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ABSTRACT 
 

Enhanced oil recovery by CO2 injection is a common application used for light oil 

reservoirs since CO2 is relatively easily miscible with light oils. CO2 flooding in heavy oil 

reservoirs is often uneconomic due to unfavorable mobility ratios. Reservoir heterogeneity 

further complicates the process as CO2 channels through high permeability layers leading to 

premature breakthrough. However, this can be controlled by choosing a suitable modification 

to the CO2 injection process enabling better sweep efficiencies, and making the process 

economic. The current work focuses on two such methods; water-alternating-gas injection 

(WAG) and profile modification by blocking gas flow in the high permeability layer. These 

methods were studied for physical mechanisms of oil recovery, increasing sweep efficiency, 

and mitigating premature breakthrough. Reservoir simulation studies of these methods were 

conducted using an analog heavy oil (14° API) field with a high permeability streak which 

had 50 times greater permeability than the adjacent zones. A detailed fluid characterization 

was performed to accurately represent the reservoir fluid. Slim tube and core flood 

simulations were interpreted to understand the physical mechanisms of oil recovery for this 

crude. Profile modification using a blocking agent showed very encouraging results. Different 

WAG ratios were also evaluated, and a WAG ratio of 1:1 resulted in the highest oil recovery 

which was consistent between both core flood simulations and field simulations. This is 

different from WAG ratios for highest recovery in light oil reservoirs where values of 1:2 are 

typically seen. It is shown that with careful study of the reservoir geology and fluid properties, 
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application of these methods can significantly improve sweep efficiency and oil recovery in 

heavy oil floods. 
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1 INTRODUCTION  
 

1.1 Introduction 

Enhanced Oil Recovery (EOR) is widely used to recover more oil from an oil field 

after its primary production phase. Depending on the characteristics of the crude oil and the 

reservoir properties, an EOR process is chosen to provide economic incremental recovery. 

Some of the common EOR techniques include non-thermal methods like waterflooding, gas 

flooding, chemical flooding, and thermal methods like steam flooding and in-situ combustion. 

The American Petroleum Institute defines heavy crudes as those with API gravity 

between 10.1o and 22.3 o, while crude oils with API gravity less than 10.1o are defined as 

extra heavy crudes and bitumen, and those with API gravity greater than 22.3o are defined as 

light crudes. When it comes to recovering heavy oils, thermal methods are the most preferred. 

According to the US-DOE, the US has an estimated 100 billion barrels of heavy oil resource, 

of which 80 billion comes from 248 large reservoirs mostly in the states of California, Alaska, 

and Wyoming. The states of Louisiana, Arkansas, Mississippi, and Texas also have 

significant volumes (DOE, 2007).  Nearly 50% of these oil reservoirs do not offer favorable 

conditions for the application of thermal methods. They may have thin formations, excessive 

depths, low permeability, high viscosity, and/or low oil saturations. Non-thermal recovery 

methods like waterflooding and carbon dioxide (CO2) flooding would best suit these heavy oil 

reservoirs (Ali, 1976). 
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The CO2 flooding process is a very widely used EOR mechanism, employed primarily 

for light oils during tertiary recovery. In 2006, there were 80 active CO2 miscible projects and 

two active CO2 immiscible projects in as many as nine different states in the US (Worldwide 

EOR Survey, 2006). CO2 has several advantages when compared to using other gases for 

flooding and is often a preferred displacing fluid depending on its availability. Some 

advantages of using CO2 as stated by Mungan (1981) are (a) reduction of crude oil viscosity, 

(b) swelling of crude oil, (c) miscibility effects, (d) increase of injectivity, and (e) internal 

solution gas drive. However, gravity over-ride, mobility effects, asphaltene deposition, and 

reservoir heterogeneity might severely affect the performance of a CO2 flood (Mungan, 

1981). 

As nations all over the world increase their efforts to reduce emissions of greenhouse 

gases and sequestering current CO2 emissions, CO2 injection into oil reservoirs to recover 

more oil cannot be overlooked as a method to sequester carbon dioxide. Total US CO2 

emissions in 2007 were 5,991 million metric tons and are expected to increase 0.3 percent per 

year until 2030 (EIA, March 2009).  

 

1.2  Literature Review 

There has been considerable research on CO2 flooding in heavy and light crudes, and 

miscible and immiscible processes (Lake, 1989). Heavy oils have a higher concentration of 

heavier carbon compounds, which makes it difficult to achieve miscibility at normal reservoir 
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conditions. There have been several laboratory and field studies conducted to evaluate 

immiscible CO2 processes in heavy oil systems. Laboratory experiments concentrated on core 

flood studies with different compositions of crude, variation to the CO2 flood process, and 

modifications to the slug size during a flood.  

Sweep efficiency for lighter crudes has been extensively studied and literature is 

dedicated towards extraction of light oils using waterflooding (Craig, 1993) and CO2 flooding 

methods (Jarrell, et al., 2002). Furthermore, sweep improvement and conformance control 

methods for light crudes have been discussed by Martin, et al. (1988) and Syahputra, et al. 

(2000). The greater mobility difference between CO2 and heavy oil may result in very low 

sweep efficiencies; therefore using sweep improvement techniques is one way to improve 

sweep efficiency and eventual oil recovery. Although the most commonly used methods for 

extracting heavy crude are thermal processes like steam injection, the field which the subject 

of this study has easy access to CO2. As a consequence, the CO2 is inexpensive if compared to 

steam injection or hot water.  

One of the first laboratory works on CO2 flooding of heavy oil systems was done by 

Jha (1986). He conducted a series of CO2 flooding experiments on Lloydminster reservoir 

crude with 15° API gravity using different CO2 flooding schemes, namely continuous CO2 

injection, CO2 slug process, injection of alternate slugs of CO2 and water, and simultaneous 

injection of CO2 and water. He observed a forty-five fold decrease in viscosity and a 16% 

increase in the swelling factor for the tested heavy oil-CO2 system. The study also observed 
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that a soak period between CO2 and water injection in a water-alternating-gas (WAG) process 

improves recovery. 

Further work by Rojas and Farouq Ali (1986) studied CO2 injection in cores from 

Lloydminster heavy oils to examine a CO2 flood’s applicability in thin reservoirs like the ones 

in the Lloydminster field. They observed that CO2 injection and injection of a slug of CO2 

driven by brine were inefficient due to recycling of injected CO2. WAG processes proved to 

be more efficient when using a high WAG ratio (ratio of the volume of water injected to the 

volume of CO2 injected). This was contrary to simulation studies conducted at the time which 

pointed towards lower WAG ratios yielding increased recoveries. The authors documented 

four mechanisms which contribute to increased oil recovery: oil expansion, viscosity 

reduction, reduction in interfacial tension, and blowdown recovery. 

A laboratory investigation conducted by Mangalsingh and Jagai (1996) on heavy 

crudes from Trinidad emphasized that solubility and diffusion are the fundamental processes 

in the effectiveness of CO2 as a recovery agent. They conducted core floods on heavy to light 

crudes with API gravities varying from 16o to 29o. The authors also noted a higher 

requirement of CO2 for lighter crudes in comparison to heavier crudes because of the large 

quantity of methane in these oils. In lighter crudes, CO2 removes methane before it mixes 

with oil and changes its properties. CO2 mixes with oil by diffusion as well as by solution. 

Most of the simulation work on immiscible and/or miscible CO2 flooding is done as 

part of field studies and hence their focus is on reservoir modeling and evaluating a field 
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specific optimum WAG ratio (Moffitt and Zomes, 1992; Reid and Robinson, 1981; 

Hatzignatiou and Lu, 1994; Spivak and Chima, 1984). 

Spivak and Chima (1984) conducted 1D, 2D, and 3D simulation studies to investigate 

mechanisms of immiscible CO2 injection into heavy oil reservoirs, in particular, two projects 

implemented in the Wilmington Field, California. The authors stated that the process of 

immiscible CO2 drive in heavy oil reservoirs reduces viscosity, followed by waterflooding of 

the reduced viscosity oil. 1D simulations indicated that CO2 strips methane from oil and a 

methane bank is formed just ahead of the injected gas. 

Hatzignatiou and Lu (1994) conducted a feasibility study of immiscible CO2 flooding 

in the West Sak reservoir in Alaska through simulation. Three different injection processes – 

continuous CO2 injection, CO2 WAG and CO2 slug injection – were simulated in 5-spot and 

9-spot patterns, and their ultimate recoveries were compared to a waterflood. They reported 

an increase in oil recovery with an increase in CO2 slug size, but the WAG process showed no 

significant improvement in oil recovery compared to CO2 slug process. Continuous CO2 

injection yielded the highest recovery. 

 

1.3  Motivation and Objectives 

As stated previously, the field that motivated this study has ready access to 

inexpensive CO2. However, the field had problems with early breakthrough of CO2. This 

thesis examines these problems and uses reservoir simulation and a production match to 
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evaluate plausible explanations. Later, different methods are proposed which could mitigate 

the problems, thereby increasing sweep efficiency. Although the CO2 flooding process in this 

field is immiscible, slimtube results show a significant recovery of 65% at operating 

conditions of 3500 psia. Hence, the microscopic displacement efficiency (ED) of this process 

is reasonable, and a good macroscopic sweep efficiency (EV) would improve the overall 

process efficiency (E=EDEV) (Green and Willhite, 1998). This motivated the current study. 

Preliminary analysis indicates that heterogeneity is causing most of the problems seen 

in sweeping heavy oil with this immiscible flood. The study investigates methods to enhance 

the sweep efficiency and ultimate recovery. Heterogeneity effects are more pronounced in 

heavier oil systems due to the higher mobility ratio, which is one of the disadvantages of an 

immiscible CO2 flood. To understand these aspects, we chose to perform reservoir simulation 

studies on this heavy oil field. The purpose of these simulation studies was to identify the 

mechanisms which caused early breakthrough and recommend mitigating techniques. 

Mitigating techniques we intend to examine are WAG and using a profile modification agent. 
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2 RESERVOIR FLUID MODEL 
 

2.1 Field History 

The current work uses data from a heavy oil formation in the continental US. The 

formation is divided into an upper zone and a lower zone. CO2 injection has occurred only in 

the upper zone, so that is the focus of this study. Table 2.1 provides a list of average reservoir 

properties, and an isopach map of the field is shown in Figure 2.1. The formation is bound on 

the eastern edge by a fault which runs northeast-southwest, and is bound on the western edge 

by an aquifer.  

