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Search for sub-solar mass ultracompact binaries in Advanced LIGO’s first observing
run

The LIGO Scientific Collaboration and The Virgo Collaboration
(Dated: September 13, 2018)

We present the first Advanced LIGO and Advanced Virgo search for ultracompact binary systems
with component masses between 0.2 M� – 1.0 M� using data taken between September 12, 2015
and January 19, 2016. We find no viable gravitational wave candidates. Our null result constrains
the coalescence rate of monochromatic (delta function) distributions of non-spinning (0.2 M�, 0.2
M�) ultracompact binaries to be less than 1.0×106 Gpc−3yr−1 and the coalescence rate of a similar
distribution of (1.0 M�, 1.0 M�) ultracompact binaries to be less than 1.9 × 104 Gpc−3yr−1 (at
90% confidence). Neither black holes nor neutron stars are expected to form below ∼ 1M� through
conventional stellar evolution, though it has been proposed that similarly low mass black holes
could be formed primordially through density fluctuations in the early universe and contribute to
the dark matter density. The interpretation of our constraints in the primordial black hole dark
matter paradigm is highly model dependent, however, under a particular primordial black hole
binary formation scenario we constrain monochromatic primordial black hole populations of 0.2 M�
to be less than 33% of the total dark matter density and monochromatic populations of 1.0 M� to
be less than 5% of the dark matter density. The latter strengthens the presently placed bounds from
micro-lensing surveys of MAssive Compact Halo Objects (MACHOs) provided by the MACHO and
EROS collaborations.

INTRODUCTION

The era of gravitational wave astronomy began
with the observation of the binary black hole merger
GW150914 [1]. Since then, four additional binary black
hole mergers [2–5] and one binary neutron star merger [6]
have been announced as of November 2017. Thus far, Ad-
vanced LIGO and Advanced Virgo searches have targeted
binary systems with total masses from 2–600 M� [7, 8],
but the LIGO and Virgo detectors are also sensitive to
ultracompact binaries with components below 1 M� if
the compactness (mass to radius ratio) is close to that of
a black hole. White dwarf binaries, while often formed
with components below one solar mass, are not suffi-
ciently compact to be a LIGO/Virgo gravitational wave
source. Neutron stars or black holes are sufficiently com-
pact as would be other exotic compact objects. Previous
gravitational wave searches for sub-solar mass ultracom-
pact binaries used data from initial LIGO observations
from Feb 14, 2003 – March 24, 2005 [9, 10]. Advanced
LIGO [11] presently surveys a volume of space approx-
imately 1000 times larger than the previous search for
sub-solar mass ultracompact objects therefore improving
the chances of detecting such a binary 1000-fold.

In conventional stellar evolution models, the lightest
ultracompact objects are formed when stellar remnants
exceed ∼ 1.4M�, the Chandrasekhar mass limit [12, 13].
Beyond the Chandrasekhar mass limit, electron degen-
eracy pressure can no longer prevent the gravitational
collapse of a white dwarf. The lightest remnants that
exceed the Chandrasekhar mass limit form neutron stars
[14]. When even the neutron degeneracy pressure cannot
prevent collapse, heavier stellar remnants will collapse to
black holes. Some equations of state predict that neutron

stars remain stable down to ∼ 0.1M� [15]; there is no
widely accepted model for forming neutron stars below
∼ 1M�, though a recent measurement does not exclude
the possibility of 0.92M� neutron star [16]. This result
may be due to the low inclination of the system. The low-
est precisely measured neutron star mass is 1.174M� [17].
Observationally, black holes appear to have a minimum
mass of ∼ 5M� with a gap between the heaviest observed
neutron star (∼ 2M�) and black hole masses [18–21]. De-
tecting ultracompact objects below one solar mass could
challenge our ideas about stellar evolution or possibly
hint at new, unconventional formation scenarios.

