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ABSTRACT

This paper is a study of classes of primitive quadratic
forms with coefficients from K[t], the domain of poly-
nomials in the indeterminate t over a field K whose
characteristic i1s different from 2., Two quadratic forms
are sald to be equivalent if there is a linear transfor-
mation with coefficients in K[t] and having determinant

1 taking one into the othef. The equivalence classes of
primitive binary quadratic forms having determinant A (t)
constitute an abelian group QA . The primary concern of

thls paper is to obtain structure theorems pertaining to

the group QA .

It is shown, in Chapter II, that to each primitive binary
quadratic form having determinant A (t) there belongs

an assoclated invertible 1deal in K[t,0], € a solution

of the equation X2 + A(t)Y2 = 0, A necessary and
sufficient condition is given for an ideal in K[t,6]

to be invertible. Two invertible ideals A, B in K[t,0]
are said to be equivalent if there are elements'n s 7/

in K[t,6] such that 7 A = “YB. The equivalence classes
of invertible ideals form an abelian group %ﬁ and the
above assoclation of ideals with quédratic forms is shown

to give rise to a homomorphism from Q[; onto Gé; .

to give rise to a homomorphism from Q[s onto



The third chapter deals with definite binary quadratic
forms, the forms whose determinants have odd degree or have
leading coefficient d such that d = k° for any k in
K. It is shown that in every class of QZS there 1is an
essentlially unique reduced form; therefore, only in
speclial cases is the group QZX finite. In order to
obtain results similar to the classical case over the
rational integers where such groups are finite, we restrict
our attention to thé elements of Q,A having finite order.
It 1s shown for algebraically closed fields that the
elements having order less than some positive integer
are finlte in number. This result exhibits a class of
rings with out torsion; that is, rings which contain a

prime ideal no power of which is principal,

Of concern in the fourth chepter is the study of indef-
inite forms, the forms having determinant A(t) of even
degree and whose leading coefficlent d = --k2 for some k
in K. Reduced forms are defined and shown to lie in
chains in the classes of QZS . The condition that such
chains are periodic is shown to be equivalent to the
exlistence of a non-trivial solution of the Pell equation
X2 + 13(t)Y2 = 1. Examples are given for which the Pell
equation has only the trivial solutions X = %1, Y = O,
Necessary and sufficient conditions for the Pell equation
to have a non-trivial solution are also given in terms of
the number of properly ambiguous forms, forms having second

v



coefficient zero, in the identity class. It is shown that
the properly ambiguous forms in an ambiguous class, & class
having order 1 or 2, constitute a vector space over K
having dimension 2 whenever the Pell equatlon has & non-
trivial solution and 1 otherwise. The paper is concluded
by studying the relationship between the groups le and

Q5 , where p(t) is an irreducible polynomial in
p°(t)A

K[t]. .

vi



CHAPTER I
INTRODUCTION AND NOTATION

INTRODUCTION 1.0. So much is known today about class

groups of binary quadratic forms over the rational integers
that it is of Interest to try to extend the results to

| corresponding groups of quadratic forms over polyrnomial
rings. Artin [l]l has, in fact, made such extenslons for
the case of quadratic forms with polynomials over finlte
fields as coefficients. The purpose of this paper will

be to investigate what theorems carry over for forms with
coefficients from polynomial rings over arbitrary fields

of characteristic not 2.

The methods used in this paper will, in genersl, parallel -
classical methods used for integral forms; however, some

of the more desirable results, such as finite class number,
remain valid only in special cases. Neverthelegs, these
groups of infinite order are of particular interest for

they provide examples of domains without torsion as given

in [3]. It is interesting to note how we verify these

lPairs of numbers in brackets refer to corres-
pondingly numbered references in Selected Bibliography
and page numbers, respectively. A single number in a
bracket refers to the correspondingly numbered reference
in the Selected Bibliography.
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examples without, as in [8], resorting to the theory of

algebraic curves,

NOTATION 1,1, Throughout this work, K will denote a field

whose charﬁcteristic is not 2, and K[t] will denote the set
~of polynomials f(t), &(t),..., in the indeterminate t with
coeficients in K. Elements from K will be called constants
and will be represented by lower case English letters.
]f(t)' will designate the degree of f(t), for f(t) # O and
-o, for f(t) = 0. A binary quadratic form F = a.(t)x2 +
26(t)XY + c(t)¥2 will be represented by the symbol

[a(t), 2b(t), c(t)] or simply as F,.

DEFINITION 1.2, A polynomlal is salid to be monic if its

leading coefficlent is 1. The greatest common divisor of

a Tinite set of polynomials in Kft] will be the monic
polynomial of largest degree which divides each member of
the set. The divisor of a quadratic form [a(t), 2b(t), c(t)]
is deflned to be the greatest common divisor of its coeffi-
cients a(t), 2b(t), e(t), and the form is called primitive
if its divisor is 1. The expression -be(t) + a(t)e(t) will
denote the determinant of the form [a(t), 2b(t), c(t)].

If the variables of a form F = [a(t), 2b(t), c(t)] undergo
a linear transformation X = r(t)X' + s(t)Y', Y = u(t)X' +
v(t)Y' then the form obtained is F' = [a'(t), 2b'(t), c'(t)]
where
a'(t)
(1) o' (%)

a(t)ro(t)+2b (t)r(t)u(t)+e(t)u(t)
a(t)r(t)s(t)+e(thu(t)v(t)+o(t){r(t)v(t)+s(t)u(t))



o' (t) = a(t)s2(t)+2b(t)s(t)v(t)+e(t)va(t).

Such a transformation will be represented by the matrix

o[58 5t

and FT = F' will signify that T takes F into F'., T is

salid to be unimodular if its determinant is 1. Two forms

F and F' are sald to be equivalent, written F—~~F', 1if

there is a unimodular transformation teking F intc F!',

It 18 easlly verified that the determinant and the divisor
of a form F are left invariant under a unimodular trans-
formation of F, hence the set of primitive binary quadratic
forms of determinant AN (t) is divided into classes of
equivalent forms, Q%S will be used to denote this set of
equivalence classes and {(F)} will represent the class
contalning F‘. It is posslble, by extending the results

of (6], to obtain & group structure for %ﬁ.' Since the
results and proofs cérry over without change, we shall
state, without proof, the principal results of [6]. They
are the following:

Gauss Criterion 1.3. The forms F = [a(t), 2b(t), c(t)]

and F; = [al(t), 2b1(t), cy(t)], with a,(t) # 0, are
equivalent if and only if their determinants are equal and
there exist two elements r(t), u(t) in K[t] satisfying
(2) a,(t) = a(t)r2(t) + 2b(t)r(t)u(t) + c(t)u’(t) and
(3) a(t)r(t) + (b(t) + by(t)}u(t)==0 mod 2, (t)
(b(t) - by (t)Ir(t) + c(t)u(t)==0 mod a,(t).



Indeed, if we get =-s8(t) = [{bv(t) -b, (t)Ir(t) + c(t)u(t)]/a, (t)

and v(t) = [a(t)r(t) + {b(t) + bl(t)]u(t)]/al(t) then
S

takes F into F,.

Lemma 1.4, For any primitive binary gquedratic forms

Fis...,F_ of the same determinant /i(t), there can be

1’ q

found polynomials b(t), c(t), al(t),...,aq(t) such that
CFy~ ey (), 20(t), c(t)ag(t)....aq(t)/a (¢)].

Furthermore, these polynomials can be chosen so that

al(t),...,aq(t), and /i(t) are coprime in pairs.

By the preceding lemma, there can be constructed within any
two primitive classes {F} and {F'}, not necessarily distinct,
of binary quadratic forms of the same determinant, united
forms of the type

F, = [a,(t), 2b(t), ay(t)e(t)] in (F} and

N
M) b, = tag(t), @(t), ay(t)e(6)] 1n (7).

Theorem 1.5. For all choices of united forms (4), the form

[al(t)az(t), 2b(t), c(t)}] belongs to a unique class.

We shall interpret {Fl}[FE]’ the composition of [Fl}_and

{F,], to be the class {[al(t)ae(t), 2b(t), c(t)1}. It is
easily seen from lemma 1.4 and theorem 1.5 that composition
is a well defined, associative operation. Further, the

class containing [1, O, /A(t)] 1s the identity and

{{c(t), 2b(t), a(t)]} is the inverse of ([a(t), 2b(t), c(t)]]).



Hence %ﬂs is an abelian group under composition.

Unless otherwise specified, we shall now assume that

- A(t) is a non-constant polynomial which is not a sqﬁare.
Denote by sz the integral domain K[t,0), & & solution of
the equation Y2 4 A(t) = 0.

Definitions 1.6, The conjugate, written T(t) + g(t)9, of

en element f£(t) + g(t) € in KZ& is defined to be f(t) -
g(t)6 and the norm, N(f(t) + g(t)8), of £(t) + g(t)é 1is
defined to be fe(t) + ge(t) /y(t). The conjugate X, of
an ideal in KA is defined to be the ideal generated by
conjugates of the elements of A, and the norm, N(A), of A

is defined to be AR. An ideal A of KA is said to be

invertible if there is an ideal B of sz such that AB is

principal. Two 1deals A and B are saild to be equlvalent

if there exist principal ideals (w) and ({L) such that

(T)A = (JL)B.

The invertible ideals are divided into classes of equivalent
ideals which we shall dendte by GZX . Let {A} represent the
class containing the ideal A and define {A}{b}, the product
of {A} and {B}, to be the class {AB}. If (A} is an element
of G then A is invertible and there is an ideal a™% such

1

that AA™L is principal. Thus {A}(A"1} = {(1)}. It follows

that GA is an abelian group with {(1)} as its identity.



Using methods similar to those given by Landau in [4], we
exhibit a homomorphism between the groups QA and GA 80
that any result obtained for Q’/A gives rise to a correspond-~

ing result for GA .



CHAPTER II
IDEALS OF KZ& AND THEIR ASSOCIATED BINARY QUADRATIC FORMS

Theorem 2.1. The proper ideals of K[S are those modules

over Kft] having a basis of the form
(). f(t)e(t), g(t)e(t) + c¢(t)é where
(2). £(t)[N(e(t) +6).

PROOF: A proper ideal A of KZX contains a nonzero element
. and hence a nonzero polynomial N(Q ). Denote by a(t)

a nonzero polynomial in A with least degree. Since a(t)é

is iIn A, among the elements of A there 1s one of the form

b(t) + ¢(t)® with c(t) # O and c(t) of least degree, Clearly
the elements a(t), b(t) + c¢(t)@ are independent over K[t].

For any element r(t) + s(t)® in A choose m(t), n(t) such

that s(t) = m(t)c(t) + n(t) and |n(t)] < |c(t)|. We nave
r(t) + s(t)e = m(t)(b(t) + c(t)8) + {r(t) - m(t)o(t)} + n(t)e,

hence {r(t) - m(t)b(t)) + n(t)é is in A. Thus n(t) = O.
Using the-same proceedure, we have a(t)lr(t) - m(t)b(t);
therefore a(t), b(t) + c(t)f is a module basis of A over

K[t].

Since a(t)f® and b(t)e - c(t) A (t) are elements of A,
c(t)|a(t) and c(t)|b(t). Let a(t) = c(t)f(t) and b(t) =
c(t)g(t). Also, c(t)N(g(t) + ©) is A whence f(t)!N(g(t)+9).

