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Abstract
The first observing run of Advanced LIGO spanned 4 months, from 12 
September 2015 to 19 January 2016, during which gravitational waves were 
directly detected from two binary black hole systems, namely GW150914 
and GW151226. Confident detection of gravitational waves requires an 
understanding of instrumental transients and artifacts that can reduce the 
sensitivity of a search. Studies of the quality of the detector data yield insights 
into the cause of instrumental artifacts and data quality vetoes specific to a 
search are produced to mitigate the effects of problematic data. In this paper, 
the systematic removal of noisy data from analysis time is shown to improve 
the sensitivity of searches for compact binary coalescences. The output of 
the PyCBC pipeline, which is a python-based code package used to search 
for gravitational wave signals from compact binary coalescences, is used as a 
metric for improvement. GW150914 was a loud enough signal that removing 
noisy data did not improve its significance. However, the removal of data with 
excess noise decreased the false alarm rate of GW151226 by more than two 
orders of magnitude, from 1 in 770 yr to less than 1 in 186 000 yr.

Keywords: LIGO, detector characterization, compact binary coalescences

(Some figures may appear in colour only in the online journal)

1. Introduction

The Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) is comprised of 
two dual-recycled Michelson interferometers [1] located in Livingston, LA (L1) and Hanford, 
WA (H1). A gravitational wave passing through a LIGO interferometer will induce a strain on 
spacetime, stretching and squeezing the 4 km arms and generating an interferometric signal at 
the antisymmetric port of the beamsplitter.

Advanced LIGO’s first observing run (O1) lasted from 12 September 2015 to 19 January 
2016. A primary goal of this observing run was the detection of gravitational waves from com-
pact binary coalescences (CBC) [2]. This goal was achieved with the detections of GW150914 
and GW151226, both signals from binary black hole systems, which marked the first direct 
detections of gravitational waves [3, 4]. These detections were part of a broader search for 
CBC signals carried out by multiple search pipelines during O1 [5–10] and searches for 
unmodeled transients [11–14].

Searching for gravitational waves requires an understanding of instrumental features and 
artifacts that can adversely affect the output of a gravitational wave search pipeline. Throughout 
the observing run, noisy data were identified in the form of data quality (DQ) vetoes to ensure 
that the analysis pipelines did not analyze data known to be contaminated with excess noise 
[15]. These vetoes are discussed further in section 4. This study measures the effects of remov-
ing data with excess noise on the output of PyCBC [5, 9, 10], a python-based pipeline used to 
search for CBC signals. Section 3 contains a brief description of the PyCBC search pipeline 
and its internal DQ features.
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Section 2 outlines the data selection and noise characterization processes. The DQ vetoes 
that are generated in the noise characterization process are described in section 4. The method-
ology of this study is discussed in section 5. This paper focuses on two specific subsets of the 
O1 data set. The first data set, from 12 September–20 October 2015, was used for background 
estimation for GW150914. This data set is discussed in section 6. The second data set, from 
3 December 2015–19 January 2016, was used for background estimation for GW151226. 
This data set is discussed in section 7. Section 8 describes the limiting noise sources for CBC 
searches.

2. Data selection

The strain data measured at the output of the detectors are typically non-stationary and non-
Gaussian and contain noise artifacts of varying durations. The longer duration non-stationary 
data can affect the overall sensitivity of the search, but they do not result in loud background 
events as they occur on a timescale of hours. The transient noise artifacts, however, occur 
on a timescale of seconds and can reduce the sensitivity of CBC searches by producing loud 
background events.

Data quality studies must be performed to search for causes of transients in the data that 
generate loud events in a gravitational wave search. If the source of noise is identified, a veto is 
generated to flag times when transient noise makes the data unsuitable for analysis. Section 4 
describes DQ vetoes that are used to indicate when the detector data are known to have excess 
noise [15–18]. The exception to this process is gating [5], which is a feature internal to the 
CBC searches. This gating, which is applied independently of DQ vetoes, uses a window 
function to remove times containing large transients from the input data stream.

3. The PyCBC search pipeline

The PyCBC pipeline is designed to search for gravitational wave transients from CBCs [5]. It 
employs a matched filter algorithm, which correlates expected CBC waveforms with detector 
data and outputs a ranking statistic, the signal-to-noise ratio (SNR). If the ranking statistic 
exceeds a specified threshold, an event, or ‘trigger’, is generated. The SNR of each trigger is 
weighted based on a signal consistency test [19], resulting in a refined ranking statistic called 
re-weighted SNR. Section 3.1 discusses this signal consistency test further.

To perform this search, the matched filter algorithm needs to know what to search for. A 
collection of model CBC waveforms is generated before the analysis [20, 21]. Each of these 
waveforms is called a template and the full collection of waveforms is referred to as the 
template bank. This template bank is constructed to span the astrophysical parameter space 
included in the search [22]. Each waveform is defined by the mass and spin of each compact 
object in the binary system. It is often convenient to combine the effects of each object’s spin 
into one parameter called effective spin χeff , which is the mass-weighted spin of the system 
[7]. The mass of the binary system is often represented by the chirp mass M [23], which is 
used to parameterize gravitational wave signals in general relativity.

