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ABSTRACT 

 

 One of the most widely used methods in decision-making is the Analytic 

Hierarchy Process (AHP). With its technique of comparing the alternatives by means of a 

sequence of pairwise comparison matrices, the AHP is both easy to understand and very 

versatile. This research aims at contributing some insights on this method, in particular, 

regarding to what is known as the incomplete AHP. The core of this research is to 

investigate whether the initial comparisons used to extract the data for a multi-criteria 

decision making problem, will play a role in producing a relatively accurate estimation of 

the ranking of the alternatives. Three problems are investigated in this work. The first 

problem is to determine the optimal number of the initial comparisons. As the number of 

initial comparisons increases, a complete pairwise comparison matrix will more likely be 

estimated accurately. Consequently, the time required to calculate these initial 

comparisons will also increase. These conflicting goals will be investigated further in this 

thesis. 

 The second problem of this research is to determine which initial comparisons 

should be asked as the starting point. Using the minimal number of initial comparisons 

(i.e., 1−n  comparisons), five different strategies will be investigated. Lastly, the final 

problem is to determine if the method that we use to estimate the missing comparisons 

will also affect the accuracy of the weight vector. Two methods will be compared in this 

thesis, namely the Least Squares, and the Geometric Mean methods. 

 In order to determine whether a matrix is accurately estimated, two methods are 

used to compare the estimated and the original weight vectors. One method is to compare 

the ranking order of the alternatives, while the other is to compute the average difference 

between the two vectors. The smaller the average difference, the better the corresponding 

selection strategy is.  

 Furthermore, the two methodologies will be compared based on their computation 

requirements. The methodology with less computational time and better accuracy will be 

considered better than the other. The final results of this thesis will provide more insight 

into the incomplete AHP in general, thus hopefully providing the decision maker a 

reliable tool to optimally use this method. 



 1 

CHAPTER 1  

 

INTRODUCTION 

 

1.1. Background Information 

The Analytic Hierarchy Process (AHP) was first introduced by Saaty (1980). The 

simple representation of comparing multiple alternatives in the form of a pairwise 

comparison matrix has made it one of the most widely used decision analysis methods. 

Recently, using the Yahoo! search engine, over 6,500 sites were found containing the 

keyword “analytic hierarchy process”, ranging from explanation of the general 

methodology to specific applications of the AHP. Some of the applications mentioned are 

in health care, agriculture, operations research, economics, and transportation models.  

Moreover, an international symposium (called the ISAHP) is held approximately every 

two years to discuss developments related to the AHP. 

However, this method is not without its drawbacks. In the early days, a new 

finding has proven that the order of selecting the best alternative can vary depending in a 

way that is counter-intuitive (Belton and Gear, 1983). In that paper, the ranking of the 

best alternative can differ when a copy of a non-optimal alternative is added. This 

phenomenon might be intuitively unacceptable, since adding a new non-optimal 

alternative should not affect the ranking of the best alternative.  

Shen et. al. (1992) also discovered another irregularity in the methodology. They 

proposed to divide the incomplete comparison matrix into smaller subsets such that each 

subset is a complete matrix. Since the subsets are complete matrices, we can use the 

eigenvector approach to calculate the weight vector for each subset. The final weight 

vector is then calculated by combining the weight vectors from each subset using their 

common parts. However, using this method of calculating the final weight vector, the 

ranking of the alternatives can be different from the weight vector that was calculated 

using the original AHP methodology. 

Another case of ranking irregularities can be found in Triantaphyllou (2001). In 

that paper, two methods for comparing the alternatives are investigated. The first is to 
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compare all of them simultaneously, while the other compares two alternatives at a time. 

The ranking of the alternatives (given that we are looking for the best) can be different 

between the two methods. Nevertheless, these weaknesses along with many other 

criticisms of the AHP cannot change the fact that it is one of the most widely used 

methods in decision-making today. More related discussions on the AHP can be found in 

((Dyer, 1990), (Harker and Vargas, 1990), (Holder, 1990), (Millet and Harker, 1990), 

(Perez, 1995), and (Wedley, 1993)). 

With all the enthusiasm surrounding AHP, this research will try to contribute 

some new analysis of the method, specifically regarding the incomplete AHP. The details 

of the general method of the AHP will be discussed in the next section. 

1.2. The AHP Methodology 

The AHP was designed to structure and effectively solve multi-criteria decision- 

making problems. There are two phases involved with this methodology. The first phase 

involves structuring the problem in a tree-like hierarchy. The root of the tree consists of 

the goal (i.e., the main objective). The branches out of the root correspond to the major 

decision criteria, which may be further branched upon by sub-criteria. Following the 

criteria, the set of alternatives is represented as leaves. The second phase involves 

numerical evaluations of the nodes in the tree in a bottom-up manner. At the root, we can 

draw a conclusion as to the best alternative satisfying the goal given a set of criteria. 

In order to illustrate this methodology, we will consider a simplified problem of 

choosing a car. In selecting the most suitable car, several criteria are used to quantify 

suitability. Some of the criteria might be the interior comfort, the style, and the reliability 

of the cars. All of these factors are placed at the same level of the tree. These criteria can 

further be divided into sub-criteria. For example, the reliability criterion can be divided 

into the price of parts that need to be maintained regularly, the efficiency of the 

dealership in handling the maintenance, how easy it is to get the spare parts in regular 

stores, etc. However, these sub-criteria are omitted to simplify the illustration. Finally, 

the bottom level of the hierarchical tree will be the alternatives. Suppose that we are 

interested in three different types of cars, say Car A, Car B, and Car C. Then, the 

hierarchical structure for our example can be represented as follows: 
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 Goal:            Choosing the best car 

 

 

 Decision Criteria:      Interior comfort Style of the car Reliability 

 

 

 Alternatives:         Car A         Car B         Car C 

 

   Figure 1-1: An illustrated example for the AHP. 

 

 This hierarchical design can help the decision maker understand the problem 

better as to the importance of each level of the decision problem. The most important 

aspect, known as the goal (e.g., choosing the best car), is on the root, followed by the 

primary decision criteria (e.g., interior comfort, style of the car, and reliability). More 

sub-criteria can be branched out of each criterion to improve the model representation of 

a real life situation. After these criteria, the leaves represent the alternatives, which are 

compared to determine the best solution. 

 The second phase of the AHP methodology is to perform numerical computations 

at each level of the hierarchy. Each alternative is compared relative to a single criterion, 

and each criterion to the goal. In our example, the main focus of this step is to assign a 

value of how “good” each car is when it is compared to another car under each one of the 

criteria, and how “important” each criterion is, relative to the goal.  

 Assigning the values to these comparisons can be done in two different ways. One 

approach is to assign an absolute value to each decision criterion and alternative. For 

example, we can give Car A a “good” rating on the interior comfort criterion without 

comparing it with other cars. This type of comparison is highly unusual, since as humans, 

we always need some kind of relational references for the comparison. To say that 

something is “good” without any reference as what is “bad” is unreliable, thus this 

method is not recommended.  
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 The second method for assigning the comparison value is through a sequence of 

relative judgments. In this method, the alternatives (or the criteria) are compared with 

each other using a fixed scale. Saaty has proposed a numerical scale to represent the 

degree of “importance” of one alternative (or criterion) compared with another. The scale 

consists of the discrete numbers in the set of {1/9, 1/8, 1/7, 1/6, 1/5, 1/4, 1/3, 1/2, 1, 2, 3, 

4, 5, 6, 7, 8, 9}. The explanation of these values is given in Table 1.1 (Saaty, 1980). 

 

Table 1.1: Explanation of the Saaty scale. 

Numerical Value Linguistic Definition Explanation 
1 Equal Importance Two activities contribute 

equally to the objective 
3 Moderate Importance Experience and judgment 

slightly favor one activity 
over another 

5 Strong Importance Experience and judgment 
strongly favor one activity 

over another 
7 Very Strong or 

Demonstrated Importance 
An activity is favored very 
strongly over another; its 

dominance demonstrated in 
practice 

9 Extreme Importance The evidence favoring one 
activity over another is of 

the highest possible order of 
affirmation 

2, 4, 6, 8 Intermediate values To reflect the compromise 
between two adjacent 

judgments 
 

 This scale is widely accepted in the decision-making community, mostly in the 

AHP context, due to its support by a psychological study which stated that a person 

cannot compare more than seven entities (plus or minus two) at the same time (Miller, 

1956). 

 Using this scale, the decision maker can express his/her opinion on the 

importance of an alternative or criterion compared to another. In order to ensure 

consistency, the comparisons of the alternatives must be based on a common criterion at 

a time.  



 5 

 While comparing the alternatives, the assigned value of a single comparison can 

be based on a quantity-based judgment, or on a quality-based judgment. For example, we 

can compare the exact fuel consumption (in miles per gallon) of each car in order to 

determine the value of the comparisons for the fuel consumption criterion. For example, 

the mileage ratio of Car A relative to Car B can be used to determine the comparison 

value of Car A to Car B. This type of judgment is called quantity-based judgment.  

For this type of judgment, the Saaty scale is no longer useful, since it is most 

commonly used for quality-based judgments. Thus, in this illustrative example, we would 

like to consider only quality-based judgments for our comparison matrices.  

The other type of judgment (i.e., quality-based judgment) is more of a personal 

preference of the decision maker to a particular alternative (or criterion) relative to 

another.  For example, we cannot quantify the style of Car A is better than Car B with 

high precision. Personal preferences play a major factor in determining this type of 

judgment. 

To illustrate the comparisons more effectively, a comparison matrix is introduced 

to represent all the possible pairs of comparisons.  Consider a matrix A comparing n 

alternatives with respect to a particular criterion. The entry ai,j  (ai,j > 0) reflects the value 

of how “important” alternative i is when it is compared to alternative j. Obviously, we 

can assume that the following statements are true: ai,j = 1/ aj,i,, for all i,j = 1, …, n and the 

diagonal entries are equal to 1. That is, ai,i = 1, for all  i = 1, …, n. 

 In our example, we can derive the comparison matrix for each criterion. First we 

should compare the alternatives in terms of the interior comfort criterion. The following 

matrix is assumed to be the comparisons of the three cars: 

 

Table 1.2: Comparisons of alternatives based on the interior comfort criterion. 