Table 2.1: Average Reservoir Properties of the Field 

Depth 8500’ 
Oil Gravity 14 oAPI 

GOR 50 scf/STB 
Bo 1.05 RB/STB (@ bubble point = 1000 psia) 

BHP 3900 psig 

BHT 198 oF 

Porosity 26.00% 
Water Saturation 39.00% 

Permeability 71 mD (from sidewall core study) 
Average net pay 35’ 

Reservoir volume (Acre-ft) 6125 
OOIP 7.3 MMBO 

 

The zone started production from Well #1. Later, Well #2 was drilled to determine the 

oil-water contact. Finally, Well #3 was drilled. Initial mapping indicated that Well #3 would 
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be at a structurally high position, but after drilling the well the reservoir was remapped with 

Well #1 structurally high. Apart from these wells, Well #4, Well #5 and Well #6 also produce 

from this zone. 

After nearly nine years of primary oil production with an active water drive as the 

primary drive mechanism, one of the up-dip wells, the #1 well was converted to a CO2 

injector. Because the wells were not in any pattern, injection was designed to sweep oil from 

the top of the reservoir towards the strong water drive at the bottom, thereby enabling higher 

production of oil from the down-dip wells. After one month of CO2 injection (effectively with 

17 days of injection) and 0.74 percent HCPV of gas injected, CO2 breakthrough occurred in 

the well nearest to the injector, Well #4. Due to this breakthrough, CO2 injection was curtailed 

and later stopped. Nearly 2 years later injection began from another well (Well #2) down-dip 

in the formation, and is currently the only CO2 injector in the zone. Figure 2.2 shows the field 

production rates of oil and water along with the number of active production wells.  

The well in which CO2 broke through (Well #4) had no data for the gas produced, 

hence, an accurate breakthrough time could not be established. However, the field operator 

indicated that CO2 injection into the injection well was stopped shortly after CO2 

breakthrough was observed. Using this injection data the breakthrough time was estimated at 

one month. 
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Figure 2.2: Field production rates of oil and water for the field. Water-oil ratio in the 
field increased gradually due to the presence of a strong aquifer, and reservoir pressure 

decreased marginally (from material balance calculations) over 9 years of primary 
production. 

 

2.2  Methodology 

A detailed fluid characterization model was built to represent the reservoir fluid in 

order to study the fluid properties and its effect on the early breakthrough. Next, an analogous 

3-D reservoir model was built using the structure & isopach maps, and sidewall core data 

available from one of the injectors to simulate an approximate history match of the field 
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production. The model was also used to evaluate mitigation techniques which might increase 

breakthrough time. A summary of the methodology is: 

1. Detailed fluid characterization to capture the fluid properties 

i. Lumping the 40 component system into an 8 component system 

ii. Equation of state tuning using swelling and saturation pressure experimental 

data 

iii. EOS tuning using experimental viscosity data 

iv. Simulation of slim tube experiments to estimate the minimum miscibility 

pressure 

2. Building an approximate 3D model of the field using data from sidewall cores, and 

structure and isopach maps. 

3. Perform an approximate history match using the field production data to attain 

reasonably close breakthrough time and productivity behavior. 

4. Evaluate early breakthrough mitigating techniques: 

i. Water Alternating Gas (WAG) 

ii. ‘Profile modification’ techniques such as foam or polymer injection 
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2.3 Fluid Characterization 

The current operator for this field provided fluid composition and component property 

measurements for the oil and gas from the field. Oxygen free compositional analysis of gas 

(Table 2.2) and compositional analysis of the stock tank oil (Table 2.3) for the oil and gas 

produced from Well #4 was provided as performed by the gas chromatography method. 

Table 2.2: Oxygen free compositional analysis of As-received gas samples 

Cylinder Number 840250D 840263D 840279D Mean (these 
values were 
used for gas 
composition)Component Composition 

Mol.% 
Composition 

Mol.% 
Composition 

Mol.% 

Nitrogen 2.523 2.572 2.562 2.552
Carbon Dioxide 0.078 0.077 0.087 0.081

Hydrogen Sulfide 0.000 0.000 0.000 0.000
Methane 78.085 77.677 78.937 78.233
Ethane 3.228 3.187 3.251 3.222
Propane 3.509 3.447 3.536 3.497

iso-Butane 0.796 0.791 0.805 0.797
n-Butane 2.117 2.113 2.134 2.121

iso-Pentane 1.451 1.515 1.470 1.479
n-Pentane 2.513 2.654 2.514 2.560
Hexanes 3.802 4.185 3.399 3.795
Heptanes 1.723 1.613 1.213 1.516
Octanes 0.175 0.154 0.092 0.140
Nonanes 0.000 0.000 0.000 0.000
Decanes 0.000 0.000 0.000 0.000

Undecanes 0.000 0.000 0.000 0.000
Dodecanes 0.000 0.015 0.000 0.005

Tridecanes plus 0.000 0.000 0.000 0.000
TOTAL 100.000 100.000 100.000 100.000
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Table 2.3: Compositional Analysis of as-received Stock Tank Oil 

Component Wt% Mol% Molecular Weight 
gm/mol 

Density 
gm/cc 

N2 Nitrogen 0.000 0.000 28.013 0.809 
CO2 Carbon Dioxide 0.000 0.000 44.010 0.801 
H2S Hydrogen Sulfide 0.000 0.000 34.080 0.817 
C1 Methane 0.000 0.000 16.043 0.300 
C2 Ethane 0.000 0.000 30.070 0.356 
C3 Propane 0.000 0.000 44.097 0.507 
iC4 iso-Butane 0.000 0.000 58.123 0.563 
nC4 n-Butane 0.001 0.008 58.123 0.584 
iC5 iso-Pentane 0.005 0.033 72.150 0.624 
nC5 n-Pentane 0.011 0.073 72.150 0.631 
C6 Hexanes 0.086 0.489 84 0.685 
C7 Heptanes 0.252 1.268 96 0.722 
C8 Octanes 0.524 2.343 107 0.745 
C9 Nonanes 0.777 3.066 121 0.764 
C10 Decanes 1.014 3.613 134 0.778 
C11 Undecanes 1.161 3.771 147 0.789 
C12 Dodecanes 1.311 3.888 161 0.800 
C13 Tridecanes 1.526 4.164 175 0.811 
C14 Tetradecanes 1.622 4.076 190 0.822 
C15 Pentadecanes 1.768 4.098 206 0.832 
C16 Hexadecanes 1.795 3.861 222 0.839 
C17 Heptadecanes 1.891 3.810 237 0.847 
C18 Octadecanes 1.933 3.677 251 0.852 
C19 Nonadecanes 2.062 3.743 263 0.857 
C20 Eicosanes 2.005 3.481 275 0.862 
C21 Henicosanes 1.962 3.219 291 0.867 
C22 Docosanes 1.865 2.920 305 0.872 
C23 Tricosanes 1.830 2.748 318 0.877 
C24 Tetracosanes 1.802 2.599 331 0.881 
C25 Pentacosanes 1.709 2.365 345 0.885 
C26 Hexacosanes 1.743 2.318 359 0.889 
C27 Heptacosanes 1.754 2.239 374 0.893 
C28 Octacosanes 1.727 2.125 388 0.896 
C29 Nonacosanes 1.715 2.037 402 0.899 
C30 Triacontanes 1.682 1.931 416 0.902 
C31 Hentriacontanes 1.595 1.771 430 0.906 
C32 Dotriacontanes 1.451 1.560 444 0.909 
C33 Tritriacontanes 1.408 1.468 458 0.912 
C34 Tetratriacontanes 1.284 1.299 472 0.914 
C35 Pentatriacontanes 1.246 1.224 486 0.917 
C36+ Hexatriacontanes plus 55.483 18.715 1415 1.063 
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WINPROP® 2009.10 from the Computer Modeling Group, Ltd (CMG) was used for 

fluid characterization. WINPROP® is CMG’s equation of state (EOS) multiphase equilibrium 

and properties determination program. WINPROP® features techniques for lumping of 

components, matching laboratory PVT data through regression, generation of phase diagrams, 

and compositional grading calculations like swelling and viscosity calculations (Computer 

Modeling Group Ltd., 2009). 

The following steps summarize the process used for the fluid characterization 

1. Recombination of oil and gas compositions to form live oil under reservoir 

conditions. 

2. Lumping the 40 component fluid system into a smaller number of pseudo-

components. The process of component lumping is done by phase diagram match, 

in which the phase diagram of the original 40 component system is compared with 

the phase diagram obtained  after lumping into pseudo-components. 

3. Several cycles of regression were performed on the pseudo-component properties 

to match the available swelling factor and viscosity data with the values calculated 

through the software. After each cycle the phase envelope was compared with the 

40 component phase diagram. Regression was stopped after a satisfactory match 

was found between the experimental PVT data and the calculated PVT values, and 

also between the phase diagrams. 
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4. Minimum Miscibility Pressure (MMP) and the displacement drive mechanism 

(condensing and vaporizing drive) calculated by WINPROP® were verified after 

each cycle of regression to ensure that the MMP value was close to its value before 

regression, and the drive mechanism remains the same. 

5. In the case of an unsatisfactory match between the phase diagrams or MMP, or for 

a change in drive mechanism, regression controls were altered within ±5% of the 

parameter value and regression was continued. 

 

2.3.1 Recombination 

 

Oil and gas compositions from the separator gas and the stock tank oil were used to simulate 

the recombination to form live oil using WINPROP®’s ‘Recombination’ option, which results 

in 40 components and their component properties. This recombination needs to be done at 

separator conditions. Based on communications with the operator, separator conditions of 50 

psia and 60 °F were chosen. A gas-liquid phase diagram was generated for this 40 component 

system. Table 2.4 gives a detailed account of the mole fractions of each component after 

recombination. Figure 2.3 shows the phase diagram for the 40 component system. 
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Table 2.4: Components and component mole fractions after recombination to form live-
oil 

Component Mole 
Fraction 

(%) 

Component Mole 
Fraction 

(%) 

Component Mole 
Fraction 

(%) 
N2 0.4577 C11 3.0870 C25 1.936 

CO2 0.0141 C12 3.1827 C26 1.8975 
C1 14.164 C13 3.4087 C27 1.8329 
C2 0.5855 C14 3.3366 C28 1.7395 
C3 0.6365 C15 3.3547 C29 1.6675 
iC4 0.1444 C16 3.1606 C30 1.5807 
nC4 0.3906 C17 3.1189 C31 1.4498 
iC5 0.2902 C18 3.01 C32 1.277 
nC5 0.5156 C19 3.064 C33 1.2017 
C6 1.09 C20 2.8496 C34 1.0634 
C7 1.3505 C21 2.6351 C35 1.002 
C8 1.9497 C22 2.3903 C36+ 15.32 
C9 2.5099 C23 2.2495   
C10 2.9576 C24 2.1276   

 

 

Figure 2.3: 40 component phase diagram.  
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2.3.2 Lumping of Components 

 

CO2 injection into a reservoir is a compositional process which alters the components 

in the crude oil.  In compositional simulation, the number of primary equations per grid block 

is Nc+1, where Nc is the number of components in the hydrocarbon system. Hence, the larger 

the number of components used, the greater would be the amount of time taken to solve the 

equations at each time-step. Thus decreasing the number of hydrocarbon components 

(lumping) would ease the process of simulation (Coats, 1980). However, during the process of 

lumping care must be taken so that the fluid properties do not change too much in comparison 

with the original (un-lumped) fluid properties. 

