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Introduction:

This paper is an introduction to and a discussion of
some mathematical machines. Specifically, the theory of
finite automata will be introduced, and a sejuential machine
will be discussed with respect to Peano®s mapoing of the

e
unit interval continuously onto the unit square,

reonts . 1—5 712

The-paper is in two parts. The first part is on automata

theory, the second on Peano's function and sequantial machines,
For this paper it is assumed that the reader has a

basic knowledge of calculus, such as may be found in

R. Creighton Buck's Advanced Calculus; a basic knowledge of

algebra, such as may be found in Hiram Paley and Paul

M. Weichsel's Abstract Algebra; a basic knowledge of topology,

such as may be found in J. L. Kelley®s General Tovology,.

Peano's paper may be found in Mathematische Annalen,

vol, 36, 1890, pp. 157-160,




Part I

The first part of this paper will be a brief introduction
to finite automata and a theorem oonerning the types of
tapes they define. The contents of this part are based 5n
the paper "Fihite Automata and Thelr Decision Problems" by
M. O Rabin and D. Scott,.

The followipg remarks are form the introduction to the
paper: |

"In the last few years the idea of finite automation
has appeared in the literature. These are machines having
only a finite number of internal states that can be used
for memory and computation. The restriction of finiteness
appears to gilve a better approximation tobthe‘idea of a
physical machine,

V "(In this paper)...the definition Q% the one-tape, one-
way automaton is given. These machines ére considered as
'black boxes' having only a finite number of internal states
and reacting to their environment in a deterministic fashion."

The automaton, then, can be thought of as a black box
which can be asked questions and will gilve "yes" or "no"
answers. The questions are an arbltrary finite sequence of
symbols.' The number of'questions that can be asked is

infinite. For this paper, the questions can be thought of




as belng given on one-dimensioﬂal tapes. The machine will
have a reading device that can read one symbol of the tape
at a time and then advance the tape and read the next symbol,
‘When the.tape is completed; the machine gives the answer.

| The internal workings of the machine will be generalized

to internal states which represent stable states of the machine

at discrete time intervals.

The answer the machine gives is determined by the final
state the machine is in when it finishes the tape. Some
States are in the "yes" category and some are in the "no":
category. It is assumed that all states are in one‘category
or the other but not both, ﬂ

Before a formal definition of an automaton can be
glven, some notation and preliminary definitions must be

established.

A finite alphabet £ 1is given. A tape 1s any finite
sequenée of symbols from =. The empty tape, with no
symbols, 1s denoted by N .. The class oﬁ all tapes is denoted
by Te If x and y are tapes in T, then iy denotes the tape
obtained by splicing x and y together; or by concatenating

the two sequencese. That is; if

X = G6,0,..,G;, and Yy =%5..7 then XH:@”Q;Q.”Q

In their paper Rabin and Scott do not define what it
means for two tapes x and y to be equal. Based on their
use of equality of tapes, I will supply the following

definition:




Let ;X= 6;6; \t'a—

and y = VA SR

We have x = y if n = mn and

VGIJ=J:)) 6;'“'!;,)\”;@\’5}:\

That is, the symbols must be identical and must come in the
same order,
The two laws AX = XA = X X{yz) = (xy)Z

follow immediatel& since A, containing no’symbols, does not
change x, and since grouping the symbols has no effect on
their order,

x denotes XXX+e+eX, a tape of n x's. Also, by convention,
X0 ="N., =
| "A formal definltion of an automaton will now be given.

Definition 1. A finite automaton over the alphabet L is

a system A = (S, M, sg, F), where S is a finite non-empty
set (the internal states of A), M is a ﬁunction defined on
the Cartesian product S x & of all pairé of states and
'symbols with values in S (the table of transitions or moves
of A), 8o is an element of S (the initial state of A), and
F is a subset of S (the designated final states of A).
Let A be an automaton, The function M can be extended

from S x2Z to Sx T by the following recursive definition:

M(s,A\) = s for s in S

M(s,x€5‘= M(M(s,x),0) for s in S, x in T

 and € in = . |




From this 1t follows immediately that
M(s,xy) = M(M(s,x),y) for all s in $ and X,y in T.
The set of tapes for which the automaton gives a
"yes" answer is now defined: |

Definition 2. The set of tapes accepted or defined by the

automaton A, in symbols T(A), is the collection 6f all tapes
x in T such that M(sg,,x) in in F. |

Throughout this discussion when a set of tapeé is
referred to as heing defined by an automaton, this will mean
that the tapes are strictly defined; ﬁhat is, the specified
tapes and‘only the specified tapes are defined.

Definition 3. The class of all definable sets of tapes,

in symbols & , is the collection of all sets of the form
T(A) for some éutdmaton A

’ Tn order to state the theorem which characterizes
definable sets, I will need the following additional
definitions: s

Definition 4. An equivalence relation 3 over the set T of

- !
tapes is right invariant if whenever xRy, then xzRyz for

all zxin T;

There is also an analogous definition of left-invariant

equivalence relations.