Beyond conventional stellar evolution, one of the most
prolific black hole formation models posits that primor-
dial black holes (PBHs) could have formed in the early
universe through the collapse of highly over-dense re-
gions [22–26]. It has been suggested that PBHs could
constitute a fraction of the missing dark matter [23, 26],
though this scenario has been constrained [27]. LIGO’s
detections have revived interest in black hole formation
mechanisms and, in particular, the formation of primor-
dial black holes (PBHs) [28–30]. Though there are pro-
posals on how to distinguish a primordial black hole dis-
tribution from an astrophysical one [31–36], disentan-
gling them is challenging when the populations overlap
in mass. Hence, detection of sub-solar mass ultracom-
pact objects would provide the cleanest signature for de-
termining primordial formation. Still, recent proposals
for non-baryonic dark matter models can produce sub-
solar mass black holes either by allowing a lower Chan-
drasekhar mass in the dark sector [37], or by triggering
neutron stars to collapse into ∼ 1M� black holes [38].

This letter describes a gravitational wave search for ul-
tracompact binary systems with component masses be-
tween 0.2 M� and 1.0 M� using data from Advanced
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LIGO’s first observing run . No viable gravitational wave
candidates were identified. We briefly describe the data
analyzed and the anticipated sensitivity to sub-solar mass
ultracompact objects, as well as the search that was con-
ducted, which led to the null result. We then describe
how the null result constrains the merger rate of sub-solar
mass binaries in the nearby universe. We consider the
merger rate constraints in the context of binary merger
rate estimates most recently given by Sasaki et al [29]
thereby constraining the fraction of dark matter density
made up of PBHs between 0.2 M� and 1.0 M�. Finally,
we conclude with a discussion of future work.

SEARCH

We report on data analyzed from Advanced LIGO’s
first observing run, taken from September 12, 2015 –
January 19, 2016 at the LIGO Hanford and LIGO Liv-
ingston detectors. After taking into account data quality
cuts [39] and detector downtime, we analyzed a total of
48.16 days of Hanford-Livingston coincident data. The
data selection process was identical to that used in pre-
vious searches [40].

During Advanced LIGO’s first observing run, each
LIGO instrument was sensitive to sub-solar mass ultra-
compact binaries at extra-galactic distances. Figure 1
shows the maximum distance to which an equal-mass
compact binary merger with given component masses
would be visible at a signal-to-noise ratio of 8 in either
LIGO Hanford or LIGO Livingston.

The search was conducted using standard gravitational
wave analysis software [41–46]. Our search consisted of a
matched-filter stage that filtered a discrete bank of tem-
plates against the LIGO data. The peak SNR for each
template for each second was identified and recorded as a
trigger. Subsequently, a chi-squared test was performed
that checked the consistency of the trigger with a sig-
nal [42]. The triggers from each LIGO detector and grav-
itational wave template were combined and searched for
coincidences within 20 ms. Candidates that pass coinci-
dence were assigned a likelihood ratio, L, that accounts
for the relative probability that the candidates are signal
versus noise as a function of SNR, chi-squared, and time
delay and phase offset between detectors. Larger values
of L were deemed to be more signal-like. The rate at
which noise produced candidates with a given value of
L was computed via a Monte Carlo integral of the noise
derived from non-coincident triggers, which we define as
the false alarm rate of candidate signals.

Our discrete bank of 500 332 template waveforms [47]
conformed to the gravitational wave emission expected
from general relativity [48, 49]. We use the 3.5 post-
Newtonian order TaylorF2 waveform to model the inspi-
ral portion of the binary evolution, which is constructed
under the stationary phase approximation [49]. The Tay-

FIG. 1. Distance to which an optimally oriented and aligned
equal-mass ultracompact binary merger would produce at
least SNR 8 in each of the LIGO Livingston and LIGO Han-
ford detectors as a function of component mass, based on the
median sensitivity obtained from our analyzed data.

lorF2 waveform has been used in previous low-mass Ad-
vanced LIGO and Advanced Virgo searches. The bank
covered component masses in the detector frame between
0.19 – 2.0 M� with 97% fidelity. While we restrict our
analysis of the search results to the sub-solar region, we
have allowed for the possibility of high mass ratio sys-
tems. Our template bank assumed that each binary com-
ponent has negligible spin. Relaxing that assumption is a
direction for future work, but is a computationally chal-
lenging problem requiring resources well beyond those
used for this and previous LIGO analyses. We integrated
the template waveforms between 45–1024 Hz, with the
longest waveform lasting about 470 seconds. Advanced
LIGO is sensitive down to ∼ 15 Hz, but integrating from
that frequency would have been too computationally bur-
densome. Our choice to integrate from 45 Hz to 1024 Hz
recovered 93.0% of the total possible SNR that integra-
tion over the full band would have provided. Additional
details are described in [47].