A lumping scheme described by Hong (1982) was used to group the 40 component 

system into an 8 component one. As suggested by Hong (1982), non-hydrocarbon 

components (CO2 and N2) were kept separate, light hydrocarbon compounds (C1-C5) were 

grouped together, and heavier hydrocarbon compounds (C6-C36
+) were also grouped together. 

Hong (1982) suggests grouping all components above C7 into one pseudo-component. 

However, since the crude oil used in this study has many heavier fractions with relatively 

large mole fractions, three pseudo-components were formed by grouping together components 

between C6 and C36
+. 

The lumping scheme described above was developed after several trial runs with 

different combinations of groupings. Based on the guidelines provided by Hong (1982) a few 

combinations of groupings were made, and a P-T phase diagram was plotted for each of these 
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combinations. A lumping combination which provided a good match with the 40 component 

phase diagram was chosen and used as the lumping scheme. This scheme is shown in Figure 

2.4. It shows a good match between the 40 component and 8 pseudo-component lumping 

schemes. The phase envelope has a near perfect match at reservoir temperature (198° F). 

Table 2.5 shows the lumping scheme (8 pseudo-components) for which the best match was 

observed. The heavier fraction, C36+, has a substantial mole fraction of more than 15 percent. 

 

Table 2.5: Lumping and mole fraction of the 8-component system. The heaviest 
component, C36+, has a substantial mole fraction of 15 percent. 

Pseudo- 
Component 

Mole Fraction 
(%) 

N2 0.4577 
CO2 0.01414 
C1 14.1641 

C2 – C3 1.2220 
C4 – C5 1.3408 
C6 – C12 16.1274 
C13 – C35 51.3537 

C36
+ 15.3202 

 

Figure 2.4 shows the P-T phase diagrams for the 40 and the eight pseudo-component 

systems along with the 10%, 30% and 50% gas fraction lines. The discontinuity in the gas 

fraction lines is due to the instability of the Gibbs free energy surface, hence a sudden shift in 

the phase plot is observed (Computer Modeling Group Ltd., 2009). It can be noted that the 

instability is always at a temperature greater than the reservoir temperature (198 °F). 



19 
 

Therefore, for non-thermal processes (like CO2 flooding) this instability does not greatly 

impact the usable portion of the phase diagram. 

 

 

Figure 2.4: Phase diagrams with the 40 component and 8 pseudo-component system. 
10%, 30% and 50% gas quality lines are shown in the graph. The discontinuities 

observed in gas quality lines are above the temperature range of the reservoir under 
study. 

 

2.3.3 Equation of State Tuning for Swelling and Viscosity Data 

The Peng-Robinson equation of state (EOS) was used in this study for fluid modeling. 

By tuning the EOS parameters, a match can be obtained for the experimental data and thereby 
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increase confidence in the predictions from the reservoir simulator. Properties of the pseudo-

component like, molecular weight, critical pressure, critical temperature, binary interaction 

coefficients, and Pedersen viscosity coefficients (Pedersen, et al., 1984) were regressed upon 

in order to match the experimental data. EOS tuning was done based on the experimental data 

available from two different PVT tests, (a) swelling test, and (b) viscosity test. 

 

2.3.3.1 Swelling and Viscosity Data 
 

After the 40 component system was lumped together to get an 8 pseudo-component 

fluid system, this was tested against the swelling and viscosity reduction tests using the 

software in order to match the experimental data provided for these tests.  

For the viscosity tests, regression was performed over five Pedersen viscosity 

coefficients (b1, b2, b3, b4 and b5) – while the other parameters were kept constant as 

suggested in the software manual. For the swelling tests, the Pedersen coefficients were kept 

constant and regression was performed on pseudo-component properties which affect 

swelling behavior such as molecular weight (M), critical pressure (Pc), critical temperature 

(Tc), critical volume (Vc), accentric factor (ω) and binary interaction coefficients (δ). Of the 

eight pseudo-components, three are ungrouped (CO2, N2, and C1), hence the properties of 

these three components were not used as regression parameters. 

After each cycle of regression run, which consists of a regression run for the swelling 

test and then a regression run for the viscosity test, the phase diagram was constructed to 
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compare it with the 40 component phase diagram. After each regression run, the change in 

value of each regression parameter was verified with its value before regression. If the 

difference was too large, then the variable bounds of that parameter were decreased to ±5% 

and regression was carried out again. This was done because the phase diagram before 

regression (8 pseudo-component phase diagram) had a very good match with the 40 

component phase diagram, implying that the EOS parameters are also approximately close to 

what they ought to be. Any major change in these pseudo-component properties would result 

in the phase diagrams going out of match.  

Figure 2.5 shows the match between experimental swelling data and the calculated 

swelling values obtained after regression was performed to tune EOS parameters. ‘Initial Psat’ 

and ‘Initial S. F.’ represent the Saturation Pressures and Swelling Factors before EOS tuning. 

Similarly, ‘Final Psat’ and ‘Final S. F.’ represent the Saturation Pressures and Swelling 

Factors after EOS tuning. In Figure 2.5 regression stops at the fourth data point as the 

saturation pressure of the fluid is close to the critical point (Computer Modeling Group Ltd., 

2009). A good match was obtained between the experimental and calculated data. Figure 2.6 

shows the viscosity data match between the experimental data and the simulated values. A 

very good match was obtained for different mole fractions of CO2. Also, the magnitude of 

viscosity decrease is high (25 times) which helps in mobilizing oil and greater recoveries. 
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Figure 2.5: Swelling data match after EOS tuning. 

 

 

Figure 2.6: Match of EOS tuned viscosity data with experimental viscosity data. CO2 
decreases the oil viscosity 25-30 times. 
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2.3.4 Slim Tube Simulation 

 

Minimum miscibility pressure (MMP) is an important parameter in miscible 

displacement processes. MMP is the minimum pressure at which in-situ miscibility can be 

achieved in a multi-contact miscibility process for a specified fluid system - in this case, CO2 

and the subject crude oil (Green and Willhite, 1998). Slim tube experiments, slim tube 

simulation, analytical tie-line methods and the vanishing interfacial-tension method are some 

of the methods used to determine or estimate MMP. In experimental slim tube determination 

of MMP, it is typically assumed to be the pressure at which there is a ‘break’ in the curve on a 

graph of recovery vs. pressure. Thus, it is the pressure above which very little additional 

recovery occurs (Green and Willhite, 1998). 

Slim tube simulation runs were conducted to establish a value for the minimum 

miscibility pressure. CO2 flooding processes are not first contact miscible with most crude 

oils at reservoir conditions and the miscibility process is very often analogous to a vaporizing-

gas displacement process (Green and Willhite, 1998). 

Slim tube simulation runs were conducted to establish a value for the minimum 

miscibility pressure using GEM®. GEM® is CMG's advanced equation-of-state compositional 

simulator which includes various equation-of-state options to simulate CO2, miscible gases, 

volatile oil, gas condensate and many other processes that have complex phase behavior and 

many more (Computer Modeling Group Ltd., 2009). GEM® is used to simulate compositional 

effects of reservoir fluids during primary and enhanced oil recovery processes. In this work, 
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the software was used to simulate the impact of CO2 injection, and to study the effects of the 

WAG process in mitigating early breakthrough. 

For slim tube simulations, a 1D simulation model was constructed consisting of 

292×1×1 grid cells of which 290 were 0.2 inch in length and the two grids cells at the either 

end of the slim tube model were 1 foot in length. The cross-section of the slim tube was ¼ 

inch by ¼ inch. CO2 was injected at a low constant rate of 0.0001 bbl/day (0.011 cc/min) into 

the simulation model and production at the other end was controlled by a minimum bottom 

hole pressure constraint. The bottomhole pressure was varied for each run from 3500 psia to 

9000 psia, in increments of 500 psia. Initial slim tube simulation runs showed a low oil 

recovery factor of around 70 percent even at higher pressures, owing to a pseudo-component 

(C13-C35) being largely unswept by the injected CO2. A 25 percent mole fraction of this 

pseudo-component was unswept from the oil phase. This was attributed to the binary 

interaction coefficient between CO2 and the C13-C35 pseudo-component. Hence, after 

consulting CMG personnel, that particular binary interaction coefficient was changed to 

0.094, from 0.3689, which was obtained after EOS tuning. It was also noted that this change 

in interaction coefficient does not cause major changes in the phase diagram, and it was very 

similar to the one presented in Figure 2.4.  

Table 2.6 shows the values for the interaction coefficients between the pseudo-

components from the matching. 

This interaction coefficient table was used in all further slim tube simulations and 

later, in the simulation of sweep improvement methods. A graph of the oil recovery factor 
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after injecting 1.2 Hydrocarbon Pore Volumes (HCPV) of CO2 versus the pressure in the 

slimtube model (Green and Willhite, 1998) is shown in Figure 2.7. This figure shows an 

increase in oil recovery with pressure until 8500 psia, and flattens after 8500 psia, which 

shows that the MMP is between 8000 psia and 8500 psia. The MMP value calculated through 

WINPROP® was 8550 which is in general agreement with the value obtained in the slim tube 

simulations. WINPROP® uses an analytical tie-line method to calculate MMP by constructing 

a pseudo-ternary diagram (Computer Modeling Group Ltd., 2009). Moreover, WINPROP® 

reported a condensing drive as the mechanism by which miscibility was achieved (Computer 

Modeling Group Ltd., 2009), which is normally the drive mechanism for heavy oil crudes 

(Green and Willhite, 1998). 

The fluid model and the EOS parameters obtained through regression analysis of 

experimental data were used in further reservoir simulation studies. However, after 

constructing the fluid model, the operator provided us with PVT data which consisted of a 

Constant Composition Expansion (CCE) test. The fluid model presented above gave a 

satisfactory match to the PVT data obtained from the CCE experiments. These plots are 

shown in APPENDIX A. 

 

2.3.5 Mechanism of Recovery 

The above slimtube simulations were studied in order to understand the mechanism of 

recovery and which components were stripped by CO2 from the oil phase. CO2 flooding in 

slim tube simulations was found to form a bank of lighter oil fractions (C1, C2 and C3) ahead 
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of the front. Intermediately heavy and heavy fractions do not show this behavior. Figure 2.8 

shows the decrease in oil viscosity across the CO2 front. The plot shows the normalized mole 

fractions of each of the pseudo-components in the produced fluid. Normalized mole fractions 

are calculated by taking a ratio of the instantaneous mole fraction of a pseudo-component in 

the produced fluid and the mole fraction of the pseudo-component before beginning the flood. 

