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ABSTRACT 

The electrodeposition of novel materials such as multilayer nanotubes for giant magneto 

resistance (GMR) applications and bismuth telluride nanotubes for thermoelectric applications 

are presented in this dissertation. The motivation for the multilayer electrodeposition is the 

investigation of giant magnetoresistance (GMR), a change in the material resistance in an applied 

magnetic field as a consequence of antiferromagnetic coupling. The nanowire high aspect ratio 

geometry allows the measurement of GMR with the current applied perpendicular to the plane 

(CPP) of the multilayers, which has been theoretically identified as being larger than the GMR in 

the (CIP) configuration (current in plane of multilayers). The current perpendicular to the plane 

giant magneto-resistance (CPP)-(GMR) effect makes multilayered nanowires of huge interest as 

magnetic sensor materials.  

Electrodeposition is the most efficient method for fabricating magnetic nanowires. In 

addition to the cost-effectiveness, electrodeposition is one of the few methods that can overcome 

the geometrical restrictions of inserting metals into very deep nanometric recesses, making it the 

favored method for nanowire and nanotube fabrication. In this dissertation, the quaternary 

CoNiFeCu alloy system was investigated in order to electrodeposit multilayered 

nanowires/nanotubes for GMR effect. Electrodeposited multilayer CoNiFeCu/Cu nanowires and 

nanotubes were fabricated by pulsed applied electric potential and their giant magnetoresistance 

(GMR) behavior characterized. The effect of electrolyte concentration on the GMR was 

investigated. The FeSO4, CoSO4 and NiSO4 concentrations were varied to optimize the GMR and 

the saturation field of the multilayered nanowires.  Nanolayer thicknesses were controlled and 

varied for commercially viable GMR results. Furthermore, the influence of electrolyte 

temperature on nanotube formation and the resulting GMR was explored. 



 xiv 

Micro fluidic magnetic nanoparticles sensors based on CoNiFeCu/Cu GMR nanowires 

were fabricated for the first time. The test results show that the sensors are highly sensitive to 

small nanoparticle concentrations. 

Employing the potentiostatic electrodeposition, nanotubes of bismuth-telluride (Bi2Te3) 

were obtained. The electrolyte concentration was varied and affected the nanotube formation and 

the resulting Seebeck coefficients. 



 1 

CHAPTER I. INTRODUCTION 

 
1.1 Introduction 
 

The growing need for high performance data storage media and sensing devices demands 

the development of innovative magnetic materials. As more information is packed into smaller 

volumes and all devices become smaller, nanotechnology tackles the critical limit that dealing 

with the quantum properties of matter. Nanofabrication refers to the ability to fabricate with 

nanometric scale precision structures having unique electronic properties that can be tailored by 

manipulating size, shape and composition. Currently there is tremendous interest for fabrication 

of nanostructured magnetic materials due to their unusual properties, which makes them 

interesting for applications in ultra-high-density magnetic recording and sensors. 

Electrodeposition also known as electroplating is one of the most efficient methods for 

fabricating metallic nanostructures. In addition to the cost-effectiveness, electrodeposition can 

overcome the geometric restrictions of inserting metals into deep nanometric grooves. For metal 

alloy fabrication the electrodeposition method eliminates the need of handling extremely 

different high vapor pressures as required by CVD techniques.  

A great deal of research interest is in the electrodeposition of iron-group metals because 

these cobalt-nickel-iron alloys possess superior soft magnetic properties that are needed in 

computer data recording and storage. Iron-group alloys are attractive materials for fabricating 

micromachined magnetic devices due to their favorable soft magnetic properties. For instance 

permalloy (Ni80Fe20) and orthonol (Ni50Fe50) are preferred due to their small coercivity, low 

anisotropy and practically no magnetostriction. Sensor and actuator applications need such 

magnetic materials that have low hysteresis (soft magnetic materials). A good soft magnetic 

material should have a large saturation magnetization to obtain a wide range of operation and a 
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high permeability to achieve high magnetization even under a low applied field. For higher 

frequency applications, soft magnetic materials with higher resistivities are needed to reduce 

eddy current losses. (Parky and Allen, 1998) 

In the last decade data storage capacity increased exponentially while decreasing the size 

of the magnetic grains that make up data bits, therefore increasing the recording densities. 

However, by shrinking the magnetic grains the read heads have to be even more sensitive to very 

small magnetic changes. The discovery of giant magnetoresistance (GMR) makes possible the 

reading of very high density hard drives which brought about a recent revolution in disk storage 

technology.  

Manufactured materials that show GMR are used for perpendicular magnetic recording 

and magnetic field sensors. These magnetic materials are good candidates for computer disk 

drives, audio-video tape heads, magnetometers, compass systems, etc.  

Currently, most magnetic drives read stored data using GMR-based heads. Based on its 

orientation, the small magnetic field of each particle on the disk affects the electrical resistance 

of the read head. When the magnetic layers of the head sense a magnetic moment signifying "1" 

the spins are aligned, and when it senses a "0" the spins are anti-ferromagnetically coupled.  In 

one position the electrical resistance is high, since the magnetic moments are not aligned, 

allowing only a small current to pass through the read head. On the other hand, the magnetic 

moment signifying “1” decreases the electrical resistance, letting a high current pass though the 

head. The shifting strengths of an electrical signal, as a result of changes in electrical resistance, 

allow the GMR read head to copy stored data to a computer. The GMR effect can also be used 

for position detection devices of objects that have permanent imprinted magnetization patterns. 

Robotics and assembly lines use position sensors that sense a change in a magnetic field due to 
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the movement of a magnetized object. GMR integrated fluidic sensors can be used to detect bio-

molecules and also provide a vehicle for the placement, detection and study of biomolecular 

interactions, in particular those with DNA. Other biological applications include magnetically 

assisted separations, high sensitivity biosensors and biochips for protein and DNA screening. 

GMR sensors possess higher sensitivity, better signal-to-noise ratios, and exhibit less mechanical 

wear since they could be considered contactless sensors. 

The giant magnetoresistance (GMR) property is described as a change in the material 

electrical resistance when an external magnetic field is introduced. This giant magnetoresistance 

effect is observed when ferromagnetic elements are layered with nonmagnetic elements like 

chromium or copper. The GMR theory proposed by Baibich et al. (Baibich, 1988) showed that 

an applied magnetic field changes the spin alignment of the ferromagnetic layer from antiparallel 

to parallel, resulting in a decrease of material resistance. GMR showing multilayered 

nanostructures are composed of alternating ferromagnetic and nonmagnetic nano-size layers.   

Improving the GMR property could be achieved by testing the addition of different 

elements in the magnetic alloy layer. Andricacos and Robertson (1998) showed that cobalt would 

increase the saturation magnetization while the copper addition could decrease the coercivity 

while improving corrosion resistance. The combination of cobalt and iron would yield a zero 

magnetostrictive alloy with a large saturation moment (Liao, 1987) Osaka et al. (2000) studied 

the relation between composition and magnetic properties of FeCoNi ternary alloys and found 

that soft magnetic materials with low coercivity had high cobalt content and fine grains. 

Sputtering techniques showed high GMR values for thin film FeCoNi alloy layered with 

Cu.  Jimbo et al. (1994) used the magnetron sputtering technique for layer deposition and found 

the CoNiFe/Cu thin film GMR to be very sensitive at low magnetic fields 16 % GMR at 50 Oe.  
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This GMR property can be further improved by fabrication of 3D nano-layered 

nanostructures with large aspect ratios. These high surface area nanostructures are almost 

impossible to produce by vacuum techniques.  Template electroplating has been widely used to 

make nanowires. The extreme shape anisotropy of nanowires permit the measurement of a 

special configuration GMR called current-perpendicular-to-plane (CPP-GMR). In thin film 

multilayers, only one kind of GMR measurement is possible and that is the current-in-plane 

(CIP-GMR) configuration. The mechanism behind the CIP-GMR is limited by the layer 

thickness, which has to be very small, comparable to the electron mean free path in order to 

exhibit GMR. The CPP-GMR is limited by another characteristic length called the electron spin 

diffusion length, which is several times larger than the electron mean free path. It was predicted 

that, since the CPP-GMR is governed by a larger electron travel length, it would yield a larger 

resistance drop compared to the CIP-GMR that is limited by the small electron mean free path.   

Dubois et al. (1997) showed that the electrodeposited multilayer nanowires exhibited larger 

GMR than the same electrodeposited thin films.  

After the discovery of GMR in 1988 by Baibich, multilayered films for GMR purposes 

were only achieved using expensive vacuum sputtering techniques, molecular beam epitaxy and 

melt spinning methods. These vapor deposition techniques showed large GMR values (70 % at 

room temperature and 130 % at 4.2 K) in thin Co/Cu multilayer films, Parkin [Parkin, 1995]. As 

a less costly fabrication alternative, in the past ten years the electrodeposition process has been 

shown to produce thin films exhibiting GMR. Ross [Ross, 1994] reviewed electrodeposition as 

an alternative technique for making multilayer films, and pointed out that electrochemical 

methods permit the manipulation of mechanical properties and orientation dependent properties.  

However, in comparison with thin films obtained by vapor techniques, electrodeposited films 
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showed lower GMR values. The reviewer mentioned that non-discrete layering, rough interfaces 

and heterogeneous growth could contribute to the lower values of GMR obtained by 

electrodeposition.  

However, electrodeposition finds a niche in assembling nanometric size structures in 

complex geometries and recessed areas, as with nanowires and nanotubes. Vapor deposition 

techniques are of little value when it comes to inserting metals into very deep recesses, such as 

nanoporous membranes. Electrodeposition is the easiest and most practical way of obtaining 

nanowires, by inserting metals in porous membranes.  

As the size of nano-magnets becomes comparable to characteristic magnetic length 

scales, the magnetic behavior is strongly affected. In the case of the ultra high density magnetic 

storage the bit lateral size needs to be as small as possible, but when the bit volume gets too 

small its magnetization changes reaching the super-paramagnetic limit. That is an undesirable 

state because the energy needed to switch the bit magnetization is less than the thermal energy 

[L.W. Wang, 2002]. A promising way to achieve the small lateral size, with relatively large 

volume and high magnetic transition energy is the nanowire geometry.  

1.2  Research Goal 

 In this study, we focus on the electrodeposition a particular category CoNi(Fe)/Cu of 

magnetic multilayered nanowires. Nanowires are structures of enormous surface area and aspect 

ratios (length to diameter), which confer upon them unique properties. Furthermore, due to the 

nanowire unique geometry, the GMR property can be measured in a perpendicular mode (CPP), 

which has been proven to show larger changes in electrical resistance with magnetic fields than 

the in-plane (CIP-GMR) [Pratt, 1991].  
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To the best of my knowledge, our lab is the first to examine the combined Co-Ni-Fe-Cu 

system of nanowires for GMR effect (Huang, 2004).  Therefore, the present work focuses on the 

quaternary CoNiFeCu/Cu electrodeposition in the form of multilayered nanowires and tubes 

using different pore size polycarbonate (PC) and aluminum oxide (AAO) membranes.  

The reason behind the choice of elements is the fact that Co-rich FeCoNi alloys are good 

candidates as soft magnetic materials and layering this magnetic alloy with copper could increase 

the materials resistivity, which can eliminate the contact effects and avoid eddy current 

interference. Our goal was to use a single electrolyte and to adjust the plating conditions in order 

to tailor the deposit composition, structure and properties. 

Magnetic properties of obtained nanowires were tested and related to changes in the 

electrodeposition operating conditions, such as applied potential and electrolyte composition. 

Moreover, this work shows how the electrolyte concentration and temperature affected the wires 

GMR. Microfluidic sensors using CoNi(Fe)/Cu nanowires GMR were fabricated and tested with 

different magnetic nanoparticles and ferrofluids.   
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CHAPTER II. LITERATURE SURVEY 
 
2.1 GMR Background  

The discovery of giant magnetoresistance (GMR) in 1988 by Baibich et al. (Baibich, 

1988) marked the beginning of an intense research topic in multilayered magnetic alloys and 

currently most computer read heads are using GMR materials. GMR is defined as a change of 

the solid-state resistance due to the magnetic field. Correctly the % GMR should be defined as 

100*[(R (in magnetic field) –R (no magnetic field))/ R (no magnetic field))]. In this case, since 

R(H) = Rsaturation, the GMR is bounded between 0-100 % and it does not exceed 100 %.  The 

study proposed by Baibich et al. showed that an applied magnetic field changes the spin 

alignment of the ferromagnetic layer from antiparallel to parallel, resulting in a decrease of 

material resistance. Baibich et al. observed this GMR phenomena on a superlattice of Fe 

(30Å)/Cr (9Å) deposited by molecular beam epitaxy. The antiferromagnetic (AF) coupling of the 

two adjacent Fe layers was the reason behind the GMR. When there is no magnetic field applied, 

the adjacent separated ferromagnetic Fe layers sense each other and naturally anti-

ferromagnetically (orient their electron spins in opposite direction). When an electric current is 

passed through the layers with opposite spin, the current carriers (electrons) will need to switch 

their spin when they pass through different oriented Fe layers and this additional energy of spin 

re-orientation increases the resistance. However, when the multilayers are placed in an external 

magnetic field, the spins in Fe magnetic layers are forced in the same direction, and the passed 

electric current would not have to spin flip in each encountered magnetic layer, consequently the 

material becomes less resistive for the passage of electric current. According to Mott (Mott, 

1964) electrical current is comprised of two distinct conduction channels, the spin-up and spin-

down s-p electrons, and the conductivity is different in the two spin channels. When a 
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perpendicular current is applied to a magnetic layer, the electrons with spin parallel to the 

magnetized layer (majority carriers) will be scattered less than the electrons with spin antiparallel 

to the magnetization layer (minority carriers). In the case of no applied magnetic field shown in 

Figure 2.1 schematic, the majority carriers are strongly scattered in every other magnetic layer, 

and the minority carriers are strongly scattered in alternating magnetic layers, therefore both 

carriers encounter higher net resistance. When a magnetic field is applied to this configuration, 

the electrons in all the ferromagnetic layers will orientate such that the majority carriers are not 

strongly scattered in any of the magnetic layers. The minority carriers are still scattered in all of 

the magnetic layers, but the net effect of this rearrangement is a lower resistance to the current 

passing through the multilayered material. 

 

 

 

 

 

 

 

 

 

 

Furthermore, the majority and minority electrons have different interface reflection coefficients, 

making the spin transport along the interfaces act as a torque on the magnetization. This torque 

aligns the magnetization according to the reflection coefficients. 

Figure 2.1 Antiferromagnetically coupled layers in no magnetic field: majority carriers become 
minority carriers in the adjacent magnetic layer  increased electrical resistance 
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Initially, physical methods such as sputtering, molecular beam epitaxy and chemical 

vapor deposition were the only methods to attempt fabrication of GMR multilayers. Focusing on 

thin film magnetic layers sandwiched with non-magnetic layers, Parkin [Parkin, 1995] reviewed 

the magnetoresistance dependence in layered structures. The reviewer emphasized the layered 

materials requirements to be used for magnetic data storage applications: magnetic stability 

against increased temperatures, no electromigration at high current density usage and minimal 

environmental corrosion. A decrease in GMR was observed when the alternating magnetic layers 

were not completely antiferromagnetically coupled, due to larger layer sizes or non-discrete 

layers. 70 % room temperature GMR was reported for Co/Cu thin films obtained by magnetron 

sputtering and 220 % GMR at 1.5 K. It is important to note that the definition of GMR varies 

between different authors. If the GMR is defined as 100*[(R(0)-R)/Rsat], where R(0) is the 

resistance at zero magnetic field and Rsat is the saturation resistance, then when R = Rsat it is 

possible that the GMR value goes over 100 %,   an inflated GMR. 

Ross [Ross, 1994] also reviewed magnetic thin films but focused on the electrodeposition 

process as an affordable alternative method of obtaining multilayer thin films. The 

electrodeposition advantages include the ability to tailor the deposit composition and 

crystallographic structure.  Ross also pointed out that electrolyte composition, pH, agitation and 

current regime affect the multilayer fabrication process. The reviewer, called attention to the 18 

% GMR at room temperature observed in the CoNiCu/Cu electrodeposited thin films. Aside 

from bath composition and deposition conditions, Ross mentioned that additives and the 

substrate choice seem to have an effect on the crystal nucleation and epitaxial growth.  In thin 

films, the GMR is measured with the electric current in plane of the multilayers, the so-called 

(CIP) configuration.  The characteristic length is the feature that controls the GMR effect, and it 
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differs in the two configurations, CIP and CPP (current perpendicular to the plane of layers). 

Valet and Fert (Valet, 1993) derived an expression which relates the electron mean free path (λ) 

to the spin diffusion length (L). Since the electron mean free path (λ) in CIP is about ~2 nm, the 

layer thicknesses in the CIP mode is critical. On the other hand, in CPP configuration, the larger 

spin diffusion length (~ 20 nm) allows for larger layer thickness and theoretically larger GMR. 

Experimentally it is difficult to measure CPP-GMR in thin films due to their very small 

resistance, but arrays of nanowires make this configuration readily accessible. The CPP 

configuration is conducive for tall and narrow geometries such as nanowires.  

2.2 Magnetic Nanowires Electrodeposition 

Not only does electrochemical deposition show promising results for multilayers fabrication, but 

it also has the capability to deposit metal onto curved and recessed areas, e.g. nanowires 

geometries.  

2.2.1 Multilayered Nanowires 

Piraux et al. (Piraux, 1994) was the first to take advantage of the multilayer nanowire 

geometry. They studied the Co/Cu system electrodeposited in polycarbonate membranes (PC) 

(40 nm pore diameter and 10 μm pore length), and reported the CPP-GMR to be 15 % at room 

temperature for (10 nm Co/10 nm Cu) layers. 

Concurrently, Blondel et al. (Blondel, 1994) looked at the Co/Cu and FeNi/Cu 

multilayers electrodeposited in nanowires. Blondel et al. also measured CPP-GMR at room 

temperature, and obtained a slightly higher GMR (14 %) for the Co/Cu system than for the 

FeNi/Cu system (10 %). Using PC membranes (80 nm pore diameter and 6 μm pore length), 

Blondel et al. tested different layer thicknesses and found that a larger GMR was shown for 

layers less than 10 nm.  
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Liu et al. (Liu, 1995) retested the Co/Cu system for layers in nanowires, and found 11 % 

CPP-GMR at room temperature, and 22 % CPP-GMR at 5 K. Testing two different kinds of 

polycarbonate membranes (30 nm pore diameter/ 6 μm pore length, 400 nm pore diameter /10 

μm pore length), Liu et al. utilized coulometric potential control electrodeposition as the method 

for fabricating nanowires. In the different CIP and CPP GMR measurements, they found that the 

nanowire CIP-GMR was temperature independent, while the CPP-GMR was especially sensitive 

to temperature.  Testing different Cu layer thicknesses ranging from 8 to 400 Å, they observed 

that the GMR effect becomes insignificant for Cu layer thicknesses exceeding the spin-flip 

diffusion length. For Cu layer thicknesses of (0.8 nm), the CPP-GMR was reported to be 22 % at 

low temperatures. The GMR as a function of Cu layer thicknesses showed two separate peaks, 

but no clear values were given. Liu et al. concluded that the CPP-GMR effect in nanowires was 

due to the layered arrangement combined with an extra interfacial resistance. Furthermore, the 

smaller diameter wires showed significant boundary scattering that could explain the larger 

observed GMR.  

Blondel et al. (Blondel, 1995) also studied the CPP-GMR in electrodeposited 

multilayered nanowires, using polycarbonate membranes (80 nm pore diameter/ 6 μm pore 

length). Blondel et al. sandwiched CoNi/Cu using a square pulsed potentiostatic technique, and 

obtained very smooth and flat layers. For equal magnetic and nonmagnetic layer thicknesses, the 

measured CPP-GMR was 20 % at room temperature.  Both the nonmagnetic impurity level and 

the strict interface control were presented as key factors in maximizing the GMR property.  

Wang et al. (Wang, 1996) prepared Ni/Cu multilayered nanowires using polycarbonate 

membranes (80 nm pore diameter/ 8 um pore length) as templates. Employing a potentiostatic 

pulsed scheme, Wang et al. observed the multilayers displaying a concave growth. A 
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disagreement between the pore diameter and the wire diameter was observed, which was 

explained as wire expansion during electrodeposition. Wang et al. also reported that the bilayer 

thickness increased as the wire grew when a potentiostatic pulsed scheme was used. 

To obtain pure layer nanowires, Blondel et al. (Blondel, 1997) implemented a dual bath 

technique electrodeposition, and then compared the results with the ones obtained from the 

single bath deposition. Analyzing the Co/Cu system and keeping both magnetic and nonmagnetic 

layer thicknesses the same, Blondel et al. reported 8 % GMR for 10 nm layers using the dual 

bath technique. On the other hand, Blondel et al. reported 22 % GMR for 8 nm layers obtained 

from the single bath electrodeposition. As a consequence, Blondel et al. concluded that the 

impurity of Cu in the Co layer, inherent in the single bath, was not the determining factor for the 

GMR effect. 

Dubois et al. (Dubois, 1999) compared the NiFe/Cu system with the Co/Cu system for 

the CPP-GMR effect in PC membranes. At 77 K, the 10 nm Co/ 5 nm Cu multilayered 

nanowires showed 30 % GMR, and the 12 nm Ni80Fe20 / 4 nm Cu had 65 % GMR. At an even 

lower temperature (4.2 K), Dubois et al. saw an increase of the CPP-GMR to 78 % for the 

NiFe/Cu multilayers. They did not report room temperature GMR.  

Simultaneously, both Schwarzacher et al. (Schwarzacher, 1997) and Heydon et al. 

(Heydon, 1997) researched a more complex combination of elements and were able to obtain 

multilayered CoNiCu/Cu nanowires in polycarbonate membranes. Schwarzacher et al. reported a 

maximum GMR of 22 % at room temperature for CoNiCu (50 Å)/ Cu (40 Å) multilayered 

nanowires in 80 nm pore diameter membrane. In the same study Schwarzacher et al. 

hypothesized that adding Ni to the bath reduced Co dissolution during the Cu deposition. In a 

later study, Huang and Podlaha (Huang, 2004) showed that Co dissolution during Cu deposition 
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could exaggerate the compositional gradient at the interface, making the layers less discrete. 

Even for thicker layers (5 nm CoNiCu/3.5 nm Cu) Heydon et al. showed 20 % GMR at room 

temperature. When the Cu layer decreased (2.4 nm CoNiCu/3.5 nm Cu) the GMR increased to 

22 % at room temperature.  

Comparing a typical multilayer arrangement Ni80Fe20 (12 nm)/Cu (4 nm) and a trilayered 

layer arrangement Ni80Fe20 (3 nm)/Cu (10 nm)/ Ni80Fe20 (3 nm) separated by 90 nm long Cu 

fragments, Piraux et al. (Piraux, 1997) observed a decrease in magnetic saturation fields for the 

trilayered nanowires obtained in aluminum oxide templates.  At low temperature (4.2 K) and 

high magnetic fields (9 T), 80 % CPP-GMR was obtained for the typical multilayered NiFe/Cu 

system, while a 19 % CIP-GMR, at low saturation fields, was observed for the trilayered 

nanowires. When the same GMR measurements were performed at room temperature, the MR 

decreased to a third (~ 26 %) of the low-temperature GMR value.    

Evans et al. (Evans, 2000) investigated the electrodeposition of CoNiCu/Cu multilayers 

in 20 nm pore diameter aluminum oxide templates. Using potentiostatic charge control to control 

layer thicknesses, they reported 55 % room temperature GMR and 115 % low temperature GMR, 

for sub-nanometric layer sizes CoNiCu (54 Å)/Cu (21 Å). Evans et al. concluded that the GMR 

observed in the AAO membranes was 2.5 times larger than the GMR obtained for a comparable 

system deposited in PC membranes. Their study also showed that sample annealing over 500 °C 

would reduce the GMR effect due to interdiffusion and recrystallization phenomena. 

Schwarzacher et al. (Schwarzacher, 2000) used 20 nm diameter pore AAO templates for 

electroplating multilayered nanowires. They pointed out that AAO pore size specification was an 

order of magnitude smaller than the observed pore diameter (200 nm).  Using galvanostatic 
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electrodeposition, Schwarzacher et al. achieved 60 % room temperature GMR for CoNiCu 

(5nm)/Cu (3nm) multilayered nanowires, although their result has not been reproduced.   

Garcia et al. (Garcia, 2002) showed that multilayered wires of extreme magnetic layer 

thickness, such as Co (170 nm)/Cu (10nm) and Co (25 nm)/Cu (190 nm) exhibited inconsistent 

magnetic states, having transverse and oblique magnetic domains. 

2.2.2 Alloy Nanowires 

Schwarzacher et al. (Schwarzacher, 1999) prepared heterogeneous CoCu nanowires in 

AAO templates (20 nm diameter) by galvanostatic electrodeposition. The researchers showed 

that, for heterogeneous nanowires, the coercivity decreased with annealing temperature and 

pressure, due to phase separation that generated larger Co-rich particle size. 

Fedosyuk et al. (Fedosyuk, 1999) also researched heterogeneous CoCu alloy nanowires 

grown in AAO membranes of 20 nm pore diameter. The alloy nanowires showed room 

temperature GMR of less than 1 %, which slightly increased after annealing. In their study, 

Fedosyuk et al. remarked that the GMR shape changed drastically when the field was applied 

perpendicular or parallel to the wire axis. The magnetic behavior dependence on the field 

direction demonstrated that the wires exhibit magnetic anisotropy. Furthermore, it was concluded 

that nanowire geometry greatly influenced magnetic properties. Fedosyuk et al. also commented 

on the AAO membrane temperature resistance compared to PC membranes, but they pointed out 

the difficulty of AAO nanowires examination due to the more complicated membrane 

dissolution. 

 Blythe et al. (Blythe, 2000) further investigated heterogeneous Co20Cu80 alloy grown by 

galvanostatic electrodeposition in the shape of nanowires, using two different sizes AAO 

membranes: 200 nm and 20 nm pore diameters. Their publication mentioned that heterogeneous 
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nanowire alloys showed GMR at room temperature, but they do not provide any values. Blythe 

et al. concluded that there was a non-uniform distribution of large and very fine magnetic 

clusters along the deposited alloy nanowire, which led to high anisotropy in the demagnetizing 

field.  Also, Blythe et al. mentioned that the high-ratio magnetic nanowires showed a broader 

range of magnetic clusters compared to a thin film of similar composition. 

Zhu et al. (Zhu, 2001) studied the effect of applied magnetic field during CoNi alloy 

nanowire electrodeposition in AAO templates (200 nm pore diameter). Their examination 

showed that the perpendicular applied magnetic field during electrodeposition not only reduced 

the (BH) saturation fields, but also enhanced squareness. In a different study, Zhu et al. looked at 

magnetic properties of FeNi nanowires with very high aspect ratios (>1000). The FeNi 

nanowires were electroplated in self-prepared AAO of highly ordered pores (43 nm pore 

diameters and 60 nm distance between pores).  Enhanced coercivity of 769 Oe and 70 % 

remanent magnetization was observed when the magnetic field was applied parallel to the wires. 