Definition 5. An equivalence relation over the set T is a

congruence relation if it is both right and left invariant.
Thus, if R is a congruende relation, then xRz and yRw

implies XyRzwWe

Letting [x] denoteAtheﬂéquivalence class containing x




and [y] that containing y, the following is a definitioh of
the product of two equivalence classes: [x] Lyl = [XY]
This definition 1s unambiguous since we have, from above,

| xﬁx' and yRy; imply xyRx'y'.

Definition 6. An equivalence relation over T is of finite

jindex ‘if there are only finitely many'equivalence classes
under the relation,

We may now state and prove the theorem characterizing
definahle sets.. This theorem is due to J. R. Myhill,
THEOREM 1. (Myhill) Let U be a set of tapes. The following
three conditlons are equivaient:

(1) U is in & ; that is, U is a definable set of tapes.

(ii) U is the union of some of the equivalence’classes
of a congruence relation over T of finite index.

(111i) The explicit congruence relation = defined by
the condition that for all x, y, in T, x=y if and only if
for all z, w in T, whenever zxw is in U, then zyw is in U, and
conversely, whenever zyw 1s in U, then zgw is in U, is a
congruence relation of finite‘index.- |
Proof: The three conditions will be proved equivalent by
showing that (1) implies (il) implies (i1i) implies (i).
T. Show (i) implies (ii).
Assume (i). Let U = T(A) for some automaton A. Define a
relation as follows: xRy if and only if M(s,x) = M(s,y)
for all S in S. Show R is an equivalence relation; that is,

show R is reflexive, symmetric, and transitive.




(1) xRx. Pf: M(s,x) = M(s,x) implies xRX.

(2) xRy implies yBxe Pf: xRy implies M(s,x) = M(s,y),
but then M(s,y) = M(s,x) implies yRx.

(3)‘ny and yRz imply‘sz. Pf: xRy and yRz implies

M(s,x)

1l

M(s,y) and M(s,y) = M(s,z), but this implies that
" M(s,x) = M(s,y) = M(s,z) and M(s,x) = M(s,z) implies xﬁz.

Show R is a congruence relation; that is, show-R is
right and left invariant. v

(1) R is right invariant:

Assume xRy and let z be any tape iﬁ T. xRy implies
M(s,x) = M(s,y) for all s in S. Then |

M(s,xz) = M(M(s,x),z) = M(M(s,y),2) = M(s,yz), for all"
s in S implies xzZRyz.

(2) R is left invariant:

Let M(s,z) = s'. M(s,zx) = M(M(s,2z),x) ='M(s',x) = M(s',y)

= M(M(s,z),y) = M(s,zy) for all s in S implies zxRzy.
Therefore, R is a congruence relation over T,

It must now be shown that R is of finitefindex.

R is of finite index (i.e., R generétes only finitely
many equivalence classes,) because M(s,x) can assume only
finitely many different valﬁes. If x is a fixed tape and
r is the number of internal states of A, then the number of
equivalence classes is at most r¥., This is based on the
theorem |f: X‘*‘Y[é;)XNYI.

It remains to be shown that U is the union of some of

the equivalence classes of R. It will . in fact be shown that
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U = L}([i}] for all x in U) whére {(x] denotes the equivalence
class containing x under the relatioﬁ Re.
(l) Giveh N in U, we immediately have
.[y] c Uil for'all x in U)
therefore y € U (] | for all x in U)
therefore U € U([x] | for all x in U).
(2) Given y € U([x) | for all x in U). Then>
y € [x] for some x € U, This implies that
xRy implies M(SgsX) = M(Sgs¥)e
But since x € U, M(s,,x) € F. So M(so.yd € F
and we get y € U, . ,
Therefore U([x] | for all x in U).
Therefore U = U ([x] l for all x in U).
Thus, it has been shown that U is the union of the equivalence
classes under R of thase tapes in U. This completes the

proof that (i) implies (ii).

S
o

IT. Show that (ii) implies (iii)e. |
Assume (ii). Let R stand for any congraence relation satisfying
the conditions of (ii). Consider the specific relation =
defined in (iii) in terms of Ue Show = 1is a congruence
relation of finlte index. |

Let x and y be any tapes such that xRy. Suppose that
for any z,w in T zxw 1s in U. R 1s a cohgruence relation
implies that zxwRzyw. Since U 1s a union of equivalence classes

of R (from ii), then zyw is in U. Now, suppose that for



\O

any z, w, in T zyw is in U. xRy lmplies yRx, so the sane
arcument shows zxw is also in U. Thus, the conditions for
X=y are fulfilled. This whole argument shows that if xRy,
then x=y. In bther words, = 1s a relation making fewer
distinctlons than thé relstion R.

That = 1is a congruence relation follows from its
definifion. That is, given x=y, show that for ahy P, q
in T, éxqzzpyq.A x=y implies that for all z, », q, w in T,
(zp)x(qw) is in U if and only if (zp)y(qw) is in U. We V
then have z(pxq)w is iﬁ U if and only if z(pyq)w is in U..
Thus, DXQ=DPYyJe.

