
Louisiana State University Louisiana State University 

LSU Scholarly Repository LSU Scholarly Repository 

LSU Master's Theses Graduate School 

2014 

Experimental assessment of expandable casing technology as a Experimental assessment of expandable casing technology as a 

solution for microannular gas flow solution for microannular gas flow 

Darko Kupresan 
Louisiana State University and Agricultural and Mechanical College 

Follow this and additional works at: https://repository.lsu.edu/gradschool_theses 

 Part of the Petroleum Engineering Commons 

Recommended Citation Recommended Citation 
Kupresan, Darko, "Experimental assessment of expandable casing technology as a solution for 
microannular gas flow" (2014). LSU Master's Theses. 1265. 
https://repository.lsu.edu/gradschool_theses/1265 

This Thesis is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It has 
been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Scholarly 
Repository. For more information, please contact gradetd@lsu.edu. 

https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_theses
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_theses?utm_source=repository.lsu.edu%2Fgradschool_theses%2F1265&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/245?utm_source=repository.lsu.edu%2Fgradschool_theses%2F1265&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_theses/1265?utm_source=repository.lsu.edu%2Fgradschool_theses%2F1265&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


 

 

 

EXPERIMENTAL ASSESSMENT OF EXPANDABLE CASING TECHNOLOGY AS 

A SOLUTION FOR MICROANNULAR GAS FLOW 

 

 

 

 

 

A Thesis 

Submitted to the Graduate Faculty of the 

Louisiana State University and 

Agricultural and Mechanical College 

in partial fulfillment of the 

requirements for the degree of 

Master of Science 

in 

The Department of Petroleum Engineering 

 

 

 

 

 

 

 

 

 

 

by 

Darko Kupresan 

B.S., University of Belgrade, 2011 

May 2014  

 



ii 

ACKNOWLEDGEMENTS 

I would first like to express my profound gratitude to Dr. Mileva Radonjic for her 

endless support, mentoring, guidance and utmost patience during the course of my studies. 

I thank my committee members Dr. Andrew Wojtanowicz, Dr. Mayank Tyagi and James 

Heathman for their help and guidance while serving on my thesis committee. 

I thank all of my friends and colleagues from the Sustainable Energy and 

Environmental Research (SEER) group for their help and support during this research. I 

am immensely grateful to Shell E&P for sponsoring this project and the industry advisors: 

William Portas, Bruce Selby, Mounia Bensouda. Other members of Shell personnel whose 

help is greatly appreciated are Richard Littlefield, Rodney Pennington, David Brisco and 

Daniele di Crescenzo. I sincerely appreciate the resourcefulness of Gerry Masterman, 

Wayne Manuel, Chris Carver (LSU PERTT Lab), Janet Dugas, Jeanette Wooden (LSU 

Administrative Coordinators), Maureen Hewitt (LSU International Cultural Center 

Manager), Rick Young (LSU Rock Mechanics Lab), Roy Hernadnez and Roy Keller (LSU 

Facility Services), Paul Rodriguez (LSU Chemical Engineering Machine Shop), and Barry 

Savoy and Dan Colvin (LSU Mechanical Engineering Machine Shop). I also thank Tim 

Quirk (now with Chevron), Richard Dubois (Halliburton) and Bill Carruthers (LaFarge), 

for providing the necessary materials, Dr. Dongmei Cao (LSU Material Characerization 

Center), Dr. Kyungmin Ham and Dr. Amitava Roy (CAMD), and Wanda LeBlanc (LSU 

Geology and Geophysics Lab Researcher) for their help with material characterization. 

Lastly, I would like to express my deepest gratitude to my parents, Slavko and 

Spomenka Kupresan, my brother Bojan and Nicole Mumphrey for their love and support. 

 



iii 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ................................................................................................ ii 

LIST OF TABLES ............................................................................................................. vi 

LIST OF FIGURES ........................................................................................................... ix 

NOMENCLATURE ........................................................................................................ xiv 

ABSTRACT ...................................................................................................................... xv 

CHAPTER 1: INTRODUCTION ....................................................................................... 1 

1.1 Background of Wellbore Integrity Issues ................................................................. 1 
1.2 Objective ................................................................................................................... 2 

1.3 Methodology ............................................................................................................. 3 

CHAPTER 2: LITERATURE REVIEW ............................................................................ 4 

2.1 Wellbore Cements ..................................................................................................... 4 
2.1.1 The Role of Wellbore Cements.......................................................................... 9 

2.2 Microannular Gas Flow .......................................................................................... 10 

2.2.1 Wellbore Integrity Issues ................................................................................. 10 
2.2.2 Sustained Casing Pressure ............................................................................... 14 

2.3 Expandable Casing Technology ............................................................................. 18 
2.3.1 Pipe Expansion (Plastic Deformation) ............................................................. 18 

2.3.2 Solid Expandable Tubulars .............................................................................. 20 

CHAPTER 3: EXPERIMENTAL METHODOLOGY .................................................... 24 

3.1 Expansion Fixture ................................................................................................... 25 
3.1.1 Hydraulic Power Unit ...................................................................................... 25 
3.1.2 Control Switch ................................................................................................. 25 
3.1.3 Hydraulic Cylinder........................................................................................... 27 
3.1.4 Upper and Lower Housing ............................................................................... 27 

3.1.5 Expansion and Retaining Mandrel ................................................................... 27 
3.1.6 Load Cell .......................................................................................................... 28 
3.1.7 Expansion Cones .............................................................................................. 28 

3.2 Composite Sample .................................................................................................. 29 
3.2.1 Metal Components ........................................................................................... 29 
3.2.2 Cement Slurry Design and Preparation ............................................................ 32 

3.3 Measuring Devices.................................................................................................. 33 

3.4 Microhardness Tester .............................................................................................. 34 
3.5 Experimental Procedure .......................................................................................... 35 

3.5.1 Expansion Fixture Assembly, Testing and Calibration ................................... 35 

3.5.2 Expansion Experiments ................................................................................... 36 



iv 

3.5.3 Force Measurements, Stress and Pressure Calculations .................................. 40 
3.5.4 Post-expansion Investigation ........................................................................... 41 
3.5.5 Optical Microscopy .......................................................................................... 42 
3.5.6 Thermogravimetric Analysis ........................................................................... 42 

3.5.7 Microhardness Test .......................................................................................... 43 
3.5.8 Flow-through Experiments .............................................................................. 46 

CHAPTER 4: RESULTS .................................................................................................. 51 
4.1 Visual Observations During and Post-expansion ................................................... 51 
4.2 Optical Microscopy ................................................................................................. 53 
4.3 Thermogravimetric Analysis (TGA) of Cement ..................................................... 56 
4.4 Microhardness Test ................................................................................................. 61 

4.5 Mechanical Effects of Expansion on Pipe (Casing) ............................................... 63 

4.6 Gas Flow-through Experiments .............................................................................. 65 

4.6.1 Gas Flow-through Test I – Control Sample ..................................................... 66 

4.6.2 Gas Flow-through Test II – 2% Expansion...................................................... 67 
4.6.3 Gas Flow-through Test III – 2% Expansion .................................................... 69 
4.6.4 Gas Flow-through Test IV – 4% Expansion .................................................... 70 
4.6.5 Gas Flow-through Test V – 8% Expansion ..................................................... 71 
4.6.6 Gas Flow-through Test VI – 8% Expansion .................................................... 73 

CHAPTER 5: DISCUSSION ............................................................................................ 75 

CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS .................................... 82 

6.1 Conclusions ............................................................................................................. 82 
6.2 Recommendations ................................................................................................... 83 

REFERENCES ................................................................................................................. 84 

APPENDIX A ................................................................................................................... 89 

APPENDIX B ................................................................................................................... 93 
B.1 Gas Flow-through Test II – 2% Expansion ............................................................ 93 

B.2 Gas Flow-through Test III – 2% Expansion........................................................... 96 
B.3 Gas Flow-through Test IV – 4% Expansion .......................................................... 98 
B.4 Gas Flow-through Test V – 8% Expansion .......................................................... 101 

B.5 Gas Flow-through Test VI – 8% Expansion ........................................................ 103 

APPENDIX C ................................................................................................................. 106 

APPENDIX D ................................................................................................................. 107 

APPENDIX E ................................................................................................................. 110 



v 

APPENDIX F.................................................................................................................. 113 

APPENDIX G ................................................................................................................. 114 

APPENDIX H ................................................................................................................. 115 

APPENDIX I .................................................................................................................. 116 

VITA ............................................................................................................................... 117 

 

  



vi 

LIST OF TABLES 

Table 2.1: Nine categories of API cement classification [13]. ........................................... 8 

Table 3.1: Dimensions of expansion cones....................................................................... 28 

Table 4.1: Results of the ICP mass spectroscopy conducted on fluid samples collected 

during expansion at 4% and 8% expansion ratios. High concentrations of K+ and Na+ 

suggest that free cement pore water is being squeezed out of the sample. Large      

increase in concentration of Ca2+, Fe3+, Mg2+ and S6+ with expansion ratio indicates 

dissolution     of  certain minerals within the cement. ...................................................... 51 

Table 4.2: Microscopy images of cement sample’s horizontal thin sections pre and     

post-expansion (4% and 8% expansion ratio). Images of expanded samples showing 

collapse of large air voids (AB) and precipitation of portlandite (P) within the pores. 

Fractures    (F) were also observed within the matrix as a result of stresses during 

expansion. ......................................................................................................................... 54 

Table 4.3: Microscopy images of cement sample’s vertical thin sections pre and post-

expansion (4% and 8% expansion ratio). Images of expanded samples showing      

collapse of the air voids and precipitation of portlandite crystals on the walls and     

within collapsed pores, as well as fracturing (F) of cement matrix. ................................. 55 

Table 4.4: Temperature ranges with endothermal peaks of different minerals which      

can be found in cement [5]. ............................................................................................... 56 

Table 4.5: Summary table (average) of the main numerical results for cement samples  

six days post-expansion. Hardness and Young’s modulus show decrease for all  

expansion ratios with 30% decrease being the highest for 4% and 8% expansion........... 62 

Table 4.6: Summary table (average) of the main numerical results for cement samples  

six months post-expansion. Hardness and Young’s modulus show increase in hardness   

in all samples post-expansion. .......................................................................................... 62 

Table 4.7: Expansion and pipe parameters. Decrease in the wall thickness and increase   

in OD/t affected the collapse rating, decreasing it up to 20% for the 8% expansion     

ratio. .................................................................................................................................. 63 

Table 4.8: Force measurements obtained during pipe expansion and calculated axial 

stresses. Values are for expansions with pipe only (Fe, σz – pipe) and for composite 

cement sample (Fe, σz – sample). ...................................................................................... 64 

Table 4.9: Gas flow-through experiments data. The time lag represents the time      

elapsed between recordings of the two transducers. Stabilized inlet (Pin) and outlet      

(Pout)  pressures used in the calculation of effective permeability of the microannulus 

(Kef). After expansion with the 2% expansion ratio cone, the microannular flow of      

2.11 D permeability was successfully remediated. The size of the microannulus (w)     

was found  to have been 5 microns. .................................................................................. 68 

Table 4.10: Gas flow-through experiments data. The time lag represents the time   

elapsed between recordings of the two transducers. Stabilized inlet (Pin) and outlet      

(Pout) pressures used in the calculation of effective permeability of the microannulus 



vii 

(Kef), the size (w) of 5.2 microns. After expansion with the 2% expansion ratio cone,    

the microannular flow of 2.31 D permeability was successfully remediated. .................. 70 

Table 4.11: Gas flow-through experiments data. The time lag represents the time   

elapsed between recordings of the two transducers. Stabilized inlet (Pin) and outlet      

(Pout) pressures used in the calculation of effective permeability of the microannulus 

(Kef). After expansion with the 4% expansion ratio cone, the microannular flow of      

0.14 D permeability was successfully remediated. The size of the microannulus (w)     

was found  to have been 1.2 microns. ............................................................................... 71 

Table 4.12: Gas flow-through experiments data. The time lag represents the time   

elapsed between recordings of the two transducers. Stabilized inlet (Pin) and outlet      

(Pout) pressures used in the calculation of effective permeability of the microannulus 

(Kef),  with the size (w) of 9.1 microns. After expansion with the 8% expansion ratio 

cone, the microannular flow of 7.04 D was decreased to 300 nD immediately after 

expansion.    Gas flow-through tests 24 hours and 60 days after expansion showed 

complete seal of  the microannular flow. .......................................................................... 73 

Table 4.13: Gas flow-through experiments data. The time lag represents the time   

elapsed between recordings of the two transducers. Stabilized inlet (Pin) and outlet     

(Pout) pressures used in the calculation of effective permeability of the microannulus 

(Kef), which had the size (w) of 2.8 microns. After expansion with the 8% expansion   

ratio  cone, the microannular flow of 0.66 D permeability was successfully remediated. 74 

Table 5.1: A summary of the volume calculations of compressed cement. The cement 

sheath was expanded to a length of 11 in. (28 cm) and the largest volume of cement 

displaced by the pipe (V) occured during the 8% expansion (10% of the initial volume   

of the cement). .................................................................................................................. 78 

Table A.1: Detailed indentation results of the control sample. The hardness was       

highest on the third indent (middle of the cement sheath), while the lowest value was 

located on the outer pipe side of the cement sheath.......................................................... 89 

Table A.2: Detailed indentation results of the sample expanded with the 2%       

expansion ratio cone. The hardness was highest on the first indent (closest to the        

inner pipe side     of the cement sheath), while the lowest value obtained was                   

in the middle of the cement sheath. .................................................................................. 89 

Table A.3: Detailed indentation results of the sample expanded with the 4% expansion 

ratio cone. The hardness was highest on the first indent (closest to the inner pipe side     

of the cement sheath), while the lowest value obtained was on the second indent. ......... 90 

Table A.4: Detailed indentation results of the sample expanded with the 8% expansion 

ratio cone. Hardness was highest on the fifth indent (closest to the outer pipe side of     

the cement sheath), while the lowest value was obtained in the middle of the cement 

sheath. ............................................................................................................................... 90 

Table A.5: Detailed indentation results of the sample six months post-expansion at 2% 

expansion ratio. The hardness was highest on the fifth indent (closest to the outer pipe 

side), while the lowest value obtained was in the middle of the cement sheath. .............. 91 



viii 

Table A.6: Detailed indentation results of the sample six months post-expansion at 4% 

expansion ratio. The hardness was highest on the third indent (middle of the cement 

sheath), while the lowest value obtained was on the outer pipe side of the cement    

sheath. ............................................................................................................................... 91 

Table A.7: Detailed indentation results of the sample six months post-expansion at 8% 

expansion ratio. Hardness was highest on the fourth indent (middle of the cement   

sheath), while the lowest value was obtained on point closest to inner pipe side of the 

cement sheath. ................................................................................................................... 92 

Table E.1: Results of force and stress calculations during expansion of the composite 

sample. Contact force and stress (Fc, σc) are used in calculations of radial force and   

stress (Fr, σr). ................................................................................................................... 111 

Table E.2: Results of force and stress calculations during expansion of the inner pipe 

only. Contact force and stress (Fc, σc) are used in calculations of radial force and       

stress (Fr, σr). ................................................................................................................... 112 

Table E.3: The difference in radial forces and stresses accounted for the cement       

sheath behind the pipe. .................................................................................................... 112 

Table H.1: Results of the used class H cement clinker analysis performed by LaFarge. 115 

 

  



ix 

LIST OF FIGURES 

Figure 2.1: Pore size distribution for hydrated cement is determined by a w/c ratio and   

the degree of hydration [8]. Permeability and strength are influenced by larger pores 

(over 50 nm), while the smaller pores of under 50 nm are mostly influencing drying 

shrinkage and creep............................................................................................................. 6 

Figure 2.2: Cross-section of 7-1/2-in. (19.05 cm) casing cemented in 9-5/8-in.            

(24.5 cm) casing. Fractures and debonding observed after pressure and thermal cyclic 

loads [20]. ......................................................................................................................... 11 

Figure 2.3: True stress-strain curve of metals with effects of loading and unloading. 

Expansion region represents the stress-strain curve during pipe expansion. Graph 

showing material under loading beyond elastic limit (yield point, B). During      

reloading, new yield point (F) is reached and with further loading, the stress–strain    

curve proceeds along FG, virtually as a continuation of the curve BC (adapted from 

Chakrabarty, 2006). .......................................................................................................... 18 

Figure 2.4: Installation sequence for Expandable Openhole Liner System. Expandable 

cone is run with the liner in the open hole and pulled after primary cement job. Pulling   

of expansion mandrel expands the pipe all the way to the hanger joint, latching it into 

place [62]. ......................................................................................................................... 22 

Figure 3.1: Schematic of experimental fixture and auxiliary equipment (not to scale). 

Hydraulic power unit is powered by turning the switch of the power source. Control 

switch controls hydraulics and operates the hydraulic cylinder which results in     

retaining or extending the expansion mandrel. Integrated load cell, which measures    

axial forces during expansion, is located between the piston rod of the hydraulic   

cylinder and the expansion mandrel. Force measurements are recorded and monitored    

in real time with the data acquisition system. The expansion cone is placed onto the     

end of the expansion mandrel and held in place with the retaining mandrel. Upper,   

middle and lower connector hold the assembly of the expansion fixture together (3D 

image of the expansion fixture courtesy of Paul Rodriguez, LSU). ................................. 26 

Figure 3.2: a. expansion cones with 2%, 4% and 8% expansion ratio; b. side view of    

2% expansion ratio cone. All cones have 14° cone angle and are made from AISI D2 

grade alloy steel which was heat treated to the hardness of 60 RC. ................................. 29 

Figure 3.3: Composite sample schematic. Top view shows the cement (red color) 

between inner (a) and outer pipe (b). The arrow points the direction of expansion.   

Bottom view shows the steel plate ring (c) welded to outer pipe and pipe coupling.    

Inner pipe is screwed into the coupling (the scale is in inches). ....................................... 30 

Figure 3.4: Metal components of the bottom part of the composite sample:                       

a. quarter-inch steel plate ring; b. 2.5-inch (6.35-cm) OD steel pipe coupling; c. pipe 

coupling welded onto steel plate ring; d. threaded part of the inner pipe being screwed 

into the pipe coupling; e. finished assembly. Final part of the composite sample is the 

outer pipe which is placed at the end and welded for the steel plate ring on the outer 

region. ............................................................................................................................... 31 



x 

Figure 3.5: a. 2D composite sample schematic. Expansion cone (shown in red) is     

pulled through the inner pipe, expanding its diameter and compressing the cement    

sheath (blue arrows point expansion direction). Pipe coupling, which was welded for    

the steel plate ring at the bottom of the composite sample, allowed screwing of the    

inner pipe into place. This pipe rotation enabled the inner pipe to be turned during       

first 24 hours of cement hydration in order to create the microannulus; b. 3D      

composite sample schematic showing the microannulus (red color, not to scale). .......... 37 

Figure 3.6: Setup and expansion process (front view). a. the expansion mandrel is 

retained (white arrow showing direction) in order to clear the lower housing for 

placement of the composite sample; b. the composite sample is placed in the lower 

housing and the expansion mandrel is fully elongated (black arrow showing direction) 

through the inner pipe; c. the expansion cone is slipped onto the expansion mandrel      

and it is held in place with the retaining mandrel which is screwed onto the end of the 

expansion mandrel; d. the retaining mandrel guide is screwed into the lower connector    

to complete the assembly and the rig is ready for expansion (blue tape showing the 

expansion limit); e. the expansion mandrel is retained (white arrow showing direction) 

and the expansion cone is pulled through the inner pipe (end of expansion stroke). ....... 38 

Figure 3.7: Setup and expansion process (top view): a. the expansion mandrel is    

retained (red arrow shows the direction) in order to clear the lower housing for  

placement of the composite sample; b. the composite sample is placed in the lower 

housing and the expansion mandrel is fully elongated through the inner pipe; c. the 

expansion cone is slipped onto the expansion mandrel. Magnified view shows the 

expansion cone being held in place with the retaining mandrel; d. the expansion    

mandrel is retained and the expansion cone is pulled through the inner pipe (red arrow 

shows the direction of expansion). .................................................................................... 39 

Figure 3.8: Hardness (H) and elastic modulus (E) are determined through 

load/displacement curve. A power-law fit through the upper third to half of the   

unloading data line intersects the depth axis at ht. The stiffness S, is given by the       

slope of this line (adapted from Alexis Celestin).............................................................. 44 

Figure 3.9: Composite sample flow-through schematic. Bottom view shows manifold 

with Swagelok fittings and Teflon tubing. Cross-sectional view shows location of the 

inlet and outlet ports with respect to the pre-manufactured microannulus between the 

inner pipe and cement sheath. Epoxy was added to prevent nitrogen flow from venting   

to atmosphere. ................................................................................................................... 48 

Figure 3.10: Flow-through experimental setup. The flow meter (FM) controls       

nitrogen gas flow (red arrows) throughout the experiment. Gas flows and enters the 

composite sample on the inlet manifold where the inlet pressure transducer (PT-1) 

records the inlet pressure. Gas flows through the sample’s pre-manufactured 

microannulus and the pressure recording on the outlet manifold’s pressure transducer 

(PT-2) provides the information of whether there is a connectivity and microannular     

gas migration through the composite sample. Pressure transducers are connected to       

the data acquisition system (DAQmax) and pressures are monitored and recorded in     

real time on the computer screen (LabView software). Magnified view shows    

installation of the Swagelok fittings which were sealed by Teflon tape to prevent any 



xi 

nitrogen leakage (gas flow-through composite sample schematic previously shown on 

Figure 3.5). ........................................................................................................................ 49 

Figure 4.1: Photo of a composite sample after expansion with the 8% expansion ratio 

cone. Fully hydrated cement, with a paste-like consistency, has been squeezed out     

from the holes on the outer pipe together with free cement pore water. The magnified 

view showing cement paste squeezed out from larger holes. ........................................... 52 

Figure 4.2: a. a cross-section of the composite sample immediately after 8%       

expansion exhibiting the cement sheath with softer consistency; b. drilled cement      

mini-cores from the composite sample were easily crushed under very small forces 

(between fingertips); c. a cross-section of the same composite sample five days after 

expansion. The cement regained its strength and there was no fracturing and    

deformation upon visual inspection. The width of the cement sheath was 0.51 in.         