Wang et al. (Wang, 2001) analyzed the structure and magnetic anisotropy of 

compositionally modulated FeNi alloy nanowires electrodeposited in AAO.  Using XRD and 

Mossbauer spectroscopy, the obtained wires (16 nm diameter and 4 μm length) showed a 

polycrystalline structure along the (110) direction. The Fe component proved to have magnetic 

moments parallel to the wires in contrast to bulk Fe that had the (100) direction as the easy 

magnetization axis. The authors stated that the change in the preferred magnetization axis was 

due to the large shape anisotropy.  Moreover, Wang et al. confirmed that the Ni component 

showed a disordered placement along the wires.  

Pena et al. (Pena, 2001) researched the electrodeposition of multi-material (conductor-

semiconductor) nanowires, such as Au-CdSe-Ni-Au, Au-Ni-CdSe-Ni-Au, Au-CdTe-Au, and Au-
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CdTe-Ag-Au, using 200 nm pore diameter AAO commercial templates. The conductive and 

semiconductive elements were electrodeposited from separate baths; Au, Ni, Ag under 

galvanostatic control, while the semiconductors (Cd, Te, Se) were electrodeposited by cyclic 

voltammetry at a high scanning rate (750 mV/s) with a deposition rate of 2 A/scan. Pena et al. 

showed the ability to incorporate semiconductor portions along metallic wires, and investigated 

the respective changes in the electrical properties.  

Wang et al. (Wang, 2002) used an in-house prepared AAO membranes (60 nm pore 

diameter) to electrodeposit CoAg alloy nanowires and studied the annealing effect on magnetic 

properties. The coercivity was larger for the parallel magnetic measurements, and it also 

increased with increasing annealing temperature, due the isolation of single Co magnetic 

domains. A maximum parallel field coercivity of 183 Oe was reached at a critical maximum 

annealing temperature of 400 °C, after which the coercivity decreased sharply with temperature 

due to Co particle contraction. The perpendicular magnetic measurements showed much smaller 

coercivity values, and it did not improve with annealing temperature. Wang et al. concluded that 

CoAg alloy nanowires showed anisotropic coercivity that could be optimized with an appropriate 

annealing temperature.  

Qin et al. (Qin, 2002) investigated the annealing effect on coercivity and squareness of 

CoNi alloy nanowires electrodeposited in self-made high pore density AAO (20 nm pore 

diameter). Qin et al. observed that the crystalline difference of CoNi alloy grains from the bulk 

Co contributed a great deal to the magnetic behavior. The squareness was improved for high 

concentrations of Ni (>50 %) in the alloy. The parallel field coercivity saw a maximum of 950 

Oe for low Ni content (>10 %), and decreased with higher Ni content.  Qin et al. concluded that 

the annealing treatment lowered the coercivity values but increased squareness.  
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Wang et al. (Wang, 2002) revised the structural profile and magnetic behavior of 

Ni50Cu50 alloy nanowires electrodeposited in high aspect ratio AAO (50 nm diameter/ 50 μm 

length). Parallel magnetic anisotropy was observed. The author pointed out that the Ni atoms in 

the NiCu alloy wires did not show a proportional, structured placement pattern because the wire 

electrodeposition was not at steady state. 

Khan and Petrikowski (Khan, 2002) investigated the Co and CoFe alloy nanowires 

electrodeposited in AAO, and compared the wire magnetic properties to the thin film alloy of 

similar composition. High aspect ratio CoFe nanowires (18 nm pore diameter and 3 μm length) 

were obtained, and were compared to the 1-2 μm thin films electrodeposited on Cu substrate 

from the same electrolyte. The Co90Fe10 alloy nanowires held the highest parallel coercivity 

(2275 Oe) followed by the Co only nanowires that showed a smaller coercivity (1188 Oe). 

Conversely, the Co only thin film had a larger perpendicular coercivity (288 Oe) than the 

Co90Fe10 thin film (187 Oe), while all the nanowire cases had significantly higher coercivity 

compared to the thin films. A latter study, (Khan and Petrikowski, 2002) showed that parallel 

magnetic anisotropy, coercivity and squareness decreased drastically with increasing pore 

diameters (HcCo90Fe10 = 2275 Oe (18 nm pore diameter) and HcCo90Fe10 = 723 Oe (78 nm pore 

diameter)).    

In a different study, Fodor et al. (Fodor, 2002) researched compositionally modulated 

CoFe alloy nanowires in AAO. They observed that at low Fe concentration in the alloy (< 10%), 

the cobalt crystalline arrangement changed from HCP to FCC, while at higher concentrations of 

Fe (>15%) the cobalt crystalline arrangement switched to a BCC structure. The largest observed 

coercivity (2150 Oe) was measured for a Co45Fe55 alloy, which had no crystal anisotropy (BCC 

arrangement). Fodor et al. mentioned the significant magnetostatic interactions between wires, 
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which could be explained by dipolar stray fields opposing each other and reducing the field 

necessary to reverse magnetization.  

Ross et al. (Ross, 2002) reviewed alloy nanowires obtained by a combination of interface 

lithography and electrodeposition. The electrodeposition takes place inside a porous polymer 

layer (57-180 nm pore diameters) set on a silicon wafer coated with gold. After 

electrodeposition, cylindrical geometries (300 nm tall) were obtained after the template removal. 

Magnetic Force Microscopy (MFM) proved that small diameter structures showed high remnant 

magnetization, vital for information readback processes. In contrast, the large diameter wires 

showed low remanence.  Ross et al. pointed out that magnetostatic interactions between wires 

controlled the magnetic behavior of highly packed arrays, which generated instantaneous 

demagnetization. Ross et al. concluded that larger coercivity values, which were needed to avoid 

instantaneous demagnetization, were obtained for single domain structures observed only in 

small diameters wires. 

Sellmyer et al. (Sellmyer, 2001) summarized in review the influence of electrolyte 

additives on the coercivity and squareness ratios of alloy nanowires. They showed that coercivity 

increased linearly with increasing Fe content in Ni-Fe alloy nanowires. In the same review, 

Sellmyer et al. mentioned that the addition of Cu and phosphorous to the Fe nanowires decreased 

their coercivity under 1000 Oe.  

Very recently, Bai and Hu (Bai, 2003) reported making FeCo and FeCoNi alloy 

nanowires by cyclic voltammetry and pulse reverse electrodeposition. Surprisingly, Bai and Hu 

did not use any porous membrane for electrodeposition. Bai and Hu explained that the anodic 

cyclic voltammetry guided the formation of nanowires on a flat Cu plate. Furthermore, adding Ni 

to the electrolyte showed an increase in the wire diameter.  
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2.2.3 Elemental Nanowires 

Ounadjela et al. (Ounadjela, 1997) studied the magnetic properties of Co nanowires 

electrodeposited in polymer membranes (PC) of various pore sizes and observed strong magneto-

crystalline anisotropy perpendicular to the wire axis. Ounadjela et al. also pointed out that in 

small diameter nanowires, Co acts as a single domain structure with the easy axis parallel to the 

nanowire axis. 

Piraux et al. (Piraux, 1997) realized a comparative study of ferromagnetic Co, Ni, Fe 

nanowires grown by electrodeposition in polycarbonate membranes of various pore diameters, 

ranging from 30 to 500 nm. Using low porosity membranes for low dipolar interactions, the 

researchers observed that all Co, Ni and Fe nanowires exhibited an increase in coercivity as the 

pore diameter decreases. However, for Co and Ni nanowires, the remanent magnetization 

decreased with pore diameter, which suggests that wires split into domains when the pores were 

large. In the case of Co only nanowires, the shape anisotropy competed with the crystal 

anisotropy, which led to a specific magnetic behavior. Piraux et al. concluded that Ni and Fe 

nanowire magnetic properties were governed by the shape anisotropy. 

Schwanbeck and Schmidt (Schwanbeck, 2000), using both porous aluminum templates 

and polycarbonate membranes, tested different electrolytes and examined the influence on 

magnetic properties of Co nanowires. Initially, in the non-steady-state fraction of the 

electrodeposition, galvanostatic control was employed until the voltage reached a constant value 

at which time the potential was controlled. The authors observed that the growth of nanowires 

inside the membrane stopped if some of the nanowires reached the surface. The boric acid (pH 

3.7) bath yielded the least coercive nanowires in comparison to the propionic acid (pH 6.7) and 

maleic acid (pH 6.8) baths. The nanowires obtained in AAO membranes of 200 nm pore 
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diameter showed similar magnetic results in both perpendicular and in-plane measurements. The 

nanowires grown in PC membrane (100 nm pore diameter) showed higher coercivity for the in-

plane measurements compared to the perpendicular to the wire axis measurements.  

Interested in data recording materials, Ge et al. (Ge, 2000) studied the perpendicular 

magnetic anisotropy of high-density surface distribution Co nanowires electrodeposited in 

polycarbonate membranes.  Using 400 nm pore diameter membranes, Ge et al. applied a 

magnetic field during the potentiostatic electrodeposition of the nanowires, and different results 

were obtained when the electrodeposition magnetic field was perpendicular or parallel to the 

membrane plane. Significant differences in the crystalline structures were observed as a function 

of magnetic field direction. When the magnetic field applied during the electrodeposition was 

perpendicular to the membrane, the magnetic anisotropy was enhanced. Furthermore, the 

perpendicular magnetic field led to a larger coercivity and improved squareness due to a 

preferred growth direction of the Co crystal under magnetic field influence. Ge et al. showed that 

the Co particles deposited in the pores would have random crystallographic orientation without 

an applied magnetic field that would force the cobalt grain axis along the applied magnetic field, 

resulting in a stronger structure.  

Garcia et al. (Garcia, 1999) investigated the electrodeposition and magnetic behavior of 

Co nanowires arrays in AAO templates (200 nm pore diameters). From the hysteresis loops 

(BH), Garcia et al. concluded that even though the Co nanowires arrays showed magnetic 

anisotropy with the easy axis parallel to the wires, the coercivity was a minimum in that 

direction. In their study, Garcia et al. demonstrated that the decrease in coercivity was due to the 

magnetic interactions between the nanowires.  
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Thurn-Albrecht et al. (Thurn-Albrecht, 2000) showed a different method of making 

nanowires by electrodeposition into self-assembled copolymer templates. Starting with self-

assembled diameter diblock copolymers of polystyrene and polymethylmethacrylate (PMMA), 

after annealing, applied electric field, and deep ultraviolet exposure, the resulting polymer film 

contained 14 nm diameter pores inside which Co and Cu nanowires were successfully 

electrodeposited. Magnetic properties of the obtained Co nanowires showed that array regularity 

had a tremendous effect on the coercivity. According to their study, highly irregular arrays 

showed accidental spin switching, so-called recording media noise. Thurn-Albrecht et al. 

concluded that the self-assembled copolymer method could overcome the nanowires’ disorder 

observed in PC membranes that led to decreased coercivity.  

Valizadeh et al. (Valizadeh, 2001) investigated the concentration distribution of Co 

during the electrodeposition of Co nanowires into PC membranes (250 nm pore diameter and 20 

μm length). During wire growth, Valizadeh et al. could identify two separate electrodeposition 

regions: at the bottom of the membrane (short time) and almost filled pores.  Valizadeh et al. 

determined that, for short times, the limiting current was given by Cottrell’s expression (ilim~ t –

1/2), and the Co diffusion coefficient was calculated to be DCo= 2.5*10-5cm2/s. At longer times, a 

steady state diffusion controlled current, obtained by the overlapping of the individual nanowires 

diffusion zones, was given by a different expression (ilim~ 1/(r+L)). Investigation of the magnetic 

properties of Co nanowires showed improved coercivity values compared to bulk Co, with a 

preferred magnetic field parallel to the wires axis. Valizadeh et al. concluded that for large 

diameter wires, multi-magnetic domains were present when there was no exterior magnetic field 

applied.   
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Almawlawi et al. (Almawlawi, 1991) fabricated Fe nanowires by AC electrolysis 

deposition into self-prepared AAO templates of different diameters, ranging from 20 to 180 nm. 

For the magnetic characterization of the Fe nanowires, Almawlawi et al. concluded that 

nanowire coercivity strongly depended on the wire aspect ratio and less on the membrane pore 

density. Furthermore, Almawlawi et al. pointed out that Fe nanowire coercivity showed no 

anisotropy, being only a function of the aspect ratio. 

Vila et al. (Vila, 2002) were the first to investigate the magnetoresistance (MR) and 

magnetic transport behavior of isolated Co nanowires. After being electrodeposited in PC (60 nm 

diameter pore) membrane, the Co wires were removed from the membrane and Electron Beam 

Lithography (EBL) was used to make contacts along individual wires. EBL gave the capability 

to obtain information on different segments along the same wire.  From the AMR (Anisotropic 

Magneto Resistance) measurements of a single Co nanowire, Vila et al. concluded that the 

remanent magnetization did not depend on the direction of the applied field. Moreover the 

remanent magnetization was much different along the same wire, which could explain the 

vanishing magnetoresistance problems and resistance jumps observed when the measurements 

cover an array of micron long wires.  

Garcia et al. (Garcia, 2002) reviewed the MFM (magnetic force microscopy) studies done 

on nanowires, and emphasized that Co nanowires, 35 nm in diameter, revealed single magnetic 

domains. Larger diameter wires showed multiple magnetic domains, which caused magnetic 

disorder.  In their study they emphasized the use of nanowires as MFM probes.  

In a recent review, Sellmyer et al. (Sellmyer, 2001) analyzed transition metal arrays of 

nanowires electrodeposited in self-assembled aluminum oxide membranes.   They concluded that 

porous aluminum oxide templates, obtained by electrochemical anodization of aluminium in 
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acidic electrolytes, were excellent mediums for nanowires electrodeposition due to high pore 

density, uniform pore distribution and high aspect ratios. Sellmyer et al. showed that large aspect 

ratio Co, Ni and Fe nanowires showed magnetization anisotropy, having an easy magnetization 

axis along the wires axis and 0.9 remanence ratios. The maximum coercivity was shown by Fe 

nanowires (3000 Oe), followed by Co nanowires (2600 Oe) and lastly by Ni nanowires (950 Oe). 

In their review, Sellmyer et al. highlighted the crucial effect of wire imperfections that led to a 

curling behavior, controlling the nanowire coercivity and magnetic viscosity. Using a magnetic 

model simulation, Sellmyer et al. also showed that the demagnetizing field could be attributed 

the wire interactions.   
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CHAPTER III. NANOWIRES ELECTRODEPOSITION 
 

Arrays of nanowires were electrodeposited by filling up the porous template that served 

as the cathode in the electrochemical set-up. A 3D substrate schematic is shown in Figure 3.1 (a). 

Two types of commercially available porous membranes or substrates, polycarbonate (PC) 

Millipore IsoporeTM and aluminum oxide (AAO) Whatman Anodisc were used to deposit 

nanowires. The polycarbonate membrane fabrication involves a nuclear track etch process, 

which arises from a bombardment of the polycarbonate film with high-energy particles which 

produce the paths which later are etched in different chemical baths. This etching process 

determines the size of the pores. Typical available pore sizes range from 20 nm to 14 µm and a 

thickness of 6 μm. Figure 3.1 (b) shows a SEM picture of a commercial PC membrane, with a 

reported pore size of 800 nm.  Although the pores seem to have similar diameters, the pore 

placement is random. In addition, a common problem with PC membranes is frequent pore 

fusion, but the internal stress in the plated metal nanowires is low due to the polymer elasticity. 

Anopore Aluminum Oxide (AAO) membranes were also employed as templates for nanowire 

electrodeposition.  AAO filter preparation involves an anodic potential applied to aluminum foil 

in an acidic environment.  

 

 

 

 

 

 

 

Figure 3.1 Membranes (a) 3D schematic (b) SEM of polycarbonate (c) SEM of AAO 

(a) (c) 

(b) 
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Under electrochemical control, the membrane pores could be controlled. Figure 3.1 (c) shows a 

SEM picture of a commercial AAO membrane, with a reported pore size of 200 nm and 60 μm 

in length.  Commercially available Anopore AAO membranes having 20 and 200 nm pore 

diameters were used in our experiments. The membrane serving as the cathode was fixed inside a 

stationary polyetheretherketone (PEEK) holder exposing a square area of 2.25 cm2 of the 

membrane. At the cathode the metal reduction takes place and metal deposits according to:  

Mn+ + n e-  M(s)  

The electrodeposition occurs when an electric current passes though an ionic solution 

(electrolyte) Figure 3.2 illustrates the three-electrode cell set-up used in this study. A platinum 

mesh was used as the anode (or counter electrode).  
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A saturated calomel electrode (SCE) functioned as the potential reference.  Since the membrane 

is not conductive by nature it was sputtered with gold on one side for electrical contact.  

Different electrolyte recipes and plating schemes were investigated for the nanowire 

deposition. Both constant potential plating and pulsed potential plating were carried out with a 

computer controlled Solatron function generator (model SI  1287). Electrolyte polarization 

studies, cyclic voltammetry at different sweep rates and impedance measurements were also 

carried out using the Solatron (model SI 1255B).  

The electrodeposition process is stopped when the wires reached the top of the 

membrane, which is indicated by a sudden increase in the plating current. The typical behavior 

of nanowire growth is shown in the Figure 3.3 that displays the three different stages of the 

nanowire growth process. During the first stage of wire growth in the membrane the metal is 

getting deposited inside the pores while the reduction current takes on a value of 13 mA/cm2 and 

the wires growth proceeds in the pores until they fill up completely the membrane and reach the 

top of the membrane. Beyond this point if the deposition continues the current rapidly increases 

since the effective electrode area increases. For instance Figure 3.3 shows the actual current 

response when CoNiCu alloy nanowires were plated inside AAO membrane using -1.9 V vs. 

SCE as the controlled potential. Mushroom like hemispherical caps form on top of the wires if the 

deposition continues after the pores fill up like in the 3rd stage of deposition shown in Figure 3.3. The 

current arrives at a semi-steady state when the nanowires reach the top of the membrane, after 

10000 s.  Between 5000 and 10000 s, the wires have reached the top of the membrane. The area 

of the metal deposition is increasing so the current is also increasing. Below 5000 s, the all the 

metal deposit is going inside the membrane.  
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Figure 3.4 shows the general schematic of nanowire electrodeposition inside porous membranes. 
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Two main kinds of electrodeposition techniques were employed in making nanowires: (1) 

constant potential control was used for making elemental and alloy nanowires and (2) pulsed 

potential for making alternating layers of Cu and CoNi(Fe) alloy. The schematic shown in Figure 

3.5 displays the basic concept behind depositing alloy or layered nanowires.  Figure 3.5 (a) 

illustrates the constant potential electrodeposition method used making elemental (Cu) or alloy 

nanowires. Multilayered nanowires were obtained by stepping the potential between the Cu 

reduction potential (-0.4 V) and the CoNiFe alloy potential, as shown in Figure 3.5 (b). Layer  

 

thicknesses could be controlled strictly by changing the layer deposition time. For a typical 20 

μm-thick AAO membrane, the number of bilayers required depended on the thickness of the 

layer sizes. For example, approximately 2400 bilayers were needed to reach the top of the 

membrane when the Cu reduction potential was -0.4 V for 20 s and the alloy conditions were -

1.5 V for 1 s.  The potential selection for the Cu layer and alloy layer was based on my previous 

MS work.   

In order to release the nanowires for further investigation, the polycarbonate membranes 

were soaked in dichloromethane, and the aluminum oxide filter were exposed to 1M NaOH 

solution for 1h. After dissolving the membrane, the arrays of nanowires were imaged using 

alloy (CoNiFe) 
nanowires 

Time (s) Time (s) 

Constant Potential  

- 1.5 V 

-0.4 V 

Pulsed Potential 

- 1.5 V
 

alloy  
layer Cu layer 

Time (s)

Figure 3.5 Electrodeposition techniques for making nanowires 
(a) constant potential for alloy or elemental nanowires (b) pulsed potential for multilayered nanowires 

(a) (b)
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Scanning Electron Microscope (SEM-JEOL JSM-840 operated at 20 kV) and Transmission 

Electron Microscope (TEM JEM-100CX operated at 100 kV). The SEM technique scans the 

specimen with a focused beam of electrons and produce secondary electrons that are detected 

and converted into an image. TEM examination involves passing the electron beam through the 

sample and can obtain a higher magnification than the SEM technique.  The electrons’ very short 

wavelength makes it possible to obtain high resolution. The SEM was used to inspect arrays of 

nanowires, while the TEM was utilized to examine nanowire layers and nanotube formation. 

Figure 3.6 shows electron microscope images of different types of nanowires. Figure 3.6 

(a) shows a low magnification SEM image of CoNiFeCu alloy nanowires obtained in 50 nm pore 

PC membranes. In this micrograph the wires were held together by the Au sputtered side of the 

membrane since the membrane was only partially removed. Figure 3.6 (b) shows a SEM image 

of elemental Cu nanowires obtained in 20 nm pore AAO membranes after dissolving the 

membrane using 1M NaOH.  Figure 3.6 (c) shows a TEM image of CoNiFeCu alloy nanowires 

obtained in 50 nm pore PC membranes when the membrane was completely removed. These 

CoNiFeCu alloy nanowires were 150 nm in diameter and about 5-micrometer in length.  Figure 

3.6 (d) shows a SEM image of CoNiFeCu alloy nanowires when the AAO membrane was 

completely removed and the wires lay disorientated on the SEM Cu tape. Figure 3.6 (e) shows 

multilayer nanowires from a colloidal suspension obtained after completely dissolving the 

polycarbonate membrane and collecting the wires on carbon grids. When making multilayers, the 

CoNiFeCu alloy layer potential was controlled at -1.9 V for a period of 20 s. The TEM 

micrograph shows that for 20 s of deposition at –1.9 V the alloy layers came out to be 200 nm 

thick. The lighter layers are pure Cu deposited using a potential of -0.5 V for 200 s, yielding 20 

nm thick Cu layers. The TEM micrograph also shows that the layer thickness changed along the 
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wires, being smaller at the bottom and gradually increasing towards the top of the membrane.  

This change in layer thickness along the wires could be caused by changes in the diffusion layer 

thickness.  

Compositional analysis of the nanowire arrays was obtained using Energy Dispersive 

Spectroscopy (SEM-EDS) and X-Ray Fluorescence (XRF KEVEX Omicron). SEM-EDS 

provides a qualitative composition analysis, which uses a stream of high-energy electrons to 

knock off inner shell electrons. On contact, electrons from a higher energy level lose energy 

filling in the vacancies left. The energy conservation principle dictates photon creation. The 

released photon energy will be equal to the difference of the two exchanged energy levels. Since 

these energy levels are unique for an atom type, the released photon will be characteristic of the 

type of atom from which it was emitted. Therefore, from the released photon energy, the sample 

composition is determined. SEM-EDS analyses a spot size of about 1μm. 

 

 

 

 

 

 

XRF was employed to obtain the quantitative average composition analysis of the 

nanowire array. The XRF analysis is based on a primary x-ray tube that emits characteristic x-

rays of known energy. The specific instrument used in our lab contains a Rh tube. An electron 

can be ejected from its atomic orbital by the absorption of a light wave (photon) of sufficient 

energy. Any elements in the sample having excitation energy below that of the primary beam 

Figure 3.6 Electron microscope images of electrodeposited nanowires (a) SEM of CoNiFeCu alloy 
nanowires in PC  (b) SEM of Cu nanowires in AAO (c) TEM of alloy CoNiFeCu nanowires in PC        
(d) SEM of CoNiFe alloy nanowires in AAO (e) TEM of multilayered CoNiFe/Cu nanowires in PC 

(a) 

(b) (c) (e)

(d) 
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energy will be fluoresced. The particular wavelength of fluorescent light emitted is related to the 

number of photons per unit time, (peak intensity or count rate) and to the amount of the specific 

element in the sample. Therefore, by determining the energy of the X-ray peaks and by 

calculating the count rate of the various elemental, it is possible to quantitatively measure the 

concentration of these elements in the sample. 

The magnetic properties, such as Giant Magnetoresistance (GMR) were investigated with 

PPMS (Quantum Design Physical Property Measurement System 6000) using an electric current 

ranging between 0.1-1 mA and a magnetic field in between –1 T to 1 T.  In the GMR set-up, the 

magnetic field was set perpendicular to the electric current passing through the nanowires, the 

magnetic field being parallel to the layers. Most measurements were performed at room 

temperature.  

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.7 GMR measurements (a) PPMS (b) Pt. contact on membrane containing nanowires (c) mounted 
samples on the puck –top view (left) (d) zoomed out puck with samples (e) side view puck with sample 

(a) (b)

(e)(c) (d)
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The highest obtained GMR was re-measured at 100 K.  The multilayered nanowires 

showed fairly large electrical resistance, depending on the number of wires connected in parallel. 

Figure 3.7 shows photographs of the PPMS, the GMR set-up and GMR measurement contacts. 

Selected GMR samples were annealed in a pure H2 flowing environment. The annealing 

temperature was set to 300 oC. The temperature was ramped at 2oC per minute and the sample 

was soaked at 300 oC under continuous H2 flow for 3 hours. The heating was shut off and the 

sample allowed to cool to room temperature still under H2 flow. The quartz boat containing the 

GMR samples, was placed in the middle of the furnace to avoid temperature gradients. Before 

pure H2 flow was started the chamber was purged with He gas at room temperature to remove 

any traces of air.  
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CHAPTER IV MULTILAYERED NANOWIRES  

To the best of my knowledge, our lab is the first to examine the combined Co-Ni-Fe-Cu 

system in nanowires and nanotubes for GMR effect (Huang, 2004, Davis 2006).  Therefore, the 

present work focuses on this quaternary CoNiFeCu/Cu electrodeposition in the form of 

multilayered nanowires and the investigation of magnetic properties.  

4.1 Electrodeposition 

Multilayered nanowires were electrodeposited using a double potentiostatic scheme, 

stepping between a higher negative CoNiFe potential and the more noble Cu deposition 

potential. All experiments were carried out with a Solatron 1255 B/1287 potentiostat/function 

generator. The overpotential was controlled versus a saturated calomel reference electrode 

(SCE). The open circuit potential (OCP) was + 0.05 V vs. SCE.  

Since Cu can be easily reduced, the concentration of Cu in the electrolyte was kept low, 

in order to have Cu deposition under mass transport control, while all the other elements (Co-Ni-

Fe) would be deposited under kinetic control. The iron group alloy deposition is also called 

anomalous codeposition, since the least noble element (Fe) tends to deposit before the Ni and 

Co, even thought these elements have a more noble reduction potentials than Fe. To limit the 

preferential Fe deposition, Co and Ni concentrations in the electrolyte were larger than the Fe 

concentration. The main electrolyte for CoNiFeCu/Cu nanowire deposition was composed of 

CoSO4 (50 mM), NiSO4 (18 mM), FeSO4 (0.5 mM), CuSO4 (1 mM), potassium tartrate (20 mM) 

and sulfamic acid (10 mM).  

