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ABSTRACT 

This study investigates factors affecting young driver injury levels for single vehicle 

crashes occurring within curves on rural two-lane roads in Louisiana.  Although the number of 

fatal and serious injury crashes involving young drivers is declining, young drivers are still 

overrepresented in crashes and crashes are still the leading cause of death for young drivers.   

Driver injury prediction models are formulated using binary logistic regression and 

Bayesian Network (BN) modeling.  Binary logistic regression models have commonly been used 

in safety studies to analyze injury levels of occupants involved in crashes over the past few 

decades.  More recently, a few safety studies have begun to use BN models to evaluate injury 

levels.   

This study identifies eight significant factors affecting youth driver injury levels: air bag, 

distracted, ejected, gender, protection system, substance suspected, violation, and most harmful 

event.  Of these factors distracted, protection system, substance suspected, and violation are 

human factors which can be modified through educational programs. 

While both models are able to identify statistical significant variables, more insight is 

gained from the BN model.  For instance, both models found gender to be statistically 

significant.  While the logistical regression model finds males are 0.751 times less likely to be 

injured than female, the BN finds gender only has a 0.02% direct effect on injury.  The BN 

shows that it is not gender itself that affects driver injury level, but the different behavior 

characteristics of males versus females which affect injury levels.  Males are less likely to wear 

seatbelts and more likely to be suspected of alcohol in crashes.  It is these driver behaviors, not 

the gender of the driver, which affects injuries.          
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This study also has a number of theoretical and practical implications.  As the first study 

to utilize BN modeling in evaluating driver injury levels in Louisiana, it expands the literature of 

BN models being used for analyzing injury levels in car crashes.  The findings are also important 

to driver educational and safety professionals.  By identifying factors affecting young driver 

injury levels, educational and training programs can be enhanced to target specific human 

behaviors to save more lives.
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CHAPTER 1.  INTRODUCTION 

Motivation 

The motivation for this study is to gain insight and understanding of driver, 

environmental, roadway, and vehicle characteristics in single vehicle traffic crashes occurring 

within rural two-lane curves resulting in a young driver fatality or serious/moderate injury in 

Louisiana.  Identifying and quantifying these characteristics can lead to potential 

countermeasures, including education and training programs to save lives.   

According to the U.S. Department of Transportation's National Highway Traffic Safety 

Administration (NHTSA), 33,561 people were killed in traffic crashes in 2012 (NHTSA, 2012).  

This is an average of nearly 92 people a day, or one death nearly every 16 minutes.  While this is 

the first increase in fatalities since 2005, the United States averages more than 30,000 lives lost 

in traffic crashes on a yearly basis.  Within Louisiana, 772 people were killed in traffic crashes in 

2012 (HSRG, 2014).  This is the state’s first increase since 2007 and equals Louisiana average of 

traffic fatalities over the past five years (HSRG, 2014).   

To help save more lives, Louisiana created a comprehensive, multidisciplinary Strategic 

Highway Safety Plan (SHSP) to reduce motor vehicle-related fatalities and serious/moderate 

injuries.  This ambitious plan aims to have zero deaths with an interim goal of reducing traffic 

fatalities and serious/moderate injuries by 50% before 2030.  In order to achieve these goals, 

effective crash countermeasures must be put in place, including reducing crashes involving 

young drivers and roadway departures.   

Young drivers lack experience in driving and are more willing to engage in risk taking 

behaviors.  They lack proper skills and judgment one can only obtain from years of driving, 

making them more susceptible to being involved in a crash.  Young drivers are also more likely 

to not wear their safety belt, speed, drive impaired, and become distracted, all of which increases 
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their chances of being seriously/moderately injured, if not killed, in automobile crashes (Beirness 

et al., 2004; Porter and Whitton, 2002; Boyce & Geller, 2002).  From 2005 through 2012, young 

drivers aged 15 – 24 represented 17.23% of all license drivers in Louisiana but accounted for 

31.99% of fatal crashes and 40.51% of serious/moderate injury crashes (HSRG, 2014).       

Crashes within curves are more likely to result in severe injuries compared to straight 

roadway sections and a larger portion of single vehicle crashes occur within curves (Hung, 

2002).  Roadway departure is a major concern within curves, research has shown injury severity 

levels are higher when drivers leave the roadway and strike a fixed object (Chen, 2010; Hummer, 

2010; Torbic et al., 2004).  Curve crashes, particularly on rural two-lane roads, have long been a 

safety concern for transportation professionals (AASHTO, 2010; AASHTO, 2005).  Between 

2005 and 2012, over one-third of all single vehicle crashes on Louisiana’s two-lane rural routes 

occurred within curves (HSRG, 2014).  Of these crashes, 2.36% were fatal and 1.14% involved 

serious/moderate injuries for the drivers, compared to only 0.60% fatal and 0.86% 

serious/moderate injuries occurring in curves for all other road types in the state (HSRG, 2014).  

When evaluating driver characteristics to reduce injuries, it is important to identify driver, 

environment, roadway, and vehicle factors which directly influence the driver’s injury severity 

level.  Research studies concerning injury severity level of crashes are increasing, especially 

within the past six years (Mujalli & de Oña, 2011b).  Logistic regression, also referred to as logit 

modeling, is widely used in research with binary logit modeling being the most-used (Mujalli & 

de Oña, 2011b).  The frequent use of these models can be attributed to their ease of use, 

widespread acceptability, and incorporation into popular software packages (Jones & Jørgensen, 

2003).   

While logistic regression models are commonly used to analyze injury severity levels 

resulting from crashes, research utilizing logistic regression within the area of curves, young 
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drivers, and single vehicles is limited.  Most of the research using logistic regression evaluates 

older drivers (Dissanayake & Lu, 2002; Robertson & Vanlaar, 2008), pedestrian or bicyclist 

(Eluru et al., 2008), crash types (Gabauer & Gabler, 2008; Donnell & Mason, 2004; Yan et al., 

2005; Tay et al., 2008; Chen et al, 2012), and vehicle types involved in crashes (Becker et al., 

2003; Pai, 2009)   

Logistic regression models have their assumptions and when these assumptions are 

violated, erroneous estimates of injury severity can occur (Chang & Wang, 2006).  Logistic 

regression assumes a linear relationship between the dependent and independent variables and 

this assumption does not always hold when analyzing crash data.  For instance, the relationship 

between driver injury and seatbelt use is not linear in nature (HSRG, 2014).  Also, logistic 

regression is sensitive to high correlation among independent variables.  When gender and 

seatbelt use are used as predictor variables to analyze driver injury level, collinearity exists due 

to the fact that females more often wear their seatbelts in fatal and severe crashes compared to 

males (HSRG, 2014).   

An alternative modeling technique and one that is being used more frequently in other 

fields, but can be applied to crash data analysis, is Bayesian Network (BN) modeling.  One major 

benefit of BNs over logistic regression models is that BNs do not need to know any pre-defined 

relationships between predictor variables and the outcome variable of interest.  Bayesian 

Networks also offer the advantages of easily identifying underlying patterns in the data, 

investigating relationships between variables of interest, and making predictions based on those 

relationships (de Oña et al., 2011). 
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Objectives 

Given the limited research in young drivers’ injury severity levels in single vehicle 

crashes occurring within curves on rural two-lane roads, this research effort investigates the 

following research question: 

1. What driver, environmental, roadway, and/or vehicle characteristics influence 

injury severity levels of young drivers involved in single vehicle crashes 

within Louisiana’s rural two-lane curves? 

To answer this question, the traditional research methodology of binary logistic 

regression modeling will be used.  However, recent research in driver injury modeling has begun 

using Bayesian Networks (Conrady & Jouffe, 2013b; de Oña et al, 2013; de Oña et al., 2011; 

Mujalli & de Oña (2011); Simoncic, 2004).  Therefore, this research effort will also address the 

following sub-questions: 

1. Can a Bayesian Network model be developed to identify driver, 

environmental, roadway, and/or vehicle characteristics influencing injury 

severity levels of young drivers involved in single vehicle crashes within 

Louisiana’s rural two-lane curves? 

2. What benefits, if any, exists using a Bayesian Network model over the 

traditional binary logistic model? 

The original contribution of this study is developing a binary logistic regression model to 

identify factors which directly affect young driver injury levels occurring in single vehicle 

crashes within curves on rural two-lanes in Louisiana.  This information will help safety and 

educational professional develop training and educational material to help save more lives.  

These materials can also be used as countermeasures within LA’s SHSP to help reduce the 

number of young drivers and roadway departures fatal and serious/moderate injury crashes.  The 
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second part of the study involves developing a BN model to answer the same question, compare 

the results of the two models, and identify any advantages using a BN model.  
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CHAPTER 2.  LITERATURE REVIEW 

Injury Contributing Factors Overview 

Over the past few decades, considerable research has been conducted on factors 

contributing to crash injury levels.  Shinar (2007) states 90% of crashes are due to driver errors.  

In 2003, the Government Accountability Office (GAO, 2003) identified human factors as the 

most prevalent, followed by roadway and then vehicle factors, when analyzing factors 

contributing to motor vehicle crashes.  Veridian Engineering (Hendericks et al., 1999), when 

studying driver behaviors and unsafe driving acts, also concluded human factors are the most 

prominent factors influencing injury levels.  The Tri-Level Study (Treat et al., 1979) conducted 

in Indiana in the late 1970s further identified human factors as most important, while vehicle 

factors are least important.   

Young Drivers 

 Young drivers are overrepresented in automobile crashes.  According to teen driver facts 

sheet produced by the Centers for Disease Control and Prevention (CDC, 2010), young adults 

aged 15-24 represent 14% of the US population, but account for 58% of the total cost of motor 

vehicle injuries.  Data from the CDC’s Web-based Injury Statistics Query and Reporting System 

(WISQARS, 2010) showed unintentional injury as the leading cause of death for people aged 15 

- 24 from 2005 through 2010.  Hendrick (2010) analyzed data from the CDC and reported motor 

vehicle crashes are the top cause of unintentional deaths for 12 – 19 year olds and accounts for 

73% of their fatalities.   

 These trends are seen worldwide. The Organization of Economic Cooperation and 

Development (OECD, 2006) reported traffic crashes account for the greatest number of deaths of 

people aged 15 – 24 in 23 industrialized countries.  This report also stated drivers below the age 

of 24 are two times more likely than other drivers to be killed in car crashes in the United States 
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and are over-represented in single-vehicle motor vehicle crashes, which are closely associated in 

risk taking behaviors.     

While National Highway Transportation Safety Administration (NHTSA) reported the 

number of crashes and fatalities are declining for young drivers over the past few years, 

according to the National Center for Health Statistics latest data in 2007, motor vehicle crashes 

were still the leading cause of death for 15 – 20 year olds (CDC, 2010).  This trend can be seen 

in 2011 where young adults aged 16 – 20 and 21 – 24 had the highest two fatality rates per 

100,000 population in the US at 13.98 and 16.61 respectively.  In the same year, these two 

groups also had the highest injury rate at 1,252 (NHTSA, 2011).  

Risk Taking   

 Young drivers are more willing to engage in risk taking behaviors such as not wearing 

their safety belts, speeding, driving impaired, and easily becoming distracted, all of which 

increases their chances of being killed or seriously injured in automobile crashes (Beirness et al. 

2004).  Porter and Whitton (2002) used GPS and video technology to study driver behaviors of 

young (20 to 29), middle-aged (30 to 64), and older (65 years of age or older) drivers.  They 

found young drivers drove faster, had shorter deceleration distance, and smaller acceleration 

times as compared to middle-aged and older drivers.  Younger drivers also received a 

substantially higher number of violation infractions for speeding, not stopping fully at stop signs, 

and following too close (Porter and Whitton, 2002).  Boyce and Geller (2002) using an 

instrumented vehicle to obtain behavioral data from drivers aged 18 to 82, found younger drivers 

are more likely to speed, follow too close, and engage in in-vehicle behavior not relevant to the 

driving task. 
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Gender  

 While young drivers in general were more likely to take additional risk while driving, 

young male drivers have higher crash rates and are more likely to violate traffic laws and engage 

in risk taking behaviors (Yagil 1998).  Yagil also concluded young male drivers evaluated traffic 

laws as less important than other laws and are less likely to comply with traffic laws.   

 Clarke et al. (2006) found that both male and female 17-19 year olds are over-represented 

in crashes occurring in curves within rural areas.  Males are over-represented in crashes 

occurring at night, with or without street lights.  Both males and females demonstrated a decline 

in curve crashes within rural areas as their age increases from 17-19 to 20-22 and then again 

from 20-22 to 23-25.  Maycock (2002) further identified young males as having higher crash 

involvement rates than their female counterparts.   

Urban versus Rural 

Peek-Asa et al. (2010) studied crash data in Iowa from 1995 – 2004 for drivers between 

the ages of 10 through 18 to examine their characteristics on rural versus urban roads.  In Iowa, 

teenagers cannot obtain a driver license until the age of 14; however, the Iowa crash database 

contained a large enough number of drivers under the age of 14 to include them.  The study 

found rural teen crashes are 4.7 times more likely to result in a fatal or severe injury than urban 

crashes.  The study also identified young males have a 30% increased odds for a severe crash 

than young women in rural crashes, and single vehicle crashes are far more frequent in rural 

areas (65%) as compared to urban areas (10%).  Running off the road was the second leading 

contributing cause of crashes in urban areas and third for rural areas.   

Torbic et al. (2004) reported each year nearly 25% of people killed in automobile crashes 

in the United States are killed in crashes occurring within curves.  Of these crashes, 75% of fatal 

crashes occur in rural areas and more than 70% are on two-lane secondary roads.   
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Curves 

Young drivers lack the proper skills and judgment obtained from years of experience in 

identifying and maneuvering around hazardous situations which makes them more likely to be 

involved in a car crash (Beirness et al. 2004).  One such potential hazardous situation for young 

drivers is safely driving through curvatures in the roadway.   