7



Conversely, let A be a module over K[t] having a basis as
given in (1) and (2). To prove A is an ideal in KZS s 1t
i1s sufficient to show that the products of the basis elements
of A by the basis elements 1, & of sz are elements of A,
This being evident for 1 we need consider only 6, On
multiplication by 6, we have .
f(t)e(t)e = f(t)[g(t)c(t) + ¢c(t)8} - g(t)f(t)e(t) and .
[e(t)e(t) + c(£)0)6 = £(t)e(t)(N(a(t) + 0)/-£(t)] +
g(t){g(t)e(t) + c(t)6].
Since the above elements are evidently in A, the theorem

follows.

Theorem 2,2, An ideal A of KZL having a basis as given in
(1) and (2) of theorem 1.1 is invertible if end only if the
greatest common divisor of f£(t), g(t), and N(g(t) + 9)/f(t)

18 a constant.

PROOF: Let A' be the K[t];module generated by f(t), g(t) +
€. By theorem 1.1, A is an ideal in le . Bvidently A =
(c(t))A'. If A is invertible then there is an ideal B of "
| K, such that AB is principal; therefore, A'{(c(t))B) is
principal and A' is invertible., Conversely, if A'B is
principal for some ideal B of KZX then AB is principal.

Hence A is 1nvertible if and only if A' is invertible.

Let d(t) denote the greatest common divisor of f(t) g(t),
and N{(g(T) + @8)/f(t). Since f(t), g(t) - @ is a module
basis of A',
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(f(#))(f(t), g(t) + 6, g(t) - 6, N(g(t) + 8)/£(¢t))
(£(t))(£(t), &(t), N(g(t) + 0)/£(t), 6)
(£(t))(a(t), ). |

It follows that A' is invertible if d(t) is a constant,

N(A')

Since N(g(t) + 0) = g2(t) + A(t), d2(t)| A(t) and

(a(t), )% = (a%(t), d(t)8, A(t))
(a(t))(a(t), 6),
If A' is invertible then (d(t), €) is invertible. Choose B

such that B(d(t), €) is principal. We have
B(d(t), 8)(d(t), 8) = (d(t))B(d(t), ©), hence
(a(t), 8) = (a(t)).

Therefore, 6 = d(t)(m(t) + n(t)e} for some m(t) and n(t) in

K[t]. Equating coefficients, we have d(t) is a constant,

Corollary 2.3. If A= (c(t))(f(t), g(t) + 6) and A is
invertible then N(A) = (c2(t)f(t)).

PROOF: The corollary follows immediately from the proof of

theorem 1.2.

Defihition 2.4, A polynomial f(t) is said to be semiprime

to a polynomial g(t) if and only if p(t)lf(t) and pa(t)lg(t)

implies p(t) is a constant.

Corollary 2.5. If A = (c(t))(f(t), g(t) + &) is a proper

ideal in Kp and c{t)f(t) is semiprime to A(t) then A
is invertible and uniquely expressible as a product of a

finite number of maximal ldeals.
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PROOF: 1If d(t) is any common factor of f(t), N(g(t)+8)/f(t),
and A(t) then d(t) divides £(t) and d°(t) divides A(t).
Since f(t) is semiprime to A(t), d(t) is a constant. By
theorem 1.2, A is invertible. The theorem being eﬁident

for A maximal we may assume A 1s properly contained in a
maximal ideal‘Ml. A polynomial of least degree in Ml must
be a divisor of c(t)f(t) and thus semiprime to A(t). From
the above comment, we see that Ml is invertible. Since M1
contains A, Miﬂl contains MlA. Thus ﬁlA is contained in the
principal ideal (N(M;)). It follows that there is en ideal
B. such that'HlA = (N(Ml))Bl' Multiplying both sides by My,

1

we obtaln A = MlBl. 1

N(Ml)N(Bl)' Since B, contains A, B, satisfies the same

Clearly B, is invertible and N(A) =

conditions as A, hence B1 can be factored as MEB2 where

M, is maximal, The equation N(A) = N(Ml)N(Bl) implies

2
|N(B,)] < |¥(a)|. Thus, the process of factoring will

terminate after a finite number of steps; that is, A can
be expressed as a product of a finlte number of maximal

ideals., For uniqueness see [103;227].

Theorem 1.1 allows primitive binary quadratic forms of
determinant A(t) to be associated with invertible ideals
of Kn . Let F = [£(t), 2g(t), h(t)] be a form of deter-
minant A(t). Since - A(t) is not a square, £(t) # O;
hence, by theorem 1.1, (f(t), g(t) + ) is an ideal in KA -
We call (f(t), g(t) + 6) the associated ideal of F. In

view of thecrem 1.2, F is primitive if and only if its
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associated ideal is 1nver£ible. Define ,@’:c;z[_\———5>-c-[A by
#Z({F}) = {A) where A is the associated ideal of F. We have,

Theorem 2.6, @ is a homomorphism of QZB onto GZS .

PROOF: To show # is well defined let F, = [f;(t), 2g,(t),
hl(t)] and F, = [fe(t), 2g2(t), hz(t)] be two equivalent

o= [l o

e unimodular transformetion taking Fe into Fl. By the Gauss

forms with

criterion,
(1).  £(6)v(t) = £5(t)r(t) + {g () + gy(t))u(t)
(2). -£1(t)8(t) = {gn(t) = & (t)Ir(t) + hy(t)u(t) =
(gp(t) - &y (£)Ix(t) + (&5(t) + A(t)Iu(t)/£,(t).

From (1) and (2) we have
(3). To(t)fy(t)s(t) + &y(t)E (t)V(t) =
u(t)e) (t)ey(t) + u(t)e® + r(t)e (t)r,(t).

Equations (1) and (3) give
u(t) (g, (t) + 8)(gs(t) + 8) + r(t) £,(t)(gy(t) +8) =
v(t)f,(t)(gs(t) + 8) + s(t)f(t)f,(t). Hence,
| v(t) (g, (t)+6)/F,(t) }+s(t)

(#). (8y(t) +e)/ £, (t) = u(t) (g, (t)+0)/£,(t)J+x (1)

Let T = fz(t)r(t) + (ge(t) + 0)u(t), o= fl(t). From (%),
we have
(5). wEL(t) = (r(t)f,(t) + (8,(t) + @)u(t)IL
(g, (t) + ©) = (8(t)F,(t) + v(t)(gy(t) + 8)IL .
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Since the determinant of T is 1, it follows that
(W)(fl(t): gl(t) +6) = (fL)(fg(t): ga(t) + 6),

Therefore the associated ideals of Fl and F2 are equivalent,

The fact that £ is onto is an immediate consequence of

theorems 1.1 and 1.2,

To see that @ preserves multiplication let (Fy} and {F,]
be elements of QZS such that F, and F, are the united
forms [f(t), 2g,(t), cy(t)f,(t)] and [f,(t), 2g,(t),

¢, (t)f,(t)] respectively. We have #({F,}(F,]}) =
(£1(6)7,(t), & (t) + 8) and ((Fy1)B((F,)) =

(£,(t), & (t) + 8)(£,(t), & (t) +6). Clearly B((F)(F,))
contains @({F,})#({F,}). Since (8, (t) + 6)2 =

26, (6) (g, (t) + 8) - N(g, (t) + 6) = 2g,(t) (g, (t) + 0) -
£1(£)2,(t) N(gy () + 8)/%, ()2, (t) we have g) () (g (t) + 0),
fl(t)(gl(t) + 0), and £,(t)(g,(t) + @) are elements of
g({F11)8({Fy)). Now F,; is primitive hence the greatest
common divisor d(t) of fl(t), g1(t), £5(t) is a constant.
Since d(t) is a linear combination of f,(t), g (t), f,(%t)
with polynomials from K[t], it follows that g,(t) + 6 is
in @({F,}). Therefore #(({F,}{F,}) = #({F,})B({F,}) and

@ is a homomorphism of QZ& onto GZS . |

Theorem 2.7. If the associated ideal A = (f(t), g(t) + 6)
of F = [f(t), 2g(t), h(t)] is principal then F is equi-
valent to F, = [k, O, O\ (t)/k] for some k in K.
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PROOF: If }L is a generator of A then there are elements
r(t) and s(t) in K[(t] such that

o= r(t)f(t) + 8(t)(g(t) + 6) and |
N(H) = r2()05(8) + 2r(t)s(t)a(t)r(t) + a7 (t)N(g(t) + 0).
By corollary 1.3, N(A) = (N(LL)) = (£(t)). Thus N('L) =
Kf(t) for some k in K and k = ro(t)f(t) + 2r(t)s(t)g(t) +
s%(t)N(g(t) + 0)/2(t).

Chéose u(t) and v(t) so that r(t)v(t) - s(t)u(t) = 1 and

SRHEES]

It follows that FT = [k, 2g;(t), hy(t)]. If

Tl = l: 'gl(t)/k
0, 1

let

then TT, takes F into [k, 0, A(t)/k] completing the

proof of the theorem.

If HA denotes the kernel of @ then, by theorem 1.7, HZX
consists of the classes [Fk], for k in K. Hence & is an
isomorphism if and only if [Fk] = [Fl], the identity class,

for each k in K3 that 1is, if and only if F, is equivalent

k
to Fl for each k in K., It is easlly verified that the
equivalence of Fk and Fl»is the same as the existence of
polynomials X = uk(t), Y = vk(t) satisfying the equation
X* + [ (t)¥? = k. In case |A(t)| is odd, we have v, (t) =

0 and k = uZ(t). Thus,

Co:ollary,2.8. A necesgsary and sufficient condition for
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— @ to be an isomorphism is that the equation ) G [},(t)Y2 =
k have a solution in X[t]. In particular for A (t) of odd
degree, ¥ is an isomorphism if and only if every element of

K is a square.



CHAPTER IIT
DEFINITE QUADRATIC FORMS

Definition 3,0, A binary quadratic form [a(t), 2b(t),

c(t)] is sald to represent f(t) primitively if there are
relatively prime polynomials r(t), s(t) such that
a(t)r2(t) + 2b(t)r(t)s(t) + c(t)s’(t) = £(t).

Lemma 3.1, For any polynomial f(t) primitively represented

by a quadratic form F, there is a form ¥' equivalent to F

having leading coefficient f(t).

PROOF: Let r(t), s(t) be a primitive representation of
f(t) by F = [a(t), 2b(t), c(t)]. Since r(t) and s(t) are
relatively prime, there exist u(t), v(t) in K[t] such that
r{t)v(t) - s(t)u(t) = 1. If we set
_ r(t), u(t
SRREIEH]

then FT = F' is the required form,

Lemma 3.2, EBEvery primlitive binary quadratic form having

determinant /\(t) represents primitively a non-zero poly-

nomial of degree < ]A(t)|/2.

PROOF: For a primitive form F having determinant A(t)
denote by a(t) & non-zero polynomial of minimal degree
represented by F, It is obvious that any representation

of a{t) by F is primitive hence, by lemme 3.1, there is a
15
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form F* = [a(t), éb(t), c(t)] equivalent to F, Now a(t)F'=
(a(t)X + b(£)Y}® + /3y (t)Y°. Choose n(t) in K[t] so that
|a(t)n(t) + (t)] < |a(t)| and let X = n(t), Y = 1. Then
g(t) = [{a(t)n(t) + b(t)}% + /3(t)]/a(t) 1is a non-zero
pblynomial represented by F'. Since any polynomial repre-

sented by F' must also be represented by F, we have

2ia(t)| S_max[E;a(t)n(t) + b(t)|, Iés(t)ll = fz;(t)l-

Corollary 3.3. Let K* denote the multiplicative group of K.

Then, for [}(t) of degree one, Q is isomorphic to

A
K*/K*e.

PROOF: By lemmas 3.1 and 3.2, a class (F} contains a form
[k, 2b(t), c(t)] for some k in K. Define IP’:Q L= K*/K*2
by yb([F]) = k, The fact that 4}15 an isomorphism follows

from the proofé of theorem 1.7 and corollary 1.8,

Corollary 3.4. If K is a finite field then Qp is finite.