In my MS thesis work the CoNiFeCu electrolyte was characterized and optimized for the 

electrodeposition of nanowires. Polarization curves of the electrolyte were performed using an 

empty PC membrane as the cathode. From studying the influence of electrolyte agitation 
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(mixing) in the form of N2 bubbling, it was concluded that when mixing was induced the Cu 

limiting current would increase immensely which would translate in a larger Cu content into the 

ferromagnetic layer, which would in turn damage the GMR.    

Figure 4.1 shows a polarization curve of the CoNiFeCu electrolyte, using a potential 

sweep rate of 5 mV/s. Impedance measurements were performed and the ohmic drop was 

accounted for. The Cu limiting current was revealed to be 1.1 mA, while the CoNiFe alloy 

limiting current was observed to be 24.5 mA. From the polarization curve, the Cu deposition 

potential was noted to be between -0.25 V and -0.6 V, while the alloy deposition potential was in 

the more negative range between -1.2 V to -3 V.  

 

 

 

 

 

 

 

 

 

 

 

 
 In my previous work Co, Ni, Fe and Cu individual partial currents as a function of 

potential were calculated using Faradays law. The partial current densities are shown in Figure 

4.2. It is important to note although Fe was kept in much smaller quantities in the electrolyte its 

Figure 4.1   CoNiFeCu electrolyte polarization curve 
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limiting current was comparable to the Ni limiting current, confirming the anomalous 

codeposition behavior of CoNiFe.  

 

 

 

 

 

 

 

 

 

 

 

To determine the optimal conditions at which pure Cu or alloy of CoNiFe would deposit, 

several constant potential depositions were performed and from the XRF composition analysis it 

was concluded that 98 wt. % Cu was deposited at -0.325 V and minimal Cu (1 wt.%) was 

deposited at –2.4 V. 

A series of alloy nanowire deposition experiments were performed using different 

constant potentials. Judging from the current behavior as a function of potential during 

nanowires deposition it was concluded that the nanowire deposition was not a steady state 

process.  When the pores were empty the current dropped suddenly and reached a semi-steady 

state when the wires were growing. The current gradually increased with the filling of the pores 

and reached a second semi-steady state when the wires reached the top of the membrane. When 

Figure 4.2   Partial currents of Co, Ni, Fe and Cu 
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the wires reached the top of the membrane the deposition area became constant and the resulting 

current was constant. Given the membrane thickness, it was possible to calculate the time it 

would take to fill up the pores with nanowires. For a constant potential of –1.9 V vs. SCE it only 

took 700 s for the nanowires to reach the top of the membrane (6-micron deep pores). However 

during Cu deposition the current density was lower compared wit the alloy nanowire case, 

therefore the time to fill up the pores was much larger (5000 seconds). It was concluded that the 

long transient region at the start of the deposition was due to changes in the Cu concentration 

gradient.  

Multilayers of pure Cu sandwiched with magnetic CoNiFeCu alloy layers were deposited 

into the membrane pores using a double potentiostatic pulsing scheme show in Figure 4.3.  

Stepping between the CoNiFe and Cu deposition potentials, alternating alloy and Cu layers was 

achieved from the same electrolyte. Faraday’s law was used to calculate the time to 

electrodeposit nanometric size layers. A detailed MathCAD calculation for determining the 

electrodeposition time and the bilayers number is included in the Appendix. When making the 

multilayered it is important to notice that the alloy layer would also contain traces of Cu. 

Switching from the CoNiFe potential (-1.9 V) to the more noble Cu potential (–0.4 V), the 

current transitions though an anodic (positive) region until it settles down to the Cu deposition 

current (-0.001 A). The anodic current will dissolve some of the Co rich layer previously 

deposited.  To ensure that the anodic current would not dissolve the entire CoNiFe layer, 

different alloy deposition times were investigated. In essence, charge deposition, which equals to 

the applied current times the deposition time, was monitored so that the portion of anodic Cu 

current would be negligible compared to the alloy deposition current.   
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The schematic shown in Figure 4.4 illustrates the partial dissolution of the alloy layer 

when the current becomes anodic. 

 
 

 

 

 

 

 

 

In my previous MS work I electrodeposited CoNi/Cu multilayered nanowires and 

examined them using TEM. One of the samples that turned out to have good magnetic properties 

was electrodeposited using the following potentiostatic pulse plating parameters: CoNiCu alloy 

layer (–1.9 V vs. SCE for a period of 1 s)/ Cu layer (–0.325 V vs. SCE for a period of 15 s). 

After the 2400 bi-layers of alloy/Cu layers, the deposition was stopped and the membrane was 

dissolved in order to examine the nanowires with the TEM. From the examined micrograph the 
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Figure 4.3 Potential pulsing scheme applied to make multilayered nanowires 
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alloy layers were 10 nm thick and the Cu layers were 8 nm thick. From the TEM micrograph and 

knowing the electrodeposition times the Cu current efficiency was determined to be 70 %, while 

the CoNi current efficiency was calculated to be 35 %.  

4.2 CoNiFe/Cu Multilayered Nanowires GMR Results 

Due to their intrinsic geometry, multilayered nanowires favor the study of perpendicular 

magneto-transport phenomena, CPP-GMR. The experimental set-up for magnetic measurements 

is shown below in Figure 4.5.  Under no magnetic field, the nanowires antiferromagnetic-

coupled multilayers show a certain resistance, which decreases when the nanowire sample is 

placed in a magnetic field.  

 

 

 

 

 

 

 

 

 

 

The electron spins of adjacent magnetic layers align under a certain magnetic field 

allowing the majority carriers to travel less scattered along the wires. Minimizing electron 

scattering across the layers, the magnetic field promotes electron travel, therefore decreasing 

electrical resistance.   

R
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Figure 4.5 Nanowires CPP-GMR measurement 
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For GMR measurements multilayered nanowires of CoNi/Cu and CoNiFeCu/Cu were 

fabricated in 60 μm thick commercially available anodized aluminum oxide membranes 

(Whatman, Anodisc 25). The pore size used was 0.02 μm. Electrodeposition was carried out 

under potentiostatic pulsing without agitation using a base electrolyte composed of 50 mM 

CoSO4, 18 mM NiSO4, 1 mM FeSO4, 1 mM CuSO4, 20 mM Na-K tartrate, 10 mM sulfamic acid 

and 10 mM boric acid. The concentrations of CoSO4, NiSO4 and FeSO4 were varied for GMR 

investigation.   The electrolyte had an equilibrium pH of 4, and was not adjusted.  To keep the 

layers flat, a Cu bottom was first deposited followed my 2400 bilayers that would not complete 

the nanowires growth.   

 

 

 

 

 

 

 

 

 

Before the nanowires reached the top of the membrane, the multilayers were stopped and 

a Cu top was deposited to insure the final growth of the nanowires. Figure 4.6 shows a sketch of 

the multilayers placed in between the Cu top and bottom. The orientation of the magnetic field 

was parallel to the nanowire layers and perpendicular to the current passing through the 

nanostructures. All magnetic measurements were performed at room temperature. 

Cu top 

Cu bottom 

Figure 4.6 Multilayered nanowires with Cu top/bottom 
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4.2.1 The Effect of Electrodeposition Potential on GMR 

In my MS work I determined and optimized the Cu layer thickness, which was one of the 

most important parameters in obtaining GMR. For a given potential the Cu deposition time was 

tested and optimized to yield the highest GMR.  At room temperature the GMR showed a 

maximum of 15% for a Cu layer deposited for 17 s. When the Cu layer thickness was slightly 

increased by a longer deposition time (20 seconds), the GMR decreased drastically to 5 %. The 

GMR also decreased to 8% when the Cu layer was thinner (15 seconds deposition). It was 

concluded that a thicker spacer, represented by the nonmagnetic Cu layer, would make it harder 

for the magnetic CoNi alternating layers to sense each other and spin-couple, damaging the 

GMR effect. When the Cu spacer is too thin, the GMR effect would also suffer either due to non-

discrete layering or from a lower number of coupled layers.   

The alloy layer thickness was also important in obtaining GMR. In this study we 

investigated the optimal alloy deposition potential and time.  To find the optimal alloy deposition 

time, the Cu layer was kept constant at (-0.325 V for 20 s). The alloy layer deposition potential 

was set to (-1.5 V) and the deposition time was varied between 0.5 and 2 s.   Figure 4.7 shows 

the effect of the alloy layer deposition time on the GMR.  The maximum resistance drop of 16 % 

was observed when the alloy layer was controlled at (-1.5 V for 1 s).  When the CoNi layer time 

was halved to 0.5 s, the GMR decreased drastically to 6 %. When the magnetic alloy layer is too 

thin, the GMR effect decreased due to non-discrete layering and smaller magnetic layer 

reorientation. When the alloy layer time was doubled to 2 s the GMR decreased even more to 4 

%. A thicker magnetic layer would lead to individual domain forming within the ferromagnetic 

layer and more difficult spin-coupling effect therefore damaging the GMR. Figure 4.8 shows a 

TEM picture of the CoNi/Cu sample that showed the highest GMR. The light layer is the non-
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magnetic Cu layer that was deposited for 20 s and its thickness can be observed to be 9 nm. The 

darker layer is the magnetic alloy that was deposited for 1 s showing. The magnetic layer had a 

thickness of 6 nm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When Fe was introduced into the electrolyte the next parameter to be optimized to obtain 

larger GMR values was the alloy deposition potential. Table 4.1 summarizes the electrolyte 

composition and deposition conditions.  Figure 4.9 shows the effect of alloy deposition potential 

on GMR.  The Cu layer was deposited at (-0.4 V for 20 s) while the alloy layer potential was 

varied between  (-1.4 and -2 V). The alloy deposition time was set for 1 s.  The GMR decreased 

Figure 4.8 TEM of CoNi/Cu Nanowires 
Cu layer: (-0.325 V for 20 s)/CoNi layer (-1.5 V for 1 s) 
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at higher overpotentials.  The highest GMR (20 % at 0.2 Tesla) was obtained at the lowest alloy 

deposition potential of (-1.4 V). This is the largest GMR value recorded in the CoNiFe/Cu 

system in both thin films and nanowires obtained by electrodeposition.  

 

 

 

 

 

Figure 4.10 shows a TEM picture of the multilayered nanowires that had the highest 

GMR. The multilayers are clear and evident especially on the wire edges. The dark inside region 

depicting the middle of the wire is typical for wire formation in contrast to the tube formation 

that has a light, see-through inside.  The light layer is Cu and it was measured to be 4.15 + 0.7 

nm of standard deviation. The dark layer is the alloy CoNiFe and it was measured to be 5.57 + 

0.4 nm of standard deviation. These layer thicknesses are consistent with what is expected using 

Faraday’s law calculation.   

4.2.2 Electrolyte Concentration Effect on GMR 

Figure 4.11 (a) shows the effect of Fe concentration when the electrolyte concentration of 

CoSO4 was constant at 50 mM. Different amounts of FeSO4 were added to the CoNiCu 

electrolyte and multilayered CoNiFe/Cu nanowires were deposited. The Cu layer was deposited 

at -0.4 V for 20 s and the alloy layer was reduced at -1.5 V for 1 s.  In Figure 4.11 (a), it was 

observed that the GMR decreased at higher concentration of FeSO4 and affected the saturation 

magnetization field. The saturation magnetization field was reduced to 0.06 Tesla when the Fe 

concentration was 2.5 mM. Concentrations greater than 2.5 mM FeSO4 increased the saturation 

CoSO4 50
NiSO4 25
FeSO4 0.5
CuSO4 1

Na-K Tartrate 27
Sulfamic Acid 10

Alloy Layer Potential    
(V)

Alloy Layer Time       
(s)

varied 1

Electrolyte               
(mM)

Cu Layer Potential     
(V)

-0.4

Cu Layer Time         
(s)

20

Table 4. 1 CoNiFeCu electrolyte 
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magnetization field. Electrolyte polarization curves for different amounts of Fe are shown in 

Figure 4.11 (b). The total current increased significantly with more Fe added to the electrolyte. 

Since the deposition time and potential were constant, the alloy layer thickness increased with 

the addition of Fe.  

 

 

 

 

  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

(b)

Figure 4.9 CPP-GMR % in CoNiFeCu /Cu as a function of alloy layer potential 
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Figure 4.11 (c) shows a TEM picture of the nanowires deposited from the 1mM FeSO4 

electrolyte. The Cu layer is observed to be 10.5 nm while the alloy layer was 8 nm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Electrolyte composition influenced GMR by affecting the alloy layer composition and thickness.  

The XRF compositional analysis in Table 4-2 shows that when more FeSO4 was added to the 

electrolyte, more Fe was found in the deposit. Furthermore, with the addition of FeSO4 to the 

electrolyte the GMR tended to decrease, although the saturation magnetization field was 

improved. A large amount of FeSO4 (4 mM) had no favorable qualities. The last column in Table 

4-2 shows the relative Fe concentration in the deposit (the ration of Fe wt. % to the other 

components). The Fe to CoNiCu ratio increases with the increased FeSO4 in the electrolyte and 

agrees with the anomalous codeposition theory.   

Figure 4.11 (a) CoNiFe/Cu nanowires GMR  (different FeSO4 concentrations)
(-0.4 V for 20 s)/(-1.5 V for 1 s) 
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Figure 4.11 (b) CoNiFeCu polarization curves (different FeSO4 concentrations), 25 mV/s 
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Figure 4.12 shows the influence of different amounts of CoSO4 in the electrolyte without FeSO4. 

The Cu layer was deposited at -0.4 V for 20 s and the CoNi alloy layer was deposited at -1.9 V 

for 1 s. Figure 4.12 (a) shows the effect of Co concentration on the nanowire GMR. Higher GMR 

(15 %) was recorded for low Co concentration (50 mM). The GMR decreased for higher 

concentration of CoSO4. The saturation magnetization field was slightly reduced at higher 

CoSO4 concentrations. Electrolyte polarization curves for different amounts of Co are shown in 

Figure 4.12 (b). Since the total current density increased slightly in the region where the 

magnetic alloy layer was deposited, with more Co added to the electrolyte, the alloy layer 

thickness may also slightly increase with the addition of Co in the deposit. With the addition of 

CoSO4 the GMR also tended to decrease. The largest CoNi/Cu GMR value observed (15 %) 

occurred at a larger saturation field, compared to the case with Fe in the deposit, CoNiFe/Cu (2.5 

mM FeSO4).  

Figure 4.13 shows the effect of Ni concentration in the CoNiFeCu/Cu nanowires GMR. 

Different amounts of NiSO4 were added to the CoNi(Fe)Cu electrolyte and multilayered 

CoNi(Fe)/Cu nanowires were deposited. The Ni concentration was varied between 25 and 57 

mM. The concentration of CoSO4 was 50 mM. The Cu layer was deposited at (-0.4 V for 20 s) 

Table 4-2 XRF Composition analysis of CoNiFe/Cu nanowires                               
(different amounts of FeSO4)

Fe Ni Co Cu
0.5 1.26 5.37 19.53 73.82 1.591
1 1.46 3.52 36.27 58.71 2.346

1.5 2.56 6.22 16.3 74.39 3.176
2 2.835 5.91 14.6 76.51 3.44

2.5 3.71 5.72 18.01 72.54 4.741
4 7 5.007 15.67 72.31 9.054

FeSO4      

(mM)
(FeCoNiCu)%Composition %wt.  %
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and the alloy layer was reduced at (-1.5 V for 1 s).  Table 4-3 summarizes the electrolyte 

composition and deposition conditions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 4.12 (a) CoNi/Cu nanowires GMR for different CoSO4 concentrations 
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Figure 4.13 (a) the GMR increased at higher concentration of NiSO4.  Figure 4.13 (b) shows 

polarization curves of the electrolyte when more NiSO4 was added and it could be observed that 

the total current increased significantly with more Ni added to the electrolyte. Since the 

deposition time and potential were constant, the alloy layer thickness increased with the addition 

of Ni. Figure 4.13 (c) shows that magnetic saturation field slightly decreased at higher Ni 

concentrations.   

 Ni concentration effect was then tested in the CoNiCu system. Figure 4.14 shows the 

effect of Ni concentration in the CoNiCu/Cu nanowires GMR. Different amounts of NiSO4 were 

added to the CoNi(Fe)Cu electrolyte and multilayered CoNi(Fe)/Cu nanowires were deposited. 

The Ni concentration was varied between 12 and 100 mM.  The concentration of CoSO4 was 50 

mM. The Cu layer was deposited at (-0.4 V for 20 s) and the alloy layer was reduced at (-1.9 V 

for 1 s).  Table 4.4 summarizes the electrolyte composition and deposition conditions. 

Figure 4.12 (c) TEM of CoNi/Cu nanowires from the 50 mM CoSO4 electrolyte 

CoSO 4 50 
NiSO 4 varied 
FeSO 4 0.5 
CuSO 4 1 

Na-K Tartrate 27 
Sulfamic Acid 10 

Alloy Layer Potential               
(V)

Alloy Layer Time           
(s)

-1.5 1

Electrolyte                                   
(mM) 

Cu Layer Potential          
(V) 

-0.4 

Cu Layer Time               
(s)

20

Table 4-3 CoNiFe/Cu electrolyte and deposition conditions 
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Figure 4.13 Effect of NiSO4 in CoNiFe/Cu nanowires  
(a) GMR function of NiSO4 added, (b) polarization curves, (c) saturation field variation  
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In Figure 4.14 (a) the GMR decreased at higher concentration of NiSO4.  Figure 4.14 (b) shows 

polarization curves of the electrolyte when more NiSO4 was added and it could be observed that 

the total current did not change with more Ni added to the electrolyte. Since the deposition time 

and potential were constant, the alloy layer thickness remained the same with the addition of Ni. 

Figure 4.14 (c) shows that the magnetic saturation field increased at higher Ni concentrations.  

When comparing the NiSO4 addition to the CoNiFeCu and the CoNiCu systems, an opposed 

behavior in the GMR could be identified.  In CoNiFe the GMR increased at higher concentration 

of NiSO4 while in CoNiCu the GMR decreased at higher Ni. In the case without Fe the total 

current remained constant with more Ni added to the electrolyte, while in the case of CoNiFeCu 

the total current changed significantly with more Ni added.  

 
4.3 GMR Results Discussion 
 
 Antiferromagnetic coupling can be induced in nanometric multilayered structures for 

magnetic GMR sensor applications. Layering a cobalt-rich alloy with copper can increase the 

resistivity of the high moment, low coercivity CoNiFe alloy layers which would minimize the 

presence of eddy currents during sensing. The GMR property is closely affected by the 

discreteness of the layer interfaces. Therefore controlling the interface composition gradient 

controls the GMR. When the nanolayers are deposited during potential pulses the nanowire 

growth process under non-steady-state conditions and the current transient deposition behavior 

becomes very important. Moreover, since the electrolyte used contained diffusion-limited 

elements (Cu, Fe and Ni) the layer interfaces were even more affected by the non-steady state 

deposition.  Even as a steady state process, the electrodeposition of CoNiFeCu is considered an 

anomalous phenomenon because it is characterized by the preferential deposition of the less 

noble metal (Fe). This anomalous codeposition phenomenon is well known in the 
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electrodeposition of iron group elements. In a binary system of FeNi the deposition rate of Ni, 

which is the more noble element in the system, is inhibited. 
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Figure 4.14 Effect of NiSO4 in CoNi/Cu nanowires  
           (a) GMR function of NiSO4 added, (b) CoNiCu polarization curves  (c) GMR and saturation field variation 
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The same behavior is also observed for tertiary systems of iron-group elements. Furthermore, it 

has been observed that the deposition rate of the less noble element in the system could be 

enhanced during the codeposition process.
 
Previous studies in our lab (Zhuang and Podlaha, 

2003, Huang and Podlaha, 2004) modeled the CoNiFeCu electrodeposition behavior taking into 

consideration the transient effects, describing how the adsorbed species accumulate during 

deposition and also the competitive interactions.  

 For this quaternary system, the three iron-group elements exhibit anomalous codeposition 

behavior that is further complicated by the non-steady pulsed plating of nanometric layers in 

deep nanosize pores. Therefore, there is also a composition profile along the pore length. 

4.4 GMR Application: Microfluidic Sensing Devices 

The main objective for these GMR integrated fluidic sensors is to detect bio-molecules 

and also to provide a vehicle for the placement, detection and study of biomolecular interactions, 

in particular those with DNA. Other biological applications include magnetically assisted 

separations, high sensitivity biosensors and biochips for protein and DNA screening. Advantages 

of using GMR sensors are that it can be placed on a single chip along with the needed electrical 

circuitry, it is compact and sensitive to small magnetic fields. As an example, vapor deposited 

GMR sensors proved to be sensitive to extremely small magnetic fields and are now employed in 

the hard disk drive-read head system present within every personal computer. State-of-the-art 

read heads can detect a 20 nm x 500 nm bits on a magnetized surface with great reliability and at 

extremely high speed.  (Tondra, 2000)  Consequently, a wide range of bio-technological 

applications, including miniaturized biochip devices are foreseen. The GMR sensor integration 

in microfluidic devices is in its incipient phase and there is room for much research and 

improvement.  
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4.4.1 Background  

One of the pioneers in the GMR sensor integration is Tondra et al. (Tondra, 2000) who 

studied the detection of commercially available superparamagnetic nanospheres in a micro-size 

device. Their group employed thin film GMR sensors. The results showed that the lower 

detection limit is set by the lithographical feature size. Also they pointed out that increased 

sensitivity of these detectors can be achieved by making the GMR sensor as small as the objects 

being detected and by positioning the sensor very close (100 nm) to the magnetic particles.  They 

concluded that the GMR sensor could detect a single superparamagnetic particle (500 nm in 

diameter) if the sensor was about the same size as the bead, and the bead surface is about 0.2 

bead radii away from the surface of the sensor. Positioning of the beads with respect to the GMR 

sensor was very important for the detection process. 

Another research group interested in biotechnological applications, Graham et al. 

(Graham, 2002) used spin valve GMR sensors for the detection of a single magnetic 

microsphere. Two kinds of commercially available superparamagnetic particles (400 nm dextran 

iron oxide, 2 μm polymer encapsulated iron oxide) with biomolecules immobilized on the 

surface were detected using a GMR spin valve (5 %). The unique part of this study was the 

construction of on-chip current line structures to control the movement of magnetically labeled 

biomolecules. A higher signal of 1.2 mV was obtained for the detection of the 400 nm 

nanoparticles due to the higher density of labels that can accumulate on the sensor surface, but 

the disadvantage of using the nanoparticles was their tendency to cluster in an external field. On 

the other hand, the microspheres were easier to control and detect even as single labels. The 

typical noise level was 10 mV, which was rather high compared to the signal strength.  
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Utilizing the GMR spin valve as the sensor element, Pekas et al. (Pekas, 2004) was able 

to monitor magnetic pico-droplets in an integrated microfluidic system. The device combined 

three sets of spin valve sensors on a silicon-based platform. The GMR pieces were centered 

directly under a microfluidic channel (13 mm wide and 18 mm deep) that was lithographically 

defined. The device was sputter-coated with a 300 nm silicon nitride layer which was oxygen-

plasma etched along with a polydimethylsiloxane (PDMS) lid. The lid, built by micromolding 

contained the channels. The device was mounted between the poles of a miniature electro-

magnet in order to apply an external magnetic field. They utilized two immiscible flowing 

liquids inside perpendicular channels. One of the liquids was a commercially available ferrofluid 

(aqueous suspension of 10 nm magnetite particles, Ferrotec EMG 507) and the other liquid was 

oil. When the two immiscible liquids encountered each other at the channel crossing they formed 

alternating droplets. The droplets sizes were controlled by the difference in the flow rates of the 

two liquids. Their microdevice was able to control the formation of pico-liter-size droplets of 

ferrofluid and to sense these ferrofluid droplets in a continuous-flow mode.  

Recently, Millen et al.  (Millen, 2005) reported the fabrication of a GMR-based sensor 

for the detection of immunosorbent assays (immunological interaction between surface-bound 

mouse IgG and r-mouse IgG coated on superparamagnetic particles).  In their sensor design, first 

they capture an antibody surface right above the GMR piece and then the magnetic nanoparticles 

(MNP) were coupled to the target antigen. The change in resistance showed the presence of the 

MNP-labeled antigen. They examined the GMR response as a function of the concentration of 

the antibody-labeled MNP. They used a commercial available GMR chip made of alternating 

layers of Ta, NiFeCo alloy and Cu. One of the most important observations was that the change 

in the GMR response was strongly dependent on the MNP solution concentration. They 
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concluded that the GMR response was much larger for the higher concentration of MNPs. These 

literature results demonstrate the potential of GMR sensors for multiple applications for 

homeland security agencies such as early detection of various and diseases.  

4.4.2 Experimental 

The development of a microfluidic sensor presented here is distinguished from other bio-

GMR sensors by the use of nanowires, replacing the thin film GMR element in an effort to 

provide a more sensitive response at a low cost for nanoparticulate detection. CoNiFeCu/Cu 

nanowires used in the sensors were fabricated using commercially available AAO templates with 

the manufacturer- specified pore diameter and length of 20 nm and 60 μm, respectively. The 

template acted as the working electrode and to make the template conductive for 

electrodeposition Au was sputtered on one side of the template. The electrolyte for 

CoNiFeCu/Cu nanowire deposition was composed of 50 mM CoSO4, 18 mM NiSO4, 0.5 mM 

FeSO4, 1 mM CuSO4, 20 mM sodium potassium tartrate, 10 mM sulfamic acid at a pH of 4. The 

potential was controlled vs. a saturated calomel reference electrode. The multilayered nanowire 

deposition was carried out using a double potentiostatic scheme, stepping between a higher 

negative overpotential of −1.5 for CoNiFeCu alloy deposition and -0.4 V for Cu deposition. 

Figure 4.15 (a) shows a TEM micrograph of the layer-by-layer structure of CoNiFeCu/Cu 

multilayered nanowires. TEM analysis was carried out using JEOL-100CX by dissolving the 

nanowire sample in 1 M NaOH. The nanowire array CPP–GMR measurements were carried out 

with PPMS (Quantum Design Physical Property Measurement System 6000). All measurements 

were performed at room temperature. Figure 4.15 (b) shows GMR plot for the nanowires used 

here in the fabrication of microfluidic sensors. 
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The microfluidic sensor was fabricated by molding PDMS into a micro-channel using a pattern 

created on a silicon wafer by UV lithography. Dr. Podlaha at MIT created a silicon/SU-8 

“master” that was used for molding the micron-size channels into PDMS. Figure 4.16 shows a 

schematic of the silicon master and the PDMS replica.  

Microfluidic nano-particle sensors based on multilayered GMR nanowires were fabricated 

following the fabrication scheme presented in Figure 4.17. A GMR nanowire array with 

platinum wires connected to the two ends of the array was placed adjacent to a pattern created on 

a silicon wafer with SU-8 resist by UV lithography. 