The influence of horizontal curve crashes on the frequency and severity of crashes has 

long been a concern for transportation safety professionals.  The American Association of State 

Highway and Transportation Officials’ Strategic Highway Safety Plan (AASHTO, 2005) and 

Highway Safety Manual (AASHTO, 2010) both address the influence of horizontal curves on 

highway safety.  

 Huang et al. (2002), from the University of North Carolina’s Highway Safety Research 

Center, conducted a study for the North Carolina Department of Transportation to identify 

factors and countermeasures for severe crashes in North Carolina.  Two of the main conclusions 

from the study when looking at curves are that crashes within curves are more likely to be more 

severe than on straight roadway sections and a larger portion of single vehicle crashes occur 

within curves.     

Hummer et al. (2010) also studied crash data in North Carolina to obtain a better 

understanding of crashes within curves.  Roadway data was collected from the North Carolina 

Department of Transportation and analysis was performed to evaluate curve crashes on two-lane 

roads, all crashes on two-lane roads, and all crashes on all roads. Evaluating crashes within 

curves revealed 21% of all two-lane crashes occur in curves compared to only 14% among all 

roads.  Of the two-lane curve crashes, 70% occur in rural areas compared to only 45% for all 

crashes statewide, demonstrating rural two-lane curves are overrepresented when evaluating 

crashes. 
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Roadway Departures 

Hummer et al. (2010) analyzed crashes based on severity levels and found two-lane curve 

crashes result in nearly twice the percent of fatal and disabling injuries as compared to crashes on 

all two-lane roads and all roads statewide.  Two-lane curve crashes make up the majority (52%) 

of collision with fixed objects, over twice the percent as compared to all two-lane road crashes.  

For most harmful events; rollover, collision with trees, and collision with ditches were identified 

as the main concerns for single vehicle crashes on two-lane curves.  This finding was similar to 

Queensland Transport (2006), which reported that more severe curve related crashes in Australia 

involve run-off-road, head-on, rollover, and hitting roadside objects.  

Torbic et al. (2004) reported each year nearly 25% of people killed in automobile crashes 

in the United States are killed in crashes occurring within curves.  Within fatal curve crashes, 

76% involve a single vehicle leaving the road and striking a fixed object.  Chen (2010) found a 

significant relationship existed between crash severity levels of crashes occurring within curves 

and striking a tree.  Huang et al. (2002) identified run-off-the-road crashes occur mostly within 

curves on rural two-lane roads, and accounted for the largest number of fatal and serious injury 

crashes.    

Environmental  

 Hummer et al. (2010) identified two-lane curve crashes to be more evenly dispersed 

throughout the time of day and day of week than all two-lane crashes and all road crashes.  The 

study also found the majority of crashes occur during the day (lighting present) and on dry 

surfaces (clear weather).  Chen (2010) found a significant relationship existed between the crash 

severity levels of crashes occurring within curves and time of the crash. 
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Vehicle  

Chen (2010) found a significant relationship existed between the crash severity levels of 

crashes occurring within curves and the manufacturing year of the vehicle. 

Injury Severity Prediction Modeling 

Studies about traffic crash injury severities have been increasing over time, with the 

largest number of studies being performed within the past five years (Mujalli and de Oña, 

2011b).  Injury severity studies focus on factors affecting the severity of the crash outcome.  

These studies are particularly useful for analyzing severity levels for different driver groups 

(Hauer, 2006).   Regression analysis is widely used in crash severity studies and logistic 

regression is one of the most commonly used models (Chang & Wang, 2006; Savolainen et al., 

2011; de Oña et al. 2011).   

Logistic Regression  

Dissanayake (2003) used logistic regression modeling to identify roadway, driver, 

environmental, and vehicle related factors influencing the injury severity of young drivers 

involved in run-off-the-road crashes.  The study used crash data from 1997 – 1998 from the 

Florida Traffic Crash Database and created a separate model for each severity level.  For fatal 

crashes the following factors were influential; driver under influence of alcohol or drugs, driver 

ejected in crash, driver was at fault, restraint device was not used, and impact point was side of 

vehicle.  The models for severe crashes had the following influential factors; driver ejected in 

crash, restraint device was not used, crashes occurred in a rural area, and driver was male. 

Dissanayake & Lu (2002) used crash data from the National Center for Statistics and 

Analysis for years 1994 to 1996 and identified elements which are more likely to produce severe 

injuries to older drivers involved in passenger car crashes with fixed objects.  They evaluated 

driver, vehicle, roadway, and environmental elements and treated each as dichotomous variables 
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(0 or 1).  The study identified travel speed and restraint device usage as important parameters in 

making a difference in injury levels.  Higher speed and lack of seatbelt usage increase the 

chances for more severe injuries.  Other significant variables were impact point, alcohol and drug 

use while driving, driver condition, gender, at fault, rural, and curves.   

 Mercier et al. (1997) utilized logistic regression modeling to evaluate age and gender as 

predictors of injury severity levels for individuals involved in head-on highway crashes.  Crash 

data was analyzed from the Iowa Department of Transportation from 1986 through 1993.  They 

controlled for speed by examining only crashes on interstates, freeways, and state highways 

where the speed limit ranged from 55 to 65 miles per hour.  Occupant positions were controlled 

for by including only drivers and right-front-seat passengers.  Possible injury and no injury 

crashes were excluded in the study.  Possible injury was also excluded since “possible” may not 

prove to be an actual injury. Out of fourteen potential independent variables, only age and safety 

restraint were found to be significant.   

Al-Ghamdi (2002) studied 560 injury crashes occurring on urban roads between 1997 and 

1998 in Riyadh, the capital of Saudi Arabi.  The outcome variable accident level was captured as 

either fatal or non-fatal, where non-fatal only included injury crashes.  Nine independent 

variables; location, crash type, collision type, time, cause, at fault, driver age, nationality, vehicle 

type, and license status, were used in the model.  Many of the independent variables were 

categorical in nature.  While the variables location and cause were found to be significant, their 

interaction effect was not significant.  Crashes happening at non-intersections (location) and 

crashes that occurred because of running a red light (cause) are more likely to result in a serious 

injury.  Also, age is significant showing younger and older drivers are more at risk of sustaining 

a serious injury. 
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Using crash data in Alberta, Canada from 2003 to 2005, Barua et al. (2010) studied 

fatality risk of intersection crashes on rural undivided highways.  A response variable of fatal or 

nonfatal crash was used along with eighteen vehicle, roadway, crash, driver, and traffic related 

independent factors.  Vehicle variables in the final model included truck-tractors and 

motorcycles.  Roadway variables shown to be significant included intersection, traffic 

operations, and vertical alignment.  The season, crash time, collision type, intersection type, and 

roadway surface condition were significant variables within crash factors.   Driver age, gender, 

fatigue, and impairment were all driver variables included in the final model.  Traffic volume 

was the only traffic variable included in the final model.     

Zhu et al. (2010) studied fatal crashes on rural two-lane highways in 1997 and 1998 

which occurred in Alabama, Georgia, Mississippi, and South Carolina to determine their impact 

on crash conditions and potential contributing factors.  Using logistic regression, the study 

developed two crash-type prediction models: single-vehicle versus multiple-vehicle fatal crashes 

and head-on versus other fatal crashes.  The crash type of interest in the logistic regression model 

was single-vehicle run-off the road fatal crashes where the vehicle overturned or struck a fixed 

object.  The ultimate goal of the study was to identify valuable information and quantify 

relationships between highway design characteristics and associated performance measures.   

Zhu et al. (2010) first created a model using four states.  The model generated predictor 

variables for Georgia, Alabama, and South Carolina which were all sufficient in explaining crash 

differences across all states, except for Mississippi.  Since the objective of the study was to 

identify rural two-lane-highway fatal crashes models to better understand crash trend in Georgia 

and other states, the researchers created a three-state model (Alabama, Georgia, and South 

Carolina).   This new model produced results which were suitable for predicting crashes in 

Georgia-specific conditions.  The variables of interest in the three-state model were intersection, 
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curve to left, crest vertical curve, near commercial driveways, dark without supplement lights, 

and crash between 1:00 am and 3:00 am.  Next, the researchers created four separate models, one 

for each state.  These individual models did not contain the same set of significant independent 

variables, suggesting the three-state model comprises many of the primary, but possibly not all, 

factors associated with fatal crashes. 

Horizontal curves were identified as a target area for safety improvement on rural two-

lane roads in Texas.  Schneider IV et al. (2009) used multinomial logistic modeling to assess 

driver injury severity levels resulting from 10,029 single vehicle crashes on rural two-lane roads 

between 1997 and 2001.  The study examined driver, vehicle, roadway, and environmental 

factors of crashes to access their effect on driver injury.  Four models were developed; all 

crashes, crashes within small radius curves (less than 500 feet), crashes within medium radius 

curves (between 500 and 2,800 feet), and crashes within large radius curves (greater than 2,800 

feet).  The three curve models identified driver injury levels are more likely to occur in curves 

with a medium radius, followed by the small radius, and then large radius.  While the degree of 

injury is not significantly different between the groups, driver fatalities were slightly less in 

small radius groups compared to the medium and large radius groups.  

 The study also identified drivers’ injury levels significantly increase in run-off-the-road 

crashes where the vehicle collided with a roadside object.  Crashes occurring during daylight 

hours with clear weather also tend to be more severe.  Gender of the driver was a factor, as 

females were 23% to 31% more likely to sustain an injury than males, and driver injury was 

found to increase with driver age, especially as the curve radius decreases.   

 High-risk was also found to influence higher injury severities.  Alcohol and drug use 

increased the probability of driver injury by 18% - 40% and fatalities by 243% - 549%.   Seat 

belt usage increased the likelihood of no injury by 415% for serious injuries and 1,012% for 
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fatalities.  Crashes that cause the air bag to deploy, increased the risk of injury to drivers for all 

curve groups. 

 These results are similar to Zhang (2010) who analyzed driver, vehicle, roadway, and 

environmental factors affecting crash severity in Louisiana for crashes occurring between 1999 

and 2004.  This study used multinomial logit, ordered logit, and ordered mix logit models to 

relate crash severity to ten possible independent variables.  All three models found the curve 

variable to not have a significant impact on crash severity.  While, this study did not find the 

presence of a curve to be significantly important, it also did not examine whether crashes 

occurring within curves tend to produce more severe injuries.     

Bayesian Networks  

While using BNs to analyze crash data is scarce, BNs are being used more frequently in 

other fields of study and can easily be applied to the area of crash data analysis.   

 Simoncic (2004) performed a study to show the potential of BNs when modeling road 

accidents. He analyzed accident outcome evaluating road characteristics, traffic flow 

characteristics, time/season factors, characteristics of people within the crash, protection system 

device usage, vehicle types, and speed of vehicles.  When generating the BN, external crash 

variables (weather, day of week, time of day) and variables related to the driver (age, gender, 

driving experience, use of safety device, and alcohol usage) were used as root nodes.  Variables 

relating to injury level of the drivers and overall crash were used as leaf nodes.  

 Evaluating inference results by accident type (fatal/serious injury versus other), speed had 

an odds ratio of 2.1.  A slightly smaller odds ratio was found for wrong side/direction and 

settlement.  When evaluating inference results from the intoxication variables (yes versus no), 

nighttime had an odds ratio of 3.7.  High odds ratios was also found for gender, at-fault and 
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cause.  Based on his research, Simoncic concluded BNs can be utilized within the domain of 

road-accident modeling. 

 de Oña et al. (2011) utilized BNs to classify crash injuries for crashes on rural highways 

in Spain.  Eighteen variables describing injury levels, roadway information, weather, crash, and 

driver information were analyzed for 1,536 crashes to classify injury severity level.  Results from 

the BNs showed the following factors to be more significant in fatal and serious injury crashes; 

head on collisions and rollover crashes, young driver 18 -25 years of age (especially male 

drivers), hours of darkness, and crashes resulting in at least one injury. 

Mujalli and de Oña (2011) used the same data and evaluation methods to analyze BNs 

using only the most significant variables compared to using all variables in the dataset.  After 

evaluating different possible combinations, the variables accident type, atmospheric factors, 

lighting, and number of injuries, were identified as most relevant.     

In 2013, de Oña et al. (2013) analyzed accident severity for rural highway crashes in the 

province of Granada (South of Spain).  In this study, the same 18 independent variables used in 

the previous study were analyzed with injury severity as the dependent variable.  The following 

independent variables contributed the most to severity; accident type, sight distance, time, 

occupants involved, age, lighting, number of vehicles,  number of injuries, atmospheric factors, 

pavement markings, and pavement width.  The study also identified teenagers as having higher 

probability of injury accidents. 

 Conrady and Jouffe (2013b) used BNs to provide a robust framework for evaluating the 

impact of regulatory interventions.  This study was conducted to evaluate if occupants within 

smaller vehicles, which obtain greater fuel economy, are placed at greater risk for injury or 

death.  In the study, crash injury severity was used as the dependent variable and only crashes 

involving two vehicles with no passengers (only drivers) were evaluated.  A BN was created 
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with the following sixteen variables of interest: driver age, driver sex, crash injury severity, air 

bag deployed, vehicle curb weight, crash angle, total delta V, energy absorption, footprint of 

vehicle, number of lanes, use of seatbelt, vehicle model year, speed limit, track width, vehicle 

type, and vehicle wheel base.  It was found that seat belt usage, air bag deployment, and vehicle 

curb weight all had a major effect on the driver’s injury.  
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CHAPTER 3.  RESEARCH METHODOLOGY 

Injury Severity Prediction Model Selection    

A driver injury prediction model is needed to establish the relationship between the 

driver’s injury level and contributing factors of the crash.  Since the outcome of driver injury 

level studies is discrete in nature, discrete prediction models are selected as the most appropriate 

choice.  The logistic regression model is chosen since it is the most widely discrete model used 

when evaluating traffic crash injury levels.   