Therefore, since.R is of finite index, = must necessarily
be a congruence relation of finite indexe.

This completes the proof that (ii) implies (iii).

TIT. Finally, show (1ii) implies (1).

Assume {1ii). An automaton A must be found which strictly
defines U; that is, an A must be found such that U = T(A).
Let S be the set of equivalence classes?under the congruence
relation = ., Define M as M([x],0) = (xdJ

where the brackets indicate“the formation of equivalence
classes under = . Show M is well defined.

Consider x=x' implies [x] = [x']. Show M([x],0)

I

= M([x'],0). * x=x" implies that x¢=Xx'0C since = is right
invariant. Therefore [x¢] = (x'¢] and M([x],0) = M([x'],0),

which was to be showne.
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Let s, = [A] and let F be the set of all {x] where x
is in U. Show U is a union of equivalende classes under =,
This means that it must be shown that U = UJ([x] | for all x in U).
(1)\ Pick x € U. By ﬁefinition x € U([x] | for all x in U).
Therefore, U € |J([x] | for all x in U).
(2) Pick y € U([x] | for all x in U). Then for some
x € U, y € [x] implies x=y. Since AxA € U then hg% eU>yel
byvthe definition of = . So we have |J([x] | for all x in U)
€ U. Therefore, U= Y([x] | for all x in U).
Extending M as before from S x 2. to S x T we get
M([x),y) = [xy] for all x,y in T. We now need M(sgyX)
= M([Al,x) = [x] is in F if and only if x is in U.
(1) Given (x] is in F. Then x is in U since U is the
union of equivalence classes under =,
(2) Given x is in U. Then [x] is in F by definition
of F. ‘
This gives the result that U = T(A).
This completes the préof that (iii);implies (1), and

the proof of Theorem 1 is complete.

A simple application of Tﬁeorem 1 is the following:
"Show that the set U of all tapes of the form 01101 for
n =FO, 1, 2, ese is not strictly definable by any automaton,
Suppose to the contrary that U is in d; that is, suppose
U is'defipable. Consider the relation = of Theorem 1(iii).

This relation must be of finite index, so for some integers

-
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n £ m we must have O%=0m, It then follows that

o1 0B =01 0% since = is a congruence relation, and hence

oN10M™ is in U since U is a union of equivalence classes under

Il

« But this contradicts the definition of U above, Therefore,

U cannot be in d.

Because of the limited nature of this paper, this 1is

all of the finite automata theory that I will present..




Part II

In this part I will present Peano's paper which defines
a continuous function on the unit interval, the lmage of

which fills the unit square,

geonts 1 __ 12
I will then present a sequential machine, due to Samuel
Eilenberg, which also defines this function. At the end,.

some other applications of Eilenberg's sequential machine will

be glven.




First, I will give a discﬁssion of "Sur une colurbe,
qui remplit toute une alre plane" by G. Peano. Peano's
pﬁper is a definition of his function. He presents his
function.in the following Qay:

Denote the numbers in base/s notation. Sequences will
then be made up of the Qumbers 0, 1, and 2.

Consider a sequence T = 0.2183834..

For a term a of a sequence, define the functlion
ka = 2-a, the compliment of a. We then have k0 = 2, k1 = 1,

)

and k2 = 0. Note that.

(1) b= ka implies a = kbes Pf: b = 2-a implies

i

a = 2-b.

(2) kxa=a(mod 2). Pf: This can be easily  checked
by substituting in the numbers 0, 1, 2, and
observing that it is true.

| Let kMa represent the ‘result of applying k to the term a
n times. Also note the following:

(3) If n is even k™a = a. This 1s because X2a = 2-(2-a)
= a, Thus, k2 = I (the identigy function). For
a number n even, there exists a q such that n = 2qe.
Therefore k1 = k¥ kZ...kia = I,I,...I.a = a.

(4) If n is odd, k™a = ka. This is because for n odd
there exists a q such that n = 2q+l. From (3)
above, we have kBa = k2Atly = ¥2Axg = Ika = ka,

(S)Imzzn(mod 2) implies kWa = kfa, This is because

m=n(mod 2) just says that m and n are either
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both even or both odd. From (3) and (4) above,
it then follows that kMa = g,
Define two sequences X and ¥ corresponding to T,
X ='O,b|blb3... Ty = 0eCyCzC3000 |

with these relations:

a axta
b, =a, b, =k?*a; by=k? ¥,
_ az""a\‘_“l“ ° o4 -2
by = k 27 Ao
a ata ‘ 4a+eesta,,.
c, =kK'a, ¢, =k ' Ta, ey = KF1 23 g

where the ai's are terms of T.
We then have that b,, the nth term of x, is a,,., » the
nth odd term of T, or 1lts compliment, depending on whethef
the sun a2+of-+azn,2 of even terms preceding it is even or

th even term.

odd, Similarly for Y regarding the n
The relatians may also be written as
a, = b, a,= kb‘c, ag = kc‘b2 ay = k

= kCirHCatesetCn,
= Kk bh aqn n

2aon-y

I will now show that this is true. To begin with,
two lemmas are needed,

Lemma 1. b = kPa implies a = kb, | Pf: If n is even
k’a = a and ¥"b = b. Therefore a = ka = b = k', If n

is odd, kPa = ka. . Therefore, b = kflg = ka and kb = kb,

lf

So we have b = ka implies a = kb = kMo,
Lemma 2. a = kPb implies a=b(mod 2).
"Pf: Ifn is even a = k' = b implies a=b(mod 2).