 

 

 

 

 

 

Figure 4.16 Silicon wafer master and PDMS replica  
a) silicon wafer   b) PDMS replica 

a) b)

Figure 4.15 CoNiFeCu/Cu multilayered nanowires deposited in 20 nm AAO  
(a) TEM micrograph (b) GMR plot 
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Platinum wires serve as the current collectors along the two ends of the nanowire array. The 

microchannel of 100-μm width by 100-μm depth was created by the conventional PDMS 

“stamping” of the pattern. An unpatterened PDMS block is used to seal the micro-channel by 

oxygen plasma etching. Flow tubes are connected at the two ends of the micro-channel and 

electrical contacts are soldered on the two platinum contact wires connected to the two faces of 

the nanowire template. Figure 4.18 shows the assembled microfluidic sensor. Figure 4.18 (a) 

shows a schematic of the GMR sensor and Figure 4.18 (b) shows an actual picture of the 

microfluidic sensors fabricated in our lab.  The sensor testing was based on a change in 

resistance of the multilayered nanowire array when placed in proximity of magnetic 

nanoparticles. 

Figure 4.17 Schematic outline of microfluidic sensor fabrication process 



 58 

An aqueous suspension of 10 nm magnetite particles EMG 507 commercially available from 

Ferrotec Corporation was used for testing. The ferrofluid is a stable colloidal suspension of sub-

domain magnetic nano particles in a liquid carrier, which in thi case was water. These 

commercial available particles were coated with a stabilizing surfactant, which prevents particle 

agglomeration in a strong magnetic field. 

Ferrofluids are commonly used in the study of magnetic domain, in magnetic tapes, in hard 

drives and magnetic heads. The EMG series used in this experiment was chosen because it 

offered a simple and cost-effective testing of the microfluidic sensor. The nanoparticles obtained 

from the supplier are in an aqueous dispersion with a concentration of 0.4 to 1.1 volume %. 

Since the nanoparticles are superparamagnetic at room temperature, a pulsed magnetic field was 

introduced with the help of an electromagnet in order to align the nanoparticles. Care was taken, 

however, to control the magnitude of the external magnetic field so that superparamagnetic 

particles are well aligned and still, the GMR nanowires are not saturated by the external 

magnetic field. A Solatron 1287 potentiostat was used to measure the change in resistance of the 

sensor.  

V

Figure 4.18 GMR microfluidic sensor (a) schematics (b) actual photo 

(a) (b) 
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Figure 4.19 shows the experimental set-up of testing of the GMR microfluidic sensors. 

An in-house made electromagnet was placed above the sensor’s channel. The external magnetic 

field was pulsed using a potentiostat and the pulsing ferrofluid illustrates the electromagnet 

behavior. Voltage changes during particle flow were recorded and monitored using a second 

function generator connected to the sensor. All processes were computer controlled.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20 shows the change in resistance of the sensor when water and nanoparticles 

are alternatively passed through the sensor. The nanoparticle used in this experiment had a 

concentration of 0.4-1.1 volume % based on the information provided by the supplier. In order to 

measure the resistance of the sensor, a pulsed current was made to flow across the sensor and the 

corresponding potential across the two ends of the sensor was monitored. The use of pulsed 

current as compared to direct current helps to minimize the heating up of the contacts thus 

 

ferrofluid pulsing electromagnet 

sensor

Figure 4.19 Sensor testing using an external pulsing electromagnet 
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minimizing the noise and increasing the reproducibility of the sensor. The resistance of the 

sensor during the water flow was 6.86 ohms which dropped down to 6.64 ohm as shown in 

Figure 4.20. An average GMR of 3.09 % was observed under these conditions.  

Upon dilution of the nanoparticles the observed GMR of the sensor decreased. Figure 

4.21 shows the change in resistance of the sensor in presence of the nanoparticles diluted to 60% 

of its original concentration. The GMR value observed for 60% diluted particles was 1.18% as 

compared to 3.09% for undiluted particles. The response of the sensor, however, is still quite 

uniform and the reproducibility of the data is very good as can be seen from the response for a 

number of current pulses through the sensor. The results presented in Figure 4.20 and Figure 

4.21 was measured using two different sensors which are obvious from the difference in water-

flow-resistance in the two figures. Although the initial resistances of the sensors are quite 

different, the change in resistance of the GMR seems to be unaffected by the initial resistance of 
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Figure 4.20 Sensor test results for undiluted nanoparticles concentration 
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the sensors. In order to test the sensitivity of the sensor down to very low concentration of 

nanoparticles, a calibration curve was developed. 

 

 

 

 

 

 

 

 

 

 

 

The GMR values for different dilution of nano-particle were measured and a calibration 

curve was plotted as shown in Figure 4.22. The calibration curve is a straight line showing a drop 

in resistance with a decrease in concentration of the particles. The error bars represent the spread 

of data in GMR measurement using the sensors.  

4.5 Conclusions 

 Electrodeposited multilayered CoNiFeCu/Cu nanowires were fabricated with pulsed 

applied potential and their giant magnetoresistance (GMR) behavior characterized. The effect of 

electrolyte concentration on the GMR was investigated. The FeSO4, CoSO4 and NiSO4 

concentrations were varied.  
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Electrolyte composition influenced GMR by affecting the alloy layer composition and thickness. 

With the addition of FeSO4 the GMR tended to decrease, although the saturation magnetization 

field was improved. A large amount of FeSO4 (4 mM) had no favorable qualities. With the 

addition of CoSO4 the GMR also tended to decrease. The largest CoNiFe/Cu GMR value 

observed (20 %) at room temperature.   

 In the CoNiFe/Cu nanowires case, the GMR increased at higher concentration of NiSO4, 

while the polarization curves showed that the alloy layer thickness increased with the addition of 

Ni. Therefore the CoNiFe/Cu GMR increased for larger alloy layers. The result was totally 

opposite when no Fe was present in the electrolyte. In the CoNi/Cu nanowires the GMR 

decreased at higher concentration of NiSO4, while the polarization curves showed that the alloy 

layer thickness remained the same with the addition of Ni. Therefore the addition of more Ni in 

the CoNiCu layer decreased the GMR.  The GMR of CoNiFe/Cu nanowires decreased at high 

overpotentials.  The highest room temperature GMR (20 % at 0.2 Tesla) was obtained at the 

lowest alloy deposition potential. This is the largest GMR value recorded in the CoNiFe/Cu 

system in both thin films and nanowires obtained by electrodeposition.  
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Figure 4.22 Sensor calibration curve 
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Microfluidic nano-particle sensors based on GMR nanowires were fabricated for the first 

time. The fabrication process involves stamping of a micro-channel pattern in PDMS and sealing 

the channel with oxygen plasma etching. The sensors testing results show a high signal to noise 

ratio and good reproducibility.  

The microfluidic sensor project was carried on in collaboration with Dr. Mishra, N. McBride 

and V. George from the Chemical Engineering department at LSU. 
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CHAPTER V ELECTRODEPOSITION OF NANOTUBES FOR GMR  

 

 Metallic nanotubes are alternative nano-structures with inherently larger resistance and 

surface area.  There are two kinds of nanotubes that are investigated in this study: elemental or 

alloy nanotubes and multilayered nanotubes, which are a new addition to the nanostructures 

pallet. Multilayered nanotubes are of particular interest because they allow CPP GMR 

measurement. Even though there are a variety of methods to fabricate inorganic nanotubes, only 

electrodeposition has the potential to control the chemical composition of the tube in a 

modulated fashion.  Figure 5.1 shows a schematic of the two types of nanotubes array: (a) alloy 

nanotubes and (b) multilayered nanotubes formed by electrodeposition in a porous membrane 

substrate.  

In this chapter the electrodeposition conditions of elemental Cu nanotubes, alloy CoNiCu 

nanotubes and multilayered nanotubes are examined. After determining the conditions under 

which alloy and elemental nanotubes are obtained, multilayered nanotube conditions are 

explored for GMR. The magnetoresistance at room temperature and high sensitivity to small 

magnetic fields make the multilayered nanotubes fabricated by electrodeposition an attractive 

and cost efficient material for their potential use in magnetic sensing applications. 

 In the past decade, electrodeposition inside nanoporous membranes has been proven to 

Figure 5.1 Nanotubes schematic (a) alloy (b) multilayered 

Non-magnetic layer

Ferromagnetic 

(a) (b) 
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be a feasible method for obtaining nanometric size wires. However, nanotubes electrodeposited 

inside porous membranes have not yet been fully explored. Nanometric, magnetic tubes may be 

of interest for both advanced catalytic and sensory materials, as well as magnetic field sources 

for nanoelectromechanical devices. (Sui, 2004) In addition, corrosion resistant nanotubes, such 

as NiCoCu materials, may be possible materials as transport vessels for nanoparticles 

(Vankrunkelsven, 2004), bioseparations (Hou, 2004) and components of novel core-shell cable 

alloys (Yoo, 2004). Some of the other methods for obtaining tubes include template anodization 

(Lee, 2005), membrane doping (Vertesy, 2004) and carbon nanotubes doping (Jia, 2005) Gold 

tubular-like shapes were reported by Kautek, et al. (Kautek, 1995) in a study of Au nanowire 

electrodeposition.  When the back of the membrane pores was not fully sealed by an initial 

sputtering step, nanowires were not formed and short tubular-like structures were observed. In 

addition, short 1 μm nanotubes were observed by Vaidyanathan et al. (Vaidyanathan, 2003) in 

the underpotential deposition of In2Se3 semiconductors. Martin’s group demonstrated more 

robust Au nanotubes in polycarbonate and alumina templates by electroless deposition (Martin, 

1994, 2001). They were also successful in using a sol-gel method for the deposition of silica 

nanotubes (Miller, 2001), test tubes (Gasparc, 2004), a wide variety of semiconductor oxides 

(Lakshmi, 1997) and polypyrrole (Yamada, 2004) inside alumina templates. 

Electrodeposition has been employed to obtain elemental metal nanotubes such as Au 

(Kautek, 1995, Vidu, 2004, Lee, 2005, Mu, 2004, Yoo, 2004), Pt, (Mu, 2004, Yoo, 2004), Ni 

(Bao, 2001, Wu, 2005) and Cu. (Wang, 2004, Davis and Podlaha, 2005).  Wang et al. (Wang, 

2004) showed that Cu nanotubes can be electrodeposited inside aluminum oxide membranes 

(AAO) from a CuSO4 electrolyte using constant current deposition and they attributed the 

formation of the tubular structure to the Au sputtering step that partially covered the bottom of 
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the pores. Concurrently, Yoo and Lee (Yoo and Lee, 2004) also identified that the Au sputtering 

was a key factor in obtaining the tubes, and that the growth of the tube was field dependent. They 

used a galvanostatic electrodeposition with AAO to obtain a variety of elemental metal 

nanotubes at high current density and mixtures of wires and tubes at low current densities. Wu et 

al. (Wu, 2005) used n-type Si as the AAO substrate and observed nanotubes at high 

overpotentials, calling into question the importance of the partial pore coverage as a key 

component in the fabrication of nanotubes.  An alternative approach to fabricate nanotubes 

without the risk of forming nanowires was presented by Mu et al. (Mu, 2004). They used a 

multistep approach combining template replication and potentiostatic electrodeposition to 

deposit into an annular region. The drawback to this technique is that several processing steps are 

required.  Lee et al. (Lee, 2005) used Ag metal nanoparticles to coat the walls of AAO and 

inducing preferential electrodeposition of metals along the pore wall. They also demonstrated the 

ability to fabricate large multilayers (800 nm Ni/3000 nm Au).  

5.1 Alloy and Elemental Nanotubes 

Cu and CoNiCu alloyed nanotubes were electrodeposited in nanoporous templates. Both 

polycarbonate (PC) Millipore IsoporeTM membrane filters, with specified pore diameters of 800 

nm and pore length of 10 μm, and Anopore Aluminum Oxide (AAO) membranes, with specified 

pore diameters of 200 nm and pore length of 60 μm, were used as mediums for nanotube 

synthesis.  A layer of gold was sputtered on one side of the membrane and the sputtering time 

was varied to investigate the tube formation dependence on the sputtering time. 

Table 5-1 summarizes the experimental conditions used for fabricating the 

nanostructures. All plating parameters were kept constant, -1 V deposition for 60 min, while the 
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gold sputtering time increased from 20, 30 to 50 min. Tubes were observed for all sputtering 

times ranging from 20-50 min. 

 

 

 

 

 

 

 

 

  

Figure 5.2 (a)-(c) shows SEM micrographs of the CoNiCu alloy tubes obtained from the 

different time sputtered membranes. A decrease in the tube wall thickness with increased 

sputtering time was observed. When the PC membrane was sputtered for 20 min the observed 

tube wall thickness averaged 155 nm with 35 nm in standard deviation. The array of tubes was 

also sparse. When the PC membrane sputtering time was increased to 30 min, the nanotube wall 

thickness averaged 132 nm with 15.7 nm standard deviation, Figure 5.2(b). The total charge 

passed, determined by integrating the current, was –2.75 and –2.43 C for the two Au sputtering 

times of 20 and 30 min, respectively. An even longer Au membrane sputtering time of 50 min 

resulted in a deposit with a thinner tube wall thickness of 68 nm and 26.8 nm standard deviation, 

and a more dense tube population. Also, when the membrane sputtering time increased, the tubes 

grew taller. The charge passed was –5.64 C, larger than the short Au sputtering time samples, 

which is consistent with a larger reactive area for the constant deposition time. A qualitative EDS 
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analysis in Figure 5.2(d) indicates the presence of CoNiFe and a quantitative XRF analysis found 

the composition to be: 48-wt % Co, 38-wt% Cu and 14-wt% Ni. As indicated in Table 5.1, Cu 

tubes were also obtained from the CoNiCu electrolyte at –0.325 V. For this case the 

electrodeposition time was increased to compensate for the lower current density and the 

membrane was sputtered for 50 min.  

 

 
 
 
 
 
 
 
 
 
 
 

Figure 5.3 shows the SEM micrographs of the Cu nanotubes plated from the CoNiCu 

bath, which was expected to have an efficiency of less than 50 % due to its low electrolyte 

concentration. Nanotubes of approximately 5 μm length were observed, while the wall thickness 

averaged 218 nm. The EDS analysis in Figure 5.3 shows a deposit of pure Cu, also confirmed by 

XRF. 

A high efficiency Cu electrolyte was used to test the role of the side reaction in the tube 

formation.  A shortly sputtered membrane of 10 min was used. After 150 min of deposition time, 

Cu wires were obtained instead of tubes, Figure 5.4). The wire length was 6 μm. Chene and 

Landolt (1989) reported a 100% current efficiency for this concentrated Cu electrolyte used here 

resulting in nanowires, while Huang et al. (Huang, 2002, Huang and Podlaha, 2004) reported a 

value of 45 % for Cu deposition from a similar electrolyte used to deposit the nanotubes. 

 

d

Figure 5.2 SEM Micrographs of CoNiCu nanotubes electrodeposited at constant potential of -1V
for 60 min from CoNiCu electrolyte: (a) 20 (b) 30 (c) 50 min sputtering time  (d) EDS spectrum 
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Thus, gas evolution plays a significant role in the formation of nanotubes. When there is no gas 

generation, as in the concentrated Cu electrolyte, nanowires were obtained instead of tubes. A 

suggested mechanism is that for horizontally positioned membranes, the generated H2 finds a 

path from the growing electrode surface through the pore center to the pore mouth, and 

subsequently blocks the deposition in its path. A sketch of this electrodeposition pattern is shown 

below in Figure 5.4.   

 

 

 

 

 

 

 

 

 

The later results of Fukunaka et al. (Fukunaka, 2006) also confirm our assertion that the current 

efficiency and generation of gas from the side reaction is important to the nanotube formation. 

Unique to electrodeposition is the ability to fabricate and control nanometric size layers.  Taking 

Figure 5.3 SEM micrograph of Cu nanotubes plated from the CoNiCu bath at –0.325 V and EDS spectrum  
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Figure 5.4 Tubes electrodeposition along the pore wall assisted by hydrogen generation 
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advantage of potential pulsed electrodeposition, we electrodeposited nanolayers of magnetic and 

nonmagnetic material in a sandwiched fashion.  

5.2 Multilayered Nanotubes 

The motivation for this work is the investigation of giant magnetoresistance (GMR), a 

change in the material resistance in an applied magnetic field as a consequence of 

antiferromagnetic coupling. GMR measured with current passing parallel to the multilayers 

(CIP) has been widely reported for vapor and electrodeposited thin films. (Ross, 1994, Parkin, 

1995) The nanowire high aspect ratio geometry allows the measurement of GMR with the 

current applied perpendicular to the plane (CPP) of the multilayers, which has been theoretically 

identified as being larger than the GMR in the other configuration (CIP). (Valet and Fert, 1993) 

Consequently, multilayered nanowires fabricated by electrodeposition have been demonstrated in 

a wide array of systems including Co/Cu,(Piraux, 1994, Blondel, 1994) CoNi/Cu,( Liu, 1995, 

Schwarzacher, 1999) NiFe/Cu (Piraux, 1997) and CoNiFe/Cu (Huang, 2006) for sensor 

materials. Here, the first demonstration of electrodeposited multilayered nanotubes that exhibit 

GMR is presented. To demonstrate the concept, CoNiFeCu/Cu magnetic alloy layers with 

alternating Cu layers are deposited in a tubular fashion under pulsed potential conditions, and 

their CPP-GMR is characterized at room temperature. 

The electrolyte for CoNiCu/Cu nanotube deposition was composed of CoSO4 (50 mM), 

NiSO4 (18 mM), FeSO4 (1mM), CuSO4 (1 mM), potassium tartrate (20 mM) and boric acid (10 

mM), at the equilibrium pH. The overpotential was controlled versus a saturated calomel 

reference electrode (SCE). The open circuit potential (OCP) was -0.05 V vs. SCE. The 

multilayered nanotubes were electrodeposited using a double potentiostatic scheme, stepping 
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between a higher negative potential, ranging between (-1.5 V and -2 V), and Cu deposition 

potential (-0.4 V). 

The nanotube array CPP-GMR measurements were carried out with a Quantum Design 

PPMS (Physical Property Measurement System 6000) using an alternative at 27 Hz ranging 

between 0.1-1 mA and a magnetic field between –2 Tesla to 2 Tesla. All measurements were 

performed at room temperature. The orientation of the magnetic field was parallel to the 

nanotube layers and perpendicular to the current passing through the nanostructures. The 

schematic shown in Figure 5.5 illustrates the CPP GMR measurement of the multilayered 

nanotubes. 

 

 

 

 

 

 

 

 

Multilayered CoNiCu/Cu nanotubes are shown in Figure 5.4. The CoNiCu/Cu tubes were 

fabricated under a potential pulse. The CoNiCu alloy layer was deposited at  (-1.7 V for 1 s) and 

the Cu layer was reduced at (-0.4 V).   The deposition time of the Cu layer was varied in the 

range of 50-100 s. In Figure 5.4 (a) the Cu layer was controlled at -0.4 V for 50 s and the 

observed wall thickness averaged 30 nm with a standard deviation of 5.5 nm. Figures 5.6 (b) 

show CoNiCu/Cu tubes when the Cu pulsing time was increased to 75 s and the observed wall 

Magnetic Field (Tesla)

Figure 5.5 CPP-GMR measurement of multilayered nanotubes at room temperature 
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thickness averaged 45 nm with 8 nm of standard deviation. Increasing the Cu pulsing time to 100 

s, the CoNiCu/Cu tubes wall thickness averaged 60 nm (7.5 nm standard deviation) as shown in 

Figure 5.6 (c). The tube wall thickness increased for longer Cu pulsing time. The tube diameter 

was estimated to be 315 nm with a standard deviation of 80 nm.       

 

 

 

 

 

 

 

 

In Figure 5.7, TEM micrographs show robust, long and well-formed CoNiCu/Cu tubes 

fabricated by pulsed potential electrodeposition. Keeping the Cu potential constant at -0.4 V, the 

alloy deposition potential was varied. In Figure 5.7 (a) the CoNiCu magnetic layer was deposited 

at -2 V for 3 s, and the resulting wall thickness averaged 50 nm with 9 nm in standard deviation.  

In Figure 5.7 (b) the CoNiCu alloy layer was deposited at -1.7 V for 3 s and the observed wall 

thickness averaged 28 nm with 5 nm in standard deviation.   Figure 5.7 (c) shows CoNiCu/Cu 

tubes with the alloy layer deposited at (-1.5 V) for 3 s, while the tube walls were estimated to be 

15 nm in thick (6 nm standard deviation). The wall thickness decreased when ferromagnetic 

layer deposition potential decreased and all the other parameters were kept constant. When the 

magnetic layer deposition potential was high, for instance –2 V, the deposition current was also 

high, and therefore thicker tubes were formed since more charge got deposited. Decreasing the 

Figure 5.6 SEM micrographs of CoNiCu/Cu tubes in AAO membrane   (a) Cu layer deposited for 
50 s,  (b) Cu layer deposited for 75 s, (c) Cu layer deposited for 100 s 
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alloy deposition potential and keeping the deposition time constant decreased the amount of 

charge deposited and resulted in thinner tubes. 

 

 

 

 

 

 

  

 

Even though at this magnification layers were not visible, tubular shapes were clearly 

marked by the darker and denser sides enclosing the lighter core regions. Figure 5.8 shows the 

EDS spectrum of the CoNiCu/Cu tubes deposited using the following parameters: CoNiCu (-2.0 

V)/Cu (-0.4 V). The EDS analysis provides a qualitative composition analysis that confirms the 

presence of Co, Ni and Cu in the deposit. On the same array of tubes, XRF was used to get a 

quantitative composition analysis. An averaged composition of the tubes was found to be: 46.6-

wt % Co, 45.9-wt% Cu and 7.5-wt% Ni. 

 

 

 

 

 

 

(a) (b) (c) 

Figure 5.7 TEM micrographs of CoNiCu/Cu in AAO membrane: (a) CoNiCu (-2.0 V)/Cu (-0.4 
V), (b) CoNiCu (-1.7 V)/Cu (-0.4 V), c) CoNiCu (-1.5 V)/ Cu (-0.4 V)  

 

0.0 0.6 1.3 1.9 2.5 3.1 3.7 4.4 5.0 5.6 6.2 6.8 7.5 8.1 8.7 9.3 9.9

Co

Ni

Cu

z

Figure 5.8 EDS spectrum of the CoNiCu/Cu tubes  
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The CoNi/Cu multilayered nanotubes showed GMR at room temperature and low 

magnetic fields (less than 0.5 Tesla). Alloy deposition potential was one of the first variables  

shown to have an affect on the GMR values. Figure 5.9 presents a series of GMR measurements 

for the CoNi/Cu nanotubes deposited at different alloy potentials, while keeping the Cu layer 

condition constant.  

The alloy layer time was set to 3 s, while the Cu layer pulsing time was 100 s. When the 

tube alloy deposition potential was set to (–1.7 V), the observed GMR was 3 % with a magnetic 

saturation field of 0.25 Tesla. When, decreasing the alloy deposition potential to -1.5 V the GMR 

slightly increased to 3.6 % but the magnetic saturation field almost doubled (0.5 Tesla). The best 

GMR shape was obtained when the CoNi alloy layer was deposited at -2 V. The first scan (virgin 

state) GMR value was 8.7 %, although the re-measured GMR value settled to 3.5 % at a lower 

magnetic field of 0.2 Tesla. Although the virgin state rendered higher GMR upon the first scan, 

the GMR value did not drastically change for different alloy deposition potentials. However, the 

GMR profile reproducibility and magnetic saturation field were influenced by the alloy reduction 

potential.       

In order to image arrays of multilayered tubes, similar conditions that shown GMR were 

used to deposit multilayered tubes in PC membranes that were easier to dissolve and image at the 

SEM.  Figure 5.10 shows an array of CoNi/Cu multilayered nanotubes electrodeposited by 

pulsing potential between (-2 V for 3 s) and (-0.4 V for 100 s). Figure 5.11 shows both SEM and 

TEM micrographs of CoNiFeCu/Cu nanotubes fabricated by pulsed overpotential 

electrodeposition at (a) -1.6 V and (b) -2 V for the alloy layer at 3 s and with the Cu layer 

electrodeposited at -0.4 V for 100 s. Both figures show an array of nanotubes. The tube walls are 
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evident by the darker regions in the TEM micrographs. The tube walls were thicker for the larger 

overpotential -2 V. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Layered CoNiFeCu tubes were imaged under higher resolution TEM and analyzed by 

EDS in Figure 5.12. The layers are clearly evident in Figure 5.12 (a), which shows a CoNiFe/Cu 

Figure 5.10 CoNiCu/Cu multilayered nanotubes: CoNiCu (-2 V) and Cu (-0.4 V) 
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nanotube with the alloy layers electrodeposited at -2.0 V.  Guidelines have been added to 

illustrate the layer orientation. 

 

 

 

 

 

 

 
  

The CoNiFe alloy layer was estimated to be 10 nm, and the Cu layer was 6 nm. Figure 5.12 (b) 

shows an EDS spectrum of the sample. A XRF analysis provided a bulk elemental composition 

of: 42.0-wt  % Co, 54.4-wt % Cu, 3-wt % Cu, and 0.6-wt % Fe, consistent with the qualitative 

EDS spectrum.  

Figure 5.11 Micrographs of CoNiFeCu/Cu in AAO membrane: SEM (left), TEM (right) 
(a) CoNiFe/Cu (-1.6 V)/ Cu (-0.4 V) (b) CoNiFe/Cu (-2.0 V)/Cu (-0.4 V) 
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Figure 5.12 Nanolayered tubes CoNiFeCu/Cu (- 2.0 V) / Cu (-0.4 V)  
a) TEM     b) EDS  
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The array of CoNiFeCu/Cu nanotubes exhibited GMR = ⎟
⎠
⎞

⎜
⎝
⎛ Δ

R
R at room temperature and 

low magnetic fields (less than 0.5 Tesla). Figure 5.13 shows the CoNiFeCu alloy deposition 

potential effect on the % GMR, when the Cu layer conditions were maintained at -0.4 V. The 

alloy layer overpotential ranged from -1.7 to -2.3 V. The highest CoNiFeCu/Cu tube GMR (3.5 

% at 0.2 Tesla) was observed when the alloy layer was pulsed at -1.7 V. All the GMR nanotubes 

were deposited inside AAO membranes with 200 nm pores as specified by the manufacturer or 

approximately 350 nm as observed at the SEM and TEM. When the overpotential decreased 

from -2.0 V to -1.7 V, the GMR value increased. Compared to nanowire counterparts, the larger 

inherent resistance of a nanotube or array of nanotubes is particularly of interest to sensor 

development, where a high ratio of the GMR sample resistance to the contact resistance is 

critical for room temperature devices.  

 

Figure 5.13 CoNiFeCu/Cu tubes GMR function of alloy layer potential  
(Cu layer = -0.4 V) (room temperature measurement) 
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Figure 5.14 shows an example of layered tubes, with the alloy layer deposited at a higher 

negative potential -2.25 V, while the Cu layer was controlled at the same potential of -0.4 V. 

Figure 5.14 (a) shows a TEM image of a multilayered tube formed inside AAO (0.2 μm) 

membrane. The alloy and Cu layer deposition time was the same as in the previous example: 3 s 

for the alloy layer and 100 s for the Cu layer.  The observed wall thickness averaged 50 nm with 

9 nm in standard deviation.  

Figure 5.14 (b) shows SEM images of the multilayered tubes electrodeposited inside a 

polycarbonate membrane having larger diameter than the AAO membrane (0.8 μm diameter). 