However, traditional logistic regression models have certain limitations which can be 

overcome when using multilevel models such as BNs.  By simulating an environment using a set 

of variables and their conditional dependencies, BNs are highly flexible models.  Furthermore, 

unlike logistic regression models, BNs are not restricted to assumptions of linear relationships 

and multicollinearity among variables.   

Dependent Variable: Driver Severity   

 The main focus of this study is identifying and quantifying contributing factors leading to 

the driver’s injury level, therefore the injury level of the driver is the dependent variable in the 

injury prediction models.  Driver injury severity will be measured using the driver injury code 

reported by the officer and collected on the crash report.  Louisiana’s crash reports closely follow 

the Model Minimum Uniform Crash Criteria Guidelines (MMUCC) established as a 

collaborative effort involving the Governors Highway Safety Association (GHSA), the Federal 

Highway Administration (FHWA), the Federal Motor Carrier Safety Administration (FMCSA), 

and the National Highway Traffic Safety Administration (NHTSA).   

 The five MMUC levels of injury status are fatal, suspected serious injury, suspected 

minor injury, possible injury, and no apparent injury.  This is very similar to Louisiana where the 

http://en.wikipedia.org/wiki/Conditional_independence
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driver’s injury severity is defined as fatal, serious (incapacitating) injury, moderate (non-

incapacitating) injury, possible (compliant) injury, and no injury (property damage only).   

 The response variable for this study is injury level and is coded as binary (dichotomous).  

The two levels of injured are 1 if the driver is injured (fatal, serious injury, moderate injury) and 

0 if the driver is not injured or possibly injured.  Possible injury is not considered an injury in 

this study for two reasons.  First, this study will be used to assist Louisiana with their Strategic 

Highway Safety Plan (LA SHSP) which only evaluates crashes that result in a fatality or 

serious/moderate injury to anyone involved in the crash.  Second, a possible injury is not proven 

to be an actual injury.  As such, only an actual injury or fatality, identified by the officer, is 

considered as an injury.      

 For any given year, 22% of all crashes in Louisiana are classified as possible injury and 

70% as no injury.  Of the remaining 8% of crashes; 0.5% are fatal, 1% are serious injury and 

6.5% are moderate injury (HSRG, 2014). 

Independent Variables  

The selection of independent variables includes consideration from the identified 

literature review and years of experience in analyzing crash data.  To meet the objectives of this 

study, data concerning the driver, environment, roadway, and vehicle will be used as 

independent variables.   

To analyze human factors, driver information is required.  Driver data includes the 

following characteristics: air bag, distracted, ejection, gender, inattentive, predicted alcohol, 

protection system, race, substance suspected, age, and violation.   

Besides human factors, environmental, roadway, and vehicle factors can contribute to the 

driver’s injury level.  Environmental characteristics include day of the week, most harmful event,  
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lighting, time, and weather.  Roadway features include average daily traffic (ADT), curve crash 

modification factor (CMF), curve length, curve radius, lane width, and shoulder width.  Vehicle 

factors are vehicle type, and vehicle year.  A curve’s CMF, as defined by the Highway Safety 

Manual (AASHTO, 2010b), is calculated as: 

CMF = ABS(((1.55 ∗ 𝐶𝑢𝑟𝑣𝑒 𝐿𝑒𝑛𝑔𝑡ℎ) +
80.2

𝐶𝑢𝑟𝑣𝑒 𝑅𝑎𝑑𝑖𝑢𝑠
)/(1.55 ∗ 𝐶𝑢𝑟𝑣𝑒 𝐿𝑒𝑛𝑔𝑡ℎ))                  (3.1)   

Binary Logistic Regression Explanatory Variables  

 For the binary logistic regression model, all explanatory variables are treated as 

dichotomous variables (0 and 1).  Dummy variables are created for those independent variables 

that are continuous or categorical in nature.  For example, curve radius is divided into three 

dummy variables; small, medium, and large, representing the size of the curve.  The creation of 

dummy variables leads to thirty-four potential independent variables; twelve driver variables, 

eight environmental variables, ten roadway variables, and four vehicle variables.  Summary 

descriptions and characteristics of the factors and variables used in the logistic regression model 

are shown in Table 1. 

Table 1   Explanatory Variables used in Logistic Regression Model 

Explanatory Variable Description Percentage 

Driver   

Airbag Non-

Deployed 

1 

0 

Non-Deployed or Non-Deployed/Switch Off 

Deployed 

61.33 

24.05 

Distracted 1 

0 

Distracted 

Not Distracted 

45.21 

54.79 

Ejected 

 

1

0 

Partially or Totally Ejected 

Not Ejected 

  5.87 

93.37 

Male 1

0 

Male 

Female 

66.12 

33.78 

Inattentive 1

0 

Inattentive 

Not Inattentive 

36.70 

63.30 

Predicted Alcohol 1

0 

Predicted Alcohol 

Not Predicted Alcohol 

18.62 

81.38 
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(Table 1 continued) 

Explanatory Variable Description Percentage 

Driver    

No Protection System  1 

0 

No or Improper Seatbelt Usage  

Shoulder and Lap Belt Used 

14.09 

76.24 

African American 1

0 

African American  

Caucasian 

22.36 

75.15 

Substance Suspected 1

0 

Alcohol and/or Drugs Suspected 

Neither Alcohol nor Drugs Suspected 

18.41 

76.18 

Youth Driver 1

0 

Driver Age Between 15 – 24 

Driver Age Between 25 – 54 

38.01 

61.99 

Violation 

    Careless Operation 

 

 

    Speeding 

 

1

0 

 

1

0 

 

Careless Operation 

Not Careless Operation 

 

Speeding  

Not Speeding 

 

63.03 

36.97 

 

  3.35 

96.65 

Environmental    

Weekend 1

0 

Friday, Saturday, or Sunday 

Monday, Tuesday, Wednesday, or Thursday 

50.15 

49.85 

Most Harmful Event 

    Culvert or Ditch 

     

 

    Other Fixed Object 

 

 

 

    Pole or Tree 

     

 

    Rollover 

 

1

0 

 

1 

 

0 

 

1

0 

 

1

0 

 

Culvert or Ditch 

Not a Culvert or Ditch 

 

Other Fixed Object Beside Culvert, Ditch, 

Pole, or Tree 

Not a Fixed Object 

 

Pole or Tree 

Not a Pole or Tree 

 

Rollover 

Not a Rollover 

 

19.01 

80.99 

 

13.19 

 

86.81 

 

24.97 

75.03 

 

11.96 

88.04 

Dark 1

0 

Dark - No Street Lights  

Daylight, Dark – Continuous Street Light, 

Dark- Street Light Intersection Only, Dusk, or 

Dawn 

47.25 

52.22 

6:00 – 19:00 1

0 

Between 6:00 AM and 7:59 PM 

Between 8:00 PM and 5:59 AM 

54.01 

45.99 

Non-Clear Weather 1 

 

 

0 

Cloudy, Rain, Fog/Smoke, Sleet/Hail, Snow, 

Severe Crosswind, Blowing, 

Sand/Soil/Dirt/Snow, or Other 

Clear  

35.39 

 

 

64.29 
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(Table 1 continued) 

Explanatory Variable Description Percentage 

Roadway    

ADT GT 3000 

 

 Greater Than Equal To 3,000 

Less Than 3,000 

63.76 

36.24 

Curve CMF LT .5 1

0 

Greater Than Equal To .5 

Less Than .5 
63.47 

36.53 

Curve Length 

Small 

1

0 

Less Than .15 

Greater Than Equal To .15 

42.45 

57.55 

    Medium 

 

1

0 

Between .15 and .2999 

Not Between .15 and .2999 

 

46.33 

53.67 

 

    Large 

 

1 

0 

Greater Than Equal to .3  

Less than .3 

 

11.23 

88.77 

 

Curve Radius 

   Small 

1 

0 

Less Than 500 

Greater Than Equal To 500 

 

  8.60 

91.40 

 

Medium 1 

0 

Between 500 and 2,799 

Not Between 500 and 2,799 

 

56.61 

43.39 

 

Large 1 

0 

 

Greater Than Equal to 2,800  

Less than 2,800 

 

34.79 

65.21 

 

Lane Width LT 12 

 

1 

0 

Less Than 12 

Greater Than Equal To 12 

 

19.01 

80.99 

 

Shoulder Width LT 4 

 

1

0 

Less Than 4 

Greater Than Equal To 4 

65.74 

34.26 

Vehicle    

Vehicle Type 

    Passenger Car 

 

 

    Light Truck 

 

 

    SUV 

 

1

0 

 

1

0 

 

1

0 

 

Passenger Car 

Not a Passenger Car 

 

Light Truck 

Not a Light Truck 

 

SUV 

Not a SUV 

 

45.07 

54.93 

 

32.29 

67.71 

 

11.06 

88.94 

Vehicle Year LT 

2000 

1

0 

Less than 2000  

Greater than or equal to 2000 

36.49 

64.43 
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Bayesian Network Explanatory Variables  

Within the BN model, all explanatory variables are treated as categorical variables.  Since 

there is no need to create dummy variables within BNs, there are twenty-four independent 

variables; eleven driver variables, five environmental variables, six roadway variables, and two 

vehicle variables.  Summary descriptions and characteristics of the factors and variables used in 

the BN model are shown in Table 2. 

Table 2  Explanatory Variables used in Bayesian Network Model 

Explanatory Variable Description Percentage 

Driver   

Airbag  Deployed 

Non-Deployed  

Non-Deployed/Switch Off 

Not Applicable 

Not Reported 

Unknown 

24.05 

61.15 

  0.18 

13.42 

  0.28 

  0.92 

Distracted Not Distracted 

Distracted  

54.79 

45.21 

Ejected Not Ejected 

Not Reported 

Partially  

Totally Ejected 

Unknown 

93.37 

  0.20 

  0.66 

  5.21 

  0.56 

Gender Female 

Male 

33.78 

66.12 

Inattentive Not Inattentive 

Inattentive 

63.30 

36.70 

Predicted Alcohol Not Predicted Alcohol 

Predicted Alcohol 

81.38 

18.62 

Protection System  Lab Belt 

None Used 

Not Reported 

Shoulder and Lap Belt Used 

Shoulder Belt Only 

Unknown  

  0.28 

13.16 

  0.18 

76.24 

  0.65 

  9.49 

Driver   

Race African American  

American Indian 

Caucasian 

Not Reported 

Other 

22.36 

  0.13 

75.15 

  0.34 

  2.02 
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 (Table 2 continued) 

Explanatory Variable Description Percentage 

Substance Suspected Alcohol 

Alcohol and Drugs 

Drugs 

Neither Alcohol nor Drugs 

Not Reported 

Unknown 

14.57 

  2.10 

  1.75 

76.18 

  0.74 

  4.67 

Youth Driver Yes (Driver Age Between 15 – 54) 

No  (Driver Age Between 25 – 24) 

38.01 

61.99 

Violation 

 

Careless Operation 

No Violation 

Other 

Speeding (Exceeding Stated Speed Limit or      

Exceeding Safe Speed) 

Unknown 

63.03 

17.68 

14.02 

  3.35 

 

  1.91 

Environmental   

Day of the Week Monday, Tuesday, Wednesday, or Thursday 

Friday, Saturday, or Sunday 

49.85 

50.15 

Most Harmful Event 

     

 

Culvert or Ditch 

Other 

Other Fixed Object 

Pole or Tree 

Rollover 

19.01 

30.87 

13.19 

24.97 

11.96 

Lighting Dark - Street Lights  

Dark – No Street Lights 

Dark- Street Light Intersection 

Dawn 

Daylight 

Dusk 

Not Reported 

Unknown 

  3.36 

47.25 

  2.13 

  1.90 

43.43 

  1.39 

  0.17 

  0.26 

Time of Day 12 AM – 6 AM 

6 AM – 12 PM 

12 PM – 6 PM 

6 PM – 12 AM 

25.92 

20.79 

23.78 

29.51 

Environmental    

Weather Blowing Sand, Soil, or Dirt 

Cloudy 

Fog/Smoke 

Not Reported 

Other 

Rain 

Severe Crosswind 

Sleet/Hail 

 

0.01 

17.64 

  2.55 

  0.02 

  0.07 

14.68 

  0.09 

  0.18 
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 (Table 2 continued) 

Explanatory Variable Description Percentage 

Environmental   

 Snow 

Unknown  

  0.18 

  0.30 

Roadway   

ADT 

 

1 to 1,000 

1,001 to 3,000 

3,001 to 6,000 

6,001 to 10,000 

Greater than 10,000 

 

19.83 

45.19 

23.22 

  9.14 

  2.61 

 

Curve CMF 

 

0 to 0.249 

0.250 to 0.499 

0.500 to 0.749 

0.750 to 0.999 

Greater than 0.999 

24.97 

38.49 

20.28 

  5.47 

10.78 

Curve Length Large 

Medium 

Small 

11.23 

46.33 

42.45 

Curve Radius 

 

Large 

Medium 

Small 

34.79 

56.61 

  8.60 

Lane Width 

 

Less Than 10 

10 

11 

12 

Greater Than 12 

  2.03 

27.56 

26.21 

38.65 

  5.55 

Shoulder Width None 

1 to 3 

4 to 6 

7 to 9 

Greater Than 9 

  0.71 

33.54 

45.87 

15.53 

  4.35 

Vehicle   

Vehicle Type 

     

 

Light Truck 

Other 

Passenger Car 

SUV 

32.29 

11.58 

45.07 

11.06 

Vehicle Year 2000 No (Less than 2000)  

Yes (Greater than or equal to 2000) 

Unknown 

36.49 

64.43 

  0.09 
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Model Description 

Logistic Regression Model 

Logistic regression is widely used in automobile safety studies where the dependent 

variable measures injury level in a binary format (Dissanayake, 2003; Dissanayake & Lu, 2002, 

Schneider IV et al. 2009; Zhang, 2010; Chang & Wang, 2006; Tay et al., 2008, Al-Ghamdi, 

2002, Qin et al., 2013; Mercier et al., 1997).  Logistic regression models are linear regression 

models where the dependent variable is categorical.  For example, if the dependent variable 

denotes serious, moderate, or possible injury, there would be three categories.  Logistic 

regression models can be used to classify/predict cases based on values of the 

independent/predictor variables.  

