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Abstract

We analyze resonant scattering phenomena of scalar fields in periodic slab and

pillar structures that are related to the interaction between guided modes of the

structure and plane waves emanating from the exterior. The mechanism for the

resonance is the nonrobust nature of the guided modes with respect to perturba-

tions of the wavenumber, which reflects the fact that the frequency of the mode

is embedded in the continuous spectrum of the pseudo-periodic Helmholtz equa-

tion. We extend previous complex perturbation analysis of transmission anomalies

to structures whose coefficients are only required to be measurable and bounded

from above and below, and we establish sufficient conditions involving structural

symmetry that guarantee that the transmission coefficient reach 0% and 100% at

nearby frequencies close to those of the guided modes. Our analysis demonstrates

a few more patterns of anomalies in nongeneric cases, including anomalies of two

peaks and one dip on the transmission graph with total background transmission,

anomalies of one peak and two dips with total background reflection, and multiple

anomalies, and we also prove sufficient conditions for these transmission coeffi-

cients to reach 0% and 100%. For pillar structures, we establish a fundamental

framework using Bessel functions for the analysis of guided modes, and prove the

existence and nonexistence in structures in analogy to results for slabs. We provide

a new existence result of nontrivial embedded guided modes, which are stable with

respect to the wavenumber and nonrobust under perturbations of the structural

geometry, in periodic pillars with smaller periodic cells.
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Chapter 1
Introduction

Guided modes in periodic structures are very important in composite material

designs. They are electromagnetic or acoustic waves that are trapped within certain

periodic materials, and this special feature makes many applications possible such

as photonic crystal waveguides and light filters discussed in [11].

A related phenomenon is that of transmission anomalies. For a periodic slab

that is bounded in one direction, in some very special settings, the ratio of energy

transmitted through the slab can vary dramatically upon a small perturbation

of the structural geometry, the frequency ω, or the wavenumber κ. Transmission

anomalies are studied in various literature, and applications are suggested such as

polarization control, filtering, switching, surface plasmon resonance sensing, and

surface-enhanced scattering [8][7]. It is clear that the characterization and predic-

tion of transmission anomalies will continue to contribute to the manufacturing of

many devices based on periodic structures.

In this work, we try to understand guided modes and transmission anomalies

mathematically. The resonant transmission anomalies can be explained by the

dissolving of the frequency of a guided mode into the continuous spectrum, by

Fabry-Perot resonance, or by Wood’s anomalies near cutoff frequencies of the as-

sociated Bloch diffraction, and different models have been developed to describe

them [16, 3, 15, 17]. We are concerned with settings of transmission anomalies for

which material parameters and the frequency and wavenumber pair (κ, ω) are close

to those of guided modes. The transmission anomaly can be understood as caused

by the interaction between the incoming waves and the nonrobust embedded guided

1



mode. More particularly, we consider the resonant transmission appearing when

the wavenumber κ is perturbed from a nonrobust guided mode wavenumber κ0.

We consider slabs that are finite in one direction and periodic in one or two

other directions, as well as pillars period in one direction and finite in the other

directions perpendicular to them. In lossless isotropic structures, a time-harmonic

acoustic wave or electromagnetic wave satisfies the Helmholtz equation

∇ · 1

µ
∇u+ εω2u = 0,

where µ, ε are material parameters. A periodic structure is given by the periodicity

of the parameters µ, ε. If the Helmholtz equation has a nontrivial solution without

source from the exterior of the periodic structure, the solution is a guided mode.

Suggested from the above discussions, there are two important problems that

bring our interest. One is to design periodic materials that support guided modes

robust or nonrobust with respect to perturbations, and to prove the existence

and nonexistence theoretically. Another one is to describe transmission anomalies

through periodic slabs.

In this dissertation, we answer the first problem for periodic pillars by establish-

ing a systematic framework for the analysis of guided modes using Bessel functions

and proving a few existence and nonexistence results similar to those for periodic

slabs in [1]. Guided mode analysis for periodic pillars has not yet been discussed ad-

equately, and this work sets up the foundation for future research. We also observe

that the embedded guided mode in section 5.2 of [1] is in fact a trivial one, and pro-

vide a new nontrivial design. To answer the problem of characterizing transmission

anomalies through slabs, we base our work on the framework of [25] and [26]. We

establish conditions under which the anomaly is optimized, that is, under which

the transmission rate reaches 100% and 0% at nearby frequencies close to that of

2
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FIGURE 1.1. Numerical computation of the percentage of energy |T |2 transmitted across
a penetrable waveguide of period 2π as a function of the frequency of the incident plane
wave. Here, the wavenumber in the x-direction (Fig. 1.2) is κ = 0.02 and one period
consists of a single circle of radius π/2 with ε = 10 and an ambient medium with ε = 1;
µ = 1 throughout. The structure supports guided modes at (κ, ω) = (0, 0.5039...) and
(κ, ω) = (0, 0.7452...), both contained within the region D of one propagating diffrac-
tive order (Fig 3.1). Theorem 26 guarantees that the transmission attains minimal and
maximal values of 0% and 100% at each of the sharp anomalies near the guided-mode
frequencies. This is Figure (6) in [23].

the guided mode. Our analysis shows more generic forms of anomalies besides a

single dip-peak graph, including total background transmission or reflection and

multiple anomalies.

1.1 Periodic Slabs

We consider slabs finite in z, periodic in x and invariant in y. (or more gener-

ally, periodic in both x and y.) The existence and nonexistence results of guided

modes have been studied theoretically in [1][27] and in many special geometries

numerically in a lot of literature. The frequencies of some guided modes are in the

point spectrum of the associated Helmholtz operator in one period of slab, and are

well understood. (See section 4.4 of [1] for some examples of guided modes of this

type.) The frequency and wavenumber (κ, ω) of these guided modes lie on a real

component of the dispersion relation. Under the perturbation of the wavenumber,

a guided mode with a nearby frequency persists, and thus is considered robust

under such perturbation.

3



The more interesting case is when the frequency lies in the essential spectrum

of the Helmholtz operator for the wavenumber κ. Ideally the amplitude of a mode

is decaying exponentially away from the periodic medium. If the wavenumber κ is

perturbed, an embedded guided mode will typically vanish and hence is nonrobust.

If we consider the scattering of an incoming wave from one side of the slab, the

transmission coefficient that determines the ratio of energy flux transmitted can

have sharp spikes as functions of ω and κ in the neighborhood of (κ0, ω0) of a

guided mode. Numerical experiments show that these spikes occur as a function

of frequency ω where κ is perturbed. In many applications, the transmission rate

can even reach 100% and 0%. See numerical computations of the transmission by

an infinite array of rods in Figure1.1 from [23].

This transmission anomaly is studied in [25][26]. One can represent the field by

boundary integrals for piecewise structures, and numerical implementation of the

boundary integral equations shows the spike of transmission coefficient as a func-

tion of frequency ω [25]. In [26], they consider the case for which the frequency

and wavenumber pair (κ0, ω0) lies in a real diamond domain admitting one single

energy-carrying propagating harmonic. One example of such is an antisymmetric

guided mode in a slab that is symmetric about an axis perpendicular to it, es-

tablished in [1]. The pair (κ, ω) is allowed to be in the complex domain, and the

generalized guided mode problem can be thought of as an eigenvalue problem in

operator form such that the eigenvalue ` is equal to 0 at complex pair (κ, ω) of a

guided mode. The nonrobust nature of the embedded guided mode implies that

(κ0, ω0) is the only real pair in a complex neighborhood of it that satisfies the

dispersion relation `(κ, ω) = 0 for guided modes. Within this framework, one can

analytically connect the scattering problem to the guided modes, and perturbation

analysis of the field and eigenvalue ` can be done to obtain an asymptotic for-

4
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FIGURE 1.2. An example of a two-dimensional periodic slab. One period truncated to
the rectangle [−π, π]× [−L,L] is denoted by Ω.

mula for the transmission coefficient in terms of perturbations for two-dimensional

structures [26, 21, 23]. More details on the proof and transmission graphs using

the formula are discussed in [26][23].

My work develops this idea and aims to find when the transmission can reach

100% and 0%, as shown in Figure 1.1. We consider a slab that is not only symmetric

in x, but also symmetric with respect to an axis parallel to the slab, as shown in

Figure 1.2. The unitary scattering matrix possesses special symmetric properties

due to the symmetry of the slab structure. Our main result in Chapter 3 is a proof

for slabs under generic assumptions that ensure the transmission magnitude of

100% and 0%. Specifically, if a two-dimensional lossless periodic slab is symmetric

about an axis parallel to the slab, and if the slab supports an embedded guided

mode nonrobust in κ at a real pair of frequency and wavenumber (κ0, ω0), then total

transmission and reflection is necessarily attained for pairs (κ, ω) close to those of

the guided mode. The frequencies that admit total transmission and reflection are

real-analytic functions of the wavenumber in the real (κ, ω) plane that intersect

tangentially at (κ0, ω0). In the proof of this result, the special symmetries of the

scattering matrix give more information on the transmission and reflection than

5



the analysis in [26][23], and is just what we need to show the real analyticity of

the total transmission and total reflection curves.

In our complex perturbation analysis of transmission anomalies, we extend to

structures whose coefficients are only required to be measurable and bounded from

below and above. In stead of using boundary integral representations for piecewise

constant slabs, we utilize only the analyticity of the solution of the eigenvalue

problem for which the operator has the form of the identity map plus an analytic

compact operator.

We also show that a more intricate patterns of transmission anomalies can be

excited by the perturbation of wavenumber if we relax our generic assumptions

to nongeneric cases. One type of anomaly possesses two peaks and one dip on

the transmission graph, which corresponds to total background transmission; sim-

ilarly one peak and two dips corresponds to total background reflection. We give

conditions for the total background transmission case for which the transmission

coefficient is nearly 100% and reaches 100% at two frequencies, but drops to 0%

at one frequency, and similarly for the total background reflection case. We also

analyze a case of multiple anomalies, for which the transmission coefficient reaches

100% and 0% twice in a narrow range of the frequency ω.

1.2 Periodic Pillars

In the remaining part of this dissertation, we consider a structure illustrated by

Figure 1.3, periodic in one direction and bounded in the other two directions. The

field is governed by the Helmholtz equation in which the material is homogeneous

in the exterior.

We have not found adequate foundational work on the scattering problem and

guided modes for periodic pillars in the literature, so we present here a system-
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FIGURE 1.3. A pillar periodic in z and finite in x and y.

atic mathematical framework. My work uses standard variational techniques in

[4, 6, 12], and the analysis is similar the theory established in [1] for slabs. Bessel

functions are naturally introduced in cylindrical coordinates to characterize the

Fourier harmonics. The general solution of the Helmholtz equation in the exte-

rior domain with constant parameters is expanded as an infinite superposition of

Fourier harmonics:

u(r, θ, z) =
∞∑

m,`=−∞

[
A`H

1
` (ηmr) +B`H

2
` (ηmr)

]
ei`θei(m+κ)z,

where η2
m = ε0µ0ω

2 − (m + κ)2 and H1
` = J` + iY` and H2

` = J` − iY` are Han-

kel functions. The Hankel functions’ monotonicity and phase change orientation

make it possible to separate between outgoing and incoming harmonics and impose

appropriate radiating boundary conditions through a Dirichlet-to-Neumann map.

Upon this, the solvability of the plane wave scattering problem, the characteriza-

tion of the guided-mode frequencies, and existence results analogous to those of

slabs can all be built.

There are a few nonexistence and existence results we establish in this disserta-

tion.
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One is nonexistence. In [27], by introducing an augmented medium structure,

Shipman and Volkov give a proof of the nonexistence of guided modes in piecewise

inverse photonic slabs, i.e., piecewise structures that have higher wave speed in

the pillar than in the exterior. In their study, the proof of the nonexistence is

contingent on a restriction on the width of the slabs. Similar to their analysis, we

show here the nonexistence of guided modes in inverse pillars such as a periodic

array of bubbles in glass. Certain restrictions on the geometry of the structures

are needed in our proofs of the nonexistence, and whether the restrictions can be

removed remains an open problem.

There have been limited results on the existence of embedded guided modes, even

for periodic slabs. One example of an embedded guided mode is an antisymmetric

guided mode in periodic structures symmetric in the direction of waveguide, as

discussed earlier. This guided mode typically only exists at an isolated real pair

(κ0, ω0).

A non-isolated but artificially constructed example of embedded guided modes

is provided by Bonnet-Bendhia and Starling in section 5.2 of [1]. If a structure

of period p has smaller periodic cells, say of period q < p, then on the subspace

F consisting of all the functions with the smaller period q, the infimum of the

essential spectrum of the Helmholtz operator is strictly larger than that of the

space of functions with period p. One can find eigenfunctions with their frequencies

lying below the cutoff frequency for the restriction to F , which are non-embedded

and easy to find, but these are embedded in the essential spectrum on the full

period function space. However, these guided modes are simply non-embedded

guided modes for a smaller periodic structure. In other words, for a given periodic

structure, a larger period is artificially chosen so that the frequency of a non-
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embedded guided mode is embedded in the artificial essential spectrum, and this

is therefore a trivial example. An essentially nontrivial example is strongly desired.

My main achievement in Chapter 4 is a proof of nontrivial embedded guided

modes in periodic pillars that are robust under perturbations of κ. In our con-

struction, the period of the mode is genuinely larger than that of the structure.

Our proof relies on choosing the material parameters so that the Helmholtz op-

erator is invariant on a subspace where the propagating harmonics automatically

vanish. This solution does not depend upon the exact choice of the wavenumber

and so is a guided mode robust in κ. On the other hand, the existence is based

on special properties of the structure, and is thus nonrobust with respect to the

perturbation of material geometries.

1.3 Summary of Dissertation

The structure of this dissertation is as follows.

In chapter 2, we give a brief introduction to the scattering problems and guided

modes, as well as the transmission anomaly phenomena. The focus is put on pe-

riodic slabs and we provide some standard tools used in the analysis of periodic

structures.

In chapter 3, for a slab that is symmetric with respect to an axis parallel to it,

we present the proof of the existence of total transmission and reflection associated

with a nonrobust guided mode. We also discuss the cases that the slab admits a

single anomaly and multiple anomalies. The diagrams of our results are shown the

last section of this chapter, based on the approximation formula given in [26, 23].

In chapter 4, we study the scattering problem and guided modes for pillar struc-

tures that are finite in two directions. Bessel functions are used to do the analysis

systematically. We provide a proof for the existence of embedded guided modes,
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and nonexistence of guided modes for some special geometries in the last section

of this chapter.

In the chapter 5, we point out some restrictions of our work and pose chal-

lenges for future work. We also provide some new open problems on the nature of

transmission resonances.
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Chapter 2
Wave Scattering and Guided Modes in
Periodic Structures

In this chapter, we give a brief introduction to plane-wave scattering problems and

guided modes for time-harmonic wave equations, as well as previous analysis on

transmission anomalies.

We first introduce the wave equation and the Helmholtz equation, and explain

the periodic structures and the solutions in these structures. The plane wave scat-

tering problem is presented in section 2.3. We give existence and nonexistence

results for guided modes in periodic slabs. The proofs can be found in [1, 27].

The nonrobust guided modes shown in [27] typically vanish as the wavenmber κ

is perturbed from 0, and the transmission coefficients can reach a magnitude of

100% and 0%. The transmission anomaly for piecewise periodic slabs is studied in

[25, 26], and an asymptotic formula of the transmission coefficient as a function of

the perturbations of κ, ω is obtained.

In this chapter, except in the last section, we assume that the wave frequency and

wavenumber (κ, ω) are real. The wave frequency and wavenumber can be extended

to the complex domain, which we will use to prove our main result.

2.1 The Wave Equation and Helmholtz

Equation

We consider a physical structure that is three-dimensional but invariant in the y-

direction. In this structure, the Maxwell system of electromagnetics is y-independent

and has two polarizations that are simplified to the Helmholtz equation for the out-

of-plane components of the E field and the H field. We consider harmonic fields

with positive angular frequency ω. Given a frequency ω, plane waves and guided
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modes are characterized by their propagation constant κ in the direction parallel

to the slab. We take the y component Ey of a harmonic E-polarized field with

propagation constant κ to be of the following pseudoperiodic form

Ey(x, z, t) = u(x, z)ei(κx−ωt),

u(x+ 2πn, z) = u(x, z) for n ∈ Z.

Ey satisfies the wave equation

ε
∂2

∂t2
Ey(x, y, z; t) = ∇ · 1

µ
∇Ey(x, y, z; t) (2.1)

We are looking for time-harmonic waves Ey(x, y, z, t) = ũ(x, y, z)e−iωt. The spatial

factor of the wave satisfies the Helmholtz equation

∇ · 1

µ
∇ũ+ εω2ũ = 0. (2.2)

2.2 Periodic Structures and Pseudo-periodic

Solutions

We consider periodic slab structures that are finite in the z-direction, periodic in

the x-direction and invariant in the y-direction.

The periodic slab is defined by the material parameters ε(x, z) and µ(x, z) for

x, z ∈ R. We take these parameters to be bounded from below and above by

positive numbers:

ε(x+ 2πn, z) = ε(x, z), µ(x+ 2πn, z) = µ(x, z), for n ∈ Z,

ε(x, z) = ε0, µ(x, z) = µ0, for |z| ≥ L,

0 < ε− < ε(x, z) < ε+, 0 < µ− < µ(x, z) < µ+.

(2.3)

The field ũ satisfies the pseudo-periodic, or quasi-periodic or κ-periodic condi-

tions:

ũ(x, z;κ) = eiκ·xu(x, z), (2.4)
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FIGURE 2.1. Slab structure periodic in x and finite in z; uinc is transmitted to utrans

and reflected to urefl.

where u(x, z) is 2π-periodic in x. We call such solutions Bloch waves and the

number κ Bloch wavenumber. This can be understood as follows. The periodicity

of the slab implies that the values of the same incident field viewed at the point

(x + 2π, z) and at (x, z) have only a phase change. Thus, the field at (x + 2π, z)

can be seen as the field at (x, z) multiplied by the phase change factor e2πκi.

The field ũ has a Bloch factor eiκx, for which we have eiκ(x+2π) = eiκxe2πκi and

hence we can regard that the κ-peridicity is caused by the Bloch factor. It is

noticed that e2π(κ+m)i = e2πκi,∀m ∈ Z. This means the wave number κ and κ+m

have the same effect on the Bloch factor. Thus, we can reduce the wavenumber

κ by an integer and deal with the cases that κ lies in the first Brillouin zone

B = [−1/2, 1/2).

The periodic factor u satisfies the following modified Helmholtz equation

(∇+ iκ)µ−1(∇+ iκ)u(x, z) + εω2u(x, z) = 0, (2.5)

where κ = (κ, 0)T.
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2.3 Plane-wave Scattering by Periodic Slabs
2.3.1 Radiation Condition

The periodic solution of equation (2.5) has a Fourier series expansion

u(x, z) =
∑

m

um(z)eimx, (2.6)

and the pseudo-periodic field is

ũ(x, z) = u(x, z)eiκx =
∑

m

um(z)ei(m+κ)x (2.7)

If |z| > L, then um(z) = (u−m(z), u+
m(z)), for z < −L or z > L, are solutions of the

ordinary differential equation

u′′m + η2
mum = 0

where

η2
m = ε0µ0ω

2 − (m+ κ)2. (2.8)

The solutions um(z) = c1
mu

1(z)+c2
mu

2(z), called spatial harmonics, where u1,2
m (z)

are independent solutions of the linear ordinary differential equation, belong to the

following three classes:




um = c1
me

iηmz + c2
me
−iηmz ∈ Zp (propagating), if η2

m > 0; we take ηm = |ηm|;

um = c1
me

iηmz + c2
me
−iηmz ∈ Ze (evanescent), if η2

m < 0; we take ηm = |ηm|i;

um = c1
m + c2

mz ∈ Zl (linear), if η2
m = 0.

(2.9)

The classes Zp is finite, Zl is generically empty but has at most one harmonic, and

the class Ze is infinite. As long as η2
m are nonzero for all integers m, the general

solution of this equation (2.5) admits a Fourier expansion on each side of the slab

u(x, z) =





∞∑

m=−∞

(A+
me

iηmz +B+
me
−iηmz)eimx, for z > L,

∞∑

m=−∞

(A−me
iηmz +B−me

−iηmz)eimx, for z < −L.
(2.10)
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The spatial harmonics eiηmz, e−iηmz for m ∈ Zp represent right-going or left-going

traveling waves, whose angles αm are

αm = arcsin
κ+m

ω
√
ε0µ0

. (2.11)

The harmonics e±iηmz = e∓|ηm|z for m ∈ Ze represent exponentially decaying har-

monics for ±z > L, while e∓iηz = e±|ηm|z represent exponentially growing harmon-

ics for ±z > L. The linear orders ηm = 0 correspond to “grazing incidence”, and

will not play a role in the present study.

Dropping the exponentially growing harmonics, a function u is said to be radi-

ating or outgoing if in the form (2.10) the coefficients B+
m = A−m = 0. We introduce

the following radiation condition:

Condition 1 (Radiation). A complex field u defined on R2 satisfies the radiadion

condition if there exist complex coefficients {c±m} such that

u(x, z) =
∑

m∈Z

c±me
±iηmzeimx for ± z > L.

2.3.2 Plane-wave Scattering Problems and Guided Modes

An incident wave with frequency and wavenumber (κ, ω) is a linear superposition

of the propagating Fourier harmonics

uinc(x, z) =
∑

m∈Zp

(
Ame

iηmz +Bme
−iηmz

)
eimx. (2.12)

Problem 2 (Plane-wave scattering). Given ω > 0 and κ ∈ B, find a function u on

R2 that is 2π-periodic in x with Bloch wavenumber κ and satisfying the modified

Helmholtz equation (∇+ iκ) · µ−1(∇+ iκ)u(x, z) + εω2u(x, z) = 0, and such that

u(x, z) = uinc(x, z) + usc(x, z)

in which uinc(x, z) is an incident wave (2.12) and usc satisfies the radiation condi-

tion 1.
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The scattering problem 2 can be formulated using standard variational tech-

niques in the truncated domain of one period

Ω = {(x, z) ∈ R2 : −π < x < π, |z| < L}. (2.13)

Let Γ± = {(x, z) ∈ R2 : −π < x < π, z = ±L} and Γ = Γ− ∪ Γ+. We make use

of the Dirichlet-to-Neumann map T = T (κ, ω) on the right and left boundaries

Γ± to characterize outgoing fields. It is a bounded linear operator from H
1
2 (Γ) to

H– 1
2 (Γ) defined as follows. For any f ∈ H 1

2 (Γ), let f̂m = (f̂+
m, f̂

−
m) be the Fourier

coefficients of f , that is, f(±L, x) =
∑

m f̂
±
me

imx. Then

T : H
1
2 (Γ)→ H−

1
2 (Γ),

(̂Tf)m = −iηmf̂m.
(2.14)

This operator has the property that

∂nu+ Tu = 0 on Γ ⇐⇒ u is outgoing.