The alloy and Cu layer deposition times were doubled to 6 s for the alloy layer and 200 s for the 

Cu layer. The wall thickness was larger at 100 nm with a 20 nm standard deviation.  

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.14 Multilayered CoNiFeCu/Cu tubes [alloy layer (- 2.25 V) / Cu layer (-0.4 V)]  (a) AAO 
membrane tube (TEM) (b) bottom view of an array of tubes in a PC membrane, left; higher 

magnification of a single nanotube showing modulated, right (SEM) 

a) b) 
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The larger layers and doubled wall thickness are clearly seen in the SEM micrograph. 

Figure 5.15 shows how the nanotubes GMR would be influenced by the addition of Fe (+2) and 

Fe (+3) to the CoNi/Cu tubes. Figure 5.15 (a) shows the GMR % as a function of applied 

magnetic field for CoNi(Fe)Cu/Cu nanotubes electrodeposited under the following conditions: 

Cu layer applied potential was -0.4 V for 100 s and the alloy layer applied potential was -1.5 V 

for 3 s.  At these potentials the addition of Fe (+2) in the CoNiCu alloy increased the tube GMR 

while the addition of Fe (+3) had a negative effect on the GMR.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15 (b) shows a SEM image of multilayered CoNiFe/Cu tubes deposited inside 

PC membrane (800 nm pore diameter) by pulsing potential between slightly different potentials 

alloy layer (-1.5 V) and Cu layer (-0.4 V). In order for the layers to be imaged at the SEM the 

layer thicknesses had to be increased. Therefore, the layer deposition time was doubled: the Cu 

layer was deposited for 200 s and the Co rich layer for 6 s.  

Figure 15  (a) Multilayered tubes GMR as a function of Fe oxidation state 
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5.3 Parameters Affecting Nanotubes vs. Nanowires Formation  

In this subsection different parameters that were believed to influence the nanotubes 

versus nanowires formation will be investigated. Throughout the investigation multilayers of 

CoNiFeCu/Cu were electrodeposited using the same potentiostatic scheme: [Cu layer (-0.4 

V)/CoNiFe (-1.4 V)]. First, while keeping the electrodeposition conditions constant, different 

pore sizes will be tested to check if they made a difference in obtaining tubes versus wires. 

Secondly, the alloy layer pulsing time will be varied to investigate its effect on obtaining tubes.  

   5.3.1 Pore Diameter Effect  

In order to examine if the pore size makes a major difference in obtaining tubes versus 

wires identical deposition conditions [Cu layer (-0.4 V for 20 s)/CoNiFe (-1.4 V for 1s)] were 

used to test pore size effect. Three different pore sizes (20 nm, 200 nm and 400 nm) were tested 

to see if tubes or wires would form while keeping the same deposition condition.  

Using the smallest pore diameter nanowires were electrodeposited using the above 

mentioned pulse scheme.  Figure 16 (a) shows a micrograph of the wires obtained when 

Figure 15 (b) CoNiFe(+2)/Cu multilayered tubes CoNiFe (-1.5 V) and Cu (-0.4 V)  
PC membrane
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multilayers CoNiFe/Cu were deposited inside 20 nm pores. The wire diameter averaged 198 nm 

with 18.5 nm standard deviation.  The Cu layer (light) averaged 3.5 nm with 2.2 nm standard 

deviation and the CoNiFe layer (dark) was 6.5 nm with 2.5 nm of standard deviation. When the 

membrane pore diameter was increased to 200 nm and the same pulsing scheme was employed 

for electrodeposition, nanotubes were formed instead of nanowires.  Figure 16 (b) shows a 

micrograph of an array of CoNiFe/Cu tubes obtained when multilayers were deposited inside 

200 nm pores. The tubes diameter averaged 281 nm with 36.7 nm standard deviation.  Therefore, 

when a larger pore diameter 200 nm was used to deposit CoNiFe/Cu multilayers, tubes were 

obtained instead of wires, however distinct layers were hard to distinguished. When even larger 

pore size 400 nm were used for electrodeposit multilayers nanotubes were observed.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16 (a) TEM of CoNiFe/Cu wires electrodeposited in 20 nm pore AAO membrane 
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Figure 16 (c) shows an SEM of an array of CoNiFe/Cu tubes deposited using 400 nm 

pore membrane. The tubes diameter averaged 524 nm with 102 nm of standard deviation.   

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.16 (b) TEM of CoNiFe/Cu tubes array electrodeposited in 200 nm pore AAO membrane 

Figure 5.16 (c) SEM of CoNiFe/Cu tube array electrodeposited in 400 nm pore PC membrane 
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5.3.2 Alloy Layer Pulsing Time 

Another parameter that influenced the wire/tube formation is the layers pulsing time.  

Looking at the experimental data, when the alloy pulsing time was increased the subsequent Cu 

layer pulse would have a longer transient time. Therefore increasing the alloy layer deposition 

time would increase the anodic portion of the Cu transient current, and as a result dissolving 

most of the alloy layer previously deposited.  The schematic shown in Figure 5.17 illustrates this 

concept. To examine if the alloy deposition time would influence the formation of wire versus 

tubes, all deposition conditions were kept the same while the alloy layer deposition time was 

increased from 1 s to 3 s and 6 s. The Cu layer deposition time was constant at 20 s. The 

deposition scheme was the same as before: [Cu layer (-0.4 V for 20 s)/CoNiFe (-1.4 V for varied 

s)]. All experiments were executed using the smallest pore diameter membranes (20 nm). Figure 

5.17 (a) shows the current transients when the alloy layer pulse at –1.4 V was the shortest, 1s. 

The Cu transient current shows a short (2 s) overshoot in the anodic current region during which 

a small portion of the alloy region would be dissolved.  When the sample was examined at the 

TEM wires were observed and not tubes, as shown in Figure 5.18 (a). Figure 5.17 (b) shows the 

current transients when the alloy layer was pulsed at the same potential (–1.4 V) but the duration 

was increased to 3 s. The Cu transient current shows a slightly larger overshoot in the anodic 

current region but more importantly a longer anodic portion of 6 s during which a larger portion 

of the CoNiFe region was dissolved. As a result of less charge deposited, tubes were imaged at 

the TEM as shown in Figure 5.18 (b). Increasing the alloy pulsing time to 6 s further increased 

the Cu layer anodic transient current to approximately 12 s out of the 20 s total Cu deposition 

time.   Figure 5.17 (c) shows the current transients when the alloy layer was pulsed at the same 

potential  (–1.4 V) but the duration was increased to 6 s. 
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The Cu transient current shows a long (>10 s) overshoot in the anodic current region during 

which most of the alloy layer previously deposited would dissolve.  When the sample was 

examined at the TEM tubes were observed as shown in Figure 5.18 (c). Figure 5.18 (a) shows a 

micrograph of the wires obtained when the alloy layer deposition time was 1s.  The wire 

diameter averaged 167 nm with 13.5 nm standard deviation.  The Cu layer (light) averaged 2.3 

1 s alloy layer  wire 

6 s alloy layer  tube 

3 s alloy layer  tube 

Figure 5.17 Current transients profiles during multilayered nanotube/nanowires deposition 
using potentiostatic control (a) 1 s alloy pulse (b) 3 s alloy pulse (c) 6 s alloy pulse 
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nm with 0.5 nm standard deviation and the CoNiFe layer (dark) was 3.7 nm with 1.5 nm of 

standard deviation. Figure 5.18 (b) shows a micrograph of a CoNiFe/Cu tubes obtained when the 

alloy layer time was increased to 3 s.   The tubes diameter averaged 156 nm with 22.5 nm 

standard deviation.  Therefore, when the alloy layer was deposited for a longer time while the Cu 

layer was maintained the same as for the nanowires formation, tubes were formed instead of 

wires. Distinct layers were hard to distinguished at the TEM. Figure 5.18 (c) shows a TEM of an 

array of CoNiFe/Cu tubes formed by increasing the alloy deposition time to 6 s while 

maintaining the Cu layer time to 20 s. For this deposition scenario the layers were not visible at 

the TEM, however the tube formation was obvious. Cu layer pulsing time was also tested to 

determine if it influenced the wire/tube formation. Keeping the alloy layer the same as in the 

nanowire formation (-1.4 V for 1 s) the Cu layer deposition time was increased from 20 s to 100 

s. From deposition data, when the Cu pulsing time was increased the Cu transient current was 

able to reach a semi steady state value, and the overall deposition charge increased for longer 

deposited Cu layers. 

Figure 5.19 shows the CoNiFe/Cu nanowires obtained when the Cu layer pulsing time 

was varied. Figure 5.19 (a) shows the CoNiFe/Cu nanowires obtained when the Cu layer pulsing 

time was 20 s. The Cu layer (light layer) averaged 2.6 nm with 0.97 nm in standard deviation. 

Figure 5.19 (b) shows the CoNiFe/Cu nanowires obtained when the Cu layer pulsing time was 

100 s. The Cu layer (light layer) averaged 15.5 nm with 3.2 nm in standard deviation. Increasing 

the Cu layer pulsing time did not induce the wire to tube transition, it just enlarged the wire Cu 

layer thickness.  
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To show the versatility of the multilayered tube-wire transition and manipulation, we 

attempted the electrodeposition of a tube inside a previously deposited tube.  Figure 5.20 shows 

an SEM of a tube-in-tube configuration obtained in a two-step electrodeposition process. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18 (a) TEM of CoNiFe/Cu wires (1 s alloy layer pulse) 

Figure 5.18 (b) TEM of CoNiFe/Cu tubes (3 s alloy layer pulse) 
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First multilayer tubes were deposited, after which the back of the membrane was re-

sputtered with a second layer of Au to induce a subsequent nucleation process. Using the 

previously deposited dual sputtered membrane, Cu was deposited from the same low efficiency 

CoNiFeCu electrolyte. Concentric tubes were observed.    

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18 (c) TEM of CoNiFe/Cu tubes (6 s alloy layer pulse) 

 

Figure 5.19 (a) TEM of CoNiFe/Cu wires (20 s Cu layer deposition) 
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5.4 Summary and Conclusions  
 

Metallic elemental Cu and CoNiCu alloy nanotubes were electrodeposited inside PC and 

AAO membranes using potentiostatic control. The tubes were obtained from a low-efficiency 

Figure 5.19 (b) TEM of CoNiFe/Cu wires (100 s Cu layer deposition) 

 

Figure 5.20 SEM of concentric tubes: CoNiFe/Cu exterior-Cu interior 
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electrolyte that was critical for the tube formation. The partial pore coverage on the bottom of the 

membranes did not influence the tube formation. 

Multilayered CoNiFe/Cu nanotubes were electrodeposited in both PC and AAO 

membranes of different pore sizes using pulsed potential electrodeposition and a single 

electrolyte. Giant magnetoresistance was shown in multilayered CoNiCu/Cu and CoNiFe/Cu 

tubes electrodeposited inside 200 nm pore AAO membranes. The tube GMR was observed to be 

sensitive to the alloy layer deposition potential. Parameters affecting the transition from 

nanowires to nanotubes were investigated. The membrane pore size dictated whether or not 

nanotubes were formed keeping other electrodeposition variables constant. Tubes were obtained 

in the 200 nm and larger pore size membranes. The ferromagnetic alloy layer pulsing time also 

affected tube vs. wire formation. Keeping the same Cu layer pulsing time and increasing the 

alloy layer deposition time influenced the tube formation because the transient Cu current was 

more than 50 % anodic.  Varying the Cu pulsing time did not influence the tube formation.  
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CHAPTER VI TEMPERATURE EFFECT ON NANOSTRUCTURES AND GMR 
 
 

Various deposition parameters affect the GMR via compositional and nanostructural 

changes. In the previous chapter it was shown how nanowire GMR is affected by the electrolyte 

concentration.  The electrolyte temperature is another electrochemical deposition parameter that 

influences the chemical composition of the deposit and consequently the  magnetic properties. 

Recently, Pattanaik et al. (Pattanaik, 2003) looked at the effect of both electrolyte temperature 

and annealing on CoCu thin film GMR.  As the bath temperature increased from 20 to 35 0C, the 

resulting films showed an increase in magnetoresistance. However, further increasing the bath 

temperature showed a decrease in the films’ GMR. Compositional analysis showed that with an 

increase in bath temperature from 20 to 35 0C, the Co concentration in the film decreases by 5 %. 

Also, further increasing the bath temperature lowered the Co concentration.  Their findings 

imply that suitable control of bath temperature can optimize the Co concentration in the deposit, 

and thereby maximize MR. Post deposition annealing was also examined in their study and had 

affected the film magnetoresistance. Pattanaik et al. (Pattanaik, 2003) showed that the MR had a 

peak for a certain annealing temperature. Annealing can promote different granular structure of 

the films by thermally activating phase separation. In general thermal annealing reduces the 

structural disorder and modifies the Co particle size distribution. 

6.1 Electrolyte Temperature Effect 

To the best of the authors’ knowledge, there are no studies done on the electrolyte 

temperature effect on the GMR of CoNi(Fe)/Cu nanowires and nanotubes. Therefore this study is 

focused on the investigation of the deposition of CoNiFe/Cu nanowires and tubes from 

electrolytes of different temperatures. Figure 6.1 shows the circulating hot water bath that was  
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used to control the electrolyte temperature. The controlled temperature ranged between 25 to 90 

oC. The electrodeposition current is affected by the electrolyte temperature.  For example, under 

kinetic control the reaction rate is affected not only by the electrolyte concentration and the 

applied potential, but also by the electrolyte temperature, as indicated in equation 6-1, where the 

rc is the cathodic reaction rate, ic is the cathodic current, n is the number of electrons transferred, 

F is Faraday constant, kc is the kinetic rate constant, Cs is the species surface concentration, p is 

the reaction order, and            or bk is the Tafel slope, a temperature dependent variable 

describing the relation between reaction kinetics and potential. 

 

The process is in the kinetic regime when the supply of reactants to the electrode surface is 

sufficient to avoid mass transfer limitations.   

The equilibrium reversible potential can be influenced by temperature. Expression 6-2 is 

the Nernst relation that shows how the reduction potential is influenced by temperature, where 

Figure 6-1 Electrolyte temperature control set-up 
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the concentrations of the oxidized and reduced species are CO and CR. The reversible potential 

Erev is a characteristic property of the specific reaction.   

 
 
 
 
 

Among the four metals discussed in this study, Cu has a most positive (noble) Erev. Therefore, Cu 

would be reduced far before the Co, Ni or Fe that have much more negative Erev. The 

overpotential, η, is defined as the difference between applied potential (E) and the reversible 

potential, Erev, which is the potential when the total current is zero, equation 6-3.  

  
 

The temperature influence comes together when expressing the electrodeposition current. 

Equation 6-4 shows the expression of the reduction current in which the temperature term is 

present twice.  The reaction order (p) is equal to 1 in our particular case. 

 

 

When the applied potential is low, the reduction reaction is under kinetic control and the surface 

concentration of metal ions can be approximated equal to the bulk concentration. In the kinetic 

controlled regime, the deposition current depends exponentially on the applied potential. When 

the applied potential is high, then mass transport dominates. When mass transport is significant, 

the surface concentration is less than the bulk concentration leading to a concentration gradient at 

the electrode surface. Therefore when the overpotential is high, the reaction rate increases but the 

surface concentration decreases to zero. At this point the reaction rate is limited by the surface 

concentration, i.e. by the species diffusion to the electrode surface and at this point the 
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electrodeposition reached the limiting current (pure mass transport regime). In the electrolyte 

studied here, the Cu and Fe concentrations are very low and their reduction is limited by the rate 

of transport to the electrode surface.  Since the diffusivities of liquids are rather low (105 less 

than in gases) the Cu and Fe reduction reactions are expected to be under diffusion control. The 

mass transport limited rate can be increased inducing agitation, increasing concentration of the 

reactant or increasing the temperature of the electrolyte.   Diffusivities are also a function of 

temperature as shown by Stokes-Einstein relation (6-5).  

 

 

For multicomponent liquid diffusion there are no simple, practical estimation methods for 

predicting diffusion coefficients. The generalized Stefan-Maxwell equations using binary 

diffusion coefficients are not easily applicable to liquids. There are many correlations available 

for diffusion coefficients in the liquid phase than for the gas phase that reflects the much greater 

complexity of liquids on a molecular level. Gas-phase diffusion exhibits negligible composition 

effects and deviations from thermodynamic ideality. Liquid-phase diffusion involves volumetric 

and thermodynamic effects due to composition variations.  The Stokes-Einstein equation is the 

starting point for many correlations. Increasing the electrolyte temperature during deposition 

would increase the reaction rate constants and therefore the reaction rates.  Under diffusion 

control equation 6-1 is modified to neglect kinetic limitations and becomes equation 6-6.  

 
 

Since the cathodic current is directly proportional to the reaction rate (6-1), the electrodeposition 

current is expected to increase at higher temperatures. Using a MathCAD simulation the 
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reduction currents were computed for different temperatures. The simulation took into account 

both the hydrogen and the oxygen reduction currents as well as the water dissolution currents. 

6.1.1 Steady State Model for Electrolyte Temperature Effect 

When modeling the electrodeposition of the Co-Ni-Fe-Cu quaternary system one has to 

be aware of the anomalous co-deposition behavior that has been observed and reported in the 

literature. Anomalous co-deposition
  
is the preferential deposition of the less noble metal in the 

system. Different mechanisms have been proposed to account for the abnormal electrodeposition 

phenomenon. Zhuang and Podlaha  (Zhuang and Podlaha, 2003) thoroughly
 

studied the 

anomalous deposition of FeCoNi system and showed that the most noble species reaction rate 

was inhibited by the least noble species, consistent with the expected behavior of anomalous 

codeposition introduced by Brenner (1963). Their mathematical model simulated both the 

inhibiting and the catalytic effects observed during NiCoFe alloy deposition and assumed that 

the metal deposition occurred in a two-step mechanism. Their study also took into account that 

intermediates were formed and adsorb at the cathode. Their study showed that the least noble 

element reaction rate was actually enhanced during the anomalous co-deposition. They found 

that the inhibition of Ni and the enhancement of Fe were concentration dependent.  

Previous studies published by Dahms and Croll (Dahms and Croll, 1965) on the 

anomalous co-deposition concluded that the inhibition of the more noble element was coming 

from the ferrous hydroxides blocking the electrode surface.  Matlosz et al. (Matlosz, 1993) work 

on the anomalous co-deposition suggested that the metal was reduced in consecutive steps and 

that the Fe intermediates would cover up most of the electrode area therefore inhibiting the Ni 

deposition. Sasaki and Talbot suggested two distinct rate-determining steps existing in the 

reduction of metals during the anomalous co-deposition. Huang and Podlaha (Huang and 
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Podlaha, 2004) developed a non-steady state model for the electrodeposition of CoNiFeCu. The 

model combined the anomalous kinetic co-deposition with the mass transport considerations to 

describe the compositional gradients that happen when making multilayers of ferromagnetic and 

nonmagnetic materials. When the transient effect is considered the composition gradient does not 

exceed a thickness of 3 nm in the ferromagnetic layer. They also concluded that the copper 

deposition was affected by the presence of the adsorbed iron intermediates.  

This present MathCAD model does not include a mechanism to describe the anomalous 

codeposition and it is used to predict only behavior. In this model the anomalous reduction of the 

iron-group metals was assumed to happen in a single step mechanism and the anodic and 

cathodic reaction components followed the Tafel kinetics shown in equation 6-1. A consequence 

of not including a kinetic model for the anomalous codeposition is that this simulation cannot be 

used to predict changes in the electrolyte composition.   

Therefore, for a kinetically controlled process the current expression can be expressed in 

terms of the kinetic constant k, Tafel slope (bk), species concentration (C) and applied potential 

(E). In a diffusion-limited case, the electrodeposition current (6-7) is expressed as a function of 

the concentration gradient (dC/dx) and species diffusivity (D). In equation 6-7 the concentration 

gradient is approximated as a straight line.  Since the electrodeposition happens on the surface, 

the concentration becomes the surface concentration.  

 

 

In a mixed deposition regime, both the kinetic and the diffusive effects contribute to the current 

density. To get a combined expression, the diffusion expression (6-7) is used to solve for the 

surface concentration and which is then substituted it into the kinetic expression (6-4).  

i
n F⋅

D
Cs Cb−

δ
⋅ diffusion controlled current diffusion controlled 

current
6-7 
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For instance, the kinetic-diffusion mixed current for one of the electrodeposited species (Cu) at 

room temperature is shown in Equation (6-8), where δ is the boundary layer thickness, n is the 

number of transferred electrons and CbCu is the bulk concentration of the Cu species. The 

reversible potential was adjusted for the three different temperatures and also specific kinetic 

constants were calculated.  

The total steady state electrodeposition current equation (6-9) was found by adding up all the 

participant species currents and also the side reaction currents, such as the hydrogen evolution 

current, the water dissociation current and the dissolved oxygen current.  

  

Table 6-1 presents the room temperature diffusion coefficients and kinetic parameters used in the 

model. The limiting current of each individual species present is calculated in the far right 

column.  The diffusion coefficient was calculated assuming the Nernst diffusion layer expression 

6-10, where ilim was the limiting current, δ is the diffusion layer thickness, n are the transferred 

electrons, F is Faraday’s constant and Cb is the bulk concentration. The diffusion coefficient 

varied with temperature according to Stokes-Einstein equation 6-5. All kinetic parameters such 

as rate constants and inverse Tafel slopes were taken from a previous study of Zhuang and 

Podlaha (2003) and Huang and Podlaha (2004). 
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To model the CoNiFeCu partial and total currents the following assumptions were made: (1) 

double layer charging was negligible (2) enough supporting electrolyte made migration 

negligible (3) Concentration gradients were unidirectional (4) one step kinetic mechanisms (5) 

uniform nucleation (6) steady state electrodeposition. 

 
 

 

 

 

 

 

 

 

 

The graph in Figure 6.2 shows the modeled total currents of CoNiFeCu at three different 

temperatures: cold (4 oC), room temperature (RT) and hot (50 oC). In the model the side 

reactions currents were included and simulated for different electrolyte temperatures. Figure 6.3 

shows the modeled side reaction currents at different temperatures.  In the mixed (kinetic-mass 

transport) electrodeposition regime the hydrogen current is higher in the cold electrolyte than in 

the RT or hot electrolyte, as Figure 6.3 (a) illustrates.   However, at high overpotentials the 

hydrogen limiting current behaves oppositely with temperature, increasing in the higher 

temperature electrolyte and decreasing in the 4 oC environment. The water dissolution current is 

shown in Figure 6.3 (b). At higher overpotentials (in the alloy deposition region) the water 

dissolution current did not seem to be much affected much by the electrolyte temperature, but for 

smaller overpotentials the water dissolution current is higher in the chilled electrolyte. 

species
Di           

(cm2/s)
k          

(cm/s) α
Cb             

(mol/L)
b          

(V-1)
ilim           

(mA/cm2)

Fe 3.00E-06 1.00E-20 1.17 1.00E-03 45.26 0.096
Co 2.56E-06 1.80E-12 0.52 5.00E-02 20.116 4.117
Cu 2.56E-06 1.00E-08 1.71 1.00E-03 66.149 0.082
Ni 2.56E-06 9.00E-11 0.415 1.80E-02 16.054 1.482
H2 7.33E-04 1.00E-06 0.39 1.00E-03 15.087 2.357

H2O 5.27E-05 4.50E-11 0.251 1.00E+00 9.71 1.70E+03
O2 2.42E-05 1.00E-17 1.41 2.70E-04 9.71 0.21

Table 6-1 Simulation kinetic and diffusion constants 
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Figure 6.3 (c) shows the modeled oxygen current at different temperatures. It is interesting to see 

that the O2 current increased at the lower temperature since more O2 was dissolved in the 

electrolyte at 4 oC. 

Inspection of the modeled partial current densities of the different metal species involved 

in the electrodeposition reveals that all elemental electrodeposition currents increased at higher 

electrolyte temperature. Also the metal reduction potentials shifted to the right, towards the more 

negative potentials, when the electrolyte temperature increased. Figure 6.4 shows the species 

partial currents modeled at the three different temperatures. Even though all currents increased 

similarly with temperature, when the temperature decreased to 4 oC the Ni and Fe currents 

showed a small reduction with electrolyte temperature.  The current efficiency was modeled for 

the deposition at different electrolyte temperatures. Current efficiencies were calculated by 

adding up all the metal currents and dividing the sum by the overall total current. 

Figure 6-2 Simulated CoNiFeCu total currents at different electrolyte temperatures 
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Figure 6.5 shows the current efficiencies at different electrolyte temperatures. The overall 

current efficiency reached a maximum of 100 % in the Cu deposition region between at –0.15 V 

and –0.4 V.  The current efficiency drops at the more negative Cu deposition potentials and in 

the alloy deposition region. For instance, the efficiency drops from 100 % at 0.25 V to 75 % at –

0.5 V. In the alloy deposition region the efficiency reaches a maximum of 66 % in the range 

Figure 6.3 Modeled side reactions currents at different temperatures. (a) hydrogen current 
(b) oxygen current (c) water dissolution current 
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from –1.2 V to –1.7 V. The alloy efficiency drops to 35 % at higher overpotentials, past –1.7 V. 

The model the current efficiency was not affected much by the temperature. The higher 

efficiencies were slightly shifted towards the more negative potentials when the electrolyte was 

heated and towards the more noble potential when the electrolyte was chilled. At –1.5 V the 

alloy current efficiency seems to be the same for the three studied temperature cases. In the Cu 

region, -0.25 V seemed to yield the maximum current efficiency for all three electrolyte 

temperatures. Next, the simulated reduction currents were compared to the actual deposition 

currents. 

Figure 6.4 Modeled partial current densities at three electrolyte temperatures 
(a) Co and Ni  (b) Cu and Fe  
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Figure 6.6 shows the electrolyte behavior for different temperatures when the potential was 

swept in time at a rate of  (25 mV/s).  The polarization curves at different temperatures were 

carried out using the AAO membrane as the cathode. 

To understand the different deposition behavior when changing the electrolyte 

temperature, deposition current was plotted and compared for the three main temperature cases: 

chilled (4 oC), room temperature and hot (50 oC). From the polarization behavior run in the high 

temperature electrolyte it was observed that the electrolyte temperature affected the current and 

the current increased with electrolyte temperature as illustrated in Figure 6.6 (a). Figure 6.6 (b) 

shows the simulated polarization curves at the same three temperatures. When the electrolyte 

was 50 oC, the current was considerably higher and it exhibited two peaks related to a transient 

mass transport effect.  The first peak was in the Cu deposition region and the second peak was in 

the alloy deposition region. At room temperature, the current decreased compared to the 50 oC 

case, and both the Cu and alloy peaks were smaller. When the electrolyte is chilled at 4 oC, the 

current is significantly reduced, but the Cu peak is still present, however diminished in size.  