 Binary Logistic Models (BLM) are logistic regression models where the dependent 

variable of interest is binary, having one of two possible outcomes.  Within crash injury severity 

studies, a binary outcome may be fatal/non-fatal or injury/no injury.   Mujalli and de Oña, 

(2011b) found BLMs or some extension of it are the most commonly used modeling technique 

when performing studies evaluating crash injury severity levels.   

Shmueli et al. (2010) explains the logistic regression model and odds in the following 

way.  Linear regression uses Y as a dependent variable, however logistic regression uses a 

function of Y called the logit.  This logit can then be used to model a linear function of the 

predictors.  Whereas Y can only take the form of 0 or 1 (category identification), p can have any 

interval value between 0 and 1.  When expressed as a linear function of n predictors:   

p = A +  B1X1 + B2X2 + … + BnXn            (3.2) 

p is not guaranteed to fall within 0 and 1.  However, using the logistic response function 

guarantees p is in the interval [0,1]: 
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 p = 

1 
                                                       (3.3) 

 1 + e 
–( A +  B1X1 + B2X2 + … + BnXn)

 

 

The odds of the dependent variable being in one group as opposed to the other, is defined 

as the odds ratio: 

Odds = 
p 

                                                                                                         (3.4)                                                                                                    1 - p 

The probability can then be computed given the odds of an event: 

p = 
odds 

                                                                                                         (3.5) 
1 + odds 

Substituting (3.3) into (3.5), the relationship between the odds and the predictors is:   

Odds = e 
( A +  B1X1 + B2X2 + … + BnXn)  

                                                    (3.6) 

Taking the log of both sides produces the standard logistic regression model: 

log(odds) or logit = A +  B1X1 + B2X2 + … + BnXn
  

                            (3.7) 

Using the model above, the odds ratio represents the dependent variable being in one 

group as opposed to the other.  When independent variable Xj increases by one unit and 

everything else remains the same, Βj is the multiplication factor by which the odds change.  

When Βj  < 0, an increase in the variable Xj decreases the odds of belonging to class 1.  Likewise, 

when Βj  > 0, a decrease in the variable Xj increases the odds of belonging to class 1.    

Logistic regression allows for varying predictor variables (continuous, discrete, and 

dichotomous), are easily used, and are relatively flexible; however, they have their own 

modeling assumptions.  One such assumption is the pre-defined underlying relationships 

between dependent and independent variables.  Logistic regression assumes a linear relationship 

between the predictor variables and the logit transform of the outcome variable.  While there is 

no assumption concerning the distribution of predictors, having linearity among the predictors 
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may enhance the power (Tabachnick & Fidell 2006).  Another assumption relates to the absence 

of multicollinearity.  Logistic regression is sensitive to extremely high correlations among 

predictor variables.  Lastly, logistic regression assumes responses from different cases are 

independent of one another.  When these assumptions are violated, erroneous estimates of injury 

severity can occur (Chang & Wang, 2006).   

 Binary logistic regression techniques model crash severity as a dichotomous response.  

These models presume each record examined in the estimation procedure corresponds to an 

individual injury and assume the residual resulting from the models exhibit independence (Jones 

& Jørgensen, 2003).  However, the assumption of independence may often not hold. For 

example, different vehicles are equipped with different safety features which can influence their 

occupants’ injury levels.  This would tend to show injury levels within the same vehicles as 

having more similar injury levels than from different vehicles.  

An alternative strategy which addresses the issues outlined above, is utilizing multilevel 

models for analyzing injury severity (Jones & Jørgensen, 2003; Lenguerrand & Laumon, 2006).  

Multilevel models, such as BNs are gaining popularity in recent years.  BNs also offer the 

advantages of bi-directional induction and probabilistic inference (de Oña et al., 2011). 

Bayesian Network Model 

Charniak (1991) states, “The best way to understand Bayesian networks is to imagine 

trying to model a situation in which causality plays a role but where our understanding of what is 

actually going on is incomplete, so we need to describe things probabilistically.”  BNs represent 

a particular situation as a coherent whole and are comprised of two components, qualitative and 

quantitative.  The qualitative portion consists of the directed acyclic graph (DAG), also known as 

the structure, which represents variables and their dependencies using nodes and links.  Whereas, 
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the quantitative part, captures the probabilities that quantifies the relationships between variables 

and their parents.   

Variables are represented as nodes and their interactive dependencies as links between 

related nodes.  A node symbolizes a variable and captures that variable’s current state.  More 

often, variables are discrete in nature having one of two values.  However, this is not always true 

and variables may have multiple values.    

 The links within a BN specify the independence assumptions between the two variables.  

This information is used to determine the probability distribution among the variables in the 

network. Each node is associated with a probability function which uses a set of values from the 

node's parent variables to form the probability of the variable represented by the node.  That is, 

BNs allow the user to calculate the conditional probability of a node being in a particular state 

given the states of that node’s parents.  

Conrady and Jouffe (2013a) present BNs from the perspective of an applied researcher. 

BNs, named after Rev. Thomas Bayes (1702-1761), relate conditional and marginal probabilities  

of two events, A and B, given the probability of event B does not equal to zero: 

P(A|B) = 𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

 

  

P(A) is referred to as the prior probability of event A, since it is not influenced by event 

B.  In fact event B does not have to occur after event A. 

P(A|B) is the conditional probability of event A given event B.  It is called the posterior 

probability since it depends on the specified value of event B. 

P(B|A) is the conditional probability of event B given event A and is referenced as the 

likelihood. 

P(B) is called the marginal probability of event B and is used as a normalizing constant. 

http://en.wikipedia.org/wiki/Probability_function
http://en.wikipedia.org/wiki/Glossary_of_graph_theory#Directed_acyclic_graphs
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 Using this formula, Bayes theorem may be used to represent how the conditional 

probability of event A given B is related to the converse conditional probability of event B 

given A.   

To fully quantify the relationships between all variables and their parents, a complete 

probabilistic model of the network must exist.  Within a BN, a joint probability distribution is 

created.  A joint probability distribution is the probability distribution representing the 

probability of every possible scenario within the model.  Stated differently, it gives the 

probability for each combination of values for all variables identified within the model.  For a 

model with n dichotomous variables, the joint distribution would contain 2
n
 values and is 

represented by  

P(v1,…,vn)  = P(v1)P(v2|v1)…P(vn)P(vn-1)    

Bayesian networks factor the joint distribution into local conditional distributions for 

each variable given its parents to compress the overall distribution list (Conrady and Jouffe 

2013).   This is demonstrated in Figure 1: 

 
 Figure 1  Sample Bayesian Network Model 
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The joint distribution for the above example would be 

P(v1,v2,v3,v4,v5) = P(v1)P(v2|v1)P(v3|v1)P(v4|v2,v3)P(v5|v4).      

Within BNs, using the local conditional distributions, each variable can be treated 

independently of its non-descendants in the network given the state(s) of its parent(s).  

Continuing with the example above, v2 and v3 are the parents of v4 and render v4 independent of 

v1.  This can be seen in the following equal equation: 

P(v4|v1,v2,v3) = P(v4|v2,v3)          

The probability of any variables’ state in terms of the conditional probabilities specified 

in the network can easily be expressed.  To determine the probability that a teenage driver was 

not wearing their seatbelt given that they were transported to a medical facility, can be evaluated 

as: 

P(v2 = no|v5 = yes) = 
𝑃(v2 = no|v5 = yes)

P(v5 = yes)
 

= 

∑v1,v3,v4P(v1,V2=no,v3,v4,V5=yes) 

∑v1,v2,v3,v4P(v1,v2,v3,v4,V5=yes) 

 

= 

∑v1,v3,v4P(v1) P(V2=no)|v1)P(v3|v1) P(v4|V2= no,v3)P(V5=yes|v4)  

   ∑v1,v2,v3,v4P(v1)P(v2|v1)P(v3|v1)P(v4|v2,v3)P(V5=yes|v4) 

  

According to Darwiche (2009) BNs are attractive for three reasons.  First, they offer a 

complete representation of a particular situation and give a unique probability distribution for the 

network variables.  Second, the network ensures consistency and completeness by utilizing 
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evaluation that is performed using only variables and their direct causes.  Third, they give a 

compact representative since only an exponentially sized probability distribution is utilized.  

 When modeling BNs, three main methods can be used for constructing the network 

(Darwiche 2009).  First, the designer uses his own knowledge.  Second, the designer uses 

information gathered from some other type of formal knowledge.  These two types of model 

construction are referred to as knowledge representation.  The third method is based on machine 

learning where the designer allows the network to be built based on learning from the data.   

 The BN designed for this study will be based on machine learning where the information 

is learned from the crash data.  With the collection of large data sets and the advancement made 

in machine learning and data mining, models utilizing machine learning techniques are becoming 

more popular.  These models utilize the decreased cost of storage, increased machine power, and 

advancement in software to analyze large quantities of data.   

 Traditional statistical techniques utilize sampling methods to draw conclusions about the 

population.  Using designed and controlled experiments, researchers manipulate the variable of 

interest and measure its effect on the dependent variable.  Traditional statistical techniques allow 

the research to establish cause and effect and ensure outcomes were not attributed to pure 

random occurrence.   

 With the advancement in machine learning techniques, researchers can now analyze the 

entire population data.  However, with large data sets, it becomes much more difficult to 

interpret the results in terms of their structural meaning.  While machine learning techniques can 

create great predictive models (correlation), they often offer little explanatory insight (causation).   
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CHAPTER 4.  DATA 

Crash Data 

 The crash data used in this study was collected from the Highway Safety Research Group 

(HSRG) at Louisiana State University (LSU).  The HSRG, since 1998, is grant funded by 

Louisiana’s Department of Transportation and Development (LA DOTD) to collect, maintain, 

analyze, and disseminate crash data  

Louisiana’s law enforcement agencies utilize a uniform crash report which was approved 

by the state in 2005.  This standardized crash report serves as the basis of the design of the state’s 

crash database.  All crash reports submitted to the state, through the HSRG, use the same 

standard data items and data definitions outlined in the 2005 LA Uniform Crash Report. 

Location Data   

 LA DOTD also maintains a crash database which is updated every two weeks from the 

HSRG crash database.  Using Geographical Information System (GIS) programs, LA DOTD 

verifies the submitted location information on the crash report against the state’s roadway 

database to determine the accuracy of the location data.  If the location information is determined 

to be accurate, the information is accepted as reported.  Otherwise, the crash location data is 

reported as an error and employees at LA DOTD and HSRG manually review the error crash 

reports, specifically looking over the crash narrative and diagram, and correct the location 

information.   

At the end of this process, crashes which occur on state routes (interstates, highways, and 

state roads) are assigned valid latitudes (lat), longitudes (long), control sections, and milepost 

information.  The lat/long information is used to electronically locate and map crashes and the 

control section and log mile information is used to integrate the crash and roadway databases.   
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Roadway Data 

 The roadway data used in this study comes from the LA DOTD highway section and 

curve databases.  Within Louisiana, the LA DOTD collects and maintains all the state’s roadway 

data.  All information concerning state routes resides in these databases and are identified by 

control section, beginning log mile, and ending log mile.  Each state route is divided into 

sections based on similar road characteristics and the control section log mile information 

uniquely identifies each road segment.  Using control section log mile data for crashes occurring 

on state routes, crashes can be assigned to the state route where the crash occurred.  This data 

integration allows crashes occurring on state routes to be linked with roadway data.     

 Information within the highway section database includes roadway features such as 

average daily traffic (ADT), control section, log mile begin, log mile end, lane width, medium 

type, number of lanes, road type, and shoulder width.  This information is updated yearly by the 

LA DOTD. 

 The curve database contains information of all curves on state routes and was made 

available for Louisiana in 2013.  The curve database contains curve attribute information such as 

control section, log mile begin, log mile end, curve percentage grade, and curve radius.  The 

curve data represents the characteristics of curves in Louisiana as of 2012.  For this study, the 

2012 curve data was used to represent curve information for each year between 2005 and 2012.  

Since curves are more permanent in nature and are not normally modified over time, using the 

2012 curve data to represent the curve’s characteristics for all years was considered to be 

adequate for this study.   
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 LA DOTD manually reviewed each record in the curve database against Google Earth 

imagery and marked each record identifying it as a true curve or a missed categorized curve.  

Only true curves were used in this study. 

  The crash data is integrated with the curve database using the control section and log 

mile information, similar to the way the crash and roadway database were integrated.  Since the 

crash database is integrated with both the roadway and curve databases, analysis of crashes can 

be performed based on roadway and curve data elements.  For this study, crashes between 2005 

and 2012 occurring within a curve on rural two-lane roads were analyzed.   

Crash Trend 

An overview of single vehicle crashes involving a young driver occurring within a curve 

on a two-lane rural highway is presented in Table 3.  The total number of crashes,  as well as the 

crashes per severity level,  have been decreasing since 2007.  While this may first seem like the 

problem is improving, this conclusion may not be accurate.  Table 4 shows the overall number of 

crashes in Louisiana has also been declining since 2007, with a small increase in 2012.     