No viable gravitational wave candidates were found.
Our loudest gravitational wave candidate was consistent
with noise and had a false alarm rate of 6.19 per year.

CONSTRAINT ON BINARY MERGER RATE

We constrained the binary merger rate in this mass re-
gion by considering nine monochromatic mass distribu-
tions with equal component masses and negligible spin.
We constructed sets of simulated signals with component
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FIG. 2. Constraints on the merger rate of equal-mass ultra-
compact binaries at the 9 masses considered. The gray re-
gion represents an exclusion at 90% confidence on the binary
merger rate in units of Gpc−3 yr−1. These limits are found
using the loudest event statistic formalism, as described in
section III and [50]. The bounds presented here are ∼ 3 or-
ders of magnitude stricter than those found in initial LIGO’s
search for sub-solar mass ultracompact objects [9, 10].

masses mi ∈ {0.2, 0.3, . . . , 1.0}M� distributed uniformly
in distance and uniformly on the sky. We injected 374 480
simulated signals into the LIGO data and conducted a
gravitational wave search with the same parameters as
described in section . We then calculated our detection
efficiency as a function of distance, εi(r). This allowed us
to compute the volume-time, 〈V T 〉, that was accessible
for our search via,

〈V T 〉i = T

∫
4πr2εi(r)dr, (1)

where T is 48.16 days. We then used the loudest event
statistic formalism [50] to compute an upper limit on the
binary merger rate in each mass bin to 90% confidence,

R90,i =
2.3

〈V T 〉i
. (2)

We report the upper limits on the binary merger rate
in Fig. 2. Several factors in our analysis could lead to
uncertainty in R90 at the 25% level, including LIGO cal-
ibration errors and Monte Carlo errors. However, these
errors are far smaller than potential systematic errors in
the models we will be considering in the next section, so
we do not attempt to further quantify them in this work.

CONSTRAINT ON PRIMORDIAL BLACK
HOLES AS DARK MATTER

For an assumed model of PBH binary formation, the
constraint on the binary merger rate places bounds on the
total fraction of dark matter made of primordial black
holes, f . These bounds are derived from the expected
event rate for a uniform distribution of monochromatic
PBHs with mass mi as considered above. The limits on f
are sensitive to the model of binary formation. Motivated
by previous LIGO searches [9] we follow a method origi-
nally proposed by [51, 52] and recently used to constrain
∼ 30M� PBH mergers by [29].

We assume an initial, early-universe, monochromatic
distribution of PBHs. As the universe expands, the en-
ergy density of a pair of black holes not too widely sep-
arated becomes larger than the background energy den-
sity. The pair decouples from the cosmic expansion and
can be prevented from prompt merger by the local tidal
field, determined primarily by a third black hole near-
est the pair. The initial separation of the pair and the
relative location of the primary perturber determine the
parameters of the initial binary. From those, the coa-
lescence time can be determined. Assuming a spatially
uniform initial distribution of black holes, the distribu-
tion of coalescence times for those black holes that form
binaries is

dP =
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where tc is a function of the mass of the PBHs and the
fraction of the dark matter they comprise:

tc =
3

170

c5

(Gmi)5/3
f7

(1 + zeq)4

(
8π

3H2
0ΩDM

)4/3

(4)

This expression is evaluated at the time today, t0, then
multiplied by nBH, the current average number density
of PBHs, to get the model event rate [29]:

Rmodel = nBH
dP

dt

∣∣∣∣
t=t0

. (5)