If n is odd a = kb

kb and kb=b(mod 2) implies a=b(mod 2)

by substitution.
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Therefore we have

 agtagte s etag,. L antagteeeta,,.
by = kK72 7% mz g, > ag,, = kKA -2 p
by Lemma 1. Also, a,=c,(mod 2) since c; = k™a, and by

Lemma 2. Continuing, a,=c,(mod 2), etc.

- ka1+aq—+...+aln-lb“ - kC“fCl“"'oo‘*‘on-\ b
n

Therefore, a,,.
by (5) above.
Notice that given T, X and Y are determined, or glven
X and Y, T is determined by the two sets of equations given
above., This fact will be used later to show that Peano's
function is onto.
Define the value of the sequence T to be the quantity

(analogous to a decimal number in the same notation)

q' q LIS Y q .y
t = veel T = §.+4§i+ +-§%+

To every sequence T there corresponds a number t € [o,1].
The.numbers t € (0,1) are divided into two classes:

(X) The numbers different from 0 and 1 which, when
multinlied by a power of 3 give a whole &umber. They are
represented by‘two seguences: |

T = 0va,85¢0027.,8,2226.0
- where a,, = 0 or a% = 1l
This sequence can be shown’as follows to gilve a whole

number when multiplied by a power of three:

. = \ 2
23'-““ “'.%‘nﬂl + = 3+ {l‘*‘g +%’a,_ E RN ]

\ 2
= 3w [Tm] = 3
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: Q( q?_ Qn \
Therefore, 8,838y 83222s00 = 3 *~§3_+ e +T?;« 3"

and this number multiplied by 3n gives a whole nunmber.
The. second sequence. representing t of class & 1is
T' = 0sa,23¢0e8p-,83000...
where al = a,+l.

This sequence is of the required type because

a, a ql ' - .
3ﬂ[_§+.§€—1+\\t+-—§1+0 "'] = 3“'Q‘+..~+Q,\+0n\

which is a whole number.

The second class is

(p) The other numbers; they are represented by only
one'sequénce. | |

With the correspondence between T and the palr of sequences
“(X,Y) and with T and T' being two seguences of different
forms, we need to show that

val T°¢

1

val T

Il

val X val X

val Y = val Y* 5
where X and Y correspond to T and X' andiY' correspond to T'.

To do this we will need the following lemma:

Lemra 3. k90 = ¥tz

-Pf: If n is even k0 = 0 and kn+l

2 = k2 = 0,
If n is odd k70 = %0 = 2 and Wl = 2,
To shdw the desired correspondence,goonsider the series
T = 0. 8,8,00085,.38,n-, 8210222040

where a,,., and a,, are not both equal to 2(If a,,  and a,
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were both equal to 2, then the series would be in general

the same. If, however, we have only a,, = 2 then the seriles
is not in general the same since a,, 1s an even term but the
first 2 6f the infinite seduence of 2's above is an odd term.)
This is a class d series., We have the corresponding X
sequence, X = 0.b\DyeeeDpniy Dpybprgiece

with
.+ '+azn_1 a
Zn-t

= Db = o6 = ka:l+."+3-1n~l+ann2

by = kK
bY\+\
since a,teerda,,.q ta,aF242+7 7 = a4 c4a,, (mod 2).
The other class & series corresponding to t 1is
T = O.a,al...aqm_ma!“v\agAOOO... and X' = 0aD|oeeb, DAD, oo
The first 2n-2 terms of T' coincide with the first 2n-2 terms

of T. Also, the n-l1 terms of X' coincide with those of X.

The other terms are determined as follbws:
a +ooo+a

1 = 2 *2h-2 v

by k Qan-y

Agte e c4a +al
] — 14 _— e — 2 -
bl bl = c = k7Y -2z T=an (),

We congsider two cases:

~
Case l.vr By < 24°
3 v P 1 —
If a,, is 0 or 1, a%, = a,,*1 and aj, | = 2.,

Therefore b} = b, . by substitution..

We have that a,tayt:-°+a,,_, +a}, = aytercta,, ,ta,, *1
so that by lemma 3

‘ " = pe _ eee - ka2+ ~-'+a1n_z+a{n0 — kal+---+am2
Therefore, the two series X and X' coincide in form and in

value,
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o 2 = =
Case 2, Ay,n = 2 and a,,_, = 0 or 1,
e E v = v =
We have that aln 0o, as CH +1 6

Let s = a,+a,+°**+a,, .