The operator T has a nonnegative real part Tr and a nonpositive imaginary part

Ti:

T = Tr + iTi,

(̂Trf)m =





−iηmf̂m if m ∈ Ze,

0 otherwise.

(̂Tif)m =





−ηmf̂m if m ∈ Zp,

0 otherwise.

(2.15)

In the periodic Sobolev space

H1
per(Ω) = {u ∈ H1(Ω) : u(π, z) = u(−π, z) for all z ∈ (−L,L)},
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in which evaluation on the boundaries of Ω is in the sense of the trace map, we

also define the following forms in H1
per(Ω):

p(v) = µ−1
0

∫

Γ

(∂nu
inc + Tuinc)v̄,

a(u, v) = aκ,ω(u, v) =

∫

Ω

µ−1(∇+ iκ)u · (∇− iκ)v̄ + µ−1
0

∫

Γ

(Tu)v,

ar(u, v) =

∫

Ω

µ−1(∇+ iκ)u · (∇− iκ)v̄ + µ−1
0

∫

Γ

(Tru)v,

ai(u, v) = µ−1
0

∫

Γ

(Tiu)v,

b(u, v) =

∫

Ω

ε uv̄.

We have a = ar + iai.

Problem 3 (Scattering problem, variational form). Given a pair (κ, ω), find a

function u ∈ H1
per(Ω) such that

a(u, v)− ω2b(u, v) = p(v), for all v ∈ H1
per(Ω) (2.16)

Theorem 4. The problem 2 and the problem 3 are equivalent.

Proof. We observe that

[
(∇+ iκ) · 1

µ
(∇+ iκ)u

]
v̄ = ∇ ·

[(
1

µ
(∇+ iκ)u

)
v̄

]
− 1

µ
(∇+ iκ)u · (∇− iκ)v̄.

Integrating it implies

∫

Ω

[
(∇+ iκ) · 1

µ
(∇+ iκ)u

]
v̄ =

∫

Γ

[(
1

µ
(∇+ iκ)u

)
v̄

]
·n−

∫

Ω

1

µ
(∇+iκ)u·(∇−iκ)v̄.

We multiply the modified Helmholtz equation by v̄ and integrate to obtain

∫

Γ

[(
1

µ
(∇+ iκ)u

)
v̄

]
· n−

∫

Ω

1

µ
(∇+ iκ)u · (∇− iκ)v̄ +

∫

Ω

εω2uv̄ = 0,

or ∫

Γ

1

µ
∂nuv̄ −

∫

Ω

1

µ
(∇+ iκ)u · (∇− iκ)v̄ +

∫

Ω

εω2uv̄ = 0.
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By the radiation condition ∂n(u− uinc) = −T (u− uinc), we have

∫

Ω

1

µ
(∇+ iκ)u · (∇− iκ)v̄ +

∫

Γ

1

µ
(Tu)v̄ −

∫

Ω

εω2uv̄ =

∫

Γ

1

µ0

v̄(∂nu
inc + Tuinc)

This is the weak form (2.16).

Conversely, if a function u ∈ H1
per(Ω) satisfies (2.16), we can take test functions

v ∈ C∞0 (Ω) to get (∇+ iκ) · 1
µ
(∇− iκ)u+ εµω2u = 0 in Ω. Then we can multiply

the modified Helmholtz equation by v ∈ H1
per(Ω) to obtain

∫

Γ

1

µ
∂nuv̄ −

∫

Ω

1

µ
(∇+ iκ)u · (∇− iκ)v̄ +

∫

Ω

εω2uv̄ = 0.

Comparing it with (2.16), we prove that ∂n(u− uinc) = −T (u− uinc), i.e. u solves

the problem 2.

A guided mode is a solution of the homogeneous problem where there is no

source:

a(u, v)− ω2b(u, v) = 0, for all v ∈ H1
per(Ω). (2.17)

Note that in the proof of the above equivalence, it is not required that ω2 ∈ R.

But if the square frequency is real, we have the following result in particular for

the homogeneous problem.

Theorem 5. (Real eigenvalues) If ω2 ∈ R, then a function u ∈ H1
per(Ω) satisfies

the homogeneous problem (2.17) if and only if it satisfies the equation

ar(u, v) + iai(u, v)− ω2b(u, v) = 0, for all v ∈ H1
per(Ω), (2.18)

and if and only if it satisfies

ar(u, v)− ω2b(u, v) = 0, for all v ∈ H1
per(Ω),

(û|Γ)m = 0,∀m ∈ Zp.
(2.19)
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Proof. We only need to show the equivalence of (2.18) and (2.19). If (û|Γ)m =

0,∀m ∈ Zp, then
∫

Γ
(Tiu)v = 0, so (2.19) implies (2.18). Conversely, we take

the imaginary part of ar(u, u) + iai(u, u) − ω2b(u, u) to obtain ai(u, u) = 0 for

all u ∈ H1
per(Ω). This implies that (û|Γ)m = 0, ∀m ∈ Zp because ηm 6= 0 for

m ∈ Zp.

2.3.3 Existence of Solutions of Scattering Problems

The existence of the solution of the scattering problem can be analyzed by Fred-

holm alternative theory. To this end, we write the form a− ω2b as

a(u, v)− ω2b(u, v) = c1(u, v) + c2(u, v),

in which c1(u, v) = a(u, v) + b(u, v) and c2(u, v) = −(ω2 + 1)b(u, v).

Lemma 6. Both c1 and c2 are bounded in H1
per(Ω).

Proof. The boundedness of c1 is shown by

|a(u, v) + b(u, v)| =
∣∣∣∣
∫

Ω

µ−1(∇+ iκ)u · (∇− iκ)v̄ +

∫

Ω

ε uv̄

∣∣∣∣

≤ 1

µ−

∣∣∣∣
∫

Ω

(∇+ iκ)u · (∇− iκ)v̄

∣∣∣∣+ ε+

∣∣∣∣
∫

Ω

uv̄

∣∣∣∣

≤ 1

µ−
‖(∇+ iκ)u‖L2‖(∇+ iκ)v‖L2 + ε+

∣∣∣∣
∫

Ω

uv̄

∣∣∣∣

≤ 1

µ−
(‖∇u‖L2 + |κ|‖u‖L2)(‖∇v‖L2 + |κ|‖v‖L2) + ε+‖u‖L2‖v‖L2

≤M‖u‖H1
per(Ω) · ‖v‖H1

per(Ω) , for some M > 0,

and

∫

Γ

(Tu)v ≤
∑

m∈Z

|η1/2
m ûm| · |η1/2

m v̂m| ≤ ‖u‖H1/2(Γ)‖v‖H1/2(Γ) ≤ ‖u‖H1
per(Ω)‖v‖H1

per(Ω)

The boundedness c2 is shown by

∫

Ω

εuv̄ ≤ ε+

∫

Ω

uv̄ ≤ ε+‖u‖L2(Ω)‖v‖L2(Ω) ≤ ε+‖u‖H1
per(Ω)‖‖H1

per(Ω).
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These forms are represented by bounded operators C1 and C2 in H1
per(Ω) by

Riesz Representation:

(C1u, v)H1
per(Ω) = c1(u, v),

(C2u, v)H1
per(Ω) = c2(u, v).

Because of the coercivity of c1 and the compact embedding of L2(Ω) into H1
per(Ω),

we have

Lemma 7. The operator C1 has a bounded inverse and C2 is compact.

Proof. The operator C1 has bounded inverse because the sesquilinear form c1(u, v)

is bounded and coercive:

Re(c1(u, u) + c2(u, u)) ≥ min{µ−1
+ , ε−}‖u‖2

H1
per(Ω).

The operator C2 can be written as C2 = I1I2, where I2 : H1
per(Ω) → L2(Ω) is

the natural embedding, and I1 : L2(Ω) → H1
per(Ω) is defined by 〈I1u, v〉H1

per(Ω) :=

−(ω2 + 1)
∫

Ω
uv̄. The operator I2 is compact because of the compactness of the

injection of H1
per(Ω) into L2(Ω). The operator I1 is continuous because

‖I1u‖H1
per(Ω) = sup

06=v∈H1
per(Ω)

|
∫

Ω
uv̄|

‖v‖H1
per(Ω)

≤ sup
06=v∈H1

per(Ω)

|
∫

Ω
uv̄|

‖v‖L2(Ω)

≤ ‖u‖L2(Ω).

Their composition C2 is therefore compact.

If we denote by winc the unique element of H1
per(Ω) such that (winc, v)H1

per(Ω) =

`(v), the scattering problem becomes (C1u, v) + (C2u, v) = (winc, v) for all v ∈

H1
per(Ω), or

C1u+ C2u = winc. (2.20)

The term `(v) consists of the incident wave uinc and therefore winc represent the

source term in the equation (2.20). In the operator form, a guided mode is a

20



nontrivial solution of the homogeneous problem

C1u+ C2u = 0. (2.21)

By means of the Fredholm alternative one can demonstrate that, even if a slab

admits a guided mode for a given real pair (κ, ω), the problem of scattering of a

plane wave always has a solution. Proofs are given in [1, Thm. 3.1] and [23, Thm. 9];

the idea is essentially that plane waves contain only propagating harmonics whereas

guided modes contain only evanescent harmonics and are therefore orthogonal to

any plane-wave source field.

Theorem 8. For real ω > 0 and κ ∈ B, the scattering problem 3 with a plane-wave

source field has at least one solution and the set of solutions is a finite dimensional

affine space with the dimension equal to the dimension of the space of guided

modes.

Proof. By the Fredholm alternative, (2.20) has a solution if and only if 〈winc, v〉 = 0

for all v ∈ Null(C1 + C2)†, i.e. for all v satisfying

(w, (C1 + C2)†v) = 0,∀w ∈ H1
per(Ω),

or for all v satisfying

ar(w, v) + iai(w, v)− ω2b(w, v) = 0,∀w ∈ H1
per(Ω),

or just

ar(v, w)− iai(v, w)− ω2b(v, w) = 0,∀w ∈ H1
per(Ω).

By Theorem 5, the propagating harmonics of v vanish on Γ, and so (winc, v) van-

ishes.

The space of solutions is finite-dimensional because C1 has a bounded inverse

and C2 is compact.
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2.4 Guided Modes

A guided mode is a nonzero solution u(x, z) of the scattering problem without

the source originating from the exterior of the slab, that is, it satisfies (2.18) and

(2.19). It may also be understood as a nontrivial solution of the problem (2.20) in

operator form.

A functional analysis framework for spectral analysis is on one period in R2

S = {(x, z) ∈ R2 : −π < x < π}. (2.22)

We consider the Hilbert space L2(S, εdV ) of square-Lebesgue-integrable complex-

valued functions in S with inner product

b(u, v) =

∫

S
εuv̄dV (2.23)

and the unbounded symmetric nonnegative quadratic form in L2(S, εdV ), with

form domain H1
per(S), defined by

a(u, v) =

∫

S
µ−1(∇+ iκ)u · (∇− iκ)v̄dV, ∀u, v ∈ H1

per(S) (2.24)

This form defines a positive operator Sκ by

Sκu = −ε−1(∇+ iκ) · µ−1(∇+ iκ)u, u ∈ D(Sκ) ⊂ H1
per(S) (2.25)

The spectrum of Sκ can be analyzed by min-max principle ([22], Chapter XIII).

The sequence defined by

λj(κ) = sup
V j−1<L2(S)

inf
u∈(V j−1)\{0}
u∈H1

per(S)

a(u, u)

b(u, u)
(2.26)

where the supremum is taken over all (j − 1)-dimensional subspaces, is nonde-

creasing, and converges to the infimum λ− of the essential spectrum of Sκ. Let

ε− = inf ε, ε+ = sup ε, µ− = inf µ, µ+ = inf µ. The following theorem is given by

Bonnet-Bendhia and Starling in [1].
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Theorem 9. The spectrum of the operator Sκ has the following properties:

i). σ(Sκ) ⊂ [ κ2

ε+,µ+
,+∞);

ii). the essential spectrum σess(Sκ) ⊂ [ κ2

ε−,µ−
,+∞);

iii) there are finitely many eigenvalues λj strictly less than κ2

ε0µ0
.

We have seen in Theorem 5 that a function u ∈ H1
per(Ω) is a guided mode if and

only if it satisfies

ar(u, v)− ω2b(u, v) = 0, for all v ∈ H1
per(Ω),

(û|Γ)m = 0,∀m ∈ Zp.
(2.27)

The second condition requires that all the propagating harmonics vanish and so

there are only evanescent harmonics left. The first equation can be analyzed by the

min-max principle on the Rayleigh quotient ar(u,u)
b(u,u)

because the sesquilinear form

ar is symmetric. We have the following theorem:

Theorem 10 (Guided-mode frequencies). Assume κ ∈ B and ηm 6= 0 as above.

The equation aωr (u, v) − ω2b(u, v) = 0 has a nontrivial solution u ∈ H1
per(Ω) for

positive nondecreasing frequencies {ωj}∞j=1 that tends to ∞. The frequencies for

which the slab admits a guided mode with Bloch wavenumber κ is a subset of this

sequence that includes the ones that are less than |κ|√
ε0µ0

.

Moreover, if parameters other than µ1 are fixed, the eigenvalues αj and eigenfre-

quencies ωj are strictly decreasing in ε1, and if parameters other than ε1 are fixed,

the eigenvalues and eigenfrequencies are strictly decreasing in µ1.

The proofs are given in [27][1]. The idea is as follows. We consider the problem

ar(u, v)−αb(u, v),∀v ∈ H1
per(Ω) for any fixed ω > 0. It can be analyzed by the min-

max principle. In fact, from the proof in Lemma 6 we can see that a(u, v), b(u, v)
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are bounded bilinear form. We can define operators Aωr , B on H1
per(Ω) by

(Aωr u, v) = aωr (u, v) + b(u, v)

(Bu, v) = b(u, v)

The operator Aωr is bijective with bounded inverse and the operator B is compact.

Therefore the set of α that admit a nontrivial solution to [Aωr −(α2 +1)B]u = 0 is a

sequence converging to infinity. The values αj(ω) are constructed by the min-max

principle

λj(κ) = sup
V j−1<L2(S)

inf
u∈(V j−1)\{0}
u∈H1

per(S)

a(u, u)

b(u, u)
.

These values are positive functions because aωr (u, u) ≥ 0 and in the second term

1
µ0

∫
(Tu)v̄ of aαr , the multipliers −iηm =

√
ε0µ0ω2 − (m+ κ)2 are nondecreasing

functions of ω, so the eigenvalues αj(ω) are also nondecreasing in ω. They can also

be proved continuous in ω (see [1]).

Therefore, the solution of αj(ωj) = ω2
j for any j, are the values of frequencies

that admit nontrivial solutions to the equation ar(u, v)−ω2b(u, v) = 0, for all v ∈

H1
per(Ω). The set of guided modes frequencies are subset of {ωj}∞j=1 for which the

second part of (2.19) are satisfied. If the eigenvalue ω is less than |κ|
ε0µ0

, the second

part of (2.19) is automatically satisfied because the set Zp is empty. The corre-

sponding eigenfunction u is automatically a guided mode.

The special value |κ|√
ε0µ0

is called the cutoff frequency. If the eigenfrequency ωj

is less than the cutoff frequency |κ|√
ε0µ0

, the nontrivial solution u of ar(u, v) −

ω2
j b(u, v) = 0, for all v ∈ H1

per(Ω) is naturally a guided mode. Moreover, these

ω2
j coincide with the eigenvalues of the operator Sκ defined earlier in this section.

If the eigenfrequency ωj ≥ |κ|√
ε0µ0

, the second part of (2.19) defines some extra

conditions that are in general not satisfied. If the extra conditions are satisfied

for some nonzero solution u of ar(u, v) − ω2
j b(u, v) = 0, for all v ∈ H1

per(Ω), the
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function u is a guided mode. We call it an embedded guided mode to indicate that

the associated ω2
j is embedded in the continuous spectrum of the operator Sκ.

2.5 Existence and Nonexistence of Guided

Modes

We list a few existence results from [1, 27]. We will not give the proof for most

of them, but focus on the existence for slabs symmetric in x. This type of guided

modes are non-embedded guided modes.

2.5.1 Existence

The following two theorems on the existence are adapted from the proof in [1]. We

simply restate the theorems from [23] without providing the proofs. Let N (κ) be

the number of eigenvalues λj less than |κ|2
ε0µ0

.

Theorem 11 (Non-embedded guided modes). i). If εµ > ε0µ0 on a set of positive

measure and
∫

S

(
ε

ε0
− µ0

µ

)
dV ≥ 0, (2.28)

then for all κ ∈ B \ {0}, N (κ) ≥ 1, i.e. there exists a guided mode at a frequency

below |κ|√
ε0µ0

.

ii). Let K be an open set in S, and {βj}∞j=1 be the spectrum of the Dirichlet

Lapalacian operator in K (i.e. −∇2 with Dirichlet boundary condition u = 0 on

∂K). If κ ∈ B \ {0} and ε > ε∗, µ > µ∗ on K, with ε∗µ∗ > βj
ε0µ0
|k|2 , then N ≥ j,

and there are at least j independent guided modes with Bloch wavenumber κ and

frequency below |k|√
ε0µ0

.

These guided modes are robust and hold continuous dispersion relations.

Theorem 12 (Dispersion relations). i). The eigenvalues λj(κ̃) are continuous func-

tions of κ̃ ∈ B.
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ii). If εµ ≥ ε0µ0, then for any κ̂ ∈ R, the function λ(sκ) − s2

ε0µ0
are nonincreasing

in s for sκ ∈ B, and therefore N (sκ) is nondecreasing.

We are more interested in the existence of embedded guided modes. One special

type is for a slab structure symmetric in x in each period.

Theorem 13 (Embedded guided modes). If κ = 0, then there exist functions

ε(x, z), µ(x, z) symmetric in x that admit a guided-mode frequency above the cutoff

frequency |κ|√
ε0µ0

.

Proof. It ε, µ are symmetric with respect to x, then the symmetric part H1,sym
κ (Ω)

and the antisymmetric part H1,ant
κ (Ω) of the space H1

per(Ω) are orthogonal with

respect to aω and b. A function that is antisymmetric with respect to x and solves

aω(u, v)−b(u, v) = 0,∀v ∈ H1,ant
per (Ω) also solves aω(u, v)−b(u, v) = 0,∀v ∈ H1

per(Ω).

We can apply the min-max principle on H1,ant
per (Ω) to obtain frequencies {ωantj }∞j=1

of antisymmetric modes that form a subset of the frequencies {ωj}∞j=1.

Since the eigenfrequencies are strictly decreasing to 0 in ε1 or µ1, there exist

ε+, µ+ large enough such that 0 < ε0µ0(ωantj )2 < 1. With these parameters, we

see that Zp = {0},Zl = ∅. In this regime of (κ, ω), the smallest eigenvalue ωant1

corresponds to an antisymmetric eigenfunction u. The extra condition (û|Γ)m = 0

is automatically satisfied because of the antisymmetry of u. Therefore, the function

u is an embedded guided mode.

The existence of this embedded guided mode requires the symmetry, and it is

typically nonrobust: as κ is perturbed from 0, the guided mode loses its antisym-

metry and vanishes. It is the interaction of the dissolution of the guided mode and

the scattering wave that causes the resonance.
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2.5.2 Nonexistence

Certain nonexistence results can be proved for some materials. We introduce two

types of nonexistence. The first nonexistence result is from [27], and the second is

adapted from [1]. We simply restate the Theorem 13 in [23] in our notations:

Theorem 14. Let ω and κ be real, and one of the following conditions be satisfied:

i). In Ω, ε− < ε(x, z) ≤ ε0, and µ− < µ(x, z) ≤ µ0, and

L(ω2ε0µ0 − κ2)1/2 < π, if Zp 6= ∅;

ii) There is a real number z0 such that ε(x, z0+z), ε(x, z0−z), µ(x, z0+z), µ(x, z0−z)

are nondecreasing functions of z for all x ∈ R2.

Then there exists no such field u(x, z) for which the variational homogeneous prob-

lem (2.18) holds. The periodic slab does not admit guided modes with the pair

(κ, ω).

2.6 Transmission Anomalies

When a periodic slab admits an embedded true guided mode at a real pair (κ0, ω0),

the guided mode is typically nonrobust with respect to the perturbation of param-

eters. Transmission anomalies can be observed when the wavenumber is perturbed

slightly from κ0, such as numerically in [25], or when the geometry of the material

coefficients ε, µ is perturbed. In our study, we focus on real perturbations of κ0.

This perturbation can cause sharp downward and upward spikes in the graph of

the transmission coefficient as a function of frequency ω. The spikes emerge from

the frequency ω0 and become wider as κ deviates more from κ0.

In this section, we present some results from [25, 26, 23] for piecewise materials.

For the periodic slab discussed above, we assume in addition that in a domain

Ω1 ⊂ [−π, π]× [−L,L], ε = ε1, µ = µ1 and in the exterior domain Ω0 = S \ Ω1 of
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Ω1, ε = ε0, µ = µ0. While we briefly list previous results from the literature, we will

prove them for more general structures for which the materials are not required to

be piecewise constant.

Consider the regime in which there is exactly one propagating harmonic. A left

incoming incident wave `(κ, ω)eiη0zeiκx is scattered into the reflected propagating

harmonic a(κ, ω)e−iη0zeiκx and a transmitted propagating harmonic b(κ, ω)eiη0zeiκx.

Using integral representations of u on the boundary Γ [25, 23], the coefficients of

the propagating spatial harmonics of the reflected and transmitted fields are seen

to be analytic functions of (κ, ω) at (κ0, ω0).

Let κ̃ = κ− κ0, ω̃ = ω − ω0. Assume ∂`
∂ω
, ∂a
∂ω
, ∂b
∂ω
6= 0 at (κ0, ω0). The Weierstraß

Preparation Theorem (Theorem 6.4.5 of [13]) can be applied to obtain the following

factorizations

a(κ, ω) = (ω̃ + r1κ̃+ r2κ̃
2 + · · · )(r0e

iγ + rκ̃κ̃+ rω̃ω̃ +O(|κ̃|2 + |ω̃|2)),

b(κ, ω) = (ω̃ + t1κ̃+ t2κ̃
2 + · · · )(it0eiγ + tκ̃κ̃+ tω̃ω̃ +O(|κ̃|2 + |ω̃|2)),

`(κ, ω) = (ω̃ + `1κ̃+ `2κ̃
2 + · · · )(1 + `κ̃κ̃+ `ω̃ω̃ +O(|κ̃|2 + |ω̃|2)),

(2.29)

and

|`(κ, ω)| =
[
|ω̃ + `1κ̃+ `2κ̃

2|+O(|κ̃|3)
]
×
[
1 + c1ω̃ + c2κ̃+O(κ̃2 + ω̃2)

]
.

In lossless transient materials, the conservation of energy implies the relation |`|2 =

|a|2 + |b|2, for (κ, ω) ∈ R2.

