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Abstract

We describe directed searches for continuous gravitational waves (GWs) from 16 well-localized candidate neutron
stars, assuming none of the stars has a binary companion. The searches were directed toward 15 supernova
remnants and Fomalhautb, a directly imaged extrasolar planet candidate that has been suggested to be a nearby old
neutron star. Each search covered a broad band of frequencies and first and second time derivatives. After
coherently integrating spans of data from the first Advanced LIGO observing run of 3.5–53.7days per search,
applying data-based vetoes, and discounting known instrumental artifacts, we found no astrophysical signals. We
set upper limits on intrinsic GW strain as strict as 1×10−25, fiducial neutron star ellipticity as strict as 2×10−9,
and fiducial r-mode amplitude as strict as 3×10−8.

Key words: gravitational waves – ISM: supernova remnants – stars: neutron

1. Introduction

With the detections of several binary black hole mergers (Abbott
et al. 2016b, 2016c, 2017e, 2017f, 2017g) and one binary neutron
star merger (Abbott et al. 2017h) also seen in electromagnetic
waves (Abbott et al. 2017i), Advanced LIGO and Virgo have
spectacularly inaugurated the field of gravitational wave (GW)
astronomy. While the binary neutron star merger has had far-
reaching implications for our knowledge of neutron star matter
(Abbott et al. 2018b; De et al. 2018b), a continuous GW signal
could teach us even more—not just about bulk properties but about
internal magnetic fields, the extent and strength of crystalline
phases, and, potentially, other microphysics of extreme matter
(Owen 2009; Glampedakis & Gualtieri 2018).

Young isolated neutron stars are promising sources of
continuous GWs. The spin-downs of young pulsars are rapid
enough to include significant continuous GW emission, as shown
by the latest GW search for known pulsars (Abbott et al. 2017c,
2017d). Theoretical arguments suggest that r-modes (oscillations
dominated by the Coriolis force) might remain unstable and
detectable in neutron stars up to a few thousand yr old
(Owen 2010, and references therein). Most young supernova
remnants (SNRs) do not contain known pulsars (Green 2014). On
the other hand, many of these SNRs contain small pulsar wind
nebulae (PWNe), central compact objects (CCOs), or other well-
localized nonpulsing candidate neutron stars. Also, some of these
SNRs are young enough that a neutron star could not have been
kicked far, and thus the star can be considered well localized even
if it is not seen at all. A GW search directed at a single sky
position can significantly improve on the sensitivities of all-sky
surveys, even while needing to cover a wide band of possible GW
frequencies and first and second time derivatives due to a lack of
pulsations from the object (Wette et al. 2008). This makes
nonpulsing isolated neutron stars attractive targets for continuous
GW searches if they are well localized.

Directed GW searches for isolated neutron stars have been
published targeting SNRs (Abadie et al. 2010, 2011; Aasi et al.
2015; Sun et al. 2016; Zhu et al. 2016; Abbott et al. 2017b) and
promising locations, including the Galactic center (Abadie et al.
2011; Aasi et al. 2013; Abbott et al. 2017b) and the core of a
nearby globular cluster, where multibody interactions might
effectively rejuvenate some neutron stars’ continuous GW emission
(Abbott et al. 2017j). The only such search of data from advanced
interferometers so far (Abbott et al. 2017b) employed methods
from stochastic background searches, which, while quick to
implement, are not as sensitive as continuous wave search methods.

Here we present the first directed continuous wave searches for
isolated nonpulsing neutron stars in data from the first Advanced
LIGO observing run (O1). We used an extension of the coherent
data analysis pipeline used in Abadie et al. (2010) and

Aasi et al. (2015), to which this paper is a sequel. The improved
noise curve (with respect to initial LIGO and Virgo) means
that we can search more targets with sensitivity beating the
indirect upper limit on GW emission due to energy conservation
(Wette et al. 2008) based on the age of the neutron star (similar to
the spin-down limit for known pulsars). We include not only
more SNRs but also the directly imaged exoplanet candidate
Fomalhautb, which has been proposed to be an old nearby
neutron star (Neuhäuser et al. 2015)—close enough that it is an
attractive target in spite of being much older than the others. We
do not include SN1987A because it is so young that the possible
spin-down parameter space is too large to cover with a coherent
wideband search and reasonable computational cost.