This behavior has also been reported in many previous studies (Green and Willhite, 1998; 

Klins and Ali, 1982; Lake, 1989). 

 

Table 2.6: Interaction coefficients between the 8 pseudo-components. The interaction 
coefficient between CO2 and C13-C35 was changed from 0.3689 to 0.094 

 N2 CO2 C1 C2-C3 iC4-nC5 C6-C12 C13-C35 C36+ 

N2        

CO2 -
0.41029 

      

C1 0.40000 0.15669      

C2-C3 0.06752 0.47396 0.00181     

iC4-nC5 0.09500 0.59268 0.00050 0.00419    

C6-C12 0.01290 0.69285 0.09294 0.11724 0.08110   

C13-C35 0.00 0.094 0.10585 0.13122 0.09337 0.00053  

C36+ 0.00 0.00 0.10657 0.13200 0.09406 0.00059 0.0000015 
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3 MODEL DESCRIPTION 
 

3.1 Reservoir Model 

The target reservoir is small with an estimated original oil in place (OOIP) of 7.34 

MMSTB. This reservoir has a strong water drive mechanism which has helped maintain 

pressure during the nearly 9 year primary production phase. During this period approximately 

1.61 MMSTB was produced. 

 

3.1.1 Material  Balance Calculation 

Reservoir pressure data was not readily available in this field. To get an estimate of 

the average reservoir pressure at the time CO2 injection began, a material balance calculation, 

(Equation 3.1) was done and an average reservoir pressure of 3650 psia was predicted. This 

suggests a very small drop in reservoir pressure of around 250 psia, over a period of more 

than 8 years, further confirming the presence of a strong aquifer drive. Material balance also 

pointed towards a large quantity of water encroachment into the reservoir of 13.9 MMbbls. 

Cumulative water produced during this period was 12.3 MMbbls. 

Table 3.1 provides a list of properties used in the material balance equation. Initial 

fluid properties were obtained from the operator’s well files. Formation (Cf) and water (Cw) 

compressibilities were not found in any files, and hence were assumed. Fluid properties after 
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primary production were generated using an MS-Excel® PVT properties Add-In which uses 

correlations for fluid properties available in literature (McMullan, 2001). 
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Equation 3.1 

 

After primary production the reservoir was assumed to be at a pressure, P. Fluid 

properties were generated at this pressure and were used in Equation 3.1 to calculate ΔP. If 

the sum of P and ΔP does not equate to 3900 psi, then the P value was suitably changed and 

the process was continued until convergence. This process yields a reservoir pressure of 3650 

psi at the end of primary production. 

 

3.1.2 Sidewall Core Study 

Percussion sidewall cores were taken from two of the wells in the field; Well #1 and 

Well #3. This data was then used to build a simplified geologic model for this work. Sidewall 

cores taken from the #1 well showed an arithmetic mean porosity of 21.2% and an arithmetic 

mean permeability of 33 mD (log mean permeability was 12.4 mD). The maximum and 

minimum permeability for this well from the sidewall cores were 154 mD and 0.93 mD, 

respectively.  
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Table 3.1: Initial and final fluid properties used in material balance equation. Fluid 
properties after primary production were generated through correlations. 

Initial Properties After primary production 
Pressure, psi 3900 Pressure, psi 3658 

Temp, F 198 Np, stb 1,611,254 
API 15 Gp*, Mcf 44,436 

Sep P, psi 50 Wp, bbl 12,677,284 
Sep T, F 60 Rp, scf/stb 27.57 

GOR, SCF/STB 50 Bo, rb/stb 1.07 
Gas Gravity 0.8 z 0.86 
Boi, rb/stb 1.05 Bg, rb/scf 0.000776 
Bti, rb/stb 1.05 Rs, scf/stb 402.98 

Cf, microsips 25 Bt, rb/stb 1.09 
Cw, microsips 10 Bw 1.03 

*- Gas production data was not available from all the wells 
 

3.1.3 Modified Lorenz Plot 

A modified Lorenz (ML) plot (Nagineni, et al., 2011) was constructed using the 

sidewall core data for Well #1. A ML plot is a modified version of the Lorenz plot which is a 

cross plot of cumulative storativity (φ ×h) and cumulative flow capacity (k×h). It is typically 

used to define flow units within a stratified reservoir. In a Lorenz Plot, the cumulative flow 

capacity and cumulative storage capacity are ordered from smallest to largest. In a ML plot, 

cumulative flow capacity and cumulative storage capacity are plotted in the stratigraphic 

order in which they are found, starting from the base of the reservoir. Assuming there are 

enough data points to work with and the measurements are representative of the formation 

being evaluated, data points corresponding to a high slope (greater than 45°) on a ML plot 

represent sections of the reservoir with high flow capacity but low storage capacity. Low 

slope regions indicate zones of lower flow capacity and higher storage capacity. Sections 
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having a slope of 45° represent zones which have a similar average k/φ  ratio. Each of these 

constant slope sections can be defined as flow unit intervals within the reservoir (Gunter, et 

al., 1997). Figure 3.1 shows the Modified Lorenz plot constructed using the sidewall core data 

from Well #1. It can be noted that the ML plot has a region with a pronounced high slope, 

which is stratigraphically equivalent to a 16’ interval near the center of the formation. This 

zone is a high permeability streak which accelerates fluid flow and could be one of the main 

causes for the observed fast breakthrough. 

A cross plot of the porosity and permeability values from the sidewall cores in this 

well shows a very good correlation with a correlation coefficient of 0.9886 (Figure 3.2). In 

order to tie the measured sidewall core data from Well #1 with its well log information, 

neutron and density porosity logs were shale corrected to calculate the effective porosity, 

which was later used to compare with the sidewall core data (Figure 3.3). Two different shale 

corrected porosities are shown in the figure, one using the Gamma Ray log and the other 

using the Resistivity log. The four data points shown in square shape correspond to the four 

data points which follow a very high slope on the ML plot. A large number of sidewall cores 

which had permeability lower than 20% did not correlate with the log porosity. 

Sidewall core data from Well #3 was used to construct a ML plot, but it did not show 

the high slope section similar to the one found in Well #1. The data points are very close to 

the homogenous line as shown in Figure 3.4, indicating that the rock formation around this 

well is homogenous. From these two ML plots, it appears that the reservoir has a few high 

permeability streaks, and these streaks are local to certain parts of the reservoir. Since, a clear 
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Figure 3.1: Modified Lorenz plot of the Injector well (Well #1). The high slope section in 
the plot corresponds to a high flow capacity zone from which CO2 can channel and 

breakthrough in the production well. 

 

 

Figure 3.2: Cross plot of porosity and permeability for Injector well (Well #1) 
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demarcation of the extent of these high permeability streaks could not be made, a global high 

permeability streak with an aerial extent throughout the field was used to construct the 

reservoir model. This was viewed as an extreme case to test early breakthrough mitigation 

techniques. Porosities and permeabilities from the sidewall core data of the injector well were 

used in the initial reservoir model. 

 

3.1.4 Construction of  Reservoir Model 

The structure and net pay isopach maps were digitized using WINDIG 2.5 (Lovy, 

1996). These digitized maps were imported into CMG Builder® to begin the process of 

building the model. A three dimensional Cartesian grid system with 50×80×5 was constructed 

using the maximum number of cells allowed by the University’s license (20,000 grid cells). 

Grid dimensions in both the X and Y direction were 100 ft. The grid dimensions in the Z 

direction were divided equally between the 5 layers and varied depending on the thickness of 

the sand. Grid blocks which did not lie within the bounds of the structure map were set to 

NULL, which assigns zero porosity to the block (Computer Modeling Group Ltd., 2009). 

The target sand is believed to have a strong aquifer. A Carter-Tracy infinite aquifer 

model was selected to represent the water influx from the aquifer, and the aquifer was 

connected structurally beneath the reservoir sand. Aquifer parameters like porosity, 

permeability, aquifer thickness, and aquifer radius were adjusted during the course of the 

history matching process. 
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Sidewall core data was used to assign the values of permeability in the five vertical 

layers. A porosity of 25 percent was used for all the layers and permeability values of 10, 10, 

135, 25, and 25 mD were used for each layer, starting from the top layer. The third layer had 

the highest permeability, acting as the high permeability streak. 

 

 

Figure 3.3: Comparison of log porosity vs. sidewall porosity in injector well (Well #1). 
Zone of interest is X520’-X610’. Perforation intervals are shown in the figure on the 
right side. Data points shown in square shape correspond to the sidewall core data 

which show a high slope in the ML plot. 
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Figure 3.4: Modified Lorenz plot of Well #3. The sidewall core data from this well is 
parallel to the homogeneous line, representing a homogenous (uniform k/φ ) formation. 

 

3.2 History Match 

Simulation runs to “history match” the reservoir’s pre-CO2 flood oil and water 

production during primary depletion, were run using the reservoir model described above. 

During the history match period oil production rates were used as primary constraints, and 

bottomhole pressures were used as the secondary constraints. After several simulation runs, 

and with changes made to aquifer properties, relative permeability table, and well productivity 

indices, the oil rates were below the actual production rates (Figure 3.5). During the 

simulation runs it was observed that the simulator switched to the secondary constraint since 
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the production rates (primary constraint) were not met. Modifications had to be made to the 

reservoir properties to increase the simulated oil rates. Two options which were studied were, 

1. Multiplying the permeability of the whole reservoir by a certain factor, and 

2. Increasing the permeability of the high permeability third layer. 

Both these options gave good history matches. Figure 3.6 shows the field history 

match of oil production when the model permeability values were multiplied by 5. Figure 3.7 

shows the field history match of oil production when the permeability of the third layer was 

increased from 135 mD to 1 Darcy. The second option was retained as a modification to the 

existing reservoir model since it encapsulates the high permeability streak, and would allow 

testing of sweep mitigation techniques in a layered system. 

History matching was done in order to get a reasonably close match to field water 

production rates, and simulations showed a good history match with the water production 

data. Figure 3.8 shows the history match of water production from the reservoir. After history 

matching, the reservoir model will be at approximately the same pressure and saturation 

conditions just prior to when CO2 injection began.  

APPENDIX B shows the production history match plots for individual wells and a 

description of the observed trends. 
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3.3 Calibrating  Breakthrough Time 

After the primary depletion period, CO2 was injected into the reservoir. The CO2 

breakthrough time in producer well, Well #4 was used to calibrate the reservoir model. Actual 

breakthrough time in the field was approximately one month. During initial runs it took more 

than one month for breakthrough to occur in the model. Calibration of relative permeability 

curves was done to bring the simulated breakthrough times closer to one month. Increasing 

the relative permeability to gas in the presence of liquid (krgl) was one way to achieve this. 