(1.3 cm). ............................................................................................................................ 53 

Figure 4.3: Plot of TGA for 7-month old control sample. The green (upper) line is 

showing weight percentage lost, while the blue line shows endothermal peaks (°C)         

of the weight percentage lost per unit of heat. In the range of 167-302°F (75-150°C),     

the total weight loss was 6.5%. This loss corresponds to the amount of moisture, and 

mineral phases of gypsum, ettringite and C-S-H in the sample. The next endothermal 

peak at 797°F (425°C) is portlandite peak. The weight loss of 5.7% indicates that there 

was initially approximately 23% portlandite in the control sample. Last endothermal   

peak at 1202°F (650°C) is calcite peak and small weight loss of 0.64% indicates minor 

presence of calcite. ............................................................................................................ 57 

Figure 4.4: TGA plot of cement sample after 2% expansion and six months of 

rehydration. The green (upper) line is showing weight percentage lost, while the         

blue line shows endothermal peaks (°C) of the weight percentage lost per unit of heat. 

The peak observed in the range of 167-302°F (75-150°C), correspond to the weight     

loss of moisture and mineral phases of gypsum, ettringite and C-S-H (9%). The 

portlandite peak at 788°F (420°C) showed weight loss of 5.77% indicating that there    

was approximately 23.6% portlandite in the sample expanded with 4% expansion ratio 

cone. Last endothermal peak at 1202°F (650°C), corresponding to the calcite peak, 

showed weight loss of 2.9%, indicating increased presence of calcite six months after 

expansion, compared to the control sample. ..................................................................... 58 

Figure 4.5: TGA plot of cement sample six months after 4% expansion. The green 

(upper) line is showing weight percentage lost, while the blue line shows endothermal 

peaks (°C) of the weight percentage lost per unit of heat. The distinctive peak      

observed in below 302°F (150°C), correspond to the weight losses of moisture (8%)    

and mineral phases of gypsum, ettringite and C-S-H (5%). The portlandite peak at    

788°F (420°C) showed weight loss of 4% indicating that there was 17% portlandite        

in the sample expanded with 4% expansion ratio cone. Last endothermal peak at    

1202°F (650°C), corresponding to the calcite peak, showed weight loss of 0.77%, 

indicating minor presence of calcite due to carbonation of the cement sample during 

preparation. ....................................................................................................................... 59 

Figure 4.6: TGA plot for cement sample six months post-expansion at 8% expansion 

ratio. The green (upper) line is showing weight percentage lost, while the blue line   



xii 

shows endothermal peaks (°C) of the weight percentage lost per unit of heat. In the   

range of 167-302°F (75-150°C), weight loss of 9.55% corresponds to the larger     

amount of moisture within the sample, and also mineral phases of gypsum, ettringite   

and C-S-H. The next endothermal peak at 788°F (420°C) showed portlandite weight   

loss of 6% indicating initial concentration of 24%. Last endothermal peak at 1202°F 

(650°C) showed 1.31% weight loss of calcite. ................................................................. 60 

Figure 4.7: Indentation points of the cement sample. Indents range from the inner        

pipe side of the sample (Indent 1) to the outer pipe side of the sample (Indent 5). .......... 61 

Figure 4.8: Plot showing decrease in collapse and burst pressure ratings after      

expansion with 2%, 4% and 8% expansion ratio cones. Calculations of burst rating 

showed a decrease of 10% for the 8% expansion ratio, while the collapse rating   

decreased over 20% for the same expansion ratio. ........................................................... 64 

Figure 4.9: Plot of axial forces recorded during expansion with 2%, 4% and 8% 

expansion ratio cones. The increase in forces during expansion of composite samples 

accounts for the presence of the cement sheath behind the pipe and transfer of stress    

into cement. ....................................................................................................................... 65 

Figure 4.10: Multi-rate gas flow-through test data plot recorded on control sample 

without pre-manufactured microannulus. After a gradual increase of 25 psi (172 kPa)     

in inlet pressure on the gas cylinder every five minutes from 25 psi (172 kPa) to 100      

psi (690 kPa), there was no recorded pressure on the outlet pressure transducer, 

confirming that there was no microannular gas flow. ....................................................... 66 

Figure 5.1: Expansion experiment with pigmented cement. The left image is a     

magnified view of the cross-section at the interface between pigmented and regular 

cement. The red cement pore water propagated through the sample ahead of the cone    

and was observed in the paste squeezed out through the holes on the outer pipe (right 

magnified view). ............................................................................................................... 75 

Figure 5.2: An illustration of the expansion process (not to scale). The cement sheath 

images were obtained with X-ray computer tomography (CT) and processed to fit the 

schematic. a. the pre-expansion illustration shows microannulus between the inner      

pipe and the cement sheath; b. during expansion the cone is being pulled (arrow   

showing direction) and the cement sheath is being compressed behind the pipe,      

altering its structure; c. after expansion at 8% expansion ratio, the compressed cement 

sheath is shown without the microannulus. ...................................................................... 77 

Figure B.1: Gas flow-through test data plot pre-expansion showing registered      

pressures on the inlet and outlet pressure transducers. The starting inlet pressure on       

the gas cylinder was 15 psi (103 kPa), and the flow was kept constant in the period     

from      7-10 minutes of the flow-through test. The inlet pressure was increased to          

50 psi (345 kPa), which resulted in a spike of both pressures on the inlet and outlet    

ports,    confirming the microannular gas flow through the composite sample. ............... 93 

Figure B.3: Multi-rate gas flow-through test data plot recorded immediately after 

expansion with the 2% expansion ratio cone. After a gradual increase of 25 psi           

(172 kPa) in inlet pressure on the gas cylinder every five minutes from 25 psi             



xiii 

(172 kPa) to 100 psi (690 kPa), there was no recorded pressure on the outlet pressure 

transducer, indicating successful remediation of the microannular gas flow. .................. 94 

Figure B.2: Gas flow-through test data pre-expansion semi-log plot showing the    

pressure differential (ΔP) between pressures recorded on the inlet and outlet pressure 

transducers. The pressure differential in the first case was shown to have a relatively 

larger value, which after calculations indicated a microannulus with an effective 

permeability of 2.11 D. ..................................................................................................... 94 

Figure D.1: Plot of TGA for control sample. The green (upper) line is showing        

weight percentage lost, while the red line shows endothermal peaks (°C) of the       

weight percentage lost per unit of heat. In the range of 122°F-302°F (50-150°C),           

the total weight loss was 6.5%. This loss corresponds to the amount of moisture, and 

mineral phases of gypsum, ettringite and C-S-H in the sample. The next endothermal 

peak at 797°F (425°C) is portlandite peak. The weight loss of 5% indicates that there   

was initially 21% portlandite in the control sample. Last endothermal peak at 1191°F 

(644°C) is calcite peak and small weight loss of 0.6% indicates minor presence of    

calcite due to carbonation of the sample. ........................................................................ 107 

Figure D.2: TGA plot of cement sample after 4% expansion. The green (upper) line        

is showing weight percentage lost, while the blue line shows endothermal peaks (°C)      

of the weight percentage lost per unit of heat. Two distinctive peaks observed in the   

range of 122-302°F (50-150°C) correspond to the weight losses of moisture (8%) and 

mineral phases of gypsum, ettringite and C-S-H (5%). The portlandite peak at 790°F 

(421°C) showed weight loss of 4% indicating that there was 17% portlandite in the 

sample expanded with 4% expansion ratio cone. Last endothermal peak at 1202°F 

(650°C), corresponding to the calcite peak, showed weight loss of 0.77%, indicating 

minor presence of calcite due to carbonation of the cement sample during preparation.108 

Figure D.3: TGA plot for cement sample expanded at 8% expansion ratio. The green    

line is showing weight percentage lost, while the blue line shows endothermal peaks    

(°C) of the weight percentage lost per unit of heat. In the range of 122-302°F               

(50-150°C), significant weight loss of 45% corresponds to the large amount of      

moisture within the sample, and also mineral phases of gypsum, ettringite and C-S-H. 

The next endothermal peak at 847°F (453°C) showed portlandite weight loss of 3.2% 

indicating decrease of the mineral from 25% to 13% after expansion with 8%      

expansion ratio cone. ...................................................................................................... 109 

Figure E.1: Forces applied on the pipe during expansion. Fe represents the expansion 

force, Fc the contact force, and Fr the radial force. ......................................................... 110 

Figure G.1: Sample preparation for cement thin sections and microindentation.                

a. cutting of the composite sample into disks; b. cut disk into quarters and removing      

the cement sheath out of the composite disk; c. orientation of the horizontal (top) cut     

for thin sections; d. orientation for side (vertical) thin section cut; e. five indentation   

spots for microhardness measurements. ......................................................................... 114 

 

  



xiv 

NOMENCLATURE 

σz – axial stress [psi, Pa]   Fa – axial force [lbf, N] 

D – outside diameter [in, cm]   d – inner diameter [in, cm] 

t –wall thickness [in, mm]   Yp – yield strength [psi, Pa] 

Pc – collapse pressure [psi, Pa]  Pbr – burst pressure [psi, Pa] 

q – nitrogen flow rate [Mcf/day, ml/min]  A, B, C – empirical coefficients 

Kef – microannulus effective perm. [D] rIout – outer diameter of inner pipe [ft, cm] 

rOinn – inner diameter of outer pipe [ft, cm] Z – gas deviation factor 

µ – gas viscosity [cP]    ΔL – distance between P transducers [ft, cm] 

T – temperature [ºF, ºR, ºC]   Poutlet – outlet pressure [psi, Pa] 

Pinlet – inlet pressure [psi, Pa]   Pmax – maximum load [lbf, N] 

w – size of the microannulus (in, µm) AC – contact area [in2, m2] 

H – hardness (Vickers, MPa)   hmax – maximum displacement [in, µm] 

AC – projected contact area [in2, m2]  S – stiffness 

hC – contact depth [in, µm]   ν – Poisson coefficient of the sample 

E – Young’s modulus of the sample  νi – Poisson coefficient of the indenter 

Ei – Young’s modulus of the indenter  Er – reduced modulus 
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ABSTRACT 

Microannular gas flow in the wellbore is known to be one of the major reasons for 

Sustained Casing Pressure (SCP). Low success rate (under 50%) of costly remedial 

cementing operations and increasing difficulty in sealing off problematic areas motivated 

the industry to look for more practical remediation solutions. Expandable casing 

technology is one of those new proposed techniques. 

A bench-scale physical model tested the potential of expandable casing technology 

for remediation of microannular gas migration. The composite samples with pipe-inside-

pipe cemented annulus were designed to simulate a wellbore system including a pre-

manufactured microannulus on the inner pipe/cement interface. Multi-rate flow-through 

tests with nitrogen gas first evaluated the permeability and the size of the pre-manufactured 

microannulus. The post-expansion flow-through experiments tested the ability of pipe 

expansion in sealing the microannular gas flow. The effects of expansion on properties and 

structure of the cement were investigated by microindentation, optical microscopy, 

thermogravimetric analysis (TGA) and inductively coupled plasma (ICP) mass 

spectrometry. 

As observed with optical microscopy, the dissolution of unhydrated clinker grains 

during expansion is coupled with pore collapse within the cement sheath. Information 

obtained by microindentation showed that the cement sheath loses the integrity initially 

after expansion but regains most of the mechanical properties after a period of rehydration. 

Most important, multi-rate gas flow-through experiments showed that all three expansion 

ratios of 2%, 4% and 8% were successful in sealing the microannular gas flow. The seal 

was confirmed immediately and then 24 hours and 60 days after expansion. 
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The findings in this research give solid support to the potential of expandable casing 

technology for remediation of microannular gas migration. Cement pore water propagation 

is the most likely driving force behind a successful expansion, one that is not an obstacle 

in subsurface conditions and also makes an ideal environment for cement rehydration post-

expansion. Cement integrity should not be compromised by pipe expansion after certain 

period of rehydration. Finally, the research showed that expansion technology could be 

used during all operations in vertical and horizontal wells, whether injection or production 

wells, to mitigate well leaks caused by gas migration. 

 



 

 

CHAPTER 1: INTRODUCTION 

1.1  Background of Wellbore Integrity Issues 

Adequate design and delivery of a cement system for well operations must produce 

a system that can withstand extreme stresses over time from spud to abandonment of the 

well, including, for example, perforating operations and the extreme pressures created by 

hydraulic fracturing. 

Cement is an intricate construction component of a stable wellbore. Placed between 

the casing and the formation, the cement sheath’s primary purpose is to provide an effective 

zonal isolation, which is essential for safe and economic field operations. This function 

depends on the optimum placement of the cement slurry, the design of the cement slurry, 

and its compatibility with the environment. An inadequate cement sheath can result in 

microannular gas flow, a chronic problem in a wellbore which interrupts production 

altogether for costly remedial cementing treatments. At worst, cement failure can indirectly 

cause total loss of the well and associated reserves.  

Cement can undergo one or more failure mechanisms during the life of a well, from 

construction to abandonment, all possibly leading to well leakage-related problems. One 

of the first cementing problems is inadequate cement slurry design. Furthermore, poor 

cement slurry placement may occur during drilling operations if drilling fluid (mud) or 

drilling cuttings were not properly displaced from the wellbore before pumping cement. 

During well completion, when lightweight completion fluid replaces the drilling fluid, the 

negative pressure differential created can cause debonding at the casing-cement and/or 

cement-formation interfaces. The cement sheath must withstand the continuous impact of 

the drillstring during the drilling phase of the well construction, which is a particular 
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concern in directional wells. Production cycling in many deep, high-pressure/high-

temperature (HPHT) wells can create extreme pressure and temperature events that 

increase the chance of cement sheath damage and eventual casing failure. Problems 

involving cement sheath failure occur also as a result of temperature- and pressure-induced 

stresses created by completion and well intervention operations such as perforating, 

hydraulic fracturing, and work-over. In addition, cement sheath design should address 

stresses created by the subsidence, especially in unconsolidated formations such as the Gulf 

of Mexico. 

Causes for cement sheath failure and well leakage include gas flow through 

fractured cement sheath or through microannuli on either or both of the interfaces. Limits 

of cement evaluation technologies do not allow identification of a possible microannulus. 

That may give a false claim of good well condition after plugging and abandonment (P&A) 

operations, in which case unexpected leakage may occur in the near future or years later 

[1]. The average cost of plugging and abandoning the well is close to one million dollars 

[2], and most of these wells are plugged at the lowest possible cost following the minimum 

set requirements. 

1.2  Objective 

The objective of this research was to provide an experimental approach to 

investigate the potential of expandable casing technology as a new remediation tool for 

microannular gas migration. The first goal was to design, develop, assemble, and calibrate 

a bench-scale expansion fixture (physical model) in order to accurately simulate tubular 

expansion under field-like conditions. The main objective was to successfully apply this 

physical model to research the ability of this technique to seal gas leakage through a 
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purposefully created microannulus. Gas migration has been identified as one of the main 

causes of Sustained Casing Pressure (SCP); recently reported by SPE to affect 30-35% of 

the wells globally.  

1.3 Methodology 

The main part of the experimental methodology is the 30,000 lbf (133.5 kN) 

expansion fixture. This instrument, alongside custom-made expansion cones, was used to 

expand the 24-in. inner pipe of the cement composite sample. Class H LaFarage® cement, 

Halliburton D-Air 3000L™ defoaming agent, bentonite, and deionized water were used in 

mixing of the cement slurry at a water-cement ratio of 0.87 to achieve the desired density 

of 13.1 lb/gal (1.57 g/cm3). This cement slurry design was used for cementing the 

composite samples. An integrated load cell was used in the recording of axial forces during 

expansion. These forces were then utilized in expansion stress analysis and pipe burst and 

collapse calculations. In order to reach the main objective, multi-rate flow-through 

experiments with nitrogen gas were run pre- and post-expansion on composite samples 

with pre-manufactured microannulus. The effective permeability of the microannulus was 

calculated using the linear Darcy flow equation for gas. Inlet and outlet pressure 

transducers recorded the pressure differential pre- and post-expansion, which was the main 

parameter in calculations of effective permeability; based on which the microannulus size 

was estimated. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Wellbore Cements 

Wellbore cementing is a part of drilling and completion operations during the life 

of a well, and it can be classified as primary and secondary (remedial) cementing. Primary 

cementing involves pumping cement slurry into the annular space between the casing and 

the formation. The appropriate cement slurry design has to be selected to achieve the 

hydraulic seal between the cement-casing and cement-formation interface, while at the 

same time preventing fluid channeling. Secondary cementing is a process of placing a 

cement slurry into the wellbore under hydraulic pressure when remediation of an 

inadequate primary cement job is required. Plug cementing is an operation of secondary 

cementing and it involves placement of cement slurry at a desired part of the wellbore to 

create a plug or seal. 

Most cements in the oil industry are Portland cements. They are a product of finely 

ground clinker, mainly consisting of a proportioned mixture of argillaceous and calcareous 

minerals [4]. After pulverizing and screening the raw materials, the mix is fed into a rotary 

kiln and heated to 2642°F (1450°C) to produce the cement clinker [5]. The typical clinker 

composition consists of about 67% CaO, 22% SiO2, 5% Al2O3, 3% Fe2O3 and 3% of other 

components, and normally consists of four major minerals: alite (C3S), belite (C2S), 

aluminate (C3A) and ferrite (C4AF) [6]. 

Alite or tricalcium silicate (3CaO·SiO2), a critical mineral for strength development 

of Portland cement, makes 50-70% of cement clinkers and reacts quickly with water. Belite 

or dicalcium silicate (2CaO·SiO2) accounts for 15-30%, while aluminate or tricalcium 

aluminate (3CaO·Al2O3) constitutes 5-10% of Portland cement clinkers. These 
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components may cause undesirably rapid setting if gypsum is not added during the mixing 

process. Finally, ferrite phase or tetra-calcium aluminoferrite (4CaO·Al2O3·Fe2O3) makes 

up 5-15% of Portland cement clinkers; its reactivity with water is initially high but very 

low in later years.  

Mechanical properties, especially hardness and elastic modulus, of cement clinker 

phases have been previously determined with nanoindentation and documented in a paper 

by Velez et al. (2001) [7]. The elastic moduli of C3S, C2S, C3A, C4AF were found to be 

similar and range between 125 and 145 GPa. The hardness of calcium silicate (C3S, C2S) 

and calcium aluminoferrite (C4AF) was similar (between 8 and 9.5 GPa), but lower than 

the hardness of C3A (10.8 GPa). 

When cement reacts with water it forms calcium-silicate-hydrate (C-S-H) 

(3CaO·2SiO2·3H2O). This semicrystaline, nanoporous composite material with a large 

surface area can make up to 70% of hydrated cement paste and is the most responsible for 

cement strength. The second most common mineral in hydrated cement is calcium 

hydroxide, also referred to as portlandite (Ca(OH)2); its concentration in hydrated cement 

paste is up to 25%. Its crystals form hexagonal plates of indeterminate shape that may be 

intimately intergrown with C-S-H [6]. 

In the third large mineral group in hydrated cements, the aluminoferrite group, the 

major mineral of this phase group is ettringite (Ca6Al2(SO4)3(OH)12·26H2O). Ettringite, 

which can make up to 20% of a hydrated cement paste, is formed in the early hydration 

stages, often presenting as hexagonal rods.  
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The permeability of neat fully hydrated cement pastes can range from the 

nanodarcy (nD) region, for cements with a water-cement ratio of 0.3 [8], to the millidarcy 

(mD) region for cement pastes with 0.7 water-cement ratio. The porosity of the hydrated 

cement paste obtained with mercury intrusion porosimetry was shown to have values from 

under 15% for cement pastes with 0.3 water-cement ratio [9], to over 40% for cement 

pastes with 0.7 water-cement ratio [10]. 