Table 3  Overview of Single Vehicle Young Driver Curve Crashes onTwo-Lane Rural Highways 

Year Fatal 
Serious 

Injury 

Moderate 

Injury 

Possible 

Injury 

No 

Injury 
Total 

2005 14 10 144 306 469 943 

2006 20 11 120 333 477 961 

2007 21 5 134 376 514 1054 

2008 13 9 111 294 476 905 

2009 13 4 109 278 469 873 

2010 9 9 81 238 486 823 

2011 13 5 85 264 446 814 

2012 9 4 70 249 440 772 

Total 112 57 854 2,338 3,777 7,145 
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Table 4 Summary Data for all Crashes in Louisiana  

Year Fatal 
Serious 

Injury 

Moderate 

Injury 

Possible 

Injury 

No 

Injury 
Total 

2005 875 1,530 10,804 37,154 108,063 158,493 

2006 890 1,505 10,143 37,116 112,237 162,125 

2007 900 1,567 10,434 36,165 105,107 159,717 

2008 820 1,499 10,244 34,789 104,825 157,485 

2009 729 1,434 9,972 33,945 104,854 155,930 

2010 643 1,223 9,082 32,178 104,545 147,678 

2011 630 1,223 9,100 33,023 101,138 149,737 

2012 654 1,172 9,260 34,144 103,265 153,215 

Total 6,141 11,153 79,039 278,514 844,034 1,244,380 
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CHAPTER 5.  MODEL ESTIMATION  

There were 18,796 single vehicle crashes within curves on two-lane rural highways 

involving drivers between the ages of 15 – 54 from 2005 to 2012 in Louisiana.  These crashes 

resulted in 2,913 (15.5%) injuries, where injury is defined as a fatality, serious, or moderate 

injury to the driver.  Young drivers accounted for 38% of drivers and 35% of injuries. 

Binary Logistic Regression  

With the creation of dummy variables, as explained in Section 3.3.1, there are thirty-four 

potential independent variables within the logistic regression model; thirteen driver variables, 

eight environmental variables, ten roadway variables, and four vehicle variables.  The following 

variables are controlled for; highway type, number of vehicles, and segment type.  Highway type 

is limited to only rural two-lane roadways.  Only single vehicle crashes are included in the study.  

Segment types of tangent (straight) are excluded, focusing only on crashes occurring within 

curves.  Summary descriptions and characteristics of the factors and variables used in the logistic 

regression model are displayed in Table 1. 

Correlation  

Before performing the binary logistic regression model, a correlation matrix of the 

dependent and potential independent variables, minus the dummy variables, was generated using 

JMP statistical software from SAS.  An examination of the partial correlations indicates 

relatively weak correlations, except for a few variables.  Highly correlated variables along with 

their correlation values are shown in Table 5. 

.   
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Table 5   Correlated Variables 

Variable 1 Variable 2 Correlation Value 

Substance Suspected Predicted Alcohol 0.8918 

Inattentive Distracted 0.8383 

Dark 6:00 – 19:00 0.7192 

No Protection System 

Injured 

Injured 

Ejected 

Ejected 

No Protection System 

0.4326 

0.3951 

0.3789 

Substance Suspected Inattentive 0.3359 

Substance Suspected Distracted 0.3182 

Lane Width LT 12 ADT LT 3000 0.2944 

Predicted Alcohol Inattentive 0.2918 

Predicted Alcohol Distracted 0.2795 

6:00 – 19:00 Predicted Alcohol 0.2712 

6:00 – 19:00 Substance Suspected 0.2490 

Predicted Alcohol No Protection System 0.2469 

Substance Suspected No Protection System 0.2363 

Dark Predicted Alcohol 0.2136 

Lane Width LT 12 Shoulder Width LT 4 0.2049 

Dark Substance Suspected 0.2020 

 A high correlation exists among the variables substance suspected/predicted alcohol, 

inattentive/distracted, and dark/6:00 – 19:00.  Since part of the HSRG’s definition of predicted 

alcohol (see Appendix) is substance suspected, a high correlation between these two variables 

can be expected.  The correlation between inattentive and distracted is explained by officers 

selecting inattentive on most crash reports where the driver is also identified as being distracted.  

Likewise, dark (daylight) and 6:00 – 19:00 (time of day) is expected to be highly correlated since 

it is mostly daylight in Louisiana between the hours of 6:00 am and 7:00 pm. 

A strong correlation also exists between the variables no protection system/ejected.  This 

can be expected since driver ejection is dependent on the seat belt usage of the driver. When 

drivers use their seatbelts, their chances of being ejected is greatly reduced.    These two 

variables are also the only potential independent variables shown to be highly correlated with the 

dependent variable injured. 
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Strong correlations are produced among the variables inattentive, distracted, and no 

protection system usage with predicted alcohol and substance suspected.  This implies drivers 

who tend to be under the influence of alcohol and/or drugs tend to also be inattentive/distracted 

and not wearing a seatbelt when involved in crashes.   

Predicted alcohol and substance suspected are also found to be correlated with dark and 

t6:00 – 19:00.  Part of the HSRG’s definition of predicted alcohol (Appendix 1) is dependent on 

the time of the crash, contributing to the high correlation among these two variables.   

The correlation between lane width LT 12/ADT LT 3000 and lane width LT 12/shoulder 

width LT 4 is expected since only crashes occurring on rural two-lane curve roadways are 

examined.   This implies roadways’ ADT and shoulder widths are dependent on lane width for 

rural two-lane curve roadways in Louisiana. 

Binary Logistic Regression Modeling  

The dependent variable, driver injury level, was coded as 1 for injured (fatal, serious 

injury, and moderate injury) and 0 for no injury (possible injury and no injury).  A list of the 

independent variables and their codes is displayed in Table 1.  Of the possible thirty-four 

potential independent variables, thirty-one are selected for the logistic regression model.  The 

three variables; predicted alcohol, inattentive, and 6:00 – 19:00 are removed due to high 

correlations with substance suspected, distracted, and lighting respectively.  The results of the 

logistic regression model using the remaining thirty-one variables are presented in Table 6.   
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 Table 6  Logistic Regression Coefficient Table for Driver Injury as a Function of 31 Predictors 

Term Estimate Std Error Chi Square Prob > ChiSq 

Intercept 0.82477 0.42555 3.76 0.0526 

Airbag Non-Deployed -0.53268 0.03847 191.75 <.0001 

Distracted -0.10937 0.02783 15.44 <.0001 

Ejected 0.96831 0.08116 142.33 <.0001 

Male -0.16600 0.02837 34.25 <.0001 

No Protection System 0.60477 0.03911 239.16 <.0001 

African American 0.05522 0.05922 0.87 0.3511 

Substance Suspected 0.48813 0.04245 132.20 <.0001 

Youth Driver -0.05650 0.02563 4.86 0.0275 

Violation Careless Operations 0.11829 0.02848 17.25 <.0001 

Violation Speeding 0.27870 0.06563 18.03 <.0001 

Weekend 0.00017 0.02408 0.00 0.9943 

Harm Event Culvert Ditch -0.17117 0.04023 18.10 <.0001 

Harm Event Other Fixed Object -0.11714 0.04428 7.00 0.0082 

Harm Event Pole or Tree 0.22900 0.03287 48.53 <.0001 

Harm Event Roll Over 0.33864 0.03787 79.97 <.0001 

Dark -0.23756 0.13330 3.18 0.0747 

Non-Clear Weather -0.09275 0.02635 12.39 0.0004 

ADT GT 3000 -0.08975 0.02686 11.17 0.0008 

Curve CMF LT .5 0.06568 0.03122 4.43 0.0354 

Curve Length Small -0.11535 0.04924 5.49 0.0192 

Curve Length Medium -0.09578 0.04715 4.13 0.0422 

Curve Length Large 0.00000 0.00000 . . 

Curve Radius Small -0.05913 0.05830 1.03 0.3105 

Curve Radius Medium 0.03628 0.02947 1.52 0.2182 

Curve Radius Large 0.00000 0.00000 . . 

Lane Width LT 12 0.05418 0.02592 4.37 0.0366 

Shoulder Width LT 4 0.04444 0.02542 3.05 0.0805 

Vehicle Type Passenger Car -0.09127 0.04868 3.51 0.0608 

Vehicle Type Light Truck 0.01375 0.04731 0.08 0.7713 

Vehicle Type SUV 0.03060 0.05603 0.30 0.5849 

Vehicle Year LT 2000 -0.55397 0.38001 2.13 0.1449 

The model has 18,716 observations, was found to be significant with a p-value of 0.0001, 

and has a misclassification rate of 0.1264.  A review of the independent variables finds nineteen 

predictors to be significant with a p-value less than or equal to .05.  A list of the nineteen 

predictors is shown in Table 7. 
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Table 7  Significant Variables within the 31 Predictors Model 

Term Estimate Std Error Chi Square Prob > ChiSq 

Airbag Non-Deployed -0.53268 0.03847 191.75 <.0001 

Distracted -0.10937 0.02783 15.44 <.0001 

Ejected 0.96831 0.08116 142.33 <.0001 

Male -0.16600 0.02837 34.25 <.0001 

No Protection System 0.60477 0.03911 239.16 <.0001 

Substance Suspected 0.48813 0.04245 132.20 <.0001 

Violation Careless Operations 0.11829 0.02848 17.25 <.0001 

Violation Speeding 0.27870 0.06563 18.03 <.0001 

Harm Event Culvert Ditch -0.17117 0.04023 18.10 <.0001 

Harm Event Pole Tree 0.22900 0.03287 48.53 <.0001 

Harm Event Roll Over 0.33864 0.03787 79.97 <.0001 

Non-Clear Weather -0.09275 0.02635 12.39 0.0004 

ADT GT 3000 -0.08975 0.02686 11.17 0.0008 

Harm Event Other Fixed Object -0.11714 0.04428 7.00 0.0082 

Curve Length Small -0.11535 0.04924 5.49 0.0192 

Youth Driver -0.05650 0.02563 4.86 0.0275 

Curve CMF LT .5 0.06568 0.03122 4.43 0.0354 

Lane Width LT 12 0.05418 0.02592 4.37 0.0366 

Curve Length Medium -0.09578 0.04715 4.13 0.0422 

A new model is formed using the nineteen significant variables identified above.  The 

new model has 18,716 observations, was found to be significant with a p-value of 0.0001 and has 

a misclassification rate of 0.1265.  The results of the new logistic regression model using only 

nineteen variables are presented in Table 8. All variables remained significant in the new model.  

The receiver operating characteristic (ROC) curve for the model is displayed in Figure 2 showing 

the model has good predictive ability. 
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Table 8  Logistic Regression Coefficient Information for Driver Injury  

Term Estimate Std Error Chi Square Prob > ChiSq 

Intercept 0.09032 0.12040 0.56 0.4531 

Airbag Non-Deployed -0.49354 0.03612 186.72 <.0001 

Distracted -0.10953 0.02774 15.59 <.0001 

Ejected 0.95750 0.08041 141.78 <.0001 

Male -0.14331 0.02652 29.20 <.0001 

No Protection System 0.60699 0.03885 244.11 <.0001 

Substance Suspected 0.46119 0.04121 125.22 <.0001 

Youth Driver -0.07223 0.02511 8.27 0.004 

Violation Careless Operations 0.12403 0.02839 19.08 <.0001 

Violation Speeding 0.27894 0.06551 18.13 <.0001 

Harm Event Culvert Ditch -0.17790 0.03997 19.81 <.0001 

Harm Event Other Fixed Object -0.11186 0.04403 6.45 0.0111 

Harm Event Pole Tree 0.23709 0.03265 52.72 <.0001 

Harm Event Roll Over 0.35071 0.03779 86.14 <.0001 

Non-Clear Weather -0.08674 0.02624 10.93 0.0009 

ADT GT 3000 -0.08996 0.02678 11.29 0.0008 

Curve CMF LT .5 0.08442 0.02828 8.91 0.0028 

Curve Length Small -0.10563 0.04276 6.10 0.0135 

Curve Length Medium -0.09136 0.04479 4.16 0.0414 

Lane Width LT 12 0.06153 0.02555 5.80 0.016 

 

 

 
Figure 2  ROC Curve Information 
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Logistic Regression Results  

This binary logistic regression model produces the following equation: 

 logit =  0.090 - 0.988(Air Bag Non-Deployed) - 0.218(Distracted)  

+ 1.916(Partially or Totally Ejected) - 0.286(Male)  

+ 1.214(No or Improper Seatbelt Usage) + 0.922(Alcohol and/or Drugs Suspected)  

- 0.144 (Youth Driver) + 0.248(Careless Operations) + 0.560(Speeding)  

- 0.356(Hitting a Culvert or Ditch)  

- 0.222 (Hitting a Fixed Object Other Than a Culvert/Ditch/Pole/Tree)  

+ 0.474(Hitting a Pole or Tree) + 0.700(Rollover) - 0.174(Non-Clear Weather)  

- 0.180(ADT GT 3000) + 1.708 Curve CMF LT .05) - 0.212(Small Curve Length)  

- 0.182(Medium Curve Length) + 0.124(Lane Width LT 12) 

Note: The parameter estimates above were multiplied by 2 since JMP codes two-level nominal 

variables as 1 and –1, as opposed to the typical 0 and 1.     

Positive coefficients on the dummy variables (careless operations, speeding, harm event 

pole or tree, harm event roll over), while holding everything else constant, are associated with 

higher probabilities of drivers having an injury.  Likewise, negative coefficients on the dummy 

variables (harm event culvert or ditch, harm event other fixed object, curve length small, curve 

length medium), while holding everything else constant, are associated with lower probabilities 

of drivers having an injury.  For the dichotomous variables, positive (negative) coefficients 

indicate a higher value on that predictor is associated with a higher (lower) probability value of 

drivers obtaining an injury.     

The nine predictors ejected, no or improper protection system, substance suspected, 

careless operation, speeding, harm event pole or tree, harm event roll over, curve CMF LT .05, 

and lane width LT 12, all have a positive impact on drivers sustaining an injury.  The remaining 
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ten predictors air bag non-deployed, distracted, male, youth driver, harm event culvert or ditch, 

harm event other fixed object, non-clear weather, ADT GT 3000, curve length small, and curve 

length medium have a negative impact on drivers sustaining an injury. 

With linear regression the coefficients represent the change in the response variable for a 

unit change in the predictor variable, when all else remains the same.  For logistic regression 

models, the regression coefficient represents the change in the logit for a unit change in the 

predictor variable.  Using the odds ratio formula, identified with formula 3.1, to calculate the 

response variables is more intuitive.    