Then by = k%, o+ b, = bp. = *°¢ = k52
since adding a,, = 2 to s does not change k°2 (i.e.,
K2 = k5%22). Also by = K%al, | , by, = bh, = 77 = k%
since a%, = 0 and x°0 = ks+a{"0. |
Note that B

(6) If a' = a+l _then it follows that .a222... = ,a'000...
We must show-that b ...b b eee = obocabibl i .o

n Undad

There are 2 casSes,

Case 1, s is even,
Then we have by = 835y Dpyy = Puag = "°° = 2
! - L} [} —— 1] — 0 e
' b‘f\_ a?_r\—l bYH-\ - bn+?_ - = 0

Therefore val X = b\ byeeeb, 12 ,4.,2222...
and val X' = .b\bz..;bhsxagﬂﬁ,‘ooo...
and it follows that val X = val X' from (6) above,
Case 2, s is odd.
We then have b, = 2-a,,., D, = Dby, =°"""=20
b} = 2-(a,,_, +1) = (Z—alh_‘)—L; bl = Phye = 70 = 2.
Therefore val X = b\by...b,_ (2-a,,_,)000...
and val X' = b by...by_, [(2-a,,)-1]222...
It then follows that val X = Val X' from (6) above.
Therefore, the two fractions X and X', althougn they have
differen§ forms, have the same value,

It has bheen shown, then, that in all cases val X = val X',

Similarly, it can be shown that val ¥ = val.¥',




g ~ o= a7 T S aTs el - - H
where t = val 7, and X and ¥ to Te Define the

following function:

/
i
N

-

o

function (x,y)(t) is conbinuous ab any poilnt t, € [0,1]. 

Let x = val X and y = val Y. Two numbers x, and x,
are close together when |z =x,1 = § is Small,

Given &> O@, Show "ther» exists § such that for \t-t | ¢ §,
\(x,v)(ﬁ}‘w o,y by V¢ €. This 1o true whenever
x(t) = x(e)l¢e & and (7{8) - y(t,)l< €, using a square
neisghborhood, B2y that for a given § , \t-t | < §, 1implies
t correspondes to t, in the Tirst 2n terms. It follows that

[ <

X and y corresponding to 1 colncide in the first n teryus to

the x, and y, corresponding to t, Since the Fflrst n terms

of x, y and Z,, Vo Aare determined hy the first 2n terms of

t and t, resvectively, and since for T and T' we have .

val X = Val X' and val ¥ = val Y*'.

1

Pick a number €, with €, = ,000.,.1 where the 1 1is
in the n place. TFor |t-t,| ¢« §, we have
bx(t) = x(t,)| ¢ €0 and |y(t) = ylt,)] ¢ €,

/

since x(t) coincides with x(%t,) in the

irat n terms, and
gimilarly for y(t) and y(t.). Therefore, for a given €
pick § < S“ for some n suech thzt €,¢ € . This gives

|x(t) = x(to) ) ¢ € and \y(t) - y(to){ 4 €. Hence, the

desired result ig shown.

~—
b
e
O
I
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I~
-
@O
=
jo)
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in
{n
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ot
(¢
=
{]
(¢
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determined, . we can then rmine T, and hence L, gilving .
. = ®
,;
. A 1 2 T e £ y
us (x,y)(5) = (x,y). Thercfore, (x,y){(t) iz onto.
Ve oy . N L . P . -2 E - 2 j
Thus, (x,y)(t) is continuocus =wnd maps I onto IS, ‘
Tt may help Lo clarify the function (x,y)(t) by noting 4
the following scheme for getting from t to (x,y)(t):
,

/T—;———-—,——>- Yoo val ¥, val ¥———— XY )X = ca,8, 000

’b \ 1] i i n n
: v v ¢ e vt . 2 _
T .Y Tl X a] Y yvily

——F A - c,b‘..bzooe

This concludes my discussion of Prrno's paper,
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a Tinite number of internal

Wext T will discuss Eilsaberg®s macnine which deflines

Tis machine 1s nob an sutomaton because

there are no final states »sn?d there 1s an output function.
Tt is similar to an automaton in that it 1s & machine with

2tes, reads a Tinlte alphabet,

has an initlal state, and hoz a functlon giving the state
2z a3 a function of the latters of the alphabet,
The machine is as follows:

The invut and output numbhers ars written base 3. The

inout tapes conslst of bane 5 representations of the elements

of the unit interval, =2nd are writhten as
— ! > .
T - .ait’})albz..sﬁhbh...
The a's represent the odd terms, the b's represent the cven

terms.,.

The function %, to he used in defining the output sequences,

ot ]

i3 defined as
x : {o,1,25— {0,1,2]
k(x)'z 2-X
TL{S is the same functlon k zas avpeared in Peano's papere.

L.

The output sensuences, written =23
X = .O\CR.IO
y = ‘dldatb.

ars defined as follows:
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Tr shound be nobted that thous dafinitions are the same as
. - s - N ~ o e I I P Py - PO Y
Pesano's since the bh¥s ropresent the even terms and the a's
- . &

are the odd terms of the original secuence Te
The machine i3 deflned as follows:

3 = {(p,q) ) P,q integers mod 2}

M{(p,a),(a,h)) = (p+talmod 2), g+b(mod 2))

The outnut functlon U is

U((p,q),{(a,b)) = (%, 1P, where k% gives a term
"0of the X sequence and e PTa, gives a term of the ¥
SeqUuence.