2. Searches

2.1. Methods

These searches were based on the multi-interferometer
 -statistic (Jaranowski et al. 1998; Cutler & Schutz 2005).
The  -statistic accounts for the modulation of the signal due to
the daily rotation of the detectors by adding the outputs of
sinusoidal matched filters in quadrature. For these searches, the
frequency evolution of each filter in the reference frame of the
solar system barycenter was given by

f t f f t t f t t
1

2
¨ , 10 0

2= + - + -( ) ˙ ( ) ( ) ( )

where t0 is the beginning of the observation, the frequency
derivatives are evaluated at that time, and, in a slight abuse of
notation, we use a simple f for f (t0). Hence, these filters are
designed to detect neutron stars without binary companions whose
spin-down is not too fast (requiring third or higher frequency
derivatives) or too irregular (having significant timing noise or
glitches) during the observation. In stationary Gaussian noise, 2
is drawn from a χ2 distribution with four degrees of freedom,
which for loud signals makes the amplitude signal-to-noise ratio
roughly 2 . If a signal is present, the χ2 is noncentral.
We used data from LIGO O1 but none from Virgo because

that interferometer was down for upgrades during O1. At the
frequencies to which LIGO was most sensitive (about
100–300 Hz), the strain noise amplitude was about three to four
times lower than in the sixth LIGO science run (S6; Abbott et al.
2016a). However, there were many more spectral lines due to
instrumental artifacts than in S6, which complicated the analysis.
We used the calibration described in Abbott et al. (2017d),
which is an update of the first O1 calibration described in Abbott
et al. (2017a). Hence, as in Abbott et al. (2017d), our upper
limits on strain are uncertain by at least 14%. Like many other
continuous GW searches, ours used data in the form of short
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Fourier transforms (SFTs) of duration 1800 s, high-pass-filtered
and Tukey-windowed to reduce artifacts, recording only
frequencies up to 2 kHz.

While each search targeted a specific direction (R.A. and decl.),
each had to cover a broad band of frequencies and first and second
derivatives. That is, a bank of signal templates was required,
constructed to cover the parameter space f f f, , ¨( ˙ ) with sufficient
density (Whitbeck 2006; Wette et al. 2008). We chose coverage
such that the maximum loss of power signal-to-noise ratio due to
mismatch between the signal and the nearest template (Owen 1996;
Brady et al. 1998) was no worse than 20%, a common choice in
continuous GW analyses. Given the parameter choices described
below, this resulted in 1012–1013 templates for most searches,
with the CasA search getting more than 1014, since it was
allocated 10 times the computing cycles of the other searches.

All searches ran on the Atlas computing cluster at the
Max Planck Institute for Gravitational Physics (Albert
Einstein Institute) in Hanover, Germany, using the same
tag (S6SNRSearch) of the LALSuite software package
(LIGO Scientific Collaboration 2018) as in Aasi et al. (2015),
although the controlling scripts were upgraded. Most
searches used roughly 105 core hours (split into roughly
3× 104 batch jobs), and CasA used more than 106 (split into
roughly 3×105 jobs). The splitting into jobs was used in the
vetoes and other post-processing described in Section 2.4.
Post-processing for each search used at most of order 10% of
the core hours dedicated to the search. Several terabytes of
search results were written to disk.

