Furthermore, these studies demonstrate that, for the first time, both 
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cytokines and NAD(P)H oxidase in the PVN contribute to increased plasma catecholamine and 

exaggerated neurohumoral excitation in CHF. 
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CHAPTER 3 

CYTOKINE BLOCKADE ATTENUATES SYMPATHOEXCITATION IN HEART 

FAILURE: CROSS-TALK BETWEEN nNOS, AT-1R AND CYTOKINES IN THE 

HYPOTHALAMIC PARAVENTRICULAR NUCLEUS* 
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INTRODUCTION 

Sympathetic hyperactivity is a striking feature of the syndrome of congestive heart failure 

(CHF). Initially after myocardial injury, there is increased sympathetic activity even before the 

onset of overt heart failure (Francis et al., 1990). When this sympathetic hyperactivity fails to 

restore the functioning of the injured myocardium, it results in generalized sympathoexcitation 

leading to increased vasoconstriction and ventricular remodelling.   

Regulation of sympathetic activity is a complex process that involves the activation of 

several neurohormones, including those of the renin angiotensin system (RAS). Blockade of the 

AT-1R in the paraventricular nucleus (PVN) restores sympathetic activity in CHF (Zhang et al., 

2002). In a previous study we showed that elevated TNF-α and IL-1β in the PVN of rats with 

acute myocardial infarction (MI) is mediated through cardiac sympathetic afferents (Francis et 

al., 2004). Furthermore, we demonstrated that elevated cytokines in the PVN induce production 

of reactive oxygen species (ROS) (Guggilam et al., 2007). ROS, produced in the neurons of the 

brain, in turn, are cytotoxic, further perpetuating sympathoexcitatory effects (Dawson et al., 

1996). Studies from this and other labs have shown that pentoxifylline (PTX), a cytokine 

synthesis blocker, reduced the central and peripheral production of cytokines and attenuated the 

production of ROS, renal sympathetic nerve activity (RSNA), as well as plasma norepinephrine 

levels, an indirect measure of sympathetic activity in CHF rats  (Francis et al., 2004; Kang et al., 

2006; Guggilam et al., 2007). Additionally, several studies report a cross-talk between pro-

inflammatory cytokines and the RAS in both humans and animals. These studies show that 

treatment with angiotensin II (AngII) resulted in elevation of TNF-α in isolated heart 

preparations (Frolkis et al., 2001), while pre-treatment with losartan, an AT-1R blocker, 

attenuated the TNF-α biosynthesis induced by AngII (Gurlek et al., 2001), suggesting that AT-

1R expression is closely related to that of TNF-α in the heart (Tsutamoto et al., 2000; Gurlek et 
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al., 2001). These studies explain an apparent interaction between cytokines and AngII in the 

periphery. However, the cytokine-AngII interaction in the PVN of CHF animals is currently 

unexplored. 

Studies by Patel et al. showed that rats with CHF had a decreased message for neuronal 

nitric oxide synthase (nNOS), and consequently, decreased nitric oxide (NO) in the PVN (Patel 

et al., 1996; Zhang et al., 1998), indicating loss of regulation of sympathetic tone. Furthermore, 

AngII-induced sympathetic hyperactivity disrupts the antagonistic mechanism of NO, while 

increasing superoxide production. This emphasizes the cross-talk between ROS and RAS 

mechanisms (Rajagopalan et al., 1996). However, it is unknown whether increased cytokines 

interact with AT-1Rs within the PVN to modulate nNOS and contribute to sympathetic 

hyperactivity in CHF rats. 

In the current study, we examined the hypothesis that increased cytokines in the PVN up-

regulate AT-1R expression and deplete nNOS, contributing to exaggerated sympathetic activity 

in CHF rats. We used PTX to block cytokine synthesis in CHF rats, as this phosphodiesterase 

inhibitor has been documented to cross the blood-brain barrier (BBB) rapidly and efficiently 

after systemic administration (Watkins et al., 2003), and inhibit production of TNF-α and IL-1β 

(Yoshikawa et al., 1999). 

METHODS 

Studies were performed in male Sprague-Dawley rats weighing 250–300 g. To study the 

effect of PTX on survival of CHF rats, the study was conducted in two phases. In phase I, rats 

were pre-treated with PTX (30 mg/kg IP), or its vehicle (10% ethanol, IP), 24 h prior to 

induction of CHF or Sham surgery, to study the effects on survival of pre-treatment with a 

cytokine synthesis blocker. In Phase II, rats were subjected to CHF or Sham surgery and 

subsequently treated with PTX (30 mg/kg IP, daily) or vehicle for a period of 5-weeks. No 
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significant difference was observed in the molecular and biochemical parameters analyzed 

between PTX pre-treated and post-treated CHF groups. Therefore, the results from both of these 

groups were combined and presented as CHF+PTX. 

All procedures on animals in this study were approved by
 
the Louisiana State University 

Institutional Animal
 
Care and Use Committee, and were in compliance with the Guide for the 

Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH 

Publication No. 85-23, revised 1996).  

CHF Model. Heart failure was induced under ketamine+xylazine (90 and 10 mg/kg IP) 

anaesthesia by coronary artery ligation. In brief, the trachea was intubated, and the rat was placed 

on an
 
Anesthesia Work Station (Hallowell EMC). A left thoracotomy was performed, the heart 

was exteriorized and the left anterior descending coronary
 
artery was ligated. Sham-operated rats 

underwent thoracotomy
 
and manipulation of the heart, except for the ligation of the coronary 

artery. All rats received analgesics (Buprex, 1 ml/kg SC) following the surgery.  

Assessment of LV Function 

Echocardiography: Echocardiography was performed 24h after coronary artery ligation or 

Sham surgery under ketamine (25 mg/kg IP) sedation. Infarct size was estimated by planimetric
 

measurement of the percentage of the LV that demonstrated systolic
 
akinesis. Rats with infarct 

size 50% were selected and thereafter treated with PTX or vehicle for 5-weeks. At the end of 

the 5-week study, a second echocardiographic assessment was performed. Percent ischaemic
 

zone (%IZ), LV ejection fraction (EF), LV end-diastolic volume
 
(LVEDV), and LV end-diastolic 

volume-to-mass ratio, all indexes
 
of severity of CHF, were determined from short- and long-axis 

images of the left ventricle
 
(LV). LV mass and volume were calculated using the

 
area length 

method. After completion of two-dimensional
 
imaging, pulse-wave Doppler interrogation of 

mitral inflow was
 
performed to determine heart rate (HR). Cardiac output

 
(CO) was calculated as 
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the product of HR and stroke volume (SV). From mitral inflow, isovolumetric relaxation time 

and isovolumetric
 
contraction time were measured. The Tei index was calculated as described 

previously (Guggilam et al., 2007).  

Morphological Parameters: At the end of the study, the rats were sacrificed under deep 

anaesthesia using a carbon dioxide chamber. Lung and left and right ventricular masses were 

recorded, and the respective indices were obtained by dividing with body mass. 

Survival. To calculate the survival in pre- and post-PTX treated groups, rats were monitored for 

mortality following induction of MI. 

Measurement of Circulating TNF-α. Circulating levels of TNF-α were quantified in the plasma 

samples using a commercially available rat TNF-α ELISA kit (Biosource, Camarillo, CA) as 

described previously (Tei et al., 1995; Francis et al., 2003). 

Estimation of Circulating Catecholamine Levels. Plasma norepinephrine (NE) and 

epinephrine (EPI) were measured in plasma samples using an Eicom HTEC-500 system fitted 

with an HPLC-ECD using HPLC-EC as described previously (Guggilam et al., 2007).   

Measurement of Renal Sympathetic Nerve Activity (RSNA). RSNA was measured in Sham 

and CHF rats anesthetized with pentobarbital, as described previously (Guggilam et al., 2007). 

Following equilibration, the maximum change (increase) in RSNA in response to an intravenous 

bolus injection of sodium nitroprusside (SNP; 100 μg/kg) was measured in each animal. The raw 

nerve activity, integrated nerve activity, mean arterial
 
pressure (MAP), and HR were recorded on 

a Biopac Acknowledge system. At the end of the experiment, the background noise, defined as 

the signal recorded post-mortem, was measured and subtracted from the actual RSNA recorded, 

and subsequently expressed as percent change in RSNA from baseline (in response to SNP). 

Extraction of PVN by Laser Capture Microscopy (LCM). PVN was captured from frozen 

brain sections by LCM, as described previously (Guggilam et al., 2007). All the parameters were 
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set constant to attain a relatively equal amount of input RNA for comparative real-time RT-PCR 

analyses and protein for western blotting.  

RNA Isolation and Real-time RT PCR. Total RNA was extracted from the tissues as described 

previously (Guggilam et al., 2007).  Real-time RT–PCR (qRT–PCR) was performed in 384-well 

PCR plates, using Bio-Rad PCR Master Mix (The iTaq
 
SYBR

TM
 Green Supermix with ROX) to 

study the expression levels
 
of TNF-α (X 66539), IL-1β (NM 031512), iNOS (NM 012611), 

nNOS (NM 052799), AT-1R (NM 031009), and 18S (NR 003278) as the housekeeping gene 

using the ABI Prism 7900 sequence
 
detection system (Applied Biosystems). 

NADPH Diaphorase Staining for nNOS. At the end of week 5, the rats for NADPH diaphorase 

staining were
 
anaesthetized and

 
perfused transcardially with heparinized saline, followed by 4% 

paraformaldehyde in 0.1 M sodium phosphate
 
buffer (PBS, pH 7.4). The brains were removed 

and post-fixed at 4°C
 
for 4 h in 4% paraformaldehyde solution and then placed in 20%

 
sucrose at 

4°C for 24h. Brains were blocked in the coronal plane, and 30-µm-thick
 
sections were cut with a 

cryostat. The sections were collected in 0.1 M PBS,
 
containing 0.3% Triton X-100, 0.1 mg/ml 

nitroblue tetrazolium and 1.0 mg/ml β-NADPH, and were then placed in an incubator
 
at 37°C for 

1 hr. After incubation, the sections were
 
rinsed in PBS (pH 7.4) and mounted on glass slides.  

NADPH-diaphorase positive neurons in the PVN of three adjacent sections at the same
 
coronal 

level were counted as described by Zheng et al (Zheng et al., 2005).  

Immunohistochemistry. Immunohistochemistry was performed in formalin fixed sections of the 

brain as described previously (Guggilam et al., 2007).  The primary antibodies against nNOS and 3-

nitrotyrosine (3-NT) (Santa Cruz, CA) (1:100) were incubated overnight at 4C. The sections were 

then washed twice in PBS, and incubated with a peroxidase conjugated 2° IgG antibody for 30 

minutes. Bound antibodies were detected with a streptavidin-peroxidase complex using 3, 3'-

diaminobenzidine tetrahydrochloride in PBS containing 0.003% hydrogen peroxide.  
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Western Blot Analysis. Frozen LV, PVN and hypothalamus proteins were prepared and 

fractionated in 7.5-10%
 
polyacrylamide gel and transferred

 
to an Immobilon membrane, as 

described previously (Guggilam et al., 2007). Due to limitation in the quantity of PVN, we used 

the hypothalamus for protein analysis of AT-1R. The membranes were blocked in 1% Casein in 

Tris-buffered solution containing 0.1% (v/v) Tween-20 for 1 h and then incubated overnight with 

antibodies (1:1000) against TNF-α, AT-1R, or nNOS (Santa Cruz, CA), followed by a 

peroxidase-conjugated
 
goat anti-mouse IgG antibody (1:10,000). The signal was detected using 

an enhanced
 
chemiluminescence immunoblotting detection system and the

 
net intensity was 

determined and expressed in relative arbitrary units by normalizing the protein intensity to that of 

anti-GAPDH antibody. 

Statistical Analysis of Data. All results are expressed as mean ± SEM. For statistical analysis of 

the data, student’s t test, or one-way ANOVA followed by Bonferroni's post hoc test were used. 

Survival among treated and untreated groups was analyzed using the Kaplan-Meier analysis of 

survival followed by the Log-rank test (GraphPad Prism version 4.00 for Windows, GraphPad 

Software, San Diego, CA, USA). Values of p<0.05 were considered significant. 

RESULTS 

Effect of PTX Treatment on the Survival of CHF Rats. As shown in table 3.1, pre-treatment 

with PTX significantly improved 24h survival after induction of CHF as compared to the post-

treatment group. None of the Sham animals died during the entire study protocol.  

Effect of Blocking Cytokines on Sympathetic Activity. Plasma norepinephrine (NE) and 

epinephrine (EPI) levels were significantly increased in the CHF rats as compared to those of 

Sham (Fig. 3.1A). Following PTX treatment, these catecholamine levels were decreased 

significantly. However, the NE and EPI levels in the Sham rats treated with PTX were not 

different from those of Sham operated rats.  
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Fig.3.1. Assessment of Sympathetic Activity. (A) Norepinephrine (NE) and epinephrine (EPI) 

levels in the plasma, samples were analysed using HPLC-ECD. ***p<0.001 (n=5 per group). (B) 

Percent change in RSNA from baseline in rats in response to SNP IV bolus. (C) Percent change 

in MAP from baseline in response to IV SNP bolus. Note that although IV SNP produced a 

similar decrease in MAP between vehicle-treated Sham and CHF rats (respective baseline 

values; 127.2 ±5.5 mmHg and 124.2 ± 4.1 mmHg), the magnitude increase in RSNA to IV SNP 

was blunted in the CHF rats when compared to Sham rats.  As compared to respective vehicle 

treated groups, IV SNP produced a greater decrease in MAP in PTX-Sham and PTX-CHF 

animals (respective baseline values; 112.0 ± 6.7 mmHg and 127.0 ± 4.1 mmHg, respectively). In 

CHF rats, PTX treatment also augmented the baroreflex control of RSNA in response to IV SNP. 

*p<0.05; **p<0.01 (n for Sham=9; Sham+PTX=5; CHF=6; CHF+PTX=11) 

 

As shown in figures 3.1B and 3.1C, in Sham rats, IV SNP produced a marked decrease in 

MAP and a concurrent increase in RSNA.  The hypotensive and sympathoexcitatory responses to 

IV SNP were further augmented in Sham rats treated with PTX.  In CHF rats, IV SNP also 

decreased MAP to a level similar to that observed in Sham rats; however, the magnitude increase 
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in RSNA evoked by SNP at this dose was significantly blunted. Of merit, IP PTX treatment in 

CHF rats not only enhanced the hypotensive response to IV SNP, but also augmented/restored 

the renal sympathoexcitatory response to this hypotensive stimulus.   

Effect of PTX Treatment on Cardiac Function and Morphology in HF. Compared to the 

Sham rats, CHF rats demonstrated increased LVEDV, LVEDP, LV mass, mass/volume ratio and 

Tei index, and a decreased SV, CO and EF. However, treatment with PTX attenuated only Tei 

index. The carotid artery was catheterized to measure MAP and pulse pressure (PP). There were 

no differences in the baseline HR, MAP and PP between Sham and CHF groups (Table 3.1).   