In the special case of embedded guided mode shown in the previous section, the

slab symmetric in x admits an antisymmetric guided mode with the pair (κ0, ω0)

with κ0 = 0, lying in the regime for which Zp = {0}. The relation `(κ, ω) = 0

represents a complex dispersion relation

ω = ω0 − `1(κ− κ0)− `2(κ− κ0)2 − · · · .
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If we assume that Im(`2) 6= 0, then the pair (κ0, ω0) is the only real pair that

satisfies the equation `(κ, ω) = 0 and therefore admits the only true guided mode

in a neighborhood of (κ0, ω0).

The transmission rate

|T (κ, ω)|2 =

∣∣∣∣
b(κ, ω)

`(κ, ω)

∣∣∣∣
2

=
|b|2

|a|2 + |b|2 (2.30)

characterizes the ratio of energy flux passing through the slab. If the coefficients

rn, tn are all real numbers, at the frequencies ω = ω0−r1(κ−κ0)−r2(κ−κ0)2−· · ·

and ω = ω0− t1(κ−κ0)− t2(κ−κ0)2−· · · , the transmission coefficient |T | reaches

the magnitude of 1 or 0, respectively.

The following approximation formula of the transmission rate holds:

T 2(κ, ω) =
t20|ω̃ + `1κ+ t2κ̃

2|2
|ω̃ + `1κ̃+ `2κ̃2|2 (1 + c1ω̃)2 +O(|κ̃|+ ω̃2). (2.31)

In Chapter 3, we prove the total transmission and reflection are in fact obtained

for structures symmetric in z at nearby frequencies near the pair (κ0, ω0).
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Chapter 3
Total Transmission Resonance in
Periodic Slabs

The wavenumber and frequency pair (κ, ω) can be extended to the complex domain

for the study of the scattering problem near the real pair (κ0, ω0) that admits a

nonrobust true guided mode, and certain asymptotic formula of the transmission

coefficient can be proved in [23, 25, 26]. We start from this idea and prove the

analyticity of the scattered field for a general periodic material with bounded

measurable parameters ε, µ. The main contribution of this chapter is that if the

frequency and wavenumber are close to those of the nonrobust guided modes, then

100% and 0% transmission is reached for structures with symmetry about a parallel

axis.

3.1 Complex Extension

Assume Z` is empty. We consider the modified Helmholtz equation

(∇+ iκ) · µ−1(∇+ iκ)u(x, z) + εω2u(x, z) = 0,

in which κ = (κ, 0), the number κ is restricted to lie in the Brillouin zone [−1/2 ,
1/2 ),

and we have

u(x, z) =
∞∑

m=−∞

(A±me
iηmz +B±me

−iηmz)eimx for ± z > L. (3.1)

For real ω > 0 and κ, the square root is chosen with a branch on the negative

imaginary axis, and the sign is taken such that ηm = |ηm| if η2
m > 0 and ηm = i|ηm|

if η2
m < 0.

We will be concerned with the case of one propagating harmonic m = 0. This

regime corresponds to real pairs (κ, ω) that lie in the diamond

D =
{

(κ, ω) ∈ R2 : |κ| < 1/2 and |κ| < ω
√
ε0µ0 < 1− |κ|

}
.
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FIGURE 3.1. The diamond D of one propagating diffractive order within the first Bril-
louin zone.

The numbers ηm are analytic functions of (κ, ω) in a complex neighborhood D′ of

D; thus, R2 ⊃ D ⊂ D′ ⊂ C2.

We now assume that the frequency ω2 is perturbed from positive real line to the

complex plane. We first discuss the case that ω attains a small negative imaginary

part Im(ω) < 0. For m ∈ Zp,the number ηm =
√
ε0µ0ω2 − (m+ κ)2 still has a

positive real part, but it possesses a negative imaginary part. The propagating

harmonic eiηmzei(m+κ)xe−iωt of w in (2.1) can be calculated

eiηmzei(m+κ)xe−iωt = ei[Re(ηm)+iIm(ηm)]zei(m+κ)xe−iωt

= e−Im(ηm)zeiRe(ηm)zei(m+κ)xeIm(ω)te−iRe(ω)t.

This harmonic decays in time, is exponentially growing away from the slab, and is

still outgoing. These modes are associated with leaky modes (see [18, 28, 10]).

Form ∈ Ze, by our choice of square root, the number ηm = i
√

(m+ κ)2 − ε0µ0ω2

will still have a positive imaginary part but has a negative real part. The evanescent

harmonic eiηmzei(m+κ)xe−iωt of w in (2.1) is e−Im(ηm)zeiRe(ηm)zei(m+κ)xeIm(ω)te−iRe(ω)t,

and decays in time and in space but is incoming.

In the other case for which Im(ω) > 0, for m ∈ Zp, ηm has a positive imaginary

part; the propagating harmonic eiηmzei(m+κ)xe−iωt grows exponentially in time, de-

31



cays exponentially in space parameter |z| and is outgoing. For m ∈ Ze, ηm has a

positive real part; the evanescent harmonic eiηmzei(m+κ)xe−iωt grows exponentially

in time, decays exponentially in |z| and is outgoing.

We do not deal with the cases when ω decreases through a value such that

ηm = 0, in which the transmission coefficient exhibits the Wood anomaly [28] [14].

Moreover, we do not discuss the perturbation of ω remaining real and κ being

extended to the complex domain which is treated in [19].

The radiation condition is extended to the following generalized outgoing condi-

tion.

Condition 15 (Outgoing Condition). A pseudo-periodic function ũ(x, z) = u(x, z)eiκx

is said to satisfy the outgoing condition for the complex pair (κ, ω), with Re(ω) > 0

if and complex coefficients {c±m} such that

u(x, z) =
∑

m∈Z

c±me
±iηmzeimx for ± z > L.

True guided modes are nontrivial solutions to the Helmholtz equation that de-

cays exponentially away from the slab. If the wavenumber κ is kept to be real and

ω is allowed to be complex, the imaginary part of ω for the guided mode must be

nonnegative. The following theorem is proved in [23][26].

Theorem 16 (Generalized Guided Modes). Suppose (κ, ω) is such that Z` = ∅

and u is a periodic equation with real wavevector κ and satisfies the modified

Helmholtz equation and the generalized outgoing condition. Then Im(ω) ≤ 0, and

u→ 0 as |z| → +∞ if and only if ω is real.
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Proof. The Helmholtz equation gives

0 =

∫

Ω

(
(∇+ iκ) · µ−1(∇+ iκ)u+ ω2εu

)
ū

=

∫

Ω

(
−µ−1|(∇+ iκ)u|2 + ω2ε|u|2

)
+

∫

Γ

µ−1
0 (∂nu)ū

=

∫

Ω

(
−µ−1|(∇+ iκ)u|2 + ω2ε|u|2

)
+

2π

µ0

∑

m∈Z

iηm(|c−m|2 + |c+
m|2)e−2Im(ηm)L,

∀u ∈ H1
per(Ω).

Taking the imaginary part of this identity, we have

−Im(ω2)

∫

Ω

ε|u|2 =
2π

µ0

∑

m∈Z

Re(ηm)(|c−m|2 + |c+
m|2)e−2Im(ηm)L (3.2)

Assume κ ∈ R, ω is purturbed from positive real line to the complex plain and ηm

are analytic in ω. If Im(ω) > 0, then Im(ω2) > 0 but Re(ηm) > 0. This gives a

contradiction on the signs of the two sides of the identity (3.2). Thus Im(ω) ≥ 0.

In particular, if Im(ω) = 0, the identity 3.2 implies that all the coefficients c−m, c
+
m

vanish for all m such that Re(ηm) > 0, i.e. m ∈ Zp and so u decays exponentially

as |z| → ∞. Conversely, since Im(ω) ≤ 0, all the harmonics m ∈ Zp exponentially

growing as |z| → ∞ should all vanish, i.e. c−m = c+
m = 0,∀m ∈ Zp. In (3.2) we let

L→∞, then Im(ω2) = 0 and so Im(ω) = 0.

3.2 Scattering and Guided Modes with

Complex Extension

In the extended complex domain of the pair (κ, ω), the problem of scattering of

plane-waves by a periodic slab is the following:

Problem 17 (Scattering problem). Find a function ũ(x, z) such that




ũ(x, z) = eiκxu(x, z), u is 2π-periodic in x,

(∇+ iκ)·µ−1(∇+ iκ)u(x, z) + ε ω2 u(x, z) = 0, for (x, z) ∈ R2,

u(x, z) = uinc(x, z) + usc(x, z), usc satisfies the outgoing condition,

(3.3)
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in which uinc(x, z) = A+
0 e

iη0z +B−0 e
−iη0z.

The variational, or weak, formulation of this problem is posed in the truncated

period Ω.

Problem 18 (Scattering problem, variational form). Given a pair (κ, ω), find a

function u ∈ H1
per(Ω) such that

a(u, v)− ω2b(u, v) = p(v), for all v ∈ H1
per(Ω), (3.4)

where the forms are defined in section 2.3.2.

A generalized guided mode is a nontrivial solution of Problem 18 with p set

to zero. The condition p = 0 means that there is no incident field and hence the

outgoing Condition 15 is satisfied. If (κ, ω) is a real pair, then the propagating

harmonics in the Fourier expansion (3.1) vanish altogether and the solution is a

true guided mode.

As we have introduced in Chapter 2, we write the form a− ω2b as

a(u, v)− ω2b(u, v) = c1(u, v) + c2(u, v),

in which c1(u, v) = a(u, v) + b(u, v) and c2(u, v) = −(ω2 + 1)b(u, v) are bounded

bilinear forms in H1
per(Ω). If the pair (κ, ω) is in a sufficiently small neighborhood

D′ inside the diamond D, c1 can be shown to be coercive for all (κ, ω) in D′ by the

same argument in chapter 2. These forms are represented by bounded operators

C1 and C2 in H1
per(Ω):

(C1u, v)H1
per(Ω) = c1(u, v),

(C2u, v)H1
per(Ω) = c2(u, v).

We denote by winc the unique element of H1
per(Ω) such that (winc, v)H1

per(Ω) = p(v),

and the scattering problem becomes (C1u, v) + (C2u, v) = (winc, v) for all v ∈
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H1
per(Ω), or in the operator form

C1u+ C2u = winc. (3.5)

We have a similar lemma:

Lemma 19. The operator C1 has a bounded inverse and C2 is compact.

The following existence theorem of the scattered wave can be proved using the

Fredholm alternative. The reader can also refer [1, Thm. 3.1] and [23, Thm. 9].

Theorem 20. For any pair (κ, ω) ∈ D, the scattering Problem 18 with a plane-

wave source field has at least one solution and the set of solutions is a finite

dimensional affine space with the dimension equal to the dimension of the space

of guided modes. The far-field behavior of all solutions is identical.

Denote

A(κ, ω) = I + C1(κ, ω)−1C2(κ, ω),

ψ = u and φ = C−1
1 winc,

and the equation (3.5) can be written as

A(κ, ω)ψ(κ, ω) = φ(κ, ω), (Scattering problem in operator form) (3.6)

in which A is the identity plus a compact operator. A generalized guided mode in

operator form is a solution of the following homogeneous problem:

A(κ, ω)ψ(κ, ω) = 0. (Guided mode) (3.7)

As proved in chapter 2, if ε and µ are large enough and symmetric in the x

variable (i.e., about the z-axis normal to the slab), there exists an antisymmetric

embedded guided mode at some point (0, ω0) in the diamond D [27]. The operator
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associated with the form ar(u, v) can be viewed as a Dirichlet operator in the

strip {(x, z) : 0 < x < π}, and the eigenvalue of the antisymmetric guided mode,

which is the smallest guided mode of this operator, is therefore simple. As the

wavenumber κ is perturbed from 0, the system loses its symmetry and consequently

the antisymmetric guided mode vanishes. Numerical computations have verified the

vanishing of this kind of guided mode in periodic cylinders, but we do not have a

rigorous proof of the nonrobustness for any embedded guided modes. In fact, there

do exist robust embedded guided modes and dispersion relations for structures

with smaller periodic cell structures in each period. We will give a proof of such

robust guided modes for pillars in the next Chapter.

3.3 Analyticity

In order to analyze the anomaly of the transmission coefficient, we establish the

analyticity of the solutions to the scattering problem in (κ, ω). In this section,

we prove the analyticity of the operator and the scattering problem. With the

result of analyticity, the solution to the scattering problem can be investigated by

analyzing the coefficients in the complex wave number and frequency (κ, ω) within

a neighborhood of (κ0, ω0).

Lemma 21. The operators C1, C2, and A are analytic with respect to ω and κ if

η2
m 6= 0.

Proof. To prove C1 is analytic with respect to ω at (κ0, ω0), we let ω = ω0 + ∆ω

and show that

lim
∆ω→0

∥∥∥∥
C1(κ0, ω0 + ∆ω)− C1(κ0, ω0)

∆ω
− C1ω

∥∥∥∥ = 0

in operator norm, where C1ω(κ0, ω0) : H1
per(Ω)→ H1

per(Ω) is defined by

(C1ωu, v) =
1

µ0

∑

m

−iε0µ0ω0√
ε0µ0ω2

0 − (m+ κ0)2
ûm ¯̂vm,∀u, v ∈ H1

per(Ω).
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The partial derivatives of ηm with respect to ω are

ηmω(κ, ω) =
ε0µ0ω√

ε0µ0ω2 − (m+ κ)2
,

and the joint analyticity of ηm at (κ0, ω0) implies that

ηm(κ0, ω0 + ∆ω) = ηm(κ0, ω0) + ηmω(κ0, ω0)∆ω +R(2)
m (∆ω)

= ηm(κ0, ω0) +
ε0µ0ω0√

ε0µ0ω2
0 − (m+ κ0)2

∆ω +R(2)
m (∆ω)

with the remainder term

R(2)
m (∆ω) =

(∆ω)2

2πi

∫

C0

ηm(s)

(s− ω)(s− ω0)2
ds

in which C0 is the circle in the complex plane centered at ω0 with radius r0 and

2|∆ω| < r0. For any s ∈ C0, |s−ω| ≥ |r0− |∆ω|| ≥ r0− |∆ω| ≥ r0/2. We estimate

that for all m 6= 0,

∣∣R(2)
m (∆ω)

∣∣ ≤ |∆ω|
2

2π
· 2πr0 ·

sups∈C0{|ηm(s)|}
(r0 − |∆ω|)r2

0

≤ sups∈C0{|ηm(s)|}(|∆ω|)2

r0/2 · r0

.

In the last expression, if m = 0, |ηm(s)| < C for some C > 0. If m 6= 0 and

ε0µ0ω
2
0 − (m+ κ)2 ≤ 0, |ηm(s)| =

√
(m+ κ)2 − ε0µ0ω2 ≤ (m+ κ) ≤ 2m < Cm for

some C; if m 6= 0 and ε0µ0ω
2
0 − (m+ κ)2 ≥ 0, we have |ηm(s)| ≤

√
ε0µ0ω2

0 ≤ C ≤

Cm. To summarize, |ηm(s)| ≤ C(m+ 1).

For some constants C ′, C ′′ > 0,

∣∣∣∣
([

C1(κ0, ω0 + ∆ω)− C1(κ0, ω0)

∆ω
− C1ω

]
u, v

)∣∣∣∣

=

∣∣∣∣∣
1

µ0

∑

m

(−i)
[

(ηm(κ0, ω0 + ∆ω)− ηm(κ0, ω0))

∆ω
− ε0µ0ω0√

ε0µ0ω2
0 − (m+ κ0)2

]
ûm ¯̂vm

∣∣∣∣∣

=

∣∣∣∣∣
1

µ0

∑

m

[
R

(2)
m (∆ω)

∆ω

]
ûm ¯̂vm

∣∣∣∣∣ ≤
C

µ0

|∆ω|
∣∣∣∣∣
∑

m

(m+ 1)ûm ¯̂vm

∣∣∣∣∣

≤ C ′|∆ω|‖u‖H1/2(Γ)‖v‖H1/2(Γ) ≤ C ′′|∆ω|‖u‖H1
per(Ω)‖v‖H1

per(Ω)
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and

lim
∆ω→0

∥∥∥∥
C1(κ0, ω0 + ∆ω)− C1(κ0, ω0)

∆ω
− C1ω

∥∥∥∥

= lim
∆ω→0

sup
u,v 6=0

∣∣∣
([

C1(κ0,ω0+∆ω)−C1(κ0,ω0)
∆ω

− C1ω

]
u, v
)∣∣∣

‖u‖H1
per(Ω)‖v‖H1

per(Ω)

= 0.

and hence C1 is analytic with respect to ω.

Now we show that the operator C1 is analytic in κ. We prove the limit

lim
∆κ→0

∥∥∥∥
C1(κ0 + ∆κ, ω0)− C1(κ0, ω0)

∆κ
− C1κ

∥∥∥∥ = 0

in operator norm, where C1κ is defined by

(C1κu, v) =

∫

Ω

1

µ
[iuv̄x − iuxv̄ + 2κ0uv̄] +

∑

m

1

µ0

i(m+ κ0)√
ε0µ0ω2

0 − (m+ κ0)2
ûm ¯̂vm.

The partial derivatives of ηm with respect to κ are

ηmκ(κ, ω) =
−(m+ κ)√

ε0µ0ω2 − (m+ κ)2
,

and

ηm(κ0 + ∆κ, ω0)− ηm(κ0, ω0) =
−(m+ κ0)√

ε0µ0ω2
0 − (m+ κ0)2

∆κ+ T (2)
m (∆κ),

with |T (2)
m (∆κ)| ≤ D(m + 1)|∆κ|2 for some constant D > 0 and |∆κ| sufficiently

small. So

((C1(κ0 + ∆κ, ω0)u, v)− (C1(κ0, ω0)u, v))

=

∫

Ω

1

µ
[∇+ i(κ0 + ∆κ)]u · [∇− i(κ0 + ∆κ)]v̄ −

∫

Ω

1

µ
(∇+ iκ0)u · (∇− iκ0)v̄

+
∑

m

−i
µ0

[ηm(κ0 + ∆κ, ω0)− ηm(κ0, ω0)] ûm ¯̂vm

=

∫

Ω

1

µ
[∆κ(iuv̄x − iuxv̄ + 2κ0uv̄) + (∆κ)2uv̄]

+
∑

m

−i
µ0

[
−(m+ κ0)√

ε0µ0ω2
0 − (m+ κ0)2

∆κ+ T (2)
m

]
ûm ¯̂vm
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and
∣∣∣∣
(

(C1(κ0 + ∆κ, ω0)u, v)− (C1(κ0, ω0)u, v)

∆κ

)
− (C1κu, v)

∣∣∣∣

=

∣∣∣∣∣

∫

Ω

1

µ
uv̄∆κ+

∑

m

−i
µ0

T
(2)
m

∆κ
ûm ¯̂vm

∣∣∣∣∣

≤ |∆κ|
∣∣∣∣
∫

Ω

1

µ
uv̄

∣∣∣∣+
1

µ0|∆κ|

∣∣∣∣∣
∑

m

T (2)
m ûm ¯̂vm

∣∣∣∣∣

≤ D′|∆κ|
(
‖u‖H1

per(Ω)‖v‖H1
per(Ω) + ‖u‖H1/2(Γ)‖v‖H1/2(Γ)

)

≤ D′′|∆κ|‖u‖H1
per(Ω)‖v‖H1

per(Ω)

for some constant D′, D′′ > 0. Therefore

lim
∆κ→0

∥∥∥∥
C1(κ0 + ∆κ, ω0)− C1(κ0, ω0)

∆κ
− C1κ

∥∥∥∥

= lim
∆κ→0

sup
u,v∈H1

per(Ω),u,v 6=0

∣∣∣ (C1(κ0+∆κ,ω0)u,v)−(C1(κ0,ω0)u,v)
∆κ

− (C1κu, v)
∣∣∣

‖u‖H1
per(Ω)‖v‖H1

per(Ω)

= 0

in the operator norm and so C1 is analytic with respect to κ.

To prove the analyticity of C2 with respect to ω at (κ0, ω0), we define an operator

C2ω(κ0, ω0) by

(C2ωu, v)H1
per(Ω) = −2ω0

∫

Ω

εuū

and we have
([

C2(κ0, ω0 + ∆ω)− C2(κ0, ω0)

∆ω
− C2ω

]
u, v

)

=

(
−ω

2
0 + 2ω0∆ω + ∆ω2 − ω2

0

∆ω
+ 2ω0

)∫

Ω

εuv̄ = −∆ω

∫

Ω

εuv̄.

As ∆ω → 0, this tends to 0, and thus C2 is analytic with respect to ω.

The operator C2 does not depend upon κ. Because C1 is an analytic automor-

phism, it has an analytic inverse and, hence, A is analytic.

We can characterize a guided mode nonrobust to the perturbation of κ as follows.

We can assume that A(κ, ω) has a unique and simple eigenvalue ˜̀(κ, ω) for all (κ, ω)
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in a complex neighborhood of (κ0, ω0) ∈ D ⊂ R, ˜̀(κ0, ω0) = 0, and that ˜̀(κ, ω) 6= 0

in any real neighborhood small enough in the real plane of (κ, ω). The solutions of

`(κ, ω) = 0 are considered the generalized guided modes, but only the pair (κ0, ω0)

is the real pair that admits a true (evanescent) guided mode. We let ` = c˜̀ for a

nonzero constant c.

For any analytic source field φ(κ, ω) at (κ0, ω0), we now consider the scattering

problem

A(κ, ω)ψ = `φ. (3.8)

The field ψ can be proved to be analytic and the values of `(κ, ω) connects gener-

alized guided modes on the complex dispersion relation `(κ, ω) = 0 with scattered

waves at `(κ, ω) 6= 0. The following proof is adapted from [23, §5.2].

Theorem 22. The simple eigenvalue ˜̀ is analytic at (κ0, ω0), and, for any source

field φ that is analytic at (κ0, ω0), the solution ψ(κ, ω) is analytic at (κ0, ω0).

Proof. To prove that for any source field, the solution to the scattering problem

exists and is analytic, we introduce the Riesz projection

P1(κ, ω) =
1

2πi

∮

C

(λI − A(κ, ω))−1dλ, (3.9)

where C is a sufficiently small circle centered at 0 in the complex plain. The Riesz

projection is jointly analytic in (κ, ω) at (κ0, ω0), it commutes with A(κ, ω), and

its image is the one-dimensional eigenspace of the operator A(κ, ω) corresponding

to the eigenvalue ˜̀(κ, ω) if it is in the circle. The identity I can be decomposed to

P1 and its complement P2 = I − P1 both analytic at (κ0, ω0).

