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Abstract: Polymer waste is currently a big and challenging issue throughout the world. Waste
tires represent an important source of polymer waste. Therefore, it is highly desirable to recycle
functional fillers from waste tires to develop composite materials for advanced applications. The
primary theme of this review involves an overview of developing polystyrene (PS) composites using
materials from recycled tires as fillers; waste tire recycling in terms of ground tire rubbers, carbon
black, and textile fibers; surface treatments of the fillers to optimize various composite properties; and
the mechanical, fire retarding, acoustic, and electromagnetic field (EMI) shielding performances of PS
composite materials. The development of composite materials from polystyrene and recycled waste
tires provides a novel avenue to achieve reductions in carbon emission goals and closed-loop plastic
recycling, which is of significance in the development of circular economics and an environmentally
friendly society.

Keywords: waste tire; carbon black; textile fiber; polystyrene; waste rubber recycling

1. Introduction

Polymers, commonly named plastics, have become widely used as a consequence of
their low cost and favorable properties, and it is estimated that by the year 2050 their total
production will reach above 500 million tons. This ever-increasing production, combined
with our desire for disposability and poor infrastructure, has led to a plague of plastics
in our environment [1]. Therefore, plastic pollution is currently a big and challenging
issue throughout the world [2,3]. Among the accumulated polymer waste, polystyrene
(PS) waste represents around 8% of the total [4]. The incineration of PS plastic waste re-
leases significant carbon dioxide emissions and causes significant environmental pollution.
Therefore, designing high-performance PS composites to extend their lifetime has attracted
significant interest, aiming to reduce PS waste production and subsequently achieve carbon
emission reductions and carbon neutrality [5].

One drawback of PS is its low impact strength, and the toughening of PS for high-
performance PS composites is usually performed by blending PS with rubber elastomers,
such as ethylene–propylene rubber (EPR), natural rubber, and styrene–butadiene rubber [6].
However, the expense of synthetic rubbers, especially EPR, limits the practical applica-
tion of these composites, although the mechanical properties of PS can be improved with
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these rubbers. Therefore, it is of importance to develop new methods to tailor PS prop-
erties. Waste tires represent an important source of polymer waste. Ground tire rubber
is a recycled product that can be combined with PS to produce high-performance, waste
rubber-toughened PS composites [5]. These PS and waste tire rubber composites have
potential applications in thermal and acoustic insulation construction materials [7], asphalt
binders [8,9], packaging containers [10], and computer display shells. However, waste
tire rubber is not compatible with PS due to its three-dimensional cross-linking structure.
Surface modifications are needed to improve the interface interactions between rubber
particles and the PS matrix [11]. In addition to the rubbers in waste tires, carbon black ac-
counts for about 20 wt% of rubber tires and is an ideal conductive filler to tailor polystyrene
composites’ conductivity and anti-static properties. Additionally, composite materials of
rubber and polystyrene have low fire retarding properties, so additives are necessary to
tailor the fire retardancy of these polystyrene composites [12,13]. Moreover, by-product
textile fibers (5–15 wt% of tires [14]) recycled from waste tires make it possible to tailor the
acoustic insulation properties of recycled PS composite materials, which has intriguing
applications. According to a literature search, some review papers have been published in
terms of recycling waste tires via blending them with rubber elastomers [15], thermoplas-
tics [16], thermosets [17], and concrete [18]. However, for review papers on PS and recycled
waste tire composite materials, only one publication has been reported, according to our
knowledge, but this paper primarily focuses on the compounding parameters of PS/tire
rubber powder composites and their mechanical properties [19]. In addition, this review
paper has no mentions in terms of recycled carbon black and textile fibers from waste tires
or their effect the properties of PS composites, e.g., acoustic, fire retarding, and EMI shield-
ing properties. Although recycled waste tire rubber-modified thermoplastic and thermoset
composites, and high-performance PS composites using commercialized fillers instead of
recycled tire rubber fillers, have been reviewed, the scope of this review primarily focuses
on the development of high-performance PS functional composites via the utilization of
different types of recycled functional fillers from waste tires (carbon black, tire rubbers, and
textile fibers), especially carbon black and textiles, which are less mentioned in the literature
currently. These composite materials made from PS and tire rubbers, carbon black, or textile
fibers have potential for use as antistatic packaging materials and engineering wall panels
with fire retarding, thermal insulating, and sound-absorbing properties. Therefore, the
theme of this short review focuses on the recycling of functional fillers from waste tires
for the development of high-performance PS composites with enhanced mechanical, fire
retarding, electromagnetic field (EMI) shielding, and acoustic insulation properties.