Compared with Sham rats, CHF rats had increased right ventricle mass index and lung 

mass index, which were decreased with PTX treatment, indicating less pulmonary vascular 

congestion and hypertrophy. No significant difference was observed in the left ventricular mass 

index.  

Effect of PTX Treatment on Cytokine Expression Levels. As shown in figure 3.2, plasma 

TNF- and IL-1β levels at 5 weeks remained at, or around, baseline levels during the entire 

study in the Sham groups.  In contrast, levels significantly elevated in the CHF group were 

attenuated by PTX treatment.  

At 5 weeks, the mRNA expression of TNF- (Fig. 3.3A) and IL-1β (Fig. 3.3B) was 

significantly increased both in the LV and PVN of CHF rats. PTX treatment significantly 

decreased these increased levels.  PTX treatment in the Sham group had no effect on the 

myocardial or PVN cytokine mRNA expression. Figure 3.3C illustrates that the elevated TNF- 

protein levels in the LV and PVN, as analyzed by Western blot, were significantly attenuated by 

PTX treatment. 
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Table 3.1: Echocardiographic and Cardiac Morphological Parameters 

 Sham Sham+PTX CHF CHF+PTX 

Survival     

PTX pre-treatment     

                             n 7 7 14 15 

            24h survival 7 (100%) 7 (100%) 10 (71.4%)* 14 (93.4%)*,# 

      5-week survival 7 (100%) 7 (100%) 9 (64.8%)* 12 (80%)*,# 

PTX post-treatment     

                             n 7 7 10 10 

            24h survival 7 (100%) 7 (100%) 7 (70%) 7 (70%) 

      5-week survival 7 (100%) 7 (100%) 7 (70%) 7 (70%) 

Echocardiography     

n 7 7 10 10 

HR (bpm) 415.2 ± 17.19 410.0 ± 4.88 407.0 ± 14.09 410.7 ± 16.42 

MAP (mmHg) 1096 1087 1046 1025 

PP (mmHg) 394 373 264* 272* 

LVEDP (mmHg) 4.190.08 4.520.35 24.381.23* 14.172.7*
,#
 

LVEDV (μl) 548.4 ± 88.56 517.3 ± 56.87 759.1 ± 24.3* 738.7 ± 52.49* 

Mass (mg) 763.4 ± 58.23 807.8 ± 33.77 939.3 ± 28.76* 872.0 ± 46.0 

Vol/Mass (μl/mg) 0.62 ± 0.09 0.52 ± 0.07 0.82 ± 0.03* 0.86 ± 0.08* 

SV (μl) 473.2 ± 77.15 320.6 ± 41.5 261.7 ± 15.59* 250.6 ± 31.2* 

CO (ml/min) 192.6 ± 22.0 157.3 ± 16.9 106.5 ± 7.7* 114.6 ± 16.3* 

EF (%) 0.84 ± 0.01 0.82 ± 0.01 0.35 ± 0.02* 0.36 ± 0.03* 

IZ (%) 0  0 54.42 ± 1.25* 56.26 ± 0.89* 

Tei index 0.39 ± 0.01 0.40 ± 0.01 0.65 ± 0.02* 0.49 ± 0.02*
,#
 

Morphology     

Bodyweight (g) 36015 35923 35512 35318 

LVM (mg) 0.87±0.03 0.88±0.05 1.000.08 0.950.07 

LVMI (mg/g) 2.42±0.09 2.45±0.21 2.81±0.17 2.73±0.19 

RVM (mg) 0.230.02 0.240.03 0.460.04* 0.350.04*
,#
 

RVMI (mg/g) 0.64±0.09 0.67±0.07 1.31±0.15* 0.99±0.11*
,#
 

LM (g) 1.490.064 1.520.09 4.530.31* 3.170.19*
,#
 

LMI (mg/g) 4.15±0.13 4.23±0.10 12.78±0.84* 8.99±0.39*
,#
 

Data are mean ± SEM. HR, heart rate; MAP, Mean arterial pressure; PP, Pulse pressure; LVEDV 

and LVEDP, left ventricular end-diastolic volume and pressure, respectively; SV, Stroke 

volume; CO, cardiac output; EF%, percent ejection fraction; IZ%, percent ischaemic zone; LVM 

and RVM, left and right ventricular mass, respectively; LVMI and RVMI, left and right 

ventricular mass index, respectively; LM, lung mass; LMI, lung mass index. Mass Index= mass 

of the organ/body weight.  *p<0.05 vs. Sham; 
#
p<0.05 vs. CHF rats 
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Fig.3.2. Plasma TNF-α and IL-1β levels from Sham and CHF rats Treated with Vehicle or 

PTX. Data are mean ± SEM. ***p<0.001. For each group n=6. 

 

 

 

 

 

Fig.3.3. Expression of 

Cytokines in the LV and the PVN. 

(A) mRNA expression of TNF-α in the 

LV and the PVN as estimated by real-

time RT-PCR. Values are mean ± 

SEM. (n=6 per group) (B) mRNA 

expression of IL-1β in the LV and the 

PVN. Values are mean ± SEM. (n=6 

per group) (C) Western blot analysis 

of anti-TNF-α antibody in the LV and 

PVN. Bar graphs are mean ± SEM 

values of band intensities representing 

four independent experiments. 

**p<0.01; ***p<0.001 
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Effect of PTX Treatment on AT-1R Expression. The AT-1R expression was increased 

significantly in the LV and PVN of CHF rats compared to that of Sham rats, while treatment 

with PTX restored these levels to normal (Fig. 3.4A). Similarly, the elevated protein levels of 

AT-1R in the LV and the hypothalamus were restored to normal in PTX treated CHF rats (Fig. 

3.4B). 

 

 

 

 

Fig.3.4. AT-1R Levels in the LV and 

the PVN. (A) AT-1R mRNA 

expression in the LV and the PVN. 

***p<0.001. (n=6 per group) (B) 

Western blot analysis of anti-AT-1R 

antibody in the LV and the 

hypothalamus. Bar graphs are 

mean ± SEM values of band intensities 

representing four independent 

experiments. *p<0.05; ***p<0.001 

 

 

 

Effect of PTX Treatment on NOS Levels. The mRNA expression of iNOS was significantly 

increased, while that of nNOS was significantly reduced in the PVN of CHF rats as compared to 

those of Sham rats. PTX normalized the expression of iNOS and nNOS within the PVN of CHF 

rats. No significant change in the nNOS expression was noticed in the PTX treated Sham rats 

(Fig. 3.5). 
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Figure 3.6A illustrates the PVN stained positive for NADPH-diaphorase activity.  The 

number of NOS-positive
 
cells in the PVN of CHF rats was significantly less

 
than that of the 

Sham group. In CHF rats, treatment with PTX restored the number of nNOS-positive
 
neurons in 

the PVN to a level similar to that observed in the Sham group (Fig. 3.6B). Comparably, the 

protein expression of nNOS, as determined by Western blot, showed a significant decrease in 

CHF rats compared to both Sham rats and PTX treated CHF rats. PTX treated Sham rats showed 

nNOS levels comparable to that of the vehicle treated Sham rats (Fig. 3.6C). 

Immunohistochemical staining for nNOS protein showed that compared to Sham rats and PTX 

treated CHF rats, a significant decrease in the number of neurons positively stained for nNOS 

was observed in CHF rats (Fig. 3.6D). 

Effect of Blockade of Cytokines on 3-nitrotyrosine (3-NT) Staining. Diffuse positive 

immunostaining for 3-NT, an indicator of peroxynitrite, was observed in the surviving 

cardiomyocytes of the peri-infarct region of the LV of CHF rats (Fig. 3.7A). The PVN of CHF 

rats also demonstrated an increased staining for 3-NT (Fig. 3.7B and 3.7C). Treatment with PTX 

significantly reversed these changes both in the LV and in the PVN of CHF rats.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.5. mRNA Expression of iNOS and nNOS in the PVN. Values are means ± SEM. (n=6 

per group). ***p<0.001 
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Fig.3.6. Protein Expression of nNOS in the PVN. (A) nNOS activity detected by NADPH 

diaphorase staining in the PVN of Sham, PTX treated and untreated CHF rats. (Magnification 

shown 200X). (B) Quantification of nNOS positive neurons from the NADPH diaphorase 

staining. Data are mean ± SEM. (n=10 per group). (C) Western blot analysis of anti-nNOS 

antibody in the PVN. Bar graphs are mean ± SEM values of band intensities representing four 

independent experiments. **p<0.01; ***p<0.001 (D) Immunostaining of the PVN for anti-nNOS 

antibody (Magnification in the upper panel=400X; lower panel=200X). 

DISCUSSION 

The novel findings of the present study are 1) Pre-treatment with a cytokine blocker 

improved survival and LV function in CHF rats; 2) CHF is associated with an increase in TNF-α 

and IL-β, and a depletion of nNOS, within the PVN. Our molecular and biochemical findings 
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indicate that blockade of cytokine production by treatment with PTX restored the nNOS levels in 

the PVN and reduced sympathoexcitation in CHF; 3) AT-1 receptor levels were significantly 

elevated in the PVN of CHF rats, but not in those treated with PTX, suggesting a cross-talk 

between cytokines and the RAS in the PVN of HF rats.  

Taken together, these results suggest that cytokines contribute to deleterious cardiac 

effects and decreases in NO bioavailability in the PVN, contributing to enhanced 

sympathoexcitation and poor survival rate, which is likely mediated via the AT-1R, ultimately 

suggesting a cross-talk between cytokines and RAS. 

Fig.3.7. Micrograph Showing Immunostaining for Anti-3-Nitrotyrosine in (A) the LV and 

(B, C) the PVN. Note the evident increase in anti-3-NT signalling in the PVN of vehicle treated 

CHF rats compared to those of Sham and PTX treated CHF rats. 

 

Increased sympathetic activity (Aronson et al., 2002) and inflammatory cytokines 

(Kowalewski et al., 2002) result in potentially serious ventricular arrhythmias, the main cause of 

mortality in CHF. Our results demonstrate that the increased LVEDP, lung weight and right 

ventricle mass in CHF were significantly lowered after PTX, indicating a selective effect on LV 
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diastolic function which is comparable with decreased LVEDV.  The increased Tei index in CHF 

was also significantly decreased by PTX. These results indicate an improved LV diastolic and 

systolic function. In addition, compared to the Sham group, CHF rats demonstrated a blunted 

sympathoexcitatory response to IV SNP. This finding is consistent with the notion that in CHF, 

there is an impaired baroreflex control of RSNA (Wang et al., 2003; Francis et al., 2004). Of 

interest, IP PTX treatment in CHF rats enhanced not only the hypotensive response to IV SNP, 

but also the magnitude of renal sympathoexcitation to this stimulus. These findings suggest that 

in CHF, PTX treatment improved the baroreflex mechanisms that influence central 

sympathoexcitatory outflow to the kidneys. Recent evidence also suggests that blocking the 

production of cytokines in CHF rats, decreases sympathetic activity (Guggilam et al., 2007; Yu 

et al., 2007). These adverse effects, including LV dysfunction and remodelling resulting in the 

progression of HF, might be due to a sustained increase in TNF-α (Mann, 2002; Anker et al., 

2004). Thus, treatment with PTX improved cytokine-induced diastolic and systolic dysfunction 

and reduced sympathetic hyperactivity resulting in improved LV function.  

Nevertheless, more complex mechanisms are associated with increased sympathetic 

activity in CHF than TNF-α alone. Recent studies underscore the importance of the interaction 

between cytokines and the RAS in cardiac remodelling and increased sympathetic activity in the 

progression of CHF. AngII and TNF-α can potentiate the effects of each other, resulting in a 

vicious cycle towards CHF(Tsutamoto et al., 2000; Frolkis et al., 2001; Gurlek et al., 2001). The 

brain RAS also plays an important role in sympathetic hyperactivity and cardiac remodelling in 

CHF (Zucker et al., 2004). In the present study, treatment with PTX significantly decreased the 

elevated expression of AT-1R in the heart and the PVN, improved LV function, and decreased 

plasma catecholamines alongside a decrease in cytokine levels. These results further reinforce 

the cross-talk between cytokines and AngII in the PVN in CHF. 
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Besides its interaction with cytokines, AngII also interacts with NO in the PVN of CHF 

animals. A reduction in NO in CHF may mediate an amplification of the AngII signal to further 

increase sympathetic activity (Liu et al., 1998). Positive nNOS neurons of the PVN are important 

in regulating central sympathetic outflow (Zhang et al., 2001) and increased sympathetic activity 

in CHF is attributed, at least in part, by decreased nNOS neurons in the PVN (Zhang et al., 

1998). The blunted baroreflex in CHF also causes central AngII to augment sympathetic activity 

in CHF (Barron et al., 1989). Apart from the intrinsic AngII of the brain, circulating AngII 

molecules can cross the blood brain barrier (BBB) at the circumventricular
 
organs (CVOs), 

which express AT-1Rs and project multiple neurons into the PVN (McKinley et al., 1998). Upon 

entry into the brain, these AngII molecules can potentiate the AT-1R as well as TNF-α 

expression. In addition, MI-activated cytokines within the myocardium that exceeds the limit for 

utilization by the local cellular receptors in autocrine/paracrine functions become blood-borne 

and enter the systemic circulation. These cytokines enter the brain through a saturable transport 

mechanism or a passive transport mechanism via the CVOs, further potentiating TNF-α and 

AngII, while attenuating nNOS expression. Interestingly, results from the current study also 

demonstrate that IP PTX treatment normalized the increased levels of AT-1R and decreased 

levels of nNOS in the PVN of CHF rats, while improving the baroreflex control of RSNA to a 

hypotensive stimulus. This clearly corroborates our hypothesis that a cross-talk exists between 

cytokines, AngII and NO within the PVN, contributing to sympathoexcitation in CHF rats. 

We also recently reported that increased oxidative stress in the PVN by cytokines is one 

possible reason for increased sympathetic activity in CHF rats (Guggilam et al., 2007). ROS-

induced cytotoxicity in the RVLM was shown to result in sympathoexcitation (Dawson et al., 

1996). AngII also exerts a positive feed-forward mechanism in the production of AngII and 

superoxide, which are further sympathoexcitatory (Rajagopalan et al., 1996). The decreased 
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nNOS expression, and the increased iNOS expression and formation of peroxynitrite in the PVN, 

explain NO dysregulation in CHF rats. In the present study, treatment of CHF rats with PTX 

decreased iNOS expression and prevented the formation of peroxynitrite, thereby reducing the 

exaggerated sympathetic activity in CHF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.8. Mode of Action of TNF-α in Modulating ROS Production in the PVN and 

Contributing to Sympathoexcitation. The MI-activated cytokines in the myocardium that 

become blood-borne, as well as the sympathetic afferent activation, potentiate the expression of 

TNF-α in the PVN that in turn up-regulates AT-1R expression in the PVN. TNF-α and AngII 

feed forward each others’ effects in the PVN, and together contribute to increased superoxide 

and decreased bioavailability of NO via peroxynitrite (ONOO·) formation, thus contributing to 

impaired baroreflex sensitivity and increased sympathoexcitation, ultimately resulting in LV 

dysfunction.  