We define another operator Ã = P1 +AP2, for which Ã = P1 + (I +C−1
1 C2)P2 =

I +C−1
1 C2P2, where C−1

1 C2P2 is compact. In a neighborhood of (κ0, ω0) the eigen-

value of P1Ã is 1 and all eigenvalues of Ã are bounded away from zero uniformly.
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Note that the analytic Fredholm Theorem (Theorem VI.14 of [22]) guarantees the

analyticity of the inverse of the operators of the form I + C(κ, ω) with C com-

pact, provided that there are no singular pairs (κ, ω) in the neighborhood such

that I + C(κ, ω) is non-invertible. The map Ã is hence analytically invertible in a

neighborhood of (κ0, ω0), and

AP2Ã
−1P2 = P2.

Let ψ(κ0, ω0) be an eigenfunction of A(κ0, ω0) corresponding to the eigenvalue

˜̀(κ0, ω0), and ψ̂(κ, ω) = P1(κ, ω)ψ(κ0, ω0) be an analytic eigenfunction correspond-

ing to the eigenvalue ˜̀(κ, ω) of A. For any analytic source vector φ, we decompose

φ = P1φ+ P2φ and let

P1φ = αψ̂,

P2φ = φ2.

By the analyticity of P1 and P2, the fields αψ̂ and φ2 are analytic. If we let

ψ = cαψ̂ + `Ã−1φ2,

we can verify that

Aψ =




˜̀ 0

0 AP2







cαψ̂

`Ã−1φ2


 =



`αψ̂

`φ2


 = `φ

So ψ is the solution to the scattering problem, and all we need to show is the

analyticity of α and `.

To show that α and ` are analytic, let β(κ, ω) be such that

P1(κ0, ω0)ψ̂(κ, ω) = β(κ, ω)ψ(κ0, ω0)

The analyticity of ψ̂(κ, ω) implies that β is analytic, and β(κ0, ω0) = 1. Observing

that

P1(κ0, ω0)A(κ, ω)ψ̂(κ, ω) = ˜̀(κ, ω)β(κ, ω)ψ̂(κ0, ω0),
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P1(κ0, ω0)α(κ, ω)ψ̂(κ, ω) = α(κ, ω)β(κ, ω)ψ̂(κ0, ω0),

we see the analyticity of ˜̀β and αβ. Since β is analytic and nonzero at (κ0, ω0),

the functions ˜̀(κ, ω) and α are analytic and so ` is, too.

3.4 Main Theorem: Total Resonant

Transmission and Reflection for Symmetric

Slabs

We assume that the structure is symmetric with respect to the x-axis, or equiv-

alently, ε(x,−z) = ε(x, z), µ(x,−z) = µ(x, z) for all x. As we have discussed

earlier in this chapter, we assume that `(κ, ω) is a simple eigenvalue in a complex

neighborhood D′ of the real point at (κ0, ω0) and that `(κ0, ω0) = 0.

3.4.1 The Reduced Scattering Matrix

Consider the scattering problem with the analytic incident field ei(κx+η0z) on the

left of the slab. From the existence Theorem 20 of the solution to the scattering

problem, the scattered field always exists up to a linear superposition of evanescent

harmonics, and if `(κ, ω) 6= 0, the solution is unique. The propagating components

of the periodic part u give rise to the following reflection and transmission coeffi-

cients R and T ,

u = eiη0z +Re−iη0z +
∑

m6=0

c−me
i(mx−ηmz) for z ≤ L,

u = Teiη0z +
∑

m6=0

c+
me

i(mx+ηmz) for z ≥ L.

Since the slab considered here is symmetric about the x-axis, an analytic incident

field ei(κx−η0z) from the right of the slab produces identical reflection and trans-

mission coefficients. Thus ,the reduced scattering matrix for the structure can be
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written as

S(κ, ω) =



T (κ, ω) R(κ, ω)

R(κ, ω) T (κ, ω)


 ,

which gives the outward propagating components in terms of the inward propagat-

ing components in the expression (3.1) via S(A−0 , B
+
0 )T = (B−0 , A

+
0 )T . To do the

analysis in this section, we take the incident field from the left to be `(κ, ω)ei(κx+η0z),

which renders a reflected far field a(κ, ω)ei(κx−η0z) for z → −∞ and a transmitted

far field b(κ, ω)ei(κx+η0z) for z →∞, with coefficients

a = `R, b = `T. (3.10)

The incident field `(κ, ω)ei(κx−η0z) from the right results in a reflected far field

a(κ, ω)ei(κx+η0z) for z →∞ and a transmitted far field b(κ, ω)ei(κx−η0z) for z → −∞,

with coefficients also given by (3.10).

Lemma 23. The coefficients a(κ, ω) and b(κ, ω) are analytic in κ and ω.

Proof. The analyticity of the incident field `(κ, ω)ei(κx+η0z) implies the analyticity

of the source field `(κ, ω)φ(κ, ω) in the equation A(κ, ω)ψ = `φ and hence, by

Theorem 22, also the analyticity of the solution field ψ(κ, ω) = u(x, z;κ, ω) in

H1
per(Ω). The coefficients a(κ, ω) and b(κ, ω) of ψ are given by

a(κ, ω) =
eiη0(κ,ω)L

2π

∫ 2π

0

u(x,−L;κ, ω)dx,

b(κ, ω) =
e−iη0(κ,ω)L

2π

∫ 2π

0

u(x, L;κ, ω)dx,

and since η0(κ, ω) is analytic and u 7→
∫ 2π

0
u(x,±L)dx are bounded linear func-

tionals on H1
per(Ω), both a and b are analytic.
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If ` 6= 0, we can represent the scattering matrix by the ratios of functions a, b, `

analytic at (κ0, ω0) in D.

S(κ, ω) =
1

`(κ, ω)



b(κ, ω) a(κ, ω)

a(κ, ω) b(κ, ω)


 . (3.11)

For real wavenumber and frequency (κ, ω), the scattering matrix is well known in

scattering theory to be unitary




|`|2 = |a|2 + |b|2,

ab̄+ āb = 0.

(3.12)

At the point (κ0, ω0), this also implies that

`(κ0, ω0) = a(κ0, ω0) = b(κ0, ω0) = 0,

which corresponds to the guided modes at (κ0, ω0) with no propagating harmonics

at present.

In this section, we analyze the generic case

∂`

∂ω
6= 0,

∂a

∂ω
6= 0,

∂b

∂ω
6= 0 at (κ0, ω0). (3.13)

Let κ̃ = κ− κ0 and ω̃ = ω− ω0. With the appropriate choice of c in ` = c˜̀, by the

Weierstraß Preparation Theorem, the coefficients have the following factorizations:

a(κ, ω) = (ω̃ + r1κ̃+ r2κ̃
2 + · · · )(r0e

iγ + rκ̃κ̃+ rω̃ω̃ +O(|κ̃|2 + |ω̃|2)),

b(κ, ω) = (ω̃ + t1κ̃+ t2κ̃
2 + · · · )(it0eiγ + tκ̃κ̃+ tω̃ω̃ +O(|κ̃|2 + |ω̃|2)),

`(κ, ω) = (ω̃ + `1κ̃+ `2κ̃
2 + · · · )(1 + `κ̃κ̃+ `ω̃ω̃ +O(|κ̃|2 + |ω̃|2)),

(3.14)

in which 0 < r0 < 1 and either 0 < t0 < 1 or −1 < t0 < 0. Notice that in this

factorization, the same unitary number eiγ appears in the second factors of both

a and b. This rises from the second expression of the unitarity property (3.12).

There are some basic properties of the coefficients from [23, 26].
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Lemma 24. The following relations hold among the coefficients in the form (3.14):

i) r2
0 + t20 = 1,

ii) `1 = r1 = t1 ∈ R,

iii) Im(`2) ≥ 0,

iv) `2 ∈ R ⇐⇒ r2 = t2 ∈ R ⇐⇒ `2 = r2 = t2 ∈ R.

We assume that Im(`2) > 0. This assumption is a sufficient condition for the

nonrobustness of the guided mode, because (κ0, ω0) is an isolated point of `(κ, ω) =

0 in the real region D.

Lemma 25. Under the assumptions (3.13) and Im(`2) > 0, one of the following

alternatives is satisfied:

i) r2 and t2 are distinct real numbers;

ii) r2 = t2 6∈ R and either `2 = r2 = t2 or `2 = r̄2 = t̄2.

Proof. We first compare the coefficients in |`|2−|a|2−|b|2 = 0 using the expansions

(3.14) and keeping in mind that `1 = r1 = t1. The coefficients of κ̃2, κ̃2ω̃, κ̃ω̃2 and

ω̃3 are

`1[(`2 + ¯̀
2) + `1(`κ̃ + `κ̃)− r2

0(r2 + r̄2)

−`1r0(rκ̃e
−iγ + r̄κ̃e

iγ)− t20(t2 + t̄2) + i`1t0(tκ̃e
−iγ − t̄κ̃eiγ)],

(`2+¯̀
2) + 2`1(`κ̃ + ¯̀̃

κ) + `2
1(`ω̃ + ¯̀̃

ω)− r2
0(r2 + r̄2)− 2`1r0(rκ̃e

−iγ + r̄κ̃e
iγ)− `2

1r0

× (rω̃e
−iγ + r̄ω̃e

iγ)− t20(t2 + t̄2)− 2i`1t0(tκ̃e
−iγ − t̄κ̃eiγ) + i`2

1t0(tω̃e
−iγ − t̄ω̃eiγ),

(`κ̃ + ¯̀̃
κ) + 2`1(`ω̃ + ¯̀̃

ω)−r0(rκ̃e
−iγ + r̄κ̃e

iγ)− 2`1r0(rω̃e
−iγ + r̄ω̃e

iγ)

+ it0(tκ̃e
−iγ − t̄κ̃eiγ) + 2i`1t0(tω̃e

−iγ − t̄ω̃eiγ),

and

(`ω̃ + ¯̀̃
ω)− r0(rω̃e

−iγ + r̄ω̃e
iγ) + it0(tω̃e

−iγ − t̄ω̃eiγ).
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Define the real quantities A = rκ̃e
−iγ + r̄κ̃e

iγ, B = i(tκ̃e
−iγ − t̄κ̃eiγ), C = rω̃e

−iγ +

r̄ω̃e
iγ, D = i(tω̃e

−iγ − t̄ω̃eiγ). Since Re(|`|2 − |a|2 − |b|2) = 0, the real parts of the

coefficients of κ̃3, κ̃2ω̃, κ̃ω̃2, and ω̃3 are all 0, that is,

`1[2Re(l2) + 2`1Re(`κ̃)− 2r2
0Re(r2)− `1r0A− 2t20Re(t2) + `1t0B] = 0,

2Re(`2) + 2`1Re(lκ̃) + 2`2
1Re(`ω̃)− 2r2

0Re(r2)− 2`1r0A+

− `2
1r0C − 2t20Re(t2) + 2`1t0B + `2

1t0D = 0,

2Re(`κ̃) + 4`1Re(`ω̃)− r0A− 2`1r0C + t0B + 2`1t0D = 0,

2Re(`ω̃)− r0C + t0D = 0.

This linear system can be reduced to



0 0 0 0

0 0 0 0

r0 t0 0 0

0 0 r0 t0







A

B

C

D




=




`1[2Re(`2)− 2r2
0Re(r2)− 2t20Re(t2)]

2Re(`2)− 2r2
0Re(r2)− 2t20Re(t2)

2Re(`κ̃)

2Re(`ω̃)




,

which implies Re(`2)− r2
0Re(r2)− t20Re(t2) = 0.

The coefficients of k3, k2ω̃, kω̃2, and ω̃3 in ab̄ are

−i`1r0t0(r2 + t̄2) + `1

(
r0t̄κ̃e

iγ − it0rκ̃e−iγ
)
,

−ir0t0(r2 + t̄2) + 2`1

(
r0t̄κ̃e

iγ − it0rκ̃e−iγ
)

+ `2
1

(
r0t̄ω̃e

iγ − it0rω̃e−iγ
)
,

(
r0t̄κ̃e

iγ − it0rκ̃e−iγ
)

+ 2`1

(
r0t̄ω̃e

iγ − it0rω̃e−iγ
)
,

r0t̄ω̃e
iγ − it0rω̃e−iγ.

Since ab̄ is purely imaginary, so are these coefficients, and from the second and

third, we obtain r2 + t̄2 ∈ R.

Along the curve {(κ̃, ω̃) ∈ R2 : ω̃+`1κ̃ = 0}, the coefficients of κ̃4 in |`|2−|a|2−|b|2

and in ab̄ are |`2|2−r2
0|r2|2−t20|t2|2 and −ir0r2t0t̄2. This yields |`2|2 = r2

0|r2|2+t20|t2|2

and r2t̄2 ∈ R.
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The relations r2 + t̄2 ∈ R and r2t̄2 ∈ R imply that either r2, t2 ∈ R or r2 = t2.

Because, by Lemma 24, `2 ∈ R⇔ r2 = t2 ∈ R and because we assume Im(`2) > 0,

the numbers r2, t2 cannot be identical real numbers. In the second case with r2 =

t2 6∈ R, from Re(`2) = r2
0Re(r2) + t20Re(t2), |`2|2 = r2

0|r2|2 + t20|t2|2, and r2
0 + t20 = 1,

we find that Re(`2) = Re(r2) = Re(t2) and |Im(`2)| = |Im(r2)| = |Im(t2)|.

The second alternative of this Lemma seems like an unlikely case. We do not have

a proof to rule out this situation but have not observed any numerical examples

that support it.

3.4.2 Resonant Transmission

The main result given in the Theorem 26 in this section of this chapter is that, in

the first alternative of Lemma 25, all the coefficients rn and tn are real numbers.

Thus the coefficients a and b vanish along real-analytic curves in D given by

ω = ω0 − `1(κ− κ0)− r2(κ− κ0)2 − · · · , (a = 0) (3.15)

ω = ω0 − `1(κ− κ0)− t2(κ− κ0)2 − · · · . (b = 0) (3.16)

These curves are the loci of 100% and 0% transmission, respectively. In the fac-

torizations and the above real-analytic curves, the first order coefficient are both

`1 but r2 6= t2 ∈ R, and therefore the loci intersect with each other tangentially

at (κ0, ω0) but differ quadratically. In the graph of transmission coefficient vs. fre-

quency ω, these curves define the two frequencies that are quadratically close to

each other and produce the transmission spikes on the graph.

Theorem 26 (Total transmission and reflection). Given a two-dimensional loss-

less periodic slab that is symmetric about a line parallel to it, let (κ0, ω0) be a

wavenumber-frequency pair in the regime D of exactly one propagating harmonic

at which the slab admits a guided mode, that is `(κ0, ω0) = 0. Assume in addi-
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tion the generic condition (3.13) and that Im(`2) > 0 in the expansion of ` in

(3.14). Then either the transmission coefficient is continuous at (κ0, ω0) or it at-

tains the magnitudes of 0 and 1 on two distinct real-analytic curves that intersect

quadratically at (κ0, ω0). Specifically,

i) If r2 6= t2, then rn and tn are real for all n. Moreover, a(κ0, ω)/`(κ0, ω) and

b(κ0, ω)/`(κ0, ω) can be extended to continuous functions of ω in a real neighbor-

hood of ω0 with values r0e
iγ and it0e

iγ at ω0.

ii) If r2 6= t2, let c denote either a or b and let f denote the corresponding

function from the pair (3.15,3.16). Then f can be extended to a real analytic

function g(κ) on an interval (κ1, κ2) containing κ0 such that the graph of g is in D

and for each i = 1, 2, the limit g(κi) := limκ→κi g(κ) exists and either (κi, g(κi)) is

on the boundary of D or ∂c
∂ω

(κi, g(κi)) = 0.

iii) If r2 = t2, then |a/`| and |b/`| can be extended to continuous functions in a

real neighborhood of (κ0, ω0) with values |r0| and |t0| at (κ0, ω0).

Proof. i) Assume r2 6= t2 ∈ R. Assuming r2, . . . , rn ∈ R for n ≥ 2, we will show that

rn+1 ∈ R. For (κ̃, ω̃) subject to the relation ω̃+ `1κ̃+ r2κ̃
2 + r3κ̃

3 + . . .+ rnκ̃
n = 0,

a

b
=

rn+1κ̃
n+1 + rn+2κ̃

n+2 + · · ·
(t2 − r2)κ̃2 + (t3 − r3)κ̃3 + · · ·+ (tn − rn)κ̃n + tn+1κ̃n+1 + · · ·

[
r0e

iγ +O(|κ̃|)
it0eiγ +O(|κ̃|)

]

= κ̃(n−1) rn+1 + rn+2κ̃+ · · ·
(t2 − r2)− (t3 − r3)κ̃+ · · ·

[
r0e

iγ +O(|κ̃|)
it0eiγ +O(|κ̃|)

]
.

Because ab̄+ āb = 0, a/b ∈ iR, so that

[
rn+1 + rn+2κ̃+ · · ·

(t2 − r2) + (t3 − r3)κ̃+ · · ·

] [
r0e

iγ +O(κ̃)

it0eiγ +O(κ̃)

]
∈ iR.

Letting κ̃→ 0 yields

rn+1

t2 − r2

· r0

it0
∈ iR,

which implies that rn+1 ∈ R. The proof that tn ∈ R for all n is analogous.
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To prove the second statement, one sets κ̃ = κ − κ0 = 0 and observes that the

ratios a/` and b/` have limiting values of r0e
iγ and it0e

iγ, respectively, as ω̃ → 0,

or ω → ω0.

ii) Define the set

G := {g : (κ−, κ+)→R |κ0 ∈ (κ−, κ+), g is real analytic, a(κ, g(κ)) = 0, Γ(g) ∈ D},

in which Γ(g) is the graph of g. are the lower and upper sides of the diamond D,

and the numbers

κ1 := inf{κ− | g ∈ G},

κ2 := sup{κ+ | g ∈ G}.

By virtue of the function (3.15), which belongs to G, κ1 < κ0 < κ2. Standard

arguments show that any two functions from G coincide on the intersection of their

domains, and one obtains thereby a maximal extension g ∈ G of (3.15) with domain

(κ1, κ2). We now show that limκ↗κ2 g(κ) exists. Set ω− = lim infκ↗κ2 g(κ) and

ω+ = lim supκ↗κ2 g(κ). Because of the continuity of g, the segment (κ2, [ω−, ω+])

in D is in the closure of the graph of g, on which a vanishes. Thus a(κ2, ω) = 0 ∀ω ∈

[ω−, ω+]. Moreover, for each ω ∈ (ω−, ω+), there is a sequence of points (κj, ω) with

κj ↗ κ2 and a(κj, ω) = 0 from which we infer that ∂na/∂κn(κ2, ω) = 0∀n ∈ N

and hence that ∂m+na/∂ωm∂κn(κ2, ω) = 0∀m,n ∈ N ∀ω ∈ (ω−, ω+). If (ω−, ω+) is

nonempty, then a must vanish in D, which is untenable in view of the assumption

that ∂a/∂ω(κ0, ω0) 6= 0. This proves that ω− = ω+ so that ω2 := limκ↗κ2 g(κ)

exists. If |κ|/√ε0µ0 < ω2 < (1 − |κ|)/√ε0µ0 and ∂a/∂ω(κ2, ω2) 6= 0, the implicit

function theorem provides an element of G with κ+ > κ2, which is not compatible

with the definition of κ2. Analogous arguments apply to the endpoint κ1 and to

the function b.

49



iii) If r2 = t2, then by Lemma 25, t2 = `2 or t2 = ¯̀
2. Keeping in mind that

Im(`2) > 0 and `1 ∈ R and restricting to (κ̃, ω̃) ∈ R2,

lim
κ̃,ω̃→0

∣∣∣∣
b

`

∣∣∣∣ = lim
κ̃,ω̃→0

∣∣∣∣
ω̃ + `1κ̃+ t2κ̃

2 + t3κ̃
3 + · · ·

ω̃ + `1κ̃+ `2κ̃2 + `3κ̃3 + · · ·

∣∣∣∣
∣∣∣∣
it0e

iγ +O(|ω̃|+ |κ̃|)
1 +O(|ω̃|+ |κ̃|)

∣∣∣∣

= lim
κ̃,ω̃→0

|t0|
∣∣∣∣
ω̃ + `1κ̃+ t2κ̃

2

ω̃ + `1κ̃+ `2κ̃2

∣∣∣∣ .

Whether t2 is equal to `2 or ¯̀
2, the second factor of the last expression is equal to

unity, and we obtain limκ̃,ω̃→0 |b/`| = |t0|. Similarly, one shows that limκ̃,ω̃→0 |a/`| =

|r0|.

The last part of this Theorem shows that the transmission coefficient is con-

tinuous at (κ0, ω0) and therefore has no spike on the graph for the alternative

r2 = t2 6∈ R of Lemma 25. However, no existing numerical examples lie in this al-

ternative and so it is hoped that this alternative can be ruled out. Here we just state

that if the transmission coefficient is discontinuous at the special value (κ0, ω0),

then it must attain the magnitude of 1 and 0, achieving full and zero transmission,

along the real-analytic curves (3.15,3.16).

In our example of antisymmetric nonrobust guided modes, the wavenumber κ =

0 and the slab is symmetric in the x direction. The guided mode is a standing

wave, and the symmetry of `(κ, ω) and the Helmholtz equation in κ implies that

`1 = 0. We have not seen any guided mode nonrobust to the perturbation of κ for

κ0 6= 0 or for structures nonsymmetric in x. But for discrete models in [20] and

[24], the existence of certain guided modes with `1 not necessarily zero have been

proved. These guided modes are all amenable to our analysis and the Theorem 26

in this chapter. In the transmission graph shown later in this chapter, we compare

the two cases in Fig. 3.2 and 3.3.

50



3.5 Nongeneric Resonant Transmission

In the generic case discussed in the previous section, we assume that the partial

derivatives ∂a
∂ω
, ∂b
∂ω
6= 0. Let κ = κ0 and ω → ω0, then the coefficients have limit

norms |r0| and |t0|, lying strictly between 0 and 1. The positive numbers |r0|2 and

|t0|2 are the ratios of the energy flux reflected or transmitted by the slab.

In more general cases, these “background” reflection and transmission values lie

between 0 and 1, possibly equal to 0 or 1. If we allow one of the derivatives ∂a
∂ω

or

∂b
∂ω

to be 0 at (κ0, ω0), then the form of the factorization by the Weierstraß Prepa-

ration Theorem is modified accordingly and these are precisely the conditions that

correspond to the limits r0 → 0 and t0 → 0. In the former case, the transmission

anomaly has a sharp dip down to 0 transmission, while in the second case, the

transmission anomaly is formed by one peak.

If we allow the partial derivative ∂`
∂ω

= 0, but ∂2`
∂ω2 6= 0 at (κ0, ω0), then the

perturbation of κ can excite two spikes from the guided mode frequency. This is

discussed in the last part of this section.

At (κ0, ω0), if we assume ∂`
∂ω
6= 0, there are three possibilities: i) ∂a

∂ω
6= 0, ∂b

∂ω
6= 0,

ii) ∂a
∂ω
6= 0, ∂b

∂ω
= 0, iii) ∂a

∂ω
= 0, ∂b

∂ω
6= 0. The first generic case was analyzed in the

previous section. The second and the third cases are similar, and we analyze the

second case in this following subsection. We analyze the higher order case ∂`
∂ω

in

the next subsection.