The pore size of the cement paste is usually determined by either mercury intrusion 

or nitrogen adsorption isotherms. The pore diameter in hydrated cement can range from 

several nanometers to a couple of hundred micrometers, which is associated with air 

bubbles created during cement mixing. Most of the capillary porosity in fully hydrated 

cement paste ranges from 10 to 100 nm, as shown in Figure 2.1 [8]. 

 

Figure 2.1: Pore size distribution for hydrated cement is determined by a w/c ratio and the 

degree of hydration [8]. Permeability and strength are influenced by larger pores (over 50 

nm), while the smaller pores of under 50 nm are mostly influencing drying shrinkage and 

creep. 



7 

Mechanical properties of hydrated cement pastes such as hardness, are influenced 

by water to cement ratio. Glinicki and Zielinski (2004) documented a linear relationship 

between Vickers hardness and different w/c ratios using indentation [11]. Their results 

were that after 28 days, 0.3 w/c ratio hydrated cement paste had hardness of over 550 MPa, 

0.5 w/c ratio cement paste had hardness of 375 MPa, while cement paste with highest w/c 

ratio of 0.7 produced hardness of 200 MPa, clearly showing an inverse relationship. 

 Entrapped air or gas can cause various problems during cementing operations, 

including lowering slurry density and inadequate cement mixing. Defoaming agents are 

chemicals which are added to cement slurries usually in small quantities, 0.1% to 0.3% by 

weight of cement (BWOC), with the purpose of removing most of the entrapped air and 

minimizing the foaming from the mixture [12]. These additives will not affect fluid loss, 

thickening time, or compressive strength. 

API recommended practices classify cement into nine different categories (A 

through J, as shown in Table 2.1). These classifications of cement were made in order to 

optimize the slurries for hotter and deeper downhole conditions. The difference in cements 

lies in the fineness of the grind of the cement, in manufacturing additives, and impurities 

in the water. Class H cement, the most commonly used cement in the United States, is 

intended for use as a basic cement for depths of up to 8,000 ft (2440 m). Able to be used 

with accelerators and retarders, no additions other than calcium sulfate and water are added 

to it during the manufacturing process [13].  
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Table 2.1: Nine categories of API cement classification [13]. 

API 

Cement 
General Use Temperature (neat 

cement) 

A 
From surface to 6,000 ft (1830 m) depth, when 

special properties are not required. 

Surface and 

shallow application 

B 
From surface to 6,000 ft (1830 m) depth, when 

conditions require moderate sulfate-resistance. 
110°F (43°C) 

C 
From surface to 6,000 ft (1830 m) depth, when 

conditions require high early strength. 
140°F (60°C) 

D 
From 6,000 to 10,000 ft (1830 to 3050 m) depth, 

under conditions of moderate HPHT. 

170 to 230°F (77 to 

110°C) 

E 
From 10,000 to 14,000 ft (1830 to 3050 m) depth, 

under conditions of HPHT. 

230 to 290°F (110 

to 143°C) 

F 
From 10,000 to 16,000 ft (1830 to 4880 m) depth, 

under conditions of extreme HPHT. 

230 to 320°F (110 

to 160°C) 

G 
As basic cement from surface to 8,000 ft (2440 m) 

depth as manufactured. More range with additives. 

80 to 200°F (27 to 

93°C) 

H 
As basic cement from surface to 8,000 ft (2440 m) 

depth as manufactured. More range with additives. 

80 to 200°F (27 to 

93°C) 

J 
From 10,000 to 16,000 ft (1830 to 4880 m) depth as 

manufactured, under conditions of extreme HPHT. 

230 to 320°F (110 

to 160°C) 

Various cement designs with additives are used in certain challenging 

environments. Conventional Portland cement systems are not suitable for freezing 

conditions since they will freeze before developing sufficient compressive strength. 

Several types of cement design can be successful in this environment: gypsum-Portland 

cement blends with sodium chloride which develop strength rapidly at freezing 

temperatures [14]; calcium aluminate cements also develop strength rapidly, and fly ash is 

often added to reduce cement’s heat of hydration [15]; ultrafine Portland cement which has 

an accelerated reaction rate due to greater surface area of the cement grains [16]. 
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Diverse Blast Furnace Slag (BFS) cement systems are used for a variety of 

cementing applications in different environments. They can be used alone as a cementitious 

material or blended with Portland cement, often referred to as “slag cement” [3]. Among 

other applications, they can be used for squeeze cementing, salt-zone cementing, corrosive 

environments, HPHT wells, and steam injection wells. Slag cements are more resistant to 

sulfate attack, have slower diffusion of chloride though the cement matrix, and have lower 

set-cement permeability.  

2.1.1 The Role of Wellbore Cements 

Complete and durable zonal isolation is the main goal of any good primary cement 

job and a stable wellbore. The cement sheath should also provide casing support and protect 

it from corrosive environments. For proper placement of optimum cement slurry, certain 

well parameters such as pressure, temperature, and formation type have to be obtained or 

estimated during the design process of well completion.  

In order to achieve its major functions of isolating geologic structures from fluid 

migration, protecting the casing from corrosion, and providing the support for the weight 

of the casing, a hydraulic seal must be created on the cement/casing and cement/formation 

interfaces [3]. This impermeable seal is crucial for a stable wellbore during the entire 

drilling and producing life of the well. 

To maintain wellbore integrity, placement of fluids and maximize the mud removal 

in the wellbore must be optimized, meaning that various cement slurry properties 

(mixability, rheology, thickening time, etc.) should be taken carefully into account. The 

cementitious material should withstand the various stresses occurring during the life of the 

well [17]. In order to provide total zonal isolation, the cement matrix should be free of any 
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channels, microannuli, or fractures. Unfortunately, in most cement jobs this is not the case 

and wellbore cements are linked to many types of problems and failures.  

2.2 Microannular Gas Flow 

2.2.1 Wellbore Integrity Issues 

Wellbore cement sheaths are subjected to many types of failure, such as debonding 

at the cement-formation and cement-casing interface and fracturing/cracking of the cement 

matrix. According to Nelson & Guillot (2006), pressure and temperature oscillations 

caused by completion and production operations contribute to the development of fractures 

and microannuli within the cement matrix [3]. Debonding is caused by casing movement, 

gradual pressure decrease, and cement shrinkage, while incomplete mud removal can result 

in poor bonding of cement to the formation rock. Shear failure, the last type of failure, is 

caused normally by effective stress increase around the wellbore (rock subsidence and 

movement). If the cement is not allowed to set adequately before further drilling, cement 

integrity at the casing shoe might fail.  

With usage of heavier mud for extended casing setting depth drilling, the migration 

of formation fluids through unset cement from high pressure to low pressure formation can 

create channels in the upper part of the open hole due to mechanisms such as fluid loss, 

slurry gelation, and bulk shrinkage. Cement integrity can also be damaged by pressurizing 

the casing in order to test the seal during drilling and completion operations; even a 2% 

expansion might be enough to create channels and cracks in the cement sheath. 

Both tensile and shear failure of the cement sheath have been shown to have a 

strong relationship to wellbore pressure and wellbore temperature [18]. Cement fractures 

created due to the expansion of casing caused by internal pressures generally cause loss of 
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annular zonal isolation in the lower quarter to third of the well, while fracturing due to 

large temperature changes occurs in the upper third to half of the well [19]. 

Heathman and Beck (2006) created a model of conventionally cemented casing 

which was subjected to pressure and thermal cyclic loads while monitoring the integrity of 

the cement-casing bond [20]. A closer look at their model’s cross-section after longitudinal 

pressure testing with water and nitrogen showed visible debonding and sheath cracks which 

clearly represent preferential pathways for migrating fluid (Figure 2.2).  

 

 

 

 

 

 

Due to cement’s low permeability, no significant gas flow can occur within the 

cement matrix unless there are preferential flow paths, degradation of the material, or the 

material was not formed properly during the emplacement process and hydration [21]. 

Boukhelifa et al. (2004) ran permeability tests through a mechanically manipulated cement 

sheath [22]. The cement sheath was placed between the central core, which would expand 

and compress, and the outer pipe under confined pressure of 43.5 psi (300 kPa). Among 

other findings, they observed that casing compression can create a microannulus and 

Fractures 

Debonding 

Figure 2.2: Cross-section of 7-1/2-in. (19.05 cm) casing cemented in 9-5/8-in. (24.5 cm) 

casing. Fractures and debonding observed after pressure and thermal cyclic loads [20]. 
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significantly increase the cement sheath permeability, while casing pressurization can 

cause initiation of radial cracks in cement matrix once the tensile stresses exceeded the 

tensile strength of the material. Due to high Young’s modulus and low tensile strength 

(compared to compressive strength), the cement sheath is more likely to fail in tension than 

in compression [23]. 

Bachu and Bennion (2009) measured an effective permeability of less than 10−6 

mD in the case of perfect bonding between cement and casing [24]. The effective 

permeability was five to six orders of magnitude higher, reaching 1 mD, once poor bonding 

between the cement and the casing was created intentionally and radial cracks and 

microannuli were induced. The most typical short-term effect, which is related to drilling 

and completion, is the creation of microannuli and channels filled with mud and gas [25]. 

Medium to long-term effects are related to completion and stimulation operations. There 

is an increase in methane emission due to increase in hydraulic fracturing operations, which 

may pose a great environmental risk and dictate future climate change [26].  

Possible preferential leakage pathways in an existing producing or abandoned well 

include flow-paths along the cement-formation interface, along the cement-casing 

interface, and through degraded materials. Time is an important factor to take into account 

when analyzing cement degradation. Severe environmental consequences and well failures 

can occur if wells exceed their designed life [27]. Though there are certain old producing 

wells (over a century old) that have not leaked, HPHT, thermal-cycled, and corrosive 

environment wells may have a short well life of less than a decade before permanent P&A 

is required [28]. The main objective of well abandonment operations or well plugging is to 

prevent cross-flow between different horizons and, in particular, contamination of 
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groundwater resources [29].  If there are leaks, the abandonment operation is unsuccessful 

and poses an environmental risk and company liability. 

The analysis conducted by Watson and Bachu (2009) of 315,000 oil, gas and 

injection wells in Alberta, Canada, also showed that wellbore deviation, well type, 

abandonment method, whether or not cement is present, and the quality of cement are the 

key factors contributing to, and are indicative of potential well leakage in the shallower 

part of the well [30]. Another study of a smaller fragment of 20,500 wells, showed 15% 

exhibited well leakage, out of which 14.5% were cased wells [31].  

In his dissertation, Xu (2002) discusses how, besides channels within the cement 

matrix, the path between cement and casing or cement and formation (microannulus) and 

gas flow through cement matrix can be described as a linear gas flow with a changing rate 

at cement top and constant pressure at the gas-source formation [32]. There are different 

approaches to calculating/estimating the flow of gas through such imperfections. In order 

to quantify flow through the microannulus, Darcy’s law for linear gas flow can be used. 

Equivalent permeability which can be related to the microannulus (K*) can be obtained 

from the following Equation 2.1 [33]: 

 K∗ =
1424qμZT∆L

π(rw2 − rcas2 )
∙

1

(Pi
2 − Pwf

2 )
 (2.1) 

 

q – flow rate [Mcf/day]  K* – equivalent permeability [mD] 

rcas – casing radius [ft]  rw – well radius [ft] 

µ – gas viscosity [cP]   Z – gas deviation factor 

T – reservoir temperature [ºR] ΔL – reservoir thickness [ft] 

Pi – reservoir pressure [psi]  Pwf – flowing bottom hole pressure [psi] 
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 The approximate size of the microannulus (w) can be obtained knowing the value 

of the equivalent permeability (K*) by the following correlation [33]: 

 K∗ = 5.4 ∙ 1010 ∙ 𝑤2 (2.2) 
 

w – size of the microannulus (in.) K* – equivalent permeability [mD] 

The approximation of the slot size from permeability is correlated from 

Buckingham’s equation which is shown in the Appendix F. 

2.2.2 Sustained Casing Pressure 

Any of the aforementioned cement failures can result in flow paths as a form of 

conductive fractures or microannuli. Even a small microannulus can result in high effective 

permeability along the cement sheath allowing gas migration and the occurrence of 

Sustained Casing Pressure (SCP) at the wellhead. The microannulus width of 4.3·10-5 in. 

(1.1 μm) would correspond to an equivalent permeability of 120 mD [33]. If the well is 

shut in and remains at the same steady-state condition, then the casing pressure should 

remain zero. If the casing pressure returns when the choke valve is closed, then the casing 

is diagnosed with SCP, and in some cases the pressure can reach dangerously high values 

[34]. SCP occurs due to the loss of the well’s external integrity, causing gas inflow from a 

high-pressure formation into the well’s annulus. Xu (2002) discusses how gas migrates 

upward in the outer casing strings, outside of the production casing, through a leaking 

cement sheath and percolates through the mud column, accumulating above the liquid level 

[32].  
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One of the main parameters which indicates the quality of the cement job is its 

permeability, since it controls the early stage of SCP buildup rate, an overall measure of 

the annular seal performance of the well. Diagnostic testing is required in any well 

exhibiting sustained casing pressure and the results of the test determine if immediate SCP 

removal could be temporarily waived (departure permit) and continuing operation of the 

well permitted [35]. 

Studies from field operations in the Gulf of Mexico indicate that 56% of incidents 

that lead to a loss of well control are linked to cementing operations. Furthermore, 

approximately 45% of 14,927 operational wells in 2004 had SCP problems, and about 33% 

of the SCP problems were linked to the cementing process [36]. The casing strings which 

are most affected by SCP are production (50%) and surface (30%) casings [34].  

Considerable numbers of producing and abandoned wells with SCP constitute a 

potential new source of continuous natural gas emission from failed casingheads due to 

poor cementing and external gas migration [37]. There are more than 27,000 abandoned 

oil and gas wells in the Gulf of Mexico. The oldest of the wells were abandoned in the late 

1940s, raising the prospect that many deteriorating sealing jobs are already failing (AP). 

The Associated Press investigation further uncovered a particular concern with 3,500 of 

the neglected wells – those characterized in federal government records as "temporarily 

abandoned." 

SCP may increase and become more hazardous over time as a result of such factors 

as: increasing microannuli on both interfaces, damage to primary cement caused by 

mechanical manipulations, thermal cracking caused by different expansion properties of 



16 

cement and casing, dissolution of cement in acidic formation brine, and condensation of 

hydrocarbons in the micro fractures [38].  

When a well persists in exhibiting pressure buildup, it presents an extremely unsafe 

environment. Pressure changes during production might induce a failure of the production 

casing, which can lead to very dangerous situations. For instance, the outer casing strings, 

which are weaker than the production casing, may also fail, potentially resulting in an 

underground blowout of flow rate sufficient to jeopardize the production platform. 

According to Bourgoyne at al. (1999) the principle concern for wells that exhibit SCP is 

that a down-hole situation is developing or has developed the conditions which can result 

in an underground blowout, without always showing symptoms and warning signs [39]. 

Once casing diagnostic tests show that SCP exceeds the maximum allowable wellhead 

operating pressure (MAWOP), remediation operations are necessary by regulation [40]. 

Remedial cementing is an operation in which different designs of cement help in 

solving a variety of wellbore integrity problems. This operation can be divided into two 

major categories: plug cementing (usually used for abandonment) and squeeze cementing 

(mainly need to repair a poor primary cement job) [3].  

When the SCP is diagnosed to have affected production and outer casing strings, 

the rig method usually involves the squeeze cementing operation. In order to perform these 

operations, a workover rig is required or, in some cases, a coiled tubing unit is moved on 

site. These procedures involve perforating or cutting the affected casing string and injecting 

cement slurry under pressure through perforations in the casing or liner to plug the channel 

or microannulus [41].  
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Wojtanowicz et al. (2001) emphasize that the success rate of these types of remedial 

operations is low (less than 50%) due to the difficulty in establishing an injection from the 

wellbore into the annular space of the casing with SCP and getting complete 

circumferential coverage by the cement [42]. Prevention of flow after cementing has been 

approached in two ways: either by formulating special cement slurries or by using 

mechanical concepts such as modifications of slurry rheology, downhole installations, or 

placement procedures [43]. The success rate increases when circulation is possible through 

the channels, when isolation is used for cement injection, and when the workers who 

perform the procedure are experienced. Certain operations during squeeze cementing can 

significantly affect its success such as plugged perforations, lost circulation problems 

encountered during drilling, and strong water cross flows [44]. Such SCP remedial 

operation has an even lower probability of success when cracks and channels on the micro-

scale are present in the cement sheath. 

There have been unsuccessful attempts to use squeeze cementing with a special 

cement design in order to plug small diameter cracks and fissures in the cement sheath. 

Halliburton’s Microbond cement was used at the beginning in the 1990s. It was expected 

that after a five-day curing time Microbond would expand and seal the cracks. The majority 

of these operations failed, as either no surface effect was noticed or very little pressure 

reduction was realized [45]. There was, however, recent success in this area using class G 

cement, which is closest to API class H cement. Coil tubing squeeze cement jobs have been 

done successfully in Alaska with class G cement and have been proven to be very reliable 

for P&A and remedial squeeze work in long horizontal wells [46]. 
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2.3 Expandable Casing Technology 

2.3.1 Pipe Expansion (Plastic Deformation) 

Tubular expansion occurs when the applied stresses are above the yield point but 

short of the ultimate strength limit of the material [47]. A metal may be regarded as 

macroscopically homogeneous and isotropic. As a result of plastic deformation, an initially 

isotropic material becomes anisotropic and this development with progressive cold work 

results in strain-hardening [48]. If the stress applied is below the yield strength (Figure 2.3, 

point B), the material, in this case metal, behaves elastically, and the original shape is 

regained on removal of the applied load [48]. The yield point is the limit at which the linear 

stress-strain relationship, known as Young’s modulus, ceases to hold. 

Figure 2.3: True stress-strain curve of metals with effects of loading and unloading. 

Expansion region represents the stress-strain curve during pipe expansion. Graph showing 

material under loading beyond elastic limit (yield point, B). During reloading, new yield 

point (F) is reached and with further loading, the stress–strain curve proceeds along FG, 

virtually as a continuation of the curve BC (adapted from Chakrabarty, 2006). 
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Beyond the yield point, the stress continually increases with further plastic strain, 

while the slope of the stress–strain curve (the rate of strain hardening) steadily decreases 

with increasing stress. If the material is stressed to some point C in the plastic range and 

the load is then released, there is an elastic recovery (line CD) and the remaining permanent 

strain is equal to AE. In the case of reloading, the specimen deforms elastically until a new 

yield point F is reached, and on further loading, proceeds into plastic range. The curve EFG 

may be regarded as the stress–strain curve of the metal when prestrained by the amount 

AE. Chakrabarty (2006) concludes that the greater the degree of prestrain, the higher the 

new yield point and the flatter the strain-hardening curve will be, resulting in higher 

strength of the material in loading direction [48]. 

If an initially stress-free body has been loaded into the plastic range, but short of 

collapse, and the loads are then reduced to zero, the stress field in the unloaded body does 

not in general vanish [49]. Asahi et al. (2005) declare that the proportional limit of a 

compressive stress-strain curve in the circumferential direction greatly decreases after pipe 

expansion due to the Bauschinger effect, while tensile strength increases and elongation 

tends to decrease [50]. 

When metal is yielded non-uniformly through an entire cross section, residual 

stresses remain in the cross section after the load is removed [51]. An overload produces 

residual stresses favorable to future loads in the same direction (additional casing 

expansion, burst pressure) and unfavorable to future loads in the opposite direction 

(collapse pressure). Jabs (2004) claims that the Bauschinger Effect is countering the final 

collapse rating of expanded metal, which is the effect that reduces the final collapse rating 

of the material as a result of stored residual stress following tensile plastic deformation. 
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During the expansion process when metal material goes from a pre- to post-

expanded state, it is being strengthened or hardened by an increase of stress with plastic 

deformation (or cold-working) which is called isotropic or strain-hardening [49]. This 

hardening effect improves both the material’s final tensile strength and burst capabilities, 

and the highest stress attained before unloading is the new yield point. 

It is impossible, however, to achieve a constant recovery of collapse rating with the 

strain aging technique throughout the entire length of the post-expanded tubular. Therefore, 

this reduction in collapse rating must be factored into all expandable designs in order to 

prevent possible failures. No apparent effect of seam weld toughness on expansion was 

found when the seam weld quality is good. The ability of material to withstand the 

expansion process and the post-expansion characteristic of this material, such as  good 

elongation properties balanced with final yield strength, is the main criteria for selecting a 

material for use in an expandable tubular system [52].  

During expansion, while the pipe diameter (D) is increasing, the pipe is decreasing 

in length, and wall thickness (t) is being reduced. This increase in D/t ratio is one of the 

major causes for reduction in collapse pressure [53]. Mack (2005) concluded that the 

reduction in wall thickness will be 0.6 of the percentage of expansion (expansion ratio). 

Pervez (2010) has that number around 0.5, and the reduction in length at 0.2 of the 

percentage of expansion [54].  