1

Tt should he noted nere that the ourvose of the

O]
o
R
ct
®
¢}

-y

belng ¥ of integers mod 2, 'is to designate whether certain

73
o
¥
fee
=
w

numbers are even or odd. The purpose of M 1s to keep track
of the even. or odd values of the sum of the even terms of T

and the sum of the odd terms of T That is, say p, being

4

an intazer mod 2, represents whether the sum of odd terms
v iy

<
)
o

a2t a pzarticular. point in sequence 1s even or odd. Adding
the term a 13 adding the next odd term, and taking p+a mod 2

summation of odd

[

ig designating p+a, the next step in th
terms, as odd or even. The same thing 1s happenling with

ar

q+b. It should also be noted that U deflines X and Y the

same way as Pesno does. That 1s, ¢ zives the even or odd
M




E
|
|
|
x

23

value of 2ll the even terms hefore the term 2 in the definition,

and pta does the same for all the odd terms before the term
De

For exwmoie, rememhering that T = .a\b\..., let p
represent the even or odd value of the sum of odd teras
a,ta,teretay and let Gy represent the even or odd value of
tne sum of eveun terms b,+by+e-++b,. Say the machine is in
the state (Q“,q“) after having read through the letter b,
of the sequence T. The next étep of the machine is to read
(8y21+D04, ). The state change'is 2s Tollows:
M{{Pnsants(@ne »Dney ) = (ppta,, (mod 2), q,+b, . (mod 2)),
Pata ., (mod 2) being the even or odd valus of the sum
ayta, e cta gt and g, +b (mod 2) being the even or odd

ah*l M+

value of the sum b\¥b1+'--+b“+b“4\. The output 1is as follows:

Ty ), where g
N-vy ’ < x.j_n

Tl : _ q
I"((’Qniqn)r(ar\*.\!bn.*.\)) - (1( Y\a‘“-‘—\'
1s the even or odd value of sven terms preceding 8y, and
Pytayng, 18 the even or odd value of the odd terms preceding
buney (Using pota,y, as it is instead of taking it mod 2
works here for the same reason it works in Peano's paper).

This defines the machine, and wlth the comments glven

above 1t can be.seen to be the same definition as that given

by Peano for his function,

Eilenberg also gave a way that the action of his machine
may be plctured. It is as follows:

The fonr states of the machine revresent the four

symmetries of the square:



fig 1

fig 3
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(0,0) (0,1) (1,0) (1,1)
Thus, two svmmetries represent .the even or odd value of the
sum of the even terms and two symmetries represent the even
or odd value of the sum of the odd terms.

At the first stage of the machine's action, after having

read a b , the unit square may be pictured as follows:

2 The red line shows the "path"
N that 1s to be taken in
\\ P constructing the picture,
1 N / beginning at the origin.
o)
v 1 L

It should be noted that each of the nine blocks represents
a symmetry of the square,

This picture may be thouzht of as representing the first
aoproximation of a sequence of approximations to to Peano's
mavning,

What the ﬁéchine can be pictured as doing 1s the following:
Reading two digits of a number written in base 3 designates

a 1/9th-segment of the unit interval., For example, the

unit interval broken up to base 3 sesments looks like this:

1 L | ¥ N I3 ‘ J ]
T T T ] ] ] ]

l oo o1 oa 40 14 HieN 20 P! aa |

s O = 8 } a {
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. . . t
That is, .10 designates the red intervel, 1/9 h

interval,

of the unit

Bach nineth of the interval is mapped into one of the

nine hlocks of the unit syuare given in figure 2.

with the same example, the segment .10 is mabpped a

"Keeping

follows:

The state functlon M gives whilch symmetry of the square

the image wlll be. We have then

K(5g, (a,,b,)) = M((0,0),(1,0)) = (0+1(mod 2),0+0(mod 2))

Thus, from figure 1, we know the image 1s the symmetry

£>

(10)

Where to vut this symwe:ry 1s debermined by the output

function U. Thz unit sguare may be thought of as set on

3 - . B -~ .
he co-ordlnnte plane,

# (base 3)

the %,y axes of

X (base3)

O 1 2

Thus, the x term of the output function U giveg the x co=-

ordinate and the y term gives the y co-ordinate,

In onr exaunle, .10 1s mavped =28 Tollows:

U((Pardals(a,,b,)) = U((0,0),(1,0)) = (x%1,x""L0)

= (1,2).

This means we put in the block designated by (1,2):
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2 N\
{
[0}

o 1 2

This can be seen to fit the original drawing in figure 2.