PROOF: By lemmas 3.1 and 3,2, there are in each class
forms F = [a(t), 2b(t), c(t)] with |a(t), <  A(t), /2.
Choose n(t) so that |b(t) + n(t)a(t)| < ia(t); and let
T = [i: n(zi]
Then FT = [a(t), 2b'(t), c'(t)]'satisfies
(1) )] < jae)] < | A2
Since K is finite there are at most a finite number of

polynomials satisfying (1). Hence QA is a finite group.
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Denote by sg[f(t)] the leading coefficient of a polynomiél
£(t) and set

11if |[§(t)| is even and -sg[/\ ) is a square,
X(A)‘={ 01f A(t) = 0, and " |

-1 otherwise.

Definition 3.5. A binary quadratic form having determinant
A(t) is sald to be definite (indefinite) if X (A ) =

-1 {(X(A) =1).

Definition 3.6. A definite binary quedratic form F =
[a(t), 2b(t), c(t)] having determinant A(t) is said to
be reduced if

(2) |o(t)| < |a(t)] < |A(t)] 2.
We say that F is properly (improperly) reduced if (2) holds
with inequality (equality).

If F 18 properly reduced, then the forms FTk,

N
k 0, 1/k

for k a non-zero constént in K, are properly reduced
forms equivalent to F. For F improperly reduced,
sgla(t)]sglc(t)] = sg[A ], hence for r, s in K with

not both r and s zero, sg[a(t)]r2 + sg[a(t)]s2 #0 It is

easy to verify that the forms FTr g*
2

—

T = |Ts -sglc(t)]s/(sgla(t)]r® + sgle(t)]s®)
T8 [?: sgla(t)]r/(sg[a(t)]r® + sglc(t)]s?)
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[

are improperly reduced forms equivalent to F. We now show

that these are exactly the reduced forms equivalent to F,

Theorem 3.7. In eirery class of QA s X(4 ) = -1, there

" 18 a reduced form F, Moreover, if F is properly(improperly)
reduced and F' is any reduced form equivalent to F then

F' 1s properly(improperly) reduced and there exists k # O
in X(r, s, with not both r and s zero, in K) such that

- o

PROOF: The proof of the first statement is identical to

(1) of corollary 3.4. To verify the second statement,

T = I‘(t), u(t)
s(t), v{(t)

be a unimodular transformation taking F = [a(t),2b(t),c(t)]

let

into F' = [a'(t), 2b'(t), ¢'(t)]. By the Gauss criterion,

we have

(3) a'(t) = a(t)re(t) + 2b(t)r(t)s(t) + c(t)s>(t) and
a'(t)v(t) = a(t)r(t) + (b(t) + b'(t))s(t),

L
) att)a(s) = (o(t) b (8)12(5) + e(6)s().

We now consider the case in which F 1s praperly reduced.
Completing squares in (3), we obtain

(5) a'(t) = [la(t)r(t) + b(t)s(t))® + A(t)s(t)1/a(t).
Hence |a'(t)| = [m®(t) + A(t)sB(t)| - |a(t)[, m(t) =
a(t)r(t) + b(t)s(t); therefore, |A(t)] > |a'(t)]+ |a(t)]| =
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Ime(t) + [}(t)se(t)L Since the coefficient of

t IZ}(t)L}+ 2’S(t),in m2(t) + [}(t)sg(t) cannot vanish
unless s(t) = 0, it follows that s(t) = O and a'(t) =
a(t)re(t). Now
-1 _ | v(t), -u(t)

-s(t), r(t)
tekes F' into F, hence a(t) = a'(t)ve(t) and we deduce
that r(t) is a constant. If we set r(t) = k, then
a'(t) = a(t)k® and |a(t)| = |a'(t)|. Thus F' 1s also
properly reduced. Equating degrees in the last equation
of (%), we see that ]a'(t)l + Iu(t)|= lb(t) - b'(t)'S
max[lb(t) b'(t)l}. Since Ia'(t)l exceeds both lb(t)l

and |b'(t)

3

, 1t follows that u(t) = O, whence T = Ty -

Assume now that F is improperly reduced. Since T~1 takes
F' into F, it follows from the preceeding proof fhat F'o
must be improperly reduced. From (5), we have I[)(t)l_z
|2 ®)] + Ja®)] = [n¥(6) + A(£)2(t)

constant, Comparing degrees in equation (3) and (4) and

, thus s(t) is a

noticing that'la(t)l = lc(t) , we see that r(t), u(t),

and v(t) are constants, Set r(t) = r, s(t) = s, u(t)

u, and v(t) = v. Hence, from (3) and (4), we have v

sg(a(t)]r/sgla’'(t)], u = -sg[c(t)]s/sg[a'(t)], and
sela’ (t)] = sgla(t)r” + sglc(t)]s”.

This concludes the proof of the theoren.
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L4

2

Corollary 3.8. If K* = K* then QZS is infinite for A(t)

of odd degree greater than one.

PROOF: The forms F, = [t-a, 2b, [A(t) + b°)/(t-a)],
where b° = -A(a) and A\(a) # 0, are reduced and primitive,
By theorem 3.7, the clesses [Fa] are distinct for distinct

values of a, The condition K*2

= K* implies K is infinite,
hence there are an infinite number of values a in K for
which A(a) # O3 therefore, there are an infinite number

of distinet clesses {F_} in Q. .
a ALY

Lemma 3.9. A primitive binary quadratic form represents

primitively polynomials prime to any given polynomial,

PROOF: Let F = [a(t), 2b(t), c(t)] be a primitive form
and £(t) be any given polynomial. Suppose f£(t) =

o e
| pi (t) is a factorization of f(t) into powers of

irreducible polynomials pi(t). Let X, = 1, Yi = 0 when-

ever (a(t), pi(t)) = 1; ¥ = 0, Y, = 1 whenever

(a(t), py(t)) =p4(t) and (c(t), py(t)) = 1; and X; = 1,

4 = 1 whenever (a(t), c(t)= pi(t). Since F is primitive,
2 . 2

a(t)Xy + 2b(t)X, Y, + e(t)¥]

Y
is prime to py(t). By the
Chinese remainder theoren, there are polynomials r(t),
s(t) such that r(t)=—X, mod pi (t) and s(t)—=Y; mod
p: (t), 1 =1,...,n, Hence r(t)/(r(t),s(t)),
s(t)/(r(t), s(t)) is a primitive representation of a

polynomial prime to f(t).
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Definition 3.10. A class (F) of Qn is sald to be prime if

F represents an irreducible polynomial,

Lemma 3.11. Every class of Q[l is the product of prime

classes.

PROOF: Let {F} be any class of QIS' By lemma 3.9, F
represents primitively a polynomial a(t) prime to A(t).

If |a(t)| = 0, then there exist k in K such that F~F, =

[k, 0, A(t)/k]. It is evident that F, represents pri-
mitive non-constant polynomials prime to /\(t), thus we
may essume |a(t)| > 0. Let F' = [a(t), 2b(t), c(t)] be

a form equivalent to F with leading coefficient a(t) and

n e
let a(t) = 1”lpii(t) be a factorization of a(t) intoc powers

of irreduclble polynomlals. Since the united forms Fi =

e, e,
[py (t), 20(t), e(t)p,7(t)...p, (t)/p,(t) are each prim-
e

n
itive, ]T'[Fi] i is a factorization of (F'} = {F} into
i=n ,

prime classes.

Lemmg 3,12, Let h(t), £(t), a(t) be polynomials in K[t]

such that (£(t), a(t)) = 1 and h(t)==£2(t) mod a(t).

-
The .congruence h(t)=[ 3 X a.i(t)]2 mod a”(t) has a
1=0

1
solution X; = f,(t) with f,(t)==f(t) mod a(t). Further-
more, f,(t) may be chosen so that Ifi(t)| < la(t)i,

i = O,...,n-l.

PROOF: Let X, = f(t) and assume the existence of poly-
nomials X; = f,(t), 1 <1 < J, such that h(t) =
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-1 -1
(S xat(6)12, 31 we set a(t) = (a(t)- [ xyad(e)12)/

=4

3 .
ad(t), then h(t) - (2 x,at ()17 =g(t)ad(t) - QXJXOa'j(t)
mod aJ+l(t). Since X, = £(t) is prime to a(t), there

exists X j(t) such that QXJX -—-g(t) mod a(t). Thus,

3,
—
n(t)= 2 ) a'()1% moa &9*}(t). By induction, the
congruence has a soclution for any positive intéger n, The

fact that fi(t) may be chosen so that Ifi(t)l < Ia(t)l is

an lmmediate consequence of the preceding statements.

Theorem 3.13. If K is algebralcally closed then every

class of QZS is a square,

PROOF: In view of lemme 3.11, it is sufficient to show

" that the classes {c(t-a), 2b, (A(t) + b2)/c(t-a)], where
b2 = -[}(a) and A\(a) # 0, are squares. Let A(t) =
sglA\1] ” (t-d ) °1 be a factorization of /\(t) in X[t].

Since c(di-a) = ri for some r, in K, and c(t -a):::ri

mod t-d;, i1t follows from lemma 3.12 that there exist
polynomials u,(t), 1 = 1,...,n, such that c(t-a)}EEuf(t)
mod (t di) i. By the Chinese remainder theorem, there is
a polynomial u(t) such that c(t-a)EEEug(t) mod A(t). Let
u?(t) + v(t) A(t) = e(t-a). Then [-A(t), 2u(t), v(t)]
is a primitive form having determinant -c(t-a). By cor-

ollery 3.3, contains only the identity class

Q
~c{t-a)
{1, 0, -c(t-a)]}, hence [-A(t), 2u(t), v(t)] —~

[1, 0, -c(t-a)]. Let
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Te R R

be a unimodular transformation taking the second form into
the first. We have rz(t) - c(t-a)sz(t) = - A(t), hence
[e(t-a) £ 2r(t), sz(t)] and [c(t-a)s(t), * 2r(t), s(t)]
are primitive forms having determinant /\(t). Since

([e(t-a), t2r(t), s°(t)]1) = ([c(t-a)s(t), *2r(t), s(t)1}?
1t suffices to show [c(t-a), 2b, (A(t) + b2)/c(t-a)]
1s equivalent to oné of the two forms [c(t~a), *2r(t),
sg(t)]. By a translation, we may assume r(t) is reduced
modulo c(t-a); thus, r(t) is some constant r in X. Now
—[}(a)EEErQEEEbE

choice of sign, [c(t-a), 2b, (A(t) + b2)/c(t-a)] is

mod c(t-a). Hence b = r or -r and, by

equivalent to one of the forms [c(t~a), *2r(t), se(t)].

Corollary 3.14, If K is algebraically closed, A(t) has

odd degree greater than one and is not a power of a linear
polynomial, then there are elements of QZS of order 2n, n

any positive integer.

PROOF: If f-a is a linear polynomial such that (t-a)n
exactly divides A(t), then the form [(t-a)®, 0, /4 (t)/
(t-a)™] is primitive and has determinant A(t). Since
[(t-2)%, 0, A(t)/(t-a)"] and [A(t)/(t-8)", 0, (t-a)"]
are equivalent forms, the class {Fl] = ([(t-a)n, o,

' j}(t)/(t—a)n]} has order < 2, Now /\(t) has odd degree
> 1, hence n < l[}(t)l/z or I[;(t)l -n < |[§(t1/2. It

follows that one of the above forms 1s reduced. By



oy

theorem 3.7, [FlJ # [FO = [1, 0, A(t)]]), hence {Fl] has
order 2, Now suppose {Fn] is a class having order 2n,
n > 1, By theorem 3,13, there 1s a class {Fn+l] such that

o .
{Fn+1} = {Fn]. It is epparent that the grder of [Fn+l}
n+l

is a divisor, 23, of 2 Since {Fn]2

= (Fn+1}2
{Foj, 2™ givides 23-1. Hence J = n+l and the corollary

follows by induction,

Corollary 3.15. Given the same hypothesis as that of

corollary 3.1l4, the prime classes do not have bounded
orders,
PROOF: Let [F } be a class of Q,\ having order 2" and

m
TT [P ] °1 be a factorization of {F } into prime classes.