But changing this parameter by a large magnitude hinders the relative permeability to oil, and 

skews the history match. Hence, minor changes to the relative permeability to gas in the 

presence of water (krgw) were made to decrease the breakthrough time. APPENDIX B 

provides the relative permeability plots before history match and after calibration for 

breakthrough time. Figure 3.9 shows the gas production rate and CO2 molar production rate 

for Well #4. 
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4 SWEEP IMPROVEMENT TECHNIQUES 
 

The calibrated reservoir model from the previous chapter was used to investigate 

techniques which help improve sweep efficiency. This chapter focuses on two such methods; 

water-alternating-gas (WAG), and profile modification by foam or polymer injection. Firstly, 

continuous CO2 injection into the reservoir was simulated. This is the current EOR method 

employed in the field and was compared with WAG and profile modification. 

 

4.1 Continuous CO2 Injection 

Simulation of continuous injection of CO2 was used as a base case study for oil 

recovery from the model. Mitigating methods like WAG and profile modification, which are 

discussed in the next sections, were compared and studied against the continuous CO2 

injection method. 

Continuous CO2 injection was simulated at an injection rate of 5 MMSCFD, with a 

constant injection rate as the constraint for the injection well. All five production wells were 

set to a bottomhole pressure constraint as given in Table 4.1. Since the production rates from 

Well #3 were higher compared to the other wells, it was given a lower bottomhole pressure 

constraint. All production wells were set to shut-in when the gas-oil ratio (GOR) reached 50 

MCF/STB. The simulations were run for 20 years. 
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Table 4.1: Production well pressure constraints 

Well BHP Constraint, 
psia 

Well #3 1500 

Well #5 2500 

Well #4 2500 

Well #2 2500 

Well #6 2500 

 

Figure 4.1 shows the simulated cumulative oil production from each of the five 

production wells as well as the cumulative oil production for the field. The plot shows 

discontinuities in oil production, wherein cumulative field production increases and flattens 

several times during CO2 injection. This occurs as a result of the shut-in of production wells 

due to increased GOR. The sequence in which wells shut-in can be observed from the plot, 

beginning with Well #3 and ending with the shut-in of Well #6. After Well #3 shuts in, CO2 

moves towards the next nearest producer, Well #4, sweeping oil in between the two wells. 

Later, Well #4 shuts in due to high GOR enabling CO2 to move towards Well #3. In this same 

sequence CO2 then sweeps the oil between the injector and Well #2, and in the end between 

the injector and Well #6. Once the GOR of the last producing well, Well #6, goes beyond 50 

MCF/STB, the well shuts in and field production stops. 
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Figure 4.1: Cumulative oil produced from all five producers in the field and overall field 
cumulative production.  

 

Figure 4.2 shows the variation of global mole fraction of CO2 in layer 3 with time.  

Global mole fraction is used as a variable to track the movement of CO2 in the field. Each 

map shown in the figure corresponds to the time just before a well shuts in. The third map in 

the figure (at 4463 days) shows the distribution of CO2 in layer 3 just before Well #5 has shut-

in. After this, CO2 flows towards the next nearest production well, in this case Well #2, and 

sweeps the oil which it contacts on the way. This can be seen in the fourth map of the figure 

(at 5742 days) wherein CO2 has swept the oil in the region where global mole fraction of CO2 

has increased. Later, Well #2 produces at a high GOR and it shuts in.  
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Figure 4.2: Field maps of global composition of CO2 in layer three of the model. Each 
maps shows the distribution of CO2 just before a production well shuts in. Moving from 
left to right and from top to bottom, each map corresponds to Well #3, Well #4, Well #5, 

Well #2, and Well #6 respectively. 
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Now, the CO2 front moves towards the next low potential region in the field, which is Well 

#6, sweeping oil in its path. Map 5 in the figure (at 7415 days) shows the region contacted by 

CO2 while flowing towards Well #6. 

Ideally, in a homogenous reservoir, a standard pattern flood such as an inverted 5-spot 

pattern would be utilized. In such a pattern all four production wells will start and stop oil 

production at approximately the same time. This is due to the similar distances between the 

injector and producers. However, in this field, wells are not in any regular pattern, which 

resulted in different production wells breaking through and shutting in at different times. 

 

4.1.1 Oil Recovery 

Continuous injection of CO2 recovers an incremental 7 percent of the OOIP. This 

recovery is lower than the recovery obtained from other CO2 flooded fields (EOR Field Case 

Histories, 1987). However, a closer examination reveals that heterogeneity plays a major role 

in recovering lower quantities of oil. Table 4.2 provides layer-by-layer oil recovery values 

from the 5 layers defined in the reservoir model. 

Table 4.2: Layer wise oil recoveries after CO2 flood 

 Primary 
Recovery, 
% OOIP 

CO2 Flood 
Incremental 

Recovery, % OOIP

Overall 
Recovery, 
% OOIP 

Layer 1 3.6 0.7 4.3  
Layer 2 6  14.3 18.6  
Layer 3 21.9 26.8  48.7  
Layer 4 27.9 -1.3  26.6  
Layer 5 31.7 -1.1  30.6  
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Oil production in continuous CO2 injection occurs primarily due to CO2 contacting oil 

in layer 3. It was also observed that almost the entire amount of gas injected goes into layer 3 

(Figure 4.4). This is obviously due to the presence of extremely high permeability in layer 3. 

Figure 4.5 shows the oil recovery from perforations for each of the 5 layers. Oil 

recovery from perforations is defined as the ratio of cumulative oil production from the 

perforations in a layer to the original volume of oil in the layer at time 0 (Computer Modeling 

Group, 2011). This figure shows that most of the oil was produced from layer 3, and a very 

small quantity was produced from the remaining layers. This is possible only if oil migrates 

into layer 3 from the other 4 layers. Oil migration between the layers is difficult to track. 

Figure 4.6 shows the oil recovery from each layer using the actual definition of oil recovery. 

This definition is the ratio of cumulative oil removed from a layer (produced or migrated) to 

the original volume of oil in a layer at time 0. Figure 4.6 shows that at the time of field shut-

in, layers 1, 4, and 5 have approximately the same amount of oil remaining as they had before 

the beginning of the CO2 flood. In contrast, oil has been removed from layer 3 and 4. Hence, 

from Figure 4.5, Figure 4.6, and layer recovery values from Table 4.2 we can conclude that 

oil migrates from layer 3 to layer 4. Moreover, the negative recovery values for layer 4 and 

layer 5 was believed to be a result of migration of low viscosity oil from layer 3 due to 

gravity. 
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Figure 4.7 shows the global mole fraction of CO2 in all 5 layers in the model at the end 

of CO2 flooding.  Due to the very high fraction of CO2 injected into layer 3, CO2 sweeps oil 

primarily out of layer 3. However, the discrepancy in incremental oil recoveries from layers 2 

and 4 can be explained by the effect of gravity. It was observed through oil saturation maps  

that CO2 migrated from layer 3 to layer 2. This can be explained as a gravity effect. Also, CO2 

decreases the viscosity of oil it comes into contact with. Figure 4.8 shows the viscosity of oil 

contacted by CO2 in layers 2 and 4, where viscosity decreases to less than 10 cp. This 

decrease in viscosity could also be one of the reasons for migration of oil between layers. 

Migration of CO2 between layers was not observed as long as the CO2 front remains in 

layer 3. CO2 does not migrate into different layers until production wells are shut in, due to 

high GOR. Once a well is shuts in, CO2 flows vertically from layer 3 to layer 2 and layer 4. 

This is also the duration when the CO2 front moves towards the next production well in layer 

3. Figure 4.9 and Figure 4.10 show a schematic of CO2 migration into other layers. Figure 4.9 

shows the CO2 front when it has reached the closest production well. Once the production 

well GOR increases to 50 MCF/STB, the well shuts in, and the CO2 front moves towards the 

next production well. During the time when the CO2 front moves, CO2 migration into layer 2 

and 4 was observed, and as soon as the CO2 front hits the next production well, CO2 migration 

into other layers ceases (Figure 4.10). 

 



51 
 

 

Figure 4.7: Global mole fractions of CO2 in all 5 layers of the model after CO2 flooding 
had been stopped. 
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Figure 4.8: Oil viscosity of CO2 contacted oil in layers 2 and 4. This substantial decrease 
in oil viscosity is may be one of the reasons of oil migration between layers. 

 

 

Figure 4.9: Schematic diagram of CO2 front movement in layer 3. Producer well nearest 
to the injector well shuts in after the GOR reaches 50 MCF and CO2 front moves 

towards the next producer well. 



53 
 

 

Figure 4.10: Schematic diagram of CO2 movement in layer 3 and migration from layer 3 
to layer 2 and 4. Once the nearest producer well shuts in, CO2 front moves to the next 

producer well, and CO2 also migrates into other layers. 

 

4.2 Water-Alternating-Gas (WAG) 

WAG processes employed in the field have often shown better recoveries compared to 

the continuous gas injection process. Improved mobility control and lower carbon dioxide 

requirements make WAG methods promising for heavy oil reservoirs (Dyer and Ali, 1989; 

Mangalsingh and Jagai, 1996). Heterogeneity (stratification and anisotropy) has been 

documented as a major factor affecting WAG performance (Surguchev, et al., 1992). Apart 

from heterogeneity, wettability and fluid properties also affect the results of a WAG process.  

The WAG ratio is the ratio of volume of water injected to the volume of gas injected 

at reservoir conditions (Green and Willhite, 1998). Rojas and Farouq Ali (1986) and 

Mangalsingh and Jagai (1996) reported a WAG ratio of 1:4 to be the most optimal of the 
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several WAG ratios which they had conducted experiments on. These experiments were 

conducted using heavy oils with oil gravity ranging from 14° API to 29° API. 

For the work presented here simulation runs for several WAG ratios were conducted 

on the reservoir model. Two different sets of WAG ratios were evaluated, one in which the 

CO2 slug size was greater than the water slug size (WAG ratios of 1:1 to 1:5), and the other in 

which the water slug size was greater than the CO2 slug size (WAG ratios of 2:1 and 3:1). In 

these simulations a WAG ratio of 1:1 represents injecting water for a month at a constant rate 

(2500 bbl/day) and then injecting CO2 at a similar reservoir rate (5 MMSCFD) for a month, 

which equates to an approximate slug size of 0.85% HCPV. 

 

4.2.1 Oil Recovery 

In each of these simulations, WAG injection began at the same time as CO2 injection 

began in the field. Production well constraints were the same as were used for the continuous 

gas injection.  