2.2. Target List

Our choice of targets required that a search of the fixed
computational cost had to be sensitive enough to detect the
strongest continuous GW signal consistent with broad
conservation of energy considerations. As introduced by Wette

et al. (2008) for the CCO in SNR CasA, the strongest possible
signal based on the age a and distance D of the source,

h
D a

1.26 10
3.30 kpc 300 yr

, 20
age 24

1 2

= ´ - ⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )

is analogous to the spin-down limit for known pulsars and
indicates the strongest possible intrinsic strain produced by
an object whose unknown spin-down is entirely due to
GW emission and has been since birth. The fiducial parameters
(for Cas A) show that this limit can be high enough to be
interesting. The intrinsic strain h0 (Jaranowski et al. 1998)
characterizes the GW metric perturbation without reference to
any particular orientation or polarization and hence is typically
a factor of 2–3 greater than the strain response measured by the
interferometers. The indirect limit h0

age is slightly different for
r-mode emission (Owen 2010) than for the mass quadrupole
source tacitly assumed above and in most of the literature, but
we neglect this small difference. Due to uncertainties in the
neutron star mass and equation of state, h0

age is uncertain by of
order 50%, which we also neglect.
To choose directions to search, we started from the Green

catalog of SNRs (Green 2014). We picked X-ray point sources
(CCOs or candidate CCOs), small PWNe, and, in some cases,
relatively young SNRs, where any neutron star could not yet
have moved far. We selected only targets with age and distance
estimates so that we could evaluate h .0

age In some cases, there is
a wide range of estimates in the literature, leading to significant
differences in h .0

age In most cases, we used the most optimistic
estimates, yielding the highest h0

age but also the most difficult
search over the widest band of frequency and spin-down
parameters. In addition to this wide search using the optimistic
age and distance, we did a deep search using the most
pessimistic age and distance in cases where the strain

Table 1
Targeted Objects and Astronomical Parameters Used in Each Search

SNR Parameter Other Name R.A.+decl. D a
(G Name) Space (J2000) (kpc) (kyr)

1.9+0.3 L L 174846.9−271016 8.5 0.1
15.9+0.2 L L 181852.1−150214 8.5 0.54
18.9−1.1 L L 182913.1−125113 2 4.4
39.2−0.3 L 3C 396 190404.7+052712 6.2 3
65.7+1.2 L DA 495 195217.0+292553 1.5 20
93.3+6.9 L DA 530 205214.0+551722 1.7 5
111.7−2.1 L Cas A 232327.9+584842 3.3 0.3
189.1+3.0 Wide IC 443 061705.3+222127 1.5 3
189.1+3.0 Deep IC 443 061705.3+222127 1.5 20
266.2−1.2 Wide Vela Jr. 085201.4−461753 0.2 0.69
266.2−1.2 Deep Vela Jr. 085201.4−461753 0.9 5.1
291.0−0.1 L MSH 11−62 111148.6−603926 3.5 1.2
330.2+1.0 L L 160103.1−513354 5 1
347.3−0.5 L L 171328.3−394953 0.9 1.6
350.1−0.3 L L 172054.5−372652 4.5 0.6
353.6−0.7 L L 173203.3−344518 3.2 27
354.4+0.0 Wide L 173127.5−333412 5 0.1
354.4+0.0 Deep L 173127.5−333412 8 0.5

L Wide Fomalhaut b 225739.1−293720 0.011 316
L Deep Fomalhaut b 225739.1−293720 0.02 3000

Note.Values of distance D and age a are generally at the optimistic (nearby and young) end of the ranges given in the literature. For some objects, the range of
parameters is wide enough to justify a wide search for optimistic parameter values (first entry for that object in the table) and a deep search over more pessimistic
parameter values (second entry). See text for details and references.

7

The Astrophysical Journal, 875:122 (15pp), 2019 April 20 Abbott et al.



sensitivity would improve over the wide search by a factor of
roughly 2 .

The resulting targets and chosen parameters are shown in
Table 1. We now briefly summarize each target and the
provenance of the parameters used for it.

G1.9+0.3—Currently the youngest known SNR in the
galaxy (Reynolds et al. 2008). Several arguments favor it being
a TypeIa (Reynolds et al. 2008), which would leave no
neutron star behind, but this is not definite, and the remnant’s
youth makes it an interesting target on the chance that it is not a
TypeIa. We used the position of the center of the remnant from
the discovery paper (Reich et al. 1984). At maximum kick
velocity, any neutron star could have moved only a few
arcseconds, which is not an issue for our searches. The age and
distance shown are from the “rediscovery” paper (Reynolds
et al. 2008), though the latter is a nominal galactic center
distance.