In addition to the blood-borne cytokines crossing the BBB, cardiac sympathetic afferents 

also activate hypothalamic synthesis of cytokines in rats (Francis et al., 2004). Similarly, the 

elevated AT-1R expression in the heart and PVN suggests that both peripheral and central AngII 

could possibly play a role in depleting nNOS positive neurons in the PVN, possibly via 

sympathetic afferents. Restoration of nNOS levels by treatment with a cytokine blocker indicates 
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a cross-talk between cytokines, AngII and NO. This ultimately implies that cytokines might 

decrease NO either directly, or indirectly, via a pathway involving the AT-1R, the action of 

which results in sympathetic hyperactivity in CHF (Figure 3.8). 

There are a few limitations to this study. In addition to blocking cytokines PTX has a 

positive inotropic effect on the heart; it is not known at this point whether the effects exerted by 

PTX are by virtue of its phosphodiesterase inhibitory activity. Nevertheless, we chose this drug 

due to its effect as a general cytokine blocker. The concept we are introducing in this study is 

that there is an interaction between cytokines, RAS and nitric oxide in the sympathoexcitatory 

process observed in CHF.  Clearly, further studies are required to specifically delineate the 

mechanism by which the RAS and NO system interact within the neurons of the PVN in the 

presence or absence of cytokines. 

REFERENCES 

Anker, S. D. and S. von Haehling (2004). "Inflammatory mediators in chronic heart failure: an 

overview." Heart 90(4): 464-70. 

Aronson, D. and A. J. Burger (2002). "Concomitant beta-blocker therapy is associated with a 

lower occurrence of ventricular arrhythmias in patients with decompensated heart failure." J 

Card Fail 8(2): 79-85. 

Barron, K. W., A. J. Trapani, F. J. Gordon and M. J. Brody (1989). "Baroreceptor denervation 

profoundly enhances cardiovascular responses to central angiotensin II." Am J Physiol 257(1 Pt 

2): H314-23. 

Dawson, V. L. and T. M. Dawson (1996). "Nitric oxide neurotoxicity." J Chem Neuroanat 10(3-

4): 179-90. 

Francis, G. S., C. Benedict, D. E. Johnstone, P. C. Kirlin, J. Nicklas, C. S. Liang, S. H. Kubo, E. 

Rudin-Toretsky and S. Yusuf (1990). "Comparison of neuroendocrine activation in patients with 

left ventricular dysfunction with and without congestive heart failure. A substudy of the Studies 

of Left Ventricular Dysfunction (SOLVD)." Circulation 82(5): 1724-9. 



68 

 

Francis, J., T. Beltz, A. K. Johnson and R. B. Felder (2003). "Mineralocorticoids act centrally to 

regulate blood-borne tumor necrosis factor-alpha in normal rats." Am J Physiol Regul Integr 

Comp Physiol 285(6): R1402-9. 

Francis, J., Y. Chu, A. K. Johnson, R. M. Weiss and R. B. Felder (2004). "Acute myocardial 

infarction induces hypothalamic cytokine synthesis." Am J Physiol Heart Circ Physiol 286(6): 

H2264-71. 

Francis, J., S. G. Wei, R. M. Weiss and R. B. Felder (2004). "Brain angiotensin-converting 

enzyme activity and autonomic regulation in heart failure." Am J Physiol Heart Circ Physiol 

287(5): H2138-46. 

Frolkis, I., J. Gurevitch, Y. Yuhas, A. Iaina, Y. Wollman, T. Chernichovski, Y. Paz, M. Matsa, 

D. Pevni, A. Kramer, I. Shapira and R. Mohr (2001). "Interaction between paracrine tumor 

necrosis factor-alpha and paracrine angiotensin II during myocardial ischemia." J Am Coll 

Cardiol 37(1): 316-22. 

Guggilam, A., M. Haque, E. K. Kerut, E. McIlwain, P. Lucchesi, I. Seghal and J. Francis (2007). 

"TNF-{alpha} blockade decreases oxidative stress in the paraventricular nucleus and attenuates 

sympathoexcitation in heart failure rats." Am J Physiol Heart Circ Physiol 293(1): H599-609. 

Gurlek, A., M. Kilickap, I. Dincer, R. Dandachi, H. Tutkak and D. Oral (2001). "Effect of 

losartan on circulating TNFalpha levels and left ventricular systolic performance in patients with 

heart failure." J Cardiovasc Risk 8(5): 279-82. 

Kang, Y. M., Z. H. Zhang, R. F. Johnson, Y. Yu, T. Beltz, A. K. Johnson, R. M. Weiss and R. B. 

Felder (2006). "Novel effect of mineralocorticoid receptor antagonism to reduce 

proinflammatory cytokines and hypothalamic activation in rats with ischemia-induced heart 

failure." Circ Res 99(7): 758-66. 

Kowalewski, M., M. Urban, B. Mroczko and M. Szmitkowski (2002). "[Proinflammatory 

cytokines (IL-6, TNF-alpha) and cardiac troponin I (cTnI) in serum of young people with 

ventricular arrhythmias]." Pol Arch Med Wewn 108(1): 647-51. 

Liu, J. L., H. Murakami and I. H. Zucker (1998). "Angiotensin II-nitric oxide interaction on 

sympathetic outflow in conscious rabbits." Circ Res 82(4): 496-502. 

Mann, D. L. (2002). "Inflammatory mediators and the failing heart: past, present, and the 

foreseeable future." Circ Res 91(11): 988-98. 



69 

 

McKinley, M. J., A. M. Allen, P. Burns, L. M. Colvill and B. J. Oldfield (1998). "Interaction of 

circulating hormones with the brain: the roles of the subfornical organ and the organum 

vasculosum of the lamina terminalis." Clin Exp Pharmacol Physiol Suppl 25: S61-7. 

Patel, K. P., K. Zhang, I. H. Zucker and T. L. Krukoff (1996). "Decreased gene expression of 

neuronal nitric oxide synthase in hypothalamus and brainstem of rats in heart failure." Brain Res 

734(1-2): 109-15. 

Rajagopalan, S., S. Kurz, T. Munzel, M. Tarpey, B. A. Freeman, K. K. Griendling and D. G. 

Harrison (1996). "Angiotensin II-mediated hypertension in the rat increases vascular superoxide 

production via membrane NADH/NADPH oxidase activation. Contribution to alterations of 

vasomotor tone." J Clin Invest 97(8): 1916-23. 

Tei, C., L. H. Ling, D. O. Hodge, K. R. Bailey, J. K. Oh, R. J. Rodeheffer, A. J. Tajik and J. B. 

Seward (1995). "New index of combined systolic and diastolic myocardial performance: a 

simple and reproducible measure of cardiac function--a study in normals and dilated 

cardiomyopathy." J Cardiol 26(6): 357-66. 

Tsutamoto, T., A. Wada, K. Maeda, N. Mabuchi, M. Hayashi, T. Tsutsui, M. Ohnishi, M. 

Sawaki, M. Fujii, T. Matsumoto and M. Kinoshita (2000). "Angiotensin II type 1 receptor 

antagonist decreases plasma levels of tumor necrosis factor alpha, interleukin-6 and soluble 

adhesion molecules in patients with chronic heart failure." J Am Coll Cardiol 35(3): 714-21. 

Wang, Y., K. P. Patel, K. G. Cornish, K. M. Channon and I. H. Zucker (2003). "nNOS gene 

transfer to RVLM improves baroreflex function in rats with chronic heart failure." Am J Physiol 

Heart Circ Physiol 285(4): H1660-7. 

Watkins, L. R., E. D. Milligan and S. F. Maier (2003). "Glial proinflammatory cytokines mediate 

exaggerated pain states: implications for clinical pain." Adv Exp Med Biol 521: 1-21. 

Yoshikawa, M., A. Suzumura, T. Tamaru, T. Takayanagi and M. Sawada (1999). "Effects of 

phosphodiesterase inhibitors on cytokine production by microglia." Mult Scler 5(2): 126-33. 

Yu, Y., Z. H. Zhang, S. G. Wei, Y. Chu, R. M. Weiss, D. D. Heistad and R. B. Felder (2007). 

"Central gene transfer of interleukin-10 reduces hypothalamic inflammation and evidence of 

heart failure in rats after myocardial infarction." Circ Res 101(3): 304-12. 

Zhang, K., Y. F. Li and K. P. Patel (2001). "Blunted nitric oxide-mediated inhibition of renal 

nerve discharge within PVN of rats with heart failure." Am J Physiol Heart Circ Physiol 281(3): 

H995-1004. 



70 

 

Zhang, K. and K. P. Patel (1998). "Effect of nitric oxide within the paraventricular nucleus on 

renal sympathetic nerve discharge: role of GABA." Am J Physiol 275(3 Pt 2): R728-34. 

Zhang, K., I. H. Zucker and K. P. Patel (1998). "Altered number of diaphorase (NOS) positive 

neurons in the hypothalamus of rats with heart failure." Brain Res 786(1-2): 219-25. 

Zhang, Z. H., J. Francis, R. M. Weiss and R. B. Felder (2002). "The renin-angiotensin-

aldosterone system excites hypothalamic paraventricular nucleus neurons in heart failure." Am J 

Physiol Heart Circ Physiol 283(1): H423-33. 

Zheng, H., Y. F. Li, K. G. Cornish, I. H. Zucker and K. P. Patel (2005). "Exercise training 

improves endogenous nitric oxide mechanisms within the paraventricular nucleus in rats with 

heart failure." Am J Physiol Heart Circ Physiol 288(5): H2332-41. 

Zucker, I. H., H. D. Schultz, Y. F. Li, Y. Wang, W. Wang and K. P. Patel (2004). Prog Biophys 

Mol Biol 84(2-3): 217-32. 

 
 



71 

 

CHAPTER 4 

TNF CONTRIBUTES TO SYMPATHOEXCITATION IN HEART FAILURE THROUGH 

MODULATION OF SUPEROXIDE AND NITRIC OXIDE IN THE CENTRAL NERVOUS 

SYSTEM 
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INTRODUCTION 

Recent studies underscore the importance of central nervous system mechanisms in the 

regulation of blood pressure and cardiovascular homeostasis. It is well known that increased 

sympathoexcitation after myocardial infarction (MI) is the major cause of progression of this 

disease. Elevated tumor necrosis factor (TNF), along with other circulating hormones such as 

angiotensin II (AngII), in heart failure are typically transported into the brain via the 

circumventricular organs (CVOs), areas that lack a well formed blood brain barrier (BBB). Once 

through the BBB, AngII acts in the paraventricular nucleus (PVN) of the hypothalamus to 

regulate thirst, salt appetite and sympathetic nerve activity, primarily mediated through reactive 

oxygen species (ROS) production (Zimmerman et al., 2002; Zimmerman et al., 2004; Campese 

et al., 2005). Our previous study showed that in congestive heart failure (CHF), the increased 

TNF is related to increased NADPH oxidase subunit expression, the primary source of 

superoxide anions (O2
•−

), within the PVN (Guggilam et al., 2007). Moreover, blockade of O2
•−

 in 

the PVN completely abolished the increased sympathetic activity associated with CHF (Han et 

al., 2007). AngII-induced ROS in the rostral ventrolateral medulla (RVLM), an important 

autonomic regulatory center, also plays
 
a key role in the modulation of sympathetic nerve 

activity and cardiovascular function (Mayorov et al., 2004; Gao et al., 2005). Blockade of AngII 

type-1 receptors (AT1Rs) in the PVN (Han et al., 2007) and RVLM attenuated generation of 

ROS, contributing to decreased sympathetic activity in CHF. In addition, systemic AT1R 

blockade can decrease the production of TNF, thus limiting cardiac remodeling and dysfunction. 

However, the importance of central TNF in increased sympathoexcitation is not completely 

understood. 

Recently we reported that the decreased neuronal nitric oxide synthase (nNOS), a 

primary source of nitric oxide (NO) in the PVN, is attenuated in CHF animals treated with 
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pentoxifylline, a TNF inhibitor (Guggilam et al., 2008). It is well known that decreased NO 

production in CHF is associated with increased sympathoexcitation.  AngII plays a role in the 

modulation of NO, which acts, in part, in the production of ROS. Intracerebroventricular (ICV) 

administration of AngII can decrease nNOS, with its concurrent increase in ROS, in the PVN, 

ultimately leading to increased sympathetic activity (Campese et al., 2002; Campese et al., 

2005). However, after myocardial infarction (MI), elevation of TNF has been observed even 

before that of neurohormones, including AngII. Therefore, it is possible that the increased TNF 

observed following MI can trigger the production of other peptides that lead to neurohumoral 

excitation. To date, the importance of central TNF in increased sympathoexcitation is not 

completely understood. 

We, therefore, hypothesized that TNF induces O2
•− 

and modulates NO in the PVN and 

RVLM, possibly through AT1R activation, and contributes to sympathoexcitation in CHF. To 

explore our hypothesis, we used two approaches: 1) chronic central blockade of TNF with 

etanercept (ETN, a human recombinant TNF receptor fusion protein that competitively binds 

with TNF, thereby preventing the binding of TNF to its receptor) in heart failure mice; 2) whole 

body TNF gene knockout (TNF KO) mouse model to study the role played by TNF in body fluid 

homeostasis and sympathoexcitation in heart failure.  We also explored the interaction between 

O2
•−

 and NO in the PVN and RVLM and its contribution to sympathoexcitation in heart failure. 

The results of this study provide insight into the mechanisms that induce sympathoexcitation and 

disease progression in the failing heart.  

METHODS 

Mice. Male TNF KO (B6;129S-Tnf
tm1Gkl

/) and wild-type (WT) mice (Jackson Laboratory, ME) 

of 12-16 weeks of age with similar B6129SF2/J genetic background were used in the present 

study. Mice were housed in a light (12 h light-dark cycle) and temperature-controlled room and 
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standard chow and water were provided ad libitum. All surgical procedures in animals were 

performed at Louisiana State University School of Veterinary
 
Medicine and were carried out in 

accordance with the regulations
 
of the Louisiana State University Animal Care and Use 

Committee
 
and conforms with the Guide for the Care and Use of Laboratory Animals published 

by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996). 

Drugs. Etanercept (Enbrel) was purchased from Amgen and Wyeth Pharmaceuticals 

(Collegeville, PA). The drug was dissolved in artificial cerebrospinal fluid (aCSF) for ICV 

infusion. The dose used in this study was optimized by preliminary experiments conducted in our 

lab. 

Experimental Protocol and Surgical Procedures. To explore our hypothesis, the study was 

conducted in two protocols. In protocol I, we studied the effect of central blockade of cytokines 

on sympathoexcitation. In this protocol, WT mice had a cannula implanted into their right lateral 

cerebral ventricle, using the following stereotaxic coordinates: 0.3mm posterior to bregma, 

1.0mm lateral from midline and 2.8mm from the surface of the skull. After one week of 

recovery, they underwent either coronary artery ligation to induce MI or sham surgery. While 

still under anesthesia, an 28-day osmotic minipump (Alzet) was implanted subcutaneously on the 

back of the neck. The minipump was connected to the cannula in the lateral ventricle for 

continuous infusion (0.11μl/hr) of ETN (5µg/hr) or vehicle (VEH; aCSF) over a 4-week 

treatment interval.  