Interior comfort Car A Car B Car C 

Car A 1 7 6 

Car B 1/7 1 1/3 

Car C 1/6 3 1 
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 The entries in this matrix are the relative judgments of the decision maker about 

the preference of one car to another among all three alternatives based on the comfort 

criterion. For example, entry a1,2 in table 1.2 is equal to 7, which indicate that Car A is 

“demonstrably more important (more comfortable) than” Car B. This number is 

determined by the decision maker’s opinion on this matter. Similarly, the entry a2,1 is the 

comfort comparison of Car B to Car A. Obviously, the entry of a2,1 should be 1/7, which 

is the reciprocal of entry a1,2. The comparison of the alternative with itself should always 

be equally important, thus all the diagonal values are equal to 1. 

 An important observation that can be added regarding this criterion is that the 

entries in the comparison matrix are derived using quality-based judgments. In the real 

world, some problems require quantity-based judgments since exact values for the 

comparisons can be available. An example of these problems is the comparison of two 

cars based on their fuel consumption. If we compare the cars based on their actual fuel 

consumptions, the entries of the matrix are likely to include decimal numbers. For 

example, Car A can travel as far as 32 miles per gallon, while Car B can only travel 23 

miles per gallon. With this information, the ratio of Car A and Car B is equal to 1.39. 

From the above discussion, we can see that the Saaty scale is not very useful in 

representing the quantity-based judgments. However, in this M.S. thesis, the Saaty scale 

will be utilized as the basis to determine the comparison values between the alternatives. 

With this assumption in mind, some values in the matrix may not be consistent with the 

Saaty scale, thus an approximation is needed. This situation will be investigated further in 

the later chapters. 

Another observation that we can derive from the previous matrix is that not all 

entries (which are 3 ×  3 = 9) need to be decided by the decision maker. The comparison 

values in the upper triangular portion of the matrix are exactly the reciprocals of the ones 

in the lower triangular portion of the matrix and the diagonal values are always equal to 

1. Thus the number of pairwise comparisons needed to complete the whole matrix is 

equal to 3. In general, the decision maker needs to make 2/)1( −nn  pairwise 

comparisons in order to complete the comparison matrix, where n is the number of 

alternatives (or criteria) to be compared.  
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In a perfectly consistent matrix, we can easily conclude that the following formula 

is true: 

 .  ..., ,1,,                   ,,,, nkjiforaaa jkkiji =×=    (1.1) 

As stated earlier, the entry ai,j is the comparison of alternative i with alternative j, 

more appropriately, the ratio of the relative weights of alternative i to alternative j in 

terms of a single criterion. The following formula is derived for entry ai,j in a perfectly 

consistent pairwise matrix A: 

 . ..., ,1,                           , , njifor
w
w

a
j

i
ji ==     (1.2) 

where wi is the relative weight (an unknown) of alternative i (for ni ,...,2 ,1= ). From the 

above formulas, we can easily prove that: 

  


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
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


==×=×= ji

j
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i
jkkiji a

w
w

w
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w
waaa ,,,,  

and  
ijijj

i
ji awww

wa
,

,
1

/
1 ===  

The following formula is a derivation of the above formulas. 

  .,...,1,                      ,1, njifor
w
w

a
i

j
ji ==×     (1.3) 

With respect to a specific row i, formula (1.3) can be summed for the total of n columns 

in matrix A, which can be expressed as follows: 

  .,...,1                ,1
1

, niforn
w

wa
n

j i
jji ==∑

=

     

Furthermore, it can be rewritten as: 

  .,...,1                  ,
1

, nifornwwa
n

j
ijji ==∑

=

    (1.4) 

In general, formula (1.4) can be written as: 

  nwAw =         (1.5)  

where A represents the pairwise matrix A and w is the relative weight vector. 

The above formula can be depicted in more detail as follows: 
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From formula (1.5), we can determine that n is the principal right eigenvalue of the 

comparison matrix A, thus the formula can be rewritten as: 

   wAw maxλ=  

where maxλ is the principal right eigenvalue of the matrix A, and the weight vector w is a 

right principle eigenvector of matrix A. Note that the above assumption of n=maxλ  is 

only true for a perfectly consistent pairwise matrix. In an inconsistent matrix, n>maxλ  

(Saaty, 1980). 

 The formulation of the eigenvector is the most widely used method to calculate 

the relative weights of the alternatives in decision-making problems. However, since this 

method is not easily done, an approximation method was introduced in (Saaty, 1980). 

This approximation method calculates the geometric mean of each row in the matrix A as 

the corresponding element of the eigenvector. The calculation involves the multiplication 

of the elements of each row together, then to take the n-th root (where n is the dimension 

of matrix A). An important point that needs to be clarified is that this method will only 

approximate the values of the weight vectors in an inconsistent matrix. In a perfectly 

consistent matrix, the approximated values derived by using the geometric mean method 

will be identical to those by the eigenvector approach. 

Since we usually want to have 1
1

=∑
=

n

i
iw , the approximated values should be 

normalized. The procedure of the geometric mean calculation of the relative weights can 

be expressed as follows: 
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,
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j
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j
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∏

= =

==  (1.6) 

After the calculation of the weight vector, we can determine (or estimate it for the 

inconsistent case) the eigenvalue using formula (1.5). The method is as follows: 

  .,...,1              ,max
1

, niforwwa i

n

j
jji ==∑

=

λ  

and  ∑∑∑
== =

==
n

i
i

n

i

n

j
jji wwa

1
maxmax

1 1
, λλ      (1.7) 

 Using this approximation method we can calculate the relative weight of each 

alternative in our example. The principal eigenvalue maxλ for our car selection matrix for 

the interior comfort criterion is equal to 3.096 and the corresponding approximated 

eigenvector (i.e., the vector with the relative weight of each alternative) is equal to 

(0.750, 0.078, 0.172)T (where “T” stands for transpose). From this calculation, we can 

conclude that Car A is the most favorable one in terms of the interior comfort criterion, 

followed by Car C, thus making Car B the least favorable one. 

 The above method can be applied to calculate the best alternative under each one 

of the criteria. For example, the following matrices could be formed to compare the cars 

in terms of the other two criteria, namely the style of the car and the reliability. 

 

Table 1.3: Comparisons of the alternatives based on the style criterion. 

Style of the car Car A Car B Car C 

Car A 1 1/4 3 

Car B 4 1 7 

Car C 1/3 1/7 1 
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Table 1.4: Comparisons of the alternatives based on the reliability criterion. 

Reliability Car A Car B Car C 

Car A 1 1/3 1/6 

Car B 3 1 1/4 

Car C 6 4 1 

  

 The geometric mean method is applied to estimate the right principal eigenvalue 

and corresponding eigenvector (i.e., the weight vector) of each matrix. For the style of the 

car criterion, the eigenvalue is 3.030 and the corresponding weight vector is (0.211, 

0.705, 0.084)T. In terms of the reliability criterion, the eigenvalue is 3.05 and the weight 

vector is (0.091, 0.218, 0.691)T. 

 The results from the above calculations are derived using the assumption of 

having a perfectly consistent matrix. However, the case of having a perfect consistency is 

highly unlikely. As the eigenvalues of the above matrices are not equal to 3 (i.e., 

n≠maxλ ), we can conclude that those matrices are not perfectly consistent.  

Furthermore, in real world applications, inconsistent matrices are more common, 

due to inconsistencies in human judgments. With this assumption, a standard must be 

established to determine if a matrix can be accepted as being “adequately” consistent. A 

matrix is considered to be adequately consistent if the corresponding Consistency Ratio 

(CR) is less than 10% (Vargas, 1982). In order to determine the value of CR, we need to 

calculate the Consistency Index (CI) of the matrix compared to the Random Consistency 

Index (RCI). The formula to calculate CI is expressed as follows ((Saaty, 1980) and 

(Vargas, 1982)): 

  ( )
( )1
max

−
−=

n
nCI λ        (1.8) 

where maxλ is the principal right eigenvalue of the corresponding matrix, and n is the 

dimension of the comparison matrix. RCI is a parameter, which is used to determine an 

upper limit on how much inconsistency can be tolerated in a specific comparison matrix. 

The RCI values for different matrices of n dimension have been determined by Saaty 

(1980) to be as follows: 
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Table 1.5: The corresponding RCI values for random matrices of dimension n. 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

RCI 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49 1.51 1.54 1.56 1.57 1.58 

  

Using the above values, the CR can be obtained by using the following formula: CR = 

CI/RCI. If the CR value is greater than 10%, we need to re-calculate some of the 

comparisons in the respective matrix in order to achieve an acceptable consistency 

(Saaty, 1980).  

 In our example, the CI value for the interior comfort criterion matrix is 0.048 and 

the RCI value is 0.52. Thus, the CR value is 0.092, which is less than 10%, so the interior 

comfort criterion matrix is acceptably consistent. The CR values for the two remaining 

matrices are 0.028 and 0.048 for the style of the car and reliability criteria, respectively. 

Since none of the CR values is greater than 10%, we can conclude that the matrices are 

adequately consistent. 

 After calculating the relative weight of each alternative with respect to each 

criterion, we also need to calculate the relative weight of each criterion in terms of the 

overall goal. In general, we need to calculate the relative weights of the alternatives on 

each level of the hierarchy tree, starting from the bottom level and continue up the tree 

until the root (i.e., the goal). 

The following matrix is assumed to illustrate the comparisons between each 

criterion with respect to the main objective (i.e., choosing the best car).  

 

Table 1.6: Comparisons of decision criteria based on the main objective. 

Choose the best car Interior comfort Style of the car Reliability 

Interior comfort 1 8 5 

Style of the car 1/8 1 2 

Reliability 1/5 1/2 1 
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Upon calculating the relative weights of the above matrix, we next combine the results 

from the other matrices to form the decision matrix for this illustrative problem as 

follows: 

 

Table 1.7: The decision matrix for choosing the best car. 

Choose the best car Interior comfort 

0.714 

Style of the car 

0.132 

Reliability 

0.154 

Car A 0.750 0.211 0.091 

Car B 0.078 0.705 0.218 

Car C 0.171 0.084 0.691 

 

 Entry ji ,α  in the above decision matrix is the relative weight of alternative i in 

terms of criterion j. Thus, 1,1α indicates the relative weight of Car A in terms of the 

interior comfort criterion, which is 0.75. Next, we need to determine the final weight 

(performance value) of alternative i in terms of the overall goal. The formula to calculate 

the final weight is as follows: 

  ,,...,1                               ,
1

, niforwP
m

j
jjii == ∑

=

α    (1.9) 

where ji ,α is the relative weight of alternative i in terms of criterion j, and wj is the weight 

of criterion j to the overall goal. 

Using formula (1.9), we can calculate the following final preference values: 

For Car A:  P1 = (0.714×0.750) + (0.132×0.211) + (0.154×0.091) = 0.577. 

Similarly, the relative weights of the other two alternatives are: 

 For Car B: P2 = 0.182. 

 For Car C: P3 = 0.241.  

 From the above results, we can observe that Car A has the highest relative value 

when it is compared with the other alternatives, thus making it the best choice. As a 

conclusion, for the goal of choosing the best car, the final ranking is Car A, then Car C 

followed by Car B (or BCA >> , where > means “better than”).  
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1.3. The Case of Conflicting Criteria  

The above example only considers that the higher the weight vector, the better an 

alternative (or criterion) is. In a real-world application, this may not be the case, since 

conflicting criteria might be included. An illustrative example is the price criterion. If we 

use this criterion in our example, we will consider the lower the relative weight of a 

particular car, the more appealing that car will be. A study of this situation is reported in 

(Triantaphyllou and Baig, 2000). 
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CHAPTER 2  

 

PROBLEM DESCRIPTION 

 

2.1. The Incomplete AHP 

As described in the previous chapter, the AHP requires to form a series of 

comparison matrices in order to calculate the relative weight vectors, which in turn form 

the decision matrix. In order to complete a single comparison matrix, the decision maker 

needs to make 2/)1( −nn  comparisons. These comparisons are enough to complete the 

whole matrix of size n, since all diagonal comparison values are equal to 1, and the other 

part of the matrix can be calculated using the reciprocal formula 





=

ij
ji a

a
,

,
1 , where jia ,  

is the comparison value of alternative i with alternative j. 

For a more general case with multiple criteria, the number of comparisons that the 

decision maker needs to make is )2/))1((2/)1( −+− mmnnn , where m is the number of 

alternatives, and n is the number of criteria. Note that this formula only applies for a 

single hierarchy level of criteria. Multiple hierarchy levels of criteria are not considered 

in the formula. 

In a consistent matrix formula (1.1) can be used to calculate the missing 

comparisons, thus only 1−n  initial comparisons are needed. However, in a real-life 

situation inconsistency in the matrix is highly expected due to human errors. In order to 

reduce the errors of the estimated missing comparisons, additional comparisons may be 

necessary. Naturally, as the number of comparisons increases, we can be more confident 

of the correctness of the estimated values of the missing comparisons.  

On the other hand, the more comparisons being conducted by the decision maker, 

the more likely he/she will induce some errors in the judgments. As the size of the matrix 

(i.e., the n value) increases, the number of the pairwise comparisons necessary to 

complete the matrix will increase dramatically, along with the time required to complete 

the comparisons. After some time, the fatigue factor will start to influence the decision 

maker, making his/her judgments more likely to be grossly inaccurate. With this aspect in 
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mind, our original intention of making more initial comparisons for improved accuracy 

may be impractical. 

A solution to this problem can be seen in the incomplete AHP. In an incomplete 

comparison matrix, the decision maker has to make between 1−n  and 2/)1( −nn  

pairwise comparisons to partially fill the matrix. The rest of the missing comparisons can 

be calculated using some of the methods that will be discussed later.   

2.2. Determining the Initial Comparisons 

 In the previous discussion, we can see that the time and effort to complete a 

judgment matrix may be too large. The main idea of the incomplete AHP is to fill in a 

judgment matrix with some initial comparisons, followed by a calculation method to 

estimate the remaining missing comparisons. These initial comparisons are obtained 

directly from the decision maker, thus the values will be more accurate (i.e., they are not 

estimated from other comparisons). Although these values are more accurate, consistency 

in the matrix may not be the case. In a perfectly consistent matrix, we only need 1−n  

initial comparisons, and then the entire matrix can be filled in with perfect accuracy.  

 However, in general, a perfectly consistent matrix is highly unlikely, thus we will 

probably need more than just 1−n  initial comparison values. The main question that 

arises first is how many initial comparisons do we need in order to ensure a relatively 

accurate estimation of the whole matrix? Intuitively, the more comparisons one makes 

(up to some number), the more likely is the matrix to be estimated accurately. On the 

other hand, the more comparisons one makes, the longer it will take, thus increasing the 

likelihood of errors in the judgments. 

 Another question that we will address here is which pairwise comparisons do 

we need to ask as the starting point? Some researchers (e.g., (Harker, 1987) and (Chen, 

1997)) have chosen to use random selection to determine these initial values. Weiss and 

Rao (1987) have proposed a methodology called Balanced Incomplete Block Designs 

(BIBD) to represent the initial comparisons in a large-scale AHP matrix. Using this 

method, a large matrix was divided into smaller subsets. A decision maker would 

evaluate each subset, thus making the calculations much easier. However, since the rule 

of dividing these subsets was not established, the above question remains unanswered. 
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The focus of this research is to determine whether some type of initial selection will 

produce a better estimation of the missing comparisons. 

2.3. Estimating the Missing Values in an Incomplete Matrix 

 After somehow determining some initial comparisons, a method is necessary to 

estimate the remaining missing comparisons in the matrix. Harker (1987) proposed the 

Geometric Mean, and the Revised Geometric Mean method to calculate the missing 

comparisons. Using one of the above methods, we will be able to estimate the missing 

comparison values in our incomplete matrix. After estimating the missing comparisons, 

the corresponding weight vector of the estimated matrix can be calculated using the AHP 

method discussed in chapter 1.  

Chen (1997) has also proposed to use the Revised Geometric Mean method along 

with the Least Squares method to estimate the missing comparisons. She used the same 

stopping criteria as Harker (1987) to terminate the estimation of the missing comparison 

values. Chen has concluded that the two methods will produce almost identical results in 

terms of estimating the weight vector. With this finding, this research expects no major 

differences will be found in the previously introduced methods. Instead, the main focus is 

to determine whether the selection of initial values will play an important role in 

estimating the correct weight vector. 

2.4. The Geometric Mean Method 

 One of the methods in estimating the missing comparisons is the Geometric Mean 

method (Harker, 1987). We will introduce Xi,j to denote the missing comparison value in 

the ith row and jth column. From formula (1.1), for a perfectly consistent case we can 

conclude that: 

  jkkiji aaX ,,, ×= ,                for i,j,k = 1, …, n    (2.1) 

where ai,k  and ak,j are known initial comparisons. 

 Formula (2.1) can only be true if the matrix is perfectly consistent. In the case of 

an inconsistent matrix, the formula will only estimate the comparison value. The 

combination of jkki aa ,,  and is called an elementary path (of length 2) connecting the 

missing comparison of items i and j (Harker, 1987). It is important that such connecting 
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paths are comprised of a pair of known comparison values. If one of the elements in the 

pair is missing, the Geometric Mean method cannot be applied.  

 As stated earlier, formula (2.1) will accurately calculate the comparison value in a 

perfectly consistent matrix. In an inconsistent matrix, we should consider calculating Xi,j 

using more than one elementary path. The formulation involves multiplying all the 

possible elementary paths between i and j, then taking the qth root (where q is the number 

of all possible paths).  Note that an elementary path does not always consist of two 

elements. In a matrix of size n the number of elements in an elementary path can be from 

2 up to 1−n . Thus, formula (2.1) can be extended to include these additional elements. 

We will use CPr to represent a connecting path with 1+r  elements. The parameter r 

(called the connecting path index) will define the number of elements in the connecting 

path (Harker, 1987).  

   21 and   ,...,1,...,1,,for    ,...: ,2,11,, −≤≤=×××= nrnkrkjiaaaXCP jkrkkkijir  (2.2) 

The following formula provides the general geometric mean estimation: 

  q
q

r
rji CPX ∏

=

=
1

,        (2.3) 

where CPr is a connecting path with 1+r  elements, r is the connecting path index, and q 

is the number of all possible connecting paths for 21 −≤≤ nr . 

 To illustrate the Geometric Mean method, we will use the following incomplete 

matrix as an example: 

 























−
−−

−

=

000.1167.0000.5000.4
000.1000.3125.0

000.6333.0000.1500.0000.2
200.0000.8000.2000.1250.0
250.0500.0000.4000.1

A  

 

From the previous matrix A, the missing comparisons are 5,45,41,44,1  and ,, XXXX . 

 Using formulas (2.1) and (2.2), we can calculate a missing comparison value. The 

following elementary paths can be determined for X1,4. 
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on. so and ...   4,33,55,14,1

4,22,55,14,1

4,22,33,14,1

4,33,22,14,1

4,33,14,1

4,22,14,1

aaaX
aaaX
aaaX
aaaX

aaX
aaX

≈
≈
≈
≈
≈
≈

 

 

In order to simplify the calculations in this example, we will only consider these six 

elementary paths. Applying formula (2.3), we can estimate the value of 4,1X  as follows: 

 

6
4,33,55,14,22,55,14,22,33,14,33,22,14,33,14,22,14,1 aaaaaaaaaaaaaaaaX ×××××=  

 

The same procedure can be done to estimate the remaining missing comparisons. One 

issue that we should observe is that all the elements in an elementary path should be of 

known values, and not part of the missing comparisons.  

In the above calculation, we omit the connecting paths with four elements to 

simplify the illustration. For a more accurate estimation of the missing value, all possible 

connecting paths should be included in the multiplication. After all the missing 

comparisons are estimated, we can replace them with our calculated values, thus 

completing the whole matrix.  

2.5. The Revised Geometric Mean Method 

In the previous section, we can see that determining all the possible connecting 

paths can be computationally difficult. As the dimension of the matrix becomes very 

large, the number of such connecting paths can be astronomically large. To deal with this 

problem Harker (1987) has proposed another method called the Revised Geometric Mean 

method. In this method, instead of estimating the value of jiX , , we will simply put that 

value to be equal to ji ww / . These values will be used to transform the matrix into 

another matrix by multiplying it with the weight vector.  
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One possible drawback of this methodology is that it is only applicable in an 

irreducible matrix. An irreducible matrix is a matrix that cannot be decomposed into the 

form of: 

   








32

1 0
AA

A
  

 

where A1 and A3 are square matrices and 0 is the zero matrix. For an irreducible matrix, 

there exists a path between all paired entities. This restriction will ensure that a missing 

comparison can be calculated using the Geometric Mean Method discussed in the 

previous section. 

 An example of this methodology is taken from (Harker, 1987) and is presented 

next. Consider an illustrative matrix A as follows: 

 










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





−

−
=

12/1
212/1

21
A  

 

From formula (1.2), we can replace the missing comparisons with their respective ratios 

of weights as follows: 
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
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/21

13

31

ww
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Multiplying this revised matrix with its weight vector, we can obtain the following 

matrix: 
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Using the formula of AW = CW, a new matrix C can be calculated as follows: 

 

   















=

22/10
212/1
022

C  

 

This new matrix C can be used to calculate the right principle eigenvector and also 

determine the weight vector of matrix A. 

 In order to determine the transformed matrix (i.e., matrix C in the above 

example), Harker (1987) provided the following rules: 

 

 

, ,...,1   rowin  questions unanswered ofnumber   theis     where,1

) (and otherwise          ,0
 and 0number  real a is  if       ,

,

,

,,,

nimmc
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jiaac

iiii

ji
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=+=

≠=

≠>=

 

 

where jiji ac ,,  and are the elements of matrix C and incomplete matrix A of the above 

example, respectively. 

 Using this methodology, we will require the calculation of ji ww / to fill in the 

missing comparisons. This value can be a continuous value, which is not consistent with 

the Saaty scale. In order to estimate this value to the closest Saaty scale value, we use an 

approximation rule as discussed in the following section. 

• An Approximation Rule (Chen, 1997) 

 This rule will determine the closest value to one of the discrete comparison values 

in the Saaty scale. If the estimation of ji ww /  is exactly equal to one of the values in the 

Saaty scale, we will use this number as the final estimated comparison values. However, 

more likely, the estimated value will be between two neighboring numbers of the Saaty 

scale, thus we need to determine which one is closest to the estimated value. Since we are 

dealing with the Geometric Mean method, we want to use the square root of the product 

of these neighboring numbers as the criterion to determine the closest scale number. 
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 As an example, let the estimated jiX ,  value be equal to 3.324. This number is 

between the two neighboring numbers of 3 and 4 from the Saaty scale. To maintain 

consistency in the matrix, this value must be approximated either by 3.000 or 4.000. The 

criterion to determine the closest number is calculated as (3 ×  4)1/2, which equals to 

3.4641. Since the value of jiX , (= 3.324) is less than 3.4641, we should approximate it to 

3.000 as the closest value. This approximated number is then used as the value of the 

missing comparison. 

2.6. The Least Squares Method 

 This method investigates the error factor in estimating the comparison value (see 

also Triantaphyllou, et. al., 1990). In a perfectly consistent matrix, formula (1.2) can be 

used to estimate any comparison value without any error. However, for an inconsistent 

matrix, formula (1.2) can be modified as follows: 

.,...,1,for       ,,, njid
w
w

a ji
j

i
ji ==     (2.4) 

where jid , is the deviation of jia , due to inconsistency. 

 From formula (2.4), we can determine the error of the comparison jia , as follows: 

  1,, −= jiji dε  

where ji,ε is the error value in the comparison. Furthermore, the above formula can be 

written as follows: 

  .,...,1,for        ,1,, njia
w
w

ji
i

j
ji =−=ε      (2.5) 

The values of ji,ε will be equal to zero in a perfectly consistent matrix. Moreover, the 

relative weights must be normalized, which means that the sum of all the weights must be 

equal to 1. 

 With these assumptions, a new matrix form can be derived as follows: BW = b, 

where the vector b has zero entries everywhere, except the last one which is equal to 1. W 

is the weight vector, which we would like to determine, and matrix B is of the form: 
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In the previous matrix B, empty cells correspond to 0 value. 

 In an inconsistent matrix, the relation of BW = b will not be true. We can assign a 

residual vector r = b – BW, which we would like to minimize. Since this value can be 

positive or negative, the idea is to minimize the sum of squares of the vector r, which can 

be written as follows ((Triantaphyllou, et. al, 1990) and (Chen, 1997)): 

  2

2
2 )(min BWbxf −=       (2.6) 

By solving the above minimization problem, we can derive the weight vector W. Another 

way to calculate the weight vector W is described as follows: 

  bBBBW TT 1)( −= ,        (2.7) 

where TB is the transpose of matrix B. 

This weight vector can be used to determine the missing comparison values by using 

formula (1.2). If the calculated value is not one of the scale values, an approximation rule 

can be used as discussed in section 2.5. 

 To illustrate this method, we will use the incomplete matrix A given in section 

2.4.  A central task in applying this method is to determine the matrix B. The elements on 

the top row in matrix A can be used to determine the top four rows in matrix B. The first 
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column will be filled with –1, and each element of the first row in matrix A will be placed 

in matrix B in sequence, where the column number remains the same. The first part of 

matrix B is as follows: 

   
















−
−
−

250.0000000.1
00500.00000.1
000000.4000.1

 

We can use this method to determine the second part of matrix B, which corresponds to 

the second row in the incomplete matrix A: 

   
















−
−
−

2000.000000.10
0000.80000.10
00000.2000.10

 

In this method, we will only consider the upper triangular part of the incomplete matrix, 

and the values of –1 are placed in the same column number as the row where we use its 

elements. For example, for all the elements in row 1, we will assign the value of –1 in 

column 1, and for elements from row 2, the value of –1 will be in column 2 and so on. 

 Another important observation that can be derived is that the number of columns 

will be the same as the size of the incomplete matrix, while the number of rows will 

depend on the number of missing comparisons. Since the number of elements on the 

upper triangular of the matrix is equal to 2/)1( −nn , the number of rows will be equal to 

1)2/)1(( +−− mnn , where m is the number of missing comparisons.  

 The final matrix B from the incomplete matrix A is as follows: 

 



































−
−

−
−
−

−
−
−

=

000.1000.1000.1000.1000.1
000.60000.100
0333.0000.100
200.000000.10
0000.80000.10
00000.2000.10
250.0000000.1
00500.00000.1
000000.4000.1

B  
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Using the matrix B, we can compute the weight vector W using formula (2.7), thus the 

missing comparisons can be estimated. 

2.7. The Goals of This Research 

 As with the previous discussions, this section summarizes the goals of this work. 

In this thesis, we will investigate three different questions that arise from the previous 

sections. 

Goal #1: If we start with the minimum number of comparisons (i.e., 1−n  comparisons), 

which ones could produce the best estimation of the weight vector? 

Five different selection rules of the initial comparisons will be investigated to see 

their effect on estimating the weight vector. These selection criteria will be discussed 

further in the next chapter. 

Goal #2: If we add additional comparisons one at a time, after how many (or what 

percentage of all the 2/)1( −nn  comparisons) can we stop? 

 Our intuition has suggested that the more initial comparisons one uses, the more 

likely the weight vector can be estimated correctly. With this assumption in mind, we will 

try to investigate the effect of adding additional comparisons above the minimum (i.e., 

1−n  comparisons) on the correctness of estimating the weight vector. Another sub-goal 

that we can investigate is how to select the next comparison values. Chen (1997) has 

conducted a study on this inquiry, and concluded that it does not make any difference of 

how we select the next comparisons. A random selection will produce almost identical 

results as the guided method proposed by Harker (1987). 

Goal #3: Does the estimation method (i.e., the Geometric Mean or the Least Squares) 

have any effect on estimating the missing comparison values? 

 The effect of these two different methods will be investigated to determine if they 

play an important role in correctly estimating the missing comparisons. Previous work by 

Chen (1997) has also concluded that the two methods will produce similar results, thus 

no significant differences are expected to be found. 

As a summary, this research is intended as an addition to Chen’s work regarding 

the incomplete AHP. However, a new question of which selection rule will produce the 
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best estimate will be the main focus of this research. Furthermore, this study will help us 

gain more understanding into this fascinating methodology. 
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CHAPTER 3  

 

PROPOSED METHODOLOGY 

 

3.1. Determining the Number of Initial Comparisons 

 In our discussion in the previous chapter, we concluded that the number of initial 

comparisons must be between 1−n  and 2/)1( −nn , where n is the size of the matrix. 

Furthermore, in determining these initial comparisons, we should not consider any value 

in the diagonal entries, since these values are always equal to 1.  

Intuitively, the more initial comparisons we have, the more likely we will 

correctly estimate the remaining missing comparisons. We will start with 1−n  initial 

comparisons. An increment of additional initial comparisons will then be added to 

determine its effect on the estimated weight vector.   

3.2. Determining which will be the Initial Comparisons 

 Previous work on the incomplete AHP failed to address this subject. A random 

selection of the initial values is accepted to be the easiest and best solution. Carmone et. 

al. (1997) have conducted a study on several deletion rules of a complete matrix to 

determine if some patterns of the initial comparisons play a role in determining the 

accuracy of the estimated matrix.  In their paper, they concluded that a matrix with high 

comparison values initially will be more likely to be estimated correctly. The question 

still remains, as how to determine which comparisons will produce the highest 

comparison values. Nevertheless, two of their selection rules, namely the best and worst 

will be included in this paper. 

 Ra (1999) has also proposed a selection rule for the initial comparisons. In that 

paper, n initial comparisons were chosen instead of the minimum 1−n . These n 

comparisons were positioned in the 1−n  cells, which were to the right of the diagonal 

entries, and the one cell in the upper right corner. This extra comparison would enable the 

consistency of the matrix to be easily checked. Since this selection rule was proposed 
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solely to support his method of Chainwise Paired Comparisons to estimate the missing 

comparisons, fair evaluation with different selection rules cannot be performed. 

 Considering the above discussions, this paper proposes five selection rules of the 

initial comparisons. Initially, the decision maker needs to make at least 1−n  

comparisons. The selection of the comparisons can be done using any one of the 

following rules: 

Rule # 1:  All comparisons are made based on one alternative, thus the ai,j value will 

be determined on a common row (i) (e.g., niii aaa ,3,2, ,,, "  excluding iia , ), 

or a common column (j) (e.g., jjjnjj aaaa ,,,2,1   excluding   ,,, " ). 

Rule # 2: The alternatives are arranged in decreasing order of their weights. Note 

that these values are unknown, but the decision maker is assumed to be 

able to rank them correctly by using his/her previous knowledge. Then, an 

alternative is compared with the next alternative in the order that they are 

ranked. This rule will produce the initial comparisons in a diagonal 

manner (e.g., nnaaa ,13,22,1 ,,, −" ), assuming that the alternatives are ranked 

as nAAAA ≥≥≥≥ "321  (where ≥  means “better than”). 

Rule # 3:  The selection of the questions regarding the ai,j values is random. 

Rule # 4: The comparisons with the highest ai,j values are selected. If the selected 

comparison lies in the diagonal section of the matrix (i.e., 

nnaaa ,2,21,1 ,,, " ), then the next highest comparison is selected to replace 

the original comparison to complete the 1−n  initial comparisons (see also 

Carmone et. al. (1997)). 

Rule # 5: The comparisons are ranked starting from the highest value. Then, the 

comparison in the median is selected as the first initial comparison. To 

complete the minimum initial comparisons, the comparisons whose 

ranking neighboring this median comparisons are selected (see also 

Carmone et. al. (1997)). 

The effect of these different selection rules will be the main focus of this research. 
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3.3. Illustration of the Proposed Methodology for the Computational Study 

 The purpose of this study is to determine whether a selection rule of how to select 

the initial comparisons will affect the accuracy of estimating the missing comparisons, 

and ultimately, the accuracy of the weight vector and the ranking of the alternatives. In 

order to estimate the missing comparisons, we can use any of the above methods, namely 

the Revised Geometric Mean, or the Least Squares method.  

 To test the accuracy of our estimated missing values from the incomplete matrix, 

a complete matrix is needed as the reference. This complete matrix is unknown to the 

decision maker, thus he/she will estimate the missing comparisons from the incomplete 

matrix. Obviously, if a complete comparison matrix and its weight vector are already 

known, there will be no reason trying to estimate the missing comparisons. Thus, the 

effect of the selection rule of the initial comparisons cannot be determined. 

With this assumption, an experimental study will then be conducted in a reverse 

sequence of the normal decision-making process. First, a complete matrix will be 

generated as the basis of the experiment. Using this matrix, we will then create an 

incomplete matrix by deleting some of the comparison values, thus leaving 1−n  

comparisons. Next, the missing comparisons from the incomplete matrix are estimated. 

After completely estimating the missing comparisons, the weight vector of this estimated 

matrix is next calculated and compared to the original weight vector from our initial 

complete matrix. 

 This study is performed repeatedly for the different selection rules of initial 

comparisons, along with different size matrices. The details of this methodology are 

explained in the following steps. 

 Step 1: Generating random relative weights of the alternatives. 

 In this step, we randomly generate n relative weights for the alternatives (or 

criteria) that are to be compared. These numbers are generated from the uniform 

distribution between 0 and 1 with each random number corresponding to the relative 

weight of a particular entity. A weight vector W is then formed from these weights. This 

vector is then normalized into 'W  with each weight divided by the sum of all the weights 

in the vector. The formula of the normalization method is as follows: 
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     (3.1) 

where iW  is the relative weight for a particular alternative (or criterion).  

Note that these relative weights of the weight vector are unknown to the decision 

maker. The decision maker is expected to form a similar weight vector using his/her 

previous knowledge. The value of the relative weights may not be the same, but the 

ranking order is expected to be identical. 

 Step 2: Forming the comparison matrix. 

 After the weight vector W is normalized (i.e., the 'W  vector is derived), we will 

calculate the element jia , using formula (1.2) in the form of a comparison matrix. This 

comparison matrix is known as the Real Continuous Pairwise (RCP) matrix 

((Triantaphyllou, 1995) and (Chen, 1997)) as the entities in the matrix are continuous 

numbers. Since the above matrix is calculated directly from the weight vector, this matrix 

will be perfectly consistent.  

Step 3: Approximate the continuous comparison values with the ones from 
the Saaty scale. 
 In the previous chapter, the decision maker is expected to make the comparisons 

using the scale proposed by Saaty. For our methodology, the elements in an RCP matrix 

are likely to be different from the values in the Saaty scale, thus an approximation of 

these values is required. The approximation method discussed in section 2.5 can be used 

to transform the continuous comparison values into their nearest Saaty values. The new 

modified matrix is known as the Closest Discrete Pairwise (CDP) matrix 

((Triantaphyllou, 1995) and (Chen, 1997)).  

The CDP matrix can be assumed is the matrix to be provided by the decision 

maker as described in chapter 1. Due to the approximation nature, a CDP matrix may no 

longer be perfectly consistent. This condition is acceptable since the decision maker may 

also make some minor errors in the comparisons. If the matrix is reasonably consistent 

(i.e., its CR value is less than 10%), the relative weights will then be calculated using 

formula (1.5). 

The above CDP matrix is considered as the best-case scenario in our study. If and 

only if the decision maker can be as accurate as possible in every single pairwise 
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comparison, he/she will produce the above CDP matrix. In general, the decision maker 

will produce a comparison matrix similar to the above CDP matrix due to human errors. 

The differences between the actual estimated matrix and our best-case scenario matrix 

(i.e., the CDP matrix) may not be important, as long as the weight vectors are identical in 

terms of the ranking order of the alternatives (or criteria).  

Step 4: Forming an incomplete comparison matrix. 

In order to determine if a specific selection rule for the initial pairwise 

comparisons will lead to a better estimation of the missing comparisons, we will delete 

most of the comparisons from the above CDP matrix, leaving 1−n  comparisons 

according to each one of the rules described in section 3.2. The deleted comparison 

values are assumed to be undetermined by the decision maker, either by his/her hesitation 

to make the comparisons, or due to the time constraint of determining the comparisons. 

Using the Least Squares or the Revised Geometric Mean methods, we will try to estimate 

the deleted comparison values.   

Note that the incomplete matrix is formed with the actual relative weight vector 

and the ranking of all the weights is known. This original weight vector will then be 

compared with our estimated one from the incomplete matrix.  

Step 5: Estimating the missing comparisons. 

Using one of the above methods (i.e., the Least Squares or the Geometric Mean 

method), the missing comparisons in the incomplete matrix will be estimated. This 

estimation method will not guarantee an identical result as our original CDP matrix. 

Next, the weight vector will be calculated and compared with the actual values from the 

original CDP matrix. The difference between them will determine the accuracy of the 

estimated matrix.  

Step 6: Updating the incomplete matrix. 

The accuracy of the estimated weight vector may be unsatisfactory, thus a new 

missing comparison needs to be estimated. The selection of the next missing comparison 

can be done either randomly, or using a guided rule as in (Harker, 1987). Intuitively, the 

increased number of comparisons will improve the accuracy of the weight vector. Thus, 

the decision maker will go back to step 5 to estimate additional comparisons. 
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As an illustration to the last two steps, the decision maker first determines the 

minimum number of 1−n  initial comparisons. These values are selected using one of the 

selection rules discussed in section 3.2. After the weight vector is calculated, the next 

comparison is added to the incomplete matrix (thus, increasing the number of the 

comparisons by one). A new weight vector is calculated, then it is compared with the first 

weight vector to see the differences between them. 

The last two steps will be performed in a loop until the decision maker is satisfied 

with the accuracy of the weight vector, or all the missing comparisons are calculated. 

Harker (1987) has suggested stopping the loop if the maximum absolute difference in the 

attribute weights from one question to the next is α≤ , where α  is a given constant (e.g., 

α  = 10%). Of course, the decision maker can stop the loop at anytime, either due to a 

time constraint or other factors, without using Harker’s rule.  
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CHAPTER 4  

 

AN EXTENSIVE ILLUSTRATIVE EXAMPLE 

 

4.1. Determining the Original Weight Vector 

 To illustrate the steps described in the previous chapter, the following weight 

vector W is generated containing five entities: 

 

  























=

23282216.0
60076497.0
45607005.0
34038541.0
66757076.0

W  

 

Note that the relative weights on the above vector W are generated randomly from the 

uniform distribution between 0 and 1. Using formula (3.1), this weight vector is then 

normalized as follows: 

 

   























=

10133217.0
26147348.0
19849730.0
14814738.0
29054965.0

'W  

 

Next, an RCP matrix is formed by using the above weight vector 'W . An 

illustration of the calculation can be seen as we take as example the 2,1a  value. This value 

is calculated from the ratio of values from the first row of our normalized weight vector 

(= 0.29054965) with the value from the second row of the same vector (= 0.14814738). 

Thus, the value of 2,1a  is equal to 96122031.1
14814738.0
29054965.0 = . The complete RCP matrix 

A is as follows: 
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





















=

138754282.051049647.068399569.034876025.0
58036002.2131726479.176495514.189992702.0
95887742.175914881.0133986372.168317859.0
46199751.156658664.074634456.0150988662.0
86729920.211120122.146374611.196122031.11

A  

 

 From the above RCP matrix A, we can form the CDP matrix by approximating the 

comparisons with continuous numbers in the above matrix into their closest Saaty values. 

The criterion to determine the closest scale number is calculated using the square root of 

the product of the two neighboring scale numbers.   

As an example, observe that the actual value of 3,1a  is 1.463746106. This 

continuous value is different from the ones in the Saaty scale, which only consists of the 

discrete numbers (i.e., 1, 2, 3, …, 9) and their reciprocals. Using the approximation rule 

discussed in section 2.5, we can estimate this value to its closest discrete value. Since this 

value is between the two neighboring numbers of 1 and 2, it must be approximated to 

either 1 or 2. The criterion to determine the closest number is calculated as (1 ×  2) 2/1 , 

which equals to 1.41421. As the value of 3,1a  (= 1.463746106) is greater than 1.41421, it 

will be approximated to 2 as the closest value.  

This process is repeated until all the continuous values in our comparison matrix 

are estimated to their closest discrete numbers according to the Saaty scale. The modified 

comparison matrix 'A  is as follows: 

 























=

13/12/12/13/1
31121
21112/1
22/1112/1
31221

'A  

 

Using matrix 'A (which is the CDP matrix for this example), the weight vector 

can be determined using formula (1.5). However, the method of using the eigenvector 
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calculation will consume extensive time, thus the approximation method using the 

geometric means method will be used. When formula (1.6) is used, the weight vector of 

matrix A '  is as follows: 

 

   























=

48835934.0
43096908.1

1
87055056.0
64375183.1

''W  

 

After we normalize the above weight vector, our reference weight vector is: 

 

   























=

08987717.0
26335412.0
18403900.0
16021526.0
30251445.0

*W  

 

The actual values of the weight vector may not be as important as the order 

ranking of each individual alternative (or criterion). The decision maker is more likely to 

appreciate which alternative is the best than knowing the actual value of its weight 

vector. With this assumption, the accuracy of the estimated weight vector is determined 

based on how accurate the ranking of the alternatives is compared to the ranking from the 

original weight vector. Using the assumption that the higher the weight, the better it is, 

the original ranking of the alternatives is 1-4-3-2-5. One may compare different rankings 

by employing the methods discussed in (Ray and Triantaphyllou, 1998 and 1999). 

 Another method that one can use to determine the accuracy of the estimated 

weight vector is to calculate the average difference between two vectors. The smaller the 

difference, the better a methodology is. As an illustration, let W be the new estimated 

weight vector. We should consider the difference between W and *W  (i.e., 
n

ww
n

i
ii∑

=

−
1

*

) 
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to determine the accuracy of the estimated weight vector. This method can be very useful 

to determine which alternative is better if two or more values are very close to each other 

(e.g., the values of second and third alternatives in our original weight vector).  

4.2. Calculation of the Weight Vector by Using the Least Squares Method 

 In this section, we would like to compare different selection rules for the initial 

comparisons discussed in section 3.2. Using the Least Squares method, the missing 

comparisons can be calculated, and consequently the weight vector can be estimated. 

This calculated weight vector, specifically the order of the ranking, is then compared with 

our initial reference weight vector. Recall that the reference weight vector for the current 

illustrative example is: 

 

   























=

08987717.0
26335412.0
18403900.0
16021526.0
30251445.0

*W  

  

Then the steps to take are described in the following subsections. 

4.2.1. Initial Comparisons Based on a Common Row or Column 

 From the previous matrix 'A , we will delete most of the comparisons leaving 

1−n  comparisons on a common row or column. As an example, we will use the first row 

(and consequently the first column) as our initial comparison values. The modified matrix 

(which is assumed to be the initial incomplete comparison matrix for this example) is as 

follows: 

 

  























−−−
−−−
−−−
−−−

=

13/1
11

12/1
12/1

31221

A  
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In order to determine its weight vector, formula (2.7) is used, thus we need to determine 

matrix B as described in section 2.5. From the above incomplete matrix A, the matrix B is 

formed as follows: 

 

  























−
−
−
−

=

000.1000.1000.1000.1000.1
000.3000000.1
0000.100000.1
00000.20000.1
000000.2000.1

B  

 

Using formula (2.7), the weight vector is calculated as follows: 

 

  























=

10.0
30.0
15.0
15.0
30.0

W   

 

This calculated weight vector would be used to fill in the missing comparisons in our 

initial matrix. According to Carmone et. al. (1997), an incomplete matrix with high jia ,  

values as their initial values will be more likely to be estimated correctly. With this 

information, 5,4a  (= 3.000) is chosen to be included as the next entry in our new 

incomplete matrix. Thus, the revised matrix A is as follows: 

 

  























−−
−−−

−−−
−−−

=

13/13/1
31

12/1
12/1

31221

A     

 

Again, using formula (2.7), the new weight vector is calculated as follows: 
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





















=

10.0
30.0
15.0
15.0
30.0

W  

 

This process is repeated until all the missing comparisons are calculated. The complete 

matrix A and its weight vector W can be shown to be as follows: 

 

 























=

13/13/23/23/1
31221

2/32/1112/1
2/32/1112/1

31221

A   























=

10.0
30.0
15.0
15.0
30.0

W  

 

In this illustrative example, we cannot distinguish the ranking between alternatives 1 and 

4, and the same holds true with alternatives 2 and 3. Thus, the ranking of the alternatives 

can be any of the following: 1-3-4-2-5, 1-4-3-2-5, 2-3-4-1-5, or 2-4-3-1-5. Of all the 

selections, one of them matches our initial ranking perfectly, while the other three are 

very close.  

 Another method that we can use to determine whether the estimated weight vector 

is as good as the reference one will be to calculate 
n

ww
n

i
ii∑

=

−
1

*

. The differences between 

the two vectors are as follows: 

 

  























=























−























=−

01012283.0
03664588.0
03403900.0
01021526.0
00251445.0

10.0
30.0
15.0
15.0
30.0

08987717.0
26335412.0
18403900.0
16021526.0
30251445.0

* WW  
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Using the above vector, we can calculate the average difference of the two vectors. Thus,  

n

ww
n

i
ii∑

=

−
1

*

 is equal to 0.018707484. This value is then compared with the others from 

different selection strategies of the initial comparisons. The selection strategy with the 

smallest average difference value is considered to be the best.  

4.2.2. Initial Comparisons Based on Pre-Ranking of the Alternatives 

 In this section, we will re-arrange the alternatives in decreasing order of their 

values in the weight vector. At this point, we assume that the decision maker does not 

have the exact value of this weight vector, but using his/her previous knowledge, he/she 

is able to re-arrange the alternatives according to their importance in decreasing order. In 

our example, the complete matrix A '  is re-arranged as follows: 

 

  























=

12/12/13/13/1
2112/12/1
21112/1
32111
32211

''A  

 

With this modification, the ranking of the alternatives will be: 1-2-3-4-5. The above 

matrix A is transformed into an incomplete matrix using the second rule mentioned in 

section 3.2 as follows: 

 

  























−−−
−−

−−
−−
−−−

=

12/1
211

111
111

11

A  
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By repeating the same steps as in section 4.2.1, the initial matrix B (as described in 

section 2.5) and its weight vector are as follows: 

 

   























−
−

−
−

=

000.1000.1000.1000.1000.1
000.2000.1000
0000.1000.100
00000.1000.10
000000.1000.1

B  

 

  























=

111.0
222.0
222.0
222.0
222.0

W  

 

With this rule of selecting the initial comparisons, the ranking of the alternatives may 

become more confusing. The first four alternatives have the same weight, thus the order 

of their ranks is practically unknown.  

 Using the differences between the estimated and the reference weight vector, we 

can form the following vector: 

 

  























=−

02112283.0
04135412.0
03796100.0
06178474.0
08051445.0

* WW  

 

From the above vector, the average difference of the two vectors is 0.08091238. 

4.2.3. Random Selection of the Initial Comparisons 

 Another rule that we will investigate is random selection. In this section, the 

incomplete matrix A is selected as follows: 
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





















−−−
−−
−−
−−−

−−

=

13/1
112
112/1
2/11

321

A  

 

That is, the initial set of known comparisons is at random places.  

One important issue that we need to discuss regarding this selection rule is the 

presence of a part that connects all the alternatives. It means that there is a connection 

between an alternative and every other alternative either directly or indirectly. Since the 

selection of these initial comparisons is done randomly, a connecting path is not 

guarantee. When this problem occurs, we reselect the comparisons again. 

Formula (2.7) is used to determine the matrix B and eventually its weight vector. 

The matrix B and its calculated weight vector are as follows: 

 

 























−
−

−
−

=

000.1000.1000.1000.1000.1
0000.1000.100
0500.00000.10
000.3000000.1
00000.20000.1

B   























=

129.0
194.0
194.0
097.0
387.0

W  

 

Using this random selection, the corresponding ranking of the weight vector can be any 

of the following: 1-5-2-3-4 or 1-5-3-2-4. Neither one of these results matches with our 

original ranking, thus this methodology might be unpredictable.  

 If we use the differences of WW −*  , the following vector is formed: 

 

  























=−

03912283.0
06935412.0
00996100.0
06321526.0
08448555.0

* WW  
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Thus, the average difference of the two vectors is 0.08871292. 

4.2.4. Initial Comparisons Based on the Highest Comparison Values 

 In this selection rule, each comparison in our reference matrix is ranked starting 

from the highest (i.e., the highest value be the number one ranking). When two or more 

comparisons are of equal values, the rankings will be chosen arbitrarily. Thus, the 

rankings of the comparisons in the reference matrix are as follows: 

 

  























=

1825232224
21716715
614131221
520111019
19438

R  

 

Using this ranking matrix, we select the 1−n  comparisons with the highest ranks. Thus, 

the resulting incomplete matrix is as follows: 

 

  























−−
−−−

−−−
−−−

−

=

13/13/1
31

12/1
12/1

3221

A  

 

Note that from the above example, the matrix has a path that connects all of alternatives. 

However, because the reference matrix is generated randomly, sometimes a connecting 

path does not exist. If such case arises, we need to add more comparisons beyond the 

minimum 1−n  comparisons to solve this inherit problem. 

 Using formula (2.7), we determine the B matrix, along with the weight vector. 

The B matrix and its weight vector are as follows: 
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





















−
−
−
−

=

000.1000.1000.1000.1000.1
000.3000.1000
000.3000000.1
00000.20000.1
000000.2000.1

B              























=

1.0
3.0

15.0
15.0
3.0

W  

 

In this selection rule, the first and forth entries have the same weights, thus we cannot 

distinguish which alternative is more important. The same is also true for the second and 

third alternatives. Thus the ranking of this weight vector can be: 1-3-4-2-5, 1-4-3-2-5, 2-

3-4-1-5, or 2-4-3-1-5. To distinguish the impact of this selection rule, we can use the 

difference between the estimated and the reference weight vector. Thus, the following 

vector is formed: 

 

  























=























−























=−

01012283.0
03664588.0
03403900.0
01021526.0
00251445.0

10.0
30.0
15.0
15.0
30.0

08987717.0
26335412.0
18403900.0
16021526.0
30251445.0

* WW  

 

 The average difference between these two vectors is 0.018707484. 

4.2.5. Initial Comparisons Based on the Median Comparison Values 

 With this selection rule, we will choose the comparisons in the median range. 

Recall that the rankings of our reference matrix is as follows: 

 

  























=

1825232224
21716715
614131221
520111019
19438

R  
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In this example, the median is the 13th ranked comparison. In order to easily select the 

initial comparisons, the above ranking matrix can be modified. The 13th ranked 

comparison can be seen as the highest ranked comparison, then the 14th ranked 

comparison as the second highest ranked, the 12th ranked comparison as the third highest 

ranked, the 15th ranked comparison as the forth highest ranked, and so on. This procedure 

is done until all the reference rankings are modified into the following matrix: 

 

  























=

1125211913
2297125
1431217
16154613
248182010

'R  

 

 After modifying the ranking matrix, the initial comparisons can be selected with 

the same method by using the highest ranked comparisons. In this example, we selected 

the top four comparisons. 

 Note that the first ranked comparison lies on the diagonal entries. Since the 

diagonal entries are already included in our incomplete matrix, we need to replace this 

comparison with the next ranked comparison. For our example, the next ranked 

comparison is no 5. 

 Furthermore, we also need to check if all these comparisons are unique. This 

means that they are not the reciprocal-pair of an existing comparison. For example, the 

2nd and 4th ranked comparisons are the reciprocal-pair of one another, thus we need to 

select another additional comparison to fill the initial incomplete matrix.   

 After incorporating all the information, our initial incomplete matrix is as follows: 

 

  























−−−−
−
−−
−−
−−−

=

1
1121
111
2/111

11

A  
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Note that in this example, the fifth alternative has no connecting path with any other 

alternative. Therefore, we need to add more comparisons in the same way until such 

connecting path is achieved. The modified initial incomplete matrix is as follows: 

 

  























−−−
−

−
−−
−−−

=

12/1
1121

2111
2/111

11

A  

 

 Again, by using formula (2.7) we can determine the B matrix and finally the 

weight vector to be as follows: 

 

 



























−
−

−
−

−

=

000.1000.1000.1000.1000.1
000.20000.100
0000.1000.100
0500.00000.10
00000.1000.10
0000.100000.1

B      























=

108.0
248.0
214.0
172.0
253.0

W  

 

 The ranking of the weight vector is 1-4-3-2-5, which is exactly the same as our 

reference weight vector. The difference of the incomplete and reference weight vector is 

as follows: 

 

  























=























−























=−

01812283.0
01535412.0
02996100.0
01178474.0
04951445.0

108.0
248.0
214.0
172.0
253.0

08987717.0
26335412.0
18403900.0
16021526.0
30251445.0

* WW  

 

Thus, the average difference is 0.024947428. 
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 From the previous five rules of selecting the initial comparisons, the first rule 

produced the best result for this illustrative example. Of course, we cannot make this 

generalization based on our small example. More computational experiments are needed 

using extensive test matrices. 

4.3. Calculation of the Weight Vector by Using the Revised Geometric Mean 
Method 
 As in the previous section, the calculation of the missing comparisons, and their 

weight vector, can also be done by using the Geometric Mean method. Again, different 

selection rules of the initial comparisons will be investigated in this section. Using the 

same initial weight vector as in section 4.1, the same matrix A '  can be calculated as 

follows: 

  

  























=

13/12/12/13/1
31121
21112/1
22/1112/1
31221

'A  

4.3.1. Initial Comparisons Based on a Common Row or Column 

 From the complete matrix A ' , we will select the first row (and consequently its 

corresponding first column) as our initial comparisons. Note that we chosen the first row 

arbitrarily. A similar result is expected when other row is chosen. The incomplete matrix 

A is as follows: 

 

  























−−−
−−−
−−−
−−−

=

13/1
11

12/1
12/1

31221

A  

 

Using the formula of CWAW = , we can derived the matrix C as follows: 

 



 46 

  























=

40003/1
04001
00402/1
00042/1
31221

C  

 

From matrix C, we can determine the corresponding weight vector using the right 

principle eigenvector method. The weight vector is calculated as follows: 

 

  























=

100.0
300.0
150.0
150.0
300.0

W  

 

In this example, we cannot distinguish the ranking between alternatives 1 and 4, and the 

same with alternatives 2 and 3. Thus, the ranking of the alternatives can be any of the 

following: 1-3-4-2-5, 1-4-3-2-5, 2-4-3-1-5, or 2-4-3-1-5. One of them matches our 

original ranking perfectly, while the rest of them are very close. 

 As before, another method that one can use to determine the accuracy of the 

estimated weight vector is to calculate the average difference between the estimated and 

the reference weight vector. The differences between the two vectors are as follows: 

 

  























=−

01012283.0
03664588.0
03403900.0
01021526.0
00251445.0

* WW  
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Using the above vector, the average difference
















 −∑
=

n

ww
n

i
ii

1

*

 i.e.,  is 0.018707484. Note 

that this value is identical to the one produced by the Least Squares method. 

4.3.2. Initial Comparisons Based on Pre-Ranking of the Alternatives 

 As described in section 4.2.2, we will re-arrange the alternatives in decreasing 

order of their values in the weight vector. In our example, the complete matrix A '  is re-

arranged as follows: 

 

  























=

12/12/13/13/1
2112/12/1
21112/1
32111
32211

''A  

 

With this modification, the ranking of the alternatives will also change to 1-2-3-4-5. The 

above matrix is then transformed into an incomplete matrix by using the second rule in 

section 3.2 as follows: 

 

  























−−−
−−

−−
−−
−−−

=

12/1
211

111
111

11

A  

 

Using the formula CWAW = , we can determine the new matrix C as follows: 
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





















=

42/1000
23100
01310
00131
00014

C  

 

Again, by using the right principle eigenvector method, the following weight vector can 

be determined: 

 

  























=

111.0
222.0
222.0
222.0
222.0

W  

 

The result of this second selection rule is identical to the one using the Least Squares 

method, where the first four alternatives have the same values. Thus, the order of their 

ranks is unknown. 

 Another method using the differences between the estimated and the reference 

weight vector produces the following vector: 

 

  























=−

02112283.0
04135412.0
03796100.0
06178474.0
08051445.0

* WW  

 

The average difference of the two vectors is 0.08091238. Again, this value of the average 

difference of the two vectors is identical to the one produced by the Least Squares 

method. 
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4.3.3. Random Selection of the Initial Comparisons 

 In this section, we will randomly select 1−n  comparisons as our initial values in 

the incomplete matrix A while making sure they form a connecting path. The matrix A is 

formulated as follows: 

 

  























−−−
−−
−−
−−−

−−

=

13/1
112
112/1
2/11

321

A  

 

Similar to the calculation from the previous section, a new matrix C is formed using the 

formula CWAW = . The new matrix C is as follows: 

 

  























=

40003/1
03120
01302/1
02/1040
30203

C  

 

From the matrix C, the weight vector can be estimated using the right principle 

eigenvector. The weight vector W can be expressed as follows: 

 

  























=

129.0
194.0
194.0
097.0
387.0

W  

 

Since we cannot distinguish the ranking between alternatives 3 and 4, the ranking of the 

alternatives can be either of the following: 1-5-2-3-4, or 1-5-3-2-4. One of these results is 

very close to the original ranking (i.e., 1-4-3-2-5). 
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 Another approach that we can use to determine the difference in the two rankings 

of the alternatives is to calculate the average difference of the two weight vectors. The 

difference of the two vectors is as follows: 

 

  























=−

03912283.0
06935412.0
00996100.0
06321526.0
08448555.0

* WW  

 

Thus, the average difference of the estimated weight and the reference vectors is 

0.08871292. 

4.3.4. Initial Comparisons Based on the Highest Comparison Values 

 As with the Least Squares Method, this selection rule will have the same initial 

incomplete matrix A as follows: 

 

  























−−
−−−

−−−
−−−

−

=

13/13/1
31

12/1
12/1

3221

A  

 

From this matrix, we can calculate the C matrix using the formula AW = CW: 

 

  























=

33/1003/1
34000
00402/1
00042/1
30222

C  
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Using this matrix, we can estimate the weight vector by using right principal eigenvector. 

The weight vector is calculated as follows: 

 

  























=

1.0
3.0

15.0
15.0
3.0

W  

 

The resulting weight vector is exactly the same using the Least Squares Method, thus the 

resulting rankings along with the average difference of the incomplete and reference 

vector are identical. 

4.3.5. Initial Comparisons Based on the Median Comparison Values 

 Again, this selection rule is identical to the one used for the Least Squares 

Method. The initial incomplete matrix is as follows: 

 

  























−−−
−

−
−−
−−−

=

12/1
1121

2111
2/111

11

A  

 

Thus, using the formula AW = CW, we can calculate the C matrix as follows: 

 

  























=

402/100
02121
21210
02/1130
01004

C  

 

By means of right eigenvector method, we can estimate the weight vector as: 
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





















=

108.0
248.0
214.0
172.0
253.0

W  

 

Again, this weight vector is identical to the one calculated by using the Least Squares 

Method. Therefore, the resulting rankings and the mean difference will be the same. 
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CHAPTER 5  

 

COMPUTATIONAL RESULTS 

 

 As stated earlier, the main focus of this thesis research is to determine which 

selection rule will produce the best-estimated weight vector. In order to simulate the real 

world application, a computer program is built to produce the necessary calculations. The 

procedure for this experiment is described in section 3.3. Matrices of dimension 10, 15 

and 20 are chosen to determine which selection rule will perform the best. These 

dimensions are chosen because of their “medium” size, thus similar results can be 

expected for smaller or larger dimensions. 

 For the forth and fifth selection rules, the average number of initial comparisons is 

expected to be greater than 1−n . Thus, additional matrices with different dimensions are 

formed to determine if there is any correlation between the size of the matrix and the 

average number of initial comparisons.  

 In order to preserve accuracy in the methodology, 100 random matrices are 

generated to determine the effect of each selection rule in estimating the weight vector. 

On each repetition, a reference matrix is generated from random numbers, ensuring the 

unique randomness of each repetition.  

 The computational experiment was performed using IBM SP cluster, Power 3 – II 

architecture machines on the LSU mainframe system (also known as Casper), and the 

program is written in the FORTRAN language with the use of some subroutines from 

IMSL 4.01 Library. 

5.1. Results of the Best Selection Rule (Research Goal #1) 

 In order to determine which selection rule most accurately will estimate the 

weight vector, four comparison criteria are used to compare the estimated and the 

reference weight vectors. They are as follows: 

• Mean absolute difference. 
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The difference of each weight from the estimated and reference weight 

vectors is calculated in terms of the absolute value. Using absolute values, the 

average difference can then be calculated. 

• Mean sum-square-error difference. 

Similar to the previous method, each weight from the estimated weight 

vector is compared to each weight from the reference vector in terms of sum-

square-error method. After all the sum-square-error differences are known, the 

average can be calculated. 

• Percentage of the sum-square-error in ranking difference. 

The weights in the estimated and reference weight vectors are first ranked 

starting from the highest. Then, these ranking vectors are compared in terms of 

the sum-square-error method, and its percentage is calculated. 