The search algorithm is run separately at each detector and a set of single detector trig-
gers is generated. The two sets of single detector triggers are then compared to search for any 
events that were recorded within a 15 ms coincidence window, which reflects the travel time 
of a gravitational wave between the detectors and allows for uncertainty in the arrival time of 
a signal [5]. Any triggers that are found in coincidence with the same source parameters in 
both detectors represent potential gravitational wave signals and are referred to as foreground 
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events. Some of these foreground events will be chance coincidences between noise in each 
detector, which is expected given the number of events in each data set.

To determine the statistical significance of foreground events, a background distribution is 
generated using a time shift technique [5]. The statistical significance of any candidate gravi-
tational wave is then quantified by calculating the rate of background events from detector 
noise that are at least as loud as the candidate event. This statistic is called the false alarm rate 
(FAR). Any loud triggers that appear as the result of instrumental transients will extend the 
background distribution and the influence the measured false alarm rate. The purpose of the 
DQ effort as a whole is thus two-fold: to ensure that the search is using representative detector 
data in the background noise estimation and to suppress the rate of loud events that will pol-
lute both the background and the foreground distributions.

3.1. χ2 signal consistency test

A further layer of effective DQ that is internal to the PyCBC pipeline is the application of 
the χ2 signal consistency test [19]. The SNR produced by the matched filter is an integral in 
the frequency domain. The χ2 test divides each CBC waveform into frequency bins of equal 
power, checking that the SNR is distributed as a function of frequency as expected from an 
actual CBC signal. Each trigger that comes out of the matched filter search is down-weighted 
based on the results of the χ2 test. This is folded into a new ranking statistic for CBC triggers, 
which is called re-weighted SNR and is denoted by ρ̂ . The ranking statistic for coincident 
events in the PyCBC search is the network re-weighted SNR, ρ̂c, which is the quadrature sum 
of the re-weighted SNR from each detector. Since a real signal has a power distribution that 
matches the template waveform, it will not be down-weighted by the χ2 test; the SNR and the 
re-weighted SNR will be the same.

This test is extremely powerful, as shown in figure 1, which shows the distribution of sin-
gle detector PyCBC triggers generated from 12 September to 20 October 2015. Figure 1(a) 
shows the distribution of triggers in SNR. The extensive tail of triggers with high SNR, which 
extends beyond SNR 100, is down-weighted in the re-weighted SNR distribution, leaving 
behind a tail that extends to ρ̂ ≈ 10.5 as seen in figure 1(b). This re-weighted SNR tail repre-
sents the loudest single detector background triggers in the CBC search. Investigating this set 
of loudest background triggers guides DQ efforts in defining the current limiting noise sources 
to the CBC search.

4. Data quality vetoes

As seen in figure 1, the χ2 test is a powerful tool, but there is still a considerable tail in the 
single detector trigger distribution. This tail is often caused by transient instrumental noise. 
If these noise sources can be linked to a systematic instrumental cause or a period of highly 
irregular instrumental performance, they can be flagged and removed from the analysis in the 
form of a DQ veto.

DQ vetoes indicate times that are unsuitable for analysis or are likely to produce false 
alarm gravitational wave triggers. These vetoes are constructed by  ∼200 000 witness sensors 
that continuously monitor LIGO detectors and their environment [15]. Before a witness sensor 
is used to generate a DQ veto, its sensitivity to a genuine gravitational wave signal is assessed 
to ensure true signals are not unnecessarily removed from analysis. To test this, a gravitational 
wave signal is simulated by electromagnetically controlling the motion of the detector optics. 
If a witness sensor is observed to be sensitive to such an injected signal, it will be considered 
unsafe for generating DQ vetoes.
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Figure 1. Histograms of single detector triggers from the Livingston (L1) detector. 
These triggers were generated using data from 12 September to 20 October 2015. These 
histograms contain triggers from the entire template bank, but exclude any triggers found 
in coincidence between the two detectors. (a) A histogram of single detector triggers in 
SNR. The tail of this distribution extends beyond SNR  =  100. (b) A histogram of single 
detector triggers in re-weighted SNR. The chi-squared test down-weights the long tail 
of SNR triggers in the re-weighted SNR distribution. The triggers found using only the 
Hanford detector have a similar distribution.
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As an example, a veto was generated during O1 to mark times when an electronics fault 
caused amplitude fluctuations in the radio frequency (RF) sidebands used to sense and con-
trol LIGO’s optical cavities. These amplitude fluctuations introduced noise into the feedback 
loops controlling the motion of the LIGO optics. This excess motion coupled into the output 
of the detector and created transient, broadband noise artifacts. A witness sensor monitoring 
the amplitude stabilization control signal for the RF sidebands was found to be correlated 
to the excess noise in the detector output. A threshold was established to indicate when the 
amplitude fluctuations were significant enough to couple into the detector output and any 
times where the fluctuation amplitude exceeded this threshold were marked as unfit for astro-
physical analysis. The process of generating this veto is further detailed in appendix A of [15].