In protocol II, we used TNF KO mice, along with WT mice, to study the effect of TNF 

gene ablation on sodium and fluid retention and subsequent sympathoexcitation. In this phase, 

mice were acclimated in custom designed metabolic cages for one week. The mice then 

underwent coronary artery ligation and thereafter were maintained in metabolic cages with free 
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access to food, water and 1.8% NaCl solution. Water and salt intake were measured and 24 h-

urine collections were obtained for the duration of the study.   

At the end of the study, mice from both protocols were anesthetized and sacrificed by 

decapitation. Blood samples were collected for plasma norepinephrine (NE) measurement. 

Hypothalamus and brainstem samples were collected for gene expression studies. Mice that were 

used for ESR studies were injected with heparin (100U/25 g body wt.) and then perfused 

transcardially with ice-cold buffer, and these brain regions were collected and processed for ROS 

measurement. For immunofluorescence studies, anesthetized mice were perfused transcardially 

with ice-cold heparinized saline, followed by formalin. The tissues were stored in formalin until 

further processed. 

Surgical Procedures 

ICV Cannula: Mice were anesthetized with ketamine/xylazine (80 mg/kg ketamine+10 mg/kg 

xylazine, I/P). Following placement into the stereotaxic apparatus (Kopf instruments, CA), an 

incision was made through the skin, fascia was removed and the skull was exposed. After the 

skull was leveled in the rostral/caudal direction, a small, stainless steel screw was inserted into 

the skull and the cannula was inserted through a drilled hole at the position previously 

mentioned. Dental acrylic was used to fix the cannula in place and the skin was sutured over the 

hardened dental acrylic cap. Mice were treated with analgesics and allowed to recover for 1 week 

before induction of myocardial infarction.  

Experimental Myocardial Infarction (MI): Mice were premedicated with atropine sulfate 

(0.04 mg/kg SC) and anesthetized 5 min later with 2% v/v isoflurane/oxygen. Mice were placed 

on a heating pad in supine position and the trachea was intubated using a 24-guage intravenous 

catheter with a blunt end. Anesthesia was maintained by supplementing oxygen (1.8 L/min) and 

0.7%-2.0% isoflurane at a rate of 105/min and with a tidal volume of 2.1-2.5 ml using a rodent 



76 

 

ventilator (Harvard Apparatus, Inc., MA). A left lateral thorocotomy was performed by blunt 

incision in the fourth intercostal space, the left anterior descending (LAD) coronary artery was 

ligated using a prolene monofilament with tapered needle (Ethicon USP 7-0, Johnson & Johnson 

Co., NJ) 2-3 mm from the tip of the left auricle with the aid of a dissecting microscope (Zeiss) to 

induce MI. After coronary artery ligation (CAL), the chest was closed, and the mouse was 

allowed to recover. In sham-operated animals, the suture was placed under the LAD artery and 

removed without ligation of the vessel. Operated mice were monitored and studied for a period 

of 5-weeks following surgery. 

Osmotic Mini-pump Implantation: Immediately following MI, while still under anesthesia, a 

subcutaneous incision was made upon the back of the mouse, a pocket was made between the 

skin and muscle and washed with sterile saline.  Single 28-day osmotic mini-pumps with 

polyvinyl tubing (0.027”I.D. x 0.045”O.D.) attached to the pump injector were implanted in each 

mouse. The tubing was inserted under the skin and connected to the cannula in the lateral 

ventricle and fixed into place with dental acrylic cement. The skin incision was closed and the 

mice were treated with analgesics. 

Metabolic Studies. To study relative fluid and sodium balances among different treatment 

groups, we performed metabolic studies by placing animals in custom-designed individual 

metabolic cages with free access to food, water and 1.8% NaCl solution, in a temperature-

controlled environment and a 12/12 h light–dark cycle. Three days after acclimation, water and 

salt solution intake were measured and 24 h-urine collections were obtained for the duration of 

the study. Sodium intake (mEq) was calculated as salt solution intake multiplied with salt 

content/equivalent weight of sodium. All sodium chloride is expressed as sodium. Urine samples 

were collected under saturated oil in graduated conical tubes to avoid evaporative losses and 

their volumes recorded. All aliquots of urine were immediately frozen at -20°C until urinary 
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sodium (UNa) was determined by a Nova electrolyte 16+ analyzer (Nova Biomedical, Waltham, 

MA). Total 24 h UNa excretion was calculated by multiplying the measured concentration with 

the daily urine volume.  

Echocardiography. Cardiac function and development of CHF were analyzed by 

echocardiography 24 h and 4- weeks after induction of MI. Echocardiography was performed in 

mice anesthetized with 1.5%
 
isoflurane/oxygen with Toshiba Aplio SSH770

 
system (Toshiba 

Medical Systems, CA) fitted with a PLT 1202 linear transducer (12 or 14 MHz), which generates 

two-dimensional
 
images at frame rates ranging from 300 to 500 frames per second. Left 

ventricular (LV) wall thickness,
 
LV end-diastolic dimension (LVD), LV end-systolic dimension

 

(LVS), LV end-systolic posterior wall thickness (PWS), and LV end-diastolic posterior wall
 

thickness (PWD) were measured using two-dimensional short-axis imaging. LV percent 

fractional
 
shortening (%FS) was calculated as: %FS = (LVD – LVS)/LVD

 
x100%. The portion 

of the LV
 
that displays akinesis was electronically planimetered and expressed

 
as a percent of the 

total LV silhouette to estimate the size of the infarct. Only the mice that had an infarct size of 40-

50% were used for the study.  

Semi-quantitative Real-time RT-PCR. RNA was isolated from hypothalami and brainstems 

with TRIzol (Invitrogen, CA), treated with DNAase, and reverse transcribed using random 

primers reverse transcriptase. Gene transcripts were determined by quantitative real-time 

polymerase chain reaction using SYBR-Green master mix (Applied Biosystems, CA) on an 

Applied Biosystems 7900. Gene expression levels were calculated using the 2
-∆∆Ct

 method and 

normalized to 18S gene. The level of change was expressed as fold change versus respective 

sham values.  

Electron Spin Resonance (ESR) Studies. One of the most sensitive and definitive methods of 

measurement of superoxide production is electron spin resonance (ESR). In this study, we 
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utilized an established technique for superoxide anion (O2
•−

) and OONO
•
 measurement in the 

hypothalamus/brainstem using ESR and the spin trap. Two different spin probes were used for 

ESR studies.  1-hydroxy-3-methoxycarbonyl-2, 2, 5, 5-tetramethylpyrrolidine (CMH) was used 

to measure O2
•−

 levels, and 1-hydroxy-3-carboxypyrrolidine (CPH) was used to measure 

peroxynitrite (OONO
•
) levels. All ESR measurements were performed using an EMX ESR 

eScan BenchTop spectrometer and super-high quality factor (Q) microwave cavity (Bruker 

Company, Germany). 

Sample Preparation for ESR Studies: The dissected hypothalamus/brainstem from each 

animal was placed into a 24-well plate containing Kreb’s HEPES buffer (KHB) (20mM, pH 7.4) 

Tissue pieces were then washed twice with the same buffer to remove any trace contamination.  

Samples were then incubated at 37
o
C with specific spin probes for 30 minutes. 

Total Tissue O2
•−

 Production: Tissue pieces were incubated at 37
o
C with CMH (200 μM) for 

30 minutes.  Aliquots of the incubated probe media were then taken in 50 μl glass capillary tubes 

(Noxygen Science Transfer and Diagnostics, Elzach, Germany) for determination of total ROS 

production, under the following ESR settings: field sweep 50 G; microwave frequency 9.78 

GHz; microwave power 20 mW; modulation amplitude 2 G; conversion time 327 ms; time 

constant 655 ms; receiver gain 1 x 10
5
.  For superoxide production, samples were pre-incubated 

at 37
o
C with PEG-SOD (50 U/ml) for 30 minutes, then CMH (200uM) for an additional 30 

minutes.  Aliquots of the incubated probe media were taken in 50 μl glass capillary tubes for 

determination of total superoxide production.  Addition of PEG-SOD to CMH allowed 

competitive inhibition of the O2
•−

-CMH oxidation reaction by the quenching of O2
•− 

radicals.  

Since it is cell permeable, PEG-SOD can competitively inhibit the CMH-O2
•− 

interaction both 

intracellularly and extracellularly, thus allowing accurate measurement of total tissue O2
•-
 

production.  To determine actual total tissue superoxide production, the values obtained from 
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incubation with PEG-SOD and CMH were subtracted from the values obtained from incubation 

with CMH only.   

Tissue OONO
•
 Production: Tissue pieces were incubated at 37

o
C CPH (500 μM) and the 

reaction was initiated by adding cysteine (100uM) for 30 minutes. The reaction of OONO
•
 with 

the thiols of free cysteine is the first direct reaction of OONO
•
, and cysteine is the amino acid 

that reacts the fastest with peroxynitrite. Aliquots of the incubated probe media were then taken 

in 50 μl glass capillary tubes for determination of OONO
•
 production following the parameters 

previously outlined. 

Double-labeling Immunofluorescence. Fluorescent immunohistochemistry was performed as 

described previously (Khaleduzzaman et al., 2007) with minor modifications. The anesthetized 

mice were perfused transcardially with heparinized saline followed by 10% neutral buffered 

formalin. Brains were then collected and stored in 4% paraformaldehyde until analyzed. The 

brains were embedded in paraffin and 10 µm thick sections were cut on Superfrost plus slides 

(Fischer scientific) and incubated overnight at 56˚C. The slides were then deparaffinized in 

xylene, and rehydrated in descending grades of ethanol. Antigen retrieval was performed
 
by 

incubating slides in Reveal decloaker, pH 6.0, for 30 min at 120°C in a decloaking chamber
 

(Biocare Medical, Concord, CA) at 17 to 19 lb/in
2
 and cooled

 
to 90°C. Following equilibration to 

RT, slides were incubated
 
in 0.2% fish skin gelatin (FSG) (Sigma-Aldrich, St. Louis, MO)

 
in 

PBS for 10 min. This solution was also used to wash slides
 
between all incubations. Tissues were 

blocked in a humidity
 
chamber for a minimum of 30 min with blocking solution consisting

 
of 2% 

donkey serum (Sigma), 1% bovine serum albumin (BSA) (Sigma),
 
0.05% FSG, 0.1% Triton X-

100 (Sigma), and 0.05% Tween 20 (Bio-Rad)
 
in PBS. To identify neuronal cells, the slides were

 

incubated overnight at 4°C with a 1/100 dilution of mouse polyclonal anti-neuronal nuclear 

protein (NeuN) (Molecular Probes). Slides were then incubated with 1/300 dilution
 
of 
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biotinylated mouse anti-goat immunoglobulin G (IgG) or goat
 
anti-rabbit IgG (Molecular Probes) 

for 30 min at RT and then
 
incubated with 1/500 dilution of streptavidin conjugated to Alexa

 

Fluor 594 (Invitrogen). 

For dual staining, slides were incubated
 
in blocking solution for 30 min, incubated with 

rabbit polyclonal anti-nNOS or anti-3-nitrotyrosine (3-NT) or an antibody that recognizes c-Fos, 

FosB, Fra-1, or Fra-2 (c-Fos K25, Santa Cruz) in 0.2%
 
FSG in PBS at 4°C overnight. Slides were 

then incubated with 1/300 dilution
 
of biotinylated goat

 
anti-rabbit IgG (Molecular Probes) for 30 

min at RT and then
 
incubated with 1/500 dilution of streptavidin conjugated to Alexa Fluor 488 

for 30 min at RT. Slides were mounted with ProLong Gold antifade
 
reagent (Molecular Probes) 

and allowed to set for overnight at 4°C. The lack of nonspecific staining was confirmed
 
by using 

no primary antibody controls (data not shown). 

Data Analyses. All data illustrated are expressed as mean ± SEM. Statistical analyses were 

performed using GraphPad Prism version 5.00 for Windows, GraphPad Software, CA, 

www.graphpad.com. Log-rank (Mantel-Cox) test was used to compare the survival rates between 

groups. Student’s t-test was used to compare the fold changes in mRNA levels between WT+MI 

and TNF KO+MI groups. One-way ANOVA was used to observe the differences among groups, 

and two-way ANOVA or ANOVA with repeated measures was used comparison of metabolic 

parameters, followed by Bonferroni’s correction. Spearman’s correlation was used to measure 

the strength of the relationship between 24-h sodium excretion and calculated daily sodium 

intake. Survival rates were compared using log rank test. In all cases, p<0.05 was considered 

statistically significant. 

RESULTS 

Improved Survival in TNF KO Mice After MI. In protocol I, within the first one week, 33.3% 

mortality was observed in MI+VEH mice, while the mortality rate was reduced to 10% in mice 

http://www.graphpad.com/


81 

 

 

treated centrally with TNF blocker (MI+ETN mice) (Figure 4.1A). In protocol II, within 24 h 

after CAL surgery, <5% mortality was observed in both TNF KO and WT sham mice. At the end 

of the study, the mortality was 20.1% in WT+MI mice while the mortality was 6.7% TNF 

KO+MI mice. Most deaths occurred within the first 10 days and were a result of cardiac rupture 

as determined by findings at autopsy. However, compared to the Sham mice, significantly more 

WT+MI mice (p=0.0054) died during the study than the TNF KO+MI mice (p=0.15) (Figure 

4.1B). 

 

 

 

 

Figure 4.1 Kaplan–Meier Survival Curve in WT and TNF KO Mice at the End of the 

Study. (A) Survival rate was improved in CHF mice treated with ETN compared to those treated 

with VEH. (B) The WT mice with CHF exhibited a significant (**, p < 0.01) decrease in survival 

compared with sham-operated WT and TNF KO mice 4wks after MI. TNF KO mice 

demonstrated significantly (
#
, p<0.05) greater survival compared with WT 4wks after MI. 

 

Decreased Fluid and Sodium Retention in TNF KO Mice. Figure 4.2 shows the effect of TNF 

on fluid intake, urine output (UO), sodium intake and sodium excretion (UNa) in WT and KO 

mice. Water intake was significantly decreased, while salt or sodium intake was dramatically 

increased by day 2 and day 3 in WT+MI mice. After day 3, water intake remained constant in all 

the experimental groups, while sodium intake by hypertonic saline drinking remained elevated in 

WT+MI mice throughout the study, but not in the Sham or TNF KO+MI mice. UO and UNa were 
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significantly decreased in WT+MI mice. On the contrary, the UO and UNa tended to decrease till 

day 3 but later returned to be in line with those of sham-operated WT and TNF KO mice. In this 

study, dietary sodium intake was not considered as there was no significant difference in food 

intake among different groups. 

In sham-operated WT and TNF KO mice, the correlation coefficient between daily 

sodium intake and UNa excretion was 0.26 (p=0.24) and -0.24 (p=0.27), respectively. However, 

the corresponding correlation coefficients for WT and TNF KO heart failure mice were -0.82 

(p<0.0001) and 0.66 (p<0.01), respectively. 