Given the measured event rate, R90,i, and a particular
mass, the above expression can be inverted to find a con-
straint on the fraction of dark matter in PBHs at that
mass. The results of this calculation using the measured
upper limits on the merger rate are shown in Fig. 3. A
discussion on how some assumptions of this model may
affect the constraints on f shown in Fig. 3, are discussed
in [47]. The non-detection of a stochastic background in
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FIG. 3. Constraints on the fraction of dark matter com-
posed of primordial black holes for monochromatic distri-
butions (f = ΩPBH/ΩDM). Shown in black are the results
for the nine mass bins considered in this search. For this
model of primordial black hole formation, LIGO finds con-
straints tighter than those of the MACHO collaboration [62]
for all mass bins considered and tighter than the EROS col-
laboration [63] for mi ∈ (0.7, 1.0)M�. The limits presented
here also improve upon other constraints at this mass [64].
The curves shown in this figure are digitizations of the orig-
inal results from [62, 63, 65, 66]. We use the Planck
“TT,TE,EE+lowP+lensing+ext” cosmology [67].

the first observing run of Advanced LIGO [53] also im-
plies an upper limit on the merger rate and therefore the
PBH abundance. In particular, it is shown that the non-
detection of a stochastic background yields constraints
that are about a factor of two weaker than the targeted
search [54–57].

These results are sensitive to the model of binary for-
mation as well as the mass distribution of PBHs. The
effects of initial clustering of PBHs is a current area of
research, though it appears that for the expected nar-
row mass distributions of PBHs this effect is small in
the mass range we consider [58–60]. While the results
presented here to not take into account other effects on
the binary parameters [61], they provide a conservative
estimate of the bounds.

CONCLUSION

We presented the first Advanced LIGO and Advanced
Virgo search for ultracompact binary mergers with com-
ponents below 1 M�. No viable gravitational wave can-

didates were found. Therefore, we were able to constrain
the binary merger rate for monochromatic mass functions
spanning from 0.2 – 1.0 M�. Using a well-studied model
from the literature [29, 51, 52], we constrained the abun-
dance of primordial black holes as a fraction of the total
dark matter for each of our nine monochromatic mass
functions considered.

This work was only the first step in constraints by
LIGO on new physics involving sub-solar mass ultra-
compact objects. The constraints presented in Fig. 2
(and consequently those that arise from the model of bi-
nary formation we consider shown in Fig. 3) may not
apply if the ultracompact binary components have non-
negligible spin since the waveforms used for signal recov-
ery were generated only for non-spinning binaries. Fu-
ture work may either quantify the extent to which the
present search could detect spinning components, or ex-
pand the template bank to include systems with spin.
Third, we should consider more general distributions of
primordial black hole masses; extended mass functions
allow for the possibility of unequal mass binaries, and
the effect of this imbalance on the predicted merger rate
has not been quantified. We also stress that our present
results do not rule out an extended mass function that
peaks below 0.2 M� and extends all the way to LIGO’s
currently detected systems at or above 30 M�. Each
model would have to be explicitly checked by producing
an expected binary merger rate density that could be in-
tegrated against Advanced LIGO and Advanced Virgo
search results. Extensions to more general distributions
have already been considered in the literature [68].

The first two areas of future work are computational
challenges. Lowering the minimum mass and including
spin effects in the waveform models could easily increase
the computational cost of searching for sub-solar mass ul-
tracompact objects by an order of magnitude each, which
would be beyond the capabilities of present LIGO data
grid resources.

Advanced LIGO and Advanced Virgo have not reached
their final design sensitivities. The distance to which
Advanced LIGO will be sensitive to the mergers of ultra-
compact binaries in this mass range should increase by a
factor of three over the next several years [69]. Further-
more, at least a factor of ten more data will be available
than what was analyzed in this work. These two facts
combined imply that the merger rate constraint should
improve by ' 2 orders of magnitude in the coming years.
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41Università di Perugia, I-06123 Perugia, Italy
42INFN, Sezione di Perugia, I-06123 Perugia, Italy
43Syracuse University, Syracuse, NY 13244, USA

44University of Minnesota, Minneapolis, MN 55455, USA
45SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom

46LIGO Hanford Observatory, Richland, WA 99352, USA
47Caltech CaRT, Pasadena, CA 91125, USA

48Wigner RCP, RMKI, H-1121 Budapest, Konkoly Thege Miklós út 29-33, Hungary
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