G15.9+0.2—CCO discovered in Chandra data by Reynolds
et al. (2006). We used the lower limit on age and the galactic
center distance estimate from the same paper, though both
quantities may be significantly greater (Klochkov et al. 2016).

G18.9–1.1—Position of the Chandra point source discov-
ered by Tüllmann et al. (2010). Age and distance estimates are
from the previous ROSAT and ASCA observations of Harrus
et al. (2004).

G39.2–0.3—Also known as 3C396. The PWN and
embedded point source were found by Olbert et al. (2003) in
Chandra data, the point source being localized to within 2″ in
spite of the PWN. Su et al. (2011) estimated the age and
distance, the latter based on the tangent point of the spiral arm.

G65.7+1.2—Also known as DA495. Arzoumanian et al.
(2008) found the Chandra point source in the PWN. The
quoted distance (Kothes et al. 2004) and minimum age (Kothes
et al. 2008) are derived slightly inconsistently due to assumed

distances to the galactic center. We did not attempt to resolve
the inconsistency, though we did choose the distance from the
former paper, since it uses the more commonly accepted
galactic center distance. The latter paper (and others) also argue
that the distance could be several times higher.
G93.3+6.9—Also known as DA530. The position and age

are from Jiang et al. (2007), and the distance estimate is from
Foster & Routledge (2003). Jiang et al. (2007) found no
Chandra point source, but the X-ray intensity of the faint
candidate PWN falls off on a scale of 6″, which qualifies as a
point source for our purposes.
G111.7–2.1—Also known as CasA. The position of

the CCO is from the Chandra “first light” observation
(Tananbaum 1999), the distance is from Reed et al. (1995),
and the age is from Fesen et al. (2006).
G189.1+3.0—Also known as IC443. The position is that of

the Chandra point source found by Olbert et al. (2001)
embedded in the PWN. This object is often studied, with a wide
range of distance and age estimates in the literature. We used
Petre et al. (1988) for an optimistic age estimate. Our
pessimistic age estimate is not quite the most extreme in the
literature but rather a best fit for a pessimistic scenario from
relatively recent modeling (Swartz et al. 2015). We did not use
the most optimistic distance quoted but rather the assumed
association with the IGem cluster from Fesen & Kirshner
(1980), which is common in the literature.
G266.2–1.2—Also known as VelaJr. The position is that of

the CCO found by Pavlov et al. (2001). We used Iyudin et al.
(1998) for the most optimistic age and distance estimates. The
pessimistic age estimate is from Allen et al. (2015), which was
published too recently for the previous paper in this series (Aasi
et al. 2015). Allen et al. (2015) also discussed the possible
association of several surrounding objects with the nearer
concentration of the Vela Molecular Ridge at a spread of

Table 2
Derived Parameters Used in Each Search

SNR Parameter fmin fmax Tspan Tspan Start of Span H1 L1 Duty h0
age

(G Name) Space (Hz) (Hz) (s) (days) (UTC, 2015) SFTs SFTs Factor (×10−25)