3.5.1 Total Background Reflection and Transmission

Here we assume that ∂`/∂ω 6= 0 at (κ0, ω0), then only one of the functions a and

b can be degenerate at (κ0, ω0).

Proposition 27. Suppose that at (κ0, ω0) ∈ D,

`(κ0, ω0) = 0, and
∂`

∂ω
(κ0, ω0) 6= 0.
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Then

∂a

∂ω
(κ0, ω0) 6= 0 or

∂b

∂ω
(κ0, ω0) 6= 0.

Proof. By conservation of energy |`|2 = |a|2+|b|2 for (κ, ω) ∈ D, we have a(κ0, ω0) =

0 and b(κ0, ω0) = 0 and therefore the representations `(κ0, ω) = (ω − ω0)h1(ω),

a(0, ω) = (ω − ω0)mh2(ω), and b(0, ω) = (ω − ω0)nh3(ω), with hi analytic and

nonzero at ω0. This is consistent with |`|2 = |a|2 + |b|2 only if m = 1, that is

∂a/∂ω 6= 0, or n = 1, that is ∂b/∂ω 6= 0, at (κ0, ω0).

Without loss of generality, we only discuss the case of 100% background trans-

mission: ∂`/∂ω, ∂2a/∂ω2, ∂b/∂ω 6= 0 and ∂a/∂ω = 0 at (κ0, ω0). The Weierstraß

Preparation Theorem gives the following factorizations:

`(κ, ω) =
(
ω̃ + `1κ̃+ `2κ̃

2 + · · ·
)

(1 +O(|κ̃|+ |ω̃|)),

a(κ, ω) =
(
ω̃2 + ω̃α1(κ̃) + α0(κ̃)

)
(r0e

iα +O(|κ̃|+ |ω̃|)),

b(κ, ω) =
(
ω̃ + t1κ̃+ t2κ̃

2 + · · ·
)

(t0e
iβ +O(|κ̃|+ |ω̃|)),

where r0, t0 > 0. We also suppose that ω̃2 + ω̃α1(κ̃) + α0(κ̃) has distinct roots at

κ̃ = 0, so that it can be factored analytically,

a =
(
ω̃ + r

(1)
1 κ̃+ r

(1)
2 κ̃2 + · · ·

)(
ω̃ + r

(2)
1 κ̃+ r

(2)
2 κ̃2 + · · ·

) (
r0e

iα +O(|κ̃|+ |ω̃|)
)
.

Lemma 28. The coefficients of the expansions satisfy the following properties.

i) t0 = 1, t1 = `1 ∈ R, Im(`2) ≥ 0;

ii) eiβ = ±ieiα;

iii) r
(1)
1 + r

(2)
1 , r

(1)
1 r

(2)
1 , and (r

(1)
1 − `1)(r

(2)
1 − `1) are real-valued. Therefore, either

r
(1)
1 , r

(2)
1 are both real or they are conjugate complex numbers.

Proof. Since Im(ω) ≤ 0 whenever `(κ̃, ω̃) = 0 for real κ near κ0, the relation

`(κ̃, ω̃) = 0⇔ ω = ω0−`1(κ−κ0)−`2(κ−κ0)2−· · · implies that `1 ∈ R, Im(`2) ≥ 0.

52



The ω̃2 terms coefficients in |`|2−|a|2−|b|2 = 0 is ω̃2− t20ω̃2 = 0 so we know t0 = 1.

The κ̃2 terms coefficient in |`|2 − |a|2 − |b|2 is `2
1 − |t1|2t20 which implies |t1|2 = `2

1.

The ω̃3 coefficient in |`|2−|a|2−|b|2 is 2`1−Re(t1)t20 = 0 which implies Re(t1) = `1.

Combining these relations, we have t1 = `1 ∈ R. Part i) is proved.

To prove ii), we calculate that the coefficients of ω̃3 in ab̄ is r0e
iαt0e

−iβ ∈ iR,

and so eiα = ±ieiβ.

The ω̃2κ̃ coefficient of ab̄ is

r0t0e
iαe−iβ

[
t̄1 + r

(1)
1 + r

(2)
1

]
∈ iR,

and since t1 = `1 ∈ R and eiαe−iβ ∈ iR, we have r
(1)
1 +r

(2)
1 ∈ R. The ω̃κ̃2 coefficient

is

r0t0e
iαe−iβ

[
r

(2)
1 t̄1 + r

(1)
1 t̄1 + r

(1)
1 r

(2)
1 t̄1

]
∈ iR.

Using r
(1)
1 + r

(2)
1 ∈ R and t1 ∈ R, we know r

(1)
1 r

(2)
1 ∈ R. So (` − r(1)

1 )(` − r(2)
1 ) =

`2 − (r
(1)
1 + r

(2)
1 )`+ r

(1)
1 r

(2)
1 is also real and iii) is proved.

In order to analyze the transmission anomaly for this case, we need the following

lemma.

Lemma 29. One of the following alternatives holds.

i) If (r
(1)
1 − `1)(r

(2)
1 − `1) 6= 0, then t2 = Re(`2) and |Im(`2)|2 = r2

0

∣∣∣r(1)
1 − `1

∣∣∣
2

·
∣∣∣r(2)

1 − `1

∣∣∣
2

6= 0,

ii) If (r
(1)
1 − `1)(r

(2)
1 − `1) = 0, then Re(`2) = Re(t2) and |Im(`2)| = |Im(t2)|.

Proof. We let κ̃→ 0 along the set {(κ̃, ω̃) : ω̃ + `1κ̃ = 0} ⊂ R2 and calculate that

the coefficient of κ̃4 in |`|2 − |a|2 − |b|2 = 0 is

|`2|2 − r2
0

∣∣∣(r(1)
1 − `1)(r

(2)
1 − `1)

∣∣∣
2

− |t2|2 = 0,

so

|`2|2 = r2
0

∣∣∣r(1)
1 − `1

∣∣∣
2

·
∣∣∣r(1)

1 − `1

∣∣∣
2

+ |t2|2. (3.17)
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The coefficient of κ̃4 in ab̄ is

−r0t0t̄2i
[
`2

1 − `1r
(1)
1 − `1r

(2)
1 + r

(1)
1 r

(2)
1

]
∈ iR.

So

t̄2

(
r

(1)
1 − `1

)(
r

(2)
1 − `1

)
∈ R. (3.18)

If (r
(1)
1 − `1)(r

(2)
1 − `1) 6= 0, since (r

(1)
1 − `1)(r

(2)
1 − `1) ∈ R as proved in Lemma 28,

t2 ∈ R.

Similarly, if we let κ̃→ 0 along the set {(κ̃, ω̃) : ω̃ + `1κ̃ + Re(`2)κ̃2 = 0} ⊂ R2,

calculating κ̃4 coefficients in |`|2 − |a|2 − |b|2 = 0 gives

Re(`2)(Re(`2)−Re(t2)) = 0. (3.19)

If we let κ̃→ 0 along the set {(κ̃, ω̃) : ω̃ + `1κ̃+ Re(t2)κ̃2 = 0}, calculating the κ̃4

coefficients in |`|2− |a|2− |b|2 = 0 gives (Re(`2)−Re(t2))2 + Im(`2)2−
∣∣∣r(1)

1 − `1

∣∣∣
2

·
∣∣∣r(2)

1 − `1

∣∣∣
2

r2
0 − Im(t2)2 = 0. Using (3.17), we get

Re(t2)(Re(t2)− Re(`2)) = 0. (3.20)

Therefore, (3.19) and (3.18) imply that Re(`2) = Re(t2).

Use this property in (3.17), we have

|Im(`2)|2 = r2
0

∣∣∣r(1)
1 − `1

∣∣∣
2

·
∣∣∣r(2)

1 − `1

∣∣∣
2

+ |Im(t2)|2

If (r
(1)
1 −`1)(r

(2)
1 −`1) 6= 0 and t2 ∈ R, we have |Im(`2)|2 = r2

0

∣∣∣r(1)
1 − `1

∣∣∣
2

·
∣∣∣r(2)

1 − `1

∣∣∣
2

.

If (r
(1)
1 − `1)(r

(2)
1 − `1) = 0, |Im(`2)| = |Im(t2)|.

We obtain the factorizations

` =
(
ω̃ + `1κ̃+ `2κ̃

2 + · · ·
)

(1 +O(|κ̃|+ |ω̃|)),

a =
(
ω̃ + r

(1)
1 κ̃+ r

(1)
2 κ̃2 + · · ·

)(
ω̃ + r

(2)
1 κ̃+ r

(2)
2 κ̃2 + · · ·

) (
r0e

iγ +O(|κ̃|+ |ω̃|)
)
,

b =
(
ω̃ + `1κ̃+ t2κ̃

2 + · · ·
) (
±ieiγ +O(|κ̃|+ |ω̃|)

)
.

(3.21)
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Theorem 30. Suppose that ε and µ are symmetric in z and that `(κ0, ω0) = 0 at

(κ0, ω0) ∈ D. Let ∂`
∂ω

, ∂2a
∂ω2 , and ∂b

∂ω
be nonzero and ∂a

∂ω
= 0 at (κ0, ω0). Suppose in

addition that (r
(1)
1 − `1)(r

(2)
1 − `1) 6= 0. Then

i) tn is real for all n and therefore the coefficient b of the transmitted field

vanishes on the real-analytic curve in a neighborhood of (κ0, ω0) given by (3.22);

ii) if r
(1)
1 and r

(2)
1 are distinct real numbers, then r

(1)
n and r

(2)
n are real for all n

and therefore the coefficient a of the reflected field vanishes on the real analytic

curves given by (3.23).

Proof. Assume (r
(1)
1 −`1)(r

(2)
1 −`1) 6= 0 and t2 ∈ R. Assuming t2, t3, · · · , tn ∈ R, we

show that tn+1 ∈ R. For real (κ, ω) subject to the relation ω̃+`1κ̃+t2κ̃
2+· · ·+tnκ̃n =

0, the property a
b
∈ iR implies that

a

b
= [(r

(1)
1 − `1)κ̃+ · · ·+ (r(1)

n − tn)κ̃n + r
(1)
n+1κ̃

n+1 + · · · ]

· [(r(2)
1 − `1)κ̃+ · · ·+ (r(2)

n − tn)κ̃n + r
(2)
n+1κ̃

n+1 + · · · ]

· [r0e
iγ0 +O(|κ̃|)]

(tn+1κ̃n+1 + tn+2κ̃n+2 + · · · ) [ieiγ0 +O(|κ̃|)]

=
1

κ̃n−1
[(r

(1)
1 − `1) + · · ·+ (r(1)

n − tn)κ̃n−1 + r
(1)
n+1κ̃

n + · · · ]

· [(r(2)
1 − `1) + · · ·+ (r(2)

n − tn)κ̃n−1 + r
(2)
n+1κ̃

n + · · · ]

· [r0e
iγ0 +O(|κ̃|)]

(tn+1 + tn+2κ̃+ · · · ) [ieiγ0 +O(|κ̃|)]

∈ iR

Multiplying this expression by κ̃n−1 and letting κ̃→ 0, we obtain

(r
(1)
1 − `1)(r

(2)
1 − `1)

tn+1

· r0e
iγ0

ieiγ0
∈ iR

and so tn+1 ∈ R. Then all the coefficients are real by induction. For any real κ the

reflective coefficient a becomes 0 for ω̃ given by (3.22), and hence the transmission

coefficient reaches the magnitude of 0%.
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If in addition r
(1)
1 , r

(2)
1 are real and r

(1)
1 6= r

(2)
1 , we let κ̃ → 0 along the curve

ω̃ + r
(1)
1 κ̃ = 0 to obtain

a

b
=

[r
(1)
2 κ̃2 + · · · ][(r(2)

1 − r(2)
1 )κ̃+ r

(2)
2 κ̃2 + · · · ](r0e

iγ0 +O(|κ̃|))
[(`1 − r(1)

1 )κ̃+ t2κ̃+ · · · ](ieiγ0 +O(|κ̃|))
∈ iR

so

κ̃ · [r
(1)
2 +O(|κ̃|)][(r(2)

1 − r(2)
1 ) +O(|κ̃|)](r0e

iγ0 +O(|κ̃|))
[(`1 − r(1)

1 ) +O(|κ̃|)](ieiγ0+O(|κ̃|))
∈ iR

and r
(1)
2 (r

(2)
1 −r(1)

1 ) ∈ R and so r
(1)
2 ∈ R. The induction arguments can be applied to

show r
(1)
3 , r

(1)
4 , · · · ∈ R. Similarly, r

(2)
2 , r

(2)
3 , · · · ∈ R, and the transmission coefficient

obtains the magnitude of 100%.

In the first alternative of Lemma 29, Theorem 30 proves that tn are all real

numbers, and so the transmission vanishes along the real-analytic curve

ω = ω0 − `1(κ− κ0)− t2(κ− κ0)2 − · · · . (b = 0) (3.22)

If r
(1)
n and r

(2)
n are real numbers as in the part ii) of this Theorem, then the trans-

mission achieves 100% along two real-analytic curves

ω = ω0 − r(i)
1 (κ− κ0)− r(i)

2 (κ− κ0)2 − . . . , i = 1, 2. (a = 0) (3.23)

These frequencies of total transmission and total reflection move apart from ω0 as

κ is perturbed. The transmission rate at other frequencies are close to 1 and the

maximal transmission rate are difficult to detect, as in Fig. 3.4 and 3.6. We show

this by a magnified view on the right of Fig. 3.6. We also believe that t1 must lie

between r
(1)
1 and r

(2)
1 but so far we do not have a proof.
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3.5.2 Multiple Anomalies

If ∂`
∂ω

= 0 at (κ0, ω0) ∈ D, then since |`|2 = |a|2 + |b|2 for real (κ, ω), we have

∂a
∂ω

= ∂b
∂ω

= 0. In this section, we consider the case in which

∂`

∂ω
= 0,

∂a

∂ω
= 0,

∂b

∂ω
= 0 ;

∂2`

∂ω2
6= 0,

∂2a

∂ω2
6= 0,

∂2b

∂ω2
6= 0 .

(3.24)

The zero loci of the above a, b, ` are given locally by the roots of quadratic functions

in ω̃ with coefficients analytic in κ̃ and vanish at κ̃ = 0. We have

`(κ, ω) =
(
ω̃2 + ω̃λ1(κ̃) + λ0(κ̃)

)
(1 +O(|κ̃|+ |ω̃|)),

a(κ, ω) =
(
ω̃2 + ω̃α1(κ̃) + α0(κ̃)

)
(r0e

iγ +O(|κ̃|+ |ω̃|)),

b(κ, ω) =
(
ω̃2 + ω̃β1(κ̃) + β0(κ̃)

)
(it0e

iγ +O(|κ̃|+ |ω̃|)),

where λi(0) = αi(0) = βi(0) = 0, 0 < r0 < 1, and t0 is real with 0 < |t0| < 1. The

common unitary factor eiγ comes from the second equation of 3.12, which is due

to the symmetry of the structure Similar to the total background transmission, we

assume again that the first factors of a, b, ` have distinct roots so that they can be

factored analytically. Then we have the following factorization

`(κ, ω) =
(
ω̃ + `

(1)
1 κ̃+ `

(1)
2 κ̃2 + · · ·

)(
ω̃ + `

(2)
1 κ̃+ `

(2)
2 κ̃2 + · · ·

)
(1 +O(|κ̃|+ |ω̃|)),

a(κ, ω) =
(
ω̃ + r

(1)
1 κ̃+ r

(1)
2 κ̃2 + · · ·

)(
ω̃ + r

(2)
1 κ̃+ r

(2)
2 κ̃2 + · · ·

) (
r0e

iγ + rκ̃κ̃+ rω̃ω̃ + · · ·
)
,

b(κ, ω) =
(
ω̃ + t

(1)
1 κ̃+ t

(1)
2 κ̃2 + · · ·

)(
ω̃ + t

(2)
1 κ̃+ t

(2)
2 κ̃2 + · · ·

) (
it0e

iγ + tκ̃κ̃+ tω̃ω̃ + · · ·
)
.

(3.25)

Lemma 31. Assume `
(1)
1 6= `

(2)
1 . In these forms, the coefficients satisfy the following

properties:

i) `
(1)
1 , `

(2)
1 ∈ R and Im(`

(1)
2 ), Im(`

(2)
2 ) ≥ 0;

ii) After possibly reindexing the coefficients r
(i)
1 and t

(i)
1 , `

(1)
1 = r

(1)
1 = t

(1)
1 , `

(2)
1 =

57



r
(2)
1 = t

(2)
1 ;

iii) |`(1)
2 |2 = |r(1)

2 |2|r2
0 + |t(1)

2 |2t20, and |`(2)
2 |2 = |r(2)

2 |2r2
0 + |t(2)

2 |2t20.

Proof. The relation `(κ̃, ω̃) = 0,∀(κ, ω) ∈ R2 gives ω = ω0− `(1)
1 (κ− κ0) + `

(1)
2 (κ−

κ0)2 + · · · or ω = ω0 − `
(2)
1 (κ − κ0) + `

(2)
2 (κ − κ0)2 + · · · . The condition that

Im(ω̃) ≤ 0,∀κ̃ ∈ R for generalized guided modes implies (i).

From the property |`|2 = |a|2 + |b|2 for all (κ̃, ω̃) ∈ R2, we take κ̃ → 0 along

{(κ̃, ω̃) : ω̃ + `
(1)
1 κ̃ = 0} ⊂ R2 to obtain

|`|2 =
∣∣∣`(1)

2 κ̃2 + o(|κ̃|3)
∣∣∣
2 ∣∣∣(`(2)

1 − `(1)
1 )κ̃+ `

(2)
2 κ̃2 + · · ·

∣∣∣
2

(1 +O(|κ̃|)),

|a|2 =
∣∣∣(r(1)

1 − `(1)
1 )κ̃+ r

(1)
2 κ̃2 + · · · )

∣∣∣
2 ∣∣∣(r(2)

1 − `(1)
1 )κ̃+ r

(2)
2 κ̃2 + · · ·

∣∣∣
2

(r2
0 +O(|κ̃|)),

|b|2 =
∣∣∣(t(1)

1 − `(1)
1 )κ̃+ t

(1)
2 κ̃2 + · · · )

∣∣∣
2 ∣∣∣(t(2)

1 − `(1)
1 )κ̃+ t

(2)
2 κ̃2 + · · ·

∣∣∣
2

(t20 +O(|κ̃|)).

Compare κ̃4 terms in |`|2 = |a|2 + |b|2, then we get

0 =
∣∣∣r(1)

1 − `(1)
1

∣∣∣
2 ∣∣∣r(2)

1 − `(1)
1

∣∣∣
2

r2
0 +

∣∣∣t(1)
1 − `(1)

1

∣∣∣
2 ∣∣∣t(2)

1 − `(1)
1

∣∣∣
2

t20

=
[
(Re(r

(1)
1 )− `(1)

1 )2 + Im(r
(1)
1 )2

] [
(Re(r

(2)
1 )− `(1)

1 )2 + Im(r
(2)
1 )2

]
r2

0

+
[
(Re(t

(1)
1 )− `(1)

1 )2 + Im(t
(1)
1 )2

] [
(Re(t

(2)
1 )− `(1)

1 )2 + Im(t
(2)
1 )2

]
t20.

This implies that 



`
(1)
1 = one of r

(1)
1 , r

(2)
1 , and

`
(1)
1 = one of t

(1)
1 , t

(2)
1

Similarly we can also prove




`
(2)
1 = one of r

(1)
1 , r

(2)
1 , and

`
(2)
1 = one of t

(1)
1 , t

(2)
1

Assuming `
(1)
1 6= `

(2)
1 , without loss of generality, we have ii). Comparing the κ̃6

terms, we get

|`(1)
2 |2

(
`

(2)
1 − `(1)

1

)2

= |r(1)
2 |2|r(2)

1 − `(1)
1 |2r2

0 + |t(1)
2 |2|t(2)

1 − `(1)
1 |2t20,
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which simplifies to

|`(1)
2 |2 = |r(1)

2 |2|r2
0 + |t(1)

2 |2t20.

Similarly, along {(κ̃, ω̃) : ω̃ + `
(2)
1 κ̃ = 0}, we have

|`(2)
2 |2 = |r(2)

2 |2r2
0 + |t(2)

2 |2t20.

We can rewrite a, b as

a(κ, ω) =
(
ω̃ + `

(1)
1 κ̃+ r

(1)
2 κ̃2 + · · ·

)(
ω̃ + `

(2)
1 κ̃+ r

(2)
2 κ̃2 + · · ·

) (
r0e

iγ + rκ̃κ̃+ rω̃ω̃ + · · ·
)
,

b(κ, ω) =
(
ω̃ + `

(1)
1 κ̃+ t

(1)
2 κ̃2 + · · ·

)(
ω̃ + `

(2)
1 κ̃+ t

(2)
2 κ̃2 + · · ·

) (
it0e

iγ + tκ̃κ̃+ tω̃ω̃ + · · ·
)
.

Lemma 32. If we assume that Im(`
(1)
2 ), Im(`

(2)
2 ) > 0, then for each i ∈ {1, 2},

either r
(i)
2 and t

(i)
2 are distinct real numbers, or they are equal and not real.

Proof. By ab̄+āb = 0, ∀(κ̃, ω̃) ∈ R2, we compute that the κ̃5, κ̃4ω̃, κ̃ω̃4, κ̃2ω̃3, κ̃3ω̃2, ω̃5

coefficients of ab̄+ āb are

−r0t0i
(
r

(1)
2 `

(2)
1 + r

(2)
2 `

(1)
1 + `

(2)
1 t̄

(1)
2 + `

(1)
1 t̄

(2)
2

)
+ `

(1)
1 `

(2)
1

(
−rκ̃t0e−iγi+ t̄κ̃r0e

iγ
)
,

−r0t0i
[
2`

(1)
1 `

(2)
2 (r

(2)
2 + t̄

(2)
2 + r

(1)
2 + t̄

(1)
2 )
]

+ 2`
(1)
1 `

(2)
1

[
−irκ̃t0e−iγ + r0t̄κ̃e

iγ
]

(`
(1)
1 + `

(2)
1 )

− r0t0

[
(`

(1)
1 )2(t̄

(2)
2 + r

(2)
2 ) + (`

(2)
1 )2(t̄

(1)
2 + r

(1)
2 )
]
,

2(`
(1)
1 + `

(2)
1 )
[
rω̃t0(−i)e−iγ + r0t̄ω̃

]

+
[
rκ̃t0(−i)e−iγ + t̄κ̃r0e

iγ
]
,

−ir0t0

[
r

(1)
2 + r

(2)
2 + t̄

(1)
2 + t̄

(2)
2

]
+ 2(`

(1)
1 + `

(2)
1 )
[
rκ̃t0(−i)e−iγ + r0t̄κ̃e

iγ
]

+ ((`
(1)
1 )2 + (`

(2)
1 )2)

[
rω̃t0(−i)e−iγ + r0t̄ω̃e

iγ
]

+ 4`
(1)
1 `

(2)
2

[
rκ̃t0(−i)e−iγ + r0t̄κ̃e

iγ
]
,
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−ir0t0

[
`

(1)
1 r

(1)
2 + 2`

(2)
1 r

(1)
2 + 2`

(1)
1 r

(2)
2 + `

(2)
1 r

(2)
2

]

+
[
(`

(1)
1 )2 + (`

(2)
1 )2

] [
rκ̃t0(−i)e−iγ + r0t̄κ̃e

iγ
]

+ 4`
(1)
1 `

(2)
1

[
rκ̃t0(−i)e−iγ + r0t̄κ̃e

iγ
]

+ 2`
(1)
1 `

(2)
1 (`

(1)
1 + `

(2)
1 )
[
rω̃t0(−i)e−iγ + r0t̄ω̃e

iγ
]

− ir0t0

[
`

(1)
1 t̄

(1)
2 + 2`

(2)
1 t̄

(1)
2 + 2`

(1)
1 t̄

(2)
2 + `

(2)
1 t̄

(2)
2

]
,

rω̃t0(−i)e−iγ + r0t̄ω̃.