2. Overview of the Recycling of Rubber Powders, Carbon Black, and Textile Fibers from
Waste Tires

A challenging issue faced by modern society is the constant increase of waste. In
particular, approximately 290 million tires per year, as rubber waste, are discarded in the
United States. However, these rubber waste products are non-biodegradable. Approxi-
mately 2 billion waste tires have accumulated in the United States, and these waste tires
in their long-term storage can easily cause health and environmental issues if they are
not managed in proper ways. The chemical toxicity and micro- or nano-particles from
waste tires have attracted attention, as these particles released in the marine environment
are potentially harmful for both ocean species and humans [20–22]. Therefore, it is a big
challenge to deal with these large amounts of waste. Conversion of waste tires into energy
by incineration is a straightforward approach for recycling waste tires, but the emission of
sulfur oxides and polycyclic aromatic hydrocarbons resulting from inefficient combustion
causes air pollution. High-temperature pyrolysis is an alternative and practical approach,
converting recycled waste tires into carbon black, pyrolytic oil, and gases, but the primary
limitation of pyrolysis is the generation of toxic hydrogen sulfide gas as a by-product.
Therefore, it is necessary to find a feasible solution to recycle and reuse these waste tires.
According to the literature, mixed rubber powders, carbon black, and textile fibers account
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for 90% of waste tires, so recycling of these waste materials is a primary theme [14]. As a
practical and widespread approach for recycling waste tires, the grinding process under
cryogenic conditions is an environmentally sustainable method of converting waste tires
into carbon black, tire rubbers, and textile fibers, which primarily includes three steps, as
shown in Figure 1. The waste tires are initially downsized into particles of 7–10 cm via
grinder blades and knives, followed by the separation of metallic fractions, in the first
step. Tire rubber granulates of about 2 cm are further processed in the second step. Finally,
pulverized rubber fractions are produced from tire residues and further separated from the
textile fibers and metal components by using pneumatic separators and electromagnets,
respectively [23].
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(2010) with permission from Elsevier Publishing Co. (Amsterdam, The Netherlands)).

Waste tires are composed of about 40–50 wt% of mixed rubbers in Table 1, includ-
ing styrene–butadiene rubber, natural rubber, and butadiene rubber, which can be ideal
elastomers to tailor the mechanical performance of thermoplastic materials. In terms of
price, waste tire rubbers have an advantage over new synthetic rubbers for the design
of composite materials, especially those from recycled resources. Carbon black, as the
second major component, accounts for 20–25 wt% of waste tires in Table 1. Recycled
carbon black from tires is composed of mixed carbon black, traces of steel, and inorganic
additives (such as calcium carbonate, silicon oxide, and zinc oxide) [4]. They have different
surface morphologies, particle sizes, and varied components compared to commercial
carbon black. The recycled carbon black usually has an irregular distribution in particle
size, and the chemical and morphological properties are obviously different from those of
conventional carbon black. The ash contents of recycled carbon black are relatively higher
too. Most importantly, the carbonaceous residues produced in the recycled carbon black
causes the deactivation and blockage of the carbon’s active sites. Nonetheless, recycled
carbon black has potential uses as reinforcing or conductive fillers in the production of
polymer composites and as pigments in the saturation of structural color materials. Waste
tire textile fibers, as a by-product of waste tires, account for 5–15 wt% in Table 1 [23].
However, the conventional ways of dealing with waste textile fibers, burying and burning,
cause ecological and environmental problems. Therefore, the recycling of textile fibers is a
challenging issue currently. Polyester and Nylon 6,6 are the main components in waste tire
textile fibers [25].
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Table 1. Typical compositions of tires [14].