1.9+0.3 L 38 1332 336,307 3.9 Nov 30 03:53:08 156 141 0.79 8.4
15.9+0.2 L 72 538 887,744 10.3 Nov 25 13:39:16 369 304 0.68 3.6
18.9−1.1 L 45 987 1,133,255 13.1 Nov 21 00:00:40 462 346 0.64 5.4
39.2−0.3 L 98 295 1,965,780 22.8 Nov 28 00:47:19 641 647 0.59 2.1
65.7+1.2 L 53 794 1,932,067 22.4 Dec 14 04:52:40 774 555 0.62 3.4
93.3+6.9 L 41 1215 1,051,764 12.2 Nov 25 12:39:16 385 354 0.63 5.9
111.7−2.1 L 31 1998 775,855 9.0 Nov 26 20:58:03 317 294 0.71 12.6
189.1+3.0 Wide 37 1547 803,419 9.3 Nov 26 12:43:17 331 296 0.70 8.7
189.1+3.0 Deep 50 805 1,933,867 22.4 Dec 14 04:52:40 775 555 0.62 3.4
266.2−1.2 Wide 19 1998 462,616 5.4 Nov 28 02:17:19 191 213 0.79 136
266.2−1.2 Deep 32 1998 799,819 9.3 Nov 26 12:43:17 329 294 0.70 11.2
291.0−0.1 L 42 987 788,409 9.1 Nov 26 18:28:03 322 295 0.70 5.9
330.2+1.0 L 53 731 851,744 9.9 Nov 25 23:39:16 349 302 0.69 4.5
347.3−0.5 L 27 1998 578,325 6.7 Nov 28 05:17:19 237 253 0.76 19.9
350.1−0.3 L 42 1038 637,577 7.4 Nov 28 02:17:19 257 271 0.75 6.5
353.6−0.7 L 132 275 3,762,662 43.5 Nov 21 02:30:40 1339 1078 0.58 1.4
354.4+0.0 Wide 36 1677 301,250 3.5 Nov 28 02:17:19 125 152 0.83 14.4
354.4+0.0 Deep 62 635 790,209 9.1 Nov 26 17:58:03 323 295 0.70 4.0
Fomalhaut b Wide 19 1998 2,492,267 28.8 Sep 18 20:08:24 955 799 0.63 116
Fomalhaut b Deep 22 1998 4,639,371 53.7 Nov 19 23:13:10 1626 1295 0.57 20.7

Note.The span reported is the final one, including the possible extension to the end of an SFT in progress at the end of the originally requested span. The duty factor
reported is total SFT time divided by Tspan divided by the number of interferometers (two). As in the previous table, for objects with two entries, the first is a wide
search (optimistic parameter estimates), and the second is a deep search (pessimistic parameter estimates). In some cases, the frequency ranges for wide and deep
searches are nearly identical, but the ranges of spin-down parameters (described in the text) are not.
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distances providing our pessimistic distance estimate (Liseau
et al. 1992) and rendering the more pessimistic ones unlikely.

G291.0–0.1—Also known as MSH11−62. The position
and age are from the Chandra point-source discovery paper
(Slane et al. 2012). The distance is from Moffett et al. (2001).
The age and distance are derived in slightly inconsistent ways,
but rather than attempt to repeat the calculations, we used the
numbers quoted in the literature.

G330.2+1.0—CCO discovered by Park et al. (2006) in
Chandra data with subarcsecond position accuracy. We used a
distance estimate from radio observations (McClure-Griffiths
et al. 2001) and an age estimate from the X-ray spectrum (Park
et al. 2009).

G347.3–0.5—Subarcsecond position obtained from archival
Chandra data (Mignani et al. 2008), although the CCO had
been identified in ASCA data earlier (Slane et al. 1999). We
used the distance from Cassam-Chenaï et al. (2004) and the age
from the proposed identification with a possible SN393 (Wang
et al. 1997). Although this identification may be problematic,
given the inferred properties of such a supernova, other age
estimates are comparable (Fesen et al. 2012).

G350.1–0.3—Position and distance estimates are from the
discovery paper of the CCO candidate by Gaensler et al. (2008).
The age is from Chandra observations (Lovchinsky et al. 2011).

G353.6–0.7—Most likely of several candidate CCOs
identified by Halpern & Gotthelf (2010). The age estimate
(Tian et al. 2008) makes this CCO candidate the only one that

is almost certainly too old for r-modes, although we still set
upper limits on r-mode amplitude. The distance estimate is also
from Tian et al. (2008). We used the first-observation position
contained in the name of the candidate CCO rather than the
slightly better Chandra position reported by Halpern &
Gotthelf (2010); the roughly 1″ difference is not significant
for the GW integration times used in this paper.
G354.4+0.0—All parameters from the discovery paper (Roy

& Pal 2013). No associated point source has been detected yet,
but if the remnant’s age is correct, any young neutron star
should be within roughly 20″ of the center (whose location we
used for the GW search). Such a position error is not significant
for the integration times used here.
Fomalhaut b—Considered an extrasolar planet candidate since

its discovery in a visible-light image (Kalas et al. 2008). Based on
a lack of infrared detection, it has been proposed to be a
serendipitous discovery of a nearby neutron star (Neuhäuser et al.
2015). Parameters are taken from Neuhäuser et al. (2015), with the
maximum distance an attempt to balance the uncertainties in the
scenarios discussed there. After this search was run, Poppenhaeger
et al. (2017) searched for and did not find the object with Chandra.
If the object is a neutron star, this somewhat reduces the possible
distance and significantly increases the minimum age.