Odds(driver injury) =  e 
0.090

 x 0.347
(Air Bag Non-Deployed)

 x 0.803
(Distracted)

  

x 9.581
(Partially or Totally Ejected)

 x 0.751
(Male)

 x 4.033
(No or Improper Seatbelt Usage)

  

x 1.963
(Alcohol and\or Drugs Suspected) 

x 0.865
(Youth Driver)

 x 1.281
(Careless Operations)

  

x 1.747
(Speeding)

 x 0.701
(Harm Event Culvert or Ditch)

 x 0.799
(Harm Event Other Fixed Object)

  

x 1.607
(Harm Event Pole or Tree)

 x 2.017
(Harm Event Roll Over)

 x 0.841
(Non-Clear Weather)

  

x 0.835
(ADT GT 3000)  

x 1.184
(Curve CMF LT .5) 

x 0.809
(Curve Length Small)

 x 0.833
(Curve Length Medium) 

 
x 1.131

(Lane Width LT 12) 
 

The greater the predictor’s odds ratio is from 1, the greater the effect the predictor has on 

driver injury levels.  Predictors with an odd ratios greater (less) than 1 indicates the predictor is 

more (less) likely to contribute to drivers becoming injured.   For instance, drivers are 4.033 

times more likely to have an injury, compared to no injury, when not wearing or improperly 

wearing their seatbelt.  Evaluating the odds ratios in the above equation shows that being 

partially or totally ejected, not or improperly wearing a seatbelt, driving under the suspicion of 

alcohol and/or drugs, speeding, and vehicle rolling over greatly increase the odds of drivers 

being injured.  Likewise, air bags not deploying have the least odds on injuring the driver.  When 

the air bag does not deploy, drivers’ are 0.347 times less likely to have an injury compared to no 
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injury.  While this might seem counter intuitive at first, some research has shown this to be true.  

Bosch Automotive Handbook (2011) states airbag systems are designed is such a way that their 

deployment threshold is adjusted when occupants are not wearing their seat belts.  Stated 

differently, not wearing a seat belt causes the airbag to trigger differently, which may influence 

injury risk.  Donaldson III (2008) states occupants in motor vehicle crashes resulting in airbag 

deployment who are not wearing seatbelts are at higher risk of cervical spine fractures and other 

spinal cord injuries.  

The remaining variables distracted, male, young drivers, careless operating, harm event 

culvert or ditch, harm event other fixed object, non0clear weather, ADT GT 3000, curve CMF 

LT .5, curve length small, curve length medium, and lane width LT 12all have minimal effect of 

driver injury levels.  

Of the nineteen variables in the final model, nine represent driver characteristics, five are 

concerned with environment factors and five signify roadway elements.   

Evaluating driver characteristics shows being partially or totally ejected, not wearing or 

improperly wearing a seatbelt, and driving under the suspicion of alcohol and/or drugs are 

strongly associated with higher injury severity levels.   This study also identifies males as being 

0.751 times less likely to be injured.  These findings are similar to previous research studies 

(Dissanayake & Lu 2002, Clarke et al. 2006, Shinar 2007, Schneider IV et al. 2009, Barua 2010, 

de Oña et.al 2010, Hummer et al. 2010, Peek-Asa et al. 2010, and Zhang 2010).  Previous 

research also shows females are more susceptible to injuries than males (Mercier et al. 1997, 

Dissanayake & Lu 2002, Clarke et al. 2006, Shinar 2007, Schneider IV et al. 2009, Barua 2010, 

de Oña et.al 2010, and Zhang 2010) and that higher crash speeds lead to more severe driver 

injuries (Simoncic 2004 and , Zhang 2010).  
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 When evaluating environmental factors, rollover crashes and hitting a pole or tree were 

associated with an increased likelihood of contributing to a driver injury.  Research has shown 

more severe injuries occur when the vehicle overturns (Hummer et al. 2010 and de Oña et.al 

2010) or when the vehicle leaves the roadway and strikes a tree (Schneider IV et al. 2009, Chen 

2010, and Hummer et al. 2010).  Driver injuries also tend to be more severe in crashes occurring 

in clear weather (Hummer et al. 2010 and Schneider IV et al. 2009).  This research is similar to 

the findings of this study which shows non-clear weather conditions are 0.841 times less likely to 

contribute to driver injuries.   

While logistic regression is sensitive to high correlations among predictor variables, 

Bayesian Networks (BN) are not influenced by mutlicollinearity.  The knowledge discovery 

algorithms utilized in Bayesialab software, use information-theoretic measures to search for 

probabilistic relation between variables (Conrady, S. & Jouffe, L. 2013b).  The nature of learning 

used in BNs automatically considers multiple relationship types among all variables, including 

collinear relationships, and can handle processing each without any issues (Conrady, S. & Jouffe, 

L. 2013b).   

Bayesian Network Modeling  

The twenty-four potential independent variables shown in Table 2 plus injury level, the 

primary variable of interest, are used in the BN model.  Each variable is discrete, ranging from 

two to ten possible outcomes.  Unlike the logistic regression model where the variables are 

dichotomous, BNs allow for variables to have multiple outcome levels.   

 BayesiaLab software is used to construct the BN models.  Using the crash, location, and 

roadway data, 18,796 records are used in modeling the networks.   An initial unconnected 

network of all variables is displayed in Figure 3, where each variable is represented by a node. 
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Figure 3  Initial Bayesian Network as Unconnected Nodes  

Within BayesiaLab, a machine learning algorithm is used to learn the probabilistic 

relationships between the variables in the network.  This knowledge based discovery method 

relies on the computer to process the data and build a network structure without any assumptions.    

The first BN was built using all twenty-four potential independent variables (factors) 

identified in Table 2.  Injury level was excluded in this network, as the purpose of this first 

network is to develop an understanding of how the independent variables directly relate to one 

another.  Figure 4 shows the BN for the twenty-four independent factors. 
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Figure 4   Bayesian Network for Potential Factors 

  Within this network, there are thirty-four arcs between twenty-four nodes showing a 

large amount of interaction between the variables.  To identify highly correlated variables, the 

amount of mutual information shared between connected nodes was analyzed.  Mutual 

information (X,Y), measured as P(X|Y)/P(X), shows how much knowing of variable Y reduces 

the uncertainty about variable X.   Figure 5 displays the variables that share a high amount of 

mutual information within the network.   
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Figure 5  Mutual Information Shared Between Nodes 

 As seen in Figure 5 a large amount of mutual information is shared between the variables 

substance suspected/predicted alcohol, time of day/lighting, inattentive/distracted, curve 

radius/curve length, curve radius/curve CMF, and curve CMF/curve length.  This is very similar 

to the correlation between variables found using the logistic regression model.  

The top number represents the mutual information shared between the two variables.  The 

middle number is the relative mutual information in the direction of the arc, whereas the bottom 

number shows the relative mutual information in the opposite direction of the arc.  If the two 
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variables are totally independent, then knowing about X would not provide any information 

about Y and the mutual information amount would be 0.  Likewise, if the two variables were 

totally correlated, then knowing about X would provide all information about Y and the mutual 

information amount would be 1.  In the BN model, knowing the value of substance suspected on 

average reduces the uncertainty of predicted alcohol by 75.7%.  Conversely, knowing the value 

of predicted alcohol reduces the uncertainty of substance suspected by 44.43% 

Based on this information, a new BN was built excluding the variables predicted alcohol, 

inattentive, and lighting.  Since these variables share a large amount of mutual information with 

substance suspected, distracted, and time day, little additional information is gained from 

keeping these variables in the model.  The new BN can be seen in Figure 6. 

 

Figure 6   Bayesian Network without Highly Correlated Variables 
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Clustering among related variables are easily identified when viewing the network.  For 

instance, roadway variables are gathered together towards the bottom right corner of the 

network.  Likewise, environmental variables capturing information about the weather, time of 

day, and day of week are grouped together at the lower middle of the network.  In all, five sets of 

clusters are identified with BayesiaLab.  To better identify clustering among the factors, Figure 7 

shows the BN as related clusters.   

 
Figure 7  Bayesian Network with Clustering of Factors 

Using the data structure produced with clustering on the nodes and identifying injury 

level as the target variable of interest, the final BN is shown in Figure 8. 
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Figure 8  Final Bayesian Network Model 

Bayesian Network Results  

Based on the final BN, Table 9 displays the node significance and p-value with respect to 

the information gain brought by the node to the knowledge of injury level.  Driver related 

variables are at the top of the list and have the most significance.  Environmental, vehicle, and 

roadway variables complete the list in respective order and while some have statistical 

significance, all have little to no relative significance. 

Besides determining the nodes relative significance on injury level, the BN can be used to 

help measure the node’s direct effect on injury level.  In order to transition from association to 

exploratory, a more in depth knowledge of the BN is required.   
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Table 9   Node Significance with Injury Level 

Node Mutual Information Relative Significance p-value 

Protection System 0.0903 1.0000 0.00% 

Ejected 0.0879 0.9728 0.00% 

Substance Suspected 0.0336 0.3720 0.00% 

Violation 0.0200 0.2211 0.00% 

Airbag 0.0083 0.0920 0.00% 

Time of Day 0.0022 0.0246 0.00% 

Most Harmful Event 0.0018 0.0197 0.00% 

Gender 0.0015 0.0165 0.00% 

Vehicle Type 0.0012 0.0130 0.00% 

Distracted 0.0009 0.0095 0.00% 

Vehicle Year 2000 0.0007 0.0083 0.02% 

Day of Week 0.0005 0.0060 0.02% 

Curve Radius 0.0002 0.0024 12.88% 

Curve CMF 0.0001 0.0010 81.53% 

Youth Driver 0.0001 0.0008 17.09% 

Curve Length 0.0001 0.0007 63.05% 

Weather 0.0000 0.0004 99.98% 

Race 0.0000 0.0002 97.97% 

Shoulder Width 0.0000 0.0001 99.83% 

Lane Width 0.0000 0.0001 99.96% 

ADT 0.0000 0.0001 99.97% 

Arcs within BNs correspond to direct probabilistic relations between connected variables 

(nodes).  For instance, viewing the arc direction between protection system and substance 

suspected in network shows the arc pointing from protection system to substance suspected. 

The arc direction in Figure 9 is derived based from machine learning on the crash data 

and may not always represent causation.  The crash data over the years has shown that drivers 

who are suspected of being under the influence of a substance are less likely to wear their 

seatbelts.  This means substance suspected has more of a causal effect on protection system, not 

vice versa. 

  
     Figure 9  Relationship between Protection System and Substance Suspected in the BN 
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Unfortunately, software package can only provide causality direction based on their 

interpretation of the data provided.  It is the responsibility of the researcher to review the results 

and ensure the output is consistent based with their domain knowledge.   

Arc directions within BNs may be reversed as long as doing so does not introduce loops 

between the nodes and the inversion does not modify the joint probability distribution.  The 

direction of the arc is very important when transitioning from a general BN to causal network.  

That is a network where the parents of each node are its direct cause (Conrady & Jouffe, 2013c).  

Having a causal network, is the only way to truly evaluate causation.   

The network developed in this study, using machine learning techniques, is not a causal 

network since the parents of each node are not always its direct cause.  This means the arc 

directions in Figure 8 cannot be interpreted as causal direction.  However, the network can be 

used to explore the data and make causal inferences.  Using Jouffe’s Likelihood Matching (LM) 

algorithm within BayesiaLab, casual inference may be measured by manipulating the probability 

distribution of any variable, while holding the probability distribution of all ascending nodes 

constant, and evaluating the effect the change has on the probability distribution of the target 

variable (Conrady & Jouffe, 2013c).  

Jouffe’s Likelihood Matching 

Figure 10 shows that overall 15.76% of drivers were injured and 33.71% of all drivers 

were female.  If the evidence of gender is set to 100% male, the injury rate increases to 16.92%.  

However, the injury rate decreases to 13.46% when gender is set to 100% female.   

However, this does not mean that being female reduces the risk of driver injury by 

20.5%.  There are numerous other relevant factors that must be controlled before causal 

inference can be implied. 
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Observational Inference for youth drivers:  

P(InjuryLevel=Injury|Gender=Male) = 16.92% 

P(InjuryLevel=Injury|Gender=Female) = 13.46% 

Figure 10  Evaluating Driver Injury Based on Gender 

 

For instance, male drivers are more likely to drive light trucks, drive under the suspicion 

of alcohol and/or drugs, and not wear their seat belts when compared to females.  These 

differences are demonstrated in Figure 10 which highlights that males and females are quite 

different in driver characteristics and thus are not directly comparable on injury levels.  This is a 

problem associated with observational studies.   

To overcome this challenge, Jouffe’s LM algorithm may be utilized.  Jouffe’s LM within 

Bayesia Lab allows the probability distributions of covariates to remain fixed, thus measuring the 
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direct effect a node has on a target node.  By setting the probability distributions for vehicle type, 

substance suspected, and protection system to remain unchanged, the direct effect of gender on 

injury level can be measured as shown in Figure 11. 

 
Causal Inference:  

P(InjuryLevel=Injury|do(Gender=Male)) = 15.76% 

P(InjuryLevel=Injury|do(Gender=Female)) = 15.74% 

The casual effect can then be calculated as: 

P(InjuryLevel=Injury|do(Gender=Male)) – P(InjuryLevel=Injury|do(Gender=Female)) = 0.02% 

 

Figure 11  Direct Effect of Gender on Driver Injury 

 

The difference 0.02% is the “gender effect” with regard to the probability of a male 

driver, compared to a female driver, sustaining an injury as a result of a single vehicle crash 

within a curve on a rural two-lane road in Louisiana.  This means that given the same crash 
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factors, a male driver has a 0.02% increased chance of being injured in the crash compared to a 

female driver.  It is not gender that has a direct effect on injury, but the behavior of the gender 

(seat belt use, substance suspected, vehicle type, etc.) that directly effects the level of injury.   