Composition Passenger Cars Trucks

Rubber 47% 45%
Carbon Black 21.5% 22%

Fiber 5.5% -
Steel 16.5% 25%

Zinc Oxide 1% 2%
Additives 7.5% 5%

3. Surface Treatments of Waste Tire Rubber Powders, Carbon Black, and Textile Fibers
3.1. Surface Activation of Recycled Waste Rubber Powders

Due to the low reactive surface of waste tire rubber powders, the miscibility among
waste rubbers and thermoplastic resin matrix is low. Therefore, surface modification
of waste tire rubber powders is needed for enhancing the reinforcing performance and
tailoring composite properties.

Modifying the surface of waste rubber powders is primarily achieved through de-
vulcanization, chemical oxidation, high-energy electron treatment, coating, and grafting
polymerization to form polar groups (hydroxyl or carbonyl groups) for better compat-
ibility with thermoplastics. Devulcanization has been used to break the cross-linking
structure of waste rubber powders through mills and screw extruders in the presence of
devulcanization agents [26]. Thermomechanical and thermochemical devulcanization, as
two main methods, have been used to cleave the cross-linking structure of waste rubber
powders to improve their compatibility with thermoplastics [27]. Surface functionalization
of waste rubber powders has also been carried out by chemical oxidation, in addition
to physical modification approaches. Potassium permanganate [28], periodic acid [29],
nitric acid [30], sulfuric acid [31], and hyperchloric acid [32] have been used to oxidize
the surface of waste rubber powders for better interfacial adhesion with thermoplastic
matrixes. Moreover, the surface of waste rubber powders has been activated by high
energy radiation, such as gamma radiation, plasma, and corona radiation, in addition
to electron beam radiation [30,33,34]. These methods bring about better interfacial adhe-
sion of waste rubber powders and thermoplastic matrixes compared to neat waste tire
powder composites [34]. Furthermore, surface activation of waste rubber powders via
coatings of ethylene acrylic copolymer or maleated polypropylene has been introduced,
and the precoated waste rubber powders were uniformly dispersed in a thermoplastic
matrix [35,36]. Grafting polymerization, as another chemical modification approach, can
selectively modify the surface of waste rubber powders. Functionalization of waste rubber
powders has been studied through free-radical initiation or photo-initiation grafting poly-
merization in the presence of initiators and monomers. The most commonly used initiators
for free-radical polymerization are benzol and dicumyl peroxide, while ultraviolet energy is
usually used for photo-initiation polymerization in the presence of photo initiators or pho-
tosensitizers [37]. The aggregates of waste rubber powders are reported to be reduced after
grafting polymerization and, therefore, the interfacial adhesion of waste rubber powder
and thermoplastics is improved [37]. Therefore, the surface of waste tire rubber powders is
activated after physical and chemical modifications, and the enhanced interfacial miscibility
of modified waste tire rubbers and thermoplastic matrixes promotes certain mechanical
properties in the resulting waste tire rubber composites, e.g., styrene-grafted waste tire
rubber/polystyrene resin composites.