2.3. Parameter Space

After sky position, the key parameters for each search were
the GW frequency band ( fmin, fmax) and time span of

Figure 1. Direct observational 95% confidence upper limits on intrinsic strain as a function of frequency in 1 Hz bands for four searches. The horizontal line indicates
the indirect limit from energy conservation. Scattered points on a higher line indicate 1 Hz bands where no upper limit was set due to data quality issues. All figures
trace a slightly distorted version of the noise curve, with G39.2−0.3 appearing flat because it covers only the bottom of the curve.
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integration Tspan. As in Aasi et al. (2015), these parameters
were determined in an iterative process intended to produce a
search more sensitive than h0

age over as wide a frequency band
as possible for a fixed computational cost. Due to Doppler
shifts and several features of the analysis, we capped the
maximum frequency at 1998 Hz rather than the 2 kHz in the
SFTs. The cost, approximated as proportional to a f T ,1.1

max
2.2

span
4-

was kept comparable to that of Abadie et al. (2010) for most
targets, but CasA was allocated 10 times as many computa-
tional cycles due to its status as the youngest known neutron
star in the galaxy. Due to some inaccuracy in the power-law fit
used for computational cost as a function of the key parameters,
the computational cost and sensitivity varied by up to
20%–30% from these goals. For a given frequency f, as in
Abadie et al. (2010) and Aasi et al. (2015), we searched

f

a
f

f
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These ranges and the computational cost fixed fmin, fmax, and
Tspan for each search.

We then chose the start time of each search by the same
method as Abadie et al. (2010) and Aasi et al. (2015),
minimizing the harmonic mean of the strain noise power

spectral density during the span over the frequency band
f f, .min max( ) Neglecting the small effect of the decl. of the
target, this corresponds to maximizing the search sensitivity for
a fixed Tspan, which is roughly a fixed computational cost.
Hence, the algorithm chose spans when both interferometers
had good noise performance and little downtime, usually later
in O1. The resulting search parameters are described in Table 2.
We applied the same consistency checks as in previous

searches. For each search, we checked using the parameter
space metric (Whitbeck 2006; Wette et al. 2008) that neglect of
the third frequency derivative in Equation (1) did not
significantly reduce 2 , even in the worst case (G1.9+0.3).
We also checked that the position uncertainties of the targets
also did not significantly reduce 2 . A simple approximation
(Whitbeck 2006) suggests that the sky resolution of these
searches is an arcminute or two at 2 kHz and a 10day
integration, and it scales inversely with fmax and Tspan. We spot-
checked this with injection studies and found it to be accurate.
Given the integration times in Table 2, even the worst position
uncertainty (20″ for G354.4+0.0) is well within bounds for a
single directed search. Finally, we checked that the standard
1800 s SFT duration did not diminish sensitivity to signals with
ḟ high enough that the frequency could move to another SFT
frequency bin over the duration of the SFT. This effect was
negligible, except for SNRG1.9+0.3, where it could reduce
the sensitivity (raise the detectable h0) by of order 10% at
frequencies above 1 kHz.