Driver Factors 

The driver variables ejected, protection system, substance suspected, and violation were 

the only factors to have a direct effect on driver injury, as displayed in Table 10.  When a driver 

is partially or totally ejected from the vehicle, their chances of sustaining an injury are greatly 

enhanced.  Likewise not wearing a safety belt or being suspected of alcohol and/or drugs 

increases a driver’s chance of injury. 

Table 12   Direct Effect of Driver Factors on Driver Injury 

Factor Variable Injury No Injury 

Ejected Not Ejected 12.93% 87.07% 

 

Not Reported 0.49% 99.51% 

 

Partially Ejected 80.99% 19.01% 

 

Totally Ejected 59.35% 40.65% 

 

Unknown 42.67% 57.33% 

Protection System Lap Belt Only 14.31% 85.69% 

 

None Used 33.29% 66.71% 

 

Not Reported 2.74% 97.26% 

 

Shoulder and Lap Belt 12.28% 87.72% 

 

Shoulder Belt Only 17.50% 82.50% 

 

Unknown 17.11% 82.89% 

Substance Suspected Alcohol 29.52% 70.48% 

 

Alcohol and Drugs 20.15% 79.85% 

 

Drugs 22.73% 77.27% 

 

Neither Alcohol nor Drugs 13.56% 86.44% 

 

Not Reported 14.97% 85.03% 

 

Unknown 21.74% 78.26% 

Violation Careless Operations 16.89% 83.11% 

 

No Violation 8.16% 91.84% 

 

Other 15.22% 84.78% 

 

Speeding 20.47% 79.53% 

 

Unknown 30.29% 69.71% 
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Environmental Factors 

None of the environmental factors have a direct effect on injury level. 

Roadway Factors 

Likewise, no roadway factors have a direct effect on injury level. 

Vehicle Factors 

Vehicle types other than light truck, passenger car, and SUV have a very slight decrease 

in injury levels as shown in Table 11.  Also, vehicles manufactured after the year 2000 slightly 

decrease driver injuries. 

Table 13  Direct Effect of Vehicle Factors on Driver Injury 

Factor Variable  Injury  No Injury 

Vehicle Type Light Truck 15.84% 84.16% 

 

Other 15.61% 84.39% 

 

Passenger Car 15.87% 84.13% 

 

SUV 15.84% 84.16% 

Vehicle Manufacture Year  After 2000 15.71% 84.29% 

 

Other 15.76% 84.24% 

 

Before 2000 15.78% 84.22% 

 

Identify Factors Affecting Driver Injury Level 

Variables that have a significant impact on driver injury levels identified using either 

logistic regression or BN models are listed in Table 12.  This table shows both models recognize 

eight of the same contributing factors.  The BN model found time of day to be statistically 

significant, however it was excluded from the logistic regression model due to high correlation 

with lighting, which was not found significant.  The logistic regression model found youth, 

weather, ADT, curve CMF, and curve length to be significant whereas the BN did not.  A more 

detailed analysis on how these factors influence driver injury level is discussed in Chapter 6. 
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Table 14  Driver Injury Contributing Factors 

 

Logistic Regression Bayesian Network 

Driver 

  Airbag Y Y 

Distracted Y Y 

Ejected Y Y 

Gender Y Y 

Protection System Y Y 

Substance Suspected Y Y 

Youth Y 
 

Violation Y Y 

   Careless Operation 
  

   Speeding 
  

   Environmental 

  Most Harmful Event Y Y 

   Culvert of Ditch 
  

   Other Fixed Object 
  

   Pole or Tree 
  

   Rollover 
  

Time of Day N/A Y 

Weather Y 

 

   Roadway 

  ADT Y 

 Curve CMF  Y 

 Curve Length Size Y  

   Small   

   Medium   

Lane Width Y  

   Vehicle 

  Vehicle Type 
 

Y 

Vehicle Year 
 

Y 
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CHAPTER 6: ANALYSIS AND DISCUSSION 

Impact of Identified Contributing Factors 

There were eight factors identified by both models as contributing to driver injury levels: 

air bag, distracted, ejected, gender, protection system, substance suspected, violation, and most 

harmful event.  Among these factors: distracted, protection system, substance suspected, and 

violation are driver factors which can be altered by educational countermeasures.  Overall injury 

level for youth drivers is displayed in Figure 12.   

 

Figure 15   Youth Driver Injury Levels 

 

Protection System 

Not wearing a seatbelt is identified in both models as being a major significant factor 

contributing to driver injuries.  Figure 13 show that if everything remains constant the direct 

effect of seatbelt use on youth driver injuries is -21.13%.    

Protection System and Driver Ejection 

Driver ejection is also found in both models as being a major significant factor 

contributing to driver injuries.  Seatbelts are a driver’s best defense to prevent ejection in a car 

crash, a necessary factor in reducing driver injuries.  If all youth drivers wear their seatbelt, the 

probability distribution of being totally ejected from the vehicle would decrease from 5.09% to 

0.33% and injury distribution would decrease from 15.70% to 9.26% as shown in Figure 14. 
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Figure 16   Direct Effect of Seatbelt Use on Youth Driver Injury 

 

   

Figure 17   Youth Driver and Ejection/Seatbelt Information 

Protection System and Airbags 

The effect of airbags as a safety device has little effect on young driver injuries when 

utilized in conjunction with seatbelts.  If all young drivers wear their seatbelts, Figure 15 
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demonstrates that airbag deployment would very slightly increase from 24.09% to 24.20%.  

Likewise, the injury distribution of 12.09% for seatbelt only (Figure 13) would also very slightly 

increase to 12.28%.  

    

Figure 15   Youth Driver and SeatBelt/Airbag Information 

Substance Suspected 

Alcohol use is also identified as having a strong effect on drivers’ injury levels in both 

models.  Figure 16 demonstrates suspicion of alcohol has a 16.19% direct effect on youth driver 

injury distribution. 

Substance Suspected and Protection System Usage 

When young drivers drive under the influence of alcohol, they tend to not wear their 

seatbelts.  This can be seen in Figure 17 where young drivers suspected of alcohol only use their 

seatbelt 63.59% compared to 80.61% for young drivers not suspected of alcohol. 
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Figure 18   Direct Effect of Substance Suspected On Youth Driver Injury 

 

      
 

 

Figure 17   Youth Drivers Protection System Usage and Substance Suspected Information 

Violations  

Violations, particularly careless operation and speeding, are found to be significant in 

both models. Within the current model, the injury rate of youth drivers is 15.70% (Figure 12).  
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This rate increases to 16.76% and 20.17% for careless operation and speeding respectively, as 

shown in Figure 18.    

  

Figure 18   Youth Driver Injury Percentages for Violation Information 

Violations and Protection System Usage 

Seatbelt use is 78.56% for youth drivers when no violation is committed in a crash, as 

seen in Figure 19.  This number decreases to 76.83% and 76.07% for crashes involving careless 

operation and speeding respectively, also shown in Figure 20. 

 

 

Figure 19   Protection System Usage When No Violation           
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Figure 20   Protection System Usage With Violation 

Violations and Substance Suspected 

Violations are also attributed to alcohol use.  In crashes with no violation, 97.37% of 

youth drivers are not suspected of alcohol (Figure 21).  However, when a youth driver is in 

violation of speeding, only 86.38% are not suspected of being under the influence of alcohol.  

This number further drops to 74.03% for crashes involving careless operation (Figure 21). 

Distraction 

 

While distraction for youth drivers has a minimal effect on injury levels (Figure 22), 

youth drivers tend to be more distracted than adult drivers (Figure 23).  Distraction for youth 

drivers is also highly attributed to alcohol consumption.  When youth drivers are not suspected of 

alcohol, distraction is only 38.22%, compared to 84.03% when alcohol is suspected (Figure 24). 
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Figure 21 Substance Suspected and Violation Information 

  

Figure 22  Youth Driver Injury and Distraction Information 

 

   

Figure 23 Youth Driver and Distraction Information 
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Figure 24 Youth Driver, Distraction, and Substance Suspected Information 

Gender  

Male youth drivers are more likely to be distracted and be under the influence of alcohol, 

while female youth drivers are more likely to drive carelessly and speed as shown in Figure 25. 

   

Figure 25 Youth Driver Gender Information 
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Data from the HSRG in 2012 show that the alcohol fatal crash rate increases as the age 

group of young drivers increases (Table 13) and males have higher rates than their female 

counterparts for each age category. 

Table 13  LA Alcohol Related Crash Information for Young Drivers  

 
LICENSED DRIVERS  

ALCOHOL RELATED 

FATAL CRASHES  

ALCOHOL FATAL 

CRASH RATE  

AGE  FEMALE  MALE  FEMALE  MALE  FEMALE  MALE  

15-17 33930 34394 3 4 8.84 11.63 

18-20 69132 71194 6 13 8.68 18.26 

21-24 107593 101477 10 31 9.29 30.55 

 

Most Harmful Event  

Most harmful event is found significant in both models.  Within the logistic regression 

model, hitting a culvert/ditch and hitting a fixed object other than a pole/tree both decrease a 

driver’s chance of injury compared against hitting a pole/tree or the vehicle rolling over, which 

increase a driver’s chance of injury.  Evaluating youth drivers’ injury levels within the BN, most 

harmful event is associated with driver violation.  

Figure 26 shows driver injuries are lowest when there is no violation.  When a youth 

driver does not have a violation, most harmful event is something other than rolling over or 

hitting a fixed object.  

 When a youth is driving carelessly, driver injuries increase along with roll overs and 

hitting a fixed object (Figure 27). Likewise, when a youth driver is speeding, driver injuries and 

hitting a pole/tree are at their highest levels (Figure 27). 

  



69 

 

 

Figure 26 Youth Driver and Most Harmful Event with No Violation Information  

 

  
 

Figure 27 Youth Driver and Most Harmful Event with Violation Information 

Time of Day  

Time of day was significant within the BN model, but was excluded from the logistic 

regression model due to high correlation with lighting.  Within the BN, time of day is associated 

with substance suspected.  The number of youth drivers suspected of alcohol increases during the 

hours of 12:00 am - 6:00 am and 6:00 pm – 12:00 pm, as seen in Figure 28. 
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Figure 28 Youth Driver Injury and Substance Suspected/Time of Day Information 

Vehicle Type  

The BN model finds vehicle type statistically significant, but with little relative 

significance with driver injury.   Within the BN, vehicle type is associated with driver injury 

through protection system, showing seatbelt use has more of an effect on injury level than the 

vehicle type.  

The youth driver variable is associated with vehicle type within the BN and Figure 29 

shows youth drivers tend to drive more passenger cars and fewer SUVs compared to adult 

drivers. 

  

Figure 29 Driver and Vehicle Type Information 
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Vehicle Year 

Vehicle year was also found statistically significant, but offers little relative significance 

within the BN.  In 1998, the National Highway Safety Transportation Administration required 

vehicles to have dual front airbags.  As safety technology advances, cars are manufactured with 

more safety features.  The safety features in cars manufactured before 2000 is limited compared 

to vehicles manufactured since 2000.   

Within the BN model, vehicle type is associated with driver injury through ejection and 

air bag.  As more drivers remain in the vehicle and utilize safety devices, their chances of serious 

injuries decrease.  The BN places more association of driver injury with not being ejected and 

using safety devices than the manufacturing year of the vehicle the driver is driving.   
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CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

This study set out to address three objectives.  First, identify and quantify the main 

contributing factors of driver injury levels for single vehicle curve crashes on rural two-lane 

roadways in Louisiana including driver, environmental, roadway, and vehicle factors using the 

traditional binary logistic regression modeling technique.  Second, using BN modeling, also 

identify and quantify the main contributing factors of driver injury levels for single vehicle curve 

crashes on rural two-lane roadways in Louisiana and compare the results against the findings 

produced from the binary logistic regression model.  Third, identify benefits of the BN model 

over the traditional binary logistical regression model. 

 There were nineteen significant factors identified in the binary logistic regression model.  

Of these seven factors have an odds ratio greater than 1.25 with concern to driver injuries; 

ejected (partially or totally ejected), protection system (none or improper seatbelt usage), 

substance suspected (alcohol or drugs suspected), violations (speeding & careless operation), and 

harmful events (rollover & hitting a pole or tree).  

Within the BN, only twelve variables were found to be significant.  Four of which had 

relative significance greater than or equal to 0.2 towards driver injury levels; protection system 

(none used), ejected (totally ejected), substance suspected (alcohol), and violation (careless 

operations). 

Driver Factors  

Overall, driver factors are shown by both models as being significant and important as 

related to driver injury levels.  Comparing the results from the two models shows they each 

identified the following four driver factors as the primary and most dominate factors; ejected 

(totally ejected), protection system (none used,) substance suspected (alcohol), and violation 
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(careless operation).  The binary logistic regression model also identified violation (speeding) as 

another significant driver factor. 

Driver factors are the only factors that can potentially be altered through educational 

programs.    Data from the HSRG from 2009 – 2013 shows that lack of seatbelt use were 

attributed to nearly 60% of driver fatalities and nearly 30% of all fatal crashes involving a youth 

driver suspected of alcohol (HSRG, 2014).  Protection system and alcohol are two of the biggest 

problems in LA when analyzing fatal and serious/moderate injuries.   

The LA Strategic Highway Safety Plan created emphasis areas to address these factors, 

along with youth drivers.  This study helps confirm and measure the direct effect these factors 

have on youth drivers, and drivers overall.  Through effective countermeasures, educational 

programs should be created to modify driver behaviors to help reduce driver fatalities and 

serious/moderate injuries. 

Ejection and Protection System   

Being ejected from the vehicle and lack of seatbelt usage are the top two factors effecting 

driver injury identified in within the binary logistic regression and BN models.  The raw data 

shows that 1,103 drivers were partially or totally ejected in curve crashes.  Of these 797 drivers 

(72.26%) were injured.  While being ejected from a vehicle significantly increases a driver’s 

odds of being injured, the BN shows that when young drivers wear their seatbelts, the 

distribution of ejections are drastically reduced from 5.09% to 0.33%.  The BN also measures the 

direct effect of seatbelt usage for young drivers as -21.13%.  If no young drivers wear their 

seatbelt, the injury distribution is 33.32%, however this number falls to only 12.19% if all young 

drivers were to utilize their seatbelts.   