3.2. Surface Modification of Recycled Carbon Black

The carbon black derived from waste tires is much different from commercial carbon
black. It is composed of large particle sizes, inertia surface activities, and high mineral
or inorganic contents. Therefore, it is necessary to tailor its surface properties for carbon
black composite materials. With mineral or inorganic residues on the surface of recycled
carbon black, demineralization with a bases or acids is a necessary step to activate its
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surface. Removal of impurities from its pyrolytic char is usually conducted by concentrated
acids. For instance, removal of minerals was investigated via the acid treatment method
on recycled carbon black surfaces [38]. A demineralization rate of up to over 90% with
hydrochloric acid and hydrogen fluoride mixed acids is further reported [24]. Recycled
carbon black treated by nitric acid also makes it possible to remove the deposition of
carbonaceous and inorganic materials [39]. However, the waste gas and acid produced
during these harsh acid treatments leads to environmental pollution. To further optimize
the acid treatment protocols, sulfuric acid and sodium hydroxide treatments of recycled
carbon black have been investigated [40], and its surface areas are enlarged, in addition
to the improvement of its structures. Reusing alkali and acid solutions also reduces the
waste gas emissions to some degree, while the environmental pollution issues cannot
be completely addressed. Thus, it is highly desirable to develop an efficient and clean
technology to remove impurities for utilizing recycled carbon black at high efficiency, e.g.,
plasma. For instance, plasma treatment with three carrier gases has been investigated to
improve the surface activities of recycled carbon black and reduce its average particle size,
as shown in Figure 2 [41].
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3.3. Surface Treatments of Recycled Textile Fibers

As the recycling of textile fibers from waste tires is in its infancy, few works about
surface treatments of textile fibers for tailoring the interfacial miscibility of their composites
have been published. Like surface treatments of waste tire rubbers, acid oxidation treat-
ments have been studied to tailor textile fiber surface properties. Physical plasma treatment
technologies are also utilized to enhance surface properties, in addition to chemical modifi-
cations. For instance, free radicals produced via plasma treatments of textile fibers lead
to the production of functional groups and form bonds between fibers and thermoplastic
matrixes [43].

4. Waste Tire-Derived, Recycled Filler-Tailored PS Composites
4.1. Mechanical Properties

PS is brittle, with relatively low impact strength compared to other thermoplastics,
such as high-impact polystyrene and acrylonitrile butadiene styrene. Different types of
synthetic rubbers, such as styrene–butadiene rubber (SBR), natural rubber (NR), ethylene–
propylene–diene monomer (EPDM), and ethylene–propylene rubber (EPR), have been
studied to improve the mechanical properties of PS. EPDM elastomers have been used to
toughen PS via in situ polymerizations and blends. The impact strength of a PS-grafted
EPDM copolymer synthesized via a bulk polymerization technique was increased by
80–170% compared to that of PS [44]. The increased impact strength of PS/EPDM blends
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was also achieved after the addition of divinylbenzene, trimethylolpropane triacrylate,
and styrene–butadiene–styrene block copolymers [45,46]. For toughening PS with NR, the
main concerns are about compatibilizers and processing techniques. The compatibility
of PS/NR blends was improved after the addition of a compatibilizer PS-grafted NR
copolymer [47]. In addition, using SBR and EPR elastomers to toughen PS has been studied
as well. The impact strength of PS was improved with the addition of a SBR-grafted PS
copolymer [48]. The toughness of PS/EPR blends was also improved after the addition of
compatibilizers [49]. However, the expense of synthetic rubbers, especially EPDM and EPR,
limits the practical application of these composites, although the mechanical properties
of PS have been improved with these rubber elastomers. Therefore, it is of importance to
develop new methods to improve the mechanical properties of PS.