When comparing the experimental polarization curves performed at different 

temperatures, Figure 6.6 (a), with the modeled currents, Figure 6.6 (b), it could be observed that 

Figure 6.5 Modeled current efficiencies at different temperatures 
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the general current behavior was in agreement: the overall current increased at higher 

temperatures and decreased at the cooler temperature. In the model the alloy deposition current 

at all three temperatures reaches a limiting current between 9 and 12 mA at a small negative 

potential of –1.3 V. This behavior is not observed experimentally, since only the 50 oC alloy 

current shows a much larger limiting current of 30 mA at a high potential of –2.25 V. 

Experimentally, the limiting current is not reached in the alloy deposition region when 

the electrolyte was chilled at 4 oC, due to the absence of the peak. Also, at 50 oC the mass 

transport region is not as flat as when the current was simulated. Out of the three studied 

temperature cases, the experimental room temperature current profile was closest in agreement to 

the modeled case. In general the model does not simulate the peaks observed in the experimental 

case but captures the change in the total current with temperature. The Cu mass transport peak 

increased considerable when the electrolyte temperature was 50 oC, however the model did not 

reflect it. In both the experimental and simulated scenarios the total reduction current showed an 

increase with the electrolyte temperature and a decrease when the electrolyte was chilled to 4 oC. 

Experimentally, the total current decreased by 5.75 % experimentally when the cold electrolyte 

was used and increased by 13.5 % when the electrolyte was heated to 50 oC. Also, the reduction 

potential shifted by 0.14 V towards the more negative potential when the electrolyte was heated. 

However, when the electrolyte was chilled the reduction potential shifted to the more noble 

region by 0.065V.  In the alloy deposition region, at 4 oC the total current was –8 mA compared 

to –8.5 mA at room temperature and –9.8 mA at 50 oC.   In the Cu deposition region, in the low 

temperature electrolyte the current measured –0.079 mA compared to –0.085 mA at room 

temperature and  –0.098 mA at 50 oC. Therefore when the electrolyte was chilled, the Cu current 
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decreased more than the alloy current. Moreover, when the electrolyte was heated, the Cu current 

and the alloy current increased equally.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1.2 Non-Steady State Model for Electrolyte Temperature Effect 

To get a closer fit model of the nanowire deposition at different temperatures the steady 

state current assumption had to be altered.  The species concentration is not only a function of 

position (x) but it also changing with time (t).  The species concentration expression is shown in 

equation 6-11.      

Figure 6.6 CoNiFeCu polarization curves for different electrolyte temperatures 
(a) experimental data (50 oC, RT and 4oC) (b) modeled curves (50 oC, RT and 4oC) 
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In order to obtain the surface concentration profile and hence the current density, the 2nd order 

PDE (6-11) has to be solved.  Laplace transforms were used to convert the 2nd order PDE into an 

ODE, by reducing the number of variables to only the dimensional component. To make the 

integration easier, a dimensionless concentration was defined so that the integration limits would 

be 0 and 1.  The characteristic equation in the Laplace domain is shown in equation 6-12, where 

CT is dimensionless concentration in the Laplace domain, D is the species diffusivity, s is the 

Laplace domain constant, and C1 and C2 are the constants that need be evaluated using the 

boundary conditions after transforming them into the Laplace domain. Un-transformed boundary 

conditions are listed in 6-13 and 6-14. Far from the electrode surface where the reaction takes 

place, the species concentration is assumed to be the same as the bulk concentration, 6-13. Close 

to the electrode surface, the surface concentration changes according to the diffusion relation 

shown in equation 6-14.   

 

 

 

 

The untransformed PDE characteristic equation constant C2 is solved for, equation 6-15. C1 is a 

function of C2.   
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In addition, the potential was not a constant, but it varied with the sweep rate (λ) and it also had 

to be transformed in the Laplace domain. The x-axis on the polarization curve is the potential 

range, that actually varied with the sweep rate (λ) and the Laplace form is shown below in 6-16: 

 
 
 
 
 
 
 
 

For example, the Cu surface concentration was transformed back to the time domain using 

Mathematica. The surface concentration of Cu shown in 6-17 was substituted in the defined 

dimensionless concentration form and solved. The Cu current profile at room temperature is 

shown in expression 6-18, after replacing the surface concentration with the expression shown in 

6-17.  

 

Figure 6.7 shows a comparison between the non-steady state modeled Cu current and the 

experimental polarization curves. In the experimental polarization curves the Cu limiting current 

peak increases drastically in the high temperature electrolyte and becomes almost flat in the 

chilled electrolyte. In the modeled case, the Cu limiting current peak does not change drastically 

with electrolyte temperature, maintaining almost the same shape and size for all three 

temperatures.   
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Figure 6.7 Comparison of modeled and experimental Cu currents at different electrolyte temperatures
(a) non-steady state model (b) experimental  
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Since the Cu deposition is under diffusion control it can be inferred that the diffusion constants 

used in this simulation were not well adjusted for temperature changes. In the current model 

species diffusivities varied with temperature according to the Stokes-Einstein relation (6-5), 

which is the general starting point of the more complex, case-by-case experimental correlations 

found in literature. For a more precise fit of the experimental currents with temperature 

variations, the diffusion coefficients have to more specifically predicted.  

6.1.3 Multilayered Nanowires at Different Electrolyte Temperatures 

Figure 6-8 shows the alloy nanowire deposition under potentiostatic control when the 

electrolyte temperature was varied.  The sudden increase in the transient current profile shows 

when the alloy nanowires reached the top of the membrane and consequently the deposition 

reached a steady state. In the higher temperature electrolyte the increase in current density is 

abrupt and it is easier to pinpoint where the nanowires completely filled the AAO membrane. 

When the electrolyte was hot it took 500 s for the deposition to reach steady state. During the 

electrodeposition of multilayers, the potential was stepped between the high reduction potential 

 

Figure 6.8 Alloy nanowire currents at different electrolyte temperatures 

oC 

oC 
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of the alloy layer (-1.4 V) and the more noble potential of Cu (-0.4 V) as shown in the schematic 

of Figure 6.9 (a). Multilayers were also electrodeposited at 4oC, room temperature and 50 oC, 

and the electrolyte temperature affected the current transients during each layer deposition. The 

Cu transient currents and the alloy transient currents behaved differently with electrolyte 

temperature.    

 Figure 6-8 (b) shows the Cu transient current profiles at different temperatures. When the 

electrolyte was chilled the Cu current decreased 45 % relative to the room temperature current. 

When the electrolyte was heated to 50 oC the Cu current increased 43 % relative to the room 

temperature Cu current. The high temperature also increased the anodic current that contributes 

to the loss of the alloy layer through a displacement reaction during the transition from the alloy 

potential to the Cu.  

 Figure 6-9 (c) shows the alloy layer current transient profiles when the electrolyte 

temperature was 4 oC, room temperature and 50 oC. The alloy layer current increased 32 % 

relative to the room temperature current when the electrolyte was heated to 50 oC, and decreased 

48 % relative to the room temperature current when the electrolyte was chilled to 4 oC.  

 Figure 6-9 (d) shows the alloy layer transient current for the entire pulsing time at 

different temperatures. The current behavior differs with temperature. At 4 oC, in the first 2000 s 

the current drops almost linearly, which is typical for a diffusion-controlled reaction.  After 2500 

s the current increases linearly for 300 s and then plateaus up to 12000 s.   At 50 oC, the current 

behaves oppositely. In the first 2000 s the current increases linearly after which it drops for 300 

s, then plateaus up to 8000 s after which it keeps increasing until the deposition was stopped. The 

cold and hot currents profiles are almost mirror images of each other.  
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Figure 6-9 Transient currents during pulsed electrodeposition at 4 oC, RT and 50 oC  
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Figure 6-9 (e) shows the Cu layer transient current for a long pulsing time at different 

temperatures. The current behavior is different with temperature. At 50 oC, the current decreases 

in the first 5000 s and reaches a semi-steady state after 10000 s. In the room temperature case, 

the Cu current suddenly increased after 6000 s of deposition. At 4 oC the Cu current remains 

almost the same, which could be a sign of a kinetic controlled electrodeposition.  The high 

temperature alloy growth yielded nanowires while from the cold electrolyte the result of 

electrodeposition was nanotubes.  In the first 2500 s of deposition, the current dropped during 

tube formation and increased during wire growth, which could be explained by changes in the 

electrodeposition area. In general, when wires are electrodeposited the current increases 

drastically when the nanowires reach the top of the membrane and the deposition area increases. 

 The overall sample composition changed with electrolyte temperature. CoNiFeCu alloy 

was deposited at -1.4 V and different electrolyte temperatures.  Table 6-2 shows the WDS 

composition analysis of the alloy samples deposited at three different temperatures. When the 

deposition was carried out from the hot electrolyte, the Cu content in the alloy was very large (80 

%) while the Co content was much smaller (16.7 %) than obtained from the temperature 

electrolyte.  When the electrolyte was controlled at 4 oC, the Cu content in the alloy decreased to 

26.6 %, while the Co content was much higher (69.4 %) than at 50 oC. The lowest Cu content 

(18.8 %) and the highest Co content (76.98 %) were observed from the room temperature 

deposition.   

Current efficiencies at these three temperatures were calculated after weighting the 

samples and integrating the current. At room temperature the current efficiency was 69.4 % for 

the alloy deposition. At 50 oC the current efficiency drops to 51 % compared to the room 

temperature current efficiency. Interestingly, at the low temperature of 4 oC the current  
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efficiency increased to 95.6 %.  Similar behavior was observed for the Cu deposition. At room 

temperature, the Cu current efficiency was 68 % and it drops to 55 % when the electrolyte was 

heated to 50 oC. The highest Cu current efficiency 89 % was observed when the Cu was 

deposited from the 4 oC electrolyte.  

Figure 6.9 Total transient currents at 50oC, RT and 4 oC 
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The modeled current efficiency at room temperature was 87 % in the Cu deposition 

region and 67 % in the alloy deposition region.  However the Cu current efficiency decreased  to 

82 % when the electrolyte was chilled and increased to 95 % when the electrolyte was heated. 

Therefore side reaction currents are higher than what accounted for in the model.   

6.2 Electrolyte Temperature Effect on GMR 

The electrodeposition conditions that yielded the highest GMR were used to study the 

effect of electrolyte temperature on the nanowires GMR. The conditions used to obtain the 20 % 

GMR at room temperature were: 20 nm AAO, CoNiFeCu/Cu wires, 50 mM CoSO4, 25 mM 

NiSO4, 0.5 mM FeSO4, 1mM CuSO4, 10 mM sulfamic acid and 27 mM Na-K tartrate, Cu layer 

(-0.4 V for 20 s)/CoNiFe (-1.4 V for 1 s). For this study the electrolyte temperature was 

controlled using a water bath shown in Figure 6-1. 

Figure 6-10 shows the effect of electrolyte temperature on CoNiFe/Cu nanowire GMR. 

The electrolyte was heated to 25 oC and 50 oC during the electrodeposition process.   The 

electrodeposition parameters were kept constant, the Cu layer was deposited at (-0.4 V for 20 s) 

and the CoNiFe alloy layer at (-1.4 V for 1 s). The GMR was enhanced when the 

electrodeposition was carried out from a slightly heated (25 oC) electrolyte.  However, when the 

electrolyte was heated to 50 oC, the GMR values dropped.  The results were repeated several 

 Fe Ni Cu Co
50C 0.224 2.846 80.200 16.730
4C 1.400 2.560 26.600 69.440

Room 1.440 2.790 18.790 76.980

WDS ( % composition)Electrolyte Temperature (C)

Table 6-2. WDS analysis of CoNiFeCu alloy at different temperatures 
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times to show the variability in the GMR data. The GMR from the hot electrolyte shows a larger 

variation than the GMR obtained in the nanowires deposited from the 25 oC electrolyte.  

 

 

 

 

 

 

 
 

 

 

 

 

 

6.2.1 Electrolyte Temperature Effect on Nanowires-Nanotube Transition 

Another important aspect of the temperature study is to investigate if the tube formation 

is influenced by changes in temperature. Starting with the conditions that yielded the highest 

GMR (20 % at room temperature): [20 nm AAO, CoNiFeCu/Cu wires, 50 mM CoSO4, 25 mM 

NiSO4, 0.5 mM FeSO4, 1 mM CuSO4, 10 mM sulfamic acid and 27 mM Na-K tartrate, Cu layer 

(-0.4 V for 20 s)/CoNiFe (-1.4 V for 1 s), the electrolyte temperature was decreased to 4 oC using 

an ice bath shown below in Figure 6.11. 
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To understand the different deposition behavior when changing the electrolyte 

temperature, deposition current was plotted and compared for the three temperature cases: 

chilled (4 oC), room temperature and hot (50 oC).  Figure 6.12 shows the electrodeposition 

current behavior when  (a) CoNiFeCu alloy was deposited at a constant potential (-1.4 V) and 

different electrolyte temperature and when (b) Cu was deposited at different temperatures and 

constant potential (-0.4 V). To determine the mass transport effect during deposition, the current 

was plotted against t1/2, Figure 6.12 (a) and (b). At low temperature, the Cu current decreases 

almost linearly with the t1/2 which is typical for a diffusion controlled deposition. At 50 oC, the 

Cu current is not totally linear with t1/2. The alloy current does not show as much diffusion 

limited behavior as the Cu current does, as expected since Co and Ni are kinetically controlled.  

Figure 6.13 shows that tubes were obtained from the chilled electrolyte when either Cu or alloy 

was deposited at constant potential. Figure 6.13 (a) shows the SEM picture of large array of Cu 

nanotubes deposited at (-0.4 V).  The tube’ diameter is 190 + 18 nm. Figure 6.13 (b) shows that 

alloy tubes were also obtained when the potential was much higher (-1.4 V) in the chilled 

Figure 6.11 Chilled electrolyte set-up 
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electrolyte. When the same sample was repeated from an electrolyte at 50 oC, wires were 

observed instead of tubes. Figure 6.14 show that when even at higher temperatures (50 oC), the 

deposition starts off as tubes. The SEM in Figure 6.14 shows the first 100 s of alloy deposition at 

50 oC.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15 shows the tube formation from the electrolyte chilled at 4 oC. The same 

electrolyte used for making wires was chilled to 4 oC during the electrodeposition process. Using 

Figure 6.12 CoNiFeCu current profile during deposition at constant potential and different 
temperature electrolytes  (a) alloy current  (-1.4 V) vs. time(1/2), (b) Cu current (-0.4 V) vs. time (1/2) 
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the same deposition parameters (potential, time) for making nanowires, the only parameter 

altered was the electrolyte temperature. In the 20 nm pore diameter AAO membrane, the Cu 

layer was deposited at (-0.4 V for 20 s) and the CoNiFe alloy layer at (-1.4 V for 1 s). Figure 

6.15 shows that depositing in the chilled conditions nanotubes formed instead of nanowires. In 

Figure 6.15 (a) an array of tubes from the chilled electrolyte was observed at the TEM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6.14 SEM of alloy nucleation at 50 oC

Figure 6.13 (b) SEM of CoNiFe alloy tubes from chilled electrolyte 
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At higher magnifications, Figure 6.15 (b) shows multilayer formation at the tube wall. The 

averaged Cu layer was 1.75 nm while the alloy CoNiFe layer was 2.25 nm.  

1.75 nm CoNiFe layer 
2.25 nm Cu layer 

 [Cu layer (-0.4 V)/CoNiFe layer (-1.4 V)] 

 

(a)

Figure 6.15 TEM of multilayered CoNiFe/Cu nanotubes formed from chilled (4 oC) electrolyte. (a) Low 
magnification nanotubes array  (b) Higher magnification – multilayer image 

 

(b) 
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GMR was measured in the tubes formed from the chilled electrolyte. Although the GMR value 

was not large, the magnetic field saturation was smaller that the wires’ saturation field. Figure 

6.16 shows the GMR profile of the CoNiFe/Cu tubes deposited from the chilled electrolyte that 

showed the smallest magnetic saturation field (0.04 T) obtained in our lab so far.   

 

6.3 Nanostructures Annealing Effect 
 

After electrodeposition, heat-treating the deposit could also affect the magnetic 

properties. There is considerably more literature studies dealing with the effect of temperature on 

the deposited material. Peter et al. (Peter, 2006) recently published a study on the annealing 

temperature effect of electrodeposited Co-Cu/Cu thin films on their GMR behavior.  Their study 

took into account that the magnetic layers were not entirely ferromagnetic (FM) but also 

contained superparamagnetic (SPM) regions. In order to reveal the behavior of FM and SPM 
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with temperature they investigated a range of temperatures (12–300 K), and observed the effect 

of temperature on the decomposed magnetoresistance contributions. They concluded that the 

SPM part of the GMR did not depend on temperature. They also concluded that the spin 

dependent scattering was independent of temperature. The GMR decreased with annealing 

temperature for electrodeposited thin films. The shape of the MR curves also changed 

significantly with temperature in the case of Ni-Cu/Cu multilayers, since all the SPM regions 

become FM regions at the lowest measuring temperature. For the Co-Cu/Cu system, some SPM 

regions remained in the SPM state. In the case of the Ni-Cu/Cu multilayers, there was a SPM-

FM transition at low temperature because the measuring temperature becomes lower than the 

blocking temperature of some SPM regions. They assumed there was also a possible 

paramagnetic-ferromagnetic transition of the boundary separating the SPM and FM regions. By 

comparing the composition dependence of the Curie temperature of the Ni-Cu and Co-Cu alloys, 

they showed that the Ni-Cu system could undergo a paramagnetic-ferromagnetic transition 2.6 

times higher than the Co-Cu system. In the Ni/Cu system, they believed there were high 

composition variations due to the miscibility of the components.  In the case of the Co-Cu 

system due to limited miscibility, the boundary regions were Cu rich and could not undergo a 

PM-FM transition at any temperature. 

Annealing temperature effect on the GMR of CoFe/Cu multilayered thin film was 

recently investigated by Rafaja et al. (2004). In their study they deposited 20 multilayers by 

vacuum sputtering technique and then annealed the deposit at various high temperatures. The 

GMR increased to 23 % from 20 % when the thin film was annealed at a particular temperature 

(235 oC). When the film was annealed at a slightly higher temperature of 340 oC the GMR 

decreased drastically to 6%.  The increase in the GMR value was attributed to a better separation 
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of the magnetic and non-magnetic layers. However, at higher annealing temperatures, the GMR 

decreased due to the interface roughness and non-continuous interfaces leading to the short-

circuiting of the magnetic layers. Their study also pointed out that annealing had a negligible 

influence on the layer thickness. They concluded that the quality of the interfaces was affected 

by intermixing of atomic species, which is caused by the penetration of high-energy atoms into 

deeper layers. Therefore, in the immiscible system of CoFe-Cu, the soft annealing could 

influence reverse out-diffusion of the atomic species at the interfaces, which in turn would 

improve the GMR. Rafaja et al. proposed that in the virgin samples the intermixing of atomic 

species caused by penetration of high energy atoms deeper into layers during layer deposition 

affected the quality of the interfaces. Annealing at the higher temperatures further increased the 

interface roughness and therefore lowered the magnetoresistance.  

According to Pattanaik et al. (Pattanaik, 2003) the increase in the Co/Cu thin film GMR 

was due the reduction of defects and film stress unpon annealing. The increase in GMR was 

explained by the segregation of Co fine particles. At the ideal annealing temperature the 

ferromagnetic particle segregation was complete and the segregated Co particles start growing in 

size resulting in multidomain ferromagnetic particles reducing the ferromagnetic/nonmagnetic 

interfacial sites for spin dependent scattering. The thin film GMR improved for a particular 

annealing temperature and deteriorated for temperatures below or above the ideal annealing 

temperature. Annealing time played a crucial role as it controls the extent of Co-particle 

segregation or growth. Their TEM showed that the average grain size doubled upon annealing.  

Several studies have shown the negative effect of high temperature treatment on the 

GMR. However, there are no studies on how the low temperature treatment would affect the 

nanowire GMR. Evans et al. (Evans, 2000) investigated the electrodeposition of CoNiCu/Cu 
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multilayers in aluminum oxide templates and showed that annealing the deposit would reduce 

the GMR effect due to interdiffusion and recrystallization phenomena.  

Li et al. (Li, 2005) recently studied the effects of annealing temperature on magnetic 

properties of CoPt alloy nanowires and they found that a certain annealing temperature (400 °C) 

can improve the magnetic coercivity and squareness. Under normal conditions the solubility of 

ferromagnetic and nonmagnetic metals is very low, but under nonequilibrium conditions, like 

annealing, these metals could form metastable phases that could re-crystallize forming small 

ferromagnetic particles of single magnetic domain nature. In their study, Liu et al. showed that as 

the annealing temperature increased from 100 to 400 °C, the coercivity and squareness increased 

due to structural relaxation and defect reduction. They also pointed out that there is a large 

mismatch between the thermal expansion coefficients of CoPt alloy and AAO, therefore the 

nanowires expand freely along the wire axis during annealing. As the annealing temperature 

increased, the Co grains grew larger in size and began to coalesce. Also, annealing at high 

temperatures (above 400 °C) will increase the AAO internal stress and the pores will be 

distorted, destroying the wires shape anisotropy. Furthermore, at 600 and 700 °C, the Co became 

hcp with the easy axis perpendicular to nanowire, which diminished the anisotropy. Also, at high 

temperature, Co reacted with O2 in the AAO deteriorating the magnetic properties. 

Wang et al. (Wang, 2002) looked at the effect of temperature on magnetization for 

different alloy nanowire systems such as Co-Cu, Fe-Ag and Co-Ag electrodeposited in AAO. 

Their group found that the perpendicular coercivity increased with annealing temperature, 

reached a maximum at (500 o C) and then decreased sharply at higher temperatures.   

It has been shown that higher GMR was found when the measurements were done at low 

temperatures. For example, Dubois et al. (Dubois, 1999) showed that at 77 K NiFe/Cu nanowires 
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GMR was 65 %, and at an even lower temperature (4.2 K), the GMR increased to 78 %.  Since 

the CoNiFeCu/Cu nanowires and tubes GMR was only measured at room temperature, the low 

temperature GMR measurements could yield larger changes in resistance. 

In the present study the annealing temperature effect on the GMR of CoNiFe/Cu 

nanowires and tubes was investigated. In the first case, we used atmosphere annealing ranging 

from 100 to 400 oC.  Figure 6.17 shows the effect of atmosphere annealing temperature on the 

same sample of CoNiFe/Cu nanowires GMR. The electrolyte composition was 50 mM CoSO4, 

18 mM NiSO4, 1 mM FeSO4, 1 mM CuSO4, 10 mM sulfamic acid and 27 mM Na-K tartrate.  

Deposition conditions applied for making the sample shown in Figure 6.17 were: Cu layer (-0.4 

V for 20 s)/CoNiFe (-2 V for 1 s)].  Annealing not done consecutively, therefore one sample of 

GMR was broken down into several pieces that were annealed separately at different 

temperatures and then measured.  Out of the investigated temperatures, the best annealing 

temperature was concluded to be 300 oC.  The nanowires GMR increased by 2 % when the 

sample was annealed at 300 oC. Annealing at 100 oC and 200 oC resulted in lower GMR.  

Annealing the tubes at 300 oC seemed to have a beneficial effect on GMR. Figure 6.18 

(a) shows how the atmosphere annealing affected the nanotubes GMR. The GMR of the tubes 

formed from a 4 oC electrolyte doubled when it was annealed at 300 oC. The electrolyte 

composition was 50 mM CoSO4, 25 mM NiSO4, 0.5 mM FeSO4, 1 mM CuSO4, 10 mM sulfamic 

acid and 27 mM Na-K tartrate.  Deposition conditions applied for making the chilled tubes 

shown in Figure 6.18 were: Cu layer (-0.4 V for 20 s)/CoNiFe (-2.25 V for 1 s)] at 4 oC. Figure 

6.18 (b) shows a low resolution TEM the chilled tubes before the air annealing at 300 oC. It is 

clear that the tubes diameter differ substantially, the smallest shown being 168 nm and the largest 

223 nm. Figure 6.18 (c) shows a higher resolution (250 k) TEM of the chilled nanotubes after 
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annealing.  The layer formation is evident specially looking cross the tube walls: the alloy 

(darker layer) was 4.4 nm and the Cu layer was slightly thinner, 4.1 nm.  
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Figure 6.17 Air annealing temperature effect on CoNiFe/Cu nanowires GMR 
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The tube diameter after annealing was 181 nm, similar to the diameter of the tube before 

annealing.   The GMR doubled and tripled in some cases when the H2 was flown during the 

annealing process.  Figure 6.19 (a) shows the CoNiFe/Cu nanowires GMR increase when 

annealed in a pure H2 environment. The electrolyte composition was 50 mM CoSO4, 25 mM 

NiSO4, 0.5 mM FeSO4, 1 mM CuSO4, 10 mM sulfamic acid and 27 mM Na-K tartrate.   
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Figure 6.18 (b) TEM of the air annealed CoNiFe/Cu tubes deposited at 4 oC 

(b) 

tube diameter = 181.2 nm (5.4 nm SD) 
alloy layer = 4.4 nm  (0.7 nm SD) 
Cu layer = 4.1 nm (0.5 nm SD) 

(c)  

Figure 6.18 (c) TEM of the atmosphere annealed CoNiFe/Cu tubes 
(4 oC deposition) 
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 Deposition conditions applied for making the sample shown in Figure 6.19 were: Cu 

layer (-0.4 V for 20 s)/CoNiFe (-1.5 V for 1 s)]. The CoNiFe/Cu nanowires GMR increased from 

12 % (no annealing) to 22 % when it was annealed at 300 oC in pure H2 environment.  Figure 

6.19 (b) shows the entire deposition data for making the multilayer nanowires. Figure 6.19 (c) 

shows the charge profile during electrodepositing of multilayer. 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.20 shows another example of annealing under H2 when the GMR doubled 

compared to the sample that was not annealed. The electrolyte composition was 50 mM CoSO4, 

25 mM NiSO4, 0.5 mM FeSO4, 1 mM CuSO4, 10 mM sulfamic acid and 27 mM Na-K tartrate.  

Deposition conditions applied for making the sample shown in Figure 6.20 were: Cu layer (-0.4 

V for 20 s)/CoNiFe (-1.7 V for 1 s)]. When the sample was annealed at 300 oC in pure H2 the 
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CoNiFe/Cu nanowires GMR increased from 10 % (no annealing) to 16 %. Therefore annealing 

in hydrogen at 300 oC improved the GMR.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.19 (b) CoNiFe/Cu nanowires annealed at 300 oC in H2 environment 
 deposition data 

Figure 6.19  (c) CoNiFe/Cu nanowires annealed at 300 oC in H2 
environment - charge profile 
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Since the H2 annealing seemed to have a major effect on the nanowires GMR, the highest 

obtained GMR (20 %) conditions were employed to make more GMR followed by H2 annealing. 

The electrolyte composition of the highest obtained GMR of the CoNiFe/Cu nanowires was 50 

mM CoSO4, 25 mM NiSO4, 0.5 mM FeSO4, 1 mM CuSO4, 10 mM sulfamic acid and 27 mM Na-

K tartrate.  Deposition conditions applied for making the best GMR sample were: Cu layer (-0.4 

V for 20 s)/CoNiFe (-1.5 V for 1 s)]. Figure 6.21 shows the profile of the reproduced GMR 

sample. Then, the best sample was reproduced and measured; instead of 20 % at room 

temperature it had an even higher 24.5 %, even before annealing. The sample was then annealed 

in flowing H2 and then re-measured at room temperature. With H2 annealing, the CoNiFe/Cu 

nanowire GMR increased from 24.5 % (no annealing) to 30 %.   