Table 4.3 provides a brief description of the different methods tested in these 

simulations. Figure 4.11 shows the cumulative oil produced for hydrocarbon pore volumes 

injected. The non-uniform and unsmooth nature of the recovery curves is due to the varying 

distances between the injector well, and the producer wells. As the oil bank reaches a 

producer a corresponding steep increase in the recovery is observed, and over a period of 

time, the recovery curve gradually flattens. These observations are similar to what was 

described in the previous section on continuous CO2 injection. 
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Figure 4.11: Cumulative oil produced for different WAG ratios. WAG ratio of 1:1 was 
found to give the highest recovery. 

 

It can be noticed from Figure 4.11 that a WAG ratio 1:1 results in highest recovery. 

The mechanism of oil recovery by WAG was difficult to understand using the reservoir 

model. Hence, core flood simulations were conducted to determine the recovery mechanisms. 

 

4.2.1.1 Mechanism of Oil Recovery 
 

In order to understand the recovery mechanisms using WAG, core flood simulations 

were conducted. A 1-D simulation model similar to the slim tube simulation model discussed 

previously was used. All simulations were conducted at 3500 psi. The injector was set a 

constant rate constraint of 0.0001 bbl/day. This rate constraint was set at bottomhole 
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conditions during gas slug injection, and during water injection the same injection rate 

constraint was set at surface conditions. The producer well was set to a bottom hole pressure 

constraint of 3500 psi. A slug size of 1% HCPV was injected in each cycle. 

 

Table 4.3: Description of different WAG simulation runs 

Simulation 

run 
Remarks 

Cutoff 

GOR 

(MCF/STB)

CO2 Inj. 

Rate, 

MMSCFD 

Water 

Inj. Rate, 

bbl/day 

Incremental 

Recovery 

(% OOIP) 

WAG 3:1 
3 months water and 

1 month CO2 cycles 
50 5 2500 7.4 

WAG 1:1 
1 month water and 1 

month CO2 cycles 
50 5 2500 10.8 

WAG 1:3 
1 month water and 3 

months CO2 cycles 
50 5 2500 8.6 

WAG 1:5 
1 month water and 5 

months CO2 cycles 
50 5 2500 7.6 

 

 

During core flood simulations it was observed that CO2 decreases the viscosity of oil 

and later water acts as a displacing fluid and pushes oil towards the producer. Figure 4.12 

shows the oil viscosity, water saturation, and gas mole fraction of the C1 component in a grid 

block. This grid block is approximately 10.7 ft from the injection end of the core flood 

simulation. The increase in mole fraction of C1 shows the stripping of lighter fractions in the 

oil by CO2. This along with CO2 dissolving in oil decreases the viscosity of oil from 178 cp to 
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rates, it is believed that injected CO2 dissolves in the water phase and hence does not form a 

CO2 bank. As a result, continuously increasing water saturation is observed behind the flood 

front. However, simulation of a WAG ratio of 1:5 showed the intermittent increase and 

decrease of water saturation behind the flood front due to the larger slug size of CO2 used. 

Table 4.4 shows the oil recoveries after injecting 1.2 HCPV for three WAG ratios 

which were tested during core flood simulations. It can be noticed that WAG ratios greater 

than 1 resulted in better recoveries compared to simulations where the WAG ratio was less 

than 1; however the highest recovery was obtained for a WAG ratio of 1:1. The same trend 

was observed during WAG simulation runs using the full field reservoir model. This is 

different from field studies of WAG in light oil reservoirs. WAG ratio of 1:2 (EOR Field Case 

Histories, 1987; Senocak, 2008; Li, et al., 2003) is often reported to yield the highest oil 

recovery. 

 

Table 4.4: Oil recovery for different WAG methods during core flood simulations 

Method Recovery after 1.2 
HCPVI, % OOIP 

WAG 3:1 76 

WAG 1:1 82 

WAG 1:3 70 
WAG 1:5 65 
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permeability value of gas with brine. This decreased relative permeability to gas was utilized 

as a blocking agent in layer 3 of the reservoir model and decreased the relative injection 

and/or flow of CO2 into this layer. 

 

4.3.1 Exporting and Validating the Fluid Model to CMG-STARS® 

STARS® is CMG’s advanced processes reservoir simulator which includes options to 

simulate processes which GEM® does not. For the purposes of this work these processes 

included chemical flooding and foam injection (Computer Modeling Group Ltd., 2009). In 

STARS®, fluid component interactions are characterized by equilibrium coefficients between 

components or k-values. The existing fluid model was converted into a STARS® compatible 

model using WINPROP® to generate k-values between pseudo-components. 

Since the fluid model was changed, there was a need to test the k-value fluid model for 

its consistency with some of the existing data. The slimtube simulation data was used to test 

this. Slimtube simulation runs using the k-value fluid model at 7000 psia indicated that 

recoveries did not exceed 50%, whereas simulation recovery at the same pressure using the 

Peng-Robinson model was 91%. However, it was observed that the mole fraction of heavier 

pseudo-components (C6-C12, C13-C35, C36
+) remaining at the end of simulation was very high 

(51%, 47%, 46% respectively). Hence, k-values were manually changed for these three 

pseudo-components and slimtube simulations were re-run. After a set of 30 trials in which k-

values for these three pseudo-components were changed between factors of 10-4 and 106, the 

highest recovery obtained was 66%. After consultation with support personnel at CMG, this 
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issue was not resolved conclusively. Hence, a different method needed to be developed to 

simulate injection of a blocking agent in the reservoir. 

 

4.3.2 Method to Replicate Foam in CMG-GEM® 

Due to the problem in replicating the results of slimtube simulation using the k-value 

fluid model, a work-around method to model the properties of a blocking agent in GEM® was 

opted for. This method consisted of defining a different rock type (Rock Type 2) near the 

injection well (Well #1) in layer 3 of the reservoir model, and using a different set of relative 

permeability tables which are indicative of the relative permeabilities in the regions where the 

blocking agent is active. 

Three different relative permeabilities for Rock Type 2 were considered and these 

relative permeability values were assumed to remain constant throughout the life of the CO2 

flood which followed the placement of the “blocking agent”. In foam flooding field projects, 

relative permeabilities vary with time and are dependent on foam quality, temperature and 

many other parameters. Very often the relative permeability data is hard to measure 

experimentally, hence production data is analyzed and history matched to generate suitable 

relative permeability data.  

Several simulation test cases were run to simulate “foam injection” in the model. Two 

different gas relative permeabilities, 1%, and 3% of gas relative permeability in brine, were 

used to generate two sets of relative permeability tables. Areal coverage of the zone injected 

with blocking agent was varied to replicate three different radii of foam penetration, and 
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tested for the sensitivity of the injection distance to incremental oil recovery. Also, three 

different CO2 injection rates; 4, 5, and 6 MMSCFD, were used to study sensitivity on 

injection rate. Figure 4.14 shows one such case where the distance of blocking agent 

penetration in layer 3 is approximately 600 ft from the injection well, and Figure 4.15 shows 

the gas-liquid relative permeability curve in which the relative permeability of gas in the 

presence of the blocking agent, rgk , is 5% of the relative permeability of gas in the presence 

of brine. 

 

4.3.3 Oil Recovery 

The presence of blocking agent in layer 3 hinders the flow of CO2. As a result, CO2 

contacts the reservoir rock in layers 1, 2, 4 and 5 more so than in the continuous injection and 

WAG cases. All the plots discussed here are for the case which has a gas relative permeability 

in ‘Rock Type 2’ which is 3% of the gas relative permeability with brine, and the areal extent 

of the blocked region is as shown in Figure 4.14. 

Injecting blocking agent into layer 3 achieved success and this was due to the 

properties of a profile modifying agent. Blocking agent restricts gas injection into layer 3 and 

directs gas to flow into the other 4 layers. Figure 4.16 shows the layer-wise injection rates. 

Injection rates in each layer are distributed approximately according to the gas permeability in 

each layer. 
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Figure 4.14: Reservoir map showing two different rock types. ‘Rock Type 2’ (shown in 
red) is used to replicate the zone injected by blocking agent. 

 

CO2 injected into layer 4 initially flows in that layer. As shown in Figure 4.17 after 

injecting for a few years, and once the CO2 in layer 4 has surpassed the areal extent of the 

blocked region, CO2 migrates into layer 3. Beyond the blocked region, layer 3 has an 

increased effective gas permeability which makes it easier for CO2 to flow in layer 3. This 

enables the CO2 to cross into layer 3 and migrate to the producer. 

Once CO2 has entered layer 3, it acts like a regular CO2 flooding process, and shows 

the same behavior as was observed in continuous gas injection. Hence, the effect of the 

blocking agent is no longer felt beyond the blocked region, and the farther the blocking agent 

is placed in layer 3 the better the sweep in layers 2 and 4. 
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Figure 4.17: Schematic diagram of flow of CO2. After surpassing the zone injected by 
blocking agent, CO2 in layer 2 and 4 flows into layer 3. Figure not to scale. 

 

The volume of rock contacted by CO2, which is represented using the global mole 

fraction of CO2 in a grid block, is greater in the case of profile modification when compared 

with CGI and WAG. Figure 4.18 shows the layer maps of grids contacted by injected CO2 for 

all the 5 layers. It was observed that CO2 has swept a portion of rock in both layer 1 and 5 

which was not contacted by CO2 in the previous cases. 

  

4.3.4 Radius of Injection of the Blocking Agent 

As noted above, the larger the areal extent of layer 3 blocked, the better the sweep 

efficiencies achieved by injected CO2. Blocking agent was placed at three different radii from 
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the injection well and CO2 flooding was carried out to study the sweep of oil and the eventual 

recoveries. 

Figure 4.19 shows very high incremental recoveries if the blocking agent is placed for 

a larger areal extent. The greater recovery can be explained by the schematic shown in Figure 

4.17 where, as the areal extent increases, CO2 pushes the oil in the top and bottom layers 

resulting in better sweep efficiency in these layers. The gas relative permeability in the region 

blocked is 1% of the gas relative permeability in the unblocked region. The data points 

referring to zero radius of placement of blocking agent corresponds to continuous CO2 

injection. Figure 4.20 shows a plot similar to the one in Figure 4.19, but with the gas relative 

permeability in the region blocked at 3% of the gas relative permeability in the unblocked 

region. 

It must be noted that increasing the areal extent of the blocking agent is a difficult 

process. As will be shown, pressure drop between the wells increases in the simulations. If the 

chemicals used in the blocked region cannot stand these higher pressures, the stability of the 

blocked region will be compromised. If the blocking agent can withstand these pressures, it is 

unlikely that placement deep into the reservoir will be possible as the near well pressures 

would grow to unreasonably high values. 
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Figure 4.18: Global mole fractions of CO2 in each layer at the end of oil production in 
profile modification method. Global mole fraction of CO2 is used to represent the rock 

volume contacted by CO2. 
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Figure 4.19: Incremental Oil recovery for different distances of placement of the 
blocking agent. krg=0.01 

 

 

Figure 4.20: Incremental Oil recovery for different distances of placement of the 
blocking agent. krg=0.03 
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4.4 Comparison of Methods 

This section of the chapter compares and contrasts the three methods studied above on 

several parameters. Some of the parameters which were considered were, oil recoveries, 

pressure differences between grid blocks, gas breakthrough times, and improvement in layer 

injection rates. These parameters are studied to understand the effect each of the above 

described methods have on their suitability in field applications for recovering heavy oil. 