Improved Cardiac Function in TNF KO Mice After MI. Echocardiography revealed an 

improvement in the %FS after 4wk ETN treatment, while no improvement in %FS was observed 

in VEH-treated heart failure mice (Table 4.1). CHF was associated with marked decrease in 

percent fractional shortening at 4-weeks in WT+MI mice compared to that of TNF KO+MI mice 

(Table 4.2). However, no significant difference was observed in LV dimensions over the 4wk 

period, which might be due to the large infarct size in these mice.  

Heart and lung weights were measured at the end of the 4-week study (Figure 4.3). 

Compared to the WT+Sham mice, the wet lung weight ratios, but not the heart weight ratios, 

were significantly higher in the WT+MI mice, suggesting development of pulmonary congestion. 

We did not observe any difference among their heart weight ratios possibly because of the infarct 

size. On the contrary, lung weights in TNF KO+MI mice were significantly lower than those in 

the WT +MI mice with similar infarct size, indicating decreased pulmonary congestion with TNF 

ablation.  
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Figure 4.2 Metabolic Parameters. Daily water intake (A), sodium intake (B), urine output (C), 

and sodium excretion (UNa) (D) of WT and TNF KO mice during the first 3wks after MI or sham 

surgery. Data are presented as means±SEM.  

 

Table 4.1: Echocardiographic Findings in Mice from Protocol I 

  Sham MI+VEH MI+ETN 

  24h 4wk 24h 4wk 24h 4wk 

IVSS 1.33±0.02 1.41±0.09 1.18±0.11 1.13±0.14 1.25±0.24 1.18±0.13 

IVSD 0.84±0.03 0.88±0.05 0.67±0.04 0.74±0.04 0.69±0.04 0.63±0.06 

LVS 3.04±0.16 3.21±0.28 2.61±0.42 3.21±0.30 2.95±0.19 3.27±0.92 

LVD 4.40±0.11 4.50±0.15 4.03±0.38 4.76±0.32 4.03±0.22 4.75±0.57 

PWS 1.33±0.07 1.05±0.06 1.28±0.07 1.21±0.10 1.20±0.06 1.16±0.10 

PWD 0.84±0.07 0.82±0.04 0.80±0.07 0.74±0.05 0.78±0.05 0.86±0.29 

%FS 32.76±2.83 33.58±0.94 36.37±2.18 27.13±1.20** 34.89±1.17 44.23±3.80* 

Data are mean±SEM. IVD and IVS, left ventricular internal diameter at end-systole and end-

diastole, respectively; LVD and LVS, left ventricular septal thickness at end-diastole and end-

systole, respectively; PWD and PWS, posterior wall thickness at end-diastole and end-systole, 

respectively; %FS, fractional shortening. (*, p<0.05; **, p<0.01) 
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Table 4.2: Echocardiographic Findings in Mice from Protocol II 

  WT TNF KO 

  MI 24h MI 5wk MI 24h MI 5wk 

IVSS 1.01±0.08 1.26±0.15 1.03±0.08 1.02±0.06 

IVSD 0.69±0.02 0.78±0.07 0.61±0.03 0.69±0.04 

LVS 3.17±0.04 2.99±0.18 3.11±0.26 2.95±0.18 

LVD 4.21±0.07 4.41±0.08 4.16±0.23 3.96±0.20 

PWS 1.04±0.07 1.21±0.08 1.05±0.06 1.08±0.05 

PWD 0.68±0.05 0.83±0.08 0.66±0.04 0.70±0.03 

%FS 34.60±1.46 25.23±0.79* 25.89±2.48 25.59±1.92 

Data are mean±SEM. IVD and IVS, left ventricular internal diameter at end-systole and end-

diastole, respectively; LVD and LVS, left ventricular septal thickness at end-diastole and end-

systole, respectively; PWD and PWS, posterior wall thickness at end-diastole and end-systole, 

respectively; %FS, fractional shortening. (*, p<0.05; **, p<0.01) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 (A) Heart weight/body weight ratio of WT, ETN-treated and TNF KO mice 4wks 

after sham or CAL. (B) Lung weight/body weight ratio of WT, ETN-treated and TNF KO mice 

4wks after sham or CAL. WT+CHF mice exhibited significantly greater fluid accumulation in 

the lungs as compared with TNF KO+CHF.  

(*, p<0.05; **, p<0.01) 
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Altered Cytokine Expression in the Hypothalamus and Brain Stem in CHF. The increases in 

transcript levels of TNF, IL-1β and IL-6 were significantly higher in the hypothalamus and 

brainstem of MI+VEH compared to MI+ETN mice indicating that blocking TNF centrally 

results in the decreased production of other pro-inflammatory cytokines in these cardiovascular 

regulatory centers. Compared to the TNF KO+MI mice, these levels were higher in WT+MI 

mice. On the contrary, WT+MI mice demonstrated a decrease in IL-10, an anti-inflammatory 

cytokine, and this was restored in MI+ETN and TNF KO+MI mice (Table 4.3). 

Altered Expression of O2
•− 

and NO Sources in the Hypothalamus and Brain Stem in CHF. 

The expression of Nox2 and Nox4, homologues of the major catalytic subunit of NADPH 

oxidase, were up-regulated both in the hypothalamus and brainstem regions of MI+VEH 

compared to the ETN-treated mice. These levels were also higher in WT+MI mice compared to 

the TNF KO+MI mice (Table 4.3). These findings are consistent with the O2
•−

 production 

observed in the PVN and VLM regions (Figure 4.4). 

The expression of nNOS was decreased, while that of inducible NOS (iNOS) was 

increased in the hypothalamus and brainstem of MI+VEH mice as well as WT+MI mice 

compared to that of ETN-treated or sham-operated/TNF KO+MI mice, respectively (Table 4.3).  

Immunofluorescence studies demonstrated a significant decrease in the number of nNOS-

positive neurons in the VLM of WT+MI mice as compared to both of the sham-operated groups. 

Neurons were identified by co-staining with the neuronal marker NeuN. In the VLM of TNF 

KO+MI mice, the number of nNOS-positive neurons was not different from that of TNF+Sham 

mice (Figure 4.5). We observed a similar pattern of nNOS expression in the PVN (Data not 

shown). 
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Table 4.3. Gene Expression of Cytokines, Nitric Oxide Synthases, Nox Homologues, and AngII Receptors in the Hypothalamus 

and Brainstem of WT and TNF KO Mice at 4wks following MI. 

Category Transcript Hypothalamus Brainstem 

  MI+VEH MI+ETN TNF KO+MI MI+VEH MI+ETN 
TNF 

KO+CHF 

Cytokines 

TNF 2.38±0.09 0.40±0.34
*
 0.88±0.06

*
 2.01±0.17 0.81±0.85

*
 1.15±0.09 

IL-1β 3.73±0.06 1.30±1.72
*
 1.52±0.43

*
 2.81±0.36 1.96±1.00 1.39±0.29

*
 

IL-6 1.64±0.11 1.08±0.38 0.96±0.08 1.38±0.14 1.02±0.31 1.11±0.18 

IL-10 1.11±0.08 4.31±1.96
*
 3.13±0.66

*
 0.53±0.03 2.21±1.71

*
 1.01±0.13

*
 

Nitric oxide 

synthases 

nNOS 0.59±0.09 1.27±0.22 1.84±0.11
*
 0.69±0.09 1.26±0.42

*
 1.66±0.36

*
 

eNOS 0.90±0.10 1.20±0.05
*
 1.94±0.25

*
 1.07±0.07 1.26±1.13 1.76±0.20 

iNOS 2.57±0.12 0.98±0.06
*
 0.75±0.05

*
 0.90±0.19 1.24±0.16 0.63±0.06 

Nox homologues 

Nox2 3.08±0.38 1.44±1.00
*
 1.21±0.24

*
 1.96±0.25 1.88±0.23 0.80±0.17

*
 

Nox4 1.58±0.15 0.99±0.08
*
 0.84±0.12

**
 1.28±0.11 1.03±0.07 0.78±0.04

**
 

AngII receptors 

AT1R 1.96±0.19 0.92±0.12
*
 0.64±0.09

**
 1.79±0.03 1.04±0.16 0.76±0.03

**
 

AT2R 0.86±0.09 1.56±0.04
*
 1.97±0.26

*
 0.81±0.09 1.28±1.17 1.42±0.07

**
 

Values expressed are means±SEM of fold change (2
-∆∆Ct

) versus respective Sham group. (*, p<0.05; **, p<0.01) 
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TNF Plays a Role in the Interaction between O2
•− 

and NO in CHF. To assess the interaction 

between O2
•− 

and NO in the PVN and VLM regions, we used immunofluorescence co-staining 

with 3-NT, a product of OONO
•
, and nNOS. The percent nNOS-positive cells that stained for 3-

NT were comparatively higher in the PVN after 4-weeks of MI in both WT and TNF KO mice 

compared to their respective sham-operated groups. However, the number of 3-NT-positive 

neurons was significantly higher in the WT+MI mice compared to the TNF KO+MI (Figure 4.6). 

Similar effects with regard to nNOS and 3-NT expression were seen in the VLM region of WT 

and TNF KO mice with/without CHF (Data not shown). 

We further confirmed the formation of OONO
•
 in PVN and VLM by ESR. CHF resulted 

in increased OONO
•
 levels in these brain regions in ICV ETN-treated mice compared to that of 

VEH-treated mice (Figure 4.5). In addition, significantly higher OONO
•
 production was 

observed in WT mice compared to TNF KO heart failure mice (Figure 4.5). Although O2
•− 

and 

OONO
•
 are produced in other brain regions, only the PVN and VLM showed significant 

differences in CHF and sham mice. Therefore, quantitative analyses presented are focused on 

these regions. 

TNF Alters Angiotensin Receptor Expression in the Hypothalamus and Brainstem in CHF. 

We observed a decrease in AT1R expression in the hypothalamus and brainstem of heart failure 

mice treated ICV with ETN compared to those of VEH-treated mice (Table 4.3). CHF also 

induced a significant increase in the AT1R expression in the hypothalamus and brainstem of WT 

mice over TNF KO mice (Table 4.3). On the contrary, CHF induced a marked decrease in the 

expression of AT2R in these brain regions in WT mice compared to TNF KO mice (Table 4.3). 

No difference was observed in the expression of these receptors in sham-operated mice. 
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Figure 4.4. (A) Superoxide anion and (B) peroxynitrite production in the PVN of mice 4wks 

after MI. (C) Superoxide anion and (D) peroxynitrite production in the VLM of mice 4wks after 

MI. (*, p<0.05; **, p<0.01; ***, p<0.001). 

 

Neuronal and Sympathoexcitation Attenuated with TNF Ablation in CHF. Chronic neuronal 

activation in the PVN and VLM was studied by using an antibody that detects all members of the 

Fos family; c-Fos, FosB, Fra-1 and Fra-2. As shown in representative photomicrographs in figure 

4.7A, CHF induced a markedly greater number of Fos-positive neurons in WT mice compared to 

the TNF KO mice. It should be noted that in sham-operated mice, the number of Fos-positive 

neurons were not different from each other (Figure 4.7B). 

As shown in figure 4.7C, the plasma NE levels, an indirect indicator for 

sympathoexcitation, were significantly elevated in MI+VEH and WT+MI mice. However, in 

ETN-treated, sham-operated as well as TNF KO+MI mice, this increase was attenuated. 
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Figure 4.5. (A) Double-immunofluorescence histochemistry for NeuN, a marker for neuronal 

nuclei (left panel), nNOS (center panel), and their overlay (right panel) in the VLM. NeuN and 

nNOS were labeled with AlexaFluor 594 and AlexaFluor 488, respectively. Scale bar: 50 μm. 

(B) Total number of nNOS
+
 cells are lower in WT+CHF group (***, p<0.001) compared with 

WT+Sham. There is no difference in the nNOS
+
 neurons in TNF KO mice 4wks after MI. 
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Figure 4.6. (A) Double-immunofluorescence histochemistry for 3-NT (left panel), nNOS (center 

panel), and their overlapping (right panel) in the PVN. 3-NT and nNOS were labeled with 

AlexaFluor 594 and AlexaFluor 488, respectively. Scale bar: 50 μm. (B) Total number of 3-NT
+
 

cells are higher in WT+CHF group (***, p<0.001) compared with WT+Sham. There is no 

difference in the 3-NT
+
 neurons in TNF KO 4wks after MI compared with sham mice. 
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Figure 4.7. (A) Double-immunofluorescence histochemistry for NeuN (left panel), Fos (center 

panel), and their overlapping (right panel) in the PVN. NeuN and Fos were labeled with 

AlexaFluor 594 and AlexaFluor 488, respectively. Scale bar: 50 μm. (B) Total number of Fos
+
 

cells are higher in WT+CHF group (***, p<0.001) compared with WT+Sham. There is no 

difference in the Fos
+
 neurons in TNF KO mice 4wks after MI compared to sham mice. (C) 

Plasma NE levels were significantly higher in WT mice compared with TNF KO mice 4wks 

after MI.  
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DISCUSSION 

The present study highlights several important findings: 1) central administration of an 

anti-TNF agent reduces NADPH oxidase subunit expression, ROS production and decreases 

sympathoexcitation in the presympathetic regions of the brain; 2) increased sodium and fluid 

retention  observed in CHF are partly dependent upon elevated cytokine levels; 3) central TNF 

blockade as well as knocking out the TNF gene elevates the reduced nNOS expression in the 

PVN and VLM in CHF; and 4) blocking TNF reduces OONO
•
 formation and reduces neuronal 

excitation in CHF. These findings support our hypothesis that the resultant sympathetic 

hyperactivity in CHF is due to TNF-induced oxidative stress in the sympathoexcitatory neurons 

of the PVN and VLM. 

Our previous studies indicate that systemic administration of anti-cytokine agents can 

lower brain pro-inflammatory cytokine synthesis, NADPH oxidase subunit expression and 

superoxide production in CHF (Guggilam et al., 2007). The present study, demonstrating that 

central cytokine inhibition reduces ROS production in the PVN and VLM regions resulting in 

reduced neurohumoral excitation, strongly indicates that central TNF levels are intrinsically 

involved in NADPH oxidase activation, ROS production and sympathoexcitation seen in CHF. A 

recent study showed that subchronic ICV
 
infusion of AngII induced O2

•−
 production in the 

RVLM is associated with elevated basal RSNA and impaired arterial
 
baroreflex function (Gao et 

al., 2005). Moreover, bilateral microinjections of tempol or tiron into the RVLM attenuated
 
the 

pressor, sympathetic, and tachycardic responses to microinjection of AngII into the RVLM 

(Mayorov et al., 2004). These studies show that ROS in the RVLM play
 
an important role in the 

modulation of sympathetic activity and cardiovascular function by central AngII (Gao et al., 

2005). Interestingly, the O2
•− 

source in all the above cases appears to be from NADPH oxidase. 

Consistent with these findings, in the present study, the expression of the catalytic subunits of 
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NADPH oxidase, Nox2 or Nox4, were significantly elevated in CHF in the hypothalamus and 

brainstem of mice treated ICV with the TNF antagonist ETN. The attenuated O2
•−

 levels in CHF 

in the PVN and VLM of ETN-treated mice clearly delineates the role of TNF in CHF-induced 

ROS production. These findings were further confirmed in a TNF gene knockout model. 