 

 

 

 

 

 

 

 

 

 

 

 

The same annealed sample was also measured for GMR at a lower temperature, to avoid lattice 

  

Figure 6.20 Nanowires GMR annealed at 300 oC in H2 environment 
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vibrations and other quantum interactions that would eventually damage the GMR. When 

measured at 100 K (above liquid N2 temperature) the sample showed an increase in GMR up to 

38.5 %.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 6.22 shows high-resolution TEM micrographs of the CoNiFe/Cu nanowires before and 

after annealing in H2. At a magnification of 200 K, Figure 6.22 (a) shows the multilayers before 

annealing. The dark CoNiFe alloy layer was 2.1 nm with a standard deviation of 1.1 nm and the 

light Cu layer was 2.6 nm with 0.7 nm in standard deviation. The wire diameter before annealing 

was 205.8 nm with 13.9 nm in standard deviation. At a magnification of 150 k, Figure 6.22 (b) 

shows the multilayers after the H2 annealing at 300 oC. The dark CoNiFe alloy layer was a little 
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thicker after annealing 2.4 nm with a standard deviation of 0.7 nm and the light Cu layer was 1.6 

nm with 0.5 nm in standard deviation. The wire diameter seemed to be much smaller after 

annealing was 99.7 nm with 4.5 nm in standard deviation.      

   
 

 

 

 

 

 

 

 

 

The motivation of the TEM investigation was to examine annealing effect on the 

nanostructures. In the previous section it was demonstrate that the annealing temperature 

affected the wires and tubes GMR. From the TEM investigation it was observed that annealing 

had an effect on the nanostructures diameters, grain sizes and ultimately the layer sizes. Upon 

annealing, the grain sizes enlarged, in some cases more than doubled. The best GMR was 

observed when the nanowires were annealed in H2 environment at 300 oC.  

 

 

 

 

Figure 6.21 High resolution TEM multilayered CoNiFe/Cu nanowires before and after H2 annealing 
(a) before annealing (b)  after H2 annealing at 300 oC 

CoNiFe layer = 2.4 nm  (0.7 SD) 
Cu layer = 1.6 nm (0.5 SD) 

CoNiFe layer = 2.1 nm (1.1 SD) 
Cu layer = 2.6 nm (0.7 SD) 

Table 6-3 Wires and tubes annealing TEM observations 
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This form of annealing showed a small decrease in the grain size, however a visible reduction 

(50 %) of the Cu layer. The wire diameter also shrunk with annealing in flowing H2. The air 

annealing promoted grains coalescence that did not necessary improve the GMR.   For example 

in the chilled tubes case the grain size increased four times upon annealing in air. More 

specifically Table 6-3 shows measurements of the CoNiFe/Cu tubes and wire before and after 

annealing. The wire diameter was 175 nm before annealing and it increased when after annealing 

in air. Before the heat treatment the Cu layer was 2.95 nm, the alloy layer was 2.6 nm, the grain 

size measured 8 nm and the yielded GMR was 22 % at room temperature. When the wires were 

annealed in air and 300 oC, annealing did not improve the wires GMR since the wire diameter 

increased, the Cu layer  more than doubled to 7.75 nm and the alloy layer expanded six times (19 

m) under the TEM. Noticeable is that the wire diameter shrunk to 99 nm when the wires were 

annealed in H2. The Cu layer size reduced to 1.27 nm, the alloy layer also slightly decreased to 

2.25 nm and the grain size decreased to 6 nm, which is smaller than the grain sizes measured in 

the wires before annealing 8 nm.  

The GMR increased after the H2 annealing probably because the layer interfaces 

improved. The alloy layer maintained the same size while the Cu layer decreased upon annealing 

in H2. The room temperature electrolyte tubes also went through changes upon annealing. The 

tubes were only annealed in air and the annealing did not substantially improve the GMR, even 

though the grain sizes showed a considerable enlargement with annealing at 300 oC. The 300 oC 

was the only annealing temperature to enhance GMR. The tube wall thickness slightly decreased 

upon annealing, while both the Cu and the alloy layers slightly increased with annealing. The 

chilled tubes showed a slight GMR improvement after with air annealing at 300 oC and it is 
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noteworthy that both the Cu and the CoNiFe layer thickness visibly doubled and the grain size 

increased six times after annealing.  

6.4 Conclusions 

Compared to the room temperature electrodeposition, the Cu current registered a 

significant decrease when the deposition was performed from the chilled electrolyte, and 

oppositely, when the electrolyte was heated to 50 oC, the Cu current increased by the same 

amount.  In the high temperature electrolyte the anodic current increased and lead to a larger loss 

of the alloy layer. Another hypothesis is that the dissolution of the alloy layer may form metal 

oxides at the layer interfaces.  The alloy layer current was more affected by the low temperature 

electrolyte than by the hot electrolyte. During pulsing, the alloy layer transient current behavior 

was opposite in the low and the hot temperature electrolyte: at 4 oC the current dropped linearly, 

typical for a diffusion-controlled reaction and at 50 oC, the current increased almost linearly. The 

cold and hot current profiles were mirror images of each other. The Cu layer transient current 

during pulsing did not follow the same profile as the alloy layer current.  At 50 oC, the current 

decreased in the first 5000 s, while in the 4 oC electrolyte the copper current remained consistent 

to a kinetic control electrodeposition.   

The overall sample composition changed with electrolyte temperature even when 

maintaining the same deposition potential. The Cu content in the alloy increased in the when the 

electrodeposition was carried out from the hot electrolyte. The smallest Cu amount in the alloy 

deposition was found from the room temperature electrolyte, which coincidently yielded the 

highest GMR values. The overall current efficiency dropped in the hot electrolyte and increased 

in the chilled electrolyte.   



 132 

Electrolyte temperature had an effect on the electrodeposition currents and consequently 

on the GMR.  When the electrolyte was heated to 50 oC, the GMR values dropped significantly 

since the layer sizes drastically increased and also the Cu content in the alloy layer was higher.  

Tubes instead of wires were obtained from the chilled electrolyte and only wires were 

obtained in the heated electrolyte. However, even though wires were the result of the high 

temperature electrolyte, the electrodeposition started off in the form of tubes. GMR was 

measured in the tubes formed from the chilled electrolyte and the smallest magnetic saturation 

field (0.04 T) was observed.  Out of the investigated temperatures, the best annealing 

temperature was concluded to be 300 oC.  Annealing the tubes at 300 oC and air seemed to have a 

positive effect on GMR, but the most dramatic outcome was observed when the nanowires were 

annealed at 300 oC with pure H2 flowing. Hydrogen gas is a reducing agent and it is believed that 

it may have diffused inside the membrane and reduced the oxides formed on the alloy layers. 

The GMR doubled and tripled in some cases when the H2 was flown during the annealing 

process.  The dark CoNiFe alloy layer slightly increased after annealing while the light Cu layer 

substantially decreased.  

In agreement with Pattanaik et al. (2003) observations, the distribution of the magnetic 

grain, their volume fraction and intergranular separation were crucial parameters that affected the 

GMR behavior.  At a particular temperature (300 oC) annealing lead to a better segregation of Co 

rich fine particles which in turn lead to increasing ferromagnetic–nonmagnetic interfacial sites 

for spin-dependent scattering and therefore larger GMR. When annealing past 300 oC the 

complete segregated Co rich particles started growing in size resulting in multidomain 

ferromagnetic particles that reduced the GMR values. Pattanaik’s TEM report on the annealing 

of thin films showed an average grain size of 5–10 nm in as-deposited films that increased to 20–
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40 nm upon annealing. In this present work, the same kind of increase in grain sizes was 

observed but only when the annealing was done in air. Oppositely, when the annealing was 

preformed in a reducing environment (flowing H2) the grain sizes slightly decreased. More 

importantly, the layer sizes decreased significantly after H2 annealing.  

According to Li et al. (2005), the annealing treatment led to the formation of smaller Co 

particles that improved magnetic properties. In agreement with this present work, as annealing 

temperature increased, the Co rich grains grew larger and led to an increase in the coercivity and 

past a certain annealing temperature, most of the alloy particles began to coalesce. Li et al. 

(2005) also pointed out that annealing at high temperature (above 300 oC) would relieve internal 

stress but the alumina template pores were distorted and that could explain the loss of GMR. In 

Li’s study, at high annealing temperatures Co rich alloys reacted with O2 from the AAO 

deteriorating the squareness and the perpendicular anisotropy of the nanowires, which could also 

explain the damaged GMR in the present case.  In a different study on nanowires annealing, 

Wang et al. (2002) observed that during the annealing process the increase in the saturation 

magnetization began as the ferromagnetic metal atoms began to cluster, but the coercivity was 

not affected until the ferromagnetic metal precipitates grew much larger with annealing 

temperature.  

Heat treatment can eliminate defects and dislocations in the metals. The hydrogen 

provides a protective environment to keep the metals in a zero valence state as opposed to letting 

them oxidize. This kind of annealing is used in industry for metals processing, however H2 

would be mixed with N2 for safety reasons. Since there is almost not H2 and Al2O3 interactions 

especially compared to the metal's ability to chemisorp H2, alumina plays an important role and 

is just providing the porous skeleton for H2 to diffuse to the metal surface. In granular samples 
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annealing in H2 promotes sintering effects making particle size more homogenous and in 

multilayered could make the layers more distinct and uniform while preventing oxidation and 

even reversing what may have already oxidized. Hydrogen reduction can have a big influence on 

metal alloy formation and its properties. Hydrogen could help forming a more stable alloy 

altering the actual atomic ratios of the alloy and the electronic interactions of the metals with 

each other and maybe promoting better GMR. 
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CHAPTER VII BISMUTH TELLURIDE NANOTUBES ELECTRODEPOSITION 
 

The thermoelectric effect, also known as the Peltier–Seebeck effect, is the conversion of 

heat differentials to voltage and vice versa. The thermoelectric materials can generate electrical 

power from heat or use electricity to heat and cool.  The thermo-electric phenomena provides a 

way to locally control temperature. For instance, at the nano-scale thermo-electric phenomena 

could be used to control the temperature of individual living cells.  Solid thermal and electrical 

transport properties are affected by dimensionality, and therefore nanometer scaled solids could 

be a breakthrough in thermoelectric technology. 

7.1 Background  

Thermoelectricity is a combination of simultaneous thermal and electrical phenomena.  

The transfer of electrons that results when two dissimilar materials are connected creates a 

voltage potential across the junction of the two materials in contact. It is observed that the 

voltage potential changes when the metal junction is cooled or heated. This is the basic concept 

of a thermocouple. Heating or cooling two dissimilar joined materials causes a flow of electrical 

current between the joined materials. The schematic in Figure 7.1 illustrates the concept. 

 

 

 
 
 
 
 
 
 

 
 

 Figure 7.1 Thermoelectricity concept schematic 
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Temperature measurements using thermocouples are based on the discovery by Seebeck 

in 1821 that an electric current flows in a continuous circuit of two different metallic wires if 

the two junctions are at different temperatures. The most common metal pairs used for 

thermocouples include platinum-rhodium, chromel-alumel, copper-constantan, and iron-

constantan. The thermal EMF is a measure of the difference in temperature between T2 and T1. In 

control systems the reference junction is usually located at the Emf-measuring device. The 

reference junction may be held at constant temperature such as in an ice bath or it may be at 

ambient temperature but electrically compensated (cold junction-compensated circuit) so that it 

appears to be held at a constant temperature, Figure 7.2, where A and B are the two metals, and 

T1 and T2 are the temperatures of the junctions.  

 

 
 
 
 

 

 

 

 

 

The thermoelectric power of thermocouple materials makes them adequate for use at liquid-air 

temperatures and above. The level of the temperature measurement (4 K, 20 K, 77 K, or higher) 

and the temperature range needed are to be considered when selecting the two materials for 

making a thermocouple. Since platinum has an electrical resistance that goes to zero as the 

absolute temperature decreases to zero, the lower useful limit of platinum is about 20 K. Below 

Figure 7.2 Thermal EMF as a measure of the temperature difference 
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20 K, semiconductor thermometers are preferred. Semiconductors have just the opposite 

resistance temperature dependence of metals, their resistance increases as the temperature is 

lowered, because fewer valence electrons can be promoted into the conduction band at lower 

temperatures.  

Thus, semiconductors are usually chosen for temperatures from about 1 to 20 K. In a 

semiconductor type of material, both electrons and holes facilitate the movement of charge. 

Depending on the majority of carrier type, semiconductors can be categorized into two types: n-

type (electron carriers) and p-type (holes carriers).  One method of inducing a flow of carriers, 

and consequently obtaining a voltage, is applying a heat flux. The thermoelectric phenomenon is 

illustrated in three closely related effects: Seebeck, Peltier and Thomson effects. By measuring 

the Seebeck coefficient, the Peltier and Thomson coefficients can be calculated. The Seebeck 

effect is the conversion of temperature differences directly into a volatge. Peltier effect is 

considered the inverse of the Seebeck effect. The Seebeck coefficient is the ratio between the 

voltage created and the temperature gradient, as shown in equation 7-1, where α(T) is the 

Seebeck coefficient, ∇ (T) is the temperature gradient and E is the voltage. 

 

 
The Seebeck effect is based on the fact that when a temperature gradient is applied on 

one end of a conductor, the charge carriers, the electrons or holes, will thermally diffuse from the 

hot to the cold end of the conductor where charge will build up creating an electric field inside 

the sample. At a constant temperature, when two different materials are connected, the Peltier 

effect manifests as the observed electric and thermal current created by the materials’ junction.  

The magnitude and direction of the current is dictated by the Seebeck coefficient. The Peltier 

effect is the creation of a heat difference from an electric voltage, which is the reverse of the 

7-1
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Seebeck effect. The Peltier coefficient is defined as the ratio of the power generated at the 

junction to the current flowing through it, equation 7-2, where Π is the Seebeck coefficient, and I 

is the current flowing though the joined materials. 

 

 
When an electrical current is flowing through a material and a temperature gradient is 

applied, thermal energy is generated or absorbed along the sample. However the Seebeck 

coefficient varies as a function of temperature along the sample, therefore the sample acts as a 

series of Peltier junctions. The Peltier effect occurs when a current is passed though two 

dissimilar metals or between a p-type and an n-type semiconductor. The current drives a transfer 

of heat: one side cools off and while the other side heats up. This principle is also known as 

thermoelectric cooling. An interesting consequence of this effect is that the direction of heat 

transfer is controlled by the polarity of the current. Therefore, reversing the current flow will 

change the direction of heat absorbed or released. When the current is forced to flow though the 

circuit, heat is evolved at one junction and absorbed at the other junction. When electrons flow 

from a region of high density to a region of low density they expand and cool the region. 

The Thomson coefficient is the ratio of the power generated per unit volume and the 

applied current and temperature gradient, equation 7-3. 

 

 
Where τ is the Thomson coefficient, I is the current flowing though the sample and ∇T is the 

applied temperature gradient. Equation 7-4 relates the Peltier to the Seebeck coefficient.  

 
 

 
 

Π=Power/I 7-2 

τ = Power/(I ∇T) 7-3 

Π = αT 7-4 
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Equation 7-5 shows the relationship between the Thomson and the Seebeck coefficient.  
 
 
 
  
 

Therefore a thermo-electric EMF is created when a temperature difference is applied to a 

metal or semiconductor. The voltage created is of the order of microvolts per degree difference. 

In semiconductors the type of charge carriers, electrons or holes, decides the sign of the thermo-

power. This phenomenon is based on the principle of charge carrier diffusion.  In 

semiconductors, charge carriers will start diffusing when a temperature gradient is applied at one 

end of the semiconductor. The hot charge carriers diffuse from the hotter end to the colder end, 

where there is a lower density of hot carriers. The cold charge carriers diffuse to the hot 

temperature region where there are less cold charge carriers. The movement of heat through the 

hot and cold charge carriers is called a heat current.   

If both ends of the semiconductor are kept at constant temperatures, a constant heat 

current flows from one end to the other and there is constant carrier diffusion.  If the rate of 

diffusion of hot and cold carriers in opposite directions is equal there would be not net charge 

change. If the diffusion charges are scattered by impurities, imperfections or lattice vibrations 

(phonons) then the diffusion rates would be different, creating a higher density of one type of 

carriers at one end of the conductor. The difference between the positive and negative charges 

creates a potential difference. This electric field opposes the uneven scattering of carriers, and 

equilibrium is reached when the same numbers of carriers are diffusing in opposite direction. 

This means that the thermo power of a material is largely dependent on impurities, imperfections 

and structural changes.  Lattice vibrations, also known as phonons, also move along the thermal 

gradient and lose momentum when interacting with electrons and imperfections in the crystals. If 

7-5 
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the phonon-electron interaction prevails, phonons will push the electrons to one end of the 

material and contributes to the thermoelectric effect. This phonon-electron contribution is most 

important in a certain temperature region close to 1/5 of the Debye temperature (θD).  At lower 

temperatures than the one shown in equation 7-6, there are fewer phonons available for drag, 

while at higher temperatures the phonons-phonons scattering dominates. 

 

 

Currently in the field of cryobiology there is a need to monitor and control the temperature at the 

cellular level and microscale thermoelectric coolers (µTECs) could be the solution. A TEC can 

be made of alternating n/p-type semiconductor elements thermally connected in parallel and 

electrically connected in series, as shown in Figure 7.3. When a current is passed through the 

device, heat is absorbed at one end and rejected at the other end. When two different 

semiconductors are in contact, the electrons will diffuse from the n-type where the electrons 

concentration is higher to the p-type where the electrons concentration is lower.  
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Figure 7.3 Thermoelectric cooler schematic 
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This diffusion of charge carriers will produces a temperature difference and it is the basic idea 

behind a thermoelectric cooler. In Figure 7.3 the negative pole attracts the holes in the p-type 

element while the electrons in the n-type element are attracted by the positive pole of the voltage.  

To attain the best thermoelectric performance, it is important to choose materials with the 

highest figure of merit (Z), which is defined by the equation 7-7, where α is the Seebeck 

coefficient, K is the thermal conductivity and R is the electrical resistance.  

 

 

To maximize the figure of merit (Z) and therefore to enhance the TEC performance the 

material is required to have large Seebeck coefficients (for both the p and n type), and low 

thermal conductivity and electrical resistance. The alloy of bismuth-telluride satisfies these 

requirements and up to present is the most efficient TEC material.  

Alloys of bismuth telluride (Bi2Te3) have been obtained by different fabrication 

techniques such as sputtering (Goldsmid, 1986, Rowe, 1999, Shafai, 2001, Bottner, 2004), 

chemical vapor deposition (CVD) (Venkatasubramanian, 1997, Boulouz, 1998), molecular-beam 

epitaxy (MBE) (Charles, 1988, Boyer and Cisse, 1988), evaporation (Volkein, 1990, Zou, 2001) 

and electrodeposition (Magri, 1996, Chaouni, 2000, Miyazaki and Kajitani, 2001, Tittes, 2003, 

Prabhakar, 2004). Electrodeposition offers not only a low cost alternative method but also the 

ability to control the alloy composition by changing the electrolyte concentration, current 

density, and applied potential. Using electrodeposition it is possible to modify and control the 

main carrier type in the alloy, to yield either a n-type or a p-type semiconductor. By adjusting the 

percentage of tellurium or bismuth in the deposit the obtained alloy can function as an n-type or 

7-7 
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p-type semiconductor. When the deposit is tellurium rich the semiconductor behaves as a n-type 

semiconductor, and when the deposit is bismuth rich the alloy shows a p-type semiconductor 

behavior.  

Manufacturing micro and nano-TECs is in the incipient phase. In the past 5 years only a 

few studies were performed on the manufacturing of TEC materials by electrodeposition. At the 

micro scale thermoelectric devices can be utilized as electric generators, coolers and infrared 

detectors. Bismuth telluride (Bi2Te3) alloys have highly desirable qualities such as high electrical 

conductivity, low thermal conductivity and high Seebeck coefficients, making it one of the most 

favorable TEC materials.   

Bulk and thin film electrodeposition of Bi2Te3 has been successfully shown by different 

research groups such as Takahashi et al. (Takahashi, 1993, 2003), Martin-Gonzales et al. 

(Martin-Gonzales, 2002), Miyazaki and Kajitani (Miyazaki and Kajitani, 2001) and Yoo et al. 

(Yoo, 2005). One of the first groups to electrodeposit Bi2Te3 and confirm the deposit structure 

using XRD analysis was Takahashi et al. They showed a more systematic investigation of the 

electrochemical reactions and compositional changes as a function of applied potential in the 

nitric acid bath and also proposed several intermetallic Bi2Te3 compound formation at different 

potentials. Miyazaki and Kajitani showed that the deposition of either n-type or p-type bismuth 

telluride could be controlled by controlling the deposition potential. Their study suggested that 

the compositional shift to the Bi-rich side introduces p-type semiconductor characteristics in 

Bi2Te3. In a more recent study, Takahashi et al. used a more complex electrodeposition bath 

containing EDTA (ethylenediaminetetraacetic acid) and suggested that the formation of bismuth 

hydroxide Bi(OH)3 could be suppressed by using EDTA as a complexing agent.   
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Yoo et al. used potentiostatic electrodeposition to obtain n-type BixTey films and also 

concluded that the film concentration affected the thermoelectric properties. The highest negative 

Seebeck coefficient of (−188.5 μV/K) was obtained from a stoichiometric deposited film of 

Bi2Te3 at a deposition potential of −0.170 V. They also found that annealing at 250 oC in a 

reducing H2 atmosphere enhanced the thermoelectric properties and reduced film defects. After 

annealing, they concluded that the Seebeck coefficient of the electrodeposited n-type Bi2Te3 thin 

films was comparable to the bulk Bi2Te3 Seebeck coefficient (220 μV/K). 

In a theoretical study, Hicks and Dresselhaus (Hicks and Dresselhaus, 1993) predicted a 

major increase in the figure of merit of nanostructured thermoelectric materials. For a nanowire 

of 0.5 nm diameter they estimated a figure of merit of 14, which would be 28 times larger than 

the bulk Bi2Te3 figure of merit of 0.5. Consequently, researching the fabrication and 

characterization of nanowire structures of thermoelectric materials is receiving much attention 

due to the possibility of enhancing the figure of merit by reducing the structural dimensions.  

The heat transport concept has its base in Boltzmann’s theory that relates the amount of 

heat transported in a solid by individual phonons, electrons and their fluxes that depend on the 

particles density of states and their group velocity that in turn depends on the scattering 

mechanisms.  Most importantly, dimensionality (the nano-size scale) affects both the density of 

states and the scattering mechanism. It has been recently demonstrated by Hicks and Dresselhaus 

(Hicks and Dresselhaus, 1993) that the thermoelectric efficiency of surperlattices can be double 

that of the conventional solids. The thermoelectric power, or Seebeck coefficient, is more 

sensitive to the details of the energy band structure and scattering than the electrical 

conductivity. The Seebeck coefficient relates the temperature gradient and the electric field  

(E=S∇T) and is an equation of state that does not depend on the path taken by the carrier though 
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the material. A higher electron density results in a higher electrical conductivity but in a lower  

Seebeck coefficient . Longer electron mean free paths could improve the electrical conductivity 

without lowering the Seebeck coefficient. Increasing the electron mean free paths is equivalent to 

increasing thermal conductivity that is dominated by acoustic phonons. It has already been 

shown by Bergman and Fel (1999) that the power factor can be enhanced in a mixture though 

electron energy filtering by size quantization and by the reduction of lattice thermal conduction 

due to scattering and phonon refraction on the nanoscale physical boundaries. 

When controlling the dimensionality at the nanoscale, the goal is to minimize the lattice 

thermal conductivity while reducing the electrical conductivity, but the disorder and nanoscale 

defects become more pronounced than in bulk solids. Both electron and phonons mean free paths 

are on the order of thousands of nanometers, but it is only beneficial that the sample dimension is 

smaller than the phonon mean free path but not the electron mean free path. Therefore, size 

quantization effects can increase the Seebeck effect since the density of the electric states is a 

strong function of dimensionality. The Seebeck coefficient is a function of the density of states 

energy derivative and it is enhanced when the density of state function peaks sharply, like in the 

low dimensional crystals. This functionality requires that the characteristic sample dimension, 

also thought of as the thickness of the quantum well, must be on the order of the electron 

wavelength. Ashcroft and Mermin (1976) showed that the density of state dependence on the 

inverse of the electric field potential can result in divergences of the density of state function in 

the lower dimensions, concluding that nanoscale dimensionality would be particularly favorable 

for thermoelectric properties.     

Another requirement for enhanced thermoelectric phenomena is that the material should 

be almost free of disorder in order for the band structure to hold. However, the smaller the 
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quantum wire diameter, the higher the chances that a defect would localize the electron wave 

function, consequently impeding transport. The band structure does not hold when localized 

effects that are characterized by phase coherence dominate the conduction.  

In general, thermoelectric materials are narrow band gap semiconductors. For a low 

carrier density, the Seebeck coefficient is large but the conductivity is low and vice versa for a 

large carrier density. Cutler and Mott (1969) concluded there is an optimal doping level that 

maximizes the figure of merit. In the same early study they showed that figure of merit would 

drastically increase in the low dimensionality materials. Experientially, the Dresselhaus group 

(1993) marked the beginning of the low dimensional thermoelectricity.  Simkin and Mahan 

(2000) showed that the Seebeck coefficient is sensitive to the energy derivative of the 

conductivity and that the sharp peaks in the energy of state function are a hallmark of the low-

dimensional materials and would increase the Seebeck coefficient for a given carrier density and 

conductivity.  However, the same study pointed out that the range of Fermi energies over which 

the figure of merit increases is much smaller for the low dimensional systems compared to the 

bulk materials. Therefore, it should be noted that finding the optimal doping level is crucial for 

the thermoelectric materials at the nanoscale.  In a recent study by Humphrey and Linke (2005) 

the thermoelectric solid materials were modeled with continuous energy bands but with spatially 

localized spikes in the density of states, arising from quantum dots embedded in the material. 

The electrons were simulated as diffusing through the material influenced by the thermal 

gradient. The charge carriers encounter spatial variations in the temperature and potential 

gradient. Humphrey and Linke (2005) predicted that under the right conditions the figure of 

merit values would increase as high as 10 at 300 K.  
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At low temperatures the conductance decreases and this conduction regime is called 

“weak localization” in which the propagation waves are not blocked by the defects. At low 

temperatures, the waves can circumvent the defects in the solid by propagating around them 

through constructive quantum mechanical interference. This constructive quantum mechanical 

interference can happen only when the waves retain the memory of their relative phase. This is 

also known as the phase coherence length and it is only a few nanometers in most solids near the 

liquid helium temperature. In the case of Bi, the spin orbit interactions are dominant and the sign 

of the temperature dependence is reversed (the conductivity increases with increasing 

temperature).  This phenomenon is called antilocalization.  The temperature dependence is both a 

function of the phase braking mechanism and the system dimensionality. Magnetoresistance is 

another experimental quantity that identifies the presence of localization. The MR sign is 

inverted for localization and antilocalization such that when the spin orbit scattering is small 

(like in Zn) the MR is negative while the MR is positive when the spin orbit scattering dominates 

like in Bi. (Heremans, 2003) The work published by Prosen and Campbell (2000) concluded that 

the thermal conductivity is expected to decrease towards the low dimensionality.  