The action of the state of the machine in the output

Tunction U may be thought of in the following way: The

state the machine is in is a symmetry of the square and gives
an orientation to the square.
. This orientation may be thought of as giving the

order in which the subdivisions of the square come. For

‘example, the machine begins in the initial state (0.0) which

corresnonds to the symmetry . This symmetry gives the

following orientation to the blocks in the unit square:

%\\ A
A AN
{
Py / \\ \
1 A g N
) ,I y
/ N
o |/
0 1 .

Thus, when the output function U is determining which block

the next symmetry is to go in, it can be thought of as

considering the blocks in this order:

a3 | % |9
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With different symmetries the blocks will he considered in
a. difforenﬁ order 2and ths Tunction k (in the output function
U) will operate so as to reflect this. The necessity for
this can be seen more easily in the further discussion of
the operation of the machine below,

When the first step of the machline is done for every
1/9th segment of the unit interval I one obtains the entire
picture of figuré 2. At the second stage of the machine's

action, after it has done the mapping of the next two digits

a&bg. the unit square may be pictured as follows:

l !
a:. 4 *'
A4 AN "4~ 4
p J’
1 1 E
o |
— AN
2 !
i
o 1| |
0 ,'

R
1 A

where each l/9th?block of this square 1s a copy of the original
in figure 2 (block (0,0), for example), 6r a reflection of
it (block (0,1), for example).

The probess'fOr finding the image of azb; is the same
as before. The symmetry and the location tuple at this second
stage will apply to the block designated by the operations
of the machine on a,b; in the same sequenoe.' In our
above éxample, this means the symmetry and location results

for a,b; will apply to block (1,2) in figure 6., After the
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second stage we have two digits each for X 2nd Y. TFor example,
X = .12 and Y = .20 represents the blue segment in figure 6.
It should be noted here that figure 6 is obtained by

running the machine through two stages on 81 different

U =

sequencess. Running the machine through two stages on a ziven

sequence would produce a picture like this, showing the

segments from the first and second stages:

Successive stages of the machine nroceed similarly;
that is, each stase n+l breaks up each block b“i of the previous

stage into 9 blocks. Block b“i then takes on the appearance

. of figure 2 or a reflection of it.

Here one can intultively. see how the image point of a
given point z in the unit interval is obtained. Usinz the
sequential representation of a tape 2*, the machine geﬁerates
a nested sequence of squares whose diameters go to zéro.

Call the first square genérabed at the first stage s,, the

second square generated at the second stage 55, etc, with

¥The sequential revpresentation of a tape z, when taken
term by term, 1s just approximating z with successively smaller
segments. For example, the approximation of 2 = ¢10 % e«
looks like this:

K
| ) — i % {
oo © b | ——— A .=y
6 0 o 1 t 2 ;
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Each sauare s contains a serment of the function £ , the

-1 -‘ . N s
3 £N avproximation to the square-filling curve. Thus, one
geta those seoments of the approximating functions £  which

converse to the image point  lim rs(z).

1-ye0
Retnrning to the machine action agalin, 1t should he
noterd what the effect of the functin Xk is in the picture,

£

In the first stage, X keeps track of whether one is moving
up or down the vertical columns of the subdivided square of
ficure 2, That is, for x co-ordinote 0, the y co-ordinates
come in the same order as they do on the unit interval;
howeﬁor, for x co-ordinate 1, the y co-ordinates come in
reverse order.since the function f\ 1s then moving down the
axis.‘ Upon examining the function U, it can be seen that
. for a2, =1 the function kX acts on the y co—ofdinate, changing
‘it to its compliment. Also note that k does not act on the
y co-ordinate for a, = 0ora, =2

On successive stages of the machine's action, ¥ must
also k=ep track of whether or not the basic block oriéntation
of Figufe 2 has been reflected, thereby Changing the order -
the x or y co—ordinates must come in. This means thuat at
any <iven stage the machine must keep track of what has
hapnened bhefore. TFor. this reason, the machine must keep track
of the even or odd value of the sum of the even and odd
terms rather than just of the particular term being read

2t any given stage of the machine's action. The stages




{p,q) of the machine, tham‘store up o rocord of whqtbhqs
haprened in the pfevionx act ion of the machine, The fact
should be noted that only a finite number of distinct things
can hanpen in this machine even though 1t generates Infinitely
many dilfferent functions.

Eilenberg's machine gives another way that Peano's
function may be thought of and proved to bhe a continuous
maprping of I onto IZ. This is a rigorous development of the
Antuitive idea I suzgested before. We noted that at each
stace of the machine we got succersive approximations

2 r++e Of Peano's function. BEach f; is continuous and is

&
2 functinon from a complete metric space to a complete metric
snace, The senquence {fn} can easily be shown to be uniformly

cauchy. Let f(x) = lim f,(x) for all x in T.
: . N> o

It can then be shown in succession that:
| (1) £ exists |
(2) {Tn} converges uniformly to f
1(3)'ffis continuous
(4) The image of f is dense in I2 implies the

image of £ is equal to I®

These are shown in the following way:

t must first be shown that {fns is uniformly cauchy.
It can be seen that at any stepe n of the machine's acfion,
where wa hsve f,, each blockvis of diameter dn = (1/30N/2.
Therefore, from the constructi-n of the function fnh, no

point of the unit square is farther than (l/BH)V@ffrdm some

i
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part of the function.