Another important function of AngII in the hypothalamus is the activation of arginine 

vasopressin in contributing to the CHF syndrome through increased thirst and sodium appetite 

(McKinley et al., 2001). In addition, the drinking behavior of mice in response to AngII infusion 

was shown to be mediated via NADPH oxidase induced superoxide production (Zimmerman et 

al., 2002; Zimmerman et al., 2004). Our metabolic studies also show that in WT+MI mice, there 

is a significant negative correlation (r=-0.82) between sodium intake and urinary sodium 

excretion, indicating an even higher increase in sodium and water retention as compared to TNF 

KO+MI mice. Conversely, we found a significant positive correlation between sodium intake 

and urinary sodium (r=0.66) in TNF KO+MI. The 24-h urine volumes were also lower in the 

WT+MI mice compared to TNF KO+MI mice.  

Most of the effects of the RAS, including fluid balance and endocrine secretion, are 

mediated by AT1Rs (Unger et al., 1988). In this study, the increased fluid intake was 

accompanied by a decreased urine output, resulting in fluid retention in CHF. These changes 

were associated with an increased AT1R and a decreased AT2R expression within the 

hypothalamus and brainstem. Moreover, the lung/body weight ratios were higher in WT+MI 

mice. These changes were significantly attenuated in TNF KO mice. The elevated superoxide 

levels observed in CHF in the PVN and VLM regions of WT, but not TNF KO mice, therefore, 

indicate that TNF contributes to unusual drinking behavior, sodium and fluid retention, all of 

which can possibly be mediated through AngII mechanisms.  



94 

 

There is enough evidence to show that high levels of AngII in the CNS of CHF animals 

enhance sympatho-excitation through AT-1R activation (Sasaki et al., 1990; Veerasingham et 

al., 1997; Li et al., 2006). In the past, Kumagai and Reid (Kumagai et al., 1994) showed
 
that 

systemic administration of the AT-1R
 
antagonist losartan inhibited the pressor and renal 

sympathoexcitatory
 
responses to carotid occlusion, demonstrating the role of AngII in carotid 

occlusion induced sympathoexcitation. Additionally, ICV administration of AngII resulted in 

BP, RSNA and NE level increases (Campese et al., 2002). AngII induced increases in BP, 

RSNA, and NE are mediated through up-regulation of AT-1R and downregulation of nNOS, the 

primary source of NO in CNS neurons (Campese et al., 2005), but the precise mechanism by 

which AngII induces sympathoexcitation is still not completely clear. NO is a well known 

sympatho-inhibitory neurotransmitter in the CNS and administration of NO inhibitors ICV 

resulted in elevated arterial pressure and sympathetic outflow (Sakuma et al., 1992; Zanzinger et 

al., 1995). Inhibition of NO prior to ICV infusion of AngII attenuated the increase in BP and 

RSNA. In addition, blockade of AT-1Rs concurrent with infusion of a NO donor lowered the 

basal RSNA in CHF rabbits, suggesting an important correlation between AngII and NO (Liu et 

al., 1999; Zucker et al., 2004). Besides AngII, elevated TNF levels in the PVN can also evoke 

sympathoexcitation (Kang et al., 2006; Guggilam et al., 2007). 
 
Previous studies underscore the 

importance of the interaction between cytokines and the RAS in increased sympathetic activity 

in CHF. However, elevated cytokine levels were detected even before neurohumoral activation 

in early HF (Torre-Amione et al., 1996), indicating the important role of cytokines in the 

progression of CHF. The attenuated NE levels and AT-1R expression in the hypothalamus and 

brainstem in the WT mice compared to the ETN-treated mice and TNF KO+MI mice, in our 

study, suggest the major intermediary role of TNF in sympathoexcitation.  
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The expression of nNOS was significantly decreased in the PVN and RVLM of WT+MI 

mice as compared to ETN-treated or TNF KO+MI mice, suggesting that TNF has a significant 

role in altering NO-induced sympatho-inhibitory effects. Alternatively, CHF induced an 

increased expression of iNOS in the PVN and RVLM with the concurrent increase in O2
•−

, 

resulting in an increased formation of OONO
•
 in these brain regions of WT+MI mice, thereby 

negating the NO effect on reducing sympathoexcitation.  A previous study by Zanzinger et al. 

showed that O2
•−

 and NO interact in the RVLM resulting in formation of OONO
•
, leading to 

damage of these neurons. They also reported that microinjection of OONO
•
 into the RVLM 

caused dose-dependent transient excitatory responses (Zanzinger, 2002). However, results from 

the present study indicate that in CHF, TNF contributes significantly to the interaction of O2
•−

 

and NO in the PVN and RVLM. It is also possible that the NO produced from eNOS and iNOS, 

as well as NO from other regions of the brain, diffuse into the PVN and VLM contributing 

towards the formation of OONO
•
, as indicated by our ESR and immunofluorescence studies. The 

reduced nNOS expression, and the increased ROS produced in the PVN and RVLM (Zanzinger, 

2002), decrease the bioavailability of NO contributing to sympathoexcitation.  

ROS act as key modulators of increased neuronal activity in the PVN and supraoptic 

nucleus (SON) of CHF animals (Lindley et al., 2004). The expression of FosB, Fra1,
 
and Fra2 

are well recognized to remain elevated under conditions
 
of chronic neuronal stimulation, such as 

the CHF (Vahid-Ansari et al., 1998). The present study shows that CHF induces Fos expression 

in the PVN and RVLM of WT mice. Interestingly, the increased Fos expression was attenuated 

in TNF KO+MI mice, again suggesting the role of TNF in neuronal excitation. These results 

were comparable to previous studies where the increased numbers of Fos-positive neurons were 

detected in the PVN and SON at
 
both 2 and 4 weeks after MI (Lindley et al., 2004). In addition, 

elevated AngII levels in CHF were shown to induce Fos activation in the PVN and SON 
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(Lindley et al., 2004). These increased Fos levels were inhibited significantly by a ROS 

scavenger, indicating the importance of ROS in sympathoexcitation (Lindley et al., 2004). Also, 

the c-Jun/JNK/c-fos pathway is involved in the up-regulation of AT-1R expression by specific 

transcription factors (Chan et al., 2002). High levels of AngII and AT-1Rs alter potassium 

channel proteins and decreased the overall K
+
 current (Gelband et al., 1997), resulting in 

sympathoexcitation which is the hallmark in the progression of CHF (Zucker, 2006). Taken 

together, these results raise the intriguing possibility that TNF induces Fos expression via 

modulation of ROS in the PVN and RVLM through an AT-1R mediated mechanism.  

In addition, at 4 weeks, ETN-treated mice and TNF KO mice had better-preserved 

cardiac function as indicated by improvement in %FS compared to their VEH-treated and WT 

counterparts. Pulmonary congestion, as indicated by increased wet lung weight, was reduced in 

TNF KO mice compared to WT mice 4 weeks after MI. However, ETN-treatment did not reduce 

the pulmonary congestion in CHF. This might be due to the central administration of ETN as 

well as the large infarct size. ETN is a soluble fusion protein and cannot cross the blood-brain 

barrier. Therefore, most of the effects of ETN are due to inhibition of cytokines in the brain and 

are limited to the CNS. Nonetheless, ETN reduced the sympathoexcitation as shown by 

decreased NE levels induced by MI.  

In conclusion, this study demonstrates that in CHF, TNF
 
induces interaction of O2

•−
 and 

NO in the PVN and RVLM, key autonomic regulators of cardiovascular function, through an 

AT-1R mediated mechanism, resulting ultimately in sympathoexcitation. This study also 

suggests a biologically
 
important cross-talk between the RAS

 
and pro-inflammatory cytokines in 

the PVN and RVLM. Functionally, this
 
cross-talk leads to an uncontrolled ROS production that 

in turn can act as second messengers for further amplification of TNF and/or AngII activation, 
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resulting in increased neuronal firing in the PVN and RVLM and contributing to 

sympathoexcitation and disease progression in the failing heart.  
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CHAPTER 5 

SYSTEMIC TNF TREATMENT INCREASES SYMPATHOEXCITATION THROUGH 

OXIDATIVE STRESS AND AT1 RECEPTORS IN THE PARAVENTRICULAR 

NUCLEUS 
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INTRODUCTION 

Congestive heart failure is mainly characterized by an increase in neurohormones and 

pro-inflammatory cytokines. Therefore, most of the treatment strategies targeted to improve 

heart failure include β-blockers, ACE inhibitors and aldosterone antagonists. Following the 

demonstration by Levine et al. that circulating tumor necrosis factor-alpha (TNF) levels  are 

increased in patients with severe heart failure (Levine et al., 1990), subsequent investigations 

have focused on TNF mechanisms in the pathogenesis of CHF. Overexpression of TNF, by 

itself, can mimic the phenotype of heart failure and, thus, appears to be a valid therapeutic target 

for heart failure therapy. Although anti-TNF treatment strategies were successful in smaller 

short-term studies, larger long-term studies (RENAISSANCE, RECOVER, RENEWAL, 

ATTACH) were not successful for of various unknown reasons.  Nonetheless, most interventions 

to improve heart failure were accompanied by a decrease in circulating TNF (i.e., milrinone and 

some phosphodiesterase inhibitors) (Molnar-Kimber et al., 1993). 

Experimental findings from Mann’s lab revealed that in rats, chronic TNF infusion 

results in left ventricular contractile dysfunction and dilatation (Bozkurt et al., 1998). TNF acts 

on cardiac myocytes to increase tetrahydrobiopterin synthesis, a co-factor necessary for the 

expression of inducible nitric oxide synthase (iNOS) (Nakayama et al., 1994), thus, increasing 

nitric oxide (NO) production. This increased NO in the heart can decrease the contractility of 

cardiac myocytes (Finkel et al., 1992) leading to cytotoxicity and ultimately apoptosis (Pinsky et 

al., 1995). It is well documented that TNF also exerts its toxic effects on heart by altering 

antioxidant status, thereby, inducing oxidative stress. NADPH oxidase is a multimeric enzyme 

and is responsible
 
for the reduction of oxygen and electron transport, and constitutes a major 

source of superoxide production both at cardiac myocytes and vascular smooth muscle level. We 

have recently demonstrated that chronic TNF infusion induces myocardial toxicity via 
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mitochondrial dysfunction (Mariappan et al., 2007). In our CHF studies, using TNF blockers, we 

also showed that TNF is involved in increased NADPH oxidase subunit expression both in the 

heart and cardiovascular regulatory centers of the brain (Guggilam et al., 2007). However, CHF 

is a complex phenomenon and further studies are required to delineate the central effects induced 

by systemic TNF.  

Altered fluid homeostasis and increased sympathoexcitation are other important aspects 

in patients with CHF. Our previous studies have shown that pro-inflammatory cytokine (PIC) 

levels were increased in the hypothalamic paraventricular nucleus (PVN) within 30 min after 

myocardial infarction (Francis et al., 2004). Furthermore, we showed that this increase in PICs in 

the PVN is simply not an epiphenomenon, but are involved in ROS production in the PVN and 

contribute to sympathoexcitation in CHF. Recent studies also show that angiotensin infusion into 

the brain can also stimulate ROS production and lead to neuronal excitation. However, in CHF, 

several neurohumoral systems are activated that might together contribute to the increased ROS 

production in the PVN and in sympathoexcitation. We predict that the increased systemic TNF 

can alone stimulate and act on the cardiovascular regulatory center, PVN and contribute to 

sympathoexcitation and volume overload. Thus, we conducted the present study by treating rats 

systemically with TNF and to study the effects on the autonomic regulatory neurons of the PVN. 

This study helps to delineate the relationship between neurohormonal/cytokine activation and 

sympathoexcitation that is otherwise observed in a heart failure setting. Along with TNF, we also 

used ROS and AT1R blockers systemically to investigate the effector molecules induced by TNF 

and the signaling mechanisms. 

METHODS 

Chronic TNF Infusion Model. Male Sprague-Dawley rats weighing between 275-325 gm were 

used. After baseline echocardiography, the rats were randomly allocated to different treatments 
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for 5 days: human recombinant TNF (10 μg/kg, IP) + vehicle or pentoxyfylline (PTX, a cytokine 

synthesis inhibitor; 30 mg/kg, IP) or Etanercept (ETN, a TNF receptor fusion protein; 1 mg/kg, 

SC) or tempol (TEM, a superoxide dismutase mimetic; 200 nmol/kg, PO) or Losartan (LOS, an 

AT1R blocker; 0.2 mg/kg, IP). The study conforms to the Guide for the Care and Use of 

Laboratory Animals
 
(NIH Publication No. 85-23, revised 1996). All the experimental procedures 

were approved by the Louisiana State University
 
Animal Care and Use Committee. 

Assessment of Cardiac Structure and Function. Cardiac function was assessed by 

echocardiography at baseline (day 0) and day 5 of the experiment. Echocardiography was 

performed in rats anesthetized with 1.5%
 
isoflurane/oxygen with Toshiba Aplio SSH770

 
system 

(Toshiba Medical Systems, CA) fitted with a PST 65A sector scanner (8 MHz), which generates 

two-dimensional
 
images at frame rates ranging from 300 to 500 frames per second. IVSTd and 

IVSTs, inter-ventricular septal thickness at end-diastoleand end-systole, respectively; LVIDd and 

LVIDs, left ventricular internal diameter at end-diastole and end-systole, respectively; LVPWTd 

and LVPWTs, left ventricular posterior wall thickness at end-diastole and end-systole, 

respectively were measured using two-dimensional short-axis imaging. LV percent fractional
 

shortening (%FS) was calculated as: %FS = (LVIDd – LVIDS)/LVIDd
 
x100%. 

After the experiment, the hearts were excised, and left ventricles were dissected and snap 

frozen in liquid nitrogen and stored at –80°C until further analyzed.  

Plasma TNF Levels. At the end of the 5-day study, one group of rats was sacrificed by 

decapitation with guillotine under deep anesthesia by isoflurane and approximately 4 mls of 

trunk blood was collected in heparinized tubes. Plasma samples obtained by centrifugation of 

heparinized blood at 4ºC (Beckman-Coulter) at 2500 rpm for 15 min were used for estimation of 

circulating TNF-α and catecholamines. Circulating levels of TNF-α were quantified using 
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commercially available rat TNF-α ELISA kit (Biosource, Camarillo, CA) as described 

previously (Tei et al., 1995; Francis et al., 2003). 

Plasma Catecholamines. Plasma norepinephrine (NE) and epinephrine (EPI) were measured 

using high performance liquid chromatography (HPLC).  Plasma samples were prepared by 

adding activated alumina, Tris buffer, EDTA and internal standard DHBA, along with 0.5 ml of 

rat plasma.  The samples were centrifuged and supernatant separated and rinsed twice in ultra 

pure water and filtered through a Millipore filter (Ultrafree MC UFC30GV00, Millipore Corp). 

Samples were filtered and injected into an Eicom HTEC-500 system fitted with an HPLC-ECD. 