Scattering mechanisms can be separated into the intrinsic or extrinsic due to scattering of 

phonons at the sample boundaries. It has been proven long ago (Peierls, 1929) that a harmonic 

scattering are not present in 1D phonon systems and especially when dealing with Unklapp 

processes that dominate the scattering near the Debye temperature. In other words, the extrinsic 

scattering mechanism dominates the 1D systems, unlike the 3D systems, therefore the 

temperature dependence of the lattice thermal conductivity in 1D systems should follow that of 

the specific heat, therefore especially temperature independent above the Debye temperature.  

This scattering of phonons at the sample boundaries is prevalent in the nanostructures and it is 
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independent of temperature. Daly et al. (2002) ran a molecular dynamic simulation and reported 

a minimal thermal conductivity of surperlattices in the direction perpendicular to the layers. 

Interface roughness also minimized the thermal conductivity because it added more resistance to 

the propagation of acoustic waves between different layers of acoustic properties. It was also 

concluded that on the nanoscale the lattice thermal conductivity was reduced in comparison to 

bulk materials.  

Thin film multilayers of (Bi1-xSbx)2/(Se1-yTey)3 have been recently shown to produce an 

increase in the thermoelectric figure of merit. Published in Nature, Venkatasubramanian et al. 

(2001) showed an enlarged figure of merit of 2.4 in multilayered thin films of 

Bi2Te3(1nm)/Sb2Te3 (5 nm). In essence the explanation of the increase in ZT is the reduction in 

the thermal conductivity when dealing with very small layers (quantum wells). BiSb nanowires 

are predicted to have better thermoelectric behavior than bulk Bi and the fabrication techniques 

involving vapor deposition come of little use since the vapor pressures of Bi and Sb are so 

different at any given temperature.  Electrodeposition would be an ideal candidate for making 

these kinds of nanostructures. 

Other reports of increasing ZT with multilayers were published on systems such as 

PbTe/PbSeTe and PbTe/PbEuTe for which the room temperature n-type ZT was 1.5 and the p-

type ZT was 1.2. Beyer et al. (2002) showed that in multilayered thin films of PbTe/PbSrTe 

would have a ZT of 1 but only when the layers were smaller than 3 nm.  

Bismuth is a favorite and promising element for the study of thermoelectric properties on 

the nanometer scale. The small effective mass of electrons in the material yields a long electron 

de Broglie wavelength with large mobility and mean free path. Moreover when the material is 

shaped in the form of nanowires, the quantized band structure of Bi leads to density of state 
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singularities. Bulk Bi is a semimetal with a conduction band and a valence band that overlap by 

38 meV at 4K. Size quantization increases the energies of electron/hole bands. Down to the 

nanowire size the conduction and valence band overlap decreases and becomes an energy gap in 

very narrow nanowires (under 50 nm). Therefore there is a size-quantization-driven metal to 

semiconductor transition.  Again, the optimal figure of merit is very sensitive to doping because 

the enhancement happens when the Fermi energy is located near one of the density of states 

discontinuities. Doping has to be well controlled because disorder kills the figure of merit. 

Disorder will smear discontinuities which in turn would  decrease the Seebeck coefficient, and 

the localization effects will compete with the size quantization reducing the electrical 

conductivity. Wires with diameters between 200 to 70 nm are semimetals. The thermoelectric 

power of the semiconductor nanowires is very much enhanced compared to the metallic wires, 

and their thermopower decreases at low temperatures. Heremans and Thrush (1999) pointed out 

that the alumina matrix conducts most of the heat when the wires are embedded in the AAO 

template.  

The main mechanism for the figure of merit enhancement is caused by the increase of 

density of states near the Fermi level. The main consequence is that a sufficient density of charge 

carriers can exist in the solid phase to maintain a high electrical conductivity, but the Fermi 

energy is narrow, which would enlarge the Seebeck coefficient. Superlattices with controlled 

phonon thermal conductivity at the interfaces are predicted to have an enhanced figure of merit. 

Quantum wires in which the electronic density of states have narrow peaks at quantized values of 

energy are predicted to have larger figure of merit. For thermoelectric applications bismuth is an 

attractive element, because the electron effective mass is small along certain crystallographic 
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directions and the electron wave functions are large. Even more bismuth lattice thermal 

conductivity is small which would further increase the figure of merit. 

 7.2 Experimental  

Polycarbonate (PC), Osmonics, Poretics nanoporous membranes and Whatman Anodisc 

alumina membranes (AAO) were used as templates for electrodeposition of nanostructures. The 

manufacturer specified pore diameter ranged from 20 nm to 2 microns, while the membrane 

thickness was 6 microns for the polycarbonate membranes and 60 microns for the AAO 

membranes. For electrical contact, Au was sputtered on one side of the template.  

The Au coated template acted as the working electrode and was fixed inside a 

polyetheretherketone (PEEK) stationary holder exposing a square area of 2.25 cm2 of the 

membrane. The cathode membrane was positioned horizontally opposing a platinum counter 

electrode. A saturated calomel electrode (SCE) was used as the reference. The electrolyte for 

nanotube deposition was varied starting with an initial concentration of 0.01 M bismuth oxide 

and tellurium oxide. In this study, the initial concentration was doubled, quadrupled and the 

ratios of bismuth oxide and tellurium oxide were varied in order to study the concentration effect 

on the Seebeck coefficient measurements. The overpotential was controlled versus the open 

circuit potential (OCP) that ranged between +0.1 V and –0.1 V.  All experiments were carried 

out with a Solatron 1255B/1287 potentiostat/function generator. A scanning electron microscope 

(SEM) JEOL JSM-840A, operated at 20 kV was utilized to observe the electrodeposited 

nanotubes after the supporting PC membrane was dissolved in dichloromethane. The Seebeck 

measurements were taken at room temperature using two nano-voltmeters. Seebeck coefficient 

measurements were taken for both n-type (Te rich) and p-type (Bi rich) samples. The Seebeck 

coefficient (S) is measured by mounting the sample on the device shown in Figure 7.4 such that 
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RRSS SEES *)/( ΔΔ=

it would have good electrical contacts between the heater and heat sink. One end of the device 

has a Constantan reference sample whose Seebeck coefficient is known to be RS  = 40 μV/K.  

Therefore the Seebeck coefficient of the sample to be measured is   

where =Δ SE voltage drop obtained for the sample at a temperature drop of  RTΔ  

           REΔ = voltage drop of the reference at a temperature drop of RTΔ  

             RS = Seebeck coefficient measurement of the reference  

             SS = Seebeck coefficient measurement of the sample 

 
 
7.3 Results and Discussion 
 
Figure 7.5 shows a SEM image of bismuth telluride wires obtained by electrodeposition inside 

20 nm diameter pores AAO membrane. The electrodeposition was carried out potentiostatically 

from a diluted (1X) electrolyte (0.01 M Bi2O3 and 0.005 M Te2O3). Figure 7.5  (a) shows an 

array of Bi2Te3 wires obtained at a high overpotential (-0.4 V) = [–0.21 V vs. OCP (-0.19 V vs. 

SCE)] for 1 h.  The XRF composition analysis of the (-0.4 V) nanowire sample showed 59.8 % 

L O i l N (T i h) i

Figure 7.4 Seebeck coefficient measurements  (a) schematic (b) actual puck 

(a) (b) 
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Bi and 40.2% Te. Figure 7.5 (b) shows an array of Bi2Te3 wires obtained at a low overpotential 

(-0.07 V vs. OCP (-0.09 V vs. SCE)] for 14 h.  The XRF composition analysis of the (-0.16 V) 

nanowire sample had 17.25 % Bi and 82.75 % Te. Figure 7.5 (c) shows the XRF composition 

analysis as a function of overpotential for bismuth telluride nanowires electrodeposited from the 

diluted (1X) electrolyte. Figure 7.5 (d) shows the Seebeck coefficients of the bismuth telluride 

nanowires plotted as a function of the electrodeposition potential. The highest n-type Seebeck 

coefficient of the nanowires deposited inside the AAO membrane was –25 μV/K. From this type 

of diluted solution all the p-type Seebeck coefficients came out rather small, with a maximum 

value of 4 μV/K. 

 

 

 

 

 

 

Figure 7.6 shows a SEM image of bismuth telluride tubes obtained by electrodeposition inside 

400 nm diameter pores PC membrane. The electrodeposition was carried out potentiostatically 

from a diluted (1X) electrolyte (0.01 M Bi2O3 and 0.005 M Te2O3). Figure 7.6 (a) shows an array 

of Bi2Te3 tubes obtained at a high overpotential (-0.4 V) = [–0.24 V vs. OCP (-0.16 V vs. SCE)] 

for 1 h.  Figure 7.6 (b) shows an array of Bi2Te3 tubes obtained at a low overpotential (-0.13 V) = 

[–0.00001 V vs. OCP (-0.13 V vs. SCE)] for 14 h. Clear tubular structures were observed from 
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Figure 7.5 (c) Composition function of potential   (d) Seebeck coefficients function potential 
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electrodeposition into the large 400 nm pores membrane. In Figure 7.6(c) the tubes Seebeck 

coefficients are plotted as a function of overpotential. The positive Seebeck coefficients ‘S’ 

suggests that the majority carriers are holes, and a negative ‘S’ suggests that the majority carriers 

are electrons-like.  For these 1X tubes the highest n-type coefficient was –55 μV/k when the 

electrodeposition overpotential was small, -0.06 V. However, all the p-type Seebeck coefficients 

were quite small, less than 2 μV/K. 

 

 

 

 

 

 

 

 

 

 

Figure 7.7 shows the Seebeck coefficients of the tubes obtained from a 2X and 4X 

concentration electrolyte. The results obtained from the 2X electrolyte, Figure 7.7 (a), show that 

the highest n-type coefficient was -47.2 μV/K at a low overpotential of -0.06 V. More 

importantly, from the 2X electrolyte the highest p-type Seebeck coefficient increased to 13.5 

μV/K when a lower overpotential  –0.16 V was applied. The results from the 4X electrolyte, 

Figure 7.7 (b) show a higher n-type Seebeck coefficient of –55.7 μV/K obtained at  –0.06 V 

(a) (b)

High Overpotential  P type (Bi rich) wires Low Overpotential  N type (Te rich) wires 

Figure 7.5 SEM of electrodeposited bismuth telluride wires 
(a) (-0.4 V vs. SCE)  (b) (-0.16 V vs. SCE) 
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overpotential. However, the p-type Seebeck coefficient from the 4X electrolyte did not improve 

compared to the 2X electrolyte.  

In Figure 7.8, the effect of the pore diameters on the Seebeck coefficient measurements is 

reported. The electrolyte concentration was maintained constant at 0.04 M (4X solution). Using 

the larger pore size PC membranes (2000 nm) the Seebeck coefficients of these larger tubes were 

compared to the 400 nm tubes from the same electrolyte concentration, Figure 7.8 (b). 

Comparing the 400 nm tubes Seebeck coefficients (Figure 7.7 b) with the 2000 nm tubes 

Seebeck coefficients (Figure 7.8), it is interesting to note that the pore diameters had a negligible 

effect on the Seebeck coefficient measurements of both p-type and n-type Bi2Te3 nanotubes. 

When larger pore (2000 nm) diameters were used, the highest Seebeck coefficient values for the 

n-type and p-type bismuth telluride nanotubes were -56 μV/K at (-0.06 V vs. SCE) and 1.6 μV/K 

(-0.26 V vs. SCE), respectively. For a 400 nm pore diameter the Seebeck coefficient values for a 

n-type and p-type bismuth telluride nanotubes were -55.7 μV/K (-0.06 V vs. SCE) and 3 μV/K (-

0.35 V vs. SCE), respectively.  

Figure 7.9 shows the 400 nm tubes Seebeck coefficients obtained when the ratios of 

bismuth to tellurium were varied in the 2X (0.02 M) electrolyte. Figure 7.9 (a) presents the effect 

of increased bismuth content (5 bismuth to 1 tellurium). The highest n-type Seebeck coefficient 

was –44 μV/K at –0.09 V overpotential, while the highest p-type Seebeck coefficient was 7 

μV/K at a higher overpotential of -0.3 V. There was not a significant rise in the Seebeck 

coefficient measurements when the ratio of bismuth and telluride was 5:1. Figure 7.9 (b) shows 

the effect of the increased tellurium concentration with respect to bismuth. In this case the ratio 

of bismuth to tellurium became 3:5, and it is very important to note that the p-type Seebeck 

coefficient increased significantly to 57 μV/K at a very low overpotential of –0.02 V.  However, 
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using this 3:5 ratio the highest n-type Seebeck coefficient –32 μV/K was not as high as the one 

obtained from the 3:1 ratio solution. 

7.4 Conclusions 

Different electrolyte concentrations were tested in order to optimize the Seebeck coefficients in 

nanowires and nanotubes.  The highest n-type Seebeck coefficient -56 μV/K was observed in a 

Figure 7.6 SEM of electrodeposited bismuth telluride tubes 
(a) high overpotential (-0.4 V vs. SCE)  (b)  low overpotential (-0.13 V vs. SCE) (c) Seebeck 

coefficient for nanotubes from 1X electrolyte 

(b) (a) 
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400 nm nanotubes structure when the applied overpotential was -0.06 V and the electrolyte 

concentration was 4X (0.04 M) bismuth-telluride solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A similar high value of -55 μV/K was also observed from the 1X (0.01 M) electrolyte 

concentration. Therefore, it was concluded that for the n-type Seebeck coefficients the electrolyte 

-60

-50

-40

-30

-20

-10

0

10

-0.5-0.45-0.4-0.35-0.3-0.25-0.2-0.15-0.1-0.050

Overpotential (V)

Se
eb

ec
k 

C
oe

ffi
ci

en
t (

μV
/K

)

Figure 7.8 Seebeck coefficients of bismuth telluride nanotubes from large pore size 
 (2000 nm) PC membrane and 4X electrolyte 

Figure 7.7 Bismuth telluride nanotubes (400 nm pores) Seebeck coefficients as a function of 
overpotential for different concentration electrolytes (a) 2X concentration (b) 4X concentration 
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concentration did not play a crucial role.  However, when the same 1X electrolyte was employed 

to electrodeposit wires in 20 nm pores and then tubes in 400 nm pores, the observed n-type 

Seebeck coefficients varied dramatically from –25.5 μV/K in the wire geometry to –55 μV/K in 

the tube geometry. Therefore, for the same type of electrolyte, the Seebeck coefficients of the 

nanotubes were higher that the wires. 

The real interesting observation is the jump in the value of the p-type bismuth telluride 

nanotubes when the ratio of bismuth and telluride was 3:5. The best Seebeck coefficient value 

obtained for p-type nanotubes was 57 μV/K, obtained at a very low overpotential of -0.02 V.  

The bismuth telluride electrodeposition project was carried on in collaboration with D. Pinisetty 

form the Mechanical Engineering department at LSU. 
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CHAPTER VIII CONCLUSIONS 
 

The current perpendicular to the plane giant magneto-resistance (CPP)-(GMR) effect 

makes multilayered nanowires of huge interest as magnetic sensor materials. Electrodeposition is 

the most efficient method for fabricating high aspect ratio nanostructures. In this dissertation, the 

CoNiFeCu alloy system was more rigorously investigated in order to electrodeposit multilayered 

nanowires and nanotubes and optimize the GMR effect.  

Electrolyte composition influenced GMR by affecting the alloy layer composition and 

thickness. With the addition of FeSO4 to the electrolyte the GMR tended to decrease, although 

the saturation magnetization field was improved. A large amount of FeSO4 (4 mM) or CoSO4 did 

not have a positive effect on GMR. Hydrogen annealing of CoNiFe/Cu nanowires had a great 

impact on the GMR. After annealing in flowing H2, the largest CoNiFe/Cu GMR value observed 

at room temperature was 30 % and almost 40 % at 100 K measurement. 

Both a steady state and a non steady state MathCAD simulation were used to predict the 

current behavior as a function of the electrolyte temperature. The steady state model captured the 

main trend of the current with temperature, but it did not reflect the mass transport peak in the 

Cu deposition region.  To get better deposition current simulation with temperatures a non steady 

state scenario was considered, in which species concentration are changing in time. The mass 

transport peak showed up in the non steady state model but the overall simulation did not 

completely agree with the experimental observations.   Not including a kinetic model for the 

anomalous codeposition at different temperature is one of the shortcomings of this model that 

could explain why this simulation cannot be used to predict changes in the electrolyte 

composition.  Experimentally, the Cu current registered a significant decrease when the 

deposition was performed from the chilled electrolyte, and oppositely, when the electrolyte was 
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heated to 50 oC, the Cu current increased by the same amount.  In the high temperature 

electrolyte the anodic current, observed during alloy layer deposition, increased and lead to a 

larger loss of the alloy layer. Electrolyte temperature had an effect on the electrodeposition 

currents and consequently on the GMR.  When the electrolyte was heated to 50 oC, the GMR 

values dropped significantly since the layer sizes were not the optimal thickness and the Cu 

content in the alloy layer was much higher. 

Microfluidic nanoparticle sensors based on GMR nanowires were fabricated for the first 

time. The fabrication process involved stamping of a micro-channel pattern onto PDMS. The 

sensor testing results showed a high signal-to-noise ratio, good reproducibility and sensitivity.  

Higher signal-to-noise ratios and better GMR sensitivity make multilayered nanotubes 

fabricated by electrodeposition an attractive and cost efficient material for their potential use in 

magnetic sensing applications. Multilayered CoNiFeCu/Cu tubes were electrodeposited inside 

commercially available nanoporous membranes from a single bath electrolyte. The nanotubes 

exhibited GMR at room temperature and at low magnetic saturation fields (less than 0.5 Tesla).   

Electrolyte temperature affected the tube vs. wire formation. Smaller diameter tubes were 

obtained from a 4oC electrolyte. Multilayered CoNiFeCu/Cu nanotubes showed room 

temperature GMR at low magnetic field (0.04 Tesla). 

Bismuth Telluride nanotubes were deposited inside commercially available membranes. 

The highest Seebeck coefficient for a p-type Bi2Te3 nanotubes was 57 μV/K, at a concentration 

of 0.02 M and at a potential of -0.02 V vs. SCE when the ratio of bismuth to telluride was 3:5. 

The electrolyte concentration affected the tube formation and the Seebeck coefficient results. 
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Figure A1: Steady state modeled Cu partial current at different electrolyte temperatures 

iCuRT η( ) koCuRT− exp
α Cu− Faraday⋅ ErevCuRT⋅

R TRT⋅

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅ Faraday⋅

n− Faraday⋅ DCuRT⋅ Cb Cu⋅( )
δ−

koCuRT exp
α Cu− Faraday⋅ ErevCuRT⋅

R TRT⋅

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅ Faraday⋅ exp bCuRT− E η( )⋅( )⋅
n Faraday⋅ DCuRT⋅

δ−
−

⋅ exp bCuRT− E η( )⋅( )⋅:=

iCuCOLD η( ) koCuCOLD− exp
α Cu− Faraday⋅ ErevCuCOLD⋅

R TCOLD⋅

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅ Faraday⋅

n− Faraday⋅ DCuCOLD⋅ Cb Cu⋅( )
δ−

koCuCOLD exp
α Cu− Faraday⋅ ErevCuCOLD⋅

R TCOLD⋅

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅ Faraday⋅ exp bCuCOLD− E η( )⋅( )⋅
n Faraday⋅ DCuCOLD⋅

δ−
−

⋅ exp bCuCOLD− E η( )⋅( )⋅:=

iCuHOT η( ) koCuHOT− exp
α Cu− Faraday⋅ ErevCuHOT⋅

R THOT⋅

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅ Faraday⋅

n− Faraday⋅ DCuHOT⋅ Cb Cu⋅( )
δ−

koCuHOT exp
α Cu− Faraday⋅ ErevCuHOT⋅

R THOT⋅

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅ Faraday⋅ exp bCuHOT− E η( )⋅( )⋅
n Faraday⋅ DCuHOT⋅

δ−
−

⋅ exp bCuHOT− E η( )⋅( )⋅:=

ErevCuRT E0Cu
R TRT⋅

n Faraday⋅
ln CbCu

L
mol

⋅⎛⎜
⎝

⎞⎟
⎠

⋅+:= ErevCuCOLD E0Cu
R TCOLD⋅

n Faraday⋅
ln CbCu

L
mol

⋅⎛⎜
⎝

⎞⎟
⎠

⋅+:= ErevCuHOT E0Cu
R THOT⋅

n Faraday⋅
ln CbCu

L
mol

⋅⎛⎜
⎝

⎞⎟
⎠

⋅+:=

ErevCuRT 0.251 V= ErevCuCOLD 0.258 V= ErevCuHOT 0.236 V=

koCuRT
kCu

exp
α Cu− Faraday⋅ ErevCuRT⋅

R TRT⋅

⎛
⎜
⎝

⎞
⎟
⎠

:= koCuCOLD
kCu

exp
α Cu− Faraday⋅ ErevCuRT⋅

R TRT⋅

⎛
⎜
⎝

⎞
⎟
⎠

:= koCuHOT
kCu

exp
α Cu− Faraday⋅ ErevCuRT⋅

R TRT⋅

⎛
⎜
⎝

⎞
⎟
⎠

:=

Steady state Cu currents at different electrolyte temperatures 

APPENDIX: SIMULATION 



 167 

 

iCoRT η( ) koCoRT− exp
αCo− Faraday⋅ ErevCoRT⋅

R TRT⋅

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅ Faraday⋅

n− Faraday⋅ DCoRT⋅ CbCo⋅( )
δ−

koCoRT exp
αCo− Faraday⋅ ErevCoRT⋅

R TRT⋅

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅ Faraday⋅ exp bCoRT− E η( )⋅( )⋅
n Faraday⋅ DCoRT⋅

δ−
−

⋅ exp bCoRT− E η( )⋅( )⋅:=

iCoCOLD η( ) koCoCOLD− exp
αCo− Faraday⋅ ErevCoCOLD⋅

R TCOLD⋅

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅ Faraday⋅

n− Faraday⋅ DCoCOLD⋅ CbCo⋅( )
δ−

koCoCOLD exp
αCo− Faraday⋅ ErevCoCOLD⋅

R TCOLD⋅

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅ Faraday⋅ exp bCoCOLD− E η( )⋅( )⋅
n Faraday⋅ DCoCOLD⋅

δ−
−

⋅ exp bCoCOLD− E η( )⋅( )⋅:=

iCoHOT η( ) koCoHOT− exp
αCo− Faraday⋅ ErevCoHOT⋅

R THOT⋅

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅ Faraday⋅

n− Faraday⋅ DCoHOT⋅ CbCo⋅( )
δ−

koCoHOT exp
αCo− Faraday⋅ ErevCoHOT⋅

R THOT⋅

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅ Faraday⋅ exp bCoHOT− E η( )⋅( )⋅
n Faraday⋅ DCoHOT⋅

δ−
−

⋅ exp bCoHOT− E η( )⋅( )⋅:=

ErevFeHOT E0Fe
R THOT⋅

n Faraday⋅
ln CbFe

L
mol

⋅⎛⎜
⎝

⎞⎟
⎠

⋅+:=ErevFeRT E0Fe
R TRT⋅

n Faraday⋅
ln CbFe

L
mol

⋅⎛⎜
⎝

⎞⎟
⎠

⋅+:= ErevFeCOLD E0Fe
R TCOLD⋅

n Faraday⋅
ln CbFe

L
mol

⋅⎛⎜
⎝

⎞⎟
⎠

⋅+:=

ErevFeHOT 0.551− V=ErevFeRT 0.536− V= ErevFeCOLD 0.529− V=

koFeRT
kFe

exp
αFe− Faraday⋅ ErevFeRT⋅

R TRT⋅

⎛
⎜
⎝

⎞
⎟
⎠

:= koFeCOLD
kFe

exp
αFe− Faraday⋅ ErevFeRT⋅

R TRT⋅

⎛
⎜
⎝

⎞
⎟
⎠

:= koFeHOT
kFe

exp
αFe− Faraday⋅ ErevFeRT⋅

R TRT⋅

⎛
⎜
⎝

⎞
⎟
⎠

:=

iFeRT η( ) koFeRT− exp
αFe− Faraday⋅ ErevFeRT⋅

R TRT⋅

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅ Faraday⋅

n− Faraday⋅ DFeRT⋅ CbFe⋅( )
δ−

koFeRT exp
αFe− Faraday⋅ ErevFeRT⋅

R TRT⋅

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅ Faraday⋅ exp bFeRT− E η( )⋅( )⋅
n Faraday⋅ DFeRT⋅

δ−
−

⋅ exp bFeRT− E η( )⋅( )⋅:= iFeRT 1− V( )

iFeCOLD η( ) koFeCOLD− exp
αFe− Faraday⋅ ErevFeCOLD⋅

R TCOLD⋅

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅ Faraday⋅

n− Faraday⋅ DFeCOLD⋅ CbFe⋅( )
δ−

koFeCOLD exp
αFe− Faraday⋅ ErevFeCOLD⋅

R TCOLD⋅

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅ Faraday⋅ exp bFeCOLD− E η( )⋅( )⋅
n Faraday⋅ DFeCOLD⋅

δ−
−

⋅ exp bFeCOLD− E η( )⋅( )⋅:=

iFeHOT η( ) koFeHOT− exp
αFe− Faraday⋅ ErevFeHOT⋅

R THOT⋅

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅ Faraday⋅

n− Faraday⋅ DFeHOT⋅ CbFe⋅( )
δ−

koFeHOT exp
αFe− Faraday⋅ ErevFeHOT⋅

R THOT⋅

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅ Faraday⋅ exp bFeHOT− E η( )⋅( )⋅
n Faraday⋅ DFeHOT⋅

δ−
−

⋅ exp bFeHOT− E η( )⋅( )⋅:= iFeHOT

Steady state Fe currents at different electrolyte temperatures

 

 

2.521.510.50

50

30

10

50−

0

i CoRT η( )

i CoCOLD η( )

i CoHOT η( )

2.5−0 E η( )
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Figure A3: Steady state modeled Fe partial current at different electrolyte temperatures 
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Figure A5: Steady state modeled H2 partial current at different electrolyte temperatures 
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Figure A6: Steady state modeled O2 partial current at different electrolyte temperatures 
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Figure A9: Non-steady state modeled Fe partial current at different electrolyte temperatures 
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Figure A10: Non-steady state modeled Ni partial current at different electrolyte temperatures
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Figure A11: Non-steady state modeled H2 partial current at different electrolyte temperatures 
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Figure A12: Non-steady state modeled H2O partial current at different electrolyte 
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Figure A13: Non-steady state modeled O2 partial current at different electrolyte 
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Figure A14: Steady state modeled total currents at different electrolyte temperatures 
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Figure A15: Non-steady state modeled total currents at different electrolyte temperatures 
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