In total, from the fact that ab̄ ∈ iR,∀(κ, ω) ∈ R2 we have

(−r0t0i)A+ `
(1)
1 `

(2)
1 B ∈ iR,

(−r0t0i)C + 2`
(1)
1 `

(2)
1 B(`

(1)
1 + `

(2)
1 )− r0t0iD ∈ iR,

2(`
(1)
1 + `

(2)
1 )E +B ∈ iR,

−ir0t0
C

2`
(1)
1 `

(2)
1

+ 2(`
(1)
1 + `

(2)
1 )B + [(`

(1)
1 )2 + (`

(2)
1 )2]E + 4`

(1)
1 `

(2)
1 E ∈ iR,

−ir0t0G+ [(`
(1)
1 )2 + (`

(2)
1 )2]B + 4`

(1)
1 `

(2)
1 B + 2`

(1)
1 `

(2)
1 (`

(1)
1 + `

(2)
1 )E − ir0t0H ∈ iR,

E ∈ iR,

where

A = r
(1)
2 `

(2)
1 + r

(2)
2 `

(1)
1 + `

(2)
1 t̄

(1)
2 + `

(1)
1 t̄

(2)
2 ,

B = rκ̃t0(−i)e−iγ + t̄κ̃r0e
iγ,

C = 2`
(1)
1 `

(2)
1

(
r

(2)
2 + t̄

(2)
2 + r

(1)
2 + t̄

(1)
2

)
,

D = (`
(2)
1 )2(t̄

(2)
2 + r

(2)
2 ) + (`

(2)
1 )2(t̄

(1)
2 + r

(1)
2 ),

E = rω̃t0(−i)e−iγ + r0t̄ω̃,

and

F =
C

2`
(1)
1 `

(2)
1

,
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G = `
(1)
1 t̄

(1)
2 + 2`

(2)
1 t̄

(1)
2 + `

(1)
1 t̄

(2)
2 + `

(2)
1 t̄

(2)
2 ,

= (`
(1)
1 + `

(2)
1 )(r

(1)
2 + r

(2)
2 ) + `

(2)
1 r(1)

r + `
(1)
1 r(2)

r ,

H = `
(1)
1 t̄

(1)
2 + 2`

(2)
1 t̄

(1)
2 + 2`

(1)
1 t̄

(2)
2 + `

(2)
1 t̄

(2)
2

= (`
(1)
1 + `

(2)
1 )(t̄

(1)
2 + t̄

(2)
2 ) + `

(2)
1 t̄

(1)
2 + `

(1)
1 t̄

(2)
2 ,

G+H = `
(1)
1 (r

(1)
2 + t̄

(1)
2 ) + 2`

(2)
1 (r

(1)
2 + t̄

(1)
2 ) + 2`

(1)
1 (r

(2)
2 + t̄

(2)
2 ) + `

(2)
1 (r

(2)
2 + t̄

(2)
2 )

= (`
(1)
1 + `

(2)
1 )

C

2`
(1)
1 `

(2)
1

+ A.

These conditions can be written as a linear system




r0t0 `
(1)
1 `

(2)
1 0 0 0

0 2`
(1)
1 `

(2)
1 (`

(1)
1 + `

(2)
1 ) r0t0 r0t0 0

0 1 0 0 2(`
(1)
1 + `

(2)
1 )

0 2(`
(1)
1 + `

(2)
1 ) r0t0

2`
(1)
1 `

(2)
1

0
[
(`

(1)
1 )2 + (`

(2)
1 )2 + 4`

(1)
1 `

(2)
1

]

r0t0

[
(`

(1)
1 )2 + (`

(2)
1 )2 + 4`

(1)
1 `

(2)
1

]
r0t0(`

(1)
1 +`

(2)
1 )

2`
(1)
1 `

(2)
1

0 2`
(1)
1 `

(2)
1 (`

(1)
1 + `

(2)
1 )




·




Im(A)

Re(B)

Im(C)

Im(D)

Re(E)




= 0.

The determinant of this matrix is

1

2
`

(1)
1 r3

0t
3
0 +

(`
(1)
1 )3

2`
(2)
1

r3
0t

3
0 +

1

2
`

(2)
1 r3

0t
3
0 +

1

2

(`
(2)
1 )2r3

0t
3
0

`
(1)
1

=
r3

0t
3
0

2

[
`

(1)
1 + `

(2)
1 +

(`
(1)
1 )2

`
(2)
1

+
(`

(2)
1 )2

`
(1)
1

]

=
r3

0t
3
0

2

(
`

(1)
1 + `

(2)
1

)(
(`

(1)
1 )2 + (`

(2)
1 )2

)

`
(1)
1 `

(2)
1

.
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If `
(1)
1 + `

(2)
1 6= 0, the determinant is nonzero and so




Im(A)

Re(B)

Im(C)

Im(D)

Re(E)




= 0.

Here Im(A) = 0 implies that r
(1)
2 `

(2)
1 + r

(2)
2 `

(1)
1 + `

(2)
1 t̄

(1)
2 + `

(1)
1 t̄

(2)
2 = `

(1)
1 (r

(2)
2 + t̄

(2)
2 ) +

`
(2)
1 (r

(1)
2 +t̄

(1)
2 ) ∈ R, Im(C) = 0 implies that r

(2)
2 +t̄

(2)
2 +r

(1)
2 +t̄

(1)
2 ∈ R, and Im(D) = 0

implies that (`
(1)
1 )2

(
r

(2)
2 + t̄

(2)
2

)
+(`

(2)
1 )2(r

(1)
2 + t̄

(1)
2 ) ∈ R. Since we assume `

(1)
1 6= `

(2)
1 ,

it follows that 



r
(1)
2 + t̄

(1)
2 ∈ R,

r
(2)
2 + t̄

(2)
2 ∈ R.

If `
(1)
1 + `

(2)
1 = 0, then the system becomes




r0t0 −(`
(1)
1 )2 0 0 0

0 0 r0t0 r0t0 0

0 1 0 0 0

0 0 r0t0

−2(`
(1)
1 )2

0 0

r0t0 −2(`
(1)
1 )2 0 0 0

0 0 0 0 1







Im(A)

Re(B)

Im(C)

Im(D)

Re(E)




= 0.

This also implies that Im(A) = Re(B) = Im(C) = Im(D) = Re(E) = 0, and we

also have 



r
(1)
2 + t̄

(1)
2 ∈ R,

r
(2)
2 + t̄

(2)
2 ∈ R.
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To prove r
(1)
2 t̄

(1)
2 ∈ R and r

(2)
2 t̄

(2)
2 ∈ R, we let κ̃ → 0 along the set {(κ̃, ω̃) :

ω̃ + `
(1)
1 κ̃ = 0} ⊂ R2. The condition ab̄ ∈ iR implies that the coefficient of κ̃6 in ab̄

−ir0t0r
(1)
1 t̄

(1)
2

[
(`

(1)
1 )2 − 2`

(1)
1 `

(2)
1 + (`

(2)
1 )2

]
∈ iR,

which implies r
(1)
2 t̄

(1)
2 ∈ R because `

(1)
1 6= `

(2)
1 . Similarly, along {(κ̃, ω̃) : ω̃ + `

(2)
1 κ̃ =

0}, we obtain r
(2)
2 t̄

(2)
2 ∈ R.

In conclusion, r
(1)
2 , t̄

(1)
2 are two roots of a real quadratic equation, which implies

the statement in this lemma.

The relation between r
(i)
2 and t

(i)
2 can be categorized into three cases: i) all

r
(1)
2 , t

(1)
2 , r

(2)
2 , t

(2)
2 are real; ii) only one pair of r

(i)
2 , t

(i)
2 is real, and the members of

the other pair are equal; iii) none of them are real numbers. Subject to structural

symmetry with respect to z, one can prove a theorem analogous to those for the

previous cases. It says in particular that, if the first alternative in the lemma holds

for i = 1 and i = 2, then two peak-dip anomalies emerge from ω0 as κ is perturbed

from κ0, each of which attains the values 0 and 1 along real-analytic curves passing

through (κ0, ω0).

Theorem 33. i) If 



r
(1)
2 6= t

(1)
2 ∈ R

r
(2)
2 6= t

(2)
2 ∈ R,

then all the coefficients r
(1)
n ,r

(2)
n , t

(1)
n , and t

(2)
n are real. For κ near κ0, there exist

two values of ω for which the transmission coefficient attains the magnitude of 1

along the real-analytic curves given by

ω = ω0 − r(1)
1 (κ− κ0)− r(1)

2 (κ− κ0)2 − · · · ,

ω = ω0 − r(2)
1 (κ− κ0)− r(2)

2 (κ− κ0)2 − · · · .

63



and the transmission coefficient attains the magnitude of 0 along the real-analytic

curve given by

ω = ω0 − t(1)
1 (κ− κ0)− t(1)

2 (κ− κ0)2 − · · · ,

ω = ω0 − t(2)
1 (κ− κ0)− t(2)

2 (κ− κ0)2 − · · · .

ii) If only one pair of them are real, for example, r
(1)
2 , t

(1)
2 ∈ R, then there is only

one value of ω for which the transmission coefficient reaches the magnitude 100%

and one value for which the transmission is 0%.

iii) If r
(i)
2 = t

(i)
2 for all i ∈ {1, 2}, then a/` and b/` are continuous at (κ0, ω0). The

transmission coefficient is continuous with respect to κ and does not reach 100%

or 0%.

Proof. i) Letting κ̃→ 0 along the real curve {(κ̃, ω̃) ∈ R2 : ω̃+ `
(1)
1 κ̃+ r

(1)
2 κ̃2 = 0},

we have

a = (r
(1)
1 κ̃3 + · · · )

[
(r

(2)
2 − r(1)

2 )κ̃2 + · · ·
]

(r0e
iγ + · · · )

b =
[
(t

(1)
2 − r(1)

2 )κ̃2 + · · ·
] [

(t
(2)
2 − r(1)

2 )κ̃2 + · · ·
]

(t0ie
iγ + · · · )

Since a
b
∈ iR for real κ̃, the expression a

κ̃b
is also in R. So

(r
(1)
1 κ̃3 + · · · )

[
(r

(2)
2 − r(1)

2 )κ̃2 + · · ·
]

(r0e
iγ + · · · )

κ̃
[
(t

(1)
2 − r(1)

2 )κ̃2 + · · ·
] [

(t
(2)
2 − r(1)

2 )κ̃2 + · · ·
]

(t0ieiγ + · · · )
∈ iR.

Let κ̃→ 0, and we have r
(1)
3 ∈ R. Similarly, we can get t

(1)
3 , r

(2)
3 , t

(2)
3 ∈ R.

Inductively, if r
(2)
2 6= r

(1)
2 , and r

(1)
2 , r

(2)
2 , t

(1)
2 , t

(2)
2 are real, we can take κ̃→ 0 along

{(κ̃, ω̃) ∈ R2 : ω̃ + `
(1)
1 κ̃+ r

(1)
2 κ̃2 + r

(1)
3 κ̃3 + · · ·+ r(1)

n κ̃n = 0}

to prove that r
(1)
n+1 ∈ R, and therefore, r

(1)
n ∈ R, ∀n ∈ N. Also it is similar to prove

t
(1)
n , r

(2)
n , t

(2)
n ∈ R,∀n ∈ N.
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ii) Similarly, if r
(2)
2 6= t

(2)
2 and are both in R, then one can use the same process

to prove r
(2)
n ∈ R,∀n ∈ N and so we have two real factors of a(κ̃, ω̃)

ω̃ + `
(2)
1 κ̃+ r

(2)
2 κ̃2 + r

(2)
3 κ̃3 + · · ·

and

ω̃ + `
(2)
1 κ̃+ t

(2)
2 κ̃2 + t

(2)
3 κ̃3 + · · · .

For any value of κ̃ near 0, there is a value ω̃ such that the transmission coefficient

vanishes and another value ω̃ for which the reflective coefficient vanishes.

iii) If we assume r
(1)
2 = t

(1)
2 and r

(2)
2 = t

(2)
2 but not real, then we can prove that

there is no spike. In fact,





ω̃ + `
(1)
1 κ̃+ r

(1)
2 κ̃2 6= 0,

|ω̃ + `
(1)
1 κ̃+ r

(1)
2 κ̃2| ≥ |Im(r

(1)
2 )|κ̃2,

so

b

`
=

[
ω̃ + t

(1)
1 κ̃+ t

(1)
2 κ̃2 + · · ·

] [
ω̃ + t

(2)
1 κ̃+ t

(2)
2 κ̃2 + · · ·

]
(it0e

iγ + tκ̃κ̃+ tω̃ω̃ + · · · )
[
ω̃ + `

(1)
1 κ̃+ `

(1)
2 κ̃2 + · · ·

] [
ω̃ + `

(2)
1 κ̃+ `

(2)
2 κ̃2 + · · ·

]
(1 +O(|κ̃|+ |ω̃|))

=
(1 +

t
(1)
3 κ̃3

ω̃+`
(1)
1 κ̃+r2(1)κ̃2

+ · · · )(1 +
t
(2)
3 κ̃3

ω̃+`
(2)
1 κ̃+r2(2)κ̃2

+ · · · )(it0eiγ + · · · )

(1 +
`
(1)
3 κ̃3

ω̃+`
(1)
1 κ̃+r2(1)κ̃2

+ · · · )(1 +
`
(2)
3 κ̃3

`
(2)
3 +`

(2)
1 κ̃+r2(2)κ̃2

+ · · · )(1 + · · · )

Therefore,

b

`
=

(1 +O(|κ̃|))(1 +O(|κ̃|)(it0eiγ +O(|ω̃|+ |κ̃|))
(1 +O(|κ̃|)(1 +O(|κ̃|)(1 +O(|ω̃|+ |κ̃|))

is continuous with respect to κ, nonzero and finite. In this case, the transmission

coefficient does not attain the magnitude of 0 and 1.

3.6 Transmission Graphs

In this section, we demonstrate different forms of transmission anomalies by choos-

ing different values of the coefficients in the expansions (3.14,3.21, 3.25) of `, a,
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FIGURE 3.2. |T |2 as a function of ω̃ for κ̃ = 0,±0.01,±0.02,±0.03. The generic condi-
tions ∂`

∂ω ,
∂a
∂ω ,

∂b
∂ω 6= 0 are satisfied at the bound-state pair (κ0, ω0). In (3.15,3.16), `1 = 0

so that there is no linear detuning of the anomaly with κ̃. Left: 0 < t2 = 1 < r2 = 2
so that the peak is to the left of the dip and both are to the left of ω0. Right:
r2 = −2 < 0 < t2 = 1. In both graphs, r0 = 0.6, t0 = 0.8. The transmission is symmetric
in κ̃, and the curve without an anomaly is the transmission graph for κ̃ = 0.

and b. More specifically, we graph the transmission coefficient

|T (κ, ω)|2 =

∣∣∣∣
b(κ, ω)

`(κ, ω)

∣∣∣∣
2

=
|b|2

|a|2 + |b|2 , (3.26)

as a function of frequency ω̃ = ω−ω0, keeping only terms up to quadratic order in

κ̃ = κ − κ0 in the first factors and only the constant terms in the nonzero factor.

This approximation has the accuracy of O(|κ̃| + ω̃2) in the generic case (see [20,

Thm. 16]).

Figures 3.2, 3.3 show the generic case of Section 3.4.2, in which r2 and t2 are

distinct real numbers. For κ = κ0 (κ̃ = 0) the anomaly is absent. As κ is perturbed,

i.e. κ̃ 6= 0, the anomaly appears and widens with width |t2−r2|κ̃2, as shown in

Fig. 3.2 for `1 = 0. If `1 6= 0, as in Fig. 3.3, then the anomaly is detuned from ω0

at a rate of O(κ̃), whereas it widens with quadratic width |t2−r2|κ̃2.

Figures 3.4 show the degenerate case in which the anomaly pattern is one single

dip descending to 0 from a full background transmission or a single peak rising to

1 from a null background transmission (see Section 3.5.1). The peaks reside on two

sides of the dip. We show another possibility when the peaks are located on one

side of the dip in another Figure 3.5. In particular, if `1 = 0, we show the anomaly
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FIGURE 3.3. |T |2 as a function of ω̃ for κ̃ = 0,±0.003,±0.006,±0.009. The generic
conditions ∂`

∂ω ,
∂a
∂ω ,

∂b
∂ω 6= 0 are satisfied at the bound-state pair (κ0, ω0). In (3.15,3.16),

`1 = 0.9 6= 0, so the anomaly is detuned from ω = ω0 (ω̃ = 0) in a linear manner in κ̃. The
coefficients r2 = 2 and t2 = 1 of κ̃2 are distinct real numbers, and (r0, t0) = (0.6, 0.8).
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FIGURE 3.4. |T |2 as a function of ω̃ for κ̃ = 0,±0.01,±0.02,±0.03. Left: Full back-
ground transmission occurs when ∂`

∂ω 6= 0, ∂a
∂ω = 0, and ∂b

∂ω 6= 0 at (κ0, ω0). In (3.21),

0 < r
(1)
1 = 0.2 < t1 = `1 = 2 < r

(2)
1 = 4, (r

(1)
2 , r

(2)
2 , t2) = (7, 7, 0.1), and r0 = 0.6. Right:

∂`
∂ω 6= 0, ∂a

∂ω 6= 0, and ∂b
∂ω = 0 at (κ0, ω0) and 0 < t

(1)
1 < r1 = `1 < t

(2)
1 .

with single dip and two peaks, as well as two dips and single peak in Fig. 3.6,3.7,

and 3.8. In Fig. 3.6 and 3.7, the peaks are on two sides of the dip, or two dips lie

on two sides of the single peak, respectively, while in Fig. 3.8, two peaks reside on

the same side of the single dip. In the first case, we see that full transmission is

actually achieved at precisely two frequencies near ω = ω0 (ω̃ = 0), as shown in

the magnified, right-hand image of Fig. 3.6.

Without the assumption r
(1)
1 , r

(2)
1 ∈ R, one can still show that the single dip is

reached. We also give the figures for the case that r
(1)
1 , r

(2)
1 are conjugate for `1 = 0

and `1 6= 0 in Fig. 3.10 and Fig. 3.9.
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FIGURE 3.5. |T |2 as a function of ω̃ for κ̃ = 0,±0.01,±0.02,±0.03. Full background
transmission occurs when ∂`

∂ω 6= 0, ∂a
∂ω = 0, and ∂b

∂ω 6= 0 at (κ0, ω0). In (3.21),

0 < r
(1)
1 = 0.6 < r

(2)
1 = 1.2 < `1 = 3; (r0, r

(1)
2 , r

(2)
2 , t2) = (0.6, 1, 1, 0.2).
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FIGURE 3.6. |T |2 as a function of ω̃ for κ̃ = 0,±0.01,±0.02,±0.03. Left: Full back-
ground transmission occurs when ∂`

∂ω 6= 0, ∂a
∂ω = 0, and ∂b

∂ω 6= 0 at (κ0, ω0). In (3.21),

r
(1)
1 = −0.04 < t1 = `1 = 0 < r

(2)
1 = 0.06; (r0, r

(1)
2 , r

(2)
2 , t2) = (0.6,−1, 1, 1). Right:

Magnification of the graphs for κ̃ = ±0.01, bringing into view the frequencies of total
transmission.
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FIGURE 3.7. |T |2 as a function of ω̃ for κ̃ = 0,±0.01,±0.02,±0.03. Full back-
ground transmission occurs when ∂`

∂ω 6= 0, ∂a
∂ω 6= 0, and ∂b

∂ω = 0 at (κ0, ω0) and

0 < t
(1)
1 < r1 = `1 < t

(2)
1 . In (3.21), t

(1)
1 = −0.04 < r1 = `1 = 0 < t

(2)
1 = 0.06;

(t0, t
(1)
2 , t

(2)
2 , t2) = (0.6,−1, 1, 1).
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FIGURE 3.8. |T |2 as a function of ω̃ for κ̃ = 0,±0.01,±0.02,±0.03. Full background
transmission occurs when ∂`

∂ω 6= 0, ∂a
∂ω = 0, and ∂b

∂ω 6= 0 at (κ0, ω0). In (3.21),

t1 = `1 = 0 < r
(1)
1 = 0.6 < r

(2)
1 = 0.8; (r0, r

(1)
2 , r

(2)
2 , t2) = (0.6,−4, 5, 6).
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FIGURE 3.9. |T |2 as a function of ω̃ for κ̃ = 0,±0.01,±0.02,±0.03. ∂`
∂ω

∂a
∂ω 6= 0, ∂b∂ω = 0

at (κ0, ω0). (r
(1)
1 , r

(2)
1 , `1) = (2i,−2i, 0); (r0, r

(1)
2 , r

(1)
2 , t2) = (0.6, 2i, 4i, 3).

If the first derivatives of `, a, b with respect to ω are zero at (κ0, ω0), under

the assumptions in Section 3.5.2, the anomaly has double spikes with peaks and

dips. This situation is shown in Figures 3.11 and 3.12 for two possible choices of

constants in the Weierstraß expansions. Either sets of the constant choices are

possible but we wish to find more properties to refine our results.