Let p, denote the order of {Pi} and p be the least common
multiple of the set of p;, 1 = 1,...,m. Since [Fn]P is
the identity class, ot divides p. It follows that at

least one Py must be divisible by 2n,

Definition 3.16. For 7) in K(t, €) define AT /dt, the

derivative of T) with respect to t, to be -f%(t,?])/
f'(t,?]), where f(t,y) is the irreducible polynomial )

satisfies over K(t) and f! (t,y), t,y) denote the

£4(
partial derivatives of f(t,y) with respect to t and y,.

It is shown 1n [ 9 ] that the usual rules for sums,
products, and quotients hold for d77/dt. In particular,
if the i-th derivative of m is denoted by ’U(i)then'9(1)=

d__l_(t)/eei'l where d,(t) is e polynomial in K[t]. Let 6(a)

1
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denote a solution of the equation Y2 + A(a) = 0, for a
in X, and let 8(a)(t) = a,(a)/0(2)?1"1 whenever A (a) #
Ol

Lemme 3.17. If A is an ideal in K end 7] is an element

of A%, n > 2, then A(t)an /dat 1s in ant

PROOF: A has a module basis over K[t] of the form
a(t)e(t), b(t)e(t) + c(t)6, hence A" is generated by
cn(t)ai(t)(b(t) + G)J, i+J = n. For 7] in A", there are
polynomials riJ(t) such that
3 n i J

U IR OO L OILIO R R
Since the derivatives of the terms appearing on the right,
when multiplied by A(t), are elements of An'l,

A(t)an/at is in A2,

Lemmg 3,18, If 6(a) 1s an element and K and Af(a) # 0
then ‘
— ol (1) 1,42 n
-/_\.(t):[izo @(a) "/ (t-a)”/11]” mod (t-a) .

PROOF: By lemma 3,12, there are constants Cos+ee2Cpy 19
n-1 n=

with ¢, = f(a), in X such that -A(t)=[ 3 ci(t-a)i]2
i=0

mod (t-a)”.
Let P be the ideal in K[S generated by t-a, -6(a) + 8. It
is clear that P is a prime ideal in Ky ~and PP = (t-a).

n-1
Now - A(t) - [ 3 ci(t-a)i]2 has for factors, 7] =
i=0 :
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e - 12:0 Ci(t-a.) and 77' = 12'0 ci(t-a.) + 8, Since Cy =

8(a), 7' 1s prime to P, hence 7) is in:Pn. By lemma,
3.17, Ai(t)'??(i) is an element of Pn'i, 1<{n-1 <n, We

have

ot M= 2t)e®) - Ale)ire, =
(-1)Yay(8)0 - Aty =
(-1)%ay(6) (-6 (2)40)+(-2) 4, (£)0(a)- A"(t)1le,
modulo P. Thus (-1)*a,(t)6(a) - A'(t)ilc, is divisible
by P, hence is in (t-8). It follows that (-1)'d,(a)6(a) -
£§'(a)i!ci"& 0, therefore c; = (-l)idi(a)e(a)/ZAi(a)il =

a,(a)/a0(a)?t - o(a)() /11,

Lemma 3.19. Let - A(t)==f2(t) mod p(t) where p(t) is an

irreducible polynomial in K[t] prime to A{t). The class

{(p(t), 20(t), &(t)]}, -£5(t) + g(t)p(t) = A(t) has order
q 1f and only if q is the least positive integer for which
the form [1, O, A(t)] primitively represents p3(t).

PROOF: The hypothesis of the lemma implies the existence
of poiynomials 8o(t)s...og, 1(%), go(t)=f(t) mod p(t),
such that -Z&(t)EEE[Eiz gi(t)pi(t)]2 = u®(t) mod p"(t).
Since the forms [p(t), 2f(t), g(t)] and [p(t), 2u(t),
v(t)pn'l(t)], -ue(t) + pM(t)v(t) = L. (t), are equivalent,
we have | -
([P™(), 2u(t), v(£)1)} = ([p(t), 2u(t), v(t)p" ()1 =
([p(t), 2f(%), &(t)1)".
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If ({p(t), 2£(t), &(t)]1} has order g then {p%(t), 2u(t),
v(t)1) = {[1, 0, A(t)]). Evidently, the equivalence of
(0%(t), 2u(t), v(t)] and [1, 0, A(t)] implies p%(t) is

primitively represented by [1, 0, A(t)].

Conversely, assume pk(t).to be primitively represented by
[1, 0, A(t)]. By lemma 3.1, there is a form [pk(t),
2b(t), c(t)] equivalent to [1, 0, A(t)]. Since

(Ip(t), #2b(t), c(t)p* 1(£)13F = (1p®(t); 220(t), e(t)1)
({1, 0, A(t)]}, the classes ([p(t), *2b(t), c(t)p* 2(t)])
o=

have orders which divide k. From the condition b
fa(t) mod p(t), b(t)=f(t) mod p(t) or b(t)=-f(t) mod
p(t). It follows that [p(t); £(t), g(t)] is equivalent

to one of the forms [p(t), *2b(t), c(t)pk"l(t)]; therefore,
the order of {[p(t), 2f(t), g(t)]) is a divisor of k, Thué
{[p(t), 2f(t), g(t)]} has order q, the least integer for
which [1, O, A(t)] primitively répresents p(t).

Remark 3.20, If re(t) + ll(t)sz(t) = ph(t)-and q = h|p(t)L
then for /\(t) of odd degree
ax |Aa®], |r(#)] = a2, ana 2fs(t)| <a - |A(H)]
whenever q 1s even,
a2 |A®)], |r)] < o/2, and 2]s(t)|=a - | A®)]

whenever q is odd.

Theorem 3.21, Let A(t) = 2r+l with r > 0 and 6(a) £ O
be in K, For the prime class {[t-a, 20(a), (A(t) - A(a)V

(t-a)]) to have order 2n+e, € = 0 or 1, it is necessary
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for the equations

-l

J-H); s Ckxj = 0, where Ck = Q(a)(k)/kl,

(7)

i = n+l, . a_'q-l, and ,j = O,..,,n+€-r-l,
to hgve a non-trivial solution in K. Moreover, the order

of the prime class 1s < 2q whenever such solutlons exist.

PROOF: Assume {[t-a, 20(a), {A(t) - L (a)}/(t-a)]} has
order q and let u(t), v(t) be a primitive representation of
(t-a)2. From (6), we have q> |[§(t)i, Iv(t)l~5 n+e-r-1,

n

and Iu(t)l <n. Let u(t) = Z ui(t-a)i, u; = 0 for
0]

; n+e-r-1 = 1
1> fu(t)s v(e) = 5 vi(t-a)l, v, =0 rfor 1> |v(t)];

and A = L c (t-a)1 We have u2(t) + vg(t) H(t)=
9,8 iZb i : & L lt)=—

2
ue(t) -’ve(t)lﬁq g—0 mod (t-a)?, It follows that one of
)

the factors u(t) - v(t)qu_a or u(t) + v(t)ﬁ;q_a is

divieible by (t-a)?. By changing the sign of v(t), we

may assume u(t) - v(t)[quaEEEO mod (t-a)?. Thus
u = 2 C, .V, i = 0 evoaeslly a:rld
17 g4hey K ’

- cka =0, 1 =n+l,...,q9=1, J = O,;..,n+e-r-1.

Since v(t) # 0, the equations given in (7) have a non-
trivial solution in K.

to be & non-trivial solution of

Now assume Vo, ...,V . . .9

(7) and let u, = 3 ¢ v,, 1 =0,...,n, If we set
1 g4k ® J’ SR

n i n+€-r-1 1
u(t) = 2 wu,;(t-a)” and v(t) = 2 v,(t-a)” then
i=0

=
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u(t) - V(t)Aq‘,a_::-_O mod (t-a.)q, Hence

wBt) - vR(E) Ly =) + vB(t)A(t)==0 mod (t-a)%.
Let u2(t) + vz(t) A(t) = e(t)(t-a)2. Since |u2(t) +
va(t)lk(t)l‘cannot exceed g, c(t) is some constant ¢ in K.
Set (u(t), v(t)) = (t-a)®, Since vy # 0 for some 0 <1 <
n+€-r-1, v(t) # O whence s < lv(t)I < ¢/2., Thus u(t)/
(t-a)®, v(t)/(t-2)® 18 a primitive representation of
f:.:(.t--a.)q'28 by [1, 0, A(t)]. By lemma 3.19, the order of
{[c(t-a), 20(a), {A(t) - A(a)}/c(t-a)])} 1s a divisor of
g-28, Since ([c,-O, AN(t)/c]) has order a divisor of 2,
{{(t-a), 26(a), {A(t) - AN(a)}/(t-a)]} has order less
than or equal to 2q.

Let A(t) be a polynomial of odd degree in K[t], K' a
field containing K, and QQS the clags group of primitive
binary quadratic forms over K'[t] having determinant A(t),
If F is any primitive form over K[t] then F.is primitive
with respect to K'[tj; therefore, for each class {F} of
sz there is a corresponding class {F}' = @g{F} in le .

t ! th
A into QA wl

kernel Hﬁ' the classes {[z, 0, /\(t)/c]} such that ¢ is

Lemma 3.22. @ is a homomorphism of Q

& square in K',

PROOF: Since @ is evidently a homomorphism, we need only
show that H¢ is the kernel of @, Suppose F(F] =
{{1, 0, A(t)1)}' the identity of Q'A , and let F, be a
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reduced form in {F}. Now Fl is; by definition reduced with

respect to K'[t] hence F. and [1, 0, A(t)] are two reduced

1
forms in @(F}. By theorem 3.7, the leading coeffieient of
Fl must be a square in XK', Thus FIV[c, 0, A(t)/c] for
some ¢ in X which is a square in XK', Conversely, the
forms [k, 0, A(t)/k®] and [1, O, A(t)] ere equivalent

for each k in X', Thus H¢ igs the kernel of d.

Theorem 3.23. Let A{(t) be a polynomial of degree 2r+l,>

r > 0, which is not a power of a linear polynomial in
K[t]. The number of prime classes (t-a, 26(a),
(A(t) - A(a)}/(t-a)]), with 6(a) in K, having order q =

2n+e, € = 0 or 1, is finite.

PROOF: In view of lemma 3.22, it is sufficient to prove
the theorem for K algebraically closed. From theorem
3.7, none of the above prime classes have order 1 and
have order 2 if and only if t-a exactly divides A(t).

Hence we may assume q > 2.