Other examples of noise sources that were vetoed in O1 are photodiode saturations, analog-
to-digital converter (ADC) and digital-to-analog converter (DAC) overflows, elevated seismic 
noise, and computer failures. These DQ vetoes were generated using a process similar to that 
used to veto the RF amplitude fluctuation noise.

DQ vetoes are produced for all analysis time based on systematic instrumental conditions 
without any regard for the presence of gravitational wave signals. All data are treated equally; 
the removal of data with excess noise has the ability to remove real gravitational wave signals 
as well as background events. The same set of DQ vetoes was applied by all CBC searches in 
O1 and will be released with any public data to ensure that astrophysical results are reproduc-
ible. Further details on DQ vetoes applied in the first observing run are available in a paper 
detailing the transient noise in the detectors at the time of GW150914 [15].

5. Measuring the effects of data quality vetoes

To test the effects of DQ vetoes, the PyCBC search pipeline was run with and without applying 
vetoes. The only vetoes that were used in all runs are those that indicate that the data were not 
properly calibrated, that a data dropout occurred, or that there were test signals being injected 
into the detectors. Gating is internal to the search pipeline and was applied in all of the analy-
ses. Two methods were used to understand the effects of applying vetoes. The first, described 
in section 5.1, considers the average sensitivity of the search pipeline to gravitational wave 
signals. The second, described in section 5.2, compares the measured search backgrounds and 
the false alarm rates of recovered gravitational wave signals.

5.1. Measuring search sensitivity

The metric used to measure the sensitivity of the search pipeline is sensitive volume. Sensitive 
volume is measured by injecting simulated gravitational wave signals into the data and 
attempting to recover them using the search [5]. The ability of the pipeline to recover signals 
at a given false alarm rate is then measured by analyzing the number of missed and recovered 
injections.

In addition to the sensitive volume, the amount of time used in the analysis must be consid-
ered when removing noisy data. If a search is rejecting too much data, it will miss the oppor-
tunity to detect signals. To address this, the sensitive volume of the search is multiplied by the 
amount of analysis time to create a new metric called VT. If time is removed from an analysis, 
the sensitive volume of the search must increase to make up for the shorter analyzed time.

The sensitivity of a search varies as a function of the significance threshold set for candi-
date events. The VT ratios are therefore calculated at both the 1 per 100 yr and the 1 per 1000 
yr levels. These significance levels are expressed as inverse false alarm rates (IFAR).
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5.2. Comparing search backgrounds

In the first observing run, the bank of CBC waveform templates used in the PyCBC search 
was divided into three bins [22]. The significance of any candidate gravitational wave found 
in coincidence between the two detectors is calculated relative to the background in its bin. 
Waveforms with different parameters will respond to instrumental transients in different 
ways. This binning is performed so that any foreground triggers are compared to a back-
ground generated from similar waveforms. As such, the effects of removing data from the 
PyCBC search are variable depending on which bin is considered. The actual gravitational 
wave signals discovered in the PyCBC search, GW150914 and GW151226, were part of a 
full search that was broken into 3 bins but reported as a single table of results. Because of 
this, their reported false alarm rates include a trials factor of 3. The background distributions 
shown in sections 6 and 7 were measured on a bin-by-bin basis, so the cumulative trigger 
rates have not been divided by 3.

The first bin is called the binary neutron star (BNS) bin and contains all waveforms with 
M < 1.74. The second bin is the edge bin, which is defined based on the peak frequency 
fpeak of each CBC waveform. These waveforms are typically shorter in duration than binary 
neutron star waveforms and are comprised of both binary black hole (BBH) and neutron star-
black hole (NSBH) binary waveforms. Waveforms in the edge bin typically have high masses 
and negative χeff . In this analysis, the edge bin contained waveforms with fpeak < 100 Hz. 
The third bin is the bulk bin, which contains all remaining waveforms needed to span the 
parameter space of the search. This contains BBH and NSBH waveforms with a variety of 
mass ratios and spins.

6. Analysis containing GW150914

The analysis containing GW150914 lasted from 12 September–20 October 2015 and con-
tained a total of 18.2 d of coincident detector data. Of this 18.2 d, 7.7% was considered unfit 
for astrophysical analysis and was removed from the data set.

6.1. Search sensitivity

To measure the effects of DQ vetoes on the sensitivity of the search, the analysis containing 
GW150914 was performed with and without applying data quality vetoes. The resulting mea-
surements of VT were divided to calculate a VT ratio.

Figure 2 shows the change in VT when vetoes are applied for two values of IFAR and 
several chirp mass bins. The lowest chirp mass bin contains BNS signals and does not show 
any improvement in sensitivity when DQ vetoes are applied. This is discussed further in sec-
tion 6.2. Since the bulk and edge bins contain systems with a large range of masses that can 
respond in different ways to instrumental artifacts, these higher mass bins have been split for 
sensitivity estimation. The higher mass bins in figure 2 are binned linearly in ln(M). The 
higher chirp mass bins show an improvement in search sensitivity for both values of IFAR.