The vertical line in all graphs shows the location of ω̃ = 0, or ω = ω0.
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FIGURE 3.10. |T |2 as a function of ω̃ for κ̃ = 0,±0.01,±0.02,±0.03. ∂`
∂ω

∂a
∂ω 6= 0, ∂b∂ω = 0

at (κ0, ω0). (r
(1)
1 , r

(2)
1 , `1) = (0.5i,−0.5i, 2); (r0, r

(1)
2 , r

(1)
2 , t2) = (0.6, i, i, 1).
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FIGURE 3.11. Left: |T |2 as a function of ω̃ for κ̃ = 0,±0.003,±0.006,±0.009. The
partial derivatives of `, a, and b all vanish at (κ0, ω0), whereas their second derivatives

are nonzero. In (3.25), (`
(1)
1 , `

(2)
1 ) = (0.7, 0.8), (r0, t0) = (0.6, 0.8), r

(1)
2 = 2 < t

(1)
2 = 8 and

t
(2)
2 = 4 < r

(2)
2 = 5. Right: κ̃ = 0.003.
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FIGURE 3.12. Left: |T |2 as a function of ω̃ for κ̃ = 0,±0.003,±0.006,±0.009. The
partial derivatives of `, a, and b all vanish at (κ0, ω0), whereas their second derivatives

are nonzero. In (3.25), (`
(1)
1 , `

(2)
1 ) = (0.7, 0.8), (r0, t0) = (0.6, 0.8), r

(1)
2 = 2 < t

(1)
2 = 8 and

r
(2)
2 = 4 < t

(2)
2 = 6. Right: κ̃ = 0.003.
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Chapter 4
Guided Modes in Periodic Pillars

This chapter deals with scattering problems and guided modes in periodic pillars.

We establish a systematic framework to study plane-wave scattering problems

and guided modes in periodic pillars. Existence and nonexistence results are es-

tablished, among which there is a main new theorem proving the existence of a

nontrivial embedded guided mode robust in the wavenumber κ.

4.1 Bessel Functions

We introduce some important properties of Bessel functions to be used in later

sections. More details for the properties of Bessel functions can be found in [29].

The Bessel equation

d2f

dz2
+

1

z

df

dz
+ (1− `2

z2
)f = 0 (4.1)

admits two linearly independent solutions J`(z)and Y`(z). They are called the first

and second kind of Bessel functions. The third kind of Bessel functions are Hankel

functions defined by H1
` (z) = J`(z) + iY`(z), H2

` (z) = J`(z)− iY`(z).

By a change of variables, one sees that a more general form of Bessel equation

d2f

dz2
+

1

z

df

dz
+ (λ2 − `2

z2
)f = 0, λ ∈ R

has linear independent solutions J`(λz) and Y`(λz). The modified Bessel functions

of the first kind and the second kind are I`(z) and K`(z), which solve d2f
dz2

+ 1
z
df
dz
−

(1 + `2

z2
)f = 0. Similar to the Bessel equation, the modified Bessel equation can be

generalized to

d2f

dz2
+

1

z

df

dz
− (λ2 +

`2

z2
)f = 0, λ ∈ R
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with independent solutions I`(λz) and K`(λz).

We will use H1
` (z) = J`(z)+iY`(z) and H2

` (z) = J`(z)−iY`(z) as the two complex

valued independent solutions in the following. Observing that −λ2 = (iλ)2, we can

also use H1,2
` (λx) as two independent solutions of the unifying equation

d2f

dz2
+

1

z

df

dz
+ (λ2 − `2

z2
)f = 0, λ ∈ R or iR. (4.2)

The Bessel function J`(z) has a sequence of zeros j`,n → ∞ as z → ∞, and

j`,n > `. The modified function K` is strictly decreasing. If ` 6= 0, the function

I`(z) is nonzero except at 0, and I`(z) is strictly increasing. If ` = 0, I0(0) > 0 and

I0(z) increases to ∞ as z →∞.

For Hankel functions we have the asymptotic expansions for large arguments

H1
` (z) ∼

√
2

πz
ei(z−

`π
2
−π

4
)(1 + o(z−1)), z > 0, (4.3)

H2
` (z) ∼

√
2

πz
e−i(z−

`π
2
−π

4
)(1 + o(z−1)), z > 0. (4.4)

If 0 < z ∈ R, then H1
` is outgoing and H2

` is incoming (given ω > 0). If z ∈ iR and

z = i|z|, then H1
` is exponentially decaying as |z| → ∞, and H2

` is exponentially

growing as |z| → ∞.

The modified Bessel function K` has the following relation with H1
` :

K`(z) =
1

2
πie

1
2
`πiH1

` (iz).

The following results hold for the multiplier γm` used in the definition of the

Dirichlet-to-Neumann map in the next section.

Lemma 34. If ηm = i|ηm|, R > 0, then the multiplier γm` = −ηmH1′
` (ηmR)

H1
` (ηmR)

> 0. If

ηm > 0, R > 0, then the imaginary part of the multiplier Im

(
−ηmH1′

` (ηmR)

H1′
` (ηmR)

)
6= 0.

72



Proof. Taking z = |ηm|R, if ηm = i|ηm|, we have

−ηm
H1′

` (ηmR)

H1
` (ηmR)

= −|ηm|i
−iK ′l(|ηm|R)/(π

2
ie`πi/2)

Kl(|ηm|R)/(π
2
ie`πi/2)

= −|ηm|
K ′l(|ηm|R)

Kl(|ηm|R)

> 0.

If ηm = |ηm| > 0, R > 0, then

Im

(
−ηm

H1′

` (ηmR)

H1
` (ηmR)

)
= Im

(
−|ηm|

(J ′` + iY ′` )(J` − iY`)
J2
` + Y 2

`

)
= −|ηm|

J ′`Y` − J`Y ′`
J2
` + Y 2

`

The numerator of the last fraction is the Wronskian determinant

∣∣∣∣∣∣∣

J` Y`

J ′` Y ′`

∣∣∣∣∣∣∣
and is

therefore nonzero.

The Bessel function J`(Z) is the generating function of e
1
2
Z(t− 1

t
):

e
1
2
Z(t− 1

t
) =

∞∑

`=−∞

t`J`(Z). (4.5)

If we let t = ei(θ+θ0) to obtain eiZ sin(θ+θ0) = Σ`J`(Z)ei`(θ+θ0). then with sin θ0 =

κ1
ηm
, cos θ0 = κ2

ηm
, and Z = ηmr. The incident wave can be written as a superposition

of Hankel functions:

ei(κ1x+κ2y+κ3z) =ei(ηmr cos θ sin θ0+ηmr sin θ cos θ0)eiκ3z

=eiηmr sin(θ+θ0)ei(m+κ)z

=
∑

`∈Z

J`(ηmr)e
i`(θ+θ0)ei(m+κ)z

=
∑

`∈Z

1

2

[
H1
` (ηmr) +H2

` (ηmr)
]
ei`(θ+θ0)ei(m+κ)z.

(4.6)

As a result, the scattering problem of plane waves can be reduced to the linear

superposition of propagating Fourier harmonics with Hankel functions given in the

next section.
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4.2 Media Structure and Scattering Problem
4.2.1 Pillar Structure and Radiation Condition

We consider an infinitely long pillar that is periodic in the z-direction with period

2π and bounded in the x, y directions.

ε(x, y, z + 2π) = ε(x, y, z), µ(x, y, z + 2π) = µ(x, y, z), ∀x, y, z.

We use Ω = {(x, y, z) : −π < z < π} to denote one period. Suppose that

ε = ε0, µ = u0 for r > R and we denote the restricted domain ΩR = {(x, y, z) :

−π < z < π, r =
√
x2 + y2 < R}, which is a cylinder whose boundary consists of

ΓR = {(x, y, z) ∈ Ω : −π < x, y < π, r = R} plus the upper and lower horizontal

disks.

The spatial factor of a time-harmonic acoustic or electromagnetic wave is gov-

erned by the Helmholtz equation

∇ · 1

µ
∇u(x, y, z) + εω2u(x, y, z) = 0. (4.7)

By the κ-pseudo-periodicity, u can be expanded as an infinite superposition u(x, y, z) =

∑∞
m=−∞ um(x, y)ei(m+κ)z. where κ ∈ B = [−1/2, 1/2). Let (x, y) = (r cos θ, r sin θ).

If r =
√
x2 + y2 > R, then

∆um(x, y) + η2
mum(x, y) = 0

where ηm = µ0ε0ω
2 − (m+ κ)2. Using polar coordinates, we have

∂2um
∂r2

+
1

r

∂um
∂r

+
1

r2

∂2um
∂θ2

+ η2
mum = 0.

The function um can be written as an expansion of separable solutions

um =
∞∑

`=−∞

Rm,`(r)e
i`θ,
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where Rm,`(r) satisfies

R′′m,` +
1

r
R′m,` −

`2

r2
Rm,` + η2

mRm,` = 0.

This equation has solutions

Rm,`(r) =





am`H
1
` (ηmr) + bm`H

2
` (ηmr), if ηm 6= 0,

cm1 + cm2 ln |r|, if ηm = 0, ` = 0,

cm`1|r|` + cm`2|r|−`, if ηm = 0, ` 6= 0.

(4.8)

Therefore, the spatial field u can be expanded as an infinite superposition of Fourier

harmonics in Ω \ ΩR:

u(x, y, z) =
∞∑

m=−∞

∞∑

`=−∞

Rm,`(r)e
i`θei(m+κ)z. (4.9)

In this expansion, the Hankel functions H1
` (ηmr) are outgoing or exponentially

decaying, depending on whether ηm is imaginary or real, as r →∞, and the Hankel

functions H2
` (ηmr) are incoming or exponentially growing.

The following radiation condition is required for the problem of scattering by a

periodic pillar.

Condition 35 (Radiation condition). A field u(r, θ, z) satisfies the radiation con-

dition if it admits the following Fourier-Bessel representation for r > R:

u(r, θ, z) =
∑

m∈Zp∪Ze

∑

`∈Z

am`H
1
` (ηmr)e

i`θei(m+κ)z

+
∑

m∈Z`

[∑

`>0

cml2 |r|−`ei`θ +
∑

`<0

cm`1 |r|`ei`θ
]
ei(m+κ)z

(4.10)

where the sets Zp,a,e of Z depend on κ and are defined by

m ∈ Zp ⇔ η2
m > 0, ηm > 0 (propagating harmonics)

m ∈ Za ⇔ η2
m = 0, ηm = 0 (algebraic harmonics)

m ∈ Ze ⇔ η2
m < 0,−iηm > 0 (evanescent harmonics) .
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4.2.2 Scattering Problems

Before studying the guided modes, we first consider the scattering of a plane wave.

Problem 36 (Scattering problem, strong form). Given ε0, µ0 > 0, find u on Ω

such that




∇ · 1

µ
∇u+ εω2u = 0 in Ω,

u is continuous on ∂Ω,

1

µ

∂u

∂n
is continuous on ∂Ω,

uinc =
∑

m∈Zp

uincm ei(κ1x+κ2y+(m+κ)z),

usc = u− uinc and its derivatives are κ-periodic in z,

usc = u− uinc satisfies the radiation condition .

(4.11)

On the truncated domain ΩR, define the pseudo-periodic field space H1
κ(ΩR) =

{u ∈ H1(ΩR) : u(x, y, π) = u(x, y,−π)e2πκi}. On the vertical boundary ΓR, the

radiation condition is characterized by a Dirichlet-to-Neumann map T : H
1
2
κ (ΓR)→

H
− 1

2
κ (ΓR) (as in the Definition 5.19 of [2])

T :
∑

m,`

ûm`e
i`θei(m+κ)z 7→

∑

m,`

γm`ûm`e
i`θei(m+κ)z, (4.12)

where

γm` =





−ηmH1′
` (ηmR)

H1
` (ηmR)

, if m 6∈ Za,

|`|R−1, if m ∈ Za and ` 6= 0,

0, if m ∈ Za and ` = 0

To satisfy the radiation condition, the harmonics in (4.9) with H2
` (ηmr) for m ∈

Zp ∪ Ze, harmonics (cm1 + cm2 ln |r|)ei`θei(m+k)z for m ∈ Za, ` = 0, and harmonics

with |r|` for m ∈ Za, ` > 0 all vanish. The radiation condition is hence enforced by

∂nu+ Tu = 0 on ΓR. (4.13)
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The operator T is split into two parts

T = Te + Tp, (4.14)

(̂Tef)m` =





−ηmH1′
` (ηmR)

H1
` (ηmR)

f̂m`, if m ∈ Ze,

|`|R−1f̂m`, if m ∈ Za and ` 6= 0,

0, otherwise

(4.15)

(̂Tpf)m` =





−ηmH1′
` (ηmR)

H1
` (ηmR)

f̂m`, if m ∈ Zp,

0, otherwise

(4.16)

Note that the multipliers γm` in Te are nonnegative. In Tp, the multipliers have

nonzero imaginary parts for any m ∈ Zp (see Lemma 34).

The variational form of the scattering problem in the truncated domain is

Problem 37 (Scattering problem, variational form).





u ∈ H1
κ(ΩR)

a(u, v)− ω2b(u, v) = f(v),∀v ∈ H1
κ(ΩR)

(4.17)

where

a(u, v) =

∫

ΩR

1

µ
∇u · ∇v̄ +

1

µ0

∫

ΓR

(Tu)v̄

b(u, v) =

∫

ΩR

εuv̄,

f(v) =
1

µ0

∫

ΓR

[
(∂nu

inc + Tuinc)v̄
]
.

Similar to the analysis in Chapter 2, we can prove the existence of the scattered

wave by Fredholm alternative theory. The weak form PDE in problem 37 can be

written as

a(u, v)− ω2b(u, v) = c1(u, v) + c2(u, v)
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with c1(u, v) =
∫

ΩR
( 1
µ
∇u · ∇v̄ + εuv̄) + 1

µ0

∫
ΓR

(Tu)v̄ and c2(u, v) = −ε(ω2 +

1)
∫

ΩR
uv̄. Define operators C1 and C2 on H1

κ(ΩR) by (C1u, v)H1
κ(ΩR) = c1(u, v)

and (C2u, v)H1
κ(ΩR) = c2(u, v). Because of the coercivity of c1 and the compact

embedding of L2(Ω) into H1
κ(ΩR), the operator C1 is an automorphism and C2 is

compact.

If we denote by f inc the unique element of H1
κ(ΩR) such that (f inc, v)H1

κ(ΩR) =

f(v), the variational form of the scattering problem can be characterized by the

following operator form

C1u+ C2u = f inc.

The Fredholm alternative theory implies that the nonuniqueness of the solution

of this problem is equivalent to the singularity of the corresponding homogeneous

problem C1u+ C2u = 0, whose weak form is given by

a(u, v)− ω2b(u, v) = 0,∀v ∈ H1
κ(ΩR) (4.18)

Theorem 38. The plane wave scattering problem has at least one solution, and

the set of solutions is at most finite dimensional.

Proof. From equation (4.6), we can express the incident plane wave as a superpo-

sition of harmonics
∑

`

1

2

[
H1
` (ηmr) +H2

` (ηmr)
]
ei`(θ+θ0)ei(m+κ)z, with m ∈ Zp. By

the Fredholm alternative, the scattering problem has a solution if and only if

(f inc, w) = 0, for all w ∈ Null(C1 + C2)†,

i.e. for all w such that

a(v, w)− ω2b(v, w) = 0,∀v ∈ H1
κ(ΩR)

This w satisfies

a(w, v)− ω2b(w, v) = 0,∀v ∈ H1
κ(ΩR)
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and by the decomposition of T , we know that for all m ∈ Zp, ŵm = 0. By the

definition of f inc, showing (f inc, w) = 0 is equivalent to showing that
∫

ΓR
(∂n +

T )uincw̄ = 0. This is satisfied by the function w above.

The space of solutions is finite-dimensional because C1 is invertible and C2 is

compact.

4.3 Guided Modes

A guided mode is a solution to the Helmholtz equation in the periodic domain in

the absence of any source field. In the weak form, it is a solution to the homogeneous

equation (4.18).

The sesquilinear form

aω(u, v) =

∫

ΩR

1

µ
∇u · ∇v̄ +

1

µ0

∫

ΓR

(T ωu)v̄

can be split into evanescent and propagating parts,

aωe (u, v) =

∫

ΩR

1

µ
∇u · ∇v̄ +

1

µ0

∫

ΓR

(T ωe u)v̄,

aωp (u, v) =
1

µ0

∫

ΓR

(T ωp u)v̄.

In this chapter we assume that the frequency and the wavenumber are real. Note

that in the decomposition (4.14), the multiplier γm` has a nonzero imaginary part

for m ∈ Zp, thus a(u, u) = 0 if and only if (̂u|ΓR)m = 0, for all m ∈ Zp.

Theorem 39. (Real eigenvalues) If the frequency ω is real, then u ∈ H1
κ(ΩR)

solves the equation (4.18) if and only if

aωe (u, v)− aωp (u, v)− ω2b(u, v) = 0,∀v ∈ H1
κ(ΩR), (4.19)

and if and only if




aωe (u, v)− ω2b(u, v) = 0,∀v ∈ H1
κ(ΩR),

(̂u|ΓR)m = 0,∀m ∈ Zp.
(4.20)
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The eigenfrequencies can be obtained by applying the min-max principle to the

real form in (4.20). When ω <
√

κ2

ε0µ0
, the solutions u of aωr (u, v) − ω2b(u, v) =

0, ∀v ∈ H1
κ(ΩR) are guided modes since this regime admits no propagating har-

monics and so the second conditions in (4.20) are automatically satisfied. When

ω ≥
√

κ2

ε0µ0
, to be guided modes, these solutions u must satisfy the extra conditions

(̂u|ΓR)m = 0,∀m ∈ Zp where Zp is nonempty. We will design some periodic struc-

tures that admit guided modes in the next section. We have the following theorem

on properties of the frequencies. The proof is similar to that for periodic slabs, for

which one may refer to [27] [1].

Theorem 40. (Eigenvalues and characteristic frequencies) The problem aωe (u, v)−

λb(u, v) = 0, ∀v ∈ H1
κ(ΩR) has a nondecreasing sequence of eigenvalues {λj}∞j=1,

obtained through the min-max principle,

λj = sup
dimV=j−1,V⊂H1

κ(ΩR)

inf
u∈V ⊥\0

ae(u, u)

b(u, u)
, (4.21)

which tend to +∞ as j → ∞. Moreover, the homogeneous problem aωe (u, v) −

ω2b(u, v) = 0, ∀v ∈ H1
κ(ΩR) has a nontrivial solution if and only if ω2 = λj(ω), in

which we denote it by ωj.

If the material is piecewise, i.e.,





ε = ε1, µ = µ1 in Ω1 ⊂ ΩR

ε = ε0, µ = µ0 in Ω \ Ω1

(4.22)

then each frequency ωj is a continuous function of ε1 that decreases from +∞ to

0, as ε1 increases from 0 to +∞ and µ1 is fixed. Similarly, the frequency ωj is a

continuous function of µ1 that decreases from +∞ to 0, as µ1 is increased from 0

to +∞ and ε1 is fixed.
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The functional framework can be applied to determine the associated spectrum.

We can derive the weak form of the guided modes problem

aS(u, v) = ω2bS(u, v), ∀v ∈ H1
κ(Ω) (4.23)

where

aS(u, v) =

∫

Ω

1

µ
∇u · ∇v̄, (4.24)

bS(u, v) =

∫

Ω

εuv̄. (4.25)

The associated operator is the unbounded operator

Sκu = −1

ε
∇ · 1

µ
∇u. (4.26)

It is defined on the domain D(Sκ) = {u ∈ H1
κ(Ω) : ∃C such that |aS(u, v)| ≤

C
√
bS(v, v), ∀v ∈ H1

κ(Ω)}. This operator is positive self-adjoint and its eigenvec-

tors and eigenvalues are solutions of the guided modes problem. We denote the

spectrum of Sκ as σ, and its essential spectrum as σess. The following theorem is

an adaptation of Theorem 4.1 of [1] to periodic pillars.

Theorem 41. i) σ ⊂ [ κ2

µ+ε+
,+∞), where µ+ = supΩ µ, ε+ = supΩ ε;

ii) σess = [ κ2

µ0ε0
,+∞);

iii) there are finitely many eigenvalues λ̃j(κ) below κ2

µ0ε0
, and {λ̃j(κ)} is an increasing

sequence that converges to κ2

µ0ε0
.

4.4 Existence and Nonexistence of Guided

Modes
4.4.1 Existence

The focus of this section is to find guided modes with frequency ω such that ω2 is

embedded in the continuous spectrum of Sκ. As discussed in the previous section,

certain extra conditions should be satisfied and hence bring the difficulty.
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In [1], guided modes are proved to exist in a symmetric structure and a periodic

slab with a finer periodicity. The idea is to consider a closed subspace F on which

the operator Sκ has a cutoff frequency that is greater the cutoff frequency on

H1
κ(ΩR), and prove the existence of guided modes corresponding to eigenfrequencies

lying between these two cutoff frequencies. These eigenfunctions are automatically

guided modes lying in F because their frequencies are below the cutoff frequency

for F , but the frequencies are embedded in the essential spectrum of Sκ on H1
κ(ΩR).

In their proof, the embedded guide modes retain the original pseudo-periodicity,

but they are simply non-embedded guided modes with a smaller pseudo-period.

By artificially choosing a larger period, any guided modes with frequencies below

the cutoff frequency can be seen as embedded guided modes in the same structure

with the larger period. In this chapter, we present a proof of the existence of non-

artificial guided modes with frequencies embedded in the essential spectrum the

operator Sκ. We only need the parameters ε, µ to have smaller period, but the

guided modes do not have smaller pseudo-period.

Our newly designed pillar is a periodic structure with period 2π
L

for L ≥ 2 in Z

that supports guided modes with pseudo-period strictly greater than 2π
L

.

Theorem 42. For any κ in the first Brillouin zone of the structure of period

2π, there exists ε, µ with period 2π
L

for L ≥ 2 that admits a guided mode with

frequencies ω lying above the cutoff frequency, and with smallest pseudo-period

strictly greater than 2π
L

.

Proof. Write u ∈ H1
κ(ΩR) as a Fourier expansion u(r, θ, z) =

∑

m

um(r, θ)ei(m+κ)z.

Given M,N ∈ N with 2M +N + 2 = L, define a nontrivial subspace of H1
k(Ω):

V =
{
u ∈ H1

k(Ω) : um(r, θ) ≡ 0, if |m− j(2M +N + 2)| ≤M for some j ∈ Z
}

(4.27)
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Therefore, for −M + j(2M +N + 2) ≤ m ≤M + j(2M +N + 2), the coefficients

um(r, θ) are 0, and for M + 1 + j(2M +N + 2) ≤ m ≤M +N + 1 + j(2M +N + 2),

the coefficients um(r, θ) are possibly nonzero.

We claim that εV ⊆ V , µ−1V ⊆ V . In fact, let (ε)m(r, θ) be the Fourier coeffi-

cients of ε. The periodicity of the structure implies that (ε)m(r, θ) ≡ 0,∀r, θ, except

when m = j(2M+N+2) for some integer j. For any u ∈ V , if |m−j(2M+N+2)| ≤

M for some j ∈ Z, we calculate the mth Fourier coefficient of εu:

(εu)m =
∑

`

(ε)`um−`

=
∑

j

(ε)j(2M+N+2)um−j(2M+N+2)

= 0 , because um−j(2M+N+2) = 0 for the field u ∈ V.

Therefore, εu ∈ V . Similarly, µ−1V ⊆ V .