Since the equations (7) must have a non-trivial solution
in K whenever {[t-a, 26(a), { A(t) - A(a)}/(t-a)])} has
order q, it follows that the rank of the coefficient
matrix / \

A, = G(a)(i+J)/(i+J)l) s Where
J=1,...,n+te-1 and 1 = r+l-¢,..,n,

is léss than m = n-r+€, the number of columns of Aa‘

Hence all the minor determinants of Aa having order m
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must be zero, Let Aj,a » J=1,...,8, denote the minor
determinants of Aa having order m, Substituting di(a)/
6?(3,)21"'l for G(a)(i), we have e(a).Ad,a = fJ(a)/cj ﬁfj(a)
where fJ(t) is a polynomial in K{t] independent of the
cholce of a and cJ, e'j are rational integers. Hence the
rank of A, 1s ;ess than m whenever fj(a) =0, 1<JKs.
Since a non-zero polynomial can have at most & finlte
number of roots in K, the theorem will follow if we can
exhibit a J for which fd(t) is not identicelly zero,  If
we assume fJ(t) to be identicallyvzero for 1 < J £ s,
then the rank of A, 1s less than m for each _a in K such
that /A\(a) # 0. Thus the equation (7) have a non-trivial
solution for each a in K such that A(a) # 0. From
theorem 3.21, the order of {[t-a, 26(a), |

(A(t) - A(a)}/(t-a)]) is < 2q., Hence the prime classes
have bounded orders and we have obtained a contradiction

of corollary 3.15.

Corollary 3,24, Let the hypothesis be the same as given

. in theorem 3.22, If K is algebraically closed and
uncountable then the number of prime classes having

infinite order is uncountable.

PROOF: Since the forms [t-a, 28(a), {A(t) - A(a)}/(t-a)]
are reduced, they are in distinct prime classes of Q[A'
Therefore, the number of prime classes in Q[S is uncount-

able. By theorem 3.23, there are at most a countable
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number of prime clesses having finite order; therefore,
the number of prime classes having infinite order is

uncountable,



CHAPTER IV
INDEFINITE QUADRATIC FORMS

Lemma 4.0, If X (A) =1 then there is a polynomial u(t),

unique except for sign, such that Iug(t) + [3(t)| <
|A(e)] 72,

PROOF: Let A(t) = §? diti and consider the equations
Xg = ~dox
XXy g Xeo1¥x = ~dye_1
X Xo + Xy q1Xq + eennnn + XX, = -4y,
Since -d2k is a square, the equations have a sglution
Ugs+-+.sW in K, It is apparent that u(t) = 3 uiti

1=0
satisfies the condition ,ug(t) + [§(t)| < k. If v(t)

is any polynomial such that Ivg(t) + [S(t)l < k, then -
[u(t) - vB(t)| = |u(e) + v(e)]| + |u(s) - v(t)] < k.
Now |u(t)| = |v(t)| = k, hence Iu(t) + v(t)l = k or
lu(t) - v(t)] = k. Thus v(t) = #u(t).

Notation 4.1, Denote by D(t) a polynomial satisfying the

condition |DE(t) + (t)] < |A(t)]/2.

Definition 4.2, A form [a(t), 2b(t), c(t)] having

determinant A(t), X(A) = 1, is sald to be reduced if
(1) |p(t) - v(e)| < |a(e)]| < |p(e) + (e
33
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~ Lemma 4.3. If F = [a(t), 2b(t), c(t)] satisfies the

conditions of definition 4.2 then
(2) [p(e)] = |Aaw)|ra |a)] < |Aw)] /2

(3) no other form obtained from F be a translation

~1s reduced,

(%) [c(t), 2b(t), a(t)] is reduced.

PROOF: (2) Since [D(t) - b(t)| # [D(t) + b(t)],
In(t)| = |

(3) If b(t) 1s replaced by b'(t) = b(t) + h(t)a(t),
h(t) # 0, then [D(t) - b'(t)| = |n(t)| + |a(t)| > |a(t)].

(4) We have {D(t) + b(t)}(D(t) - b(t)) = D (t) +

A(t) - a(t)e(t)., If D(t) - b(t) # 0 then [D(t) + b(t)| +

Ip(t) - v(t)| = [a(t)] + |e(t
Ce®)] < |p(e) +p(e)|. 1f D(t) - b(t) = O then D?(t) +
A(t) = a(t)e(t), hence |c(t)] < |D(t) + b(t)] .

b(t)| =

» hence ’D - b(t),

Let F = [a(t), 2b(t), c(t)] have determinant A(t), X(A)
= 1. Choose q(t), s(t) in K[t] so that D(t) + b(t) =

q(t)e(t) + s(t) and Is(t)i < Ic(t)l. The form Fy =
[e(t), 2b1(t), al(t)] obtained from F by the transformation

0, -1
[;, q(t)J

is called the right neighbor of F,

Lemma 4.4, If Ic(t)l < I[B(t)l /2 then F; is reduced.

PROOF: Since b,(t) = c(t)a(t) - b(t), D(t) - b, (t) =
g(t). Hence |D(t) - bl(t)l'< Ic(t)l < l[;(t),/e =
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Ip(e) + v (8)].

Lemma 4.5. If [c(t)| > |A(t)|/2 then |a,(t)] < |e(t)].

PROOF: Since ay(t)e(t) = A(t) + b5(t) = A(t) + D(
~2D(t)s(t) + 8°(t),

lay (£)] +]e(t)] < max[i[}(t)+D2(t)|,l[}(t)|/2+|s(t)i,2ls(t)l}

< max{ |A(t)]/2+]a(t)[,2[s(t)] 1.

1r |a, (t)] + [e(t)] < |A(E)|/2 + [s(t)] then |a (t)] <
|ae)] /2. 12 |ag ()| + Je(t)]| < 2]s(t)] then |a (t)] <

.‘s(t)l < Ic(t)l.

t)

By lemmas 3.4 and 3.5, a succession of right neighbors F,

Fl’ F2, . ultimately gives a reduced form, and thereafter

only reduced forms, these forming a chain, say

[al(t), 2b1(t), ay(t)], [ae(t), 2b2(t), a3(t)],...
Since [c(t), 2b(t), a(t)] is reduced with [a(t), 2b(t),
c¢(t)], the chain can be extended backwards, each reduced

from Fi having a reduced left neighbor Fi-l such that Fi

1s the right neighbor of F, ,.

rl(t)s rg(t)
r3(t), 7(%)

Theorem 4.6, If ’ ]

is a unimodular transformetion taking a reduced indefinite
form into a reduced indefinite form then exactly one of
the following is true:
(5) [ro(8)] > |ra(8)]s [r3(®)] > [ry(¥)
(6 |ry(®)] > |rp(®)], [r3(0)] > |ry(v)
(7) Ié(t) = r3(t) = 0,

E]

s, Or
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Let Fy = [al(t), 2b1(t), cl(t)] be the given form and FT =
F, = [ae(t), 2b,(t), ¢,(t)]. By the Gauss criterion,
applied in both directions, we obtain

' ' 2 2
as(t) = a;(t)ry(t) + 2bl(t)r1(t)r3(t) + ¢y (t)r3(t)

(8) 2, 2
a)(t) = ay(t)ry(t) - 2b,(t)rg(t)ry(t) + cy(t)r3(t),
ap(t)ry(t) = &) (t)ry(t) + (by(t) + by(t)Irg(t)

(9)
al(t)rl(t) = a5(t)ry(t) - [bl(t) + be(t)]r3(t), and

—as(t)r,(t) = [by(t) - by(t)Ir () + ¢, (t)r3(t)
al(t)re(t) = [bg(t) - bl(t)]rq(t’) - cg(t)r3(t)-

If r3(t) = O then T is & translation. It follows from

(10)

lemma 3.4 that r,(t) = 0. Since
[z4(t), x3(t)
T. =
1 Lrg(t), ry(t)
takes [c,(t), 2by(t), a,(t)] into [en(t), 2b,(t), ay(t)ls
ro(t) = O implies r3(t) = 0. Thus we may assume

ro(t)rg(t) # 0,

If rl(t) = 0 then r;(t)ru(t) - r2(t)r3(t) = -re(t)r3(t) =
1, hence |r2(t)| = |r3(t)| = 0. By comparing degrees in
the second equation of (8), we see that lru(t)l >0, Ina
r3(t)| >

gimilar manner, we obtain irl(t)[ > Ire(t)

2

lru(t)l whenever r)(t) = O,

Now assume rl(t)re(t)r3(t)r4(t) # 0. Since by(t), by(t)
have the same leading coefficient as D(t), lbl(t) + bg(t)l
= |A(t)|/2. From (9), 1t follows that |ry(t)] cannot
exceed both irl(t)l and |ry(t)| . Replacing T by Ty, we
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see that lrg(t)l likewise caﬁnot exceed both irl(t)land
|ry ()]

If |r,(t)| 2 lr'l(t)] then lru(t)l > |ro(t)]s fr3(t)|. we
‘see from (8) that Iru(t)l # |r3(t)| and, replacing T by
T, |rp(t)]| # |ry(t)|. Stnce r(t)ry(t) - rp(t)rg(t) = 1,
|z ()] + |zy(0)] = |rp(t)] + |r3(t)| hence (6) hoids.

Ir lrl(t)| 2> Iru(t)l then, as in the preceding manner, (5)
holds.

Theorem 4.7. If F = [a(t), 2b(t), c(t)]) and F' =

[a'(t), 2b'(t), c'(t)] are equivalent indefinite reduced
froms then there is an element k in K such that FT,,

. K
- |%& O
K 0, 1/k |°

is in the chain of reduced forms containing F',

PROOF: Let
rl(t).! rg(t)

r3(t), ru(t)
be a unimodular transformation taking F into F'. Now T
must satisfy one of the three conditions of theorem 4,6,

The theorem being evident in case (7) holds, we need con-

'sider only (5) and (6).

Suppose (5) holds for T and let

0, -1
- Ny = l:l. qi%t)]

be the transformation taking F,, the 1th

right neighbor of
F', into ite right neighbor Fi+l' Ir



38

Y
1s any matrix satisfying (5) then Is(t),, lu(t)l > 'V(t)l,

hence .
wn = | 8(t)s r(t) + s(t)a, (t)
v(t), -u(t) + v(t)qy(t)

must satisfy either (5) or (7) whenever MN, takes a
reduced form into a reduced form, Since the degree
coefficients of TNO...Ni decend with increasing i, after

a finite number of steps we obtain a matrix TN N

O...n
satisfying (7). That is, TNO"'Nh = T, for some k in K,
Hence FIN,...N_ = F'N,...N = FT, so that FT, is the n+1""

Q***"'n k k
right neighbor of F'. -

Now let T satisfy (6) and

ry(t), r3(t)

r(t), T (t)]| ’

the matrix taking [c(t), 2b(t), a(t)] into [c'(t), 2b'(t),

T* =

a'(t)]. Clearly (5) holds for T¥; therefore, as in the
preceding proof,[kec(t), 2b(t), a(t)/ke] is in the chain
of right neighbors of [c'(t), 2b'(t), a'(t)] for some k
in K. By definition, [a(t)/k>, 2b(t), k°c(t)] is in the
chain of left neighbors of F',

Definition 4,8, T is said to be an integral automorph of

'a form F 1if T is a unimodular transformation with co-

~efficients in K[t] which takes F into itself.

Lemma 4,9, The integral automorphe of a primitive form

F,[S(t) the determinant of F, are the transformations
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£{t) - b(t)e(t), -c(t)g(t)
a(t)e(t) » £(t) + b(t)e(t)

where £2(t) + g2(t) A (t) = 1.

(11)

PROOF: By the Gauss criterion,
- (330

is an integral automorph of F if and only if

a(t) = a(t)r2(t) + 2b(t)r(t)u(t) + c(t)u(t)

(12) a(t)v(t) = a(t)r(t) + 2b(t)u(t)
-a(t)s(t) = e(t)u(t),

Since F is primitive, a(t) divides u(t). If we set u(t) =
a(t)g(t) then

1 = r2(t) + ab(t)r(t)e(t) + c(t)s(t)
(r(t) + b(t)a(t))}® + &®(t) A (¢).
Letting £(t) = r(t) + b(t)g(t), we have r(t) = £(t) -
b(t)e(t), s(t) = -c(t)g(t), u(t) = a(t)g(t) and v(t) =
f(t) + b(t)g(t). Since it is apparent that any matrix of

the form (11) satisfies (12), the proof of the lemma is

complete.