 

4.4.1 Oil Recovery 

Oil recoveries were found to increase between CGI and WAG, and between WAG and 

profile modification. Recovery was the highest for profile modification and was found to 

increase as the radius of placement of the blocked area increases. Table 4.5 summarizes the 

oil recoveries for each of the three methods tested during this work. 

As discussed in the previous section, oil recovery by WAG increases due to the two 

step process, firstly, the effect of stripping of lighter oil components, viscosity reduction and 

swelling caused when CO2 comes into contact with oil, and secondly, the displacement of low 

viscosity oil by water. This was also observed in core flood experiments of CO2 floods and 

WAG. Oil recovery after injecting 1.2 pore volumes of CO2 was 63%, whereas the same for 

WAG with a 1:1 ratio was 83%. Also, the areal extent of rock volume contacted by the 

injected fluid (CO2 and water) was approximately the same for both CGI and WAG. The rock 

volume contacted was estimated by visual inspection. 
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Table 4.5: Summary of oil recoveries from the methods tested in this work. Blocking 
Agent 1, 2 and 3 correspond to increasing areas of blocking agent injected into layer 3. 

Method 

Total 
Recovery, 
% OOIP 

Incremental Recovery 
over Primary 

Depletion, % OOIP 

Incremental 
Recovery over 
CGI, % OOIP 

Primary Depletion 18.5 N/A  N/A 
CGI 25.5 7  N/A 

WAG 3:1 25.9 7.4 0.4 
WAG 1:1 29.4 10.9 3.9 
WAG 1:3 27.2 8.7 1.7 
WAG 1:5 26.2 7.7 0.7 

Blocking Agent 1 29.4 10.9 3.9 
Blocking Agent 2 32.1 13.6 6.6 
Blocking Agent 3 35.7 17.2 10.2 

 

 

Profile modification showed a substantial improvement in oil recovery mainly due to 

the diversion of injected gas into layers 1, 2, 4 and 5. This allowed improved sweep in these 

layers which were otherwise unswept in CGI and WAG. Moreover, as shown in Figure 4.19 

and Figure 4.20, recovery increases as the area of the blocked zone in layer 3 increases, and 

also as a better blocking agent is placed which decreases the gas relative permeability. 

 

4.4.2 Pressure Difference 

Pressure drop values between the bottom hole pressure of the injector and an adjacent 

grid block were plotted to see how they vary. This grid block (33,25,3) was 200 ft away from 

the injector well (33,27,3) in layer 3. Figure 4.21 shows the pressure difference between these 
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two grid blocks. The WAG method shows a periodic increase in pressure drop, which occurs 

when a slug of water is injected. On an average the pressure drop gradually increases as we 

move from CGI to WAG and then to profile modification, which means that the effective 

mobility of the injected fluid (k/µ) decreases as we move from CGI to WAG to profile 

modification. For each of the cases discussed here, the rate of injection, area of flow, and the 

distance between the two pressure readings are the same, hence from Darcy’s Law, pressure 

difference and mobility are inversely proportional. Therefore, as the pressure difference 

increases the effective mobility ratio decreases making it easier to displace the oil. 

 

4.4.3 Gas Breakthrough Time 

An early breakthrough of injected CO2 is not desirable in any CO2 EOR project. The 

current reservoir model has a relatively early gas breakthrough time due to the presence of the 

high flow capacity region (layer 3), and that the distance between the injector and the nearest 

producer is fairly small. 

Each of the EOR methods discussed above was found to delay the gas breakthrough 

time when compared to that found in the continuous CO2 injection case. Table 4.6 gives the 

hydrocarbon pore volumes injected in each case before gas breakthrough was observed. The 

WAG method with a WAG ratio greater than 1 was found to have the largest time to 

breakthrough. This is due to the low amount of CO2 injected into the reservoir compared to 

the total amount of pore volumes injected. 
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Figure 4.21: Pressure difference between the bottom hole pressure in the injector and a 
nearby grid block in the reservoir. This shows a gradually increasing pressure drop as 

we move from CGI to WAG to profile modification. 

 

Table 4.6: Approximate gas breakthrough time for each recovery method. 

Method HCPVI, 
% 

CGI 1.4 
WAG 3:1 8 
WAG 1:1 7.5 
WAG 1:3 2.2 
WAG 1:5 1.9 

Profile Modification 2.8 

4.4.4 CO2 Utilization Rates 

Gross CO2 utilization rate is defined as the ratio of the cumulative amount of CO2 

injected to the cumulative oil produced (Taber, et al., 1997). This utilization rate is expected 
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to go down with the usage of WAG processes due to the lower volumes of CO2 injected. Net 

CO2 utilization is defined as the ratio of the amount of injected CO2 trapped in the reservoir to 

the cumulative oil produced. Figure 4.22 shows the net CO2 utilization rates of the three 

methods. A WAG ratio of 1:1 is shown in this graph since it is the WAG ratio which gives the 

highest oil recovery. 

 

 

Figure 4.22: Net CO2 Utilization of the three methods. Net CO2 utilization decreases as 
we move from CGI to WAG 1:1 to profile modification. 

 

Net utilization rates decrease for different methods with the highest utilization rate for 

CGI, and the least for profile modification. Hence, CGI requires more CO2 to recover a barrel 

of oil and this is largely due to the inefficient sweep and cycling of injected CO2 caused by 

the high permeability in layer 3. Profile modification greatly decreases the usage of CO2 as it 
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contacts a larger volume of reservoir rock (Figure 4.18) and recovers more oil. In the case of 

WAG, the injected water, apart from providing better displacement is also trapped in reservoir 

rock which could have otherwise been occupied by CO2. This leads to a lower CO2 utilization. 

 

4.4.5 Layer Injection Rates 

Rate of injection into each of the 5 layers was plotted to understand which of the 

methods provides better conformance control. Figure 4.4, Figure 4.23 and Figure 4.16 show 

the injection rates into each layer for CGI, WAG and profile modification methods. The rates 

shown in Figure 4.23 correspond to the CO2 injection cycle. Also, the presence of a blocking 

agent in layer 3 restricts gas entry into that layer thereby enabling gas to enter the reservoir 

through the remaining layers. This is one of the reasons vertical sweep increases in this 

method. 
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5 CONCLUSIONS AND DISCUSSION 
 

This chapter summarizes the conclusions which were derived from the methods 

adopted for enhanced oil recovery in a heterogeneous formation. This section emphasizes the 

importance and applicability of WAG and profile modification as EOR methods for 

heterogeneous reservoirs. Additionally, the chapter also mentions some important discussions 

stemming from this thesis. 

 

5.1 Conclusions 

Profile modification greatly improves the vertical sweep efficiency in a highly 

heterogeneous heavy oil reservoir. The simulation models studied in this work were the ones 

in which the placement of blocking agent was mimicked by changing the relative permeability 

curves. In field operations, injection of a blocking agent like foam to the distances considered 

in this work would be difficult because of decreased injectivity. 

An optimum WAG ratio of 1:1 was observed to result in highest recovery during both 

slim tube simulation studies and in field simulations. Along with improved recoveries, WAG 

improved CO2 injection rates into layers which had low permeabilities. This is lower than the 

WAG ratio of 1:2 which yields highest recoveries in light oil reservoirs. 

Mechanisms for oil recovery in these processes are similar (alteration of mobility) but 

the extent of the reduction in mobility differs between processes. Viscosity reduction in the oil 
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once it has been contacted by CO2 was observed in each of the methods discussed. The fluid 

driving the reduced viscosity oil defines the mobility ratio. These values are around 15 for 

CGI and 8 for the WAG process. For the profile modification method, mobility ratio in the 

reservoir injected by the blocking agent is lower than CGI, whereas the mobility ratio in the 

rest of the reservoir is the same as for CGI process. The increased recovery from profile 

modification is controlled by the volume contacted by blocking agent. Mechanisms leading to 

better recovery then are decreases in oil viscosity, decreases in mobility ratio, and increases in 

rock volume contacted by blocking agent. 

 

5.2 Discussion 

Profile modification can be attained by placing gels, polymers or foam. The case 

discussed in section 4.3 relates to the usage of foam as a profile modification agent which 

decreases the gas relative permeability. The relative permeability depends on foam quality, 

temperature, rock properties, and several other properties. However, since GEM® was not 

built to model foam properties, the results obtained here could vary when the process is 

simulated using a numerical simulator capable of modeling foam properties. The gas relative 

permeabilities tables used in this case are constant for the entire duration of flood. In reality, 

the relative permeabilities also vary with time, foam quality, and several other parameters. 

With time, foam quality may degrade thereby increasing the gas relative permeability, 

rendering the process similar to a CO2 flooding process. 
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As noted in chapter 4, the CO2 front moves to the next producer well as the previous 

producer wells are shut in due to high GOR. Instead of shutting in the producer wells 

completely, choking back wells which have high GOR values may divert the CO2 to areas that 

remain unswept. We expect that this would increase recovery rates and reduce the recycling 

of CO2 but also increase the pressure in the reservoir. 

Another way to recover more oil might be to drill infill wells. Simulations show the 

southwest section of the field is not being swept by any of the injected fluid. Drilling an infill 

well in the southwest section might result in better sweep in that part of the field. 

 

5.3 Future Work 

This work focuses on two of the alternatives to a CO2 flood which could be applied in 

a field. In continuation with this work, future work must look into several other non-thermal 

EOR methods which could improve sweep in heavy oil reservoirs. These include, but are not 

limited to polymer flooding, foam assisted water alternating gas (FAWAG), and foam 

flooding. Understanding the mechanisms by which each of these methods contacts more rock 

and recovers oil would give insights into improving vertical sweep. 

Huff-n-Puff methods and the effect of soak periods were not investigated in the 

current study. Gravity was found to be the reason oil was recovered from layer 2, and 

introducing a soak period could lead to gravity forces allowing more oil to be drawn into layer 

3 where it can be produced. 
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A laboratory model similar to the one discussed in this work, a highly heterogeneous 5 

layer model, could be built to investigate and verify some of the key observations made in this 

study. Important among these are the gravity effects to drain oil into the high permeability 

zone, the impact of a soak period on the extent of oil drained and recovered, and the effect of 

blocking agents in changing gas relative permeability and the stability of the blocking agent 

over a time. 