The waste tire-derived rubber powders are ideal elastomers for tailoring the mechan-
ical properties of PS materials, especially impact strength. The mechanical properties of
waste tire rubbers and PS composites in the literature are summarized in Table 2. Two
main strategies have been studied to tailor the mechanical properties and miscibility of PS
and waste tire rubber powder composites; namely, the addition of compatibilizers and the
surface modification of waste tire rubber powders. For the compatibilizer method, compat-
ibilizers are physically blended with waste rubber powders and thermoplastics to improve
the compatibility of components. For instance, polystyrene grafted styrene–butadiene
rubber was synthesized via emulsion polymerization and then used as the compatibilizer
in waste tire rubber powder and PS blends [6]. The interfacial adhesion of blends was
improved with a typical discontinuous–continuous morphology, and enhanced tensile
strength and impact strength were achieved via the addition of compatibilizers. Similarly,
styrene–butadiene–styrene block copolymer, as a compatibilizer, was used for high-impact
polystyrene/ethylene vinyl acetate copolymer/waste rubber powder composites [50]. An-
other way is by the surface modification of waste tire rubber powders. For example, waste
tire rubber powders were graft-modified with styrene by the conventional radical polymer-
ization method [51]. The impact strength of waste tire rubber and PS blends with a content
of styrene–g–waste tire rubber of 25 wt% had a nearly 4-fold increase compared to that
of neat PS. It can be explained that the polar groups of graft-modified rubber powder by
styrene were similar to that of PS, and the main role of grafted short-chain PS was to act as
an interfacial agent which contributed to the improved compatibility between waste tire
rubber powder and PS.

Table 2. Mechanical properties of PS and recycled tire rubber composites.

Rubber Content of PS
Composites

Impact
Strength

Tensile
Strength

Bending
Strength Hardness Elongation

at Break

EPS-Tire Rubber
[52]
10 wt% a

30 wt% a

+

35% b

55% b

+

40% b

8% b

NA

NA
NA

NA

NA
NA

+

27% b

50% b

PS-Waste SBR
[53]
20 wt% a

50 wt% a

+

38% b

65% b

−

26% b

59% b

NA

NA
NA

−

5% b

12% b

NA

NA
NA

HIPS-Tire Rubber
[54]
10 wt% a

30 wt% a

−

66% b

76% b

−

44% b

50% b

−

59% b

46% b

NA

NA
NA

−

90% b

86% b

PS-Tire Rubber
[55]
5 wt% a

10 wt% a

−

61% b

69% b

−

18% b

26% b

NA

NA
NA

NA

NA
NA

−

34% b

43% b
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Table 2. Cont.

Rubber Content of PS
Composites

Impact
Strength

Tensile
Strength

Bending
Strength Hardness Elongation

at Break

PS-Tire Rubber
[42]
20 wt% a

60 wt% a

+

76% b

75% b

−

36% b

72% b

NA

NA
NA

NA

NA
NA

+

13% b

23% b

HIPS-Waste SBR
[56]
40 wt% a

80 wt% a

NA

NA
NA

−

46% b

63% b

NA

NA
NA

Constant

Constant
Constant

+

72% b

92% b

ABS-Waste Tire
[57]
20 wt% a

50 wt% a

PS-Tire Rubber
[6]
10 wt% a

30 wt% a

NA

NA
NA
+

33% b

20% b

−

40% b

78% b

−

36% b

58% b

NA

NA
NA
NA

NA
NA

NA

NA
NA
NA

NA
NA

−

23% b

26% b

NA

NA
NA

EPS: expanded polystyrene; HIPS: high-impact polystyrene; ABS: acrylonitrile–butadiene–styrene; NA: no data;
a tire rubber content in PS composites; b percentage increase or decrease in mechanical properties of PS/tire
rubber composites; +: increase; −: decrease.

4.2. Fire Retarding Properties

Low fire retarding performance is another issue of PS, as it is not a fire resistant material
with a low limited oxygen index (below 21%). The fire retardant performance of PS can be
improved by the addition of flame retardants. The most effective flame retardants for PS
are halogen-containing flame retardants [58]. For instance, poly(decabrominated diphenyl
ethers) and tetrabromobisphenol-A have been used [59,60]. However, they usually release
toxic gases and heavy smoke during combustion, so halogen-containing flame retardant
is not preferred at present due to environmental concerns. Therefore, development of
environmentally friendly halogen-free flame retardant is a new direction for PS. Additive-
type and reactive-type environmentally friendly halogen-free flame retardants are examples.
Although reactive-type flame retardants have better thermal stability and low toxicity, their
complex processing techniques and expense limit their wide utilization. Therefore, additive-
type flame retardants (inorganic and organic additive-type flame retardant), with relatively
low prices and simple processing techniques, are popular for improving the flame retarding
of PS.