Definition 4.10. A chain C of indefinite reduced forms is

sald to be periodic if for F in C there is an integer n
and a kK in K such that FTk,

k, 0 |
Ty = [ ’ 1/5] s
th

is the n right neighbor of F.

Theorem 4,11. A necessary and sufficient condition for a

chain C of indefinite reduced forms of determinant A\ (t)
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2

to be periodic is for the Pell equation X°= + A(t)Y® = 1

to have a non-trivial solution in K[t].

PROOF: To show necessity, let F be a form in C and Fn,

the_nth

If N

right nelghbor of F, be obtained from F by T, .

th

denotes the matrix taking Fi’ the 1 right neighbor

i

~of F, into its right neighbor Fi+ O....Nn_1
1

takes F into F,. Since NTE is an integral automorph of
F = [a(t), 2b(t), c(t)l,

vt - [f(t) s p0a(t), | solt)g(t) )J

1 then N = N

a(t)e(t) t)e(t

where fz(t) + [S(t)g (t) = 1. It follows easily by
induction that NT'
|£(t) + a(t)p(t)| > lect) - g(t)b(t)|. Therefore g(t) #

O and X = £(t), Y = g(t) 1s a non-trivial solution of the

satisfies (6) of theorem 4,6, hence

Pell equation.

Now let f£(t), g(t) be a non-trivial solution of the Pell

equation and

- E(tg(')ﬁf e, f(tiqﬂ%gg(t)]
be an integral automorph of the reduced form [a(t), 2b(t),
¢(t)]. We may assume lf(t) -.g(t)b(t)l > ,f(t) + g(t)b(t)l
since g(t) can be replaced by -g(t). Since F is reduced,
T must satisfy (5) of theorem 4,6, By theorem 4,7, there

is 2 k¥ in K such that FTT

k= FTk is in the chain of right

neighbors of F.

Definition 4,12, An ambiguous form ig a form of the type
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[a(t), 2b(t), c(t)] where a(t) divides b(t).

Definition 4,13, An ambiguous class of Q,A is one whose
square is the identity.

Theorem 4.14%. A class of Qn is ambiguous if and only if

it contains an ambiguous form,

PROOF: If a class contains an smbiguous form then it
contains a form of the type [a(t), O, A(t)/a(t)] where
a(t) divides A(t). Clearly {[a(t), O, A(t)/a(t)]}° =
(R, 0 A(E)]).

To show the condition is necessary, we make use of a method
divised by Cantor[2],[7]. Let {F}= ([1, 0, A(t)]} with
F = [a(t), 2b(t), c(t)]. Then Fr—[a(t), -2b(t), c(t)]
hence there are polynomials r(t), s(t), u(t), and v(t) in
K[t] such that r(t)v(t) - s(t)u(t) = 1, a(t) = a(t)ro(t)
+ 2b(t)r(tu(t) + c(t)u(t), a(t)v(t) = a(t)r(t), -a(t)s(t)
= 2b(t)r(t) + c(t)u(t). Thus r(t) = v(t) and -r2(t) +
s(t)u(t) = -1, Hence F' = [s(t), 2r(t), u(t)] is a
primitive form having determinant -1. By lemma 3.2, F'
represents a constant k #¥ O in K; therefore, F' can be
transformed into [k, 0, =-1/k]. Since

[}, -1/2kJ

, 1/2

takes [k, O, ~1/k] into [0, -2, 0], F'/~ [0, -2, O]. Let
5, (%), sy(t)
T= lag(t), 8y(t)

be a unimodular transformation taking F' inteo ([0,-2,0].



4o

~Then s(t) = —2sl(t)s3(t), r(t) = -s,(t)sy,(t) ~ sg(t)s3(t),
and u(t) = -232(t)su(t), hence

15,(t), s4(t)
F iz(t), :i(t)} = [a'(t), 2b'(t),rc'(t)] with

-2b' (t) = -2a(t)sy (t)s5(t) -2b(t)(sq(t)sy(t)+s,(t)s5(t))
-2e(t)s,(t)s, () = a(t)s(t) + 20(t)r(t) + c(t)u(t) = oO.
Therefore [a'(t), 2b'(t), c¢'(t)] is an ambiguous form in
(F).

Definition 4,15, A properly ambiguous form will be a

primitive form of the type [a(t); 0, /\(t)/a(t)] where
a(t) divides A(t).

Let AZS denote the set of properly ambiguous forms having
determinant A(t). For F, = [al(t), 0, [}(t)/al(t)] and
F, = [a2(t), o, [§(t)/a2(t)] in AA define F,F,, the pro-

duct of P, and F2, to be the form F3 =

1
(a;(t)ay(t)/(ag(t), ay(t))Z, 0, b(t)] where

b(t)al(t)az(t)/(al(t), ae(t))2:= /A(t). Since F, and F,
are primitive, a prime divisor of al(t) or a2(t) must be
prime to (al(t), ae(t)) or appear to the same power in
both a;(t) and a,(t). It follows that F3 is primitive
and multiplication is closed and'associative. Now [1, O,
(t)] acts as an identity element and each form is its

own inverse, Hence A[l is an abelian group.

Lemma 4.16, There is a homomorphism @ from A[S onto CA ,
the ambliguous classes of QZS’ such that the kernel of ¢
is the set of forms in A[S equivalent to [1, O, A(t)].
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PROOF: The lemma follows immediately by letting @(F) =
(F}. |

An element T) = £f(t) + g(t)e in KA will be called a unit
if N(”r]) = fe(t) + A(t)ga(t) is a non-zero constant. If
7/ 18 a unit then ‘sgz[f(t)] - sgg[g(t)]de = 0, where d
denotes a solution of the equation X2 + s8g[/\] = 0. We
say that 7, 1is positive(negative) 1if sg(f(t)] =
sg[g(t)]a(-sg[e(t)]a). Let || = |£(t)|. 1If the Pe11
equation has a non-trivial solution choose 7); = fl(t) +

g,(t)é such that ‘Tfll is minimal among the units with
g(t) # O.

Lemma 4.17. If M = r(t) + s(t)6 is any unit in K, then

there is an Integer n such that U = kng for some k in K.

PROOF: Let L be as above and L = u(t) + v(t)9, v(t) # O,
be any other unit in KA . Then VI =

[r(t)u(t) - s(t)v(t)A(t)] + [s(t)u(t) + r(t)v(t)]e is a
unit in KA . We consider the respective. cases:

(a). V , U are positive,

Since iu(t)l = ‘v(t)l + |A(t)|/2 and Ir(t)l = 'S(t)l +
O -
sglr(t)u(t) - s(t)v(t)A(t)] =

= sg[r(t)] s [u(t)]-sels(t)]selv(t)]sel Al
sg[s(t) sglu(t)la + sg[r(t))sglv(t)]d
sg[s(t)u(t) + r(t)v(t)]ld,

Hence 1/}_{, is positive a.ndll//.l,,l = lz/l + “.Ll .

il
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(v), M s VM are positive,
If y is positive then the case reduces to (a). For p

negative, N(V )L = Y (U ). Therefore IVI + IVHI =

WC |- || pencelup]= |- v |-

(e). M is positive, VP 1is negative.

Then VN(A) = (VM ). By teking conjugates in (a), we
rave [TE] +upe] = vl mevecore [upa| - v]-[u].

All other cases may be obtained by taking conjugates in
(a), (v), and (c); thus,

- { ] -l

Now let |,u,| = |171|n +mwith O < m < n., We may assume

Iyl+“.{,,'when vV and M are of the same type and

when y and (L are of different types.

')71 1s positive since ‘)71 may be replaced with '77_1. For
M positive we have |E‘n?| = Inl'r] ll - ,'FI” =m, Since
TL_‘T)? is a unit satisfying ,ﬁ')??l <|T]1|, —’I'r,? is a non-
zero constant in K. Therefore L= k'r]rf for some k £ O
in K.

In a similar menner, | = k' ‘T)in

when M is negative,

1

Definition 4.18. We say two forms F and F' are scalar

equivalent if there is a k in K such that

[k, o . [0, -k
Ty = l:o, 1/1:] or Ty = [l/k, 0

takes F into F',
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Lemma 4.19, TFor any non-trivial solution f£(t), g(t) of the

Pell equation X2 + A(t)Y2 = 1 there corresponds a pro-
perly ambiguous form F = '
[-28g[£(t)](1-£(t), A(t)),0, A(t)/-28g[£()] (1-£(t), A(t))]
in the principal class. Furthermore, if F' 1s any properly
ambiguous form equivalent but not scalar equivalent to

[1, 0, A(t)] then there is a constant ¢ and a non-trivial
solution f(t), g(t) of the Pell equation such that F' =

FT,.

PROOF: Let f(t), g(t) be a non-trivial solution of the
Pell equation and let 1 - f(t) = -sg[f(t)]rg(t)a(t),

1+ £(t) = g2(t) A(t)/-sg[£(t)]a(t)r?(t) where a(t) =

(1 - £(t), A(t)) and £5(t) = (1 - £(t), g°(t)). It
follows that (r(t), g(t)/r(t)) = 1 and (a(t), A(t)/a(t)) =
1, Hence [a(t), 0, A(t)/a(t)] is properly ambiguous and
we have a(t)(-sg[£(t)]1r ()} + A(t){g(t)/r(t))%/a(t) =
-2sg[f(t)]. Therefore [a(t), 0, A(t)/a(t)]~
[-28g[f(t)], O, A(t)/-2sg[£(t)]]. Multiplying both sides
by the latter form, we obtaln the equivalence of F and

[1, 0, A(%)].

Now let F' = [a(t), 0, A(t)/a(t)] be an ambiguous form
in the principal class which is not scalar equivalent to
[1, 0, A(t)]. Since F' and [1, 0, A(t)] are equivalent
there are relatively prime polynomials r(t), s(t) such
that a(t)ro(t) + s(t)A(t)/a(t) = 1. If £(t) =

s2(t)A (t)/a(t) - a(t)re(t) then 1 - £(t) = 2a(t)ro(t)



46

and 1 + £(t) = 28°(t) /s (t)/a(t), hence £2(t) +
[}(t){Er(t)s(t)]g = 1. Since F' 1s not scalar equivalent
to [1, 0, A(t)], neither a(t) or A(t)/a(t) is the square
of some constant in K; therefore, r(t)s(t) # 0. Let F be
the ambiguous form corresponding to the solution f(t),
2r(t)s(t) of the Pell equation, Then F =
[-2sg{£(t)](1-£(t) A(t)),0, A(t)/-2s&[£(t)](1-F(t), A(t))]
= [-2sg[f(t)]a(t)/sgla(t)],0, A(t)sela(t)]/-2sg[f(t)]a(t)]
= [4s®(r(t)]a(t),0, A(t)/4se[r(t)]a(t)].

Therefore FT, = F' where c = 1/2sg[r(t)].

Theorem 4.20. If the Pell equation X° + A(t)Y® = 1 has

a non-trivial solution then there 1is an'ambiguous form F,
equivalent but not scalar equivalent to [1, 0, A(t)],
guch that every properly ambiguous form in the principal

clags 1s scalar equivalent to either F or [1, 0, A(t)].

