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Abstract

We present a multi-messenger measurement of the Hubble constant H0 using the binary–black-hole merger
GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES).
The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer
Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift
information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack
bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble
diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth
and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole
merger. Our analysis results in H 75 km s Mpc0 32

40 1 1= -
+ - - , which is consistent with both SN Ia and cosmic

microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of
the uniform prior range [20, 140] km s−1 Mpc−1, and it depends on the assumed prior range. If we take a broader
prior of [10, 220] kms−1Mpc−1, we find H 78 km s Mpc0 24

96 1 1= -
+ - - (57% of the prior range). Although a weak

constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase
in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved
constraints on H0.

Key words: catalogs – cosmology: observations – gravitational waves – surveys

1. Introduction

Unlike most extragalactic distance observables, mergers of
neutron star and black hole binary systems are absolute distance
indicators. Often referred to as “standard sirens,” they emit
gravitational waves (GWs) from which the luminosity distance
can be inferred without relying on any calibration with respect to
another source: the rate of change in frequency gives the system’s
size and thus the intrinsic amplitude, which is compared against
the observed signal amplitude to obtain the distance to the source.
If redshifts are associated with those sirens (in the simplest case,
the host galaxy is identified and its redshift is obtained via
spectroscopic follow up), a measurement of the present rate of
expansion of the universe H0 can be achieved via the distance–
redshift relation. The use of GW sources as cosmological probes
was first proposed by Schutz (1986), and recently revisited in
several works (e.g., Holz & Hughes 2005).

For dark energy research, the possibility of measuring H0

directly and independently from other methods is of great interest.
Local measurements obtained from SN Ia and other distance
indicators, as well as the predicted value inferred from the cosmic
microwave background (CMB) at z∼1100, have achieved
remarkable precision of 1%–2.5% (e.g., Planck Collaboration
et al. 2018; Riess et al. 2018). They disagree, however, by more
than 3σ and interpreting this tension as evidence for beyond-
ΛCDM dark energy or new physics at the early universe requires
new measurements of great precision and accuracy (Freed-
man 2017; Mörtsell & Dhawan 2018). Those measurements are
one of the greatest challenges faced by current experiments in
cosmology because the observables are subject to correlated
systematic effects arising from their complex astrophysics. As
estimates become more precise, this challenge becomes more
severe and the need for novel independent methods becomes more
pressing. Those methods, however, are few and hard to come by.
One possibility is standard sirens, which remained elusive for
almost 30 yr, until the detection of the first GW event
(GW150914; Abbott et al. 2016). The first standard siren-based
H0 measurement (Abbott et al. 2017a) came with the discovery of
the binary–neutron-star (BNS) merger GW170817 (Abbott et al.
2017) and its associated electromagnetic counterpart (Arcavi et al.
2017; Coulter et al. 2017; LIGO Scientific Collaboration
et al. 2017; Lipunov et al. 2017; Soares-Santos et al. 2017; Tanvir
et al. 2017; Valenti et al. 2017). Several studies have developed

methodologies to infer cosmological parameters from standard
sirens and establish their constraining power (Schutz 1986; Holz &
Hughes 2005; MacLeod & Hogan 2008; Nissanke et al.
2010, 2013; Del Pozzo 2012; Nishizawa 2017; Chen et al.
2018; Feeney et al. 2019; Mortlock et al. 2018; Vitale &
Chen 2018). Chen et al. (2018) predicted that we will be able to
constrain H0 with 2% precision within 5 yr with standard sirens
detected by the Laser Interferometer Gravitational-Wave Observa-
tory (LIGO)/Virgo, while Nair et al. (2018) predicted a ∼7%
measurement with just 25 binary–black-hole (BBH) events from
the Einstein telescope.
Anticipating that the LIGO/Virgo Collaboration (LVC)

network of GW detectors would eventually achieve sensitivity
sufficient to enable standard siren-based measurements, the
Dark Energy Survey (DES) collaboration and external
collaborators launched in 2015 the DES gravitational waves
(DESGW) program. DESGW uses the Dark Energy Camera
(DECam) to search for optical emission associated with LVC-
detected mergers and pursues cosmological measurements with
standard sirens. In particular, the multi-messenger shared
discovery of the neutron-star merger GW170817, and of its
optical kilonova, resulted in a measurement of H0 (Abbott et al.
2017a) that inaugurated the era of siren-based cosmology. We
have also performed the most comprehensive searches for
optical emission to black hole events, including GW150914
(Soares-Santos et al. 2016), GW151226 (Cowperthwaite et al.
2016), and GW170814 (Doctor et al. 2018). These events are
expected to be dark, although the possibility of optical emission
has yet to be observationally excluded.
Dark sirens can also be used for cosmology using a statistical

method, as first proposed in Schutz (1986). Provided a catalog
of potential host galaxies within the event localization region,
their redshifts will contribute in a probabilistic way to the
measurement of H0, depending on the galaxies’ distance and
sky position. This approach has been developed within a
Bayesian framework by Del Pozzo (2012) and Chen et al.
(2018) and implemented in Fishbach et al. (2019) using
GW170817, which produced results consistent with the first
measurement (Abbott et al. 2017a) where the identified host
galaxy, NGC 4993 (e.g., Palmese et al. 2017), was used.
Eventually, a large sample of events will enable precise
cosmological measurements using the dark siren approach.
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In this work, we measure H0 using the GW event
GW170814 (Abbott et al. 2017b) as a dark siren. GW170814
resulted from the inspiral and merger of a BBH system at a
luminosity distance of 540 Mpc210

130
-
+ (median value with 90%

credible interval). The masses of the black holes were 30.5 3.0
5.7

-
+

and M25.3 4.2
2.8

-
+

, respectively. GW170814 is the first BBH
detected by a triple network (including LIGO Hanford and
Livingston, plus Virgo), and it has the smallest localization
volume of any of the BBH events detected by LVC thus far.
Therefore, the number of potential host galaxies is lower
compared to other events, making GW170814 the most
appropriate event for this measurement. Additionally, the event
localization region falls within the DES footprint, making DES
galaxy catalogs a prime sample for measurement of H0. With
this one event, our goal is to provide a proof of principle
measurement, addressing the challenges that are specific to the
dark siren method, and establishing its potential to yield
precision cosmology results in the near future.

A key component of the measurement is crafting the
appropriate galaxy catalog: completeness, as well as precise and
accurate photometric redshifts (photo-zʼs), throughout the entire
volume probed are required. The overlap of GW170814ʼs area
with DES allows us to employ galaxy catalogs produced from the

first three years of the survey (DES Y3; Abbott et al. 2018). This
first dark siren measurement is a step toward incorporating this
new cosmological probe into the portfolio of cosmic surveys for
dark energy.
A detailed description of the data used in this analysis is

provided in Section 2, followed by a description of our
implementation of the method in Section 3. We present our results
and discussion in Section 4, and our conclusions in Section 5.
Throughout this Letter we assume a flat ΛCDM cosmology with
Ωm=0.3 and H0 values in the 20–140kms−1Mpc−1 range. All
quoted error bars represent the 68% confidence level (CL), unless
otherwise stated.

2. Data

2.1. The LVC Sky Map

The sky map used in this work is the publicly available
LALInference map (LIGO Scientific Collaboration &
Virgo Collaboration 2017),230 provided in HEALPIX (Górski
et al. 2005) pixels. The luminosity distance probability
distribution is approximated with a Gaussian in each pixel.

Figure 1. Left: stellar mass distribution of the DES galaxies used in this analysis (color map) and the GW170814 localization region at 50% and 90% CL (white
contours). The region in redshift space is valid for the prior range 20<H0<140kms−1Mpc−1. The stellar mass map has been smoothed with a Gaussian filter of
width 0°. 3. The bottom panel shows the galaxies’ stellar mass distribution in R.A. and redshift, projected over the decl. Right: distributions of the DES galaxy redshifts
within the region of interest (top) and the luminosity distance in HEALPIX pixels from the LVC distance likelihood, as given in the sky map (bottom). The histograms
are obtained from a Monte-Carlo (MC) sampling the galaxies’ redshift probability distribution function (PDF) and the luminosity distance likelihood in each pixel.
The redshift distribution has been subtracted by a uniform distribution in comoving volume dN dz com( ) , obtained assuming H0=70kms−1Mpc−1, and containing
the same total number of galaxies to highlight the overdensity of galaxies in the region.

230 https://dcc.ligo.org/LIGO-T1700453/public
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The region of interest, enclosing 90% of the localization
probability, is 61.66 deg2. The projected sky map and the
distribution of luminosity distance mean values from the LVC
distance likelihood in each pixel within the region of interest
are shown in Figure 1. The probability peak is located at R.A.,
decl.=(47°.523, −44°.856). At the peak location, the lumin-
osity distance is 504.7Mpc and the Gaussian width is
91.9 Mpc. Using the limiting values of our H0 prior range
([20,140] km s−1 Mpc−1) we can convert the 90% and 99.7%
distance range into a redshift range (0.02< z< 0.26 and
z< 0.3, respectively) for this analysis.

2.2. The DES Galaxy Catalog

The DES231 (The Dark Energy Survey Collaboration 2005;
Dark Energy Survey Collaboration et al. 2016) is an optical–
near-infrared survey that images 5000 deg2 of the South
Galactic Cap in the grizY bands. The survey is being carried out
using a ∼3 deg2 charge-coupled device (CCD) camera (the
DECam, see Flaugher et al. 2015) mounted on the Blanco 4 m
telescope at the Cerro Tololo Inter-American Observatory
(CTIO) in Chile. The data used here are from the first 3 yr of
observations (2013 September–2016 February; Abbott et al.
2018).

The DES Data Management (DESDM) pipeline was used for
data reduction (Morganson et al. 2018). The process includes
calibration of the single-epoch images, which are co-added
after background subtraction and then cut into tiles. The source
catalog was created using SOURCE EXTRACTOR (SEXTRAC-
TOR; Bertin & Arnouts 1996) to detect objects on the riz co-
added images. The median 10σ limiting magnitudes of Y3 data
for galaxies are g=24.33, r=24.08, i=23.44, z=22.69,
and Y=21.44 mag (Abbott et al. 2018). The photometry used
in this work is part of a value-added Y3 catalog not released
with the first data release (DR1), and is the result of the Multi-
Object Fitting (MOF) pipeline that uses the ngmix code.232

Following a procedure similar to Drlica-Wagner et al. (2017)
for Year 1 data, the DES collaboration made further selections
to produce a high-quality object catalog called the Y3 “gold”
catalog. For this sample, redshifts have been computed using
the Directional Neighborhood Fitting (DNF; De Vicente et al.
2016), and they are not included in DR1.

The DNF method applied to Y3 data provides redshift
information for each galaxy in the form of a probability
distribution function (PDF), from which a mean redshift, and
half of the central 68th percentile width, are computed. The
width of the PDF can be over or underestimated due to the
sampling of the training set and algorithmic details of DNF.
This issue is particularly relevant for the redshift range used in
this work, which is low compared to that exploited in weak
lensing and large-scale structure cosmology, for which the
DNF method was optimized. We find that the typical
uncertainty below redshift z∼0.1 is underestimated by a
factor of 10 when compared to the typical scatter found for the
subset of the galaxies with available spectroscopic redshifts
(where the standard deviation is σ0.015). Thus, we add a
minimum uncertainty of 0.015 for these low-z galaxies. At
0.1<z<0.3, the uncertainty is well behaved and the average
value follows z z0.013 1z

3s +¯ ( ) ( ) , as we find using an
empirical fit.

We produce alternative photo-z estimates with another
machine-learning code, ANNZ2 (Sadeh et al. 2016). This allows
us to test the impact of the correction applied to the DNF errors
on the posterior of the Hubble constant. Photo-z with ANNZ2
have previously been validated for cosmological analyses using
DES Science Verification data (Abbott et al. 2016; Bonnett
et al. 2016; Leistedt et al. 2016) and for the Kilo-Degree
Survey (KiDS; Bilicki et al. 2018), and are produced as part of
the DES photo-z pipeline (Gschwend et al. 2018). In particular,
it provides error estimates through a k-nearest neighbor (kNN)
method, and dedicated redshifts for the purposes of this
analysis. We additionally employ a reweighting technique
(Lima et al. 2008) specifically for our galaxy sample to further
tune our redshifts. We run ANNZ2 in randomized regression
mode with 50 Boosted Decision Trees, using a spectroscopic
sample of 245,458 matching Y3 galaxies out to redshift z1,
randomly split into subsamples for training, testing, and
validation. The training and the reweighting use griz MOF
magnitudes. We find that the typical error roughly follows
∼0.02(1+ z)3 in the redshift range of interest. The two
algorithms, DNF and ANNz2, gave similar results; see
Section 4.
These redshifts, together with publicly available spectro-

scopic redshifts from 2dF, 6dF, and SPT-GMOS (Colless et al.
2001; Jones et al. 2009; Bayliss et al. 2016) and the DES MOF
photometry, are used to estimate galaxy properties (including
stellar mass and absolute magnitude) of this sample. This is
achieved through a broadband spectral energy distribution
(SED) fitting of galaxy magnitudes with LEPHARE (Arnouts
et al. 1999, Ilbert et al. 2006). Estimates of the galaxy
properties used here from DES data alone have been tested and
studied in several DES works (Palmese et al. 2016; Etherington
et al. 2017; Palmese et al. 2019). We add a 0.05 systematic
uncertainty in quadrature to the magnitudes, to account for
systematic uncertainties in magnitude estimation and model
variance.233 The simple stellar population templates used for
the fitting are Bruzual & Charlot (2003), with three metallicities
(0.2 Ze, Ze and 2.5 Ze), a Chabrier (2003) initial mass function
and a Milky Way (Allen 1976) extinction law with five
different values between 0 and 0.5 for the E(B− V ) reddening.
The star formation history chosen is exponentially declining as
e t t- with τ=0.1, 0.3, 1, 2, 3, 5, 10, 15, and 30 Gyr.

The source list of the Y3 gold catalog is 95% complete for
galaxies within our apparent magnitude limit, r<23.35
(Abbott et al. 2018). This value is computed through the
recovery rate of sources from the deeper Canada-France-
Hawaii Telescope Lensing Survey (CFHTLenS; Erben et al.
2013), and thus includes the correct distribution of surface
brightnesses. Nevertheless, extended, low surface brightness
galaxies near our flux limit may be preferentially missed by the
detection pipeline. We therefore provide an approximate
completeness of sources throughout the redshift range of
interest. Using DNF mean redshifts, we convert the source
completeness to r<23.35 from Abbott et al. (2018, their
Figure 12) into a completeness in redshift intervals,Δz=0.02.
By taking the peak of the magnitude distribution in each bin as
roughly our observed magnitude limit at that redshift, we find
our sample is >93% complete across the range 0<z<0.26.
We further determined that the fraction of low-redshift,

231 www.darkenergysurvey.org
232 https://github.com/esheldon/ngmix

233 This is a regularization to compensate for the synthetic model set grid and
the fact that many SED fitting codes do not include a model error function. The
value chosen is based on past experience of what gives stable results.
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extended galaxies missed by the DES Y3 pipeline is ∼1%,
when compared with the Two Micron All-Sky Survey
(2MASS) extended source catalog (Huchra et al. 2012). For
the purpose of this Letter, we choose to ignore those ultra-low-z
sources as most of them are at z<0.02 and are not relevant for
the present analysis.

The DES Y3 gold catalog, is nonetheless, an observed
magnitude-limited sample. This analysis requires a volume-
limited sample, which we obtain by applying a luminosity cut.
In order to determine the appropriate cut to create a volume-
limited sample, we compute the completeness limits in terms of
absolute quantities (luminosity and stellar mass). We follow the
method outlined in Pozzetti et al. (2010) and Hartley et al.
(2013). We identify galaxies with observed magnitudes that are
bright enough to be complete and representative of the real
galaxy population within redshift bins. To compute the 95%
completeness limit in (rest-frame) luminosity, we scale the
luminosities of this sample to that which they would have if
their observed magnitude were equal to the survey complete-
ness limit, and take the 95th percentile of the resulting
luminosity distribution. This value corresponds to −17.2 in
r-band absolute magnitude and ∼3.8×108Me in stellar mass
for the redshift range of interest. We cut the DES catalog at the
specific absolute luminosity value mentioned above. We
conclude that our volume-limited galaxy sample is complete
within the redshift range of interest for galaxies down to stellar
masses of ∼3.8×108Me. In other words, our galaxy catalog
contains ∼77% of the total stellar mass in the volume
considered by assuming that the galaxies follow a Schechter
stellar mass function with the best-fit values from Weigel et al.
(2016).

The final galaxy stellar mass and redshift distributions of
galaxies are shown in Figure 1. The stellar mass map clearly
shows the presence of large-scale structure, including clusters,
voids, and filaments. We recognize a number of well-known
clusters within the volume of interest, including several Abell
clusters. A uniform distribution of galaxies in comoving
volume (dN/dz)com has been subtracted from the observed
galaxies’ redshift distribution in Figure 1 to highlight the
overdensities. The (dN/dz)com distribution has been obtained
by assuming H0=70kms−1Mpc−1 and it contains the same
total number of galaxies as the observed dN/dz over the
redshift range shown. We are able to identify a “wall”-like
structure around z∼0.06 spanning most of the area between
35<R.A.<55 and −55<decl.<−35, which is spectro-
scopically confirmed by 2dF, LCRS, (Shectman et al. 1996),
and especially 6dF. A broader galaxy overdensity is found
around z∼0.12 (also seen in LCRS and 2dF, and composed of
several Abell galaxy clusters). This broad peak is also
identified in redshift distributions by other photo-z codes,
including a template-based code, the Bayesian Photometric
Redshift (Benéz 2000). We have further verified that over-
densities at the lowest redshifts (z∼ 0.06) are also present in
spectroscopic samples outside of the region of interest. This is
expected at these low redshifts, where large-scale structure
projects onto vast areas of the sky. In summary, there are
77,092 galaxies within the 90% LIGO/Virgo probability
volume, and 105,011 when 99.7% of the distance probability
is considered, of which ∼6000 have spectroscopic redshifts.

3. Method

In order to estimate the posterior probability of H0 given GW
data dGW from a single event detection, and electromagnetic
(EM) data from a galaxy survey, we follow Chen et al. (2018).
By applying Bayes’ theorem, one can write the posterior as

p H d d p d d H p H, , . 10 GW EM GW EM 0 0µ( ∣ ) ( ∣ ) ( ) ( )

We assume that all cosmological parameters except for H0 are
fixed (flat ΛCDM cosmology with Ωm= 0.3 and ΩΛ= 0.7).
We treat the joint GW and EM likelihood p d d H,GW EM 0( ∣ ) as
the product of two individual likelihoods (as the processes
involved in producing the data from the two experiments are
independent) marginalized over all variables except for the true
luminosity distance dL and solid angle GWŴ of the GW source,
and for the true host galaxy redshift zi and solid angle iŴ . Note
that the solid angles Ŵ are vectors with the angular position of
the source/galaxy as direction, and they all subtend the same
area (∼3× 10−3 deg2) as the sky is pixelized with HEALPIX

maps in this work. If we assume that the event happened in one
of the observed galaxies i, then GWŴ and iŴ are related, and so
are dL and zi through the cosmology (in this case, H0). By
marginalizing also over the choice of galaxy i, the joint
marginal likelihood can be written as

p d d z H

w dd d p d d

p d z d d z H

, , ,

,

, , ,

2

j j

i i L L

j j D L L i D i

GW EM 0

GW GW GW

EM 0 GW

ò
d d

W

µ å W W

´ W - W - W

( ∣{ ˆ } )
ˆ ( ∣ ˆ )

( ∣{ ˆ }) ( ( )) ( ˆ ˆ )
( )

where Dd is the Dirac delta function, wi are weights that
represent the relative probability that different galaxies host a
GW source, and z ,j jW{ ˆ } represents all the galaxies’ redshift and
solid angle. These weights could be based on some galaxy
properties, such as luminosity or star formation rate, but here
we assume they are uniform across all galaxies given our lack
of knowledge of GW host galaxy properties.
We also need to marginalize over the galaxies’ redshifts and

sky positions, with a reasonable choice of prior p(zi, Ωi). If one
assumes that the galaxies are uniformly distributed in
comoving volume V, and volume-limited within Vmax,

p z dz d
V

d V

dz d
dz d

V

r z

H z
dz d,

1 1

3

i i i i
i i

i i
i

i
i

max

2

max

2
W W µ

W
W µ W( ˆ ) ˆ

ˆ
ˆ ( )

( )
ˆ

( )

where r is the comoving distance to the galaxy. While this
assumption holds on average over sufficiently large volumes, it
is possible that future precision cosmology analyses will
require taking into account the real clustering of galaxies in this
formalism.
Assuming that we precisely know the galaxies’ positions
jW{ ˆ } (which is realistic especially in the limit in which spatial

probabilities are considered within HEALPIX pixels), we can
integrate over the galaxies’ positions as delta functions about
the observed values. The marginal EM likelihood reduces to
p d zjEM( ∣{ }), which we approximate for simplicity by a product
of Gaussian distributions,  , for each galaxy, centered around
the observed redshift values zobs,i with a width given by the
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redshift’s uncertainty σz,i for each galaxy i:

p d z p z z z z, ; . 4j
i

i i
i

i z i iEM obs, obs, ,  s= =( ∣{ }) ( ∣ ) ( ) ( )

The marginal GW likelihood p d d ,LGW W( ∣ ) can be computed
as prescribed in Singer et al. (2016):

5

p d d p
d

N,
1

2
exp

2
,L

L
GW

2

2ps
m

s
W µ W

W
-

- W

W
W

⎡
⎣⎢

⎤
⎦⎥

( )

( ∣ ˆ ) ( ˆ )
( ˆ )

( ( ˆ ))
( ˆ )

( ˆ )

where the position probability, location, normalization, and
scale (PROB p W( ˆ ), DISTMU μ, DISTNORM N, and DISTSTD
σ, respectively) of the luminosity distance at each position are
provided in the sky map.

We now consider the selection effects of GW events and
galaxies introduced by the experiments’ sensitivities and
detection pipelines. We follow the approach of Chen et al.
(2018) and Mandel et al. (2019), and include a H0

1b -[ ( )] factor
that normalizes the likelihood over all possible GW and EM
data. Given that our galaxy catalog is volume-limited out to
larger distances than the maximum observable distance for the
GW events, this term reduces to

H
V d H

V H
, 6L

0
,GW

max
0

max 0
b =( )

[ ( )]
( )

( )

where V d HL,GW
max

0[ ( )] is the maximum observable volume for
the GW events considered.

Finally, Equation (1) becomes

p H d d
p H

V d H

dz p d d z H p d z
r z

H z

,
1

, , , 7

L
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i L i i i
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i

0 GW EM
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[ ( )]

( ∣ ( ) ˆ ) ( ∣ ) ( )
( )

( )

where p d z r z H z dzi i i i iEM
2 ò= ( ∣ ) ( ) ( ) are evidence terms

that arise from integrating out the other galaxy redshifts in each
term of the sum. This formalism can be extended to combine
data {dGW,j} and dEM from a sample of multiple events j,
assuming that the GW events are independent and that the
galaxy catalog is fixed for all events:

p H d d p H d z d p z

p d z p d z

, ,

, , . 8
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j
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0 GW, EM 0

,
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´ W W
⎡
⎣
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⎤
⎦
⎥⎥

( ∣{ } ) ( ) ˆ ( ˆ )

( ∣{ ˆ }) ( ∣{ ˆ }) ( )

In the following, we assume a flat prior on H0 within
[20,140] kms−1Mpc−1, unless otherwise stated. This is a
very broad prior, covering a range that is much larger than
current estimates of H0. This choice was made as a compromise
between the following aspects: (i) a result that is mostly
informed by the LVC and DES data rather than by external
constraints, (ii) a result that can be compared with the first
standard siren estimate, and (iii) a complete galaxy sample that
contains most of the stellar mass within the localization
volume, to minimize the chance of missing the real host galaxy.
As explained in more detail in Section 4, the redshift cut is
related to the H0 prior range, and in order to explore higher
values of H0, one needs to include higher redshift galaxies, and
make a higher luminosity cut to preserve the volume-limited
sample.

A blinded analysis has been performed when estimating the
H0 posterior from the data to avoid confirmation bias. The
values of the Hubble constant have been randomly displaced by
an unknown amount, and we unblinded after our pipeline was
able to reliably reproduce the input cosmology on simulation
tests.

4. Results and Discussion

We apply the described methodology to the DES galaxies’
redshifts and the GW170814 LIGO/Virgo sky map to produce
a posterior distribution for the Hubble constant. We find that
changes in the H0 estimate and its uncertainty between using
the corrected DNF photo-zʼs or the ANNZ2 outputs are below
the percent level. This agreement is expected, because the two
methods produce redshift distributions that are consistent with
similar uncertainties. We also add a 0.001 systematic redshift
error in quadrature (corresponding to a typical peculiar velocity
of 300 km s 1~ - ). The effect of this correction on the posterior
is negligible because only a few percent of the galaxies have a
spectroscopic redshift, and the effect of peculiar velocities on
the remaining galaxies is more than an order of magnitude
below their typical photo-z error.
Our maximum a posteriori estimate of the Hubble constant is

H 75 km s Mpc0 32
40 1 1= -

+ - - using a flat prior between 20 and
140 kms−1Mpc−1. The full posterior distribution is shown in
Figure 2, and Table 1 summarizes our findings. The presence of
a main, though broad, peak, is expected given the large-scale
structure seen in the observed volume.
As described in Section 2.1, the galaxy sample used in these

results is selected as described in Section 2, and covers the
LIGO/Virgo 90% credible localization volume. The distance
cut is translated into a redshift cut (made on the mean photo-z
value of each galaxy) for a given H0 prior. This cut ensures that
the galaxy catalog is as complete as possible throughout the
whole redshift range of interest for the cosmological parameters
used, and includes the fainter galaxies observable for a volume-
limited sample defined as in Section 2. In fact, in order to
include more distant galaxies, the luminosity cut needs to be
brighter to ensure that the sample is still volume limited, with
the risk of missing the true host galaxy. We have explored the
impact of the redshift cut on the H0 posterior, while keeping the
angular selection to be within the 90% credible localization
area. The effect of including galaxies out to 99.7% of the
distance localization (corresponding to z0.3) is most
pronounced at high H0 values, as shown by the shaded red
region in Figure 2. With this less restrictive cut, the credible
region shifts to H 77 km s Mpc0 33

41 1 1= -
+ - - , showing a ∼2%

change of the maximum. The effect described here arises from
tens of thousand of galaxies at the higher redshifts included
with the more relaxed distance cut and the ansatz of
Gaussianity of the luminosity distance posterior. In fact, these
galaxies contribute with a non-negligible probability to the
posterior because of the high dL tail shown in the bottom-right
panel of Figure 1, and they contribute more significantly at high
H0 values. This few percent effect is insignificant at the current
levels of precision, but will need to be explored in the future
using a more realistic luminosity distance posterior.
Our result agrees well (as expected, due to the large

uncertainty) with the latest CMB estimate of the Hubble constant
by the Planck Collaboration (67.36± 0.54 km s−1Mpc−1 from
TT,TE,EE+lowP+lensing; Planck Collaboration et al. 2018), and
with results using distance ladder methods by ShoES
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(73.52± 1.62 km s−1Mpc−1; Riess et al. 2016) and by DES
(67.77± 1.30 km s−1Mpc−1 from SN+BAO; Macaulay et al.
2019).

For the bright standard siren measurement using GW170817
and its electromagnetic counterpart, Abbott et al. (2017a) found
H 70.0 km s Mpc0 8.0

12.0 1 1= -
+ - - at 68% credible interval. With-

out an EM counterpart leading to a unique host galaxy redshift,
we would have recovered a broader H0 posterior because we
average over all possible host galaxies in the localization
volume. For example, Fishbach et al. (2019) applied the
statistical standard siren method to GW170817 and found a
larger uncertainty than the counterpart standard siren result:
H 76 km s Mpc0 23

48 1 1= -
+ - - for a uniform prior over the range

[10,220]kms−1Mpc−1. For a BBH standard siren measure-
ment, as in this work, the combination of the larger localization
volume (implying a significantly greater number of potential
host galaxies) and the large photometric redshift uncertainty for
each galaxy results in an even broader H0 posterior. Therefore,
while applying the statistical standard siren method to
GW170817 yields a 68% credible region on H0 comprising
34% of the prior range (Fishbach et al. 2019), in this work we
obtain a 68% credible region on H0 that is 60% of the prior
range. We note that the prior used in Fishbach et al. (2018) is
1.75 times broader than the prior used in this work; if we adopt

the same broader prior of [10,220] for our analysis of
GW170814, we find H 78 km s Mpc0 24

96 1 1= -
+ - - . The depend-

ence of the width of the H0 posterior on the prior width is a
consequence of the fact that the GW observation, which
provides only a luminosity distance estimate, is consistent with
arbitrarily large H0ʼs, if there are galaxies at sufficiently large
redshifts. If the galaxy catalog extends to some redshift, zmax,
the posterior would fall off around H0≈czmax/dL, where dL is
the typical luminosity distance from the GW posterior.
However, this fall off is artificial as there are galaxies at
greater redshifts that are not included in the catalog. These may
be accounted for using catalog incompleteness corrections. We
chose the prior range for this analysis rather than a larger one
such that we did not need to include such corrections, which
simplifies the analysis. However, dark siren measurements will
become particularly interesting when multiple events can be
combined and this effect becomes irrelevant (Chen et al. 2018).
The analysis in Fishbach et al. (2019) for GW170817 used the

Galaxy List for the Advanced Detector Era (GLADE) galaxy
catalog (Dálya et al. 2018), and accounted for incompleteness at
the distance of GW170817. GLADE becomes significantly
incomplete at the distance to GW170814. As GW detectors
improve in sensitivity, the majority of dark standard sirens will be
detected at even greater distances and with larger localization
volumes, well beyond the reach of spectroscopic galaxy catalogs.
This highlights the need for reliable and complete photometric
galaxy catalogs. Surveys such as DES, Pan-STARRS1 (Chambers
et al. 2016), and the Large Synoptic Survey Telescope (LSST) are
therefore likely to play an important role in future constraints from
BBH standard sirens.
The assumption throughout this work is that even if the event

occurred in a galaxy below our luminosity threshold, large-
scale structure predicts that fainter galaxies follow the
clustering pattern of the more luminous galaxies in our sample.
We have verified in our simulations that a threshold up to
1 mag brighter than the limit used here to place events has a

Figure 2. Hubble constant posterior distribution obtained by marginalizing over ∼77,000 possible host galaxies (red line), showing the maximum value (solid vertical
line). The maximum a posteriori and its 68% confidence level is H 75 km s Mpc0 32

40 1 1= -
+ - - for a flat prior in the range [20,140] kms−1Mpc−1. The shaded region

represents the change in the posterior when different fractions of the localization volume are considered (from 90% to 99.7% of the LIGO/Virgo luminosity distance
posterior). The PDF computed from the larger volume has been renormalized to have the same value of the 90% localization volume H0 posterior at the maximum, to
highlight differences below and beyond the main peak. The posterior obtained by Abbott et al. (2017a) for the bright standard siren event GW170817, associated to
one galaxy, is shown in gray. The prior used in that work was flat-in-log over a narrower range ([50,140] km s−1 Mpc−1), and the posterior has been rescaled by a
factor 0.2 for visualization purposes. The 68% CL of both PDFs is shown by the dashed lines. Constraints from Planck (Planck Collaboration et al. 2018) and
Supernovae and H0 for the Equation of State (SHoES; Riess et al. 2016, 2018) at 1σ are shown in purple boxes.

Table 1
Hubble Constant Estimate from this Work

Prior H0 H0s+ H0s- HH 00s HH 00s prior

[20,140] 75 40 32 47.8% 54.3%

Note.All H0 values and errors are in kms−1Mpc−1. The uncertainty from
the flat prior only is derived by assuming the same H0 maximum found in
the analysis. Quoted uncertainties represent 68% confidence level around the
maximum of the posterior, and they are statistical only. The last column
quantity ( HH 00s prior) corresponds to 68% times the prior width divided
by H0.

12

The Astrophysical Journal Letters, 876:L7 (15pp), 2019 May 1 Soares-Santos et al.



negligible impact over a sample of 100 events, provided that
the catalog is volume limited for the range of redshifts relevant
to the measurement.

Galaxies are biased tracers of the universe’s dark matter,
therefore some theories predict that the origin of the black holes
involved in these GW events is primordial, constituting part or
all of the dark matter (Bird et al. 2016; Clesse & García-
Bellido 2017, 2018; García-Bellido 2017). In that case, GW
events follow exactly the underlying dark matter distribution
(presenting an unbiased tracer). Because of the stellar mass to
dark matter halo connection (see Wechsler & Tinker 2018, and
references therein) it is reasonable to weight galaxies by their
stellar mass in Equation (2) as wi∝Må. The impact of this
scaling with stellar mass or star formation rate has been
explored in Fishbach et al. (2019). We find that the stellar mass
weighting has a negligible effect on the posterior. This is due to
the large volume analyzed (over which the stellar masses tend
to be averaged out) and to the precision level of this
measurement. In other theories, these black hole binaries are
produced in very-low-metallicity galaxies (e.g., Cao et al.
2018; Mapelli et al. 2018), biased relative to the dark matter
distribution differently than the luminous galaxies in our
catalog. J. Annis et al. (2019, in preparation) explore the effect
of the tracer bias assumptions on the H0 posterior for future
analyses aiming at precision measurements.

Another assumption of our analysis that needs attention
concerns the redshift likelihood. As anticipated above for the
GW likelihood, this will not, in general, be well approximated
by a Gaussian. In the future, we plan to explore the impact of
realistic photometric redshift PDFs on the H0 posterior, in order
to enable precision cosmology with BBH events. An analysis
with the full, asymmetric, GW likelihood will also be required.
While an estimate of those effects is needed, tests on off-source
lines of sight show that our constraint is likely not strongly
impacted by the photo-z training sample or systematic failures.

In the past two LVC observing seasons, black hole mergers
outnumbered neutron star events at a rate of approximately
10–1. Uncertainties on the expected detection rate are large, but
conservative estimates predict ∼1 event per week for the
upcoming observing campaign (scheduled to start in 2019
April). The majority of these events will have larger
localization volumes than GW170814 (Chen & Holz 2016
estimated that 1% of BBHs will be localized to better than
104Mpc3), and hence provide poorer constraints than those
reported here. However, given the high expected event rate for
dark sirens, larger event samples will be available in the future.
Chen et al. (2018) provided forecasts using a distribution of
realistic localization area, finding that the dark siren method
will reach ∼10% statistical precision on H0 by 2026 from BBH
mergers only, and 5%–10% precision from BNS mergers if
none of them have EM counterparts.

5. Conclusions

In this Letter, we have performed the first measurement of
the Hubble constant using a GW detection of a BBH merger as
a dark standard siren and the DES galaxies as a sample of
potential host galaxies. Our analysis was blinded to avoid
confirmation bias. Our main results, discussed in Section 4,
include a measurement of H 75 km s Mpc0 32

40 1 1= -
+ - - for a flat

prior within [20,140] km s−1 Mpc−1, which is consistent with
previous measurements of H0. The 68% confidence interval

quoted here is 60% of the uniform prior range, and it depends
on the width of the prior. For example, with a broader prior of
[10,220] kms−1Mpc−1, we find H 78 km s Mpc0 24

96 1 1= -
+ - - .

Albeit weak, this measurement is not uninformative and the
method becomes more powerful when we combine large
numbers of dark sirens(Chen et al. 2018).
Future dark siren measurements will require complete galaxy

catalogs. A wide field galaxy catalog with a DES-like depth is
currently available only for ∼one-eighth of the sky. However,
DES can be complemented with other data sets taken with
DECam (such as the Blanco Imaging of the Southern Sky,
BLISS, and the Dark Energy Camera Legacy Survey
(DECals)), to cover the whole Southern sky to a good depth
(r∼ 23.4, 5σ depth). An even deeper survey with more precise
photo-z’s, such as the LSST (LSST Dark Energy Science
Collaboration 2012), would be of great value for further
improving these constraints.
At the expected level of precision from hundreds of events

(<10%), systematics will play an important role. In future
work, we plan to incorporate systematic uncertainties in our
simulated data studies, in order to prepare for precision
cosmology analyses on real data. We anticipate that some of
the main sources of systematics will be photo-z biases and
catastrophic outliers, photo-z training sample sample variance,
galaxy catalog cuts, and galaxy catalog completeness. In order
to achieve the full potential of statistical standard siren
cosmology, wide and deep galaxy surveys such as DES and
LSST are necessary. Overall, our findings show that the
synergy between GW black hole merger detections and new-
generation large galaxy surveys will establish a new powerful
probe for precision cosmology.
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