Inorganic additive-type flame retardants have unique merits, in terms of better thermal
stability, low toxicity, and less emission of corrosive gases, in addition to their low price.
Montmorillonite, metal hydroxides (magnesium hydroxide and aluminum hydroxide),
and carbon black have been widely studied for PS fire resistance [61]. Compared to
commercialized carbon black, recycled carbon black derived from waste tires is ideal for
tailoring the fire retarding performance of PS materials. For instance, the limited oxygen
indexes of natural rubber (NR) and polypropylene (PP) increased (LOI) from 26 to 32 for
NR and 17.5 to 25.5 for PP after the addition of 5 wt% carbon black. The increased fire
retarding performance of an ethylene–vinyl acetate (EVA) composite with waste carbon
black derived from waste tires was also achieved. The possible fire retarding mechanism is
attributed to the scavenging of peroxy radicals by carbon black and a barrier established by
the oxidation cross-linking of the polymer matrix against both mass and heat transfer [62].
Although better fire performance of PS can be achieved, a high loading of an inorganic
additive-type flame retardant is required, which deteriorates the mechanical properties
of composites. Thus, the development of new fire additives is a priority for achieving a
trade-off in the mechanical and fire retarding performance of PS materials. A synergistic
flame retarding strategy enables better flame retarding for PS. Recently, polydopamine was
reported as a fire-retardant additive for polymer composites [63]. Therefore, polydopamine-
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coated carbon black and phytic acid-tailored carbon black are promising additives for PS
composites in terms of smoke releasing reduction and fire retarding improvement [64].