PROOF: From lemme 4.17, there is a unit 77 in K25With
the property that given any unit }L having norm 1 there
1s an integer n such that M = 77n or -77n. Let £ (t),

g,(t) be the solution of the Pell equation corresponding

to 77n

[
Since |'r;n| < |77n+1|, g,(t) = 0 if and only if n = 0;
therefore, there 1ls a properly ambiguous form Fn corres-
ponding to each solution fn(t), gn(t) with n £ 0, If ~F
denotes the form corresponding to,—fn(t), -gn(t), n £ 0,

then -F_ has leading coefficlent 2sg[f (t)](1+f (t), A(t))
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= 28g[f, (t)] A(t)/s8[A1(1 - £.(t), A(t)) =

(2sela, (t)1)° A(t)/-28g[£, (£)1(2 - £.(t), A(t)). It
follows that -F, = Fan/sg[g(t)] Now £_ (t) = £ (t),
hence F_n = Fn. Therefore, by lemma 4.19, any properly
ambiguous form in the ambiguous class 1s scalar equivalent

to either [1, 0, A(t)] or F,, for some positive integer n,

We now show that the forms Fn’ n > 0, are scalar equiva-
lent to either F, or [1, O, N(t)]. Without loss of
generality, we may assume 77 to be positive., Since
e (£,(8) + g (£)O)(£4(t) + &y (£)0) =

[£,(6)€1(8) - g, (8)Eg () A(E)] + [£,(t)gy(8) +

£,(t)g, (t)]16, we have £ ., (t) =f (t)f;(t) mod A(t) and
sg[fn+1(t)] = 28g[fn(t)sg[fl(t)]. By induction, we have
£ (t) == £)(t) mod A(t) and sg[f, (t)] = 2" 1sg[r, (8)].
Since 1 - £2(t) == 0 mod A(t), £ (t)==1mod A(t) for
n even and fn(t) EEEI&(t) mod A(t) for n odd. Thus,

(L - £ (t), A(t)) = A(t)/sg[A] for n even and

(L - £,(t), A(t)) for n odd. Since the leading
coefficient of F, is -2°%s 2n[fl(t)] A(t)/-d%, where d°
= -8g[A], Fo, and [1, 0, AN(t)] are scalar equivalent.

Now the leading coefficient of F is

n+1

=22+ lgg® e (£)1(1 - £(t), A(t)); in which case, F,

and F 4] are scalar equivalent.

2n

It remains to show that F, and [1, O, A(t)] are not

1
scalar equivalent. If F,; and [1, O, N(t)] are scalar

equivalent then there is a k in K such that Fl =
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[ke, o, [3(t)/k2] or [[§(t)/k2, 0, k2]. Since the two
cases may be handled in similar ways, assume F1 =

(k%, 0, A(t)/k®]. Then -2sg[f)(t)] = k?

and (1 - £,(t),
A(t)) = 1; therefore, 1 - f,(t) = K°r®(t)/2 and 1 + £, (t)
= 2[§(t)g§(t)/k2r2(t) where r2(t) = (1 - 1,(%), gi(t)).
From the two equations, we have 1 = {kr(t)/2}2 +
\(t) (g (£)/5r(t)}2, Therefore, = kr(t)/2 +

6g; (t)/kr(t) 1s a unit in K, having norm 1. Since|u| >
Inl.

constants. Since A(t) is not a constant, 1 - ff(t) =

r(t)l 2.,f1(t)lg in which case, f,(t) and r(t) are

0 = gl(t). Hence the only units in sz having norm 1 are
*1, a contradiction to the assumption of the existance of
a non-trivial solution of the Pell equation, This com-

pletes the proof of the theorem,

Corollary 4,21, If the Pell equation has a non-trivial

solution then in each ambiguous class there are two pro-
perly ambiguous forms F and F' such that (13) F and F'
are not scalar equivalent and (14) any properly ambiguous
form in the class 1s scalar equivalent to F or F', If
the Pell equation has only trivial solutions then all
properly amblguous forms in an ambiguocus class are scalar

equivalent.

-PROOF: The corollary follows 1mmediately from lemmas 4.16-
4,19 and theorem 4,20,

Corollary 4.22. 1If K is algebralcally closed,l[ﬁ(t)l =
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2n, n > 1, and A(t) is not a power of a polynomial of
degree 2, then there are-classes of order 2% for every

positive integer n.

r e '
PROOF: lLet A(t) = sg[A] 7 (t-d,) © be a prime factori-
1=1

zation A(t) ih K[t]. Since /y(t) is not a power of a
polynomial of degree 2, the forms

[(t—dl)zl, 0, B(6)/(6-4;) 1
[(t-dy) 2, 0, A(t)/(t-d,) 2]

forms which are not scalar equivalent, Since F and F'

F and

F' are properly ambiguous

are not scalar equivalent to [1, O, A(t)], we see by
theorem 4,20 that one of the classes {F}, {F'} is not the
principal class. Since each of the classes 1s ambiguous,
there is a class of order 2. The existence of classes
having order 2n, n > 1, follows from the proof of corollary

3.14,

Lemma 4.23, Let F = [a(t), 2b(t), c(t)] be an indefinite

reduced form having determinant A(t) and K' be a subfield
of K contalning the coefficients of a(t), b(t), ¢(t) and
D(t). If F' = [a'(t), 2b'(t), ¢'(t)] is any form in the
chain of reduced forms containing F then a'(t), b'(t),

and c'(t) are elements of K'[t].

PROOF: The right neighbor of F is obtained by the

T- 2 ath)

where q(t) satisfies |D(t) + b(t) - a(t)e(t)]| < |e(t)].

transformation



5C

Clearly q(t) is unique and.q(t) is an element of K'[t].
Therefore, the right nelghbor of F has coefficients in
K'[t]. In a similar menner, we see that the left neighbor
of F has coefficients in K'[t}. The lemma follows by

induction,

Lemma 4.24. The following are equivalent:

(14) the Pell equation has a solution in X[t],

(15) the Pell equation has a solution in K'[t] where X'
is the least field containing the coefficients of
A(t) and (sg[A1)*2, ana

(16) the Pell equation has a solution in X[t], the

algebralc closure of K.

PROOF: Evidently the equivalence of the first two
statements implies the equivalence of all three, By
lemma 4.23, the coefficients of the polynomials appearing
in the chain [1, 2D(t), A(t) + De(t)] are elements of
K'[t). If we assume (14) then the chain 1s periodic with
respect to K[t], hence there exists k in K such that

[x2, 2D(t), {A(t) + DZ(£)}/k°] is in the chain of right
neighbors of [1, 2D(t), A(t) + D2(t)]. It follows from
the proof of 4.11 that the equation X° + A(t)Y° = k°

has a solution f(t), g(t) in K'(t) with g(t) # 0. There-
fore {£2(t) - A(t)g2(t)}, 2£(t)e(t)/k° is a non-trivial
golution of the Pell equation in K'[t],

Theorem 4.25. If the Pell equation X° + A (t)Y? = 1
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has a solution in K{t], there exists k in X such that
A(t) is reducible in K(k/2)[t]. .

PROOF: Let 7); = £(t) + g(t)6 be a unit in ¥ K the

A 2
algebraic closure of K, such that’n 1 is minimal among the

units (L with I}Ll > 0. Since N(771) is a square in K, we
may assume N('Ul) = 1, Therefore

£(t) - D(t)a(t), -A(t)a(t) - D2(t)e(t) |

g(t) s r(t) + D(t)e(t) J
is an automorph of [1, 2D(t), A(t) + D°(t)]. By
changing signs of g(t), we may assume T to satisfy (6) of

theorem 4.6, It follows from theorem 4.7 that T =
n

f—

T

& Ni where

i
o - |k O
k 0, 1/k

for some k in X and Ni is the transformation taking the

1™ rignt neighbor F, of [1, 2D(t), A(t) + D°(t)] into

its right neighbor F, ;. By lemma 4.23, TT;' has coef-

ficients in K[t]; hence, f(t)/k, g(t)/k, and k2 are
elements of K[(t]. Now [5(t)g2(t)/k2 =

(1/k - £(t)/k)(1/k + £(t)/k). From the proof of theorem
4,20, there is a proper divisor of A(t) in K[t] which
divides 1/k - f(t)/k. Therefore, there is a proper

divisor of A(t) in K(k)[t] which divides 1/k - f(t)/k.

Example 4.26, Theorem 4,25 exhibits a class of poly-

nomials A(t), X(A) = 1, for which the Pell equation

nas only trivial solutions, For example, let X be the
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rational numbers and A(t) = -tll + 2t + 2, By

Eisenstein's criterion, A(t) is irreducible in K[t]. We

now show that A(t) is irreducible in K(rl/2

}[t] for every
rational number r which is not a square, If -/A(t) =

f(t)g(t) is a proper factorization in K(rl/e)[t] then

£(t) , &(t) are irreducivle and |£(t)] = |e(t)] = 2.
Let @ be the K-automorphism of K(rl/g) which sends P2/2
onto -rl/e. ‘Without loss of generality, we may assume

f(t), g(t) are monic. Since F(f(t))F(g(t)) = £(t)ag(t),
g(£(t))
B(£(t))

d. Then d = -2/b and a(b + 2/b) = -2. Since @(b) = -2/b,

2b = b - 2/b + (b + 2/b)r1/2; therefore b + 2/b =

1/2. Since b + 2/b # O, rl/2 = 1 which contra-

f(t) or g(t). Now f(t) is not in K[t], hence

I

g(t). Let £(t) = t° + at + b, g(t) = t° + ct +

(b + 2/b)r

dicts the assumption that r is not a square.

Theorem 4.27. Let K be algebraically closed, x = 1/t,

and [, (x) = [}(t)/tgn where 2n = k)(t)l. A necessary

and sufficient condition for the Pell equation X° +

A(t)Y2 = 1 to have a non-trivial solution in K[t] is for

there to be a positive Integer m > n such that the rank of
— -
Cm+1: - . . . . .3 cn+l

CQIn-l, l . . - . (3 ) cm+n—'1J
) = 91(0)(k7/d1, is less than m+l-n,

PROOF: Let f(t), g(t) be a non-trivial solution of the
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Pell equation with lf(t)l = m and set fl(x) =
£(6)/t7, g (%) = g(t)/t" M ana AJ(x) = A(t)/t%. It
follows that fl(x), gl(x) is a primitive representation

m

of x°M by [1, 0, A (x)]. Let £.(x) = % fixi, g1(x) =

. 1=0

Lo 81Xy and Do(x) = 3 egXT, ey = 8,(0)17 /4L, Since

P~ 2 —— ol 2 2 —_ 2m
£2(x) + g5(x) Ay(x) = £5(x) - ef(x) A5(x) = 0 moa x7,
fl(x).- gl(x)[§2(x) or f,(x) + gl(x)llg(x) ig divisible
by xem. By changing signs of gl(x), we may assume fl(x) -
gl(x)[32(x) is divisible by xem. Therefore, the equations

(17) ; E;l ckXJ =0 for i =mHl,...,2m-1 and j = O,...,m~-n
+K= :

have a non-trivial solution go,gl,...,gm_n in K. It
follows that the rank of A is less than m-n+l. Conversely,
if the rank of A is less than m-n+l then the equations (17)
have a non-trivial solution in K. It follows that there
exist polynomials fy(x), g(x) in K[x] such that Igl(x)| <
2 2 —_
fl(x)l S m, gl(x) 7£ O’ and fl(x) + Al(x)gl(x):
0 mod x2m- Since -A\(t) is not a square, -[}1(x) is not a

m-n,

square; therefore, f%(x) + [ﬁl(x)gf(x) # 0 and has degree
at most 2m. Hence f%(x) + [51(x)g§(x) = rx°® for some

r £# 0 in K, Multiplying by tgm, we obtain a non-trivial
representation of r, hence re, hence of 1 by [1, 0, /\(t)].