Therefore the subspace V is also invariant under the operator ∇· 1
µ
∇. Thanks to

the invariance properties, we can consider the Helmholtz equation in the subspace

V . The solution u ∈ V to the weak formulation aωr (u, v) − ω2b(u, v) = 0,∀v ∈ V

is also a solution to aωr (u, v) − ω2b(u, v) = 0,∀v ∈ H1
κ(ΩR). In fact, for any field

u ∈ V and v ∈ V ⊥, ∇ · 1
µ
∇u+ω2εu ∈ V implies that ∇ · 1

µ
∇uv̄+ω2εuv̄ = 0 for all

v ∈ V ⊥. Integrating it we obtain
∫

Ω

∇ · 1

µ
∇uv̄ +

∫ 2

Ω

εuv̄ =
1

µ0

∫

ΓR

∂nuv̄ −
∫

Ω

1

µ
∇u · ∇v̄ +

∫ 2

Ω

εuv̄

= −aωr (u, v) + b(u, v)

= 0.

We can obtain a pair (ω, u) by applying the min-max principle to the Rayleigh

quotient ar(u,u)
b(u,u)

on the subspace V to obtain λj(ω) and solving the equation λj(ω) =

ω2. Since ω is continuous and decreasing from +∞ to 0 in ε1, µ1 separately, one can

choose the material parameters such that ε0µ0ω
2 − (M + 1 + κ)2 < 0 < ε0µ0ω

2 −
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(M+κ)2, i.e. for any pair (κ, ω) there are 2M+1 values −M,−M+1, . . . ,M−1,M

of m corresponding to propagating harmonics.

The field u obtained in the space V is automatically a guided mode, as the

propagating harmonics automatically vanish in the subspace V .

As an example, if we let M = N = 0, then 2M + N + 2 = 2, 2M + 1 = 1,

N + 1 = 1, The pillar has period π and ε2j+1 = 0 for all j, and we can allow one

propagating harmonic. We apply the min-max principle on the space V = {u ∈

H1
κ(ΩR) : u2j = 0,∀j} and by choosing proper ε1 we can obtain an eigenfunction

of smallest period 2π that is automatically a guided mode.

If we take M = 1, N = 0, then 2M + N + 2 = 4, 2M + 1 = 3 and N + 1 = 1.

Let ε, µ have period π/2 and so εj = 0 for j 6∈ 4Z, or say ∀j, and we can allow to

have up to 2M + 1 = 3 propagating harmonics. One can minimize the Rayleigh

quotient on the space V = {u ∈ H1
κ(ΩR) : u4j−1 = u4j = u4j+1 = 0,∀j}. If

we take M = N = 1, then 2M + N + 2 = 5, 2M + 1 = 3, and N + 1 = 2.

The parameters ε and µ have period 2π/5 and can be allowed to have up to

2M + 1 = 3 propagating harmonics. We apply the min-max principle on the space

V = {u ∈ H1
κ(ΩR) : u5j+1 = u5j+2 = u5j+3 = u5j+4 = 0,∀j}. The pseudo-period of

the embedded guided mode is 2π.

In our design, the wave number κ can be nonzero and there exists a continuous

embedded dispersion relation ω(κ). The guided mode is robust with respect to

κ. It is also noticed that the modes are subject to the periodicity 2π
2M+N+2

. If the

material is perturbed in a way that destroys the smaller periodicity while retaining

the period 2π, the guided mode typically vanishes.
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This design can also be understood as an existence proof of a guided mode with

a larger pseudo-periodicity. If we assume the smallest period of the pillar is 2π,

embedded guided modes with period (2M +N + 2)2π can exist.

4.4.2 Nonexistence

Nonexistence results for slabs can be found in [27][1]. In [27], the nonexistence of

guided modes in inverse structures is discussed. Consider the piecewise constant

material as in Theorem 40. An inverse structure is a periodic structure with the

material parameters ε1, µ1 less than the corresponding parameters ε0, µ0 in the

exterior of the material. The proof in [27] requires that the slab satisfy a certain

restriction. The proof of the nonexistence includes introducing the subspace X in

which the propagating and linear harmonics vanish then estimating the minimum

of the Rayleigh quotient. With the restriction on the slab width, it is shown that

the Rayleigh quotient aω/b is strictly bounded below by ω2 in inverse structures,

and hence the weak problem has no solution in X. We use an analogous restriction

on the radius of the pillar in our proof, and whether this restriction is necessary

remains an open problem.

In [1], the assumption for the nonexistence proof is on the parameters only. It

is assumed that there exists one plane parallel to the slab such that the material

parameters ε, µ are nondecreasing in the direction perpendicular to the slab. In

Theorem 44, we present an analogous condition that the material parameters are

nondecreasing in the radial direction. The proof involves an appropriate Rayleigh

identity.

Theorem 43. Assume the material is a piecewise constant pillar defined in (4.22)

and ε1 < ε0 and µ1 < µ0. Let the frequency ω and the wave number κ be given in
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the first Brillouin zone [−1
2
, 1

2
). Suppose that the radius R of the pillar satisfies

R ≤ 1√
ε0µ0ω2 − κ2

(4.28)

Then the periodic pillar does not admit any guided modes at the given frequency

and wavenumber.

Proof. We restrict to the subspace X ⊂ H1
κ(ΩR) with

X = {u ∈ H1
κ(ΩR) :

∫

ΓR

u(x, y, z)e−i`θe−i(m+κ)z = 0,

if either m ∈ Zp, or m ∈ Za and ` = 0}

The form aω(·, ·) is conjugate symmetric in X, and the weak problem (4.19) is

equivalent to aω(u, v)− ω2b(u, v) = 0 on X, as well as aω(u, v)− ω2b(u, v) = 0 for

all v ∈ X⊥. This gives rise to a finite number of extra conditions (∂̂nu|ΓR)m` =

0,∀m ∈ Zp or m ∈ Za, ` = 0.

Consider the eigenvalue problem aω(u, v)−αω2b(u, v) = 0 onX. OnX, aω(u, v) =

aωr (u, v). The problem of guided modes is solved by minimizing the quotient a(u,u)
b(u,u)

on X. Of course, the field u should satisfy the following radiation conditionPillar:

̂(∂nu|ΓR)m` + γm`(̂u|ΓR)m` = 0, ∀m ∈ Ze or m ∈ Za and ` 6= 0. (4.29)

We first let ε1 = ε0, µ1 = µ0. The eigenfunctions satisfy a strong form of the

Helmholtz equation





(∇+ iκ)2ψ + αε0µ0ω
2ψ = 0 in ΩR

ψ ∈ X, Tψ + ∂nψ|Γ = 0

ψ satisfies pediodic boundary conditions in X.

(4.30)
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In ΩR, the separable solutions are in the form of

Am`J`(|ζm|r)ei`θei(m+κ)z, if ζ2
m > 0,

Am`I`(|ζm|r)ei`θei(m+κ)z, if ζ2
m < 0,

[Cm1 + Cm2 ln |r|] ei`θei(m+κ)z, if ζ2
m = 0, and ` = 0,

[
Cm`1|r|` + Cm`2|r|−`

]
ei`θei(m+κ)z, if ζ2

m = 0 and ` 6= 0,

(4.31)

where ζ2
m = αε0µ0ω

2 − (m+ κ)2.

We treat the cases for m separately.

Case I: m ∈ Zp, i.e. η2
m > 0. In this case, the propagating harmonics should

vanish, and (̂u|ΓR)m` = 0. If ζ2
m > 0, and we assume ζm > 0, then

J`(|ζm|R) = 0,

so j` = ζmR =
√
αε0µ0 − (m+ k)2R, where j` is a zero of J`(x). The eigenvalues

are given by

α =

j2`
R2 + (m+ k)2

ε0µ0ω2

The Bessel function Jl(z) has a sequence of zeros, and the corresponding α form a

sequence of eigenvalues {αj}∞j=1 with all possible jl and m ∈ Z. According to our

assumption of the radius of the pillar, the eigenvalues

αm` =
1

ε0µ2
ω

[
j2
`

R2
+ (m+ κ)2

]

≥ 1

ε0µ0ω2

[
j2
`

R2
+ κ2

]

≥ 1

ε0µ0ω2

[
`2

R2
+ κ2

]

≥ 1

ε0µ0ω2

[
1

R2
+ κ2

]

≥ 1.

If ζ2
m = 0, the pillar does not support such harmonics for ` = 0. For ` 6= 0, the

separable solution Cm`1r
` +Cm`2r

−` should satisfy Cm`1R
` +Cm`2R

−` = 0 which is
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not possible. If ζ2
m < 0, we assume ζm = i|ζm| and

I`(|ζm|R) = 0.

It is not possible since the modified Bessel functions I` have no zeros except at 0.

Case II: m ∈ Ze, i.e. η2
m < 0, and ηm = i|ηm|. In this case, the conditions in

(4.29) for m should be satisfied. If ζ2
m > 0, and we assume ζm > 0, then

d

dr
J`(ζmr)|r=R = −γmlJ`(ζmR),

where γm` = −ηmH1′
` (ηmR)

H1
` (ηmR)

. The value of R can be solved, and by comparing ζ2
m and

η2
m, one knows that α > 1. If ζ2

m = 0, we also have α > 1. If ζ2
m < 0, we assume

ζm = i|ζm|. Then

|ζm|I ′`(|ζm|R) + γmlI`(|ζm|R) = 0.

However we know that I ′`(|ζm|R) > 0, γm` > 0 and I`(|ζm|R) > 0, and consequently

the left hand side cannot be 0.

Case III: η2
m = 0 and ` 6= 0. The condition ̂(∂nu|ΓR)m` + γm`(̂u|ΓR)m` = 0 should

be satisfied. If ζ2
m ≥ 0, then α ≥ 1. If ζ2

m < 0, |ζm|I ′`(|ζm|R) + γmlI`(ζmR) = 0. It

is not possible.

Case IV: η2
m = 0 and ` = 0. The guided modes satisfy (̂u|ΓR)m` = 0. If ζ2

m ≥ 0,

then α ≥ 1. If ζ2
m < 0, I`(|ζ|mR) = 0. It is not possible because the Bessel function

I0 has no zero.

In general, when ε1 = ε0, any eigenvalue α ≥ 1.

We can now prove the nonexistence of guided modes for inverse structures when

µ1 = µ0 and ε1 < ε0. As we decrease the ε1 from ε0, the parameter α becomes

always > 1 by observing that the quotient ar(u,u)
b(u,u)

is increasing with respect to ε1.

Under our assumption of the size of the pillar, the number α > 1. As a result,

there exists no guided mode because the number α > 1 does not correspond to a

guided mode.
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Theorem 44. Assume there is a pair x0, y0 such that for all −π ≤ z ≤ π and any

vector r0 = (r0x, r0y, 0), the material parameters ε, µ are nondecreasing along the

direction of r0, that is, the weak directional derivatives ∇ε · r0, and ∇µ · r0 are

nonnegative. Then there exists no guided mode.

Proof. Using polar coordinates, we observe that

∇ · (r∂u
∂r
µ−1∇ū) =∇(rur) · µ−1∇ū+ rur(∇ · µ−1∇ū)

=rur(∇ · µ−1∇ū) + ur(∇r · µ−1∇ū) + r∇ur · µ−1∇ū.

We integrate this to obtain

∫

ΓR

rurµ
−1
0

∂ū

∂n
=

∫

ΩR

rur(∇ · µ−1∇ū) +

∫

ΩR

ur(∇r · µ−1∇ū) +

∫

ΩR

r∇ur · µ−1∇ū

= −ω2

∫

ΩR

rεurū+

∫

ΩR

ur(∇r · µ−1∇ū) +

∫

ΩR

r∇ur · µ−1∇ū.

Adding its complex conjugate, we have

2

∫

ΓR

µ−1
0 R|∂u

∂r
|2 =− ω2

∫

ΩR

εr
∂

∂r
|u|2 +

∫

ΩR

ur(∇r · µ−1∇ū)

+

∫

ΩR

ūr(∇r · µ−1∇u) +

∫

ΩR

µ−1r
∂

∂r
|∇u|2.

Use integrate by parts in r for terms including r ∂
∂r

,

∫

ΩR

εr
∂|u|2
∂r

=

∫ 2π

0

∫ π

−π

∫ R

0

εr
∂|u|2
∂r

rdrdzdθ

=

∫ 2π

0

∫ π

−π

∫ R

0

εr2∂|u|2
∂r

drdzdθ

=

∫ 2π

0

∫ π

−π
εr2|u|2|R0 dzdθ −

∫

ΩR

2εr|u|2drdzdθ −
∫

ΩR

r2 ∂ε

∂r
|u|2drdzdθ

=

∫ 2π

0

∫ π

−π
εR2|u|2|R0 dzdθ −

∫

ΩR

2ε|u|2 −
∫

ΩR

r
∂ε

∂r
|u|2,

and

∫

ΩR

µ−1r
∂|u|2
∂r

=

∫ 2π

0

∫ π

−π
µ−1R2|u|2|R0 dzdθ −

∫

ΩR

2µ−1|u|2 −
∫

ΩR

r
∂µ−1

∂r
|u|2.
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The previous identity becomes

2

∫

ΓR

µ−1
0 R|∂u

∂r
|2 =− ω2

[∫ 2π

0

∫ π

−π
R2ε0|u(R)|2dzdθ −

∫

ΩR

2ε|∇u|2 −
∫

ΩR

r
∂ε

∂r
|u|2
]

+

∫

ΩR

ur(∇r · µ−1∇ū) +

∫

ΩR

ūr(∇r · µ−1∇u)

+

[∫ 2π

0

∫ π

−π
R2µ−1

0 |u(R)|2dzdθ −
∫

ΩR

2µ−1|∇u|2 −
∫

ΩR

r
∂µ−1

∂r
|u|2
]
.

Since the field satisfies the Helmholtz equation, we can replace −
∫

ΩR
µ−1|∇u|2 by

−ω2
∫

ΩR
ε|u|2 + µ−1

0

∫
ΓR
ūTru to obtain

2

∫

ΓR

µ−1
0 R|∂u

∂r
|2 =

[
−ω2

∫ 2π

0

∫ π

−π
R2ε0|u(R)|2dzdθ + ω2

∫

ΩR

2ε|∇u|2 + ω2

∫

ΩR

r
∂ε

∂r
|u|2
]

+

∫

ΩR

ur(∇r · µ−1∇ū) +

∫

ΩR

ūr(∇r · µ−1∇u)

+

[ ∫ 2π

0

∫ π

−π
R2µ−1

0 |u(R)|2dzdθ − 2ω2

∫

ΩR

ε|u|2 + 2µ−1
0

∫

ΓR

ūTru

−
∫

ΩR

r
∂µ−1

∂r
|u|2
]
,

and so

2

∫

ΓR

µ−1
0 R|∂u

∂r
|2+ω2

∫ 2π

0

∫ π

−π
R2ε0|u(R)|2dzdθ −

∫ 2π

0

∫ π

−π
R2µ−1

0 |u(R)|2dzdθ

=ω2

∫

ΩR

r
∂ε

∂r
|u|2 +

∫

ΩR

ur(∇r · µ−1∇ū) +

∫

ΩR

ūr(∇r · µ−1∇u)

−
∫

ΩR

r
∂µ−1

∂r
|u|2 + 2µ−1

0

∫

ΓR

ūTru.

In this identity,

ur(∇r · µ−1∇ū) = µ−1ur(r · ∇ū) = (urr) · ∇ūµ−1 =

∣∣∣∣
∂u

∂r
r

∣∣∣∣
2

µ−1,

where ∇u = ∂u
∂z
z + ∂u

∂r
r + 1

r
∂u
∂θ
θ, r = (cos θ, sin θ, 0),θ = (− sin θ, cos θ, 0), z =

(0, 0, 1), and |∇u|2 = |ur|2 + 1
r2
|uθ|2 + |uz|2. Simplify it to obtain

ω2

∫

ΩR

r
∂ε

∂r
|u|2 + 2

∫

ΩR

µ−1|∂u
∂r
r|2 −

∫

ΩR

r
∂µ−1

∂r
|∇u|2 + 2µ−1

0

∫

ΓR

ūTru

=2

∫

ΓR

µ−1
0 R|∂u

∂r
|2 + ω2

∫ 2π

0

∫ π

−π
R2ε0|u(R)|2dzdθ

−
∫ 2π

0

∫ π

−π
R2µ−1

0 |∇u(R)|2dzdθ.

(4.32)
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The left hand side of the identity (4.32) is nonnegative by our condition on the

material parameters, and it vanishes if and only if ‖u‖H1
κ(ΩR) = 0. If we assume u

is a guided mode, and u has the expansion

u(r, θ, z) =
∑

m∈Ze

∑

`

am`H
1
` (ηmr)e

i`θei(m+k)z +
∑

m∈Za

∑

`6=0

cr−|`|ei`θei(m+k)z,

then the terms with m ∈ Za of the right hand side of (4.32) are a sum of multiples

of

ω2ε0R
−2|`|+2 − µ−1

0 (m+ κ)2R−2|`|+2 = 0.

Since H1
` (ηmR) and H1′

` (ηmR) are exponentially decaying as R → ∞, in this

limit, the limit of the right hand side is 0. On the other hand, the left hand side

does not converge to 0 if u 6= 0. Therefore u = 0.
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Chapter 5
Open Problems and Future Work

As discussed in the previous chapters, there are some assumptions made through-

out the discussion. We summarize some important ones and specify a few related

open problems. We also discuss some issues that are closely related to my current

work and can form future projects that involve broader interests.

Some generic assumptions are made in the proofs in Chapter 3. The first im-

portant one is that in the discussion of the Weierstraß factorization, we assume

Im(`2) > 0. This condition is sufficient to guarantee that the mentioned guided

mode is nonrobust with respect to the perturbation of the wavenumber κ. This

brings two open problems: prove the nonrobustness of the antisymmetric guided

modes in Theorem 13 rigorously, and show Im(`2) > 0 for that guided mode.

Another important assumption is in the proof of the total transmission and re-

flection, the second alternative in Lemma 25, as an extremal case, is hoped to be

ruled out. We also hope to gain more understanding of the behavior of anomalies

in nongeneric cases.

In the proof of the nonexistence theorem 43 in Chapter 4, we need a restriction

condition on the geometry and the parameters. We hope find a proof in a larger

regime without the restriction on the size of the pillar. Whether or not this kind of

restriction can be removed is one of the challenging open problems we are interested

in working on.

There are interesting open questions concerning the detailed nature of trans-

mission resonances. In passing from two-dimensional slabs (with one direction of

periodicity) to three-dimensional slabs (with two directions of periodicity), both

92



the additional dimension of the wavevector parallel to the slab as well as various

modes of polarization of the incident field that arise impart considerable complexity

to the guided-mode structure of the slab and its interaction with plane waves. The

role of structural perturbations is a mechanism for initiating coupling between

guided modes and radiation [5] [9, §4.4] that deserves a rigorous mathematical

treatment. A practical understanding of the correspondence between structural pa-

rameters and salient features of transmission anomalies, such as central frequency

and width, would be valuable in applications.

Other future work is to use numerical methods to track guided modes as func-

tions of both wavenumber and structural parameters. One may begin with an

antisymmetric embedded guided mode in a symmetric slab for wavenumber κ = 0.

If we consider the slab consisting of an array of circular cylinders, as the wavenum-

ber κ is perturbed from 0, the field loses its antisymmetry and the structure must

be perturbed from being symmetric to nonsymmetric to match the perturbation

of κ in order to retain the guided mode. One method to track the guided mode is

to perturb the position of one cylinder for every N cylinders in the direction par-

allel to the slab, and to determine the displacement of this cylinder that preserves

the guided mode at nonzero κ. The displacement analysis is useful in slabs with

periodic defects, when the displacement of one cylinder can be viewed as a defect

and the corresponding wavenumber and frequency represent those of a perturbed

guided mode in the defective structure.
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[16] L. Mart́ın-Moreno, F. J. Garćıa-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio,
J. B. Pendry, and T. W. Ebbesen. Theory of extraordinary optical transmis-
sion through subwavelength hole arrays. Phys. Rev. Lett., 86(6):1114–1117,
Feb 2001.

[17] Francisco Medina, Francisco Mesa, and Ricardo Marqués. Extraordinary
transmission through arrays of electrically small holes from a circuit theory
perspective. IEEE Trans. Microw. Theory Tech., 56(12):3108–3120, 2008.

[18] P. Paddon and Jeff F. Young. Two-dimensional vector-coupled-mode theory
for textured planar waveguides. Phys. Rev. B, 61(3):2090–2101, Jan 2000.

[19] S.T. Peng, T. Tamir, and H.L. Bertoni. Theory of periodic dielect waveguides.
Microwave Theory and Techniques, IEEE Transactions on, 23(1):123–133, Jan
1975.

[20] Natalia Ptitsyna and Stephen P. Shipman. A lattice model for resonance in
open periodic waveguides. Special ed. of Discret Contin Dyn S, in press.,
2011.

[21] Natalia Ptitsyna, Stephen P. Shipman, and Stephanos Venakides. Fano reso-
nance of waves in periodic slabs. pages 73–78. MMET, IEEE, 2008.

[22] Michael Reed and Barry Simon. Methods of Mathematical Physics: Functional
Analysis, volume I. Academic Press, 1980.

[23] Stephen P. Shipman. Resonant Scattering by Open Periodic Waveguides, vol-
ume 1 of E-Book, Progress in Computational Physics. Bentham Science Pub-
lishers, 2010.

[24] Stephen P. Shipman, Jennifer Ribbeck, Katherine H. Smith, and Clayton
Weeks. A discrete model for resonance near embedded bound states. IEEE
Photonics J., 2(6):911–923, 2010.

[25] Stephen P. Shipman and Stephanos Venakides. Resonance and bound states
in photonic crystal slabs. SIAM J. Appl. Math., 64(1):322–342 (electronic),
2003.

[26] Stephen P. Shipman and Stephanos Venakides. Resonant transmission near
non-robust periodic slab modes. Phys. Rev. E, 71(1):026611–1–10, 2005.

[27] Stephen P. Shipman and Darko Volkov. Guided modes in periodic slabs:
existence and nonexistence. SIAM J. Appl. Math., 67(3):687–713, 2007.

95



[28] Sergei G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and
Teruya Ishihara. Quasiguided modes and optical properties of photonic crystal
slabs. Phys. Rev. B, 66:045102–1–17, 2002.

[29] G.N. Watson. A Treatise on the Theory of Bessel Functions. Cambridge
University Press, 1995.

96



Vita

Hairui Tu was born on November 4 1979, in Xiangfan City, China. He finished

his undergraduate studies at University of Science and Technology of China July,

2001. He earned a Master of Science degree in mathematics from Louisiana State

University in May 2006. He is currently a candidate for the degree of Doctor of

Philosophy in mathematics, which will be awarded in August 2011.

97


	Guided modes and resonant transmission in periodic structures
	Recommended Citation

	tmp.1483830367.pdf.iN9xl