2.3.2 Solid Expandable Tubulars 

Expandable tubular technology reduces drilling cost, increases the production 

capability of tubing constrained wells, and increases the depth and reach capability of well 

designs to access the reservoirs that were difficult or impossible to reach using 
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conventional well designs. The study by Campo et al. (2003) showed the remarkable 

environmental and economic impact of solid expandable tubulars [47]. These benefits are 

the result of the reduction of emissions and consumption of natural resources, as well as 

reduction in required size of drilling vessels and overall cost of well construction. This 

technology has the potential to reduce cost, increase production, and provide access to new 

reserves [55]. Besides steel, expandable tubulars can also be manufactured from non-

ferrous metals such as aluminum or titanium [56]. 

The first commercial installation of Solid Expandable Tubulars (SET) was 

performed by Chevron on a well in shallow waters of the Gulf of Mexico in November 

1999 [57]. The current operating envelope for expandable tubulars encapsulates an 

inclination of 100° from vertical, temperature up to 400°F (205°C), mud weight to 19.8 

lb/gal (2.37 g/cm3), a depth of 28,750 ft (8763 m), hydrostatic pressure of 23,300 psi (160.6 

GPa) and a tubular length of 6,865 ft (2092 m) [58]. A typical expansion rate for solid 

expandable tubulars is approximately 7.8 ft/min (2.4 m/min) [59]. 

A common solid expandable tubular installation consists of an expandable anchor 

hanger and a pre-determined length of tubulars to be expanded. The expansion operation 

takes place hydraulically from the bottom up and usually takes place after the cement slurry 

has been pumped into the annulus [60]. SET technology can be applied in existing or new 

wells. It is extensively used in Extended Reach Drilling (ERD) wells in order to cut the 

drilling cost and preserve an optimum diameter at the pay zone. 

The expansion of solid tubulars is accomplished by two main techniques; i.e. using 

a cone/swage or a rotary expansion tool. In its simplest form, cone expansion is performed 

by fixing one end of the tubular and forcing the swage toward the free end by mechanical 
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or hydraulic means [61]. The progress of the cone through the pipe expands it beyond its 

elastic limit while still keeping stresses below the yield stress. 

Figure 2.4 shows the process of installing an expandable liner system in the 

wellbore. The openhole part should be first under-reamed and conditioned with mud. 

Expandable liner is then run into the wellbore and set up for a cementing operation. After 

cement placement, the liner is expanded into the hanger joint to make a sealed connection. 

This system can be used in both vertical and horizontal wells [62]. Using a solid expandable 

tubular system in the upper sections of the well design preserves hole size, thus contributing 

to drilling efficiency and minimizing the risk associated with small hole size in deeper 

sections of the wellbore [63].  

Figure 2.4: Installation sequence for Expandable Openhole Liner System. Expandable cone 

is run with the liner in the open hole and pulled after primary cement job. Pulling of 

expansion mandrel expands the pipe all the way to the hanger joint, latching it into place 

[62]. 
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Expandables are not only used in drilling in order to keep the hole size; the use of 

expandable technology for casing repairs has also been documented. Two kinds of 

expandable casing remediation systems exist, one of which utilizes a solid tubular and 

expands every joint of the liner, while the other one is utilized at the top and bottom of the 

patch [64].  

Cone optimization has also been a key to the success of expandable tubular 

technology. The result of multiple expansion experiments suggest that an optimized shaped 

cone is burnished evenly along the entire expansion surface. This design has eliminated the 

large contact pressure spikes that occurred with previous designs, and it substantially 

decreased the connection failures during expansion process [65]. Their study showed that 

axial forces exerted on the tubular are higher but much more evenly spread with a 2° 

optimized cone than a 10° cone. The expansion cones used in this research had a cone angle 

of 14°. 
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CHAPTER 3: EXPERIMENTAL METHODOLOGY 

To accurately simulate tubular expansion under field-like conditions, a unique 

bench-scale physical model was developed. The main part of this physical model was the 

custom-made expansion fixture. Special composite cement samples with steel pipes were 

designed in order to represent the casing/formation cemented annulus. Density of cement 

slurry used was 13.1 lb/gal (1.57 g/cm3), with w/c ratio of 0.87, and the samples were cured 

in the water bath at ambient conditions for minimum of 28 days. 

Expansion cones with three designed expansion ratios (2%, 4%, and 8%) were used 

for pipe expansion, and integrated load cell measured axial forces during expansion. These 

force measurements were used for axial stress and contact pressure calculations. Multi-rate 

flow-through tests with nitrogen gas were run pre- and post-expansion to determine the 

success of pipe expansion in sealing the gas flow through the pre-manufactured 

microannulus. Pressure differentials, recorded with pressure transducers, were used as 

variables in calculations of microannulus effective permeability. This physical model 

investigated the potential of expandable casing technology as a new remediation tool for 

SCP that is caused by microannular gas migration. 

All of the experiments were done in the lab (room no. 167) at LSU South Campus, 

located at 8000 GSRI Avenue, Baton Rouge, LA. The lab was set up specifically for this 

research and fills all the necessary safety requirements of both the LSU Safety Office and 

Shell project managers. 
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3.1 Expansion Fixture 

The focal point of the physical model is the expandable fixture (Figure 3.1) which 

was designed by David Brisco and manufactured at Shell’s Westhollow Technology Center 

in Houston, TX. The 30,000 lbf (133.5 kN) hydraulic expansion system consists of: 

hydraulic power unit, control switch, hydraulic cylinder, upper and lower housing, 

expansion and retaining mandrel, integrated load cell, and expansion cones. 

3.1.1 Hydraulic Power Unit 

 Parker® V-Pak variable displacement hydraulic power unit was utilized as the main 

driving component of the hydraulic system.  Vertical 40-gallon (151-liter) tank was ideal 

for saving space in the lab and for quiet and leak-free operations. ISO 46 hydraulic oil was 

used and the maximum flow rate is 15 gal/min (57 l/min) at 2,140 psi (14.8 GPa) (unit’s 

maximum pressure rating). This unit has a 3-phase, 230/460 V electric motor with 20 

horsepower and 1800 rpm. A 3-phase current with both the power and safety switch was 

installed in the lab for this purpose. Parker power unit has an integrated relief valve as an 

additional safety feature.  

3.1.2 Control Switch 

Parker D3L1CN directional hydraulic control valve was used to manipulate the 

expansion mandrel by controlling the hydraulic cylinder. It is a 4-way, direct operated, 

lever controlled valve which enables safe running of expansion experiments. Maximum 

flow rate is 40 gal/min (151 l/min) and pressure rating is 5,000 psi (34.5 GPa). 
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3.1.3 Hydraulic Cylinder 

 A hydraulic unit powered the Parker hydraulic cylinder with a 4-in. (10.16-cm) bore 

and 1.75-in. (4.4-cm) piston rod, rated for 30,000 lbf (133.5 kN) maximum compressive 

load. The cylinder, which has a nominal pressure of 3,000 psi (20.7 GPa), was bolted to 

the upper connector of the upper housing. It has a 28-in. (71-cm) stroke to allow the 

expansion mandrel to be completely retracted out of the lower housing when loading and 

unloading the composite sample. Furthermore, this enables the expansion cone to be 

completely pushed out of the test sample after the expansion test. 

3.1.4 Upper and Lower Housing 

 The main body of the machine is made of two pieces of 9.625 in. (24.4 cm), 43.5 

lb/ft (64.7 kg/m) casing with three connectors: upper, middle and lower connector. The 

32.75-in. (83.2-cm) lower housing has a 6.19-in. (15.7-cm) wide window through which 

the test sample can be inserted. The 42.75-in. (108.6-cm) upper housing has two 4-in. 

(10.16-cm) wide openings on the top and bottom through which the cable for the load cell 

can be run. All the parts were phosphate coated for corrosion protection.  

3.1.5 Expansion and Retaining Mandrel 

The expansion mandrel, designed to withstand the load of 30,000 lbf (133.5 kN), is 

connected to the piston rod through connectors and it runs through a hole in the middle 

connector of the machine body and the test sample. The length of the expansion mandrel 

is 42.25 in. (107.3 cm) and the diameter of the section which goes through the lower 

housing is 2.106 in. (5.35 cm). The expansion cone is placed on the lower end of the 

expansion mandrel and held in place with the 41.75-in. (106-cm) long retaining mandrel. 
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The retaining mandrel extends through a hole in the lower connector and the retaining 

mandrel guide which is attached to the lower end of the lower connector and centralizes 

the lower end of the composite sample. Its upper end is centralized with a machined pocket 

in the lower end of the middle connector.  The retaining mandrel is long enough to be 

removed from the expansion mandrel at the end of the expansion stroke if needed. 

3.1.6 Load Cell 

The Futek® LCM550 in line load cell with 10-ft (3-m) long 24 AWG 4 conductor 

shielded PVC cable was integrated in the expansion fixture. It is made from 17-4 stainless 

steel and male threads on both ends allowing the load cell to be connected to the piston rod 

with an adapter on one end and to the expansion mandrel with the connector on the other 

end. This integrated load cell has the capacity of measuring axial forces in tension of up to 

50,000 lbf, and it has been calibrated with the hydraulic press in tension mode.  

3.1.7 Expansion Cones 

Expansion cones (Table 3.1, Figure 3.2) were made from AISI D2 grade alloy steel 

that was heat treated to the hardness of 60 RC. The expansion cone was slipped over the 

lower end of the expansion mandrel and held in place with the retaining mandrel. 

Table 3.1: Dimensions of expansion cones. 

Expansion Ratio [%] 
Cone OD 

[in.] 

Cone Angle 

[°] 
Designed Actual 

2 1.46 2.189 14 

4 3.45 2.232 14 

8 7.43 2.317 14 
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3.2 Composite Sample 

Composite samples were designed to represent the casing/formation cemented 

annulus, consisting of “pipe inside pipe” metal components with cement filling the annular 

space. The primary focus of a selected cement slurry was on two different densities: 13.1 

lb/gal (1.57 g/cm3) and 16.4 lb/gal (1.96 g/cm3). 

3.2.1 Metal Components 

The 24-in. (61-cm) long sample, shown in Figure 3.3, consists of two ASTM A53 

grade B electrically resisted welded (ERW) carbon steel pipes. The 23.5-in. (59.7-cm) 

outer pipe has a 4 in. (10.16 cm) outside diameter (OD) and 0.225 in. (5.7 mm) wall 

thickness, while the 24-in. (61-cm) inner pipe has a 2.375 in. (6 cm) OD and 0.109 in. (2.8 

mm) wall thickness. Yield and tensile strength of the pipes are 35,000 psi (241.3 GPa) and 

60,000 psi (413.7 GPa), respectively. The welding bead on the inside wall of the inner pipe 

has been machined out and a quarter-inch steel plate ring was welded at the end to seal the 

annulus between the two pipes. Outer pipes were coated with zinc anticorrosion spray, to 

prevent corrosion during the curing period. Prior to expansion, the inside wall of the inner 

pipe was coated with Houghto-Kote® lubricant for smooth running of the expansion cone. 

Figure 3.2: a. expansion cones with 2%, 4% and 8% expansion ratio; b. side view of 2% 

expansion ratio cone. All cones have 14° cone angle and are made from AISI D2 grade 

alloy steel which was heat treated to the hardness of 60 RC. 
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Custom-made steel coupling with 2.5 in. (6.35 cm) OD was welded to the quarter-

inch steel plate ring (Figure 3.4). Bottom part of the inner pipe was threaded to allow 

connection with the welded coupling. The outer pipe was then welded to the steel plate 

ring. Small holes of 3/32 in. (2.4 mm) were drilled in the outer pipe to allow the relief of 

pressure and excess free water from cement matrix during expansion process. The inner 

pipe is screwed into the coupling to finish the composite sample assembly.  

Figure 3.3: Composite sample schematic. Top view shows the cement (red color) between 

inner (a) and outer pipe (b). The arrow points the direction of expansion. Bottom view 

shows the steel plate ring (c) welded to outer pipe and pipe coupling. Inner pipe is screwed 

into the coupling (the scale is in inches). 

Inner Pipe (a) 

- Length: 24 in. (61 cm) 

- OD: 2.375 in. (6 cm) 

- ID: 2.157 in. (5.48 cm) 

- Thickness: 0.109 in. (2.8 mm) 

Outer Pipe (b) 

- Length: 23.5 in. (59.7 cm) 

- OD: 4 in. (10.16 cm) 

- ID: 3.55 in. (9 cm) 

- Thickness: 0.225 in. (5.7 mm) 

Steel Plate Ring (c) 

- OD: 4 in. (10.16 cm) 

- ID: 2.27 in. (5.76 cm) 

- Thickness: 0.25 in. (6.35 mm) 

Cement Sheath (red color) 

- Length: 19 in. (48.3 cm) 

- Thickness: 0.6 in. (1.52 cm) 

a 

b 

c 

b 
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Four 11/32-in. (9 mm) holes for gas flow-through experiments were drilled 90° 

apart on each end of the outer pipe and threaded with 1/8 in. (3.2 mm) NPT threading tip 

from Grainger®. These threaded ports allowed connection with Swagelok® fittings and 

Teflon® tubing manifold assembly on the bottom (inlet) and top (outlet) side of the sample. 

Inlet and outlet ports, which were 16 in. (40.64 cm) apart, were used for connecting the gas 

manifold with the pressure transducers for pre- and post-expansion multi-rate flow-through 

experiments.  

 

Figure 3.4: Metal components of the bottom part of the composite sample: a. quarter-inch 

steel plate ring; b. 2.5-inch (6.35-cm) OD steel pipe coupling; c. pipe coupling welded onto 

steel plate ring; d. threaded part of the inner pipe being screwed into the pipe coupling; e. 

finished assembly. Final part of the composite sample is the outer pipe which is placed at 

the end and welded for the steel plate ring on the outer region. 
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3.2.2 Cement Slurry Design and Preparation 

There were two cement designs selected for preliminary experiments. The first 

design selected for testing was 16.4 lb/gal (1.96 g/cm3), 0.38 w/c ratio cement slurry. The 

second one was water-extended lightweight cement slurry of 13.1 lb/gal (1.57 g/cm3), 0.87 

w/c ratio. The annulus between inner and outer pipes was cemented with the cement slurry 

which was cured in a water bath at ambient conditions for a minimum period of 28 days. 

The pH of the water bath was kept between 12 and 13 by mixing the water with Ca(OH)2. 

Halliburton D-Air 3000L™ defoaming agent and bentonite were used as additives for the 

API Class H cement from LaFarge Corporation. A 1.06-gal (four-liter), 3.75 horsepower 

Waring® laboratory blender was used for cement slurry preparation. Defoamers are used 

to minimize the foaming of cement slurries and get rid of the entrapped air in the mixture. 

Bentonite is used in order to increase the yield of the cement, decrease the cement density 

and decrease the fluid loss, but its addition increases the porosity of cement thus exposing 

the cement to corrosion due to acidic formation fluids [3].  

For preparation of the 16.4 lb/gal (1.96 g/cm3) cement slurry, 2.75 lb (1250 g) of 

water was first poured into the blender. It was turned on low speed (15,800 rpm) after 

which 0.35 oz. (10 g) of defoamer and 7.25 lb (3290 g) of cement powder was poured into 

the blender and sheared for 40 seconds on high speed of 20,800 rpm. The cement slurry 

was then poured into the annulus between two pipes and covered with a wet cloth and 

plastic wrap. The cemented composite sample was left for 24 hours and then placed in the 

water bath for a minimum period of 28 days.    

The lightweight water-extended cement slurry was prepared by first pouring three 

pounds (1350 g) of water into the blender and one ounce (30 g) of bentonite was pre-
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hydrated for five minutes on low speed (15,800 rpm). After five minutes, 0.18 oz. (5 g) of 

defoamer and 1500 g of cement powder were poured into the blender and sheared for 40 

seconds on high speed (20,800 rpm). The cement slurry was then poured into the annulus 

between two pipes and covered with a wet cloth and plastic wrap for a period of 24 hours. 

The sample was placed in the water bath next day for a minimum period of 28 days.    

The connection between the pipe coupling and the inner pipe allowed the pipe 

rotation during first 26 hours of cement hydration, in order to create a microannulus at 

pipe-cement interface. A thin layer of baking spray was applied on the outer wall of the 

inner pipe prior to cementing. Six hours after the cement slurry was poured between the 

pipes, the inner pipe was rotated a quarter-turn back and forth every 15 minutes for the next 

20 hours of cement hydration to prevent cement bonding with the inner pipe.  

Prior to gas flow-through experiments, ½-in. (1.27-cm) layer of Loctite® epoxy was 

placed on the top of the cement sheath to prevent any leakage of nitrogen gas through the 

top side of the microannulus. Air Liquid’s Alphagaz™ 1 nitrogen gas was used with total 

purity of 99.999%, and the following impurity specifications: H2O<3 ppm, O2<2 ppm and 

THC<0.5 ppm.  

3.3 Measuring Devices 

Two Omega® PX480A-200GV pressure transducers with a range of 0 to 200 psi 

were used for pressure recordings on the inlet (bottom) and outlet (top) sides of the 

composite sample. They have an accuracy of 0.3% BFSL maximum, and all the wetted 

parts are made of 316L stainless steel. The transducers were connected to the side part of 

a Swagelok cross fitting of the gas manifold. 
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Pressure transducers and load cell measurements were recorded by National 

Instruments (NI) cDAQ-9188 data acquisition package. Four NI-9219 chassis were 

installed and all the data was processed by NI LabVIEW™ Signal Express software. Output 

of the data was in mV which was converted using linear calibration to respective units for 

both types of device (lbf and psi). Data was displayed and monitored on the computer 

screen in real time. 

 Cole-Parmer® 65-mm variable area, correlated flow meter was used to keep the 

flow of nitrogen constant through each flow-through experiment. It consists of a heavy-

walled glass flow tube mounted in an anodized aluminum frame with white acrylic back 

plate and a high precision valve, ideal for low-flow application. Maximum operating 

pressure is 200 psi (1.38 MPa), maximum nitrogen gas flow rate it can measure is 0.004 

ft3/min (113 ml/min), and the accuracy is ±2% of the full scale. 

3.4 Microhardness Tester  

The Nanovea® Micro/Macro Module, with loads from the mN range to 45 lbf (200 

N), allowed micrometer-scale indentation testing. The sensitive loads of the micro range 

can be utilized for the characterization of softer and more fragile materials (material’s 

coatings, ceramics, cement). 

The Micro/Macro Module uses independent force and depth sensors to obtain 

depth-versus-load curves used in instrumented indentation. The microhardness tester is 

able to perform tests of penetration depths in the micrometer scale. Displacement 

measurements were done by a non-contact optical sensor with displacement resolution of 

0.39·10-6 in. (10 nm). Maximum indenter range is 0.012 in. (300 μm), while the load range 

is 0-9 lbf (0-40 N) with normal load resolution of 0.34·10-3 lbf (1.5 mN). 
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3.5 Experimental Procedure 

Experimental procedure consisted of a few main activities, which included 

expansion experiments, measurements during expansion, post-expansion investigation of 

the cement sheath, and gas flow-through experiments. 

3.5.1 Expansion Fixture Assembly, Testing and Calibration 

Prior to the start of the experiments, the expansion fixture had to be assembled in 

the new lab. Two heavy duty welding tables, rated for 2000 lbs (907 kg) were placed in the 

middle of the lab onto which the expansion fixture was to be assembled. The expansion 

fixture was delivered in two crates, together with the hydraulic power unit and the hydraulic 

cylinder. A motor jack had to be used to lift the heavy parts of the equipment after which 

the assembly process was carried out on the welding tables. After installing all the parts, 

the hydraulics were connected and the machine was ready for expansion. 

Upon assembly, the expansion fixture was tested at optimum hydraulic unit 

pressure of 1500 psi (10.34 MPa). The first composite sample to be tested for expansion 

with 8% expansion ratio cone was with 16.4 lb/gal (1.96 g/cm3) cement slurry. 

Unsuccessful expansion revealed that the hydraulic unit, together with the hydraulic 

cylinder did not have enough power to expand the samples with 16.4 lb/gal (1.96 g/cm3) 

cement slurry. In all subsequent experiments, only composite samples with 13.1 lb/gal 

(1.57 g/cm3) cement slurry were used. 

The next composite sample with 13.1 lb/gal (1.57 g/cm3) cement slurry was 

successfully expanded with 8% expansion ratio cone in the length of 16 in (40.64 cm). The 

expansion fixture was operated without problems; the integrated load cell, however, 
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recorded a suspiciously high value of 50,000 lbf (222.4 kN), which is the rating of the load 

cell. The expansion mandrel was rated for 30,000 lbf (133.5 kN), therefore it was 

concluded that the load cell needed calibration with a deformation under known force. 

The load cell was designed to only measure axial forces in tension, and the 

calibration was done by a hydraulic press in tension mode with custom-made couplings for 

the load cell. These couplings allowed the load cell to be fixed to the top and bottom side 

of the press. Output conversion from mV to lbf had to be set up by linear correlation in 

LabVIEW software. This correlation was set with the readings from the hydraulic press 

and the load cell was calibrated and re-integrated in the expansion fixture. During the next 

expansion experiment with the cone of 8% expansion ratio, the load cell recorded the axial 

force of 12,596 lbf (56 kN), which confirmed successful calibration of the load cell.  