74 

 

Substance Suspected     

Drivers being suspected of alcohol is the third ranked factor in each model.  The BN 

model estimates the direct effect of alcohol as 16.19% for young drivers.  Alcohol use is shown 

to be associated with lack of seatbelt usage and violations.  The BN shows only 63.59% of young 

drivers use their seatbelt when suspected of alcohol compared to 80.61% of young drivers not 

suspected of alcohol.  Also, the BN demonstrates that 0.19% of young drivers are suspected of 

alcohol when no violation is given.  However, when a young driver is charged with speeding or 

careless operation, 5.54% and 15.56%, respectively, are suspected of alcohol.  While this does 

not mean alcohol causes the violations, it does show there is strong association.   

Violation (Careless Operation and Speeding)   

Careless operation is the seventh ranked factor within the binary logistic regression 

model and the fourth ranked factor in the BN model.  A direct effect of 8.9% is found in the BN 

for careless operations.  While this is a significant and important factor, a clear definition of 

careless operation is required. In LA, careless operation is defined as “Whereas, careless 

operation of a vehicle means driving so as to endanger the life, limb, or property of any person” 

(NHTSA 2014).   In order to educate drivers of the effect of careless operation, a better 

understanding of this factor is needed.  If law enforcement officers use this violation to cover a 

wide range of incidents (speeding, run off road, driving recklessly, improper lane change, etc.) it 

will be difficult to pinpoint the exact problem and alter driver behavior through education.  The 

raw data shows that careless operation violations account for over 63% of all violations.    

Speeding is the fourth ranked factor in the binary logistic regression and is not shown to 

be significant within the BN.  However, the BN does show injuries increase from the current rate 

of 15.70% to 20.17% if all violations were attributed to speeding. 



75 

 

Youth Drivers   

The binary logistic regression models finds youth drivers as a significant factor with a 

slight decrease in odds for being injured, while the BN does not show age to be significant.  

Within the BN, youth drivers are associated with driver injury through vehicle type and 

protection system usage.  This implies vehicle type and protection system usage can serve as 

confounding factors when evaluating driver age and injury.   

Protection system usage is shown to be one of the most significant and important factors 

in reducing driver injury.  The use of a seatbelt in decreasing driver injury is independent of the 

driver’s age, meaning seatbelts decrease the odds of driver injuries for youth drivers and adult 

drivers alike.  The main factor is seatbelt use, not the driver’s age.   

Vehicle type also plays a role in youth driver injury levels within the BN and will be 

addressed when evaluating vehicle factors.  

Environmental Factors  

The binary logistic regression model identifies harmful events (roll over and hitting a 

pole or tree) as significant factors.  While the BN shows harmful event (hitting a pole or tree) as 

significant, it has little relative significance in regard to driver injury. 

Harmful Events (Roll Over and Hitting a Pole or Tree)   

Harmful events, such as roll overs and hitting a pole or tree, were identified as fifth and 

sixth in the binary logistic model and were not found important within the BN.  While these 

harmful events are significant when evaluating driver injury levels, the underlying cause of the 

harmful event needs to be considered.  While hitting a tree or pole can cause serious injury to a 

driver, a more important question to ask is “What caused the driver to leave the roadway and hit 

the pole or tree?”  Factors such as driver distraction, speeding, careless operation, rain, and/or 

alcohol should be considered as confounding factors.  
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The BN shows whenever a youth is in violation of careless operations driver injuries 

increase along with rollovers and hitting a fixed object. Likewise, when a youth driver is 

speeding, driver injuries and hitting a pole/tree are at their highest levels.  As the BN 

demonstrates, the driver behavior is the cause of the harmful event and should be studied more 

than the harmful event itself.  By altering driver behaviors such as alcohol use and violations, 

drivers are more likely to not leave the roadway thus decreasing the chance of hitting a pole or 

tree. 

Other Environmental Factors   

The BN model finds time of day (6:00 pm – 12:0 am) and day of week (Friday – Sunday) 

to be significant, but places little relative significance on these factors.  Likewise, the binary 

logistic regression model shows non-clear weather to decrease the odds of driver injury.  

Environmental factors are things that cannot be altered or controlled by researchers.   

While these variables may be significant, they lack importance on driver injury level.  

However, while they may not show importance, they should be investigated along with 

confounding factors.  The HSRG’s data shows alcohol related crashes occur more often on 

Fridays through Sundays and between the hours of 6:00 pm and 12:00 am (HSRG 2014).   This 

relationship can also be seen in the BN as day of week and time of day are related to driver 

injury through substance suspected.   

More investigation into alcohol as a confounding factor should be investigated in future 

research.  The same can be said for weather and violations, do drivers speed more in clear 

weather?  Is there something about clear weather that makes drivers feel they can drive more 

aggressively?  
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Roadway Factors  

 The binary logistic regression model found ADT (greater than or equal to 3,000), curve 

CMF (less than .5), curve length (small and medium), and lane width (less than 12) to be 

significant, but not as important as driver behavior factors.  Only the factors curve CMF and lane 

width had odds ratios greater than 1, meaning an increased odds of driver injury.  

Roadway characteristics themselves would not have a direct effect on driver injury levels, 

but could contribute to certain types of crashes.  For example, it would be expected that there are 

more rollover and roadway departure crashes within curves than non-curves.  In these cases, it 

would then be the characteristics of rollover and roadway departure crashes that would have a 

direct effect on driver injury.  Based on this reasoning, it was thought harmful events would be a 

confounding factor for curve crashes and roadway data would have been associated with driver 

injury through harmful events with the BN.  However, the BN developed through machine 

learning in this study found violations as the confounding variable, not harmful events.  Based on 

the raw data, careless operations account for 63% of all violations.  This may be explained in law 

enforcement officers code most violations within curves as careless operation.  Further research 

should be conducted to determine the relationship between violation and curves.  

Vehicle Factors  

 Only the BN model found the vehicle manufacturing date (less than 2000) and vehicle 

type as significant, but finds very little relative significance of these factors with driver injury.  

Within the BN, vehicle type is associated with driver injury through protection system, showing 

seatbelt use had more of an effect on injury level than the vehicle type.  Likewise, the vehicle 

year is associated with diver injury through airbag and ejection.  This implies driver injury are 

more associated with not being ejected and using safety devices more than the manufacturing 

year of the vehicle.     
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Benefits of Bayesian Networks 

The BN model produced in this study was developed using machine learning techniques 

within BayesiaLab software.  While software can produce a BN model, domain knowledge is 

required to understand and interpret the network.  For instance, when reviewing the general BN 

(Figure 8) users cannot interpret the arc directions as causation.  This can be seen when 

evaluating the youth driver and gender nodes.  These nodes should have arcs flowing out, not 

into them. Vehicle type and substance suspected do not influence gender, rather gender 

influences vehicle type and substance suspected.  Likewise, vehicle type and distracted do not 

influence youth driver, rather youth driver influences vehicle type and distracted.  This 

demonstrates that before concluding causation, correcting the network arcs and establishing a 

causal network is required.   

However, even without having a causal network, a general BN still offers many 

advantages.  First and foremost, for exploratory purposes and making geneeral causal 

infercences, a general BN can utilize Jouffe’s Likelihood Matching technique.  

Causal Inference 

Within observational studies, the focus is on what we observe.  Binary logistical 

regression modeling techniques allow the researcher to make observational inferences from the 

data.  However, this is not the same as causal inference, where the focus is on what we do.  BNs 

allow a researcher to explore a domain, with the help of human knowledge, to move from 

statistical correlation to causal inference (Conrady & Jouffe, 2013b).   

Randomized experiments are the gold standard in research studies for concluding causal 

inference.  However, in many areas, it is not feasible, ethical, or practical to perform randomized 

experiments.  One such area is the study of driver injury levels.  Research would never be 

conducted using humans in a randomized experiment to study injury levels due to different crash 
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factors.  Utilizing BayesiaLab, a software used to produce and explore BNs from observational 

data, a researcher can perform causal inference computations to measure the impact of 

intervening on a variable (causal inference), rather than simply observing the variable’s state 

(observational inference). 

This can be demonstrated when looking into the gender factor.  Gender was found be 

significant in both models, but with different results.  The binary logistic regression model finds 

males to be .751 times less likely to be injured in a crash than their female counterparts, while 

the BN model shows gender only has a .016 relative significance with driver injury.  From an 

observational perspective, the binary logistic regression model concludes that there is a 

difference in driver injury levels based on gender, with males being less likely to be injured.  

However, this does not mean that gender has a causal influence on driver injury levels.   

Using the BN model, the direct effect gender has on driver injury can be measured.  

While holding the probability distributions fixed for all variables except gender and injury levels, 

BayesiaLab finds males have a 0.02% increased chance of injury over female drivers.  Further 

investigation of the BN reveals males and females have different driver characteristics.  

Referring back to Table 10, males are more likely not to wear their seatbelts and drive under the 

influence of alcohol.  They also tend to drive more light trucks, where females drive more 

passenger cars. 

While this does not show a direct causation between gender and injury, it does offer 

exploratory evaluation of the relationship.  The BN can be used to identify differences within the 

driver characteristics of males and females which may have a casual effect on injury levels.      

Directed Acyclic Graphs  

BNs have the benefit of displaying the variables and their relationship through a directed 

acyclic graphs (DAG), as shown in Figure 8.  A DAG represents the structure of a domain 



80 

 

displaying the variables as nodes and their relations with arcs.  The graph does not visually 

display the data, rather it visualizes the structure.  The BN is meant to generalize the underlying 

data, not be a perfect replica of the raw data (Conrady & Jouffe, 2013b).  DAGs enable a 

researcher to visualize the domain and acquire a deeper understanding of the variables and how 

they relate to one another.  However, having domain knowledge is an important requirement 

before interpreting the DAG as previously discussed.   

Investigation of Multiple Variable Interactions 

Within BN, the researcher can manipulate the probability distribution on any variable to 

evaluate the behavior or causal effect the intervention has on other related variables in the 

network, not just the target variable.  Within binary logistic regression, the intervention can only 

measure the observational effect on the target variable. 

Variables can Support Multiple Outcome Values 

Within binary logistic regression models, the variables must be dichotomous.  When any 

variable has more than two possible outcomes, dummy variables must be created to analyze the 

different possible outcomes.  This can be seen in the creation of four dummy variables for most 

harmful event in this study.  However, with BN, the variables are not restricted to be 

dichotomous and can have multiple values. 

Direction of Future Research 

Data  

Complete and accurate data is crucial for quality research projects.  The crash data 

collected and analyzed in this study was taken from crash reports completed by law enforcement 

officers and as such may be prone to errors.  Of particular concern is the accuracy of driver 

injury level.  In LA, driver injury level on the crash form ranges from fatal to no injury, with 
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three levels of injuries in between; serious, moderate, and possible complaint.  Most officers 

receive little medical training and may have difficulty in properly diagnosing accurate injury 

levels.   Since this study classifies no injury as possible complaint and no injury, the correct 

classification of possible complaint versus moderate injury is a possible concern and can 

influence the results of the study. 

Completeness of the data is another area of concern.  Blood Alcohol Content (BAC) 

information is missing in most crash reports since officers do not test all drivers involved in a 

crash.  Also, when tests are given, the results are not always updated within the crash report.  

Without having adequate BAC results to prove drivers were under the influence of alcohol, this 

study had to use predicted alcohol and substance suspected variables to determine alcohol use.  

While these variables do indicate alcohol involvement, they do not indicate true impairment.  

Having more accurate BAC data will help improve the strength of causal relations with driver 

injury levels in future research. 

Creating a Causal Network  

This study produced a general BN which is utilized to explore the relationship between 

the different factors and generally infer causation based on the established relationships.   

However, having a causal network would allow a deeper understanding of the causation between 

the variables of interest.  Further research should be conducted to transition the current general 

BN into a causation network.    

Establishing a Quantitative Relationship between Driver Behavior and Crashes   

Human factors are identified as the main contributing factors to driver injury levels in this 

study.  This was also concluded in previous studies (Shinar 2007, GAO 2003, Hendericks et al.  

1999, Treat et al., 1979).  Future research using driving simulators and/or videotaping driver 



82 

 

behavior could help quantify human behavior characteristics and crashes.  Looking into seatbelt 

usage, alcohol, distraction, inattentive, and other driver behaviors and crash occurrences could 

lead to quantifying the relation between driver behavior and crashes. For example, further 

research could evaluate the causal relationship of alcohol consumption and seatbelt usage and/or 

violations.  Do drivers who normally wear their seatbelt and drive safely, not buckle up and/or 

drive carelessly after drinking?  Does alcohol cause the driver not to use their safety belt? 
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  APPENDIX:  HSRG PREDICTED ALCOHOL FORMULA 

A driver is predicted to have alcohol using the following logistic regression model: 

 

β(x)   =   −0.761 − 0.9246x1 − 0.2647x2 +0.804x3 − 0.1514x4 − 2.5984x5 +2.889x6 + 1.662x7 

+ 1.662x8 +0.7132x9 − 0.3123x10 − 0.5066x11 +0.476x12 

where x = (x1, x2, . . . , x12) is a 12-tuple of binary variables whose values correspond to the 

truth values of 

 

x1 = The crash happened between 5:00am and 5:00pm 

x2 = The crash happened between 5:00pm and 8:00pm 

x3 = The crash happened between 12:00am and 5:00am 

x4 = The crash happened Monday - Thursday 

x5 = The officer suspects neither drugs nor alcohol 

x6 = The officer suspects alcohol 

x7 = The officer suspects drugs 

x8 = The officer suspects alcohol and drugs 

x9 = The crash was a ‘Non-Collision with Another Vehicle’ crash 

x10 = The crash was a ‘Collision with Another Vehicle’ crash 

x11 = The crash type was ‘Other’ 

x12 = No driver restraint was used 
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