Extraction of PVN by Laser Capture Microscopy (LCM). LCM was conducted in a 

dehumidified room (humidity ≤35%), and was kept to less than 30 min per slide to reduce the 

loss in recovery of intact RNA. A 7.5 μm laser spot size was used to capture the PVN, at a power 

range of 65–80 mW and pulse duration of 550–750 μs. This combination of parameters allowed 

efficient retrieval of the entire PVN area and a consistent lifting efficiency of >80%. The number 

of laser ‘shots’ used for each sample was kept constant at 1400. These parameters secured a 

sufficient and near constant amount of input RNA for comparative real-time RT-PCR analyses 

and protein for western blotting. All experiments were performed no less than five times with 

five different animals. 

Electron Paramagnetic Spin Resonance (ESR) Studies. Superoxide and peroxynitrite 

production in the PVN punches were measured using spin-traps and a BenchTop ESR-

spectrophotometer e-scan (Noxygen Science Transfer & Diagnostics GmbH, Elzach, Germany). 

The intensity
 
of ESR spectra was quantified after subtraction of the ESR signal

 
of probe without 

tissue sample. 

Real-time RT PCR. RNA was isolated from PVN with TRIzol (Invitrogen, CA), treated with 

DNAase, and reverse transcribed using random primers reverse transcriptase. Gene transcripts 
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were determined by quantitative real-time polymerase chain reaction using SYBR-Green master 

mix (Applied Biosystems, CA) on an Applied Biosystems 7900. Gene expression levels were 

calculated using the 2
-∆∆Ct

 method and normalized to GAPDH gene. The level of change was 

expressed as fold of respective control values.  

Immunohistochemical and Immuonofluorescence Studies. The brain samples were embedded 

in optimum cutting temperature medium, and 5 µm-thick transverse sections were obtained and 

mounted on Superfrost slides. A general avidin-biotin-peroxidase complex (ABC) procedure was 

used to identify Nox1, Nox4, nNOS and 3-nitrotyrosine (3-NT) (Santa Cruz Biotechnology) 

neurons. For immunofluorescence studies, formalin-fixed sections were incubated overnight at 

4˚C with the primary anti-rabbit c-Fos (Santa Cruz) or anti-rabbit tyrosine hydroxylase (TH) 

(AbCam) followed by Cy-3-labeled secondary immunoglobulin (IgG) (Molecular Probes). The 

slides
 
were washed and mounted with ProLong Gold anti-fade

 
reagent (Molecular Probes) for 

fluorescent microscopy. 

For each animal, positive neurons within the borders of PVN bilaterally were counted 

manually in two representative 40-µm transverse sections at about –1.80 mm from bregma, and 

an average value was reported. NIH ImageJ software was used to confirm the manual cell counts 

in the PVN. 

Statistics. All data illustrated are expressed as mean ± SEM. Statistical analyses were performed 

using GraphPad Prism version 5.00 for Windows, GraphPad Software, CA, www.graphpad.com. 

One-way ANOVA was used to observe the differences among groups followed by Bonferroni’s 

correction. In all cases, p<0.05 was considered statistically significant. 

RESULTS 

TNF Induces Cardiac Dysfunction. At day 0, there were no significant differences in the 

cardiac parameters between different treatment groups (data not shown). At the end of 5 days, 

http://www.graphpad.com/
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TNF treatment resulted in an increased IVSTd and LVPWTd associated with a decreased %FS 

and increased Tei index as compared to control rats (Table 5.1). These changes indicate that 

chronic TNF treatment decreased the cardiac pumping performance. However, treatment with 

TNF blockers, PTX and ETN, superoxide scavenger, TEM, and AT1R blocker, LOS resulted in 

normalizing the changes induced by TNF.  

TNF Induced TNF Expression. Systemic TNF treatment induced an increase in TNF 

transcripts both in the LV and the PVN (Table 5.2). In addition, the circulating TNF levels were 

also significantly increased by systemic TNF treatment (Figure 5.1). However, PTX, TEM and 

LOS treatment attenuated this increase induced by TNF.  ETN was not able to restore the tissue 

levels to normal. 

 

 

 

 

 

 

 

 

Fig.5.1. Plasma TNF Levels. Data are mean ± SEM. ***p<0.001. 

 

TNF Induces Sympathoexcitation. Figure 5.2 illustrates photomicrograph of c-Fos staining in 

the PVN neurons. Systemic TNF treatment induced c-Fos expression in the PVN neurons 

suggesting neuronal excitation. Decreased staining of neurons for c-Fos in the PVN neurons in 
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rats treated with TEM and LOS suggest that this effect of TNF is mediated through ROS and 

AT1R mediated mechanisms. 

 

Table 5.1. Echocardiographic Findings.  

 Control TNF TNF+PTX TNF+ETN TNF+TEM TNF+LOS 

n 20 20 18 18 14 14 

Left ventricle 

IVSTd 

(mm) 
1.36 ± 0.02 1.59 ± 0.05* 1.33 ± 0.03 1.41 ± 0.03 1.37 ± 0.05 1.34 ± 0.05 

IVSTs 

(mm) 
2.26 ± 0.03 2.48 ± 0.12 2.43 ± 0.08 2.25 ± 0.03 2.50 ± 0.06 2.05 ± 0.05 

LVIDd 

(mm) 
6.57 ± 0.08 7.10 ± 0.21 6.98 ± 0.11 7.28± 0.13 7.31 ± 0.13 7.15 ± 0.14 

LVIDs 

(mm) 
5.27 ± 0.10 5.69 ± 0.18* 5.03 ± 0.05 4.78 ± 0.15 5.06 ± 0.13 5.16 ± 0.18 

LVPWT

d (mm) 
1.37 ± 0.11 1.57 ± 0.07 1.39 ± 0.03 1.38 ± 0.32 1.38 ± 0.03 1.34 ± 0.31 

LVPWTs 

(mm) 
2.25 ± 0.13 2.15 ± 0.06 2.24 ± 0.03 2.15 ± 0.11 2.25 ± 0.16 2.11 ± 0.44 

%FS 37.2 ± 0.94 31.1 ± 0.97* 34.2 ± 0.67 32.6 ± 0.23 35.7 ± 1.45 34.2 ± 1.22 

Tei 0.29 ± 0.03 0.38 ± 0.11* 0.25 ± 0.01 0.32 ± 0.01 0.30 ± 0.02 0.31 ± 0.04 

HR 327 ± 7.46 366 ± 10.1* 334 ± 4.06 337 ± 4.68 329 ± 3.78 337 ± 7.09 

MAP 107 ± 6.32 109 ± 5.65 103 ± 5.13 108 ± 4.55 103 ± 7.20 105 ± 6.06 

Data are mean±SEM. IVSTd and IVSTs, inter-ventricular septal thickness at end-systole and 

end-diastole, respectively; LVIDd and LVIDs, left ventricular internal diameter at end-diastole 

and end-systole, respectively; LVPWTd and LVPWTs, left ventricular posterior wall thickness at 

end-diastole and end-systole, respectively; %FS, fractional shortening; HR, heart rate; MAP, 

Mean arterial pressure. (*, p<0.05) 

 

Figure 5.3 shows that plasma norepinephrine and epinephrine levels were also increased 

significantly in rats treated with TNF compared to those treated simultaneously with TNF 

blockers, ROS inhibitor and AT1R blocker implying that TNF induced sympathoexcitation is via 

ROS or AT1R or both. 
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Fig.5.2. Micrograph showing immunostaining for anti-c-FOS in the PVN (A). The bar graph 

shows the quantification of c-FOS positive neurons in the PVN (B). Note the evident increase in 

anti-c-FOS in the PVN of TNF treated rats compared to those of control and PTX, ETN, TEM 

and LOS treated rats. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.3. Assessment of Sympathetic Activity. Norepinephrine and epinephrine levels in the 

plasma samples analysed using HPLC-ECD. Data are mean ± SEM. ***p<0.001, 

**p<0.01versus control; 
#
p<0.05, 

##
p<0.01, 

###
p<0.001 versus TNF group. 
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Systemic TNF-treatment caused an increase in the protein (Figure 5.4) and gene 

expression of TH and AVP (Figures 5.5A and 5.5B), the rate limiting enzyme in catecholamine 

sysnthesis and AVP in the PVN. TNF blocker, ROS inhibitor and AT1R blocker significantly 

decreased the TNF-induced TH and AVP expression in the PVN. 

 

Fig.5.4. Photomicrograph showing immunostaining for anti-TH in the PVN (A). The bar graph 

shows the quantification of TH positive neurons in the PVN (B). Note the evident increase in 

anti-TH expression in the parvocellular neurons of the PVN of TNF treated rats compared to 

those of control and PTX, ETN, TEM and LOS treated rats. 

 

TNF Increases Nox Subunit Expression and Superoxide Production. In accordance with our 

previous study (Mariappan et al., 2007), and in this study as well, low dose TNF induced the 

expression of the major catalytic subunit of NADPH oxidase, Nox2 and its homologues, Nox1 

and Nox4 in the LV and also in the PVN (Table 5.2). Figure 5.6A shows the protein expression 

of Nox1, Nox and Nox4 in the PVN. The quantification of positively stained neurons is shown in 

Figure 5.6B. Systemic TNF treatment resulted in a significant elevation of neurons positively 
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stained for Nox1, Nox2 and Nox4 indicating an increased production of superoxide in the PVN 

in these rats. We further confirmed our findings by measuring direct superoxide production in 

the PVN punches of the rats. In accordance with the Nox subunit expression, superoxide 

production was increased in the PVN of TNF-treated rats (Figure 5.6C). Treatment with PTX, 

ETN, TEM and LOS reduced Nox subunit expression and superoxide production induced by 

TNF. 

TNF Reduces nNOS Expression. Previous studies showed that in CHF, nNOS expression is 

depleted in the PVN. We have also recently showed that the depleted nNOS levels in CHF are 

restored by treatment with systemic TNF blocker, PTX (Guggilam et al., 2008). Interestingly, in 

this study, systemic TNF treatment decreased both protein (Figures 5.7A and 5.7B) and mRNA 

(Figure 5.7C) expression of nNOS in the PVN. These changes were reversed by treatment with 

TNF blockers, PTX and ETN. ROS scavenger, TEM, and AT1R blocker, LOS.  

 

 

 

 

 

 

 

 

 

Fig.5.5. Gene Expression of TH and AVP in the PVN. Data are mean ± SEM and are 

expressed as fold change versus control group data. ***p<0.001 versus control group. 
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Table 5.2. Gene Expression in the PVN. 
 

 TNF TNF+PTX TNF+ETN TNF+TEM TNF+LOS 

n 20 18 18 14 14 

Left ventricle    

TNF 4.78 ± 1.13 2.57 ± 1.08 3.17 ± 1.27 1.18 ± 6.00 2.91 ± 10.0 

NOX1 3.60 ± 1.93 2.35 ± 0.73 1.17 ± 0.09 1.14 ± 0.08* 1.53 ± 0.10
#
 

NOX2 2.60 ± 0.17 1.23 ± 0.07 1.17± 0.14* 1.67 ± 0.13* 2.00 ± 0.16* 

NOX4 3.37 ± 0.53 1.67 ± 0.16 1.85 ± 0.09 1.91 ± 0.72* 1.99 ± 0.17* 

eNOS 3.05 ± 0.17 1.32 ± 0.07 1.17 ± 0.19* 1.12 ± 0.63* 1.80 ± 0.86* 

iNOS 2.45 ± 0.23 0.95 ± 0.09 0.85 ± 0.11* 1.06 ± 0.12* 0.73 ± 0.06 

AT1R 2.87 ± 0.23 1.25 ± 0.06 1.85 ± 0.07* 1.09 ± 0.12* 1.33 ± 0.16 

Paraventricular nucleus   

TNF 3.67 ± 0.45 1.12 ± 0.38 2.18 ± 0.59 1.57 ± 0.08 1.12 ± 1.20 

NOX1 2.91 ± 2.06 0.87 ± 0.08 1.18 ±0.07 1.35 ± 0.13 1.17 ± 0.11 

NOX2 2.98 ± 1.30 2.07 ± 0.43 1.19 ±0.19 1.23 ± 0.02 1.37± 0.14* 

NOX4 3.93 ± 0.79 1.57 ± 0.14 1.28 ± 0.09 1.65 ± 0.12 1.84 ± 0.19 

eNOS 4.20 ± 0.99 0.98 ± 0.06* 0.77 ± 0.22* 1.67 ± 0.40* 0.46 ± 0.09* 

iNOS 2.79 ± 0.63 1.33 ± 0.22* 0.71 ± 0.10* 1.10 ± 0.20* 0.52 ± 0.06* 

AT1R 3.21 ± 0.28 1.02 ± 0.24* 0.96 ± 0.14* 1.23 ± 0.24* 0.97 ± 0.32* 

Values expressed are means±SEM of fold change (2
-∆∆Ct

) versus control group. (*p<0.05) 

 

TNF Increases Peroxynitrite Formation. In cardiac myocytes, TNF is shown to increase 

superoxide and NO production eventually resulting in the formation of peroxynitrite which is 

cytotoxic to the cells. Moreover, increased peroxynitrite formation in certain brain regions has 

been shown to induce neuronal cell toxicity ultimately leading to sympathoexcitation.  We 

therefore, stained the PVN with 3-nitrotyrosine, a footprint for peroxynitrite formation (Figure 

5.8A). Figure 5.8B shows the quantification of 3-NT positive neurons. We observed a significant 

increase in 3-NT positive neurons in TNF-treated rats while PTX, ETN, TEM and LOS 
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decreased the TNF-induced peroxynitrite formation in the PVN. These findings were further 

confirmed by ESR measurements of peroxynitrite production in the PVN punches.  

 

Fig.5.6. (A) Photomicrograph showing immunostaining for anti-Nox1and anti-Nox4  in the 

PVN. (B) The bar graph shows the quantification of immuno positive neurons in the PVN. Note 

the evident increased expression of Nox subunits in the neurons of the PVN of TNF treated rats 

compared to the other study groups. (C) The bar graph represents the superoxide production as 

measured by ESR spectrometer. Note the increased production of superoxide in the PVN 

punches of rats treated with TNF alone. 

 

DISCUSSION 

Our results show that systemic injections of TNF in rats resulted in a marked increase in 

the neuronal expression of Fos protein in the parvocellular neuronal division of the PVN which 

is known to regulate the hypothalamic-pituatary-adrenal (HPA) axis. Concomitantly, an increase 

in tyrosine hydroxylase (TH)-immunoreactivity and AVP gene expression was observed in this 

region indicating activation of the nor-adrenergic hypothalamic neurons, following 

administration of TNF.  These results were associated with augmented plasma catecholamine 
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levels. Furthermore, the expression of nNOS was decreased while that of eNOS, iNOS, AT1R 

and 3-NT was increased in the PVN. TNF treatment resulted in increased LV posterior wall 

thickness and Tei index, accompanied by a decrease in %FS. These results support the 

hypothesis that systemic TNF stimulates sympathetic nervous system, reduces NO 

bioavailability and an AT1R mechanism may be involved in these responses. 