3.5.2 Expansion Experiments 

The experiment begins by unscrewing the retaining mandrel from the expansion 

mandrel, which is then fully retained from the lower housing by the hydraulic cylinder. 

After the inner wall of the inner pipe has been fully coated with lubricant, the composite 

sample (with hydrated cement) is placed in the lower sample housing of the fixture through 

the opening at the top. The expansion mandrel is then fully elongated through the sample 

after which the expansion cone (coated with a thin layer of motor oil) with desired 

expansion ratio is placed on the top. Lastly, the retaining mandrel is screwed onto 

expansion mandrel, and the lower connector is screwed onto the lower end of the lower 

housing. The sample is then ready for expansion. This procedure can be seen in Figures 

3.6 and 3.7. 
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The hydraulic unit is powered to an optimum pressure of 1,500 psi, and the axial 

force recording is activated. By activating the control switch, expansion mandrel is being 

retracted, and the expansion cone is pulled through the inner pipe of the sample, thus 

expanding the inner pipe and compressing the cement sheath (Figure 3.5). Samples were 

expanded over length of 16 in. (40.64 cm), the expansion mandrel was then elongated into 

original position and recording of axial forces was stopped. The expansion over 16 in. 

(40.64 cm) is completed in 4 seconds, which is 4 in./s (10.16 cm/s) comparing to the 

expansion speed of 6 in/s in the field operations. 

 

 

 

 

 

 

 

 

24 in. 

4 in. 

Inner pipe 

Outer pipe 

Expansion cone 

Cement 
(0.6 in.) 

Pipe coupling 

Steel plate ring 

Microannulus 

a b 

Figure 3.5: a. 2D composite sample schematic. Expansion cone (shown in red) is pulled 

through the inner pipe, expanding its diameter and compressing the cement sheath (blue 

arrows point expansion direction). Pipe coupling, which was welded for the steel plate ring 

at the bottom of the composite sample, allowed screwing of the inner pipe into place. This 

pipe rotation enabled the inner pipe to be turned during first 24 hours of cement hydration 

in order to create the microannulus; b. 3D composite sample schematic showing the 

microannulus (red color, not to scale).   
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24 in. 

Figure 3.7: Setup and expansion process (top view): a. the expansion mandrel is retained 

(red arrow shows the direction) in order to clear the lower housing for placement of the 

composite sample; b. the composite sample is placed in the lower housing and the 

expansion mandrel is fully elongated through the inner pipe; c. the expansion cone is 

slipped onto the expansion mandrel. Magnified view shows the expansion cone being held 

in place with the retaining mandrel; d. the expansion mandrel is retained and the expansion 

cone is pulled through the inner pipe (red arrow shows the direction of expansion). 
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3.5.3 Force Measurements, Stress and Pressure Calculations 

Axial forces recorded by integrated load cell during expansion were used for axial 

stress, collapse and burst pressure calculations. These forces were measured during 

expansion of a sample with steel pipe without cement and with regular composite cement 

sample, in order to compare the difference in forces and stresses in the pipe, with and 

without cement. Equation (3.1) was used to calculate the axial stress in the pipe during the 

expansion process: 

 𝜎𝑧 =
𝐹𝑎

π
4 (𝐷

2 − 𝑑2)
 

(3.1) 

σz – axial stress [psi]    Fa – axial force [lbf] 

D – pipe OD [in]    d – pipe ID [in] 

 

Collapse pressure rating was calculated using the equation from Bourgoyne et al. 

(1986) [66]: 

Pc – collapse pressure [psi]   Yp – yield strength [psi] 

D – pipe OD [in]    t – pipe wall thickness [in] 

A, B, C – empirical coefficients 

Empirical coefficients (A, B, C) were taken from Bourgoyne et al. (1986) and the 

numbers used were for H-40 casing which yield strength (40,000 psi) is close to the yield 

strength of the inner pipe used (35,000 psi) [66].  The A, B, C coefficients used were 2.95, 

0.0465 and 754 respectively. Increase in D/t ratio is the main factor for collapse rating 

 𝑃𝑐 = 𝑌𝑝 (
𝐴

D
t − B

) − 𝐶 (3.2) 



41 

decrease. Wall thickness of the expanded pipe was assumed to decrease by 0.6 times each 

of the expansion ratio percentage [54]. 

Burst pressure rating was calculated using the following equation [66]: 

Pbr – burst pressure [psi]   Yp – yield strength [psi] 

D – pipe OD [in]    t – pipe wall thickness [in] 

New outer diameter of the pipe was obtained with the same assumption that the 

wall thickness of the expanded pipe decreased by 0.6 times each of the expansion ratio 

percentage [54].  

3.5.4 Post-expansion Investigation 

The fluid samples collected through the holes on the outer pipe during expansion 

were analyzed using inductively coupled plasma (ICP) mass spectrometry. This is an 

analytical technique for measuring concentration of elements. Shortly after expansion, 

samples were taken out of the fixture and wrapped in plastic wrap to prevent carbonation. 

Samples were then taken for cross-section cutting of expanded region in order to expose 

manipulated cement sheath. Segmented diamond steel blade was used to cut through both 

steel pipes and cement, providing cross-sectional disc samples. Visual examination of the 

cement sheath was conducted in order to check for changes in cement, and samples of 

cement sheath were taken for tests of mechanical properties and material characterization 

(which will be reported in a future publication). 

 

 

 𝑃𝑏𝑟 = 0.875 (
2𝑌𝑝𝑡

D
) (3.3) 
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3.5.5 Optical Microscopy 

Leica® DM2500-P modular polarization optical microscope, with multiple levels 

of magnification provided by ocular lenses, was used for investigation of cement sheath 

thin sections. The samples used for this visual investigation technique were prepared at the 

Weatherford Lab in Houston. The cement sheath cuts were taken out from the composite 

sample (Appendix E) and impregnated with resin, after which vertical and horizontal thin 

cement sections were made. The purpose of this analysis under medium magnification 

(x50,000) was to observe the changes in the cement structure caused by pipe expansion. 

3.5.6 Thermogravimetric Analysis 

Thermogravimetric Analysis (TGA) was selected as a cement thermal analysis 

technique. It determines the weight changes of different minerals within the sample as it is 

gradually heated at a uniform rate. Crystalline changes cannot be detected, however, since 

they do not involve weight changes. TGA for this experiment was conducted at LSU’s 

Center for Advanced Microstructures and Devices (CAMD). 

The machine used was TA Instruments SDT Q600 Simultaneous DSC/TGA with 

available temperature range from ambient to 2732°F (1500°C). Low temperature 

endrothermal transition on the heat flow curve is associated with the weight loss of a certain 

phase. The following parameters were used for the tests: purge gas of nitrogen with a flow 

rate of 0.0035 ft3/min (100 ml/min); alumina pans; equilibration at 104°F (40°C) for 10 

minutes; heating rate of 41°F/min (5°C/min) from 104°F (40°C) to 392°F (200°C), 

followed by a heating rate of 50°F/min (10°C/min) up to 1832°F (1000°C). Sample 

preparation entailed crushing the cement sample into powder and placing 0.35-0.53 oz. 

(10-15 mg) in the machine. 
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3.5.7 Microhardness Test 

The microhardness test uses an established method where a diamond indenter tip 

with a known geometry is driven into a specific site of the sample by applying an increasing 

normal load. When reaching a pre-set maximum value, the normal load is reduced until 

partial or complete unloading of the sample occurs. For each loading/unloading cycle, the 

applied load value is plotted with respect to the corresponding position of the indenter. 

Five-spot indentation was done in a form of a line profile, on every sample ranging from 

inner pipe position to the outer region of the cement sheath, covering its entire cross-section 

(Figure 4.7). The resulting load/displacement curves provide data specific to the 

mechanical nature of the sample tested (primarily hardness and Young’s modulus). 

Established models are used to calculate quantitative hardness and modulus values for such 

data. 

The following set of conditions was used in all the indentation experiments: the 

maximum force used was 4.5 lbf (20 N); the loading and unloading rates were kept the 

same at 4.5 lbf/min (20 N/min); the pause at maximum load was 30 seconds; the contact 

load was 6.7·10-3 lbf (30 mN); the computation method used was from Oliver & Pharr [67]; 

the indenter type was Vickers diamond with the Poisson coefficient of 0.30. There are three 

important parameters that must be measured from the load/displacement curves: the 

maximum load (Pmax), the maximum displacement (hm), and the elastic unloading stiffness 

(S) defined as the slope of the upper portion of the unloading curve during the initial stages 

of unloading (also called the contact stiffness) [67]. A power-law fit through the upper third 

to half of the unloading data, shown in Figure 3.8, intersects the depth axis at ht. 
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Hardness and elastic modulus are determined through load/displacement curve as 

for the example below [68]. 

The hardness (H) is determined from the maximum load (Pmax) divided by the 

projected contact area (AC): 

 𝐻 =
𝑃𝑚𝑎𝑥

𝐴𝑐
 (3.4) 

 

The contact area (AC) is calculated by evaluating the indenter area function, which 

will depend on the diamond geometry of the indenter and at low loads by an area correction. 

For perfect Berkovich and Vickers indenters (as in this case), the area function is 

Ac=24.5hc
2. The contact depth, hC, is calculated as: 

 ℎ𝑐 = ℎ𝑚𝑎𝑥 − 𝜖
𝑃𝑚𝑎𝑥

𝑆
 (3.5) 

 

Figure 3.8: Hardness (H) and elastic modulus (E) are determined through 

load/displacement curve. A power-law fit through the upper third to half of the unloading 

data line intersects the depth axis at ht. The stiffness S, is given by the slope of this line 

(adapted from Alexis Celestin). 
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where ε is a constant that depends on the geometry of the indenter, and hmax is the maximum 

displacement. The stiffness (S) is given by the slope of the straight part of the unloading 

curve. The ε value of 0.75 was recommended based on empirical observations and has 

become the standard value used for analysis [67]. 

The Young’s modulus (E) of the tested material can be obtained from: 

 
𝐸 =

1

(1 − 𝜈2) (
1
𝐸𝑟

+
1 − 𝜈𝑖

2

𝐸𝑖
)

 
(3.6) 

 

where Ei and νi are the Young’s modulus and Poisson coefficient of the indenter, 

respectively, and ν is the Poisson coefficient of the tested sample. The reduced modulus 

(Er) is given by: 

 𝐸𝑟 =
√𝜋

2

𝑆

√𝐴𝑐
 (3.7) 

 

Surface hardness obtained with indentation can be correlated with unconfined 

compressive strength (UCS) of the material [69]. The correlations have been used 

extensively in the field of rock mechanics. Based on the results from indentation tests 

conducted on shale samples, indentation parameters also show interdependence, that is, as 

one value increases, the other increases too [70]. A standard indentation test was 

recommended by ISRM and Equation 3.8 was suggested for the prediction of UCS from 

indentation hardness index (IHI) [71]:  

 𝑈𝐶𝑆 = 3.1 ∙ 𝐼𝐻𝐼1.09 (3.8) 

where UCS is in MPa and IHI in kN/mm. 
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3.5.8 Flow-through Experiments 

In order to test the pipe expansion’s capability to seal the microannular gas flow, 

Pre- and post-expansion multi-rate gas flow-through testing was conducted on composite 

samples with the pre-manufactured microannulus and without it (control). The 

microannulus was created by turning the inner pipe continuously within the first 26 hours 

of cement hydration leading to debonding of the cement/inner pipe interface. After this 

period samples were cured in the water bath for minimum hydration period of 28 days. 

Nitrogen gas was selected as the working fluid to simulate gas migration through the 

microannulus, as it is non-reactive with the cement paste and often used in foamed cements. 

Testing pre-expansion was done to check the existence of the microannular gas flow and 

estimate the size of the sample’s microannulus by using the linear Darcy flow equation for 

gas. All experiments were done in the lab at ambient conditions. 

The experiment starts by screwing the tubing fittings into the threaded holes on the 

outlet (bottom) and inlet (top) side of the outer pipe and connecting them with the 

compression fittings of the Teflon tubing manifold. This allowed nitrogen gas to be injected 

into the sample from four different sides of the sample, 90° apart, as shown on Figures 3.9. 

and 3.10. A cylinder with nitrogen gas was pressurized at desired starting inlet pressure of 

15 psi (103 kPa), and upon stabilization of pressures the flow rate was kept constant at 

0.003 ft3/min (85 ml/min) with the gas flow meter valve.  The flow through the sample 

would indicate the existence of microannular gas flow pre-expansion. Pressure differential 

(Pinlet-Poutlet), recorded by inlet and outlet pressure transducers, is the only variable which 

was used in calculations of effective permeability of the pre-manufactured microannulus, 

Kef (modified Eq. 2.1) [33]: 
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 𝐾𝑒𝑓 =
1424qμZT∆L

π(rOinn
2 − rIout

2 )
∙

1

(Pinlet
2 − P𝑜𝑢𝑡𝑙𝑒𝑡

2 )
 (3.8) 

 

q – nitrogen flow rate [Mcf/day] Kef –  effective perm. of microannulus [mD] 

rIout – ID of outer pipe [ft]  rOinn – OD of inner pipe [ft] 

µ – gas viscosity [cP]   Z – gas deviation factor 

T – temperature [ºR]   ΔL – distance between P transducers [ft] 

Pinlet – inlet pressure [psi]  Poutlet – outlet pressure [psi] 

 

Upon pressure stabilization nitrogen flow rate was kept constant at approximately 

q=0.003 ft3/min (85 ml/min) which converted to field units makes 0.0042 Mcf/day. The 

gas deviation factor for nitrogen at ambient conditions was taken to be Z=1 and viscosity 

μ=0.018 cP. All the flow-through tests were conducted at ambient conditions of T=534.7°R 

(75°F, 24°C). The distance between inlet and outlet ports (ΔL) was 1.33 ft (40.64 cm) and 

the area of the cemented annular space was calculated taking inner radius of the outer pipe, 

rOinn=0.15 ft (4.6 cm), and outer radius of the inner pipe, rIout=0.10 ft (3.05 cm). 

From the Equation 3.8, the effective permeability is inversely proportional to the 

pressure differential, meaning that smaller ΔP would indicate a larger microannulus. Due 

to preferential pathway of nitrogen gas, effective permeability obtained can be accounted 

for in its entirety by the flow through the microannulus (Kef), as both casing and cement 

have low permeability and therefore are not providing substantial migration pathways. The 

size of that microannulus can be estimated with the Equation 3.9 (modified Eq. 2.2) [33]: 

 𝑤 = √
𝐾𝑒𝑓

8.4 ∙ 1013
 (3.9) 

 

w – size of the microannulus (m) Kef – effective permeability [mD] 
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After conclusion of the flow-through tests, the gas cylinder was closed and the gas 

manifold disassembled. The small holes on the outer pipe were unplugged and the sample 

was then prepared for expansion. Flow-through testing post-expansion was conducted 

within 1 hour, 24 hours, and 60 days after expansion to examine if the expansion was 

successful in sealing the microannnulus and test the seal integrity. The holes were sealed 

with epoxy immediately after expansion. After re-connecting the gas manifold, multi-rate 

nitrogen gas flow-through experiments were conducted. Initial inlet pressure was kept at 

25 psi (172 kPa) and it was increased by 25 psi (172 kPa) every five minutes until the final 

inlet pressure of 100 psi was reached. No pressure recording on the outlet pressure 

transducer would indicate sealing of the microannular gas flow. 
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CHAPTER 4: RESULTS 

4.1 Visual Observations During and Post-expansion   

 Tubular expansion resulted in increase of pipe diameter at the expense of volume 

occupied by the cement sheath. The result is a compression of cement matrix and release 

of free pore water through “porosity” holes of the outer pipe, followed by protrusion of the 

paste-like material, as seen in Figure 4.1. In all further discussion, the term “compressed” 

will be used for the cement sheath and the term “expanded” will be used for the pipe. 

Alkalinity measurements of the collected fluid samples with the pH paper showed 

a pH of between 13 and 14 indicating that the fluid sample was most likely the cement free 

pore water. Inductively coupled plasma (ICP) mass spectrometry of fluid samples detected 

mainly Na+ and K+, with significant increase in concentrations of Ca2+, Fe3+, Mg2+ and S6+ 

with expansion ratio. The concentration of these ions in the effluent sample increased more 

than three times in the sample expanded 8% compared to one expanded at 4% expansion 

ratio. The results shown in Table 4.1 suggest that primarily pore water is squeezed out of 

the cement sheath. 

Table 4.1: Results of the ICP mass spectroscopy conducted on fluid samples collected 

during expansion at 4% and 8% expansion ratios. High concentrations of K+ and Na+ 

suggest that free cement pore water is being squeezed out of the sample. Large increase in 

concentration of Ca2+, Fe3+, Mg2+ and S6+ with expansion ratio indicates dissolution of 

certain minerals within the cement. 

 

 

Ion concentration 

[ppm] 
Al3+ Ca2+ Fe3+ S6+ Mg2+ K+ Na+ 

4% sample 4.50 8.04 1.45 10.60 14.48 1,760.16 1,282.48 

8% sample 5.80 27.70 4.68 33.40 41.13 2,085.65 1,442.54 
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A cross section of the cement/casing sample was obtained by cutting the specimen 

to investigate the integrity of the cement sheath (Figure 4.2). Mini-cores which were drilled 

from the matrix were easily crushed with fingertips indicating a change in consistency and 

loss of integrity. The post-expanded cement sheath was soft enough to be scraped with a 

small spatula. The cut samples were then wrapped in a plastic wrap and returned to the 

water bath for further hydration. After a period of five days, the cross-sectioned disks were 

visually observed and subjected to a qualitative hardness test. Five days post-expansion 

resulted in a different behavior primarily indicating that cement regained most of its 

consistency.  

 

Figure 4.1: Photo of a composite sample after expansion with the 8% expansion ratio cone. 

Fully hydrated cement, with a paste-like consistency, has been squeezed out from the holes 

on the outer pipe together with free cement pore water. The magnified view showing 

cement paste squeezed out from larger holes.  
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4.2 Optical Microscopy 

Images of the control samples showed presence of air voids (bubbles) on both 

vertical and horizontal thin sections. Some of the air bubbles had a diameter of over 

3.94·10-3 in. (100 µm). Cement matrix appeared to have had more pores than the expanded 

samples, with larger presence of scattered portlandite crystals, but not on the walls of air 

voids and larger pores (shown in Tables 4.2 and 4.3).  

On both regular and polarized images of expanded samples with 4% and 8% 

expansion ratio, collapse of air bubbles under expansion force was observed. Polarized 

images showed presence of bright colorful shapes which represent the mineral portlandite 

precipitating on the pore walls as a product of rehydration. Portlandite crystals tend to grow 

in spaces initially occupied by water [6]. Cement free pore water propagation due to pipe 

expansion most likely triggered this precipitation of new minerals within the collapsed 

bubbles and smaller pores. Fractures which seem to have spread from the collapsed pores 

could have been made either during sample cutting or due to stress during expansion. 

Figure 4.2: a. a cross-section of the composite sample immediately after 8% expansion 

exhibiting the cement sheath with softer consistency; b. drilled cement mini-cores from 

the composite sample were easily crushed under very small forces (between fingertips); c. 

a cross-section of the same composite sample five days after expansion. The cement 

regained its strength and there was no fracturing and deformation upon visual inspection. 

The width of the cement sheath was 0.51 in. (1.3 cm). 
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Table 4.2: Microscopy images of cement sample’s horizontal thin sections pre and post-

expansion (4% and 8% expansion ratio). Images of expanded samples showing collapse of 

large air voids (AB) and precipitation of portlandite (P) within the pores. Fractures (F) were 

also observed within the matrix as a result of stresses during expansion.  
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Table 4.3: Microscopy images of cement sample’s vertical thin sections pre and post-

expansion (4% and 8% expansion ratio). Images of expanded samples showing collapse of 

the air voids and precipitation of portlandite crystals on the walls and within collapsed 

pores, as well as fracturing (F) of cement matrix. 

Regular light Polarized light 

C
o
n

tr
o

l 

  

4
%

 e
x

p
a
n

si
o
n

 

  

8
%

 e
x

p
a
n

si
o
n

 

  

 

 

AB 

F 

P 

AB 



56 

4.3 Thermogravimetric Analysis (TGA) of Cement 

TGA was run on the control sample, cement samples five days post-expansion 

(Appendix D), and on cement samples six months post-expansion. To determine and 

quantify mineralogical composition of the cement before and after expansion test, a 

temperature range correlating to the weight loss for each mineral’s decomposition 

temperature peak is pre-determined. Located in the Table 4.4 below are all the temperature 

ranges in endothermal peaks of most abundant hydrated cement minerals. It has to be 

recognized that there are interference effects at low temperatures, depending on the drying 

procedures and the state of the material [5]. 

Table 4.4: Temperature ranges with endothermal peaks of different minerals which can 

be found in cement [5]. 