Similar studies conducted on other heavy oil fields with heterogeneity problems can 

bring forth a better understanding of the processes which can improve sweep and those which 

do not. The methodology described and the steps followed in this thesis can act as a starting 

point for such studies. 

 

 

 

 

 

 

 



80 
 

REFERENCES 
 

 Ali, F. S. (1976). Non-Thermal Heavy Oil Recovery Methods. Paper SPE 5983 presented at 
Rocky Mountain Regional Meeting of SPE. Casper, 11-12 May: Society of Petroleum 
Engineers. 

Bernard, G. G., and Holm, L. W. (1964). Effect of Foam on Permeability of Porous Media to 
Gas. SPE Journal , Vol. 4 (Issue 3), 267-274. 

Coats, K. H. (1980). An Equation of State Compositional Model. SPE Journal , Vol. 20 (Issue 
5), 363-376. 

Computer Modeling Group Ltd. (2009). Calgary: CMG. 

Computer Modeling Group. (2011). Personal Communication. 

Craig, F. F. (1993). The Reservoir Engineering Aspects of Water Flooding. Dallas: SPE. 

Di Julio, S. S., and Emanuel, A. S. (1989). Laboratory Study of Foaming Surfactant for CO2 
Mobility Control. SPE Reservoir Engineering , Vol. 4 (Issue 2), 136-142. 

DOE. (2007, June 18). Fact Sheet: U.S. Heavy Oil Resource Potential. Retrieved October 18, 
2009, from http://fossil.energy.gov: 
http://fossil.energy.gov/programs/reserves/npr/Heavy_Oil_Fact_Sheet.pdf 

Dyer, S. B., and Ali, S. M. (1989). The potential of the Immiscible Carbon Dioxide Flooding 
Process for the Recovery of Heavy Oil. Paper PETSOC SS 89 - 27 presented at the Petroleum 
Conference of the South Saskatchewan Section. Regina, 25-27 September. 

EIA. (March 2009). Annual Energy Outlook 2009. Energy Information Administration. 

EOR Field Case Histories (SPE Reprint Series # 23). (1987). Richardson, Texas, USA: SPE. 

Green, D. W., and Willhite, G. P. (1998). Enhanced Oil Recovery (Vol. 6). Rishardson, TX: 
Society of Petroleum Engineers. 

Gunter, G. W., Finneran, J. M., Hartmann, D. J., and Miller, J. D. (1997). Early Determination 
of Reservoir Flow Units Using an Integrated Petrophysical Method. Paper SPE 38679 MS 
presented at the SPE Annual Technical Conference. San Antonio, . 



81 
 

Hatzignatiou, D. G., and Lu, Y. (1994). Feasibility study of CO2 Immiscible Displacement 
Process in Heavy Oil Reservoirs. Paper PETSOC 94-90 presented at the 45th Annual 
Technical Meeting. Calgary, 12-15 June: Petroleum Society of CIM. 

Holm, L. W. (1968). The Mechanism of Gas and Liquid Flow Through Porous Media in the 
Presence of Foam. SPE Journal , Vol. 8 (Issue 4), 359-369. 

Holm, L. W., and Garrison, W. H. (1988). CO2 diversion with Foam in an Immiscible CO2 
Field Project. SPERE , Vol. 3 (Issue 1), 112-118. 

Hong, K. C. (1982). Lumped-Component Characterization of Crude Oils for Compositional 
Simulation. Paper SPE 10691 presented at the SPE Enhanced Oil Recovery Symposium. 
Tulsa, 4-7 April: SPE. 

Jarrell, P. M., Fox, C. E., Stein, M. H., and Webb, S. L. (2002). Practical Aspects of CO2 
Flooding. Richardson: SPE. 

Jha, K. N. (1986). A Laboratory Study of Heavy Oil Recovery with Carbon Dioxide. Journal 
of Canadian Petroleum Technology , Vol. 25 (Issue 2), 54-63. 

Klins, M. A., and Ali, F. S. (1982). Heavy Oil Production by Carbon Dioxide Injection. 
Journal of Canadian Petroleum Tecchnology , Vol. 21 (Issue 5), 64-72. 

Lake, L. W. (1989). Enhanced Oil Recovery. New Jersey: Prentice Hall. 

Li, D., Kumar, K., and Mohanty, K. K. (2003). Compositional Simulation of WAG Processes 
for a Viscous Oil. Paper 84074 presented at Annual Technical Conference and Exhibition. 
Denver, 5 - 8 October. 

Llave, F., Chung, F. T.-H., Louvier, R. W., and Hudgins, D. A. (1990). Foams as Mobility 
Control Agents for Oil Recovery by Gas Displacement. Paper SPE 20245-MS presented at 
the Enhanced Oil Recovery Symposium. Tulsa, 22-25 April. 

Lovy, D. (1996). WINDIG. Version 2.5 . 

Mangalsingh, D., and Jagai, T. (1996). A laboratory Investigation of the Carbon Dioxide 
Immiscible Process. Paper SPE 36134-MS presented at the SPE Latin American/Carribean 
Petroleum Engineering Conference. Port-of-Spain, 23-26 April. 

Martin, F. D., Kovarik, F. S., Chang, P. W., Goldman, I. M., and Philips, J. C. (1988). Gels in 
CO2 Profile Modification. Paper SPE 17330-MS presented at the SPE Enhanced Oil 
Recovery Symposium. Tulsa, 16-21 April: SPE. 



82 
 

McMullan, J. (2001). Retrieved July 3, 2009, from http://www.enrg.lsu.edu/node/308 

Moffitt, P. D., and Zornes, D. R. (1992). Postmortem Analysis: Lick Creek Meakin Sand Unit 
Immiscible CO2 Waterflood Project. Paper SPE 24933-MS presented at the SPE Annual 
Technical Conference and Exhibition. Washington DC, 4-7 October: Society of Petroleum 
Engineers. 

Mungan, N. (1981). Carbon dioxide flooding - fundamentals. Journal of Canadian Petroleum 
Technology , Vol. 20 (Issue 1), 87-92. 

Nagineni, V. R., D'Souza, D., Holden, C., and Hughes, R. G. (2011). Using Core Data to 
Study and Optimize the Completion Strategy in EOR Operations. Paper SPE 145106 to be 
presented at the SPE EOR Conference. Kuala Lumpur. 

Pedersen, K. S., Fredenslund, A., Christensen, P. L., and Thomassen, P. (1984). Viscosity of 
Crude Oils. Chemical Engineering Science , Vol. 39 (Issue 6), 1011-1016. 

Reid, T. B., and Robinson, H. J. (1981). Lick Creek Meakin Sand Unit Immiscible 
CO2/Waterflood Project. Journal of Petroleum Technology , Vol. 33 (Issue 9), 1723-1729. 

Rojas, G. A., and Farouq Ali, S. M. (1988). Dynamics of Subcritical CO2/Brine Floods for 
Heavy-Oil Recovery. SPE Reservoir Engineering , Vol. 3 (Issue 1). 

Rojas, G., and Farouq Ali, S. M. (1986). Scaled model studies of carbon dioxide/brine 
injection strategies for heavy oil recovery from thin formations. Journal of Canadian 
Petroleum Technology , Vol. 25 (Issue 1), 85-94. 

Senocak, D. (2008). Evaluation of Sweep Efficiency of a mature CO2 Flood in Little Creek 
Field, Mississippi. Louisiana State University, MS Thesis, Craft and hawkins Department of 
Petroleum Engineering, Baton Rouge. 

Spivak, A., and Chima, C. M. (1984). Mechanisms of Immiscible CO2 Injection in Heavy Oil 
Reservoirs, Wilmington Field, CA. Paper SPE 12667-MS presented at the SPE Enhanced Oil 
Recovery Symposium. Tulsa, 15-18 April. 

Surguchev, L. M., Korbol, R., Haugen, S., and Krakstad, O. S. (1992). Screening of WAG 
Injection Strategies for Heterogeneous Reservoirs. Paper SPE 25075-MS presented at the 
European Petroleum Conference. Cannes, France, 16-18 November: SPE. 

Syahputra, A. E., Tsau, J.-S., and Grigg, R. B. (2000). Laboratory Evaluation of Using 
Lignosulfonate and Surfactant Mixture in CO2 Flooding. Paper SPE 59368-MS presented at 
the SPE/DOE Improved Oil Recovery Symposium. Tulsa, 3-5 April. 



83 
 

Taber, J. J., Martin, F. D., and Seright, R. S. (1997). EOR Screening Criteria Revisited - Part 
2: Applications and Impact of Oil Prices. SPE Reservoir Engineering , Vol. 12 (Issue 3), 199-
206. 

Worldwide EOR Survey, Drilling/Producion Special Report. (2006). Oil and Gas Journal , 
15-18. 

Ye, Z., Pu, W., Zhang, S., and Chen, T. (1997). Laboratory Study on Profile Modification by 
Using Foamed Polymer Solution. Paper PETSOC 97-128 presented at the Annual Technical 
Meeting of The Petroleum Society of Canada. Calgary, 8-11 June. 

Zhang, Y. P., Sayegh, S., and Huang, S. (2006). Enhanced Heavy Oil Recovery by 
Immiscible WAG Injection. Paper PETSOC 2006-014 presented at the Canadian 
International Petroleum Conference. Calgary, 13-15 June. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



84 
 

APPENDIX A 
 

In chapter 2, the fluid characterization of the reservoir crude was discussed in detail. 

The following plots show the match of results of CCE experiments conducted in laboratory 

and the ones conducted using CMG-WINPROP®. These experiments are conducted at three 

different mole fraction concentrations of CO2 – 0%, 20% and 35%. 

 

Figure A-1: CCE data match of Relative Volume of oil in comparison with its volume at 
bubble point (CO2 mole fraction = 0%) 
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Figure A-2: CCE data match of volume of liquid in crude oil considering the volume at 
bubble point as 100% (CO2 mole fraction = 0%) 

 

 

Figure A-3: CCE data match of oil densities (CO2 mole fraction = 0%) 
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Figure A-4: CCE data match of Relative Volume of oil in comparison with its volume at 
bubble point (CO2 mole fraction = 20%) 

 

 

Figure A-5: CCE data match of volume of liquid in crude oil considering the volume at 
bubble point as 100% (CO2 mole fraction = 20%) 
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Figure A-6: CCE data match of oil densities (CO2 mole fraction = 20%) 
 

 

Figure A-7: CCE data match of Relative Volume of oil in comparison with its volume at 
bubble point (CO2 mole fraction = 35%) 
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Figure A-8: CCE data match of volume of liquid in crude oil considering the volume at 
bubble point as 100% (CO2 mole fraction = 35%) 

 

 

Figure A-9: CCE data match of oil densities (CO2 mole fraction = 35%) 
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