4.3. Conductivity and EMI Shielding Properties

With the advent of the 5G era, electromagnetic radiation pollution has received increas-
ing attention. Therefore, it is highly demanded to develop PS materials with excellent EMI
shielding performance to expand their applications. An excellent EMI shielding efficiency
is highly dependent on conductive fillers and conductive network structures. The primary
carbon fillers used to tailor the EMI shielding performance of PS materials are metals (Cu,
Al, etc.) and carbon fillers, such as carbon nanotubes, carbon fibers, and carbon black.
Compared to the EMI shielding performance of carbon fibers and carbon nanotubes, carbon
black has unique advantages in terms of its low price and widely available sources. There-
fore, carbon black as a conductive filler is frequently studied in conductive PS composite
materials [65]. Carbon black accounts for about 20% in waste tires and is an ideal alternative
for commercial carbon black for tailoring the conductivity properties of PS composites.
However, a high content of carbon black is required to achieve excellent conductivity and
EMI shielding performance. The high loading of conductive carbon black causes difficulty
its dispersion and aggregation in the resulting composite materials, in addition to obviously
decreased mechanical properties [66]. Additionally, a high loading of conductive fillers
raises composite processing issues. Therefore, it is urgent to investigate and develop PS
composite materials with high conductivity and outstanding EMI shielding performance
with the prerequisite of relatively low loadings of carbon black. The EMI shielding perfor-
mance of carbon black and PS composites is highly dependent on establishing a conductive
network structure, but it is a challenging issue to establish conductive network structures
to achieve a satisfying EMI shielding performance of carbon black-tailored PS composite
materials [67]. The primary approaches to designing the continuously conductive network
structures in carbon black composites involve emulsion templates, aerogel templates, and
3D printing. For the emulsion template method, PS emulsion particles work as the template
and carbon black conductive fillers function as the conductivity media. The conductive
fillers are encapsulated on the surface of PS particles via the self-assembly of carbon black
conductive fillers and PS emulsion particles. The organized micro- or nano-structure con-
ductive network is then established in the carbon black and PS composite material. Most
importantly, the emulsion template strategy enables the effective establishment of the con-
ductive network structures with a relatively low loading of carbon black conductive fillers.
Another promising approach to achieving a continuously conductive network structure
established with a low level of conductive fillers is the aerogel template method. Namely, a
conductive carbon black aerogel material works as the template, and a three-dimensional
conductive network structure is then established via the casting approach. Due to the
uniquely continuous and porous network structures of the conductive frameworks in car-
bon black aerogels, the ions and electrons can easily transport inside and impart composites
with excellent conductivity efficiency. In addition, 3D printing is another way to achieve
a unique three-dimensional conductive network structural design. Due to the technique
limitations, in terms of the recycling of carbon black from waste tires, studies about the
conductivity and EMI shielding properties of recycled carbon black composites are still less
reported currently. Therefore, of almost all previous studies on the mechanical properties
of recycled carbon black composite materials, few reports deal with their EMI shielding
and electrical conductivity performance. The electrical conductivity of waste tire rubber
powders containing carbon black is about 4.8 × 10−7 S/m [68]. Most importantly, the
addition of waste tires achieves the goal of the reduction of loading of conductive fillers
in conductive composites, as the carbon black in the recycled tire powders constructs a
unique conductive channel, thereby improving the overall performance of the resultant
carbon black composites, as shown in Figure 3. Therefore, the addition of waste tire rubber
powders makes it possible to tailor the electromagnetic shielding and electrically conduc-
tive performance of composite materials. For instance, the electrical conductivity of PS
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composites increased from 6.7 × 10−14 to 2 × 10−14 S/m as waste tire loading was at 5 wt%,
while PS composites with waste tire loading at 70 wt% had an obvious increase in electric
conductivity, reaching 4 × 10−13 S/m. [55]. In addition to carbon black, the trace amounts
of metals in waste tire-derived textile fibers also contribute to the conductivity and EMI
shielding performance. The coated trace metals in waste tire rubber and textile fibers are a
potential functional filler for tailoring the conductivity and EMI shielding performance of
PS composites. However, PS/metal composites derived from waste tires have almost no
reports, as the textile fibers recycled from waste tires only began to receive attention a few
years ago.
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4.4. Acoustic Properties

Noise pollution causes serious health issues, resulting from rapid urbanization and
industrialization, such as high blood pressure and stress. Therefore, it is urgent to improve
the sound insulation properties of PS composite materials. The acoustic characterization
of materials is based on their sound absorption coefficient. It is defined as the absorbed
energy in the absorbent divided by incident energy [69]. The sound absorption can be
calculated by the tube method according to the International Standard ISO10534 [70].
Natural fiber-reinforced polymer composites are of high interest for achieving excellent
acoustic properties at an affordable cost. For instance, variations in the noise absorption
coefficient of 0.2 were reached as the fine polyester fiber content in polyester composites
increased from 0 to 60 wt% [71]. Compared to the acoustic absorption and insulation of
polymer composites tailored by natural and synthetic fibers, the recycled textile fibers from
waste tires are attracting attention as an alternative for the development of acoustic and
insulation composite materials [72].

The use of waste tire textile fibers as absorbers has been studied in composite panels,
and the resulting composite panel materials with tire textile fibers had reduced acoustic
coefficients [73,74]. The trace amounts of metals in waste tire-derived textile fibers influence
the acoustic performance of their composite materials in sustainable building applications.
The tiny amounts of impurities also decrease their sound absorption coefficient in insulation
building applications [75]. PS and polyurethane (PU) foams are primarily for thermal
insulation building components. However, their sound insulation properties need to
be improved. For instance, the noise reduction coefficient of waste textile fiber-tailored
PU composite foam materials was increased twice compared to that of neat PU foam
materials [76]. In addition to foam materials, aerogels produced via freeze-drying and
supercritical carbon dioxide have unique properties. For instance, waste tire textile fiber-
derived aerogel materials cross-linked by poly(vinyl alcohol) had excellent sound insulation
properties, as shown in Figure 4 [77,78].
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fibers via a freeze−drying method (Thai et al. [77]). (Figure republished from Grammelis et al. [14]
(2021) with permission from Elsevier Publishing Co.).