6.2. BNS bin

Binary neutron star systems have the longest waveforms used in the search pipelines. Since 
these signals spend  ∼10–100 s in LIGO’s sensitive band, the χ2 test is effective at discrimi-
nating between binary neutron star signals and transient noise, which have a duration of  ∼1 s.
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Figure 3 shows the background distribution of the BNS bin in the PyCBC search for the 
analysis containing GW150914. As expected, since waveforms in the BNS bin are not as sus-
ceptible to instrumental transients, the background distribution does not change significantly 
when noisy data are removed from the analysis.

6.3. Bulk bin

Figure 4 shows the background distribution in the bulk bin for the analysis contain-
ing GW150914. If noisy data are not removed from the analysis, there is a shoulder in the 
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Figure 2. The change in search sensitivity when DQ vetoes are applied for the analysis 
containing GW150914. The error bars show the 1 σ error from each VT calculation 
combined in quadrature. The lowest chirp mass bin, which contains BNS signals, 
does not show any improvement in sensitivity. For marginally significant signals at 
IFAR  =  100, the measured value of VT increases by 3–32% in higher chirp mass bins. 
For highly significant signals at IFAR  =  1000, the measured value of VT increases by 
34–62% in higher chirp mass bins.
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Figure 3. The background distribution in the BNS bin before and after applying DQ 
vetoes for the analysis containing GW150914. (a) The cumulative rate of background 
triggers in the BNS bin as a function of re-weighted SNR. (b) A histogram of background 
triggers in the BNS bin. The red traces indicate the distribution of background triggers 
without noisy data removed, the cyan traces indicate the distribution of background 
triggers with all DQ vetoes applied. The BNS bin shows no significant improvement in 
cumulative rate.
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distribution that extends to ρ̂c = 14, which limits the sensitivity of the search in the region 
where 11 < ρ̂c < 14.

6.3.1. LVT151012. The second most significant trigger in the analysis containing GW150914 
was LVT151012, recorded on 12 October 2015 [22, 24]. This trigger was recovered in the 
bulk bin with ρ̂c = 9.75 and a false alarm rate of 0.33 yr−1. This is not significant enough to 
be claimed as a confident detection. The false alarm rate decreases by a factor of 2.1 when DQ 
vetoes are applied, as shown in table 1.

6.4. Edge bin

Figure 5 shows the background distribution in the edge bin for the analysis containing 
GW150914. There is a visible separation between the two curves that increases for larger 
values of ρ̂c, indicating that the ability of the search pipeline to make confident detections is 
diminished in this region.

6.4.1. GW150914. The gravitational wave signal GW150914 was detected on September 14, 
2015 with ρ̂c = 23.6 [3]. The false alarm rate of GW150914 does not change significantly 
when noisy data are removed from the analysis, which can be seen in table  2. This is an 
expected result as GW150914 is louder than the entire background distribution in the bulk bin.
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Figure 4. The background distribution in the bulk bin before and after applying DQ 
vetoes for the analysis containing GW150914. (a) The cumulative rate of background 
triggers in the bulk bin as a function of re-weighted SNR. (b) A histogram of background 
triggers in the bulk bin. The red traces indicate the distribution of background triggers 
without noisy data removed and the cyan traces indicate the distribution of background 
triggers with all DQ vetoes applied. When vetoes are not applied, there is a shoulder in 
the distribution that limits the sensitivity of the search. The dash-dotted line indicates 
the network re-weighted SNR of LVT151012. The dashed line indicates the network 
re-weighted SNR of GW150914, which is the loudest event in this bin for both 
configurations.

Table 1. Table of bulk bin false alarm rates for LVT151012.

Analysis configuration False alarm rate (yr−1)

All vetoes applied 0.33
No vetoes applied 0.69
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7. Analysis containing GW151226

The extended analysis containing GW151226 lasted from 3 December 2015–19 January 2016 
and contained a total of 16.7 days of coincident detector data. Of this 16.7 days, 6.5% was 
considered unfit for astrophysical analysis and was removed from the data set.

7.1. Search sensitivity

Figure 6 shows the change in VT when DQ vetoes are applied to the analysis containing 
GW151226. For this analysis, the lowest chirp mass bin, which contains BNS signals, shows 
a slight improvement when vetoes are applied. This improvement is discussed further in sec-
tion 7.2. Similar to the analysis containing GW150914, the higher chirp mass bins show an 
improvement in search sensitivity for both values of IFAR.

7.2. BNS bin

As expected from figure 6, there is a small improvement in the BNS background distri-
bution when DQ vetoes are applied. Figure 7 shows the background distributions in the 
BNS bin with and without noisy data removed. Although the ρ̂c  of the loudest background 
event does not change considerably, there is a noticeable gap between the two background 
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Figure 5. The background distribution in the edge bin before and after applying DQ 
vetoes for the analysis containing GW150914. (a) The cumulative rate of background 
triggers in the edge bin as a function of re-weighted SNR. (b) A histogram of background 
triggers in the edge bin. The red traces indicate the distribution of background triggers 
without noisy data removed from the analysis and the cyan traces indicate the distribution 
of background triggers with all data quality vetoes applied.