 

Fig.5.7. (A) Photomicrograph showing immunostaining for anti-nNOS in the PVN. (B) The bar 

graph shows the quantification of nNOS positive neurons in the PVN. Note the decreased nNOS 

stained neurons in the PVN of TNF treated rats compared to the other study groups. (C) The bar 

graph represents the nNOS gene expression in the PVN.  Note that the gene expression of nNOS 

is also decreased in the PVN of rats treated with TNF alone. 

 

Increasing evidence indicates that pro-inflammatory cytokines can engage central 

nervous system responses by altering neuroendocrine secretion (Beishuizen et al., 2003). 

Circumventricular organs (CVOs), highly vascular regions that lack blood brain barrier, permit 

cytokine interaction with brain neurons. In addition, CVOs have blood capillaries with greater 

permeability and are potential sites of cytokine entry into the brain. These CVOs send efferent 

fibers to both magnocellular and parvocellular regions of the PVN mediating their influences on 
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neurohypophysial hormone secretion. A recent study showed that peripheral injection of 

lipopolysaccharide (LPS) induced Fos-like immunoreactivity in the CVOs, PVN and SON 

regions (Carnio et al., 2006). The induction of c-Fos, an immediate early gene has been widely 

used as an indicator of cellular activity in the CNS (Morgan et al., 1991).  Present data also 

demonstrate that Fos, TH and AVP expression are induced in the pPVN by systemic TNF 

treatment. These activated centers in the brain can send signals to the neuroendocrine organs 

through release of intermediates that include catecholamines and NO (Carnio et al., 2006). 

Systemic TNF treatment was also accompanied by an increase in plasma catecholamines, similar 

to the effect of LPS, indicating the activation of hypothalamic neurosecretory neurons that 

regulate HPA axis activity. 

 

Fig.5.8. (A) Photomicrograph showing immunostaining for anti-3-NT in the PVN. (B) The bar 

graph shows the quantification of 3-NT positive neurons in the PVN. Note the increased number 

of 3-NT, a footprint for peroxynitrite formation in tissues, positive neurons in the PVN of TNF 

treated rats compared to the other study groups. 
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Growing evidence suggests that NO in the brain acts to restrain the stimulation of HPA 

axis induced by IL-1β, vasopressin and inflammation, resulting in the suppression of anti-

inflammatory corticosteroids release from the adrenals (Rivier et al., 1994). Systemic LPS 

administration increases iNOS expression not only in the glia cells and astrocytes but also in the 

neurons. This increase in iNOS in the PVN was shown to be associated with an increased 

expression for corticotrophin releasing factor (CRF) (Wong et al., 1996). It is now well known 

that NO has inhibitory effects on the magnocellular secretory neurons of the PVN where 

oxytocin as well as vasopressin are synthesized. In vitro studies demonstrated that, application of 

NO donor inhibits the magnocellular secretory neurons of the PVN and SON while that of a NO 

scavenger enhanced neuronal activity (Kadekaro, 2004). Administration of LPS in rats pre-

treated with a NOS inhibitor augmented the release of oxytocin and vasopressin (Rivier, 2003). 

In the present study, a decrease in nNOS was observed with TNF treatment, while the gene 

expression of iNOS and eNOS were increased. These changes were associated with a 

tremendous increase in the expression of AVP in the PVN accompanied by an increase in Fos-

immunoreactivity. These results suggest that the bioavailability of NO is reduced in these 

neurons. The NO produced by iNOS and eNOS could be involved in scavenging the increased 

superoxide produced in the PVN and this is further confirmed by 3-NT-immunoreactivity, 

footprint for peroxynitrite formation, observed in the PVN neurons. In addition, noradrenaline 

can stimulate mRNA expression of AVP in the PVN (Vacher et al., 2002), thus the released 

catecholamines in response to TNF injections can further potentiate the AVP expression in the 

PVN. Thus TNF might play a pivotal role in the feed forward relationship between 

sympathoexcitation and volume overload in stress-induced conditions such as CHF. 

However, in CHF, apart from cytokines, elevated AngII also activates the PVN directly 

via the receptors in the CVOs (Sawchenko et al., 2000). Moreover, in CHF, there is impairment 
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of baroreflexes, and atrial receptor triggered inhibition of sympathoexcitatory and AVP releasing 

neurons in the PVN. The increased AngII, acts through AT1Rs and excites PVN neurons that 

activate sympathoexcitatory outputs to the kidney (Coote et al., 1998). The effects of AT1R are, 

at least in part, mediated through superoxide production (Lindley et al., 2004). We have shown 

in our previous study that a cross-talk exists between TNF, ROS and AT1R in the PVN of CHF 

rats (Guggilam et al., 2008). Here, we validate our results by demonstrating that systemic TNF 

can induce sympathoexcitation via the activation of HPA axis. Inhibition of this activation by 

losartan further confirms that the effects of TNF are mediated through AT1R. In this study too, 

TNF induced activation of the NADPH oxidase subunits, Nox1and Nox4, and was inhibited by 

tempol co-treatment, demonstrating that the actions of AT1 and TNF are mediated via 

superoxide production.  

Our present results show that systemic TNF can stimulate the activity of sympathetic 

neurons of the PVN as illustrated by an increase in heart rate. However, at this particular dose, 

the MAP was not altered by TNF. The TNF-stimulated AVP expression in the PVN suggests its 

presumptive role in the prompting of ACTH secretion and the modulation of cardiac frequency. 

In addition, the increase in IVSTd and LVPWTd associated with a decrease in Tei index indicate 

that TNF induced diastolic dysfunction in these rats. Alternatively, TNF blockers, ROS quencher 

and AT1R blocker significantly altered these changes induced by TNF. Taken together, our 

results suggest a putative involvement of AT1 and ROS in the triggering of immediate early 

genes and gene expression of iNOS, AVP and TH, is an adaptive response to TNF injection in 

the PVN and in the regulation of sympathoexcitaion in response to
 
stress conditions like CHF.  
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CHAPTER 6 

CONCLUDING REMARKS 
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OVERALL SUMMARY OF FINDINGS 

Dysregulation of sympathetic activity following MI can exhaust cardiac performance and 

eventually lead to CHF. Pro-inflammatory cytokines (PICs) play a critical role in the 

pathogenesis of CHF where increased PICs following MI can gain entry into the brain through 

the CVOs, or via activation of prostaglandin receptors and thereby affect the CNS. The increase 

in PIC production in the brain, or activation of the HPA by peripheral afferents, may lead to 

activation of AngII and ROS, both of which may lead to TNF-dependent ROS signaling in the 

CNS and the development of cardiovascular diseases, including CHF. Therefore, elucidating the 

precise signaling mechanisms of TNF in the CNS is critical for the development of therapeutic 

treatments targeted to central PIC signaling. Through a series of rat and mouse studies, we 

explored the role of increased TNF in the CNS following MI. 

In chapter 2, we demonstrated that in CHF, in addition to plasma TNF, TNF expression is 

also increased locally in tissues, particularly in the heart and the PVN of the hypothalamus in the 

brain. These results also demonstrate that this increased TNF is associated with increased 

expression of the catalytic subunit of the multimeric enzyme NADPH oxidase, Nox2/gp
91phox

, 

and its homologues, Nox1 and Nox4 in the LV and the PVN. Furthermore, decreased DHE 

fluorescence in rats treated with the cytokine blocker, PTX, further confirmed that TNF is 

involved in the stimulation of superoxide production in the PVN. Taken together, results from 

this study indicate that the elevated expression of TNF in the PVN directly, or through induction 

of superoxide production, can increase sympathoexcitation. 

In chapter 3, we presented the effects of increased TNF in CHF on the free radical nitric 

oxide, known to restrain the excitatory neurons of the PVN. At the same time, excessive NO 

production in the brain can exert toxic effects on neurons via the formation of the peroxynitrite 

radical.  Our results demonstrate that the increased TNF following MI decreased nNOS 
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expression. The increased iNOS expression observed suggests that the iNOS-derived NO might 

be involved in the formation of peroxynitrite radicals contributing to the symathoexcitation in 

CHF. We also showed that the increased AT1R expression in the PVN in CHF is PTX 

inhibitable. Results from this study clarify the involvement of TNF in decreasing bioavailability 

of NO in the PVN, possibly through an AT1R mediated mechanism. 

In chapter 4, we examined the sympathoexcitatory effects of TNF by 1) treating the CHF 

mice intracerebroventricularly with Etanercept, a TNF fusion protein that prevents the binding of 

TNF to its receptors and 2) also by using a TNF knockout mouse model. We found an increase in 

pro-inflammatory cytokine (TNF, IL-1β and IL-6) expression in the PVN and VLM regions of 

the brain in CHF mice. Alternatively, the expression of an anti-inflammatory cytokine, IL-10, 

was decreased in CHF. We also found that superoxide and peroxynitrite production measured in 

these brain regions by ESR, adopting specific spin probes, was increased in CHF. 

Immunofluorescence and gene expression studies further indicated that nNOS expression is 

decreased while that of peroxynitrite and Fos were increased in the PVN and VLM. All these 

changes were accompanied by decreased % fractional shortening in CHF mice. Interestingly, all 

these changes were attenuated in TNF KO mice and mice treated ICV with ETN, confirming the 

sympathoexcitatory effects of TNF.  We also demonstrate in this study that the AngII-induced 

salt appetite and fluid accumulation in CHF are, in part, mediated through TNF.  

In chapter 5, we challenged our findings from the previous chapters by treating the rats 

systemically with TNF to delineate the effects of TNF by excluding the effects of 

neurohormones that are activated in CHF, contributing to sympathoexcitation. TNF injections 

resulted in an increase in plasma TNF levels and TNF expression in organs, including heart and 

autonomic regulatory centers of the brain. In addition, systemic TNF increased c-Fos expression, 

an immediate-early gene, indicating the TNF-induced neuronal excitation is via the activation of 
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the HPA axis. Inhibition of these effects by losartan, an AT1R blocker indicates that these effects 

of TNF are mediated through AngII. Systemic TNF also increased the expression of TH in the 

PVN, which is a rate limiting enzyme for the synthesis of NE. Furthermore, TNF increased the 

AVP expression, suggesting its role in fluid retention and volume overload. Similar to CHF 

studies, systemic TNF was able to increase Nox expression concurrently with superoxide and 

peroxynitrite production in the PVN. Inhibition of these TNF-induced changes by tempol and 

losartan demonstrate that the actions of TNF are mediated through AngII and ROS. 

SIGNIFICANCE OF RESEARCH 

 Despite so many advances in therapeutic strategies, cardiovascular disease remains the 

foremost cause of death in the United States. According to the American Heart Association 2009 

statistical update, 1 out of 8 deaths reported are due to CHF (Lloyd-Jones et al., 2009). Recent 

clinical trials reported an annual sudden-death risk of 8-12% in 3 months after MI, even with 

optimal medical therapy including β-adrenoceptor blockade and angiotensin converting enzyme 

inhibitor/angiotensin receptor blocker therapy (Pitt et al., 2003). It is well established that 

sympathetic over activity is the major factor contributing to the progression of CHF. Although 

all the current therapies modulate sympathetic activity, there still is a need to find a better 

treatment strategy, yet owing to the continued increasing mortality rate in CHF patients. 

 There is abundant evidence that pro-inflammatory cytokines are increased after 

myocardial injury and can eventually lead to the pathology of CHF. Previous reports have 

demonstrated that brain pro-inflammatory cytokines are increased within minutes after MI 

(Francis et al., 2004) and contribute to sympathetic hyperactivity (Zhang et al., 2003). Therefore, 

understanding the mechanism by which TNF contributes to sympathoexcitation is important in 

the development of new therapies. 
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We believe that our studies, utilizing transgenic animals or gain-of-function strategies, 

have identified new targets in the brain for the treatment of CHF and demonstrated the beneficial 

effects of TNF inhibition on the CHF. Systemic blockade of TNF/superoxide can also lead to 

neurohormonal feedback decreasing the hyperactivity
 
of the sympathetic nervous system and the 

HPA
 
axis in CHF. In addition, targeting the NADPH oxidase complex and subsequent 

superoxide production may be an alternative treatment strategy. From a clinical point of view, 

however, it is clear that for chronic diseases such as CHF, restraint of uncontrolled 

sympathoexcitation is needed, and this can be accomplished through targeting the production of 

TNF in the brain. It is possible that in the past, anti-cytokine agents in the clinical trials might not 

have crossed the blood-brain-barrier to target the brain cytokines. Our studies suggest that 

inclusion of an anti-cytokine agent that crosses the blood brain barrier in the treatment regimen 

of CHF patients may change the clinical outcome. Overall, we believe that our studies yielded an 

important proof-of-concept work and opened new doors for future studies that will further the 

understanding of TNF-induced oxidative stress in contributing to sympathoexcitation in the 

pathogenesis of CHF. 

FUTURE DIRECTIONS 

 Although we believe that our aforementioned studies have made significant 

contributions in identifying the novel role of elevated TNF in the autonomic regulatory regions 

of the brain, further studies are required to better understand the underlying mechanisms of TNF-

dependent sympathoexcitation in CHF. Our results showed that blocking ROS by tempol 

resulted in decreased neuronal excitation in the PVN suggesting the role of superoxide in 

sympathoexcitaion.  Future studies are needed to examine the transcription factors involved in 

superoxide-induced chronic neuronal excitation. Neuronal cultures incubated with AngII 

exhibited a steady increase in the levels of tyrosine hydroxylase (TH) and dopamine β-
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hydroxylase, both of which are involved in the biosynthesis of norepinephrine involved in the 

regulation of sympathetic activity, mediated via the AT1Rs (Yu et al., 1996). These actions were 

inhibited by treatment with extracellular signal-regulated kinase (ERK) and mitogen-activated 

protein kinase (MAPK) (Yang et al., 1996). Moreover, in CHF, MAPK plays an important role 

in the activation of AT1R in the PVN and SFO (Wei et al., 2008). In Alzheimer’s disease, iNOS-

induction by TNF was shown to involve JNK/c-Jun
 
and NF-κB transcription factors (Medeiros et 

al., 2007) in the CNS. Furthermore, an oligonucleotide against c-Fos attenuated Ang-II induced 

increase in TH (Yu et al., 1996). We therefore hypothesize that in CHF, AT1R might be 

increased by TNF via a MAPK pathway, and both TNF and AT1R might be linked in the 

dimerization of c-Fos and c-Jun to form the transcription factor AP-1 and further the biosynthesis 

of norepinephrine. Moreover, recent reports also illustrated that redox mechanisms are involved 

in the AngII-induced activation of AP-1 (Puri et al., 1995; Viedt et al., 2004), further confirming 

the critical role of superoxide in the modulation of sympathoexcitation. In addition, 

understanding the temporal sequence of events following the activation of TNF in these 

autonomic regulatory neurons that lead to increased sympathetic activity may help us define 

better interventions aimed at blocking the deleterious effects of TNF. 

In summary, we believe that our studies identified potential new targets in the CNS 

involved in sympathoexcitation in CHF and laid a foundation for a collection of future studies in 

understanding the role of TNF-induced oxidative stress in autonomic neurons.   
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