Figure 2. Same as Figure 1 for four more searches.
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2.4. Post-processing

Each search recorded a list of candidates with high values of
2 , which was then pared using two automated vetoes
designed for instrumental artifacts, as used in Abadie et al.
(2010) and Aasi et al. (2015). The “Fscan veto” used a
normalized spectrogram formed from the SFTs to detect and
veto spectral lines and nonstationary noise. Its implementation
and parameters were the same as in Aasi et al. (2015), except
that we fixed a bug in the old code whereby the Doppler shift
due to the Earth’s orbital motion was not applied. (This bug
allowed more noise lines to pass the automated vetoes and
require manual scrutiny but had a negligible effect on the false-
dismissal rate.) The “interferometer consistency veto” ruled
out candidates for which a single-interferometer 2 exceeded
the two-interferometer 2 for the same event, indicating a
disturbance present in only one interferometer. It also vetoed
entire search jobs if the number of candidates vetoed was
high enough. This veto was also applied in the same way as in
Aasi et al. (2015), except that the threshold for vetoing an
entire search job was 5% of the templates in that job. Unlike
in previous papers in this series, we also vetoed a list of
known instrumental spectral lines compiled from studies of the
interferometers (Covas et al. 2018).

After these steps, including fixing the Doppler bug, the
searches still had almost 2000 jobs containing nonvetoed
outliers above the 95% confidence level for Gaussian noise. All
of these jobs were examined by hand. As in Aasi et al. (2015),
two plots were made and inspected for each job. (See Figure 1

of that paper for illustrative examples.) In the case of a real or
injected signal, the first plot, of 2 versusfrequency for all
loud candidates in the job, would show a δ-function-like spike
even for very loud signals, as verified by studying hardware
injections. The candidates generally showed broad bands of
high noise, occupying a fraction of order unity of the search job
frequency band, except for a handful that occupied a few
percent of the search band. These few candidates, which were
still of order 100 times broader than a real signal would be,
were verified to be hardware-injected test signals detectable
in the wrong sky location due to their huge amplitudes. The
second plot for each search job containing candidates was a
semilog histogram of loud candidates, which, on inspection,
typically showed the tail of a χ2(4) distribution with the
wrong amplitude, indicative of a broadband disturbance in
the noise spectrum. See Aasi et al. (2015) for examples and
further details.
No candidates survived inspection of these plots; therefore,

we conclude that no astrophysical signal was detected.

3. Upper Limits

Our method of setting upper limits was almost the same as in
previous papers (Abadie et al. 2010; Aasi et al. 2015). In each
1 Hz band searched, we estimated the value of h0 that would be
detected 95% of the time by our search (assuming random
variation of other signal parameters, such as the inclination of
the star’s rotation axis to the line of sight) at a louder value than
the loudest 2 actually recorded by the search in that band. We

Figure 3. Same as Figure 1 for four more searches.
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made an initial estimate from a semi-analytic integration of the
expected 2 distribution. Then we injected simulated signals
with different values of h0 near this value to refine the location
of the 95% confidence (5% false-dismissal) threshold. We
reduced the number of injections per band to 1000 (from 6000
in previous papers) due to the computational cost of setting
upper limits on wider bands.

For each search, we pared the list of upper limits on h0
versus frequency. We dropped bands where the injections
indicated that the false-dismissal rate was more than 5% and
±1 Hz bands around the harmonics of the 60 Hz power mains
up to 300 Hz.

The resulting upper limits on h0, in 1 Hz frequency bands,
are plotted in Figures 1–5. Each curve has roughly the same
shape as the amplitude spectral density of the strain noise.
The line of dots near the top of each plot corresponds to
bands where no upper limit was set. Some features, such as
the “violin modes” of the interferometer test mass suspension
(roughly 500 Hz and harmonics), are evident. The horizontal
line in each plot is h ,0

age the strain the search was intended to
beat. In some cases, the estimate of sensitivity made before
performing the search was wrong by of order 10%, so the
upper limits (lower dots) do not always lie below the line.