5. Conclusions and Future Prospects

This review summarized the recycling of the main components of waste tires: rubber
mixture powders, carbon black, and textile fibers. Different surface treatment methods used
to tailor their surface activation for enhanced miscibility between PS and recycled func-
tional fillers are also summarized. Additionally, the functionality of PS composite materials,
in terms of their fire retarding, mechanical, EMI shielding, and acoustic properties, was
systemically studied as well. The recycling of tire waste textile fibers is still in its infancy,
with few works being reported. However, recycled tire textile fibers are ideal functional
fillers to tailor PS composite materials’ mechanical, tribological, and acoustic properties.
Recycled carbon black is a conductive filler, but the current literature work is still focused
on its reinforcement in composite materials, and the conductivity composite research needs
further development, especially in the structural, color, energy, and battery fields, e.g.,
carbon/quantum dots [79–83]. Waste tire-derived carbon black is an ideal anode material
for lithium- or potassium-ion batteries [79,84,85] and makes it possible, as an alternative to
commercialized carbon materials, for them to achieve comparative electrochemical perfor-
mance, e.g., long-term stability and reversible capacity. In addition, carbon dots converted
from waste tires are desirable for applications in room temperature phosphorescence ma-
terials and fluorescent sensors [82,86,87]. Further, recycled carbon black combined with
cellulose microfibril or nanocellulose are ideal materials for oil well cement and for drilling
muds or fluids in the oil and gas industry [88–90]. Our pioneering work was conducted
in terms of high-temperature or pressure drilling fluids combined with rheo-synchrotron
small-angle X-ray scattering (Louisiana State University, Baton Rouge, LA, USA), rheo-
small-angle neutron scattering (Oak Ridge National Laboratory, Oak Ridge, TN, USA), and
machine learning techniques [78,91]. However, the development of aqueous dispersions of
carbon black is currently still a big barrier for its mass-scale application in oil well drilling
materials. Inspired by the low-friction properties of carbon black/polydimethylsiloxane
composite cable materials, recycled carbon black is also an ideal lubricant material. The
development of sustainable tribology in elastomer sealants, cables, or bearing materials
for applications in extreme environmental conditions has attracted attention via combined
low- or high-temperature tribometers with in situ or ex situ synchrotron small-angle X-ray
scattering and aberration-corrected transmission electron microscope equipment (Argonne
National Laboratory, Lemont, IL, USA and Brookhaven National Laboratory, Long Island,
NY, USA) [4,92–94]. These materials primarily serve the US military (fighter aircraft or
aircraft carriers), US National Aeronautics and Space Administration, or Space Exploration
Technologies Corporation, SpaceX (Hawthorne, CA, USA).



Materials 2024, 17, 2675 11 of 14

As tires have four basic components, rubbers, textiles, carbon black, and metals, the
process of recycling waste tires, shown in Figure 1, is complex. The recycling of waste
tires via the grinding process under cryogenic conditions is a practical and sustainable
approach, as the utilization of cryogenic techniques makes it possible to reduce the energy
consumption of grinding and of further separating the reinforcing elements of textile fibers,
carbon black, and metals from tire rubber powders. However, it is required to maintain
an efficient low temperature in the machine chamber for the grinding process to recycle
waste tires, and the efficient separation of textile fibers from metals also poses a technique
barrier [95]. Therefore, some challenges and technique barriers need to be addressed before
recycling waste tires can be achieved at the industry level.
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