First stage, dy = (1/30W2

Thus, every boint of fy4q 1s within (1/3"W2 of some point
of fn; giving  d(fy,, T 41) € (1/3%)+2Z. Since this holds for
any n, this implies that for any € there exists an N such
that for n and m greater than N,

d(fn(x),fm(x))< € for all x in. I,
This means that {fn} is uniformly.cauchy.

(1) The 1lim fp(x) exists for all x in I because I
X300

- 1s 3 complete metric space, which means that each cauchy

Sequence in the space converges,

(2) {fn} converges uniformly to f because {fn} is a
uniformly cauchy sequence. The following theorem, which may
be found in Buck, is used:

Theorem: Given the sequence {fn} of functions defined

on E. If lim \fp(x) - fp(x)| = 0, then there is a function
n,my

XEE

F to which thefSequence {fn} converges uniforml& on E.

(3) f is continuous due to the following theorem,
also from Buck:

Theorem: If {fn} converges to F, uniformly on E, and
each function fy is continuous on E, then F is continuous

on E,
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12 imnlies Im f = IZ.

(") Im f dense in
Three lemma's are needed to prove this.

Lemra 1. The continuons image of a combact metric

“1s conmpact,

Lemma 2. A compact subset of a metric space is closed.

Lemma 3. In a compact metric space, a closed set is
equal to its closure.

It must,firét be shown that Tm T is dense iﬁ I2. This
is because the diameter of the bhlocks in the unit square
gbes fo ZET O, Tﬁus, given an épen nelghborhood S¢ of

diameter € in the unit square, there exists an N such that

for n > N the diameter of the blocks at stage n of the machine's

ac

L

tion is less than (1/3)€. This means that S¢ contalns
one. of the blocks aﬂ every stage n > N, which imolies that
Se contains a voint of Im f. Thus, Im £ is dense in 12,

Now (L4) can be shown. The Im £ is a continuous image
of the compact set I, so Im £ is compact by Lemma 1.

U R oy oy Lo Thils means

that Im f 1s closed by Lemma 2; in fact, then, it is equal

to its closure by Lemma 3. But the closure of a set dense

in I% is I%. Therefore, we have Im £ = Cl(Im f) = I2,
which was to be shown,
Thus, it has been shown that f, defined as the limit

of the sequence of functions dafined by Eilenberg's machine,

"is continuous, and its image 1is 12,




33

A simnle example of another application of the
sequential machine 1s in generating a step function.

Consider the step function determined by this graph:

{0+ \ ——D
a4 ! ——
4
.8 i ——
a4 o

1

RS ST
o) 1 23 b W7 B b LD

The fﬁncﬁEon mway be described by the following machine:
¥=1{1.2,3,4,5,6,7,8,9,0} |
s = {o0,1}
So =1

M(s,s) = 0

i

U(s,q) s0+s

There 1s only one state change in this machine. This is

“hecasuse only the first term of 2 sequence is needed to

-determine its image under the step function. All the

remaining terms.are disregarded with the machine in the

"zero" state, .




“Tor another, mors complex example, consider the

following:

The Peano function raised one dimension to two. Cantor's

function is aléo a dimension raising funotion, raisiﬁg the
zero-dimensional Cantor's set to one dimension,

fo 't C—>1I
where f, denotes Cantqr's function and C denotes the
Cantor ternary sét, and I the unit interval.

To write a machine that will perform this function,
uging é mapping technique due to J. L. Kelley, take the
triadic expansions of the elements of C and the dyadic
‘evpansions of the elements of I. We then have

fo s ctriadic 5 pdyadic

The machine 1s given as follows:

L= {0,1,2}
T={xlx =600 €]
S = s,

M(s,0) = s,

U(s,q) = 6/2

In this machine:there is only one state, the initial state.

This 1s hecause the machine has only one distinct action,

and 1t performs it the same at each staze regardless of what

it has done‘before.

To see the function of the machine, take

x € Ctriadio,

-, - .Q,.9
X~—-a‘ala3... - o-?’l*—_sa“'"‘
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The outnut function U divides each of the terms of x by 2y

giving the terms of the dyadic expansion. Thus,

Lo, aQ, Q
f(X) :.('%)(3*52*.3_?3*‘""))

QJ
EX

o] L2
JuES

siving the number whose dyasdic expansion is .

For example, let x = ,022020.,..(triadic expansion). Then

Flx) = %‘(% *%a-«l

0
2’ )

+ }%& +55 + o
= ,011010...(dyadic expansion).
Tt can be seen that whenever 0 < x-y < 1/3k then
0 < r(x)-r(y) < 1/2K 4 1/3K showing that this mapping is

bg’..

continuons. f is onto since for any z in I, z = .b‘bl

(dyadic expansion), we have f(x) = z where x is in C and
X = +(2b;)2by)...(triadic expansion)., This machine, then,

sives Cantor's function.
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