Hydrated cement mineral [chemical 

formula] 

Temperature range of mineral 

decomposition, °F [°C] 

Ettringite [Ca6Al2(SO4)3(OH)12·26H2O] 248-266 [120-130] 

C-S-H [3CaO·2SiO2·3H2O] Below 302 [150] 

Gypsym [CaSO4·2H2O] 284-338 [140-170] 

Portalndite [Ca(OH)2] 842-1022 [450-550] 

Calcite [CaCO3] 1382-1562 [750-850] 

 

Based on published data on TGA measurements of ordinary Portland cement, the 

derivation was made for estimating initial quantity of portlandite in the cement paste. In 

determined endothermal range of 842-1022°F (450-550°C), approximately 25% of the total 

mineral’s weight is being lost [72]. This correlation was used to determine the initial 

quantity of portlandite in the cement samples.  
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Results of the control sample showed weight loss in portlandite mineral of 5.7%, 

shown in Figure 4.3. Knowing that approximately 25% of total portlandite weight is being 

lost in that endothermal region, this means that there was approximately 23.4% of 

potlandite in the control cement sample. The weight loss between 167-302°F (75-150°C) 

was 6.5%, which contained endothermal peaks of water, ettringite, gypsum and C-S-H. 

The last endothermal peak corresponds to weight percentage of calcite (0.64% weight loss). 

The presence of calcite can be predominantly ascribed to carbonation of the sample. 

Figure 4.3: Plot of TGA for 7-month old control sample. The green (upper) line is showing 

weight percentage lost, while the blue line shows endothermal peaks (°C) of the weight 

percentage lost per unit of heat. In the range of 167-302°F (75-150°C), the total weight 

loss was 6.5%. This loss corresponds to the amount of moisture, and mineral phases of 

gypsum, ettringite and C-S-H in the sample. The next endothermal peak at 797°F (425°C) 

is portlandite peak. The weight loss of 5.7% indicates that there was initially approximately 

23% portlandite in the control sample. Last endothermal peak at 1202°F (650°C) is calcite 

peak and small weight loss of 0.64% indicates minor presence of calcite. 
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Sample expanded with 2% expansion ratio cone showed slightly different results 

than the control sample, as shown in Figure 4.4. Weight loss of 9% in minerals with 

endothermal peaks below 302°F (150°C) was observed, which corresponds to increased 

presence of moisture, gypsum, ettringite and/or C-S-H minerals. Weight loss of portlandite 

was registered to be 5.77%, indicating that after 2% expansion the concentration of this 

mineral (23.6%)did not differ from control sample after six months of rehydration. 

Increased presence of calcite (2.9% weight loss) was observed after this expansion. 

Figure 4.4: TGA plot of cement sample after 2% expansion and six months of rehydration. 

The green (upper) line is showing weight percentage lost, while the blue line shows 

endothermal peaks (°C) of the weight percentage lost per unit of heat. The peak observed 

in the range of 167-302°F (75-150°C), correspond to the weight loss of moisture and 

mineral phases of gypsum, ettringite and C-S-H (9%). The portlandite peak at 788°F 

(420°C) showed weight loss of 5.77% indicating that there was approximately 23.6% 

portlandite in the sample expanded with 4% expansion ratio cone. Last endothermal peak 

at 1202°F (650°C), corresponding to the calcite peak, showed weight loss of 2.9%, 

indicating increased presence of calcite six months after expansion, compared to the control 

sample. 
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Thermal analysis of the sample which was expanded at 4% expansion ratio, shown 

in Figure 4.5, showed weight losses of 9% at endothermal peaks under 302°F (150°C). 

This means that both concentration of moisture and mineral group of ettringite, gypsum 

and C-S-H did not change significantly compared to the 2% expanded sample. The 

observed weight loss in portlandite mineral of 5.6% indicated that the portlandite 

concentration remained at approximately 23% six months post-expansion with 4% 

expansion ratio cone. Presence of calcite increased, (2.1% weight loss) compared to the 

control sample, and was similar to the one in the sample expanded with 2% expansion 

cone.  

Figure 4.5: TGA plot of cement sample six months after 4% expansion. The green (upper) 

line is showing weight percentage lost, while the blue line shows endothermal peaks (°C) 

of the weight percentage lost per unit of heat. The distinctive peak observed in below 302°F 

(150°C), correspond to the weight losses of moisture (8%) and mineral phases of gypsum, 

ettringite and C-S-H (5%). The portlandite peak at 788°F (420°C) showed weight loss of 

4% indicating that there was 17% portlandite in the sample expanded with 4% expansion 

ratio cone. Last endothermal peak at 1202°F (650°C), corresponding to the calcite peak, 

showed weight loss of 0.77%, indicating minor presence of calcite due to carbonation of 

the cement sample during preparation. 
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Sample expanded with 8% expansion ratio cone had similar results to two previous 

expanded samples six months post-expansion (Figure 4.6). Weight loss of 9.55% in 

minerals with endothermal peaks below 302°F (150°C) was observed, which corresponds 

to increased presence of moisture, gypsum, ettringite and/or C-S-H minerals, compared to 

the control sample. Weight loss of portlandite was registered to be 6%, indicating that after 

8% expansion and six months of rehydration, the concentration of this mineral returned to 

24% which is in the range of hydrated Portland cements. Weight loss of calcite (1.31%) 

indicated smaller concentration of that mineral than in cases after 2% and 4% expansion. 

Figure 4.6: TGA plot for cement sample six months post-expansion at 8% expansion ratio. 

The green (upper) line is showing weight percentage lost, while the blue line shows 

endothermal peaks (°C) of the weight percentage lost per unit of heat. In the range of 167-

302°F (75-150°C), weight loss of 9.55% corresponds to the larger amount of moisture 

within the sample, and also mineral phases of gypsum, ettringite and C-S-H. The next 

endothermal peak at 788°F (420°C) showed portlandite weight loss of 6% indicating initial 

concentration of 24%. Last endothermal peak at 1202°F (650°C) showed 1.31% weight 

loss of calcite. 
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4.4 Microhardness Test 

 In order to investigate the effect of expansion on the mechanical properties of the 

cement matrix, microhardness tests were performed on the control and compressed cement 

samples. Every sample was tested for hardness with indentation on five points, starting 

from the side of the inner pipe to the outer pipe side of the sample, as shown in Figure 4.7. 

Tables 4.5 and 4.6 summarize the main numerical results for control sample, and cement 

samples six days and six months post-expansion with 2%, 4% and 8% expansion ratio 

cones. 

The results are expressed as calculated values of cement hardness and Young’s 

Modulus based on penetration depth of the indenter probe, showing average values and 

standard deviations. It should be considered that the large variations in results can occur 

when the surface roughness is in the same size range as the indentation. Features such as 

air bubbles can interfere, although these effects are present on all sample surfaces and are 

minimized by using microscope-guided positioning of the indents. 

Figure 4.7: Indentation points of the cement sample. Indents range from the inner pipe side 

of the sample (Indent 1) to the outer pipe side of the sample (Indent 5). 
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The indentation results of the samples six days post-expansion show decrease in 

hardness for all samples, where highest decrease of 30% was recorded in the samples which 

underwent 4% and 8% expansion.  

Table 4.5: Summary table (average) of the main numerical results for cement samples six 

days post-expansion. Hardness and Young’s modulus show decrease for all expansion 

ratios with 30% decrease being the highest for 4% and 8% expansion. 

 

The indentation results of the samples six months post-expansion showed average 

increase in cement’s hardness after pipe expansion. The hardness increased the most in the 

sample 8% post-expansion (20% increase), as tabulated in Table 4.6. 

Table 4.6: Summary table (average) of the main numerical results for cement samples six 

months post-expansion. Hardness and Young’s modulus show increase in hardness in all 

samples post-expansion. 

Sample 
Hardness 

[Vickers] 

Hardness 

[MPa] 

Young’s 

Modulus [MPa] 

Max Depth 

[μm] 

Control 3.04±0.94 32.2±9.90 3973±587 167.4±4.5 

2% expansion 2.70±0.37 28.5±3.9 3036±1700 176±11 

4% expansion 1.96±0.32 20.7±3.4 1961±539 207±16 

8% expansion 1.92±0.77 20.3±8.1 1196±298 172±60 

Sample 
Hardness 

[Vickers] 

Hardness 

[MPa] 

Young’s 

Modulus 

[MPa] 

Max Depth 

[μm] 

Control 2.89±0.20 30.6±2.2 3135± 170±4 

2% expansion 3.22±0.19 34.1±2.0 5034±956 158±5 

4% expansion 3.16±0.29 33.5±3.1 2823±1003 163±7 

8% expansion 3.51±0.26 37.2±2.7 4656±1606 152±6 
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4.5 Mechanical Effects of Expansion on Pipe (Casing) 

 By using known correlations adapted from previous research [54], [53], different 

pipe parameters and pressure ratings were calculated to determine the detrimental effects 

expansion had on the pipe. The main parameters associated with detrimental effects of 

expansion were focused include: pipe shortening, reduction of wall thickness, OD/t 

increase, collapse (Pc) and burst (Pbr) pressure ratings (Equations 3.2 and 3.3, respectively).  

The calculated values are shown in Table 4.7. and they assume the loss in pipe wall 

thickness of 0.6 of the percentage of expansion ratio [53] and pipe length shortening of 0.2 

of the percentage of expansion ratio [54], e.g., an expansion of 8% would cause a decrease 

in wall thickness of 4.8% and length shortening of 1.6%. 

Table 4.7: Expansion and pipe parameters. Decrease in the wall thickness and increase in 

OD/t affected the collapse rating, decreasing it up to 20% for the 8% expansion ratio. 

 

The calculated collapse pressure rating for the pipe expanded with the 8% 

expansion ratio cone decreased by 20% compared to initial pipe rating (Figure 4.8). The 

calculated burst pressure rating, however, does not take into account the isotropic strain 

hardening which adds to the material’s burst capabilities and making it more resistant [52]. 

Actual 

Expansion 

Ratio [%] 

Pipe OD 

[in.] 

Wall 

Thickness, t 

[in.] 

OD/t 
Length 

[in.] 
Pbr [psi] Pc [psi] 

0 2.375 0.109 21.79 24.0 2811.1 2357.1 

1.46 2.405 0.108 22.26 23.9 2751.9 2257.5 

3.45 2.445 0.107 22.91 23.8 2674.0 2126.1 

7.43 2.526 0.104 24.25 23.6 2525.6 1875.9 
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Axial forces (Fe) were recorded during expansion with an integrated load cell. The 

expansion was first done on welded pipe samples which were not cemented (free annular 

space). This was done to compare the values of those obtained during expansion of the 

composite cement samples. These recordings and the results of axial stress (σz) calculations 

are shown in Table 4.8 and Figure 4.9. 

Table 4.8: Force measurements obtained during pipe expansion and calculated axial 

stresses. Values are for expansions with pipe only (Fe, σz – pipe) and for composite cement 

sample (Fe, σz – sample). 

Actual Expansion 

Ratio [%] 

Cone OD 

[in.] 

Fe - pipe 

[lbf] 

σz – pipe 

[psi] 

Fe – sample 

[lbf] 

σz – sample 

[psi] 

1.46 2.189 1943 2504.3 2815 3627.8 

3.45 2.232 3513 4527.3 4295 5535.1 

7.43 2.317 8267 10653.8 12596 16232.9 

Figure 4.8: Plot showing decrease in collapse and burst pressure ratings after expansion 

with 2%, 4% and 8% expansion ratio cones. Calculations of burst rating showed a decrease 

of 10% for the 8% expansion ratio, while the collapse rating decreased over 20% for the 

same expansion ratio.  
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4.6 Gas Flow-through Experiments 

The total of 15 samples with a pre-manufactured microannulus were made, out of 

which only 7 showed flow during multi-rate gas flow-through experiments. These samples 

were used for preliminary and concluding data, out of which five were tested for gas flow 

after pipe expansion at 2%, 4% and 8% expansion ratios. 

Multi-rate gas flow-through experiments were run on each specimen pre-

expansion, immediately after expansion (0 hours), 24 hours after expansion and 60 days 

after expansion. One of the composite samples (control sample) did not have the pre-

manufactured microannulus and it did not undergo expansion. The control sample was 

tested for gas flow to establish whether gas flow through the cement sheath of the 

composite sample would be recorded. 
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Figure 4.9: Plot of axial forces recorded during expansion with 2%, 4% and 8% expansion 

ratio cones. The increase in forces during expansion of composite samples accounts for the 

presence of the cement sheath behind the pipe and transfer of stress into cement.  
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The effectiveness of tubular expansion in sealing the annulus was monitored using 

the readings from the outlet pressure transducer. When the pressure transducer on the outlet 

side of the sample showed no recorded pressure post-expansion during gas flow-through 

experiments, it implied that the microannular flow was successfully remediated. The 

effective permeability of the microannulus is quantified using Darcy’s linear gas flow 

calculations. This value was used to estimate the size of the microannulus using know 

correlations.  

4.6.1 Gas Flow-through Test I – Control Sample 

A multi-rate gas flow-through experiment was first performed on the sample 

without the pre-manufactured microannulus (results shown in Figure 4.10). This was done 

in order to establish that the design and accuracy of the pressure transducers as well as to 

check if there was a good bond at cement/pipe interface. 
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Figure 4.10: Multi-rate gas flow-through test data plot recorded on control sample without 

pre-manufactured microannulus. After a gradual increase of 25 psi (172 kPa) in inlet 

pressure on the gas cylinder every five minutes from 25 psi (172 kPa) to 100 psi (690 kPa), 

there was no recorded pressure on the outlet pressure transducer, confirming that there was 

no microannular gas flow. 
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The multi-rate gas flow-through procedure involved a gradual increase in inlet 

pressure by 25 psi (172 kPa) every five minutes from 25 psi (172 kPa) to 100 psi (690 kPa). 

There was no pressure recording on the outlet pressure transducer during this experiment, 

which confirmed that there was no flow through the entire composite specimen or at both 

cement/pipe interfaces. 

4.6.2 Gas Flow-through Test II – 2% Expansion 

The pre-expanded gas flow-through experiment on the first sample showed flow 

through the composite sample’s microannulus and recorded pressure on outlet’s pressure 

transducer, thus confirming the presence of a microannulus. Initial inlet pressure on the gas 

cylinder was 15 psi (103 kPa), and the gas flow was kept constant at 0.003 ft3/min (85 

ml/min) upon pressure stabilization. The recorded time lag between inlet and outlet 

pressure transducer was five seconds, and after increasing the inlet pressure to 50 psi (345 

kPa) the pressures recorded on the transducers increased to 32 psi (220 kPa) (inlet) and 9 

psi (62 kPa) (outlet), causing the largest recorded pressure differential (ΔP) of 23 psi (158.6 

kPa). The stabilized pressures used in the calculations of Kef were Pinlet=0.97 psi (6.7 kPa) 

and Poutlet=0.13 psi (0.9 kPa). Using the Equation 3.8, the microannulus effective 

permeability of the first sample was found to be Kef1=2.11 D. The size of the microannlus 

was found to be w1=1.96·10-4 in. (5 μm). 

 A second gas flow-through test was run immediately after pipe expansion at 2% 

expansion ratio. The multi-rate gas flow-through procedure post-expansion entailed a 

gradual increase in inlet pressure by 25 psi (172 kPa) every five minutes from 25 psi (172 

kPa) to 100 psi (690 kPa). The outlet pressure transducer during this experiment did not 

show any detectable levels of pressure, suggesting that the 2% expansion ratio cone was 
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successful in sealing the microannular gas migration. The next gas flow-through test was 

run again 24 hours later following the same procedure of gradual pressure increase. There 

was no pressure recorded on the outlet port, confirming that the seal was still in place. The 

last gas flow-through test on the first sample was run 60 days after expansion with the same 

procedure and there was no pressure recorded on the outlet transducer.  The flow-through 

test on the first sample, shown in Table 4.9, showed that the expansion cone with 2% 

expansion ratio was successful in permanently closing the microannular gas flow above 

the expanded region. 

Table 4.9: Gas flow-through experiments data. The time lag represents the time elapsed 

between recordings of the two transducers. Stabilized inlet (Pin) and outlet (Pout) pressures 

used in the calculation of effective permeability of the microannulus (Kef). After expansion 

with the 2% expansion ratio cone, the microannular flow of 2.11 D permeability was 

successfully remediated. The size of the microannulus (w) was found to have been 5 

microns. 

Pin    

[psi] 

Pout 

[psi] 

Time lag 

[s] 

Kef    

[D] 

w 

[μm] 

Pre-expansion 0.97 0.13 5 2.11 5 

0 hrs Post-expansion (2%) 81 0 - 0 0 

24 hrs Post-expansion (2%) 75.5 0 - 0 0 

60 days Post-expansion (2%) 83 0 - 0 0 
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4.6.3 Gas Flow-through Test III – 2% Expansion  

Multi-rate flow-through experiments conducted on the third sample showed 

microannular gas flow pre-expansion and pressures recorded on both pressure transducers. 

An identical inlet pressure of 15 psi (103 kPa) was selected, while the gas flow rate was 

kept at a constant value of 0.003 ft3/min (85 ml/min) upon pressure stabilization. 

The recorded time lag between inlet and pressure transducer was over six seconds. 

After increasing the inlet pressure to 50 psi (345 kPa), the pressures recorded on the 

transducers increased to 45 psi (310 kPa) (inlet) and 17 psi (117 kPa) (outlet), giving a 

pressure differential (ΔP) of 28 psi (193 kPa). The stabilized pressures used in the 

calculations of microannulus effective permeability were Pinlet=0.92 psi (6.3 kPa) and 

Poutlet=0.04 psi (0.27 kPa). This sample was calculated to have the effective permeability 

of the microannulus of Kef2=2.31 D and the size of w2=2.05·10-4 in. (5.2 μm). 

 A second multi-rate gas flow-through test was run immediately after expansion 

with a gradual increase in inlet pressure by 25 psi (172 kPa) every five minutes from 25 

psi (172 kPa) to 100 psi (690 kPa). There was no recording on the outlet pressure transducer 

during this experiment, which confirmed remediation of the microannular gas flow. Flow 

through experiments were also conducted 24 hours and 60 days after the expansion and 

both had zero readings at the outlet transducers. The 2% expansion proved to be successful 

in sealing the microannular gas migration. Detailed results are shown in Table 4.10. 
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Table 4.10: Gas flow-through experiments data. The time lag represents the time elapsed 

between recordings of the two transducers. Stabilized inlet (Pin) and outlet (Pout) pressures 

used in the calculation of effective permeability of the microannulus (Kef), the size (w) of 

5.2 microns. After expansion with the 2% expansion ratio cone, the microannular flow of 

2.31 D permeability was successfully remediated. 

Pin    

[psi] 

Pout 

[psi] 

Time lag 

[s] 

Kef   

[D] 

w   

[μm] 

Pre-expansion 0.92 0.04 6 2.31 5.2 

0 hrs Post-expansion (2%) 70 0 - 0 0 

24 hrs Post-expansion (2%) 83 0 - 0 0 

60 days Post-expansion (2%) 86 0 - 0 0 

 

4.6.4 Gas Flow-through Test IV – 4% Expansion 

Flow-through experiments conducted on the fourth sample also showed 

microannular gas flow pre-expansion and pressures recorded on both pressure transducers. 

Inlet pressure was kept at 15 psi (103 kPa), and upon pressure stabilization the flow rate 

was kept at 0.003 ft3/min (85 ml/min). The time lag recorded between the two transducers 

was 13 seconds, indicating a lower permeability microannulus than in cases with the first 

two samples. Lower permeability was also indicated by a high ΔP of 47 psi (324 kPa); the 

highest pressures recorded after increasing the inlet pressure to 50 psi (345 kPa) were 49 

psi (338 kPa) (inlet) and 2 psi (14 kPa) (outlet). Calculations of the effective permeability 

of microannulus confirmed it had the lowest permeability of all the samples. The pressures 

used in the calculations were Pinlet=3.75 psi (26 kPa) and Poutlet=0.36 psi (2.5 kPa), and the 

effective permeability of microannulus was found to be Kef3=0.14 D. The size of the 

microannulus of this sample was calculated to be w3= 0.51·10-4 in. (1.3 µm). 
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After pipe expansion with the cone of 4% expansion ratio, gas flow-through tests 

were run with the same procedure as for the previous samples, and no pressures were 

recorded on the outlet pressure transducer immediately after expansion, 24 hours later, and 

after 60 days. The only observed change was the maximum inlet pressure on the test run 

immediately after expansion, the test was run at 75 psi (517 kPa) due to leakage in the 

manifold tubing. An expansion ratio of 4% also proved to be successful in closing the 

microannular gas flow. Detailed results are shown in Table 4.11 below.  

Table 4.11: Gas flow-through experiments data. The time lag represents the time elapsed 

between recordings of the two transducers. Stabilized inlet (Pin) and outlet (Pout) pressures 

used in the calculation of effective permeability of the microannulus (Kef). After expansion 

with the 4% expansion ratio cone, the microannular flow of 0.14 D permeability was 

successfully remediated. The size of the microannulus (w) was found to have been 1.2 

microns.  