Therefore, the Pell equation has a non-trivial solution.



CHAPTER V
DETERMINANTS DIFFERING BY SQUARE FACTORS

Let p(t) be an irreducible polynomial in K[t] and Qp2(t)45’
QZS denote the groups of classes of primitive binary
quadratic forms with determinants pz(t)ZX(t) and A(t)
respectively. In this chapter, it is our purpose to
extend the results of [5 ] in order to obtain a relation—"

ship between the groups Q , and QA .
p ()N

Lemma 5.0, A primitive form F having determinant

p2(t)[§(t) primitively represents a polynomial divisible
2
by p"(t).

PROOF: Let F = [a(t), 2b(t), c(t)]. If p(t) divides
a(t),.pg(t) divides a(t) and X = 1, Y = 0 is a primitive
’ representation of a polynomial (a(t)) divisible by pg(t).
If (a(t), p(t)) = 1 then (a(t), b(t), p(t)) = 1. Let X =
-b(t)/d(t), ¥ = a(t)/d(t) where a(t) = (a(t), b(t)). We
have
a(t)X2 + 2b(L)XY + c(t)Y2 = a(t)[(-b2(t) + a(t)e(t)}/a%(t)
= a(0)p% () A(t)/a%(t).
Since d2(t) divides a(t)A(t), X = -b(t)/a(t) and Y =
a(t)/d(t) is a primitive representation of a polynomial
divisible by pe(t).
54
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By lemma 5.0, every class of Q 5 contains a form of
o P (t)A
the type

2
(1) F = [p7(t)a(t), 2p(t)b(t), c(t)].
Since F is primitive, the form @F = [a(t), 2b(t), c(t)]
is primitive and has determinant A(t). Define

g:Q —> Q. by Z((F}) = {#F)} where F is a form of
pZ(t)A A

type (1).

Theorem 5.1. & 1s a homomorphism from Q 5

P (t)\
PROOF: To show @ is well-defined, let F =

[Pz(t)a(t): 2p(t)b(t), c(t)] and F' =

[Pe(t)&'(t), 2p(t)b'(t), c¢'(t)] be equivalent primitive

forms having determinant p2(t)[5(t) and
SRR

be a unimodular transformation taking F onto F'., By the

onto QA .

Gauss criterion,
p?(t)a’ (t)=pZ(t)a(t)r®(t)+2p(t)b(t)r(t)ult)+e(t)u(t)
(2) PZ(t)v(t)a' (£)=p2(t)a(t)r(t)+{b(t)+b' (t)Ip(t)u(t)
-p2(t)s(t)a’ (£)=(b(t)-b' (+)Ip(t)r(t)+c(t)u(t).
Since (p(t), c(t)) = 1, p(t) divides u(t). Therefore,
a'(t) = a(t)re(t)+2b(t)r(t)u(t)/p(t)+e(t)u(t)/p3(t)
(3) ar(t)v(t)=a(t)r(t)+{b(t)+o' (t)Iu(t)/p(t)
~a' (t)8(t)p(t)={b(t)=b' (t)Ir(t)+e(t)u(t)/p(t).

In which case,
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is a unimodular transformation taking @F onto ZF',

To show that £ is a homomorphiém, let C, and C, be two

clagses of Q 5 . By lemma 1.4, we can find united
p-(t)A
forms F = [p°(t)a(t), 2p(t)b(t), 2p(t)b{t), c(t)a’(t)]

in ¢, and F' = [a'(t), 2p(t)b(t), c(t)a(t)p®(t)] in C,.

1
We have
g(c,) = ([a(t), 2b(t), c(t)a’'(t)]} end
g(ciC5) = {[a(t)a'(t), 2p(t), c(t)]].
Stnce F'r~ [e(t)a(t)p®(t), -2p(t)b(t), &' (t)],
g(Cy) = [[e(t)a(t), -2b(t), a'(t)]
= {[a'(t), 2b(t), c(t)a(ty]; therefore,

B(C))B(C,) = ([a(t)a’ (), 20(t), e(t)1) = B(C,C,).

Let {F) be any class of Qn with F = [a(t), 2b(t), c(t)].
Since F primitively represents polynomials prime to p(t),
we may assume (c(t), p(t)) = 1. Now [a(t)pe(t),Qb(t)p(t),
c(t)] is & primitive form having determinant pe(t) A(t).
Since F({[a(t)p°(t), 2b(t)p(t), c(t)]}) = {(F}, & is onto.

Theorem 5.2. A necessary and sufficient condition for a

primitive class to be in the kernel of @ is that it con-
- taln one of the following forms:

2,
[p°(t), 2n(t)p(t), h°(t) + A(t)], where

By
M o w2e) + A, |ne)] < |p(t)

2

or

(5) [1, 0, P2(t) A(t)].
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PROOF: If B(({[a(t)p(t), 20(t)p(t), o(t)])) =

([1, 0, A(t)]) then [a(t), 2b(t), c(t)]~[1, O, A(t)]1,
therefore there are relatively prime polynomials r(t),
s(t) such that 1 = a(t)re(t) + 2b(t)r(t)s(t) + c(t)s2(t).
If (p(t), r(t)) = 1 then r(t), p(t)s(t) is a primitive
representation of pe(t) by F = [a(t)pg(t), 2b(t)p(t), c(t)l
Hence F is equivalent to a form F' =

[p2(t), 2h(t)p(t), h2(t) + A(t)]. By a translation, we
can reduce h(t) modulo p(t) so that F' is one of the forms
(4). If (p(t), r(t)) # 1 then r(t)/p(t), s(t) is a
primitive representation of 1 by F; in which case, u
[1, O, p2(t) AN(t)] 1s in the class containing F. Since
it 1s apparent that any class containing one of the forms
(4) or (5) maps on to the identity class of Qp s the |

theorem follows,

Definition 5.3. Let +7) ™ = %(f (t) + g, (t)9) be the

units in KZS having norm 1 and define the symbol € to be
~ (6) O if M = £1, i.e, *1 are the only units,
(7) e if gn(t)EEE()nmd p(t) for every integer n #O,
(8) m if g (t) # 0 and m is the least positive
integer among the integers n for which gn(t)EEE

0 mod p(t).

Theorem 5.4,

~I. If € =0, no form in (4) is equivalent to (5).
II., If O € € < =, there are exactly € -~ 1 primitive
forms (4) equivalent to (5).
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III. If € = o, there is a unique form in (4) equivalent
to (5) corresponding to each solution £, (t)
gn(t), n # 0, of the Pell equation., (Accordingly,
a denumerable infinity of the forms in (4) are

equivalent to (5).)

PROOF: The forms F = [1, 0, p2(t) A (t)] and F' =
[p2(t), 2h(t)p(t), h2(t) A (t)] are equivalent if and only
if there exist relatively prime polynomials r{t), g(t)
such that _
r2(t) + &7 (£)p°(t) A(t) = po(t),
r(t) + h(t) p(t)g(t) == 0 mod p°(t), and

-n(t)p(t)r(t) + p2(t) A(t)g(t) = 0 mod p*(t).
Since p(t) must divide r(t), let r(t) = p(t)f(t). It
follows that the above forms are equivalent if and only
if £(t), g(t) 1s a solution of the Pell equation and
£(t) + h(t)g(t)=—0 modulo p(t). Now (f(t), g(t), p(t)) =
1, hence g(t)==0 modulo p(t). Conversely, any solution
f(t), g(t) with g(t)==0 mod p(t) gives rise to a poly-
nomial h(t), |n(t)| < |p(t)
0 mod p(t). Since £2(t) - h2(t)g?(t)=0FE1=1%(t) +
A(t)e®(t) modulo p(t), (n%(t) + A(t), p(t)) = 1; thus,
(p2(t), 2h(t)p(t), h2(t), A(t)] is a primitive form
equivalent to {1, O, pa(t) ON(E)].

, such that f£(t) + h(t)g(t)=—

I. If € = O, the only solutions £(t), g(t) of the Pell

equation are f£(t) = %1 and g(t) = O. Therefore, no form

in (4) is equivalent to (5).
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II. If O < € < =, there is a primitive form (%) equivalent
o (5) corresponding to each solution f(t), g(t) of the
Pell equation with g(t)=—=0 mod p(t). Since the solutions
f(t), g(t) and -f(t), -g(t) give rise to the same form in
(4), we need consider only the solutions fn(t), gn(t),
n # 0, given in definition 5.,3. We have
T () (Te(6) + g (V)ee (1) B (D=1, ((3)
modulo p(t),
8, (8) = -5, (0)8(t) + gy (£)T (t) = g, _ (%)
modulo p(t).

In a similar manner, we have f (t)=— *f t) mod p(t)

n-e
and g (t)= #g, (t) mod p(t). It follows that we need
consider only the solutions f (t), g,(t) such that'O <n
< e, If ’
h (t) = h (t) for 0 < mn < € then
£ (t) + h (t)g (t)==r (t) + h_(t)g (t)

= (£, (t) + b (t)e, (+)IF,__(t) -

g, (8)8 (£)(h2(t) + A(t))

=g, (t)g (t)(nZ(t) + A(t))

——0 modulo p(t).
Therefore, gm_n(t) —— 0 mod p(t) hence m = n. Thus, there

are exaclty € - 1 forms in (4) equivalent to (5).
ITI. The proof of III follows immediately from II.

Theorem 5.5. Let F = [p2(t), 2h(t)p(t), ho(t) + A(t)]

be a primitive form in (#) which is not in the primcipal

class.
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I. If € = 0, F is the only form in (4) equivalent
to F. '
II. If 0 < € < =, there are exaclty € forms in (%)
eqﬁivalent to F. |
III. If € = », there is a unique form in (4) equiva-
lent to F corresponding to each solution fn(f),

gn(t) of the Pell equation,

PROOF: The forms F and F; = [p-(t),2h (t)p(t),h2(t)+ A(t)]
are equivalent if and only if there exist relatively

‘prime polynomisals r(t), s(t) such that pe(t)re(t) +
2n(t)p(t)r(t)s(t) + (n(t) + A(t)}s%(t) = p2(t),

p2(t)r(t) + {h(t) + hy(t))p(t)s(t) == 0 mod p>(t) and

(h(t) - hy(t)}p(t)r(t) + (h®(t) + A(t)}s(t) == 0 moa p°(t).
Since p(t) divides s(t), let s(t) = p(t)g(t) and f(t) =

r(t) + h(t)g(t). It follows that F and F; are equivalent
if and only if £2(t) + g2(t) A (t) = 1 and h(t)f(t) +
A(t)e(t) = hy(t){f(t) - h(t(g(t)} mod p(t). Conversely,
for any solution f(t), g(t) of the Pell equation f(t) -
h(t)g(t) _—__,._‘: 0 mod p(t) since F is not in the principal
class; therefore, there 1s a polynomial hl(t), hl(t)l <
|p(t)|, such that n(t)f(t) + A(t)s(t)=

hl(t){f(t) - h(t)g(t))} mod p(t). The form

[pz(t), ghl(t)p(t), h%(t) + A(t)] must be primitive, for
it A(t)==-h2(t) mod p(t) then {n(t) - h (t)}£(t)=
-h, (t){h(t) - h;(t)} &(t) mod p(t). Therefore, f(t)=—7
-h, (t)g(t) mod p(t). Since £2(t) + g°(t) A (t) =
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£2(t) - n2(t)e?(t) =1 mod p(t), £(t) and -h, (t)g(t)
cannot be congruent mod p(t). Thus, there is a primitive
form in (4) equivalent of F corresponding to each solution
of the Pell equation, The remainder of the proof follows

from the proof of theorem 5.4.
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