Upper limits on h0 can be converted to upper limits on
fiducial neutron star ellipticity I I Ixx yy zz = -∣ ∣ (where Iab is

the moment of inertia) using (e.g., Wette et al. 2008)
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This number assumes Izz=1045 g cm2. Uncertainties in the
mass, radius, and neutron star equation of state make the
conversion from h0 to ò uncertain by a factor of 2 or more. This
fiducial ellipticity can be converted to the true shape of the star
(Johnson-McDaniel 2013) or other quantities (Owen 2010). We
plot upper limits on ò for a selection of searches in the left panel
of Figure 6. We do not plot the indirect limits on ò and α

derived from h0
age, since they are close to the direct upper limits

on the scale of the plot. We do not plot the remaining searches
because their upper limits are close to those of the searches
plotted. The great differences between curves are mainly due to
the distances to the sources; hence, Fomalhautb has the best
upper limits, of order 10−9 at high frequencies.
Upper limits on h0 can be converted to the common r-mode

amplitude parameter α (Lindblom et al. 1998) via (Owen 2010)
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Figure 4. Same as Figure 1 for four more searches.
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This number assumes a fiducial set of stellar parameters
described in Owen (2010) and is uncertain by a factor of up to
about 3, depending on the neutron star mass and equation of
state. We plot upper limits on α for a selection of searches in
the right panel of Figure 6. Again, the differences between
curves are mainly due to the source distances. The best upper
limits—apart from Fomalhautb, which is almost certainly too
old for active r-modes—are of order 10−6 at high frequencies
for VelaJr.

4. Discussion

These are the first directed searches of Advanced LIGO data
using continuous wave analysis methods. These searches have
improved on previous directed searches by covering wider
parameter ranges and more targets and setting better upper
limits on targets searched previously. Our upper limits on h0
approach 2×10−25 for many targets and 1×10−25 for one
target—about a factor of 3 improvement on Aasi et al. (2015),
due mainly to the improvement in the detectors. Also, our

Figure 5. Same as Figure 1 for four more searches.

Figure 6. Upper limits on fiducial ellipticity (left panel) and r-mode amplitude (right panel) for a representative sample of searches.
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upper limits beat the indirect limit h0
age over bands of 1–2 kHz

for more targets than were ever published before. (Searches for
some of these targets in less sensitive S6 data for the purpose
of testing code were described in an unpublished thesis;
Idrisy 2015.) As with previous data runs, we improved on the
sensitivity of all-sky wideband searches (Abbott et al. 2018a)
but did not match the sensitivity of searches for known pulsars
with full timing solutions (Abbott et al. 2017d). As before, the
directed searches described here also have the caveats that there
might be no neutron star present in some cases, any neutron
star might be spinning too slowly to be detected, and a neutron
star spinning at a detectable frequency might glitch. The latter
phenomenon in a CCO is now an observation (Gotthelf &
Halpern 2018) rather than a surmise and would somewhat
reduce the sensitivity of these searches (Ashton et al. 2017).
Even with some longer integration times here, timing noise is
not an issue unless these objects are orders of magnitude noisier
than known pulsars (Ashton et al. 2015).

Most of our upper limits on ò and α are competitive with the
largest numbers predicted by theory. The maximum ò for
“mountains” supported by elastic stresses of normal neutron
star matter is probably 10−5

–10−6 (Horowitz & Kadau 2009;
Johnson-McDaniel & Owen 2013; Baiko & Chugunov 2018),
and for many of our searches, upper limits are in this region
over hundreds of Hz. The maximum α (nonlinear saturation
amplitude) for r-modes is probably of order 10−3 (Bondarescu
et al. 2009), and for many of our searches, upper limits beat this
over hundreds of Hz. Mountains supported by an internal
magnetic field can produce ò of order 10−4 (B/1015 G)2, where
B is the poloidal part of the field (e.g., Ciolfi & Rezzolla 2013).
Since, unlike elastic mountains, magnetic mountains are likely
to be within about an order of magnitude of this limit for a
given internal field, depending on its configuration, our upper
limits on ò translate into rough limits on the internal magnetic
field if a neutron star is present and spinning rapidly enough to
emit GWs in band.

More data from Advanced LIGO and Advanced Virgo are
now available, with more live time and lower noise amplitude
than before. The detectable values of intrinsic strain, ellipticity,
and r-mode amplitude are proportional to the noise amplitude
and the inverse square root of the live time. This makes more
targets feasible for directed searches at greater sensitivity,
increasing the chances of a detection of continuous GWs. Such
searches will be done in the near future.
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