Pin    

[psi] 

Pout   

[psi] 

Time lag  

[s] 

Kef  

[D] 

w   

[μm] 

Pre-expansion 3.75 0.36 13 0.14 1.2 

0 hrs Post-expansion (4%) 47 0 - 0 0 

24 hrs Post-expansion (4%) 61 0 - 0 0 

60 days Post-expansion (4%) 62 0 -  0 0 

 

4.6.5 Gas Flow-through Test V – 8% Expansion 

The pre-expansion flow-through experiment on this sample also showed the 

existence of microannular gas flow with the pressure recorded on outlet pressure 

transducer. The same initial inlet pressure of 15 psi (103 kPa) was selected, and constant 

flow was kept at q= 0.003 ft3/min (85 ml/min) upon pressure stabilization. The recorded 
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time lag between inlet and outlet pressure transducers was just over one second indicating 

a microannulus with very high permeability.  The inlet pressure was increased to 25 psi 

(172 kPa), and kept constant at that rate for four minutes and then increased to 50 psi (690 

kPa). The highest recorded pressures on both transducers were approximately 26 psi (179 

kPa) (inlet) and 16 psi (110 kPa) (outlet), resulting in the highest ΔP of 10 psi (69 kPa). 

Pinlet=1.13 psi (8 kPa) and Poutlet=1.00 psi (7 kPa) were the stabilized pressures used in the 

calculations of Keff. The microannulus effective permeability of the sample was found to 

be Kef4=7.04 D, while the size of the microannulus was w4= 3.6·10-4 in. (9.1 μm). 

The highest expansion ratio of 8% was selected as the maximum expansion rate at 

our current load capacity. The second gas flow-through test was run immediately after 

expansion following the same procedure as the first sample: gradually increasing inlet 

pressure by 25 psi (172 kPa) every five minutes from an initial pressure of 25 psi (172 kPa) 

to a final pressure of 100 psi (690 kPa). After the test, the highest pressure value recorded 

on the outlet transducer was 0.214 psi (1.5 kPa) while inlet pressure was 68 psi (469 kPa) 

at that time. This pressure differential corresponded to the effective permeability of 300 

nD. However, subsequent gas flow-through tests conducted 24 hours and 60 days post-

expansion showed no pressure recordings on the outlet transducer. This test showed that 

an 8% expansion ratio was also successful in closing the microannular flow at tested 

pressure rates, as shown in Table 4.12. 
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Table 4.12: Gas flow-through experiments data. The time lag represents the time elapsed 

between recordings of the two transducers. Stabilized inlet (Pin) and outlet (Pout) pressures 

used in the calculation of effective permeability of the microannulus (Kef), with the size 

(w) of 9.1 microns. After expansion with the 8% expansion ratio cone, the microannular 

flow of 7.04 D was decreased to 300 nD immediately after expansion. Gas flow-through 

tests 24 hours and 60 days after expansion showed complete seal of the microannular flow. 

Pin   

[psi] 

Pout 

[psi] 

Time lag 

[s] 

Kef   

[D] 

w    

[μm] 

Pre-expansion 1.13 1.00 1 7.04 9.1 

0 hrs Post-expansion (8%) 68 0.214 - 3·10-7 0.05 

24 hrs Post-expansion (8%) 59 0 - 0 0 

60 days Post-expansion (8%) 86 0 - 0 0 

 

4.6.6 Gas Flow-through Test VI – 8% Expansion  

Pre-expansion gas flow-through tests on the sixth and final composite sample 

showed pressure recording on the outlet pressure transducer, confirming gas flow through 

the pre-manufactured micoannulus. Initial conditions were kept the same as with previous 

samples, where initial inlet pressure was 15 psi (103 kPa) and the gas flow rate was kept at 

0.003 ft3/min (85 ml/min) upon pressure stabilization. The time lag in pressure recording 

between the inlet and outlet pressure transducers was 7.5 seconds, while the highest 

pressures recorded after increasing the inlet pressure to 25 psi (172 kPa) were 17 psi (117 

kPa) (inlet) and 3 psi (20.7 kPa) (outlet). Stabilized pressures used in Kef calculations were 

Pinlet=1.72 psi (12 kPa) and Poutlet=0.06 psi (0.4 kPa), giving a microannulus effective 

permeability of Kef5=0.66 D. The size of the microannulus was found to have been w5= 

1.1·10-4 in. (2.8 µm). 
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The second gas flow-through test was run immediately after expansion at 8% 

expansion ratio, with the same procedure as the first five samples a gradual increase in inlet 

pressure by 25 psi (172 kPa) every five minutes from an initial pressure of 25 psi (172 kPa) 

to a final pressure of 100 psi (690 kPa), and it showed no pressure recording on the outlet 

pressure transducer.  

The same procedure was repeated after 24 hours and then after 60 days. Both tests 

showed no pressure readings on the outlet pressure transducer, which confirmed that the 

8% expansion ratio cone was successful in closing the microannular gas flow in the fifth 

composite sample. Detailed results are shown in Table 4.13 below. 

Table 4.13: Gas flow-through experiments data. The time lag represents the time elapsed 

between recordings of the two transducers. Stabilized inlet (Pin) and outlet (Pout) pressures 

used in the calculation of effective permeability of the microannulus (Kef), which had the 

size (w) of 2.8 microns. After expansion with the 8% expansion ratio cone, the 

microannular flow of 0.66 D permeability was successfully remediated. 

Pin   

[psi] 

Pout 

[psi] 

Time lag 

[s] 

Kef   

[D] 

w 

[μm] 

Pre-expansion 1.72 0.06 7.5 0.66 2.8 

0 hrs Post-expansion (8%) 85.6 0 - 0 0 

24 hrs Post-expansion (8%) 78 0 - 0 0 

60 days Post-expansion (8%) 85 0 - 0 0 
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CHAPTER 5: DISCUSSION  

The main part of the experimental setup, the custom-made expansion system, was 

assembled, calibrated, and successfully applied in the operations of the inner pipe 

expansion. During the expansion of the inner pipe, the annular cement sheath was 

compressed and a change from a solid, hydrated structure into a material of softer 

consistency was observed. These structural changes resulted from the impact of the forces 

and pressures created by the movement of the expansion cone. The pipe expansion, which 

led to collapse of macro-pores within the cement matrix, most likely resulted in movement 

of free pore water ahead of the expansion cone during the expansion process. The results 

from experiments conducted with pigmented cement, shown in Figure 5.1, were used to 

test and confirm this hypothesis. The top quarter of the composite sample was cemented 

with red pigmented cement and the remainder of the sample consisted of unpigmented 

slurry with the same density of 13.1 lb/gal (1.57 g/cm3). 

Figure 5.1: Expansion experiment with pigmented cement. The left image is a magnified 

view of the cross-section at the interface between pigmented and regular cement. The red 

cement pore water propagated through the sample ahead of the cone and was observed in 

the paste squeezed out through the holes on the outer pipe (right magnified view). 



76 

After expansion utilizing the 8% expansion ratio cone, cross-sections on multiple 

lengths throughout the sample revealed the propagation of the pore water. To further 

investigate the hypothesis of free pore water propagation and its role in successful 

expansion, a test was conducted on a composite sample which was dried in the oven. The 

sample was stored in the oven at 420°F (215°C) for 35 days after which an expansion was 

tried at a 4% expansion ratio. In this case, the cone stuck once it reached the cemented part 

of the pipe and was not able to perform expansion. This result further validated the 

hypothesis that free cement pore water propagation is the most likely driving force for 

successful expansion and mineralogical/microstructural changes in cement.  

Water-extended cement slurry with a high w/c ratio of over 0.8 can have a total 

porosity of over 40% [6]. Most of the pores are within the range of 10-100 nm diameter; 

larger pores of up to 1 μm, however, can be present in 10% of the total porosity in cement 

slurries with w/c ratios close to 0.9 [8]. 

The hypothesis that the first stage of cement compaction was primarily the 

collapsing of smaller pores and larger air bubbles was confirmed using optical microscopy 

on thin cement sections. The next stage of cement compaction was most likely the 

movement of pore water from the smallest pores (over 50 nm), compression and dissolution 

of unhydrated cement grains, and change in C-S-H structure and other mineral products of 

hydration. This mechanism is shown in Figure 5.2, where CT images of the cement from 

pre- and post-expansion samples are processed to fit the illustration. The brightest area of 

the image is the material with the highest density; in this case unhydrated cement grains of 

C3S, C2S and C4AF, whose large structures are observable in the control sample. 
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The darkest spots represent the pores, dispersed throughout the cement matrix in 

the control sample image, while slightly brighter areas indicate presence of portlandite 

crystals. The darker shaded image of the compressed cement sample indicated structural 

changes and increased concentration of hydrated material, such as C-S-H. Unhydrated 

clinker phases are much more dispersed and smaller in the cement matrix of this sample. 

The post-expansion image proved the assumption that dissolution of Ca-rich unhydrated 

clinker phases is occurring during expansion.  

The volume of displaced cement was calculated with the assumption that every 

sample was expanded 11 in. (28 cm) into the cement sheath. The largest displaced volume 

(V) was obtained with the 8% expansion cone resulting in a 10%, or 6.37 in3 (104.47 cm3), 

reduction in volume of the initial cement sheath (Table 5.1). Taking into consideration the 

porosity percentages discussed, it is assumed that the remaining volume of displaced 

   Pre-expansion   During expansion  Post-expansion 

Figure 5.2: An illustration of the expansion process (not to scale). The cement sheath 

images were obtained with X-ray computer tomography (CT) and processed to fit the 

schematic. a. the pre-expansion illustration shows microannulus between the inner pipe 

and the cement sheath; b. during expansion the cone is being pulled (arrow showing 

direction) and the cement sheath is being compressed behind the pipe, altering its structure; 

c. after expansion at 8% expansion ratio, the compressed cement sheath is shown without 

the microannulus.   
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cement consisted of unhydrated cement grains and hydrated cement minerals which 

underwent compaction and restructuralization. 

Table 5.1: A summary of the volume calculations of compressed cement. The cement 

sheath was expanded to a length of 11 in. (28 cm) and the largest volume of cement 

displaced by the pipe (V) occured during the 8% expansion (10% of the initial volume of 

the cement).  

Expansion ratio [%] V [in3], (cm3) V [%] 

Volume of cement sheath to be expanded – control 

sample 
60.15 (985.62) 100 

Volume of displaced cement after expansion at 2% 

expansion ratio 
1.23 (20.09)  -2.04 

Volume of displaced cement after expansion at 4% 

expansion ratio 
2.91 (47.75) -4.85 

Volume of displaced cement after expansion at 8% 

expansion ratio 
6.37 (104.47) -10.60 

 

Effluent samples were collected through the holes on the pipe for ICP mass 

spectrometry and the results showed high concentrations of Na+ and K+. Aktas et al. (1999) 

also observed that the concentration of Na+ and K+ ions was the highest in the squeezed 

pore solution, which agrees with the atomic absorption results of the effluent samples 

collected after compression of the hydrated cement paste [73]. There are two possible 

explanations for the concentration of Ca2+, Fe3+, Mg2+ and S6+ increasing by more than 

three times in the effluent sample expanded 8%, compared to the one expanded at a 4% 

expansion ratio. These ions can be assigned to the dissolution of unhydrated cement grains 

such as alite, ferrite, and SO3 and MgO phases present in the clinker. Another hypothesis 

is that the ions are coming from dissolving hydrated minerals of portlandite, ettringite, 

magnesium hydroxide and hydrated calcium aluminate phases. Dissolution of ettringite 
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and hydrated aluminates, however, would have also shown a larger increase in Al3+ 

concentration than the measured 20% (compared between the 8% expansion and the 4% 

expansion ratios) indicating greater probability of the first hypothesis. 

Another important observation was made five days post-expansion. The cement 

sheath regained its solid structure and strength after a period of rehydration in the water 

bath. A similar process was observed by Ramachandran and Beaudoin (2001). The pipe 

expansion seemed to have triggered re-compaction of hydrated set cement, a process 

similar to that during the normal hydration process [5].  

The mechanical properties of the post-expanded cement sheath were examined by 

microindentation on samples six days and six months post-expansion. The indentation of 

samples six days after expansion confirmed what was observed visually after expansion; 

namely that the integrity and strength of the cement ongoing through rehydration was 

weaker than the control sample. Indentation experiments six months post-expansion 

showed an overall increase in hardness and Young’s Modulus of cement. This can be 

correlated with an increase in strength of the rehydrated cement [74], which is important 

information for field application and long-term wellbore integrity.  Cement regained its 

mechanical properties and became stronger than the control sample after six month of 

rehydration. 

The effect of the expansion process on the mechanical properties of the pipes was 

also quantified. Due to the internal loading from the expansion force, there is only a slight 

reduction in the pipe’s burst pressure rating; less than 10% for the highest expansion ratio 

of 8%. The burst capabilities of the casing, however, will not be as detrimental as calculated 

due to isotropic strain hardening in the direction of the load. The collapse pressure rating 
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decreased significantly because of expansion’s effect on loading in the opposite direction, 

in this case collapse (outer) pressure. Calculations for the highest expansion ratio of 8% 

showed a decrease in collapse rating of over 20%. This detrimental effect has to be taken 

into account when running expansion of casing in the wellbore for remediation purposes. 

These calculations do not consider the effect of the pressure build-up in the cement sheath 

ahead of the cone, which will have an additional impact on casing collapse and presents a 

great risk. The casing ratings should be known and strong enough to withstand the decrease 

of the collapse pressure rating post-expansion. 

The main goal of this thesis research was to test the capabilities of pipe expansion 

in sealing the microannular gas flow. A wide range of permeabilities (0.14 D to 7.04 D) 

and microannuli sizes (from 1.2 to 9.1 µm) were calculated pre-expansion. The multi-rate 

gas flow-through tests showed that all expansion ratios of 2%, 4% and 8% were effective 

in closing the microannular gas flow through samples with a pre-manufactured 

microannulus. The tests confirmed that the seal was durable and still in place even after 

two months.  

Small holes on the outer pipe provided pressure/fluid release from the cement 

sheath during expansion. This would simulate a casing expansion in the openhole section 

of the wellbore. The holes simulate either the porosity, in the case of sandstone, or the 

volumetric expansion of the formation, in the case of shale. 

All of the findings presented here provide insight into the theory behind the 

mechanisms occurring within cement and the cement/pipe interface during pipe expansion. 

The restructuralization and rehydration of the cement matrix, triggered by the compression 

of the cement sheath, did not hinder cement integrity at the higher expansion ratio of 8%. 
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This is an important conclusion for field application where this technology would be 

applied to seal microannular gas flow behind the casing. 

The channels and fractures in the cement matrix and microannuli at the interfaces 

can be located using proven conventional logging techniques, such as spinners, temperature 

logs, and downhole cameras, which are widely used in the detection of leaks in offshore 

wells [67]. If the leak is small, these devices are limited in their effectiveness, but ultrasonic 

logging tools have been successfully utilized for leak detection. After locating the 

problematic zone, a low expansion ratio collapsible (retrievable) cone should be run 

downhole to expand the casing between the couplings by a certain percentage and compress 

the cement sheath. The expanded region should provide a durable seal without 

compromising the wellbore cement integrity at higher expansion ratio of over 8%, while 

the humidity, high pressures, and temperatures at subsurface conditions would quicken the 

rehydration period.  
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

The potential of expandable casing technology was investigated as a remediation 

tool for microannular gas flow between the casing and cement in the open hole section of 

the wellbore. The first objective was to develop a bench-scale physical model for the 

simulation of expandable tubulars. The main objective was to successfully apply this model 

to test the potential of expandable casing technology for remediation of microannular gas 

migration. 

During expansion experiments conducted in this invetigation multiple observations 

and measurements were made. These have been documented in Chapters 4 and 5, and the 

Appendices. Multi-rate gas flow-through experiments were run post-expansion to test the 

seal of the microannular flow immediately, 24 hours, and 60 days after expansion. The 

following conclusions were made after this experimental investigation: 

- Free cement pore water propagation is crucial for successful pipe expansion. The 

wellbore cement will always have sufficient humidity from the formation fluids. 

Furthermore, higher temperature and pressure conditions make the environment 

ideal for successful expansion experiments and faster rehydration. 

- The integrity of the wellbore cement will not be hindered pipe expansion after 

certain rehydration period of the compressed cement matrix.  

- The casing collapse rating must be known in order to determine whether it can 

withstand expansion with the cement sheath behind the pipe.  
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- Pipe expansion has been shown to have great potential in sealing microannular gas 

flow behind the casing. The seal was permanent even 60 days after expansion 

remediation.  

- Implementation of this method in the field has the potential to mitigate leaky wells 

in CO2 sequestration projects, wellbores completed for hydraulic-fracturing, and 

other conventional oil and gas wells. 

6.2 Recommendations 

Future work could entail a closer look into C-S-H structures on a nanoscale. 

Hydration of pure C3S in controlled environment and nanoindentation under confinement 

might explain even more the mechanisms behind microstructural changes due to pipe 

expansion. While this work focused on effects on a microscale, Transmission Electron 

Microscopy (TEM) could provide deeper view of such changes on a nanoscale. 

Recommendations for future experiments would also include running expansion on 

cements with lower w/c ratios, as well as including various additives into the mixture to 

simulate the field application as closely as possible. Expansion on corroded and older 

cement samples could be run (over one year of hydration) to investigate the effect of older 

cements and low pH environment on applicability of casing expansion. 

Multi-rate flow-through experiments are suggested with different gases (e.g. CH4), 

with higher inlet pressure cycles for longer periods of time, e.g. a 100 psi (689.5 kPa) 

increase every 10 minutes from 100 to 500 psi (0.69 to 3.45MPa). The poor bond on 

pipe/cement interface could be simulated by mud contamination and/or flowing gas during 

cement hydration to create gas channels. 
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APPENDIX A 

DETAILED INDENTATION REUSLTS 

Table A.1: Detailed indentation results of the control sample. The hardness was highest on 

the third indent (middle of the cement sheath), while the lowest value was located on the 

outer pipe side of the cement sheath. 

 

Table A.2: Detailed indentation results of the sample expanded with the 2% expansion ratio 

cone. The hardness was highest on the first indent (closest to the inner pipe side of the 

cement sheath), while the lowest value obtained was in the middle of the cement sheath. 

Indentation 
Hardness 

[Vickers] 

Hardness 

[MPa] 

Young’s Modulus 

[MPa] 

Max Depth 

[μm] 

1 3.15 33.4 3138 161 

2 2.98 31.6 1530 171 

3 2.27 24.0 5596 187 

4 2.63 27.9 3472 175 

5 2.45 25.9 1445 187 

Average 2.70 28.5 3036 176 

Standard 

Deviation 
0.37 3.9 1700 11 

Indentation 
Hardness 

[Vickers] 

Hardness 

[MPa] 

Young’s Modulus 

[MPa] 

Max Depth 

[μm] 

1 3.284 34.75 4070 157.1 

2 2.292 24.26 3767 186.8 

3 4.435 46.93 4768 135.7 

4 3.122 33.04 4110 160.8 

5 2.074 21.95 3151 196.7 

Average 3.04 32.2 3973 167.4 

Standard 

Deviation 
0.94 9.90 587 244.5 



90 

Table A.3: Detailed indentation results of the sample expanded with the 4% expansion ratio 

cone. The hardness was highest on the first indent (closest to the inner pipe side of the 

cement sheath), while the lowest value obtained was on the second indent. 

Indentation 
Hardness 

[Vickers] 

Hardness 

[MPa] 

Young’s Modulus 

[MPa] 

Max Depth 

[μm] 

1 2.26 23.9 2332 190 

2 1.48 15.6 2354 233 

3 1.85 19.6 2311 209 

4 2.23 23.6 1154 197 

5 1.98 20.9 1653 205 

Average 1.96 20.7 1961 207 

Standard 

Deviation 
0.32 3.4 539 16 

 

Table A.4: Detailed indentation results of the sample expanded with the 8% expansion ratio 

cone. Hardness was highest on the fifth indent (closest to the outer pipe side of the cement 

sheath), while the lowest value was obtained in the middle of the cement sheath. 

Indentation 
Hardness 

[Vickers] 

Hardness 

[MPa] 

Young’s Modulus 

[MPa] 

Max Depth 

[μm] 

1 1.67 17.7 750 162 

2 2.26 23.9 1448 137 

3 1.09 11.6 1030 274 

4 1.50 15.9 1400 166 

5 3.07 32.5 1353 120 

Average 1.92 20.3 1196 172 

Standard 

Deviation 
0.77 8.1 298 60 
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Table A.5: Detailed indentation results of the sample six months post-expansion at 2% 

expansion ratio. The hardness was highest on the fifth indent (closest to the outer pipe side), 

while the lowest value obtained was in the middle of the cement sheath. 

Indentation 
Hardness 

[Vickers] 

Hardness 

[MPa] 

Young’s Modulus 

[MPa] 

Max Depth 

[μm] 

1 3.35 35.4 5286 155 

2 3.12 33.0 3850 161 

3 2.93 31.0 5595 165 

4 3.33 35.3 4268 156 

5 3.36 35.6 6170 54 

Average 3.22 34.1 5034 158 

Standard 

Deviation 
0.19 2.0 956 5 

 

Table A.6: Detailed indentation results of the sample six months post-expansion at 4% 

expansion ratio. The hardness was highest on the third indent (middle of the cement 

sheath), while the lowest value obtained was on the outer pipe side of the cement sheath. 