• Percentage of weighted-error in ranking difference.  

As in the previous method, the ranking vectors are compared. However, 

the differences in the ranking are weighted according to the importance of each 

weight. For the weight with the best rank (#1), we assign the highest penalty 

should the ranking of the two vectors are different. The percentage of the 

weighted errors compared to the possible maximum error is then calculated. 

 

In order to illustrate the comparison criteria in more detail, the following weight 

vectors can be used: 



















=

10.0
15.0
25.0
50.0

1W    



















=

30.0
10.0
35.0
25.0

2W  

From the two weight vectors, we can calculate the absolute difference as follows: 

  



















=



















−



















=

20.0
05.0
10.0
25.0

30.0
10.0
35.0
25.0

10.0
15.0
25.0
50.0

*W  
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Thus the mean absolute difference is 0.15. 

Another comparison criterion is to compare the two weight vectors using the sum-square-

error method. The difference can be calculated as follows: 

 

  












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



=







































−



















=

0400.0
0025.0
0100.0
0625.0

30.0
10.0
35.0
25.0

10.0
15.0
25.0
50.0

*

2

W  

 

Thus the average sum-square-error difference is 0.02875. 

 The third and forth methods are based on comparing the estimated and reference 

weight vector in respect of their ranking. Using 1W  and 2W , the ranking vectors of their 

weights can be shown to be as follows: 

  



















=

4
3
2
1

1R    



















=

2
4
1
3

2R  

For the third comparison criterion, the two ranking vectors are compared using the sum-

square-error method. The resulting vector is as follows: 
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
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
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




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
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























−



















=

4
1
1
4

2
4
1
3

4
3
2
1

*

2

R  

 

In order to see the impact of this criterion, the sum of the sum-square-error ranking 

difference is compared to the sum of the maximum difference. The maximum difference 

for the sum-square-error method can be achieved if the two ranking vectors are the 

reciprocal of one another.  
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
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
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













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9
1
1
9

1
2
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4
3
2
1

2

maxR   

 

The sum of *R  is then compared to the sum of maxR  to determine the percentage sum-

square-error difference in the ranking. The result is 50 %. 

 The forth comparison criterion is similar to the third one. Instead of using the sum 

square error, each weight on the reference vector is given a penalty, with the highest 

ranked weight having the highest penalty. For our example, say that 1R  is the reference 

vector. Thus, the penalty can be assigned as follows: 

  



















=

1
2
3
4

P  

For our example, if the first weights of the reference and estimated weight vector are 

different in ranking, a penalty of 4 is assigned; if the difference lies in the second weight, 

a penalty of 3 is assigned, and so on. The sum of all penalties is then compared to the 

maximum possible penalty to determine its percentage. For our example, since all the 

weight rankings are different, the percentage will be 100 %. 

5.1.1. Comparisons of the Selection Rules Using the Mean Absolute Difference 

 In this section, the selection rules are compared using the mean absolute 

difference method. Random matrices of dimension 10, 15 and 20 were used and the 

number of replication was equal to 100. The results for dimension 10 are presented in 

Figure 5-1 (parts a and b), for dimension 15 are presented in Figure 5-1 (parts c and d), 

and for dimension 20 are presented in Figure 5-1 (parts e and f). Based on these results, 

the following observations can be drawn: 
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Observations: 

• The second selection rule performs better than the other selection rules, specially 

using the Least Squares Method. The difference is not apparent when using the 

Geometric Mean Method. 

• When comparing only the minimum initial comparisons (i.e., 1−n  comparisons), 

the forth selection rule seems to be the best choice. However, as discovered 

earlier, the average minimum initial comparisons for the forth and fifth rules are 

more than 1−n  comparisons. Because of this finding, the forth selection rule 

cannot be compared fairly based only on the minimum initial comparisons (i.e., 

1−n  comparisons). Thus, the first selection rule can be seen as the best when 

estimating the minimum initial comparisons. 

• Between the two estimating methods (i.e., the Least Squares and the Geometric 

Mean), the Geometric Mean method performs consistently better regardless of the 

selection rule.  

Figure 5-1 a: Comparison of the selection rules by mean absolute difference 
using the Least Squares Method (n = 10) 
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Figure 5-1 b: Comparison of the selection rules by mean absolute difference 
using the Geometric Mean Method (n = 10) 

 

Figure 5-1 c: Comparison of the selection rules by mean absolute difference 
using the Least Squares Method (n = 15) 
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Figure 5-1 d: Comparison of the selection rules by mean absolute difference 
using the Geometric Mean Method (n = 15) 

 

Figure 5-1 e: Comparison of the selection rules by mean absolute difference 
using the Least Squares Method (n = 20) 
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Figure 5-1 f: Comparison of the selection rules by mean absolute difference using 
the Geometric Mean Method (n = 20) 

 

Note: The points on each series in the graph represent steps of iterations, starting from 

minimum initial comparisons (i.e., 1−n  comparisons), until the incomplete matrix is left 

with only one missing comparison (i.e., 1
2

)1( −−nn  comparisons). Additionally, 

although the number of initial comparisons for the forth and fifth selection rules seems to 

start from 1−n  or n, it only happens on a few replications. The average number for those 

rules is much higher than the minimum initial comparisons. 

5.1.2. Comparisons of Selection Rules Using the Mean Sum-Square-Error 
Difference 
 Another method to evaluate the differences of the estimated and reference weight 

vectors is by the sum square error. As with the previous section, a similar procedure is 

used and the following observations can be derived: 
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Observations: 

• The best selection rule is the second one. This fact is apparent when using the 

Least Squares Method. On the other hand, when using the Geometric Mean 

Method, all the selection rules seem to perform in a similar manner. 

• Again, while comparing the minimum initial comparisons (i.e., 1−n  

comparisons), the forth selection rule appears to be the best. However, because its 

average number of initial comparisons is beyond 1−n  comparisons, this fact 

remains untrue. With this finding, the first selection rule can be seen as the better 

choice. 

• The Geometric Mean performs better than the Least Squares Method. 

 

 

 

 

Figure 5-2 a: Comparison of the selection rules by mean sum-square-error 
difference using the Least Squares Method (n = 10) 

Mean SSE Difference by Using the Least Squares Method

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

9 14 19 24 29 34 39 44

Number of Comparisons

Rule 1

Rule 2

Rule 3

Rule 4

Rule 5



 62 

Figure 5-2 b: Comparison of the selection rules by mean sum-square-error 
difference using the Geometric Mean Method (n = 10) 

 

Figure 5-2 c: Comparison of the selection rules by mean sum-square-error 
difference using the Least Squares Method (n = 15) 
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Figure 5-2 d: Comparison of the selection rules by mean sum-square-error 
difference using the Geometric Mean Method (n = 15) 

 

Figure 5-2 e: Comparison of the selection rules by mean sum-square-error 
difference using the Least Squares Method (n = 20) 
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Figure 5-2 f: Comparison of the selection rules by mean sum-square-error 
difference using the Geometric Mean Method (n = 20) 

 

5.1.3. Comparisons of Selection Rules Using the Sum-Square-Error Ranking 
Difference 
 Initially, the weights in the estimated and reference weight vectors are ranked 

according to their values starting from the highest. Then, the rankings from each weight 

vector are compared using the sum square error. The error is then divided by the 

maximum error possible to determine its percentage.  

 From the results, the following observations can be drawn: 

Observations: 

• Similar with the previous method, the second selection rule performs better than 

any other selection rule under the Least Squares Method. However, the forth 

selection rule seems to be better when the Geometric Mean Method is used, 

although the difference is very small. 

• As for the minimum initial comparisons, the forth rule also appears to be the best. 

Nevertheless, since to its average number of minimum initial comparisons is 

greater than 1−n , the first rule is believed to be the best choice in this manner. 

• The Geometric Mean Method performs better than the Least Squares Method. 
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Figure 5-3 a: Comparison of the selection rules by percentage of sum-square-
error ranking difference using the Least Squares Method (n = 10) 

 

Figure 5-3 b: Comparison of the selection rules by percentage of sum-square-
error ranking difference using the Geometric Mean Method  
(n = 10) 
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Figure 5-3 c: Comparison of the selection rules by percentage of sum-square-
error ranking difference using the Least Squares Method (n = 15) 

 

Figure 5-3 d: Comparison of the selection rules by percentage of sum-square-
error ranking difference using the Geometric Mean Method  
(n = 15) 
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Figure 5-3 e: Comparison of the selection rules by percentage of sum-square-
error ranking difference using the Least Squares Method (n = 20) 

 

Figure 5-3 f: Comparison of the selection rules by percentage of sum-square-
error ranking difference using the Geometric Mean Method  
(n = 20) 
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5.1.4. Comparisons of Selection Rules Using the Weighted-Error Ranking 
Difference 
 In this section, each ranking of the weights from the reference vector are given a 

certain penalty. The first-ranking weight will be given the highest penalty, while the last-

ranking weight will have the smallest penalty. For our computational experiment, the 

weight vector will be of dimension 10. Thus, the highest weight (i.e., rank #1) will have a 

penalty of 10, then consequently reduces by 1 until the smallest weight (i.e., rank #10) 

will only have a penalty of 1.  

The rankings from the estimated and the reference weight vectors are then 

compared. If the ranking of the weights are different, the consequent penalty is 

calculated. The total penalty is then divided with the maximum possible penalty to 

calculate its percentage of error. 

 The following observations can be derived from these results: 

Observations: 

• The result is inconclusive with the Least Squares Method, however, when using 

the Geometric Mean Method, the forth selection rule clearly the best choice. 

• For evaluation of minimum initial comparisons, the forth rule seems to be the 

best. Nevertheless, as stated earlier, the first rule still being considered a better 

choice, since the average minimum initial comparisons for the forth selection rule 

are above 1−n  comparisons. 

• The Geometric Mean Method performs better than the Least Squares Method. 

 

An important observation is found during the analysis of the results regarding the 

comparisons using the ranking differences. The weights of the estimated weight vectors 

sometimes may not be distinguishable because their differences are very small. On the 

other hand, these small differences have a major impact when it comes to their rankings. 

Often, the difference between the first and second ranked weights is smaller than 10-7. 

 With this finding, the analysis of the selection rules by using any of the ranking 

difference methods maybe misleading. Therefore, the analysis by using the mean 

difference of the estimated and reