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All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run

The LIGO Scientific Collaboration and The Virgo Collaboration

ABSTRACT

We present the results of a search for long-duration gravitational-wave transients in the data from

the Advanced LIGO second observation run; we search for gravitational-wave transients of 2 – 500 s

duration in the 24 − 2048 Hz frequency band with minimal assumptions about signal properties such

as waveform morphologies, polarization, sky location or time of occurrence. Signal families covered by

these search algorithms include fallback accretion onto neutron stars, broadband chirps from innermost

stable circular orbit waves around rotating black holes, eccentric inspiral-merger-ringdown compact

binary coalescence waveforms, and other models. The second observation run totals about 118.3 days

of coincident data between November 2016 and August 2017. We find no significant events within

the parameter space that we searched, apart from the already-reported binary neutron star merger

GW170817. We thus report sensitivity limits on the root-sum-square strain amplitude hrss at 50%

efficiency. These sensitivity estimates are an improvement relative to the first observing run and

also done with an enlarged set of gravitational-wave transient waveforms. Overall, the best search

sensitivity is h50%rss =2.7 × 10−22 Hz−1/2 for a millisecond magnetar model. For eccentric compact

binary coalescence signals, the search sensitivity reaches h50%rss =9.6× 10−22 Hz−1/2.

1. INTRODUCTION

The second observation run of the Advanced LIGO (Aasi

et al. 2015) and Advanced Virgo (Acernese et al. 2015)

detectors ushered in the era of multi-messenger astron-

omy. In addition to the detection of further binary

black hole systems (Abbott et al. 2017a,b,c), the first

binary neutron star system GW170817 (Abbott et al.

2017d), associated with GRB 170817A (Abbott et al.

2017e) and corresponding electromagnetic radiation AT

2017gfo (Abbott et al. 2017f), were jointly detected.

This led to searches for a post-merger signal from the

binary neutron star event, including on the timescales

presented in this paper (Abbott et al. 2017; Abbott

et al. 2018a). In this paper, we update the results of the

unmodeled long-duration transient search from the first

Advanced LIGO observing run (Abbott et al. 2018b)

with the data from the second observing run.

We use four pipelines, described below, with different

responses across the parameter space, providing com-

plementary coverage of the signal models we are inter-

ested in. The search was motivated by a wide range of

poorly understood astrophysical phenomena for which

predictive models are not readily available; these include

fallback accretion, accretion disk instabilities and non-

axisymmetric deformations in magnetars. Fallback ac-

cretion of ejected mass in newborn neutron stars can

lead to deformation, causing the emission of gravita-

tional waves until the star collapses into a black hole (Lai

& Shapiro 1995; Piro & Ott 2011; Piro & Thrane 2012).

Accretion disk instabilities and fragmentation can cause

stellar material to spiral in a black hole, emitting rela-

tively long-lived gravitational waves (Piro & Pfahl 2007;

van Putten 2001, 2008). Non-axisymmetric deforma-

tions in magnetars, proposed as progenitors of long and

short gamma-ray bursts (Metzger et al. 2011; Rowlinson

et al. 2013), can also emit gravitational waves (Corsi &

Mészáros 2009). Moreover, we introduce new waveforms

families based on astrophysical phenoma such as fallback

accretion down to the innermost stable circular orbit of

a rapidly rotating black hole (van Putten 2016), highly

eccentric binary black hole coalescences (Huerta et al.

2018), and gamma-ray burst & X-ray events (Corsi &

Mészáros 2009).

Although this analysis targets sources for which the

gravitational waveform is not well-described, it is pos-

sible for the long-duration searches to detect low-mass

compact binary coalescences, typically searched for with

matched filtering techniques. As discussed in other pub-

lications (Abbott et al. 2017d), the data containing the

gravitational-wave signal resulting from GW170817 is

corrupted by the presence of a short-duration (less than

5 ms), powerful transient noise event in one of the de-

tectors (Abbott et al. 2017d). Using a data set where

this short transient has been subtracted from the LIGO-

Livingston data stream, the GW170817 signal is the

most significant event of the search. As the searches

reported in this paper does not add significantly to the

many other studies carried out for this event (Abbott

et al. 2017d; Abbott et al. 2018a,b, 2017), it has been
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decided to keep the original data set, veto the large

transient noise and focus on any other long duration

gravitational-wave signals.

The paper is organized as follows. We describe the

data used in the analysis in Section 2. The algorithms

used to analyze the data are outlined in Section 3. The

results of the analysis and their implications are dis-

cussed in Section 4. Section 5 provides our conclusions

and avenues for future research.

2. DATA

The second observation run lasted from November 25,

2016 to August 25, 2017. Between the first and second

observing runs, a series of fixes and upgrades of the two

LIGO detectors in Hanford, WA and Livingston, LA,

allowed the run to begin with LIGO detectors’ sensitiv-

ity reaching a binary neutron star range of ∼ 80 Mpc

– please see Abbott et al. (2018c) for a discussion of

the range metric. Thanks to commissioning break pe-

riods, Livingston’s sensitivity increased steadily during

the second observation run, finally reaching 100 Mpc.

LIGO Hanford suffered from a 5.8 magnitude earth-

quake in Montana on July 6th 2017, which induced a

10 Mpc drop in sensitivity, and this was not recovered

during the science run. On August 1st, the Virgo detec-

tor joined the run with a binary neutron star range of

26 Mpc. It has been shown that adding the one-month

Virgo data set does not improve the search sensitivity

mainly because of the sensitivity difference between the

detectors. We thus report the results of a two LIGO de-

tector coincident search. The overlap in time when both

detectors are taking data in suitable for analysis was ap-

proximately 118.3 days. The effective coincident time

analyzed by each pipeline depends on the data segmen-

tation choice and lies in the range 114.7 to 118.3 days.

Coincident data contains a large number of non-

Gaussian transient noise events (glitches) of instrumen-

tal or environmental origin that mimic the characteristic

of the targeted signals. For the first time, well identified

sources of noise have been subtracted from the LIGO

data (Davis et al. 2018). Yet, some glitches, typically

lasting from a few milliseconds up to few seconds and

varying widely in frequency, remain. Their presence,

even the very short ones, may negatively impact the

sensitivity of the searches (Abbott et al. 2018c). Time

varying spectral lines are also a source of noise events

for the long-duration transient searches. To veto these

transient noise events, each pipeline implements spe-

cific glitch rejection criteria; because the search targets

long-duration signals, short-duration glitches, which are

usually the most problematic sources of noise, are eas-

ily suppressed. The next section provides more details

about the noise rejection procedures that also may in-

clude data quality vetoes based on correlations with aux-

iliary channels (Aasi et al. 2012; Abbott et al. 2016).

3. SEARCHES

As in the previous analysis, we use four pipelines to

search for transients that last between 2 – 500 s and

span a frequency band of 24 – 2048 Hz. The use of

multiple pipelines provides redundancy, and due to the

differences in the clustering algorithms, lead to differ-

ent sensitivities to different waveform morphologies or

parts of the parameter space. Unmodeled searches for

gravitational waves typically cast the analysis as pattern

recognition problems. Gravitational-wave time-series

are Fourier transformed in chunks of time, and spec-

trograms are created based on statistics derived from

these Fourier transforms. Then pattern recognition al-

gorithms are used to search for patterns, corresponding

to gravitational waves, within spectrograms. In gen-

eral, these consist of two classes. The first is seed-

based (Khan & Chatterji 2009; Prestegard 2016), where

thresholds are placed on pixel values in the spectrograms

and pixels above this threshold are clustered together.

The second is seedless (Thrane & Coughlin 2013, 2014),

where tracks are constructed from a generic model and

integrated across the spectrograms; in this analysis, we

use Bézier curves (Farin 1996; Thrane & Coughlin 2013,

2014; Coughlin et al. 2015; Thrane & Coughlin 2015).

The pipelines used are the long-duration configura-

tion of Coherent WaveBurst (cWB) (Klimenko et al.

2016), two different versions of the Stochastic Transient

Analysis Multi-detector Pipeline - all sky (STAMP-

AS) pipeline (Prestegard 2016; Thrane & Coughlin

2015), and the X-pipeline Spherical Radiometer (X-

SphRad) (Fays 2017). These pipelines are the same, or

slightly updated versions, of those used in the search for

long-duration transients in the first observation run and

fully described in (Abbott et al. 2017g). cWB is based

on a maximum-likelihood-ratio statistic, built as a sum

of excess power coherent between multiple detectors in

the time-frequency representation of the interferometer

responses (Klimenko et al. 2016). The search is per-

formed in the frequency range 24 – 2048 Hz, on data

where all poor quality periods have been discarded. The

trigger events surviving the selection criteria to reject

glitches are ranked according to their detection statistic

ηc, which is related to the coherent signal-to-noise ra-

tio (SNR). The selection criteria require the coherence

coefficient cc to be larger than 0.6, and the weighted

duration of the candidate to be larger than 1.5 s. The

first measures the degree of correlation between the de-

tectors, while the latter measures the duration weighted
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by the excess power amplitude of the pixel on the time-

frequency likelihood map. The trigger events are then

divided in two samples according to their estimated

mean frequency: 24-200 Hz and 200-2048 Hz. This al-

lows for the isolation of the unexpected higher rate of

glitches at low frequency during the first half of the O2

observation run. STAMP-AS uses the cross-correlation

of data from two detectors to create coherent time-

frequency maps of cross-power SNR with a pixel size

of 1 s × 1 Hz covering 24 – 2000 Hz in combination

with a seed-based (Zebragard) and seedless (Lonetrack)

clustering algorithm. Significant spectral features, in-

cluding wandering lines, are masked in the creation of

the spectrograms. As in the search during the first ob-

serving run, Zebragard eliminates the short duration

glitches by requesting that the fraction of SNR in each

time bin be smaller than 0.5 and that the SNR ra-

tio between the two detectors be smaller than 3. The

X-pipeline Spherical Radiometer (X-SphRad) uses an

X-pipeline (Sutton et al. 2010) back end in combination

with a fast cross-correlator in the spherical harmonic

domain (Cannon 2007) to search for gravitational-wave

transients in the 24 – 1000 Hz frequency range. The

method allows for the data to be processed indepen-

dently of sky position and avoids redundant computa-

tions. A next-nearest-neighbor clustering algorithm is

applied on a time-frequency representation of the data

with a resolution of 1 s × 1 Hz to form trigger events,

which are then ranked by the ratio of the sum of power

in all the l>0 spherical harmonic modes to that in the

l=0 mode. Significant spectral features such as stand-

ing power lines are removed using a zero-phase linear

predictor filter that estimates the power spectrum and

whitens the data (Chatterji 2005). Finally, X-SphRad

eliminates triggers that coincide with poor quality data

periods that have been identified using auxiliary chan-

nels. These periods are excluded from the analysis time

by cWB, and STAMP-AS Zebragard analysis selects

a subset of them according to a procedure described

in (Frey 2018).

The false alarm rate of each search is estimated as

a function of the pipeline’s ranking statistic. Each

use the data to perform this estimate, as opposed to

a Gaussian approximation, because of the significant

non-Gaussianity of the data, transient noise, and the

non-stationarity of some of the spectral features. These

glitches have a variety of causes, both environmentally

driven such as from seismic events (Macleod et al. 2012;

Coughlin et al. 2017) or magnetic fields (Kowalska-

Leszczynska et al. 2017; Coughlin et al. 2016), and

instrumental effects, such as test mass suspension

glitches (Walker et al. 2017) and other sources of spec-

tral features (Coughlin 2010). For all of the pipelines

in this analysis, the correlation of data in different de-

tectors is used to exclude data transients which are

unlikely to be of astrophysical origin. To estimate the

background for all pipelines used in this analysis, the

time-slides methodology is applied (Was et al. 2010a,b),

each one implementing its own version. The fundamen-

tal idea is to shift the detector data with non-physical

relative time delays to eliminate any correlation from

gravitational waves and re-analyze the data. The pro-

cedure is repeated until a total of 50 years coincident

detector time has been analyzed, allowing us to estimate

false alarm rates at the level of 1 event in 50 years.

4. RESULTS

Figure 1. Time-frequency representations of a few model
signals used in the search, showing a mix of chirp-up (FA,
ECBC) & chirp-down (Magnetar, ADI) astrophysical wave-
forms as well as a linearly decreasing ad-hoc waveform
(LINE). Descriptions of these waveforms and others are given
in Section 4. The harmonics of ECBC are also visible. The
full set of waveforms (∼ 70) chosen for this analysis fully cov-
ers the search frequency band of 24-2000 Hz. The waveforms
are shifted in time to show how they cover the parameter
space in this axis as well.

Pipeline FAR p-value Frequency Duration

[Hz] [Hz] [s]

cWB 1.4 × 10−7 0.75 53–69 11

Zebragard 2.5 × 10−7 0.92 1649–1753 29

Lonetrack 7.9 × 10−8 0.80 608–1344 463

X-SphRad 9.7 × 10−8 0.60 435-443 3

Table 1. Properties of the most significant coincident trig-
gers found by each of the long-duration transient search
pipelines during the second observation run. FAR stands
for false alarm rate, while the p-value is the probability of
observing at least 1 noise trigger at higher significance than
the most significant coincident trigger.

None of the pipelines find a significant excess of coin-

cident events. The most significant events found by each
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pipeline are reported in Table 1. Their false alarm rate is

in agreement with the expected background estimation.

Given the absence of a detection, we can derive upper

limits on long-duration gravitational-wave transients’

strain amplitude. A usual measure of gravitational-wave

amplitude is the root-sum-square strain amplitude at

the Earth, hrss,

hrss =

√∫ ∞
−∞

(
h2+(t) + h2×(t)

)
dt, (1)

where h+ and h× are signal polarizations at Earth’s cen-

ter expressed in the source frame. We can relate this

quantity to the gravitational-wave energy radiated by a

source emitting isotropically at a given central frequency

f0 (Sutton 2013)

Eiso
gw =

πc3

G
D2

∫
df f2

(
|h̃+(f)|2 + |h̃×(f)|2

)
≈ π2c3

G
D2f20h

2
rss, (2)

where D is the distance to the source and h̃ indicates a

Fourier transform. To estimate the hrss at 50% detec-

tion efficiency, we add simulated waveforms coherently

to detector data, uniformly distributed in time and over

sky locations. The waveform polarization angle and the

cosine of the inclination are also varied uniformly. Wave-

forms are generated at a variety of distances (or equiv-

alently hrss) such that the 50% detection efficiency is

well-measured. The events reconstructed are then “de-

tected” if their false alarm rate is lower than the chosen

value of 1/50 years.

We use 13 families of simulated gravitational-wave

signals to estimate the sensitivity of each pipeline. The

waveform families include a variety of astrophysically

motivated waveforms and ad-hoc waveform models. For

the astrophysical models, we include fallback accretion

onto neutron stars (FA) (Piro & Thrane 2012), broad-

band chirps from innermost stable circular orbit waves

around rotating black holes (ISCOchirp) (van Putten

2016), inspiral-only compact binary coalescence wave-

forms up to 2nd post-Newtonian order (Blanchet et al.

1996) (CBC), eccentric inspiral-merger-ringdown com-

pact binary coalescence waveforms (ECBC) (Huerta

et al. 2018), secular bar-mode instabilities in post-

merger remnants (Lai & Shapiro 1995; Corsi & Mészáros

2009), newly formed magnetar powering a gamma-ray

burst plateau (GRBplateau) (Corsi & Mészáros 2009),

black hole accretion disk instabilities (ADI) (van Putten

2001), post-merger magnetars (magnetar) (Dall’Osso

et al. 2015), and neutron star spin down waveforms

(MSmagnetar) (Lasky et al. 2017; Sarin et al. 2018).

For the ad-hoc waveforms, we include monochromatic

waveforms (MONO), waveforms with a linear (LINE),

quadratic (QUAD) frequency evolution, white noise

band-limited (WNB) and sine-Gaussian bursts (SG).

The waveforms are designed to span a range of astro-

physical models, as well as a wide duration and fre-

quency parameter space to test the response of the algo-

rithms across the parameter space. Figure 1 shows the

coverage of a representative sample of the simulation

set in the time-frequency space. The frequency band

10-300 Hz are well covered with the GRBplateau and

ADI families. Astrophysical waveform families such as

ISCOchirp and magnetar are characterised by a wide

frequency coverage and populate the higher frequency

band 700-2000 Hz. Ad-hoc waveforms families such as

MONO, LINE, QUAD, WNB and SG span a wide fre-

quency range and covers the band 50-800 Hz, filling in

any potential gap in coverage from the other models.

In Figure 2, we show the best results among all

pipelines for almost all waveforms. We also compute

the 90% confidence level limit on the rate of long-

duration gravitational-wave transients assuming a Pois-

sonian distribution of sources. To do so, we use the

loudest event statistic method (Brady et al. 2004). We

fold in the systematic uncertainty that arises from the

strain amplitude calibration, which is 7% in amplitude

and 3 degrees in phase, a conservative number used

for both instruments in the frequency band analyzed

here (Cahillane et al. 2017).

Figure 3 shows the rate as a function of distance for

the eccentric compact binary coalescence signals consid-

ered in this analysis. For a 1.4 − 1.4 solar mass binary

with an eccentricity of 0.4, the 50% efficiency distance

is 30 Mpc. For comparison, this is more than a factor 2

lower than what matched filter searches could reach for

1.4 − 1.4 solar mass binaries with no eccentricity dur-
ing the second observation run (Abbott et al. 2017d).

Due to the improved sensitivity and greater duration of

the second observation run above and beyond the first

observation run, the rate limits for models used in pre-

vious analyses improved by a factor of ∼ 30%. The

detection distances vary significantly from one signal to

another. For example, the ADI waveforms have distance

limits of tens of megaparsecs, while the magnetar wave-

forms have limits of tens of kiloparsecs. The difference in

ranges is due mainly to the energy budget of the system,

but also due to the overall signal morphologies, which

can be more or less difficult for the pipeline clustering

techniques to recover entirely.

5. CONCLUSIONS
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Figure 2. Upper limits on gravitational-wave strain versus frequency for sources detected with 50% efficiency and a false alarm
rate of 1 event in 50 years. The lowest value among all 4 pipelines is represented on the plots. The left figure shows the “ad-hoc”
waveforms’ results while the “physical” waveforms are represented on the right. The average amplitude spectral density curves
for both Hanford and Livingston are also shown.

Figure 3. Upper limits (marginalizing over the second ob-
servation run amplitude calibration errors) on eccentric com-
pact binary coalescences as a function of the distance at a
90% confidence level considering the best results for each
waveform. The inset shows the distance at 50% detection
efficiency for the pipelines in this analysis for comparison.
ECBC A, ECBC B, and ECBC C are 1.4 − 1.4 solar mass
binaries with eccentricities of 0.2, 0.4, and 0.6 respectively,
while ECBC D, ECBC E, and ECBC F are 3.0 − 3.0 solar
mass binaries with eccentricities of 0.2, 0.4, and 0.6 respec-
tively, where the masses are quoted in the detector frame.

We have performed an all-sky search for unmodeled

long-duration gravitational-wave transients in the sec-

ond observing run. This search did not lead to the de-

tection of any new gravitational waves. In addition to

the intrinsic gain due to detectors’ sensitivity improve-

ment and the length of the observing run, we have in-

creased significantly the number of waveforms used to

estimate the pipelines’ sensitivity. The theoretical un-

certainties of the models used are rather large, including

the mechanisms, their amplitudes, and their potential

rates, although it is likely we are sensitive to relatively

small amplitude emissions within the Local Group.

With the recent arrival of Advanced Virgo to the ad-

vanced gravitational-wave detector network, its future

improvements will merit its inclusion in analyses in the

next observing runs. Overall, the expectation is that the

design sensitivities for the gravitational-wave networks

will yield gains of up to a factor of 10, depending on the

frequency range considered (Abbott et al. 2018c).
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A. Perego,116, 117 C. J. Perez,46 C. Périgois,33 A. Perreca,116, 117 J. Petermann,133 H. P. Pfeiffer,75 M. Phelps,9, 10

K. S. Phukon,3 O. J. Piccinni,118, 32 M. Pichot,64 F. Piergiovanni,62, 63 V. Pierro,115, 68 G. Pillant,29 L. Pinard,23

I. M. Pinto,115, 68, 87 M. Pirello,46 M. Pitkin,45 W. Plastino,164, 165 R. Poggiani,20, 21 D. Y. T. Pong,92

S. Ponrathnam,3 P. Popolizio,29 E. K. Porter,26 J. Powell,167 A. K. Prajapati,110 J. Prasad,3 K. Prasai,50



10

R. Prasanna,143 G. Pratten,100 T. Prestegard,24 M. Principe,115, 87, 68 G. A. Prodi,116, 117 L. Prokhorov,13

M. Punturo,40 P. Puppo,32 M. Pürrer,75 H. Qi,105 V. Quetschke,107 P. J. Quinonez,34 F. J. Raab,46

G. Raaijmakers,141, 36 H. Radkins,46 N. Radulesco,64 P. Raffai,109 S. Raja,59 C. Rajan,59 B. Rajbhandari,83

M. Rakhmanov,107 K. E. Ramirez,107 A. Ramos-Buades,100 Javed Rana,3 K. Rao,57 P. Rapagnani,118, 32

V. Raymond,105 M. Razzano,20, 21 J. Read,27 T. Regimbau,33 L. Rei,58 S. Reid,25 D. H. Reitze,1, 30 P. Rettegno,126, 177

F. Ricci,118, 32 C. J. Richardson,34 J. W. Richardson,1 P. M. Ricker,19 G. Riemenschneider,177, 126 K. Riles,136

M. Rizzo,57 N. A. Robertson,1, 45 F. Robinet,28 A. Rocchi,31 L. Rolland,33 J. G. Rollins,1 V. J. Roma,71

M. Romanelli,70 R. Romano,4, 5 C. L. Romel,46 J. H. Romie,7 C. A. Rose,24 D. Rose,27 K. Rose,120 D. Rosińska,73
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S. C. Tait,45 C. Talbot,6 D. B. Tanner,30 D. Tao,1 M. Tápai,130 A. Tapia,27 J. D. Tasson,96 R. Taylor,1
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52Università di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy

53INFN, Sezione di Padova, I-35131 Padova, Italy
54Montana State University, Bozeman, MT 59717, USA

55Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, 00-716, Warsaw, Poland
56OzGrav, University of Adelaide, Adelaide, South Australia 5005, Australia

57Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Northwestern University, Evanston, IL 60208, USA
58INFN, Sezione di Genova, I-16146 Genova, Italy
59RRCAT, Indore, Madhya Pradesh 452013, India

60Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
61Rochester Institute of Technology, Rochester, NY 14623, USA
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98Dipartimento di Fisica, Università degli Studi di Genova, I-16146 Genova, Italy

99OzGrav, University of Melbourne, Parkville, Victoria 3010, Australia
100Universitat de les Illes Balears, IAC3—IEEC, E-07122 Palma de Mallorca, Spain
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130University of Szeged, Dóm tér 9, Szeged 6720, Hungary
131SUPA, University of the West of Scotland, Paisley PA1 2BE, United Kingdom

132California State University, Los Angeles, 5151 State University Dr, Los Angeles, CA 90032, USA
133Universität Hamburg, D-22761 Hamburg, Germany

134Tata Institute of Fundamental Research, Mumbai 400005, India
135INAF, Osservatorio Astronomico di Capodimonte, I-80131 Napoli, Italy

136University of Michigan, Ann Arbor, MI 48109, USA
137Washington State University, Pullman, WA 99164, USA

138American University, Washington, D.C. 20016, USA
139University of Portsmouth, Portsmouth, PO1 3FX, United Kingdom

140University of California, Berkeley, CA 94720, USA
141GRAPPA, Anton Pannekoek Institute for Astronomy and Institute for High-Energy Physics, University of Amsterdam, Science Park

904, 1098 XH Amsterdam, The Netherlands
142Delta Institute for Theoretical Physics, Science Park 904, 1090 GL Amsterdam, The Netherlands

143Directorate of Construction, Services & Estate Management, Mumbai 400094 India
144University of Bia lystok, 15-424 Bia lystok, Poland

145King’s College London, University of London, London WC2R 2LS, United Kingdom
146University of Southampton, Southampton SO17 1BJ, United Kingdom

147University of Washington Bothell, Bothell, WA 98011, USA
148Institute of Applied Physics, Nizhny Novgorod, 603950, Russia

149Ewha Womans University, Seoul 03760, South Korea
150Inje University Gimhae, South Gyeongsang 50834, South Korea

151National Institute for Mathematical Sciences, Daejeon 34047, South Korea
152Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
153Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands

154Bard College, 30 Campus Rd, Annandale-On-Hudson, NY 12504, USA
155Chennai Mathematical Institute, Chennai 603103, India
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