Indentation 
Hardness 

[Vickers] 

Hardness 

[MPa] 

Young’s Modulus 

[MPa] 

Max Depth 

[μm] 

1 3.32 35.2 3075 157 

2 3.08 32.6 1779 167 

3 3.53 37.4 1872 156 

4 3.13 33.1 4163 161 

5 2.75 29.1 3218 172 

Average 3.16 33.5 2823 163 

Standard 

Deviation 
0.29 3.1 1003 7 
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Table A.7: Detailed indentation results of the sample six months post-expansion at 8% 

expansion ratio. Hardness was highest on the fourth indent (middle of the cement sheath), 

while the lowest value was obtained on point closest to inner pipe side of the cement sheath. 

Indentation 
Hardness 

[Vickers] 

Hardness 

[MPa] 

Young’s Modulus 

[MPa] 

Max Depth 

[μm] 

1 3.19 33.8 3325 160 

2 3.50 37.1 6369 151 

3 3.33 35.2 3820 156 

4 3.80 40.2 3335 148 

5 3.73 39.5 6434 146 

Average 3.51 37.2 4656 152 

Standard 

Deviation 
0.26 2.7 1606 6 
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APPENDIX B 

MULTI-RATE GAS FLOW-THROUGH DATA 

 

B.1 Gas Flow-through Test II – 2% Expansion 
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Figure B.1: Gas flow-through test data plot pre-expansion showing registered pressures on 

the inlet and outlet pressure transducers. The starting inlet pressure on the gas cylinder was 

15 psi (103 kPa), and the flow was kept constant in the period from 7-10 minutes of the 

flow-through test. The inlet pressure was increased to 50 psi (345 kPa), which resulted in 

a spike of both pressures on the inlet and outlet ports, confirming the microannular gas 

flow through the composite sample. 

q=const

. 
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Figure B.3: Gas flow-through test data pre-expansion semi-log plot showing the pressure 

differential (ΔP) between pressures recorded on the inlet and outlet pressure transducers. 

The pressure differential in the first case was shown to have a relatively larger value, which 

after calculations indicated a microannulus with an effective permeability of 2.11 D. 
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Figure B.2: Multi-rate gas flow-through test data plot recorded immediately after 

expansion with the 2% expansion ratio cone. After a gradual increase of 25 psi (172 kPa) 

in inlet pressure on the gas cylinder every five minutes from 25 psi (172 kPa) to 100 psi 

(690 kPa), there was no recorded pressure on the outlet pressure transducer, indicating 

successful remediation of the microannular gas flow. 
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Figure B.4: Multi-rate gas flow-through test data plot recorded 24 hours after expansion 

with the 2% expansion ratio cone. After a gradual increase of 25 psi (172 kPa) in inlet 

pressure on the gas cylinder every five minutes from 25 psi (172 kPa) to 100 psi (690 kPa), 

there was no recorded pressure on the outlet transducer, confirming that the microannular 

seal was still effective. 
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Figure B.5: Multi-rate gas flow-through test data plot recorded 60 days after expansion 

with the 2% expansion ratio cone. After a gradual increase of 25 psi (172 kPa) in inlet 

pressure on the gas cylinder every five minutes from 25 psi (172 kPa) to 100 psi (690 kPa), 

there was no recorded pressure on the outlet transducer, confirming the microannular seal 

after cement rehydration. 
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B.2 Gas Flow-through Test III – 2% Expansion  

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.6: Gas flow-through test data plot pre-expansion showing registered pressures 

on both inlet and outlet pressure transducers, which confirmed the microannular gas flow 

through the composite sample. The starting inlet pressure on the gas cylinder was 15 psi 

(103 kPa), and it was increased to 50 psi (172 kPa) which resulted in a spike of both 

pressures on the inlet and outlet ports. 

Figure B.7: Gas flow-through test data pre-expansion semi-log plot showing large pressure 

differential (ΔP) between pressures registered on the inlet and outlet pressure transducers. 

After calculations, results indicated the microannulus had an effective permeability of 2.31 

D. 
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Figure B.8: Multi-rate gas flow-through test data plot recorded immediately after 

expansion with the 2% expansion ratio cone. After a gradual increase of 25 psi (172 kPa) 

in inlet pressure on the gas cylinder every five minutes from 25 psi (172 kPa) to 100 psi 

(690 kPa), there was no recorded pressure on the outlet pressure transducer, indicating 

successful remediation of the microannular gas flow. 

Figure B.9: Multi-rate gas flow-through test data plot recorded 24 hours after expansion 

with the 2% expansion ratio cone. After a gradual increase of 25 psi (172 kPa) in inlet 

pressure on the gas cylinder every five minutes from 25 psi (172 kPa) to 100 psi (690 kPa), 

there was no recorded pressure on the outlet transducer, confirming that the microannular 

seal was still present. 
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B.3 Gas Flow-through Test IV – 4% Expansion 

Figure B.11: Gas flow-through test data plot pre-expansion showing registered pressures 

on both the inlet and outlet pressure transducers, confirming the microannular gas flow 

through the composite sample. Starting inlet pressure on the gas cylinder was 15 psi (103 

kPa), and the flow rate was kept constant in the period from 3-4 minutes of the flow-

through test. The inlet pressure was then increased to 50 psi (345 kPa), which resulted in a 

spike of both pressures on the inlet and outlet ports. 
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Figure B.10: Multi-rate gas flow-through test data plot recorded 60 days after expansion 

with the 2% expansion ratio cone. After a gradual increase of 25 psi (172 kPa) in inlet 

pressure on the gas cylinder every five minutes from 25 psi (172 kPa) to 100 psi (690 kPa), 

there was no recorded pressure on the outlet transducer, confirming the microannular seal 

after cement rehydration. 
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Figure B.12: Gas flow-through test data pre-expansion semi-log plot clearly showing the 

pressure differential (ΔP) between pressures registered on the inlet and outlet pressure 

transducers. The pressure differential in the third case was shown to have the largest value, 

which after calculations indicated a microannulus with an effective permeability of 140 

mD. 
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Figure B.13: Multi-rate gas flow-through test data plot recorded immediately after 

expansion with the 4% expansion ratio cone. After a gradual increase of 25 psi (172 kPa) 

in inlet pressure on the gas cylinder every five minutes from 25 psi (172 kPa) to 100 psi 

(690 kPa), there was no recorded pressure on the outlet pressure transducer, indicating 

successful remediation of the microannular gas flow. 
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Figure B.14: Multi-rate gas flow-through test data plot recorded 24 hours after expansion 

with the 4% expansion ratio cone. After a gradual increase of 25 psi (172 kPa) in inlet 

pressure on the gas cylinder every five minutes from 25 psi (172 kPa) to 100 psi (690 kPa), 

there was no recorded pressure on the outlet transducer, confirming the presence of a 

microannular seal. 

Figure B.15: Multi-rate gas flow-through test data plot recorded 60 days after expansion 

with the 4% expansion ratio cone. After a gradual increase of 25 psi (172 kPa) in inlet 

pressure on the gas cylinder every five minutes from 25 psi (172 kPa) to 100 psi (690 kPa), 

there was no recorded pressure on the outlet pressure transducer, confirming that the 

microannular seal was still in place. 
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B.4 Gas Flow-through Test V – 8% Expansion 

Figure B.16: Gas flow-through test data plot pre-expansion showing registered pressures 

on both the inlet and outlet pressure transducers, confirming the microannular gas flow 

through the composite sample. The starting inlet pressure on the gas cylinder was 15 psi 

(103 kPa), and the flow rate was kept constant in the period of 1-2 minutes of the flow-

through test. The inlet pressure was then increased to 25 psi (172 kPa) (first spike) and 

finally to 50 psi (690 kPa) (second spike). 
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Figure B.17: Gas flow-through test data pre-expansion semi-log plot showing very small 

pressure differential (ΔP) between pressures registered on inlet and outlet pressure 

transducers. The pressure differential recorded in this case was the smallest value of all the 

samples, indicating the existence of a microannulus with the largest effective permeability 

(7.04 D). 

q=const
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Figure B.18: Multi-rate gas flow-through test data plot recorded immediately after 

expansion with the 8% expansion ratio cone. After a gradual increase of 25 psi (172 kPa) 

in inlet pressure on the gas cylinder every five minutes from 25 psi (172 kPa) to 100 psi 

(690 kPa), there was still pressure recorded on the outlet pressure transducer of 0.214 psi 

(1.5 kPa), which can be classified as negligible. 
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Figure B.19: Multi-rate gas flow-through test data plot recorded 24 hours after expansion 

with the 8% expansion ratio cone. After a gradual increase of 25 psi (172 kPa) in inlet 

pressure on the gas cylinder every five minutes from 25 psi (172 kPa) to 100 psi (690 kPa), 

there was no pressure recorded on the outlet pressure transducer, indicating successful 

remediation of the microannular flow after a 24-hour period of cement rehydration. 
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B.5 Gas Flow-through Test VI – 8% Expansion  

Figure B.20: Multi-rate gas flow-through test data plot recorded 60 days after expansion 

with the 8% expansion ratio cone. After a gradual increase of 25 psi (172 kPa) in inlet 

pressure on the gas cylinder every five minutes from 25 psi (172 kPa) to 100 psi (690 kPa), 

there was no recorded pressure on the outlet transducer, confirming the seal of the 

microannular gas flow. 
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Figure B.21: Gas flow-through test data plot pre-expansion showing registered pressures 

on both the inlet and outlet pressure transducers, confirming the microannular gas flow 

through the composite sample. The starting inlet pressure on the gas cylinder was 15 psi 

(103 kPa), and the flow aret was kept constant in the period of 2-3 minutes of the flow-

through test. The inlet pressure was then increased to 25 psi (172 kPa), which resulted in 

a spike of both pressures on inlet and outlet ports. 
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Figure B.22: Gas flow-through test data pre-expansion semi-log plot clearly showing a 

pressure differential (ΔP) between pressures registered on the inlet and outlet pressure 

transducers. After calculations, the effective permeability of the microannulus was found 

to be 660 mD. 
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Figure B.23: Multi-rate gas flow-through test data plot recorded immediately after 

expansion with the 8% expansion ratio cone. After a gradual increase of 25 psi (172 kPa) 

in inlet pressure on the gas cylinder every five minutes from 25 psi (172 kPa) to 100 psi 

(690 kPa), there was no recorded pressure on the outlet pressure transducer, indicating 

successful remediation of the microannular gas flow. 
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Figure B.24: Multi-rate gas flow-through test data plot recorded 24 hours after expansion 

with the 8% expansion ratio cone. After a gradual increase of 25 psi (172 kPa) in inlet 

pressure on the gas cylinder every five minutes from 25 psi (172 kPa) to 100 psi (690 kPa), 

there was no recorded pressure on the outlet pressure transducer, confirming that the 

microannular seal was still in place. 
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Figure B.25: Multi-rate gas flow-through test data plot recorded 60 days after expansion 

with the 8% expansion ratio cone. After a gradual increase of 25 psi (172 kPa) in inlet 

pressure on the gas cylinder every five minutes from 25 psi (172 kPa) to 100 psi (690 kPa), 

there was no recorded pressure on the outlet transducer, confirming the seal of the 

microannular gas flow. 
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APPENDIX C 

EXPANSION CALCUALTIONS (SI UNITS) 

Table C.1: Force measurements obtained during expansion and calculated axial stresses. 

Values are for expansions with pipe only and for composite cement sample (SI units). 

 

 

  

Actual 

Expansion 

Ratio [%] 

Cone OD 

[cm] 

Fe - pipe 

[kN] 

σz – pipe 

[GPa] 

Fe – sample 

[kN] 

σz – sample 

[psi] 

1.46 5.56 93.03 17.27 134.78 25.01 

3.45 5.67 168.20 31.21 205.64 38.16 

7.43 5.89 359.82 73.45 603.10 111.92 
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APPENDIX D 

THERMOGRAVIMETRIC ANALYSIS 

Results of the control sample showed weight loss in portlandite mineral of over 5%. 

Knowing that approximately 25% of total portlandite weight is being lost in that 

endothermal region, this means that there was 21% of potlandite in the cement sample prior 

to expansion. The weight loss below and up to 302°F (150°C) was 6%, which contained 

endothermal peaks of water, ettringite, gypsum and C-S-H. The last endothermal peak 

corresponds to weight percentage of calcite. The presence of calcite can be ascribed to 

carbonation of the sample during transport and preparation. 

Figure D.1: Plot of TGA for control sample. The green (upper) line is showing weight 

percentage lost, while the red line shows endothermal peaks (°C) of the weight percentage 

lost per unit of heat. In the range of 122°F-302°F (50-150°C), the total weight loss was 

6.5%. This loss corresponds to the amount of moisture, and mineral phases of gypsum, 

ettringite and C-S-H in the sample. The next endothermal peak at 797°F (425°C) is 

portlandite peak. The weight loss of 5% indicates that there was initially 21% portlandite 

in the control sample. Last endothermal peak at 1191°F (644°C) is calcite peak and small 

weight loss of 0.6% indicates minor presence of calcite due to carbonation of the sample. 



108 

Thermal analysis of the sample which was expanded at 4% expansion ratio showed 

weight losses at two different endothermal peaks under 302°F (150°C) (8% and 5%) 

meaning that both concentration of moisture and mineral group of ettringite, gypsum and 

C-S-H did not change significantly comparing to the control sample. The observed weight 

loss in portlandite mineral of 4.1%, indicated that the portlandite decreased to 17% after 

4% expansion. Minor presence of calcite (0.7% weight loss) is negligible.  

Figure D.2: TGA plot of cement sample after 4% expansion. The green (upper) line is 

showing weight percentage lost, while the blue line shows endothermal peaks (°C) of the 

weight percentage lost per unit of heat. Two distinctive peaks observed in the range of 122-

302°F (50-150°C) correspond to the weight losses of moisture (8%) and mineral phases of 

gypsum, ettringite and C-S-H (5%). The portlandite peak at 790°F (421°C) showed weight 

loss of 4% indicating that there was 17% portlandite in the sample expanded with 4% 

expansion ratio cone. Last endothermal peak at 1202°F (650°C), corresponding to the 

calcite peak, showed weight loss of 0.77%, indicating minor presence of calcite due to 

carbonation of the cement sample during preparation. 
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Sample expanded with 8% expansion ratio cone had significantly different results 

than control and 4% expansion samples. Weight loss of 45% in minerals with endothermal 

peaks below 302°F (150°C) was observed, which corresponds to presence of moisture, 

gypsum, ettringite and/or C-S-H minerals. Weight loss of portlandite was registered to be 

3.2%, indicating that after 8% expansion the concentration of this mineral decreased to 

13% (compared to 25% in control sample).  

 

 

 

 

Figure D.3: TGA plot for cement sample expanded at 8% expansion ratio. The green line 

is showing weight percentage lost, while the blue line shows endothermal peaks (°C) of 

the weight percentage lost per unit of heat. In the range of 122-302°F (50-150°C), 

significant weight loss of 45% corresponds to the large amount of moisture within the 

sample, and also mineral phases of gypsum, ettringite and C-S-H. The next endothermal 

peak at 847°F (453°C) showed portlandite weight loss of 3.2% indicating decrease of the 

mineral from 25% to 13% after expansion with 8% expansion ratio cone. 
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APPENDIX E 

FORCE AND STRESS CALCULATIONS DURING EXPANSION 

The balance of forces during expansion is shown on the figure below. In order to 

obtain the radial force (Fr) experienced by cement sheath, contact force (Fc) had to be 

calculated first from contact stress (σc) [75].  The friction coefficient (μ) was taken to be 

0.05 based on testing conducted with the used lubricant. 

 𝜎𝑐 =
𝐹𝑒

𝜋(𝑟2
2 − 𝑟1

2)(1 + 𝜇(cot 𝛼))
 (E.1) 

 

σc – contact stress [psi]   Fe – expansion force [lbf] 

r1 – radius of unexpabnded section [in] r2 – radius of  expanded section [in] 

α – expansion angle [°]   μ – friction coefficient 

After obtaining the contact stress, contact force was calculated with the following equation: 

 𝐹𝑐 = 𝜎𝑐 ∙ 𝐴𝑐 (E.2) 
 

Fc – contact force [lbf]   Ac – surface area of the cone 

Figure E.1: Forces applied on the pipe during expansion. Fe represents the expansion force, 

Fc the contact force, and Fr the radial force. 
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Surface area of the cone (Ac) is given with equation: 

 𝐴𝑐 = 𝜋(𝑟1 + 𝑟2)√(ℎ2 + (𝑟2 − 𝑟1)2 
(E.3) 

 

where h is the height of the expansion area. 

Finally the radial force (Fr) is obtained from the equation of force balance:  

 𝐹𝑟 = √(𝐹𝑐
2 − 𝐹𝑒

2) (E.4) 
 

The radial stress (σr) can be calculated with: 

 𝜎𝑟 =
𝐹𝑟
𝐴𝑟

 (E.5) 
 

where Ar is the area of radial action: 

 𝐴𝑟 = 2𝜋𝑟1ℎ (E.6) 
 

The results of the force and stress calculations during expansion of the composite 

sample and the inner pipe alone, are shown in the following tables.  

Table E.1: Results of force and stress calculations during expansion of the composite 

sample. Contact force and stress (Fc, σc) are used in calculations of radial force and stress 

(Fr, σr). 

Expansion ratio 

[%] 
σc [psi] Fc [lbf] σr [psi] Fr [lbf] 

2 7,652.7 12,588.3 7,756.4 12,269.5 

4 11,676.1 27,598.5 12,129.7 27,262.2 

8 34,242.7 124,847.8 36,649.8 124,210.8 
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Table E.2: Results of force and stress calculations during expansion of the inner pipe only. 

Contact force and stress (Fc, σc) are used in calculations of radial force and stress (Fr, σr). 

Expansion ratio 

[%] 
σc [psi] Fc [lbf] Fr [lbf] σr [psi] 

2 5,282.6 8,689.6 8,469.6 5,354.2 

4 9,550.2 22,573.6 22,298.6 9,921.3 

8 22,473.8 81,938.7 81,520.6 24,053.6 

 

Table E.3: The difference in radial forces and stresses accounted for the cement sheath 

behind the pipe. 

ΔFr [lbf] Δσr [psi] 

3,799.9 2,402.2 

4,963.7 2,208.5 

42,690.2 12,596.2 

 

Based on these calculations the contact stress seems not to exceed the yield stress 

of the pipe (35,000 psi, 241 MPa), but the pipe clearly plastically deforms during 

expansion. This discrepancy is due to assumption that the entire contact area of the cone 

(Ac) is in contact with the pipe during expansion. The contact area is in reality much smaller 

(even below 20% of the entire landing area) and this would create a contact stress much 

higher that 35,000 psi (241 MPa), thus yielding the pipe into the plastic region. 
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APPENDIX F 

DERIVATION OF THE SLOT SIZE EQUATION 

The slot size of the flow can be correlated from permeability. From Buckingham’s 

equation for flow through slots of fine clearance, making the assumption of slot porosity 

of 1 [76]: 

 𝑞𝑓 =
𝐴 ∙ 𝑤2

12

∆𝑃

𝜇𝐿
 (F.1) 

 

  qf – flow through a slot [m3/s] A – area of flow [m2] 

  w – slot size [m]   ΔP – pressure differential [Pa] 

  µ - viscosity of the fluid [PaS] L – length of flow path [m] 

from Darcy’s equation for flow through porous media 

 𝑞 = −
𝑘𝐴

𝜇

∆𝑃

𝐿
 (F.2) 

 

Where k is permeability in m2, we can then correlate the slot size with permeability: 

 𝑘 =
𝑤2

12
 

(F.3) 
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APPENDIX G 

PREPARATION OF CEMENT THIN SECTIONS AND SAMPLES FOR 

MICROINDENTATION 

 

 

 

 

 

 

Figure G.1: Sample preparation for cement thin sections and microindentation. a. cutting 

of the composite sample into disks; b. cut disk into quarters and removing the cement 

sheath out of the composite disk; c. orientation of the horizontal (top) cut for thin sections; 

d. orientation for side (vertical) thin section cut; e. five indentation spots for microhardness 

measurements. 
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APPENDIX H 

API CLASS H CEMENT - COMPOSITION 

Table H.1: Results of the used class H cement clinker analysis performed by LaFarge. 

Silica Dioxide (SiO2) 21.4% 

Aluminum Oxide (Al2O3) 2.7% 

Ferric Oxide (Fe2O3) 4.5% 

Calcium Oxide (CaO) 63.6% 

Magnesium Oxide (MgO) 2.6% 

Sulphur Trioxide (SO3) 2.9% 

Loss on Ignition 0.83% 

C4AF+2C3A 12.87% 

Free Lime (XRD value) 0.96% 

Tricalcium Silicate (C3S) 63% 

Tricalcium Aluminate  0% 

Total Alkali as Sodium Oxide 0.23% 

Insoluble Residue 0.37% 
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