Table 2. Table of bulk bin false alarm rates for GW150914. GW150914 is loud 
enough that its false alarm rate does not change significantly when noisy data are 
removed from the analysis. Any change in false alarm rate is due to small changes in 
the total analysis time after data removal.

Analysis configuration False alarm rate (yr−1)

All vetoes applied <5.17 × 10−6

No vetoes applied <4.43 × 10−6
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distributions that is visible at ρ̂c > 9.7 and widens to an order of magnitude difference in 
FAR at ρ̂c ≈ 10.5.

7.3. Bulk bin

The background distribution in the bulk bin changes significantly when DQ vetoes are applied, 
which is shown in figure 8. There is a visible difference between the two distributions begin-
ning at ρ̂c = 9. The difference in cumulative rate reaches an order of magnitude at ρ̂c ∼ 10 
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Figure 6. The change in search sensitivity when DQ vetoes are applied for the analysis 
containing GW151226. The error bars show the 1 σ error from each VT calculation 
combined in quadrature. The lowest chirp mass bin, which contains BNS signals, shows 
a small improvement in sensitivity when vetoes are applied, though the error bars are 
consistent with a VT ratio of 1. For marginally significant signals at IFAR  =  100, the 
measured value of VT increases by 27–62% in higher chirp mass bins. For highly 
significant signals at IFAR  =  1000, the measured value of VT increases by 45–90% in 
higher chirp mass bins.
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Figure 7. The background distribution in the BNS bin before and after applying DQ 
vetoes for the analysis containing GW151226. (a) The cumulative rate of background 
triggers in the BNS bin as a function of re-weighted SNR. (b) A histogram of background 
triggers in the BNS bin. The red traces indicate the distribution of background triggers 
without noisy data removed and the cyan traces indicate the distribution of background 
triggers with all vetoes applied.
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and continues to grow for larger values of ρ̂c. The reduction of the background distribution 
through the application of DQ vetoes is particularly impactful for GW151226, which is dis-
cussed in section 7.3.1.

7.3.1. GW151226. The second binary black hole system discovered in the first observing run, 
GW151226 [4], is indicated by the vertical dotted line at ρ̂c = 12.7 in figure 8. When noisy 
data are removed from the analysis, the background distribution in the bulk bin is reduced and 
GW151226 is the loudest event in the analysis. The false alarm rate of GW151226 decreases 
by over two orders of magnitude, resulting in a clear detection. The false alarm rates before 
and after DQ vetoes are applied are listed in table 3.

7.4. Edge bin

Figure 9 shows the background distribution in the edge bin before and after DQ vetoes 
have been applied. The background distribution of the edge bin in the analysis containing 
GW151226 is significantly reduced for all values of ρ̂c when DQ vetoes are applied.
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Figure 8. The background distribution in the bulk bin before and after applying DQ 
vetoes for the analysis containing GW151226. (a) The cumulative rate of background 
triggers in the bulk bin as a function of re-weighted SNR. (b) A histogram of background 
triggers in the bulk bin. The red traces indicate the distribution of background triggers 
with no data removed from the analysis. The cyan traces indicate the distribution of 
background triggers with all DQ vetoes applied. The dotted line indicates GW151226, 
which was recovered with ρ̂c = 12.7. If DQ vetoes are not applied, GW151226 is no 
longer louder than the entire background distribution.

Table 3. Table of bulk bin false alarm rates of GW151226. The false alarm rate of 
GW151226 increases from less than 1 in 186 000 yr to 1 in 770 yr if data with excess 
noise is not removed from the analysis.

Analysis configuration False alarm rate (yr−1)

All vetoes applied <5.39 × 10−6

No vetoes applied 1.30 × 10−3
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8. Limiting noise sources

The sensitivity of the search is limited by instrumental features that result in high ρ̂c triggers 
and tails in the background distributions. This section uses two particular instrumental noise 
sources from the analysis containing GW150914 as case studies. These are examples of noise 
sources that are not able to be vetoed using existing algorithms as they are not captured by any 
existing witness sensors in the detectors.
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Figure 9. The background distribution in the edge bin before and after applying DQ 
vetoes for the analysis containing GW151226. (a) The cumulative rate of background 
triggers in the edge bin as a function of re-weighted SNR. (b) A histogram of background 
triggers in the bulk bin. The red traces indicate the distribution of background triggers 
without removing noisy data and the cyan traces indicate the distribution of background 
triggers with all vetoes applied.
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Figure 10. A time-frequency representation [25] of the Livingston strain channel at the 
time of a blip transient. This visualization of a blip transient demonstrates their typical 
features: band-limited, short duration, and little visible frequency structure.
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8.1. Blip transients

Blip transients [15] are band-limited noise transients that occur in both the Hanford and 
Livingston detectors. They do not occur in coincidence between the two LIGO detectors and 
are not candidate gravitational wave signals. Due to their short duration in LIGO’s sensitive 
frequency band, the χ2 test is not as effective at down-weighting these noise transients and 
they have been a common source of high re-weighted SNR background triggers. Figure 10 
shows a time-frequency representation of a blip transient.
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Figure 11. A filtered time-domain representation of the Livingston strain channel h(t) 
at the time of a blip transient. The dotted line is a filtered CBC waveform that reported a 
high re-weighted SNR value at the time of the blip transient. Both sets of data have been 
zero-phase bandpass filtered to isolate the frequency range that aLIGO is sensitive to. 
The short duration and high overlap of these two curves causes the χ2 to be ineffective 
at down-weighting these transients.
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Figure 12. Single detector triggers from the Livingston detector during the analysis 
containing GW150914. (a) Triggers binned by total mass and effective spin. The highest 
re-weighted SNR triggers are constrained to the bottom corner of the plot, bounded by 
Mtotal > 80 and χeff < −0.5. (b) Triggers binned by the peak frequency and duration of 
the template waveform. The loudest triggers in re-weighted SNR are constrained to the 
area of the parameter space with template durations  <0.1 s. The small cluster of loud 
triggers with a template duration of roughly 4 s corresponds to the 60–200 Hz noise 
discussed in section 8.2.
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Figure 11 shows a time-domain representation of a blip transient in the Livingston strain 
channel. The dotted line on top of the strain data represents a template waveform that reported 
a high re-weighted SNR at the time of this blip transient. Both curves have been filtered to 
isolate the parts of the signal that are in LIGO’s sensitive frequency band. The template wave-
form is a high mass system (Mtotal = 98.34 M�) with an anti-aligned effective spin of  −0.97. 
This waveform is among the shortest duration templates used in the analysis, spending less 
than 0.1 s in LIGO’s sensitive frequency band.

The region of the astrophysical parameter space where the χ2 test is ineffective at down-
weighting blip transients is small. This is demonstrated in figure 12, which shows triggers 
from the Livingston detector during the analysis containing GW150914. Each point represents 
the highest single detector re-weighted SNR measured in that region of the parameter space. 
Figure 12(a) shows this trigger set binned by total mass and effective spin. Templates that 
overlap with blip transients and produce high re-weighted SNR triggers, such as the template 
plotted in figure 11, are constrained to the region where Mtotal > 80M� and χeff < −0.5. This 

Figure 13. Time-frequency spectrograms of the 60–200 Hz noise. (a) A 20 min time 
scale shows the 60–200 Hz noise appearing for several minutes at a time. This time 
scale and frequency range is damaging to CBC searches and has often been found 
responsible for loud background events. (b) A 200 s time scale reveals the arc-like shape 
of the noise in the time-frequency plane. This period of noise caused a loud trigger in 
the PyCBC background.
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region contains only 65 waveform templates out of 249077 total waveforms in the template 
bank; the majority of the template bank is capable of rejecting blip glitches using the χ2 test. 
Blip glitches that cause loud background events in this region of the template bank populate 
the tail of the background distribution in the edge bin and limit search sensitivity in that bin.

The region of the template bank where the χ2 test is ineffective can also be visualized 
in terms of the duration of the template waveform. Figure 12(b) shows the same trigger set 
binned by the peak frequency and duration of the template waveform. In this view of the 
parameter space, the templates with the highest re-weighted SNR are contrained to the region 
where the duration of the template in LIGO’s sensitive frequency band is less than 0.1 s. In 
this region, the duration of the template is on the same time scale as instrumental transients 
such as blip transients.

Mitigation of blip transients is a high priority but is difficult since they do not couple into 
instrumental witness sensors and are not high enough in amplitude to be removed by the gat-
ing process. Since an instrumental cause has not yet been identified, a modified ranking statis-
tic [26] that is capable of better discriminating blip transients from gravitational wave signals 
has been developed and implemented for the second observing run.

8.2. 60–200 Hz noise

A second problematic noise source that was present at Livingston during the first observing 
run was the ‘60–200 Hz’ noise. Figure 13 shows a time-frequency visualization of this noise 
on both 200 s and 20 min time scales. This noise source appears for several minutes at a time 
as arc-like patterns in the time-frequency plane. This noise source causes loud background 
triggers when analyzing the Livingston data, including the band of triggers with a template 
duration of  ∼4 s in figure 12(b). Although the arc-like patterns in figure 13(b) are similar to 
those caused by scattered light [27], the exact cause of this noise is not yet fully understood.

9. Conclusions

Data quality vetoes improved the sensitivity of the PyCBC search in Advanced LIGO’s first 
observing run. Although the sensitivity of the search to BNS signals was not dramatically 
affected, VT improved significantly for higher mass sources when DQ vetoes are applied.

The gravitational wave signal GW150914 was strong enough that it was louder than all 
background events regardless of what data were removed from the search. As such, DQ 
vetoes did not improve its significance. The false alarm rate of LVT151012, which occurred 
during the same analysis period, was improved from 0.69 yr−1 to 0.33 yr−1 when vetoes 
were applied. The false alarm rate of the second gravitational wave signal discovered in O1, 
GW151226, was decreased by over two orders of magnitude when DQ vetoes were applied, 
which resulted in a clear detection. The production and application of DQ vetoes was critical 
for increasing overall sensitivity in Advanced LIGO’s first observing run and similar methods 
were employed during the second observing run.

Acknowledgments

The authors gratefully acknowledge the support of the United States National Science 
Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced 
LIGO as well as the Science and Technology Facilities Council (STFC) of the United 
Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for 

B P Abbott et alClass. Quantum Grav. 35 (2018) 065010



25

support of the construction of Advanced LIGO and construction and operation of the 
GEO600 detector. Additional support for Advanced LIGO was provided by the Australian 
Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di 
Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) 
and the Foundation for Fundamental Research on Matter supported by the Netherlands 
Organisation for Scientific Research, for the construction and operation of the Virgo 
detector and the creation and support of the EGO consortium. The authors also gratefully 
acknowledge research support from these agencies as well as by the Council of Scientific 
and Industrial Research of India, the Department of Science and Technology, India, the 
Science & Engineering Research Board (SERB), India, the Ministry of Human Resource 
Development, India, the Spanish Agencia Estatal de Investigación, the Vicepresidència i 
Conselleria d’Innovació, Recerca i Turisme and the Conselleria d’Educació i Universitat 
del Govern de les Illes Balears, the Conselleria d’Educació, Investigació, Cultura i Esport 
de la Generalitat Valenciana, the National Science Centre of Poland, the Swiss National 
Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian 
Science Foundation, the European Commission, the European Regional Development 
Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities 
Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of 
Origins (LIO), the National Research, Development and Innovation Office Hungary (NKFI), 
the National Research Foundation of Korea, Industry Canada and the Province of Ontario 
through the Ministry of Economic Development and Innovation, the Natural Science and 
Engineering Research Council Canada, the Canadian Institute for Advanced Research, 
the Brazilian Ministry of Science, Technology, Innovations, and Communications, the 
International Center for Theoretical Physics South American Institute for Fundamental 
Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural 
Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, 
the Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The 
authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the 
State of Niedersachsen/Germany for provision of computational resources.

References

	 [1]	 Aasi J et al 2015 Advanced LIGO Class. Quantum Grav. 32 074001
	 [2]	 Babak  S et  al 2013 Searching for gravitational waves from binary coalescence Phys. Rev. D 

87 024033
	 [3]	 Abbott B P et al 2016 Observation of gravitational waves from a binary black hole merger Phys. 

Rev. Lett. 116 061102
	 [4]	 Abbott B et al 2016 GW151226: observation of gravitational waves from a 22-solar-mass binary 

black hole coalescence Phys. Rev. Lett. 116 241103
	 [5]	 Usman S et al 2016 An improved pipeline to search for gravitational waves from compact binary 

coalescence Class. Quantum Grav. 33 215004
	 [6]	 Cannon K et al 2012 Toward early-warning detection of gravitational waves from compact binary 

coalescence Astrophys. J. 748 136
	 [7]	 Privitera S et al 2014 Improving the sensitivity of a search for coalescing binary black holes with 

nonprecessing spins in gravitational wave data Phys. Rev. D 89 024003
	 [8]	 Messick C et al 2017 Low-latency analysis framework for the prompt discovery of compact binary 

mergers in gravitational wave data Phys. Rev. D 95 042001
	 [9]	 Nitz A et al 2017 Ligo-cbc/pycbc: O2 production release 11 https://doi.org/10.5281/zenodo.556097
	[10]	 Dal Canton T et al 2014 Implementing a search for aligned-spin neutron star-black hole systems 

with advanced ground based gravitational wave detectors Phys. Rev. D 90 082004

B P Abbott et alClass. Quantum Grav. 35 (2018) 065010

https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1103/PhysRevD.87.024033
https://doi.org/10.1103/PhysRevD.87.024033
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1088/0264-9381/33/21/215004
https://doi.org/10.1088/0264-9381/33/21/215004
https://doi.org/10.1088/0004-637X/748/2/136
https://doi.org/10.1088/0004-637X/748/2/136
https://doi.org/10.1103/PhysRevD.89.024003
https://doi.org/10.1103/PhysRevD.89.024003
https://doi.org/10.1103/PhysRevD.95.042001
https://doi.org/10.1103/PhysRevD.95.042001
https://doi.org/10.5281/zenodo.556097
https://doi.org/10.1103/PhysRevD.90.082004
https://doi.org/10.1103/PhysRevD.90.082004


26

	[11]	 Abbott B P et al 2016 Observing gravitational-wave transient GW150914 with minimal assumptions 
Phys. Rev. D 93 122004

	[12]	 Klimenko S et al 2008 Coherent method for detection of gravitational wave bursts Class. Quantum 
Grav. 25 114029

	[13]	 Lynch R et al 2017 An information-theoretic approach to the gravitational-wave burst detection 
problem Phys. Rev. D 95 104046

	[14]	 Cornish N J and Littenberg T B 2015 Bayeswave: Bayesian inference for gravitational wave bursts 
and instrument glitches Class. Quantum Grav. 32 135012

	[15]	 Abbott B P et al 2016 Characterization of transient noise in Advanced LIGO relevant to gravitational 
wave signal GW150914 Class. Quantum Grav. 33 134001

	[16]	 Nuttall L K et al 2015 Improving the data quality of advanced LIGO based on early engineering 
run results Class. Quantum Grav. 32 245005

	[17]	 et J A 2015 Characterization of the LIGO detectors during their sixth science run Class. Quantum 
Grav. 32 115012

	[18]	 McIver J 2012 Data quality studies of enhanced interferometric gravitational wave detectors Class. 
Quantum Grav. 29 124010

	[19]	 Allen B 2005 A chi-squared time-frequency discriminator for gravitational wave detection Phys. 
Rev. D 71 062001

	[20]	 Taracchini A et al 2014 Effective-one-body model for black-hole binaries with generic mass ratios 
and spins Phys. Rev. D 89 061502

	[21]	 Pürrer  M 2016 Frequency domain reduced order model of aligned-spin effective-one-body 
waveforms with generic mass-ratios and spins Phys. Rev. D 93 064041

	[22]	 Abbott B P et al 2016 GW150914: first results from the search for binary black hole coalescence 
with advanced LIGO Phys. Rev. D 93 122003

	[23]	 Peters P C and Mathews J 1963 Gravitational radiation from point masses in a Keplerian orbit 
Phys. Rev. 131 435–9

	[24]	 Abbott B P et al 2016 Binary black hole mergers in the first advanced ligo observing run Phys. Rev. 
X 6 041015

	[25]	 Chatterji S et  al 2004 Multiresolution techniques for the detection of gravitational-wave bursts 
Class. Quantum Grav. 21 S1809

	[26]	 Nitz A 2017 Distinguishing short duration noise transients in LIGO data to improve the PyCBC 
search for gravitational waves from high mass binary black hole mergers (arXiv:1709.08974)

	[27]	 Accadia T et al 2010 Noise from scattered light in virgo’s second science run data Class. Quantum 
Grav. 27 194011

B P Abbott et alClass. Quantum Grav. 35 (2018) 065010

https://doi.org/10.1103/PhysRevD.93.122004
https://doi.org/10.1103/PhysRevD.93.122004
https://doi.org/10.1088/0264-9381/25/11/114029
https://doi.org/10.1088/0264-9381/25/11/114029
https://doi.org/10.1103/PhysRevD.95.104046
https://doi.org/10.1103/PhysRevD.95.104046
https://doi.org/10.1088/0264-9381/32/13/135012
https://doi.org/10.1088/0264-9381/32/13/135012
https://doi.org/10.1088/0264-9381/33/13/134001
https://doi.org/10.1088/0264-9381/33/13/134001
https://doi.org/10.1088/0264-9381/32/24/245005
https://doi.org/10.1088/0264-9381/32/24/245005
https://doi.org/10.1088/0264-9381/32/11/115012
https://doi.org/10.1088/0264-9381/32/11/115012
https://doi.org/10.1088/0264-9381/29/12/124010
https://doi.org/10.1088/0264-9381/29/12/124010
https://doi.org/10.1103/PhysRevD.71.062001
https://doi.org/10.1103/PhysRevD.71.062001
https://doi.org/10.1103/PhysRevD.89.061502
https://doi.org/10.1103/PhysRevD.89.061502
https://doi.org/10.1103/PhysRevD.93.064041
https://doi.org/10.1103/PhysRevD.93.064041
https://doi.org/10.1103/PhysRevD.93.122003
https://doi.org/10.1103/PhysRevD.93.122003
https://doi.org/10.1103/PhysRev.131.435
https://doi.org/10.1103/PhysRev.131.435
https://doi.org/10.1103/PhysRev.131.435
https://doi.org/10.1103/PhysRevX.6.041015
https://doi.org/10.1103/PhysRevX.6.041015
https://doi.org/10.1088/0264-9381/21/20/024
https://doi.org/10.1088/0264-9381/21/20/024
http://arxiv.org/abs/1709.08974
https://doi.org/10.1088/0264-9381/27/19/194011
https://doi.org/10.1088/0264-9381/27/19/194011

	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run
	Recommended Citation
	Authors

	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO’s first observing run
	Abstract
	1. Introduction
	2. Data selection
	3. The PyCBC search pipeline
	3.1.  signal consistency test

	4. Data quality vetoes
	5. Measuring the effects of data quality vetoes
	5.1. Measuring search sensitivity
	5.2. Comparing search backgrounds

	6. Analysis containing GW150914
	6.1. Search sensitivity
	6.2. BNS bin
	6.3. Bulk bin
	6.3.1. LVT151012. 

	6.4. Edge bin
	6.4.1. GW150914. 


	7. Analysis containing GW151226
	7.1. Search sensitivity
	7.2. BNS bin
	7.3. Bulk bin
	7.3.1. GW151226. 

	7.4. Edge bin

	8. Limiting noise sources
	8.1. Blip transients
	8.2. 60–200 Hz noise

	9. Conclusions
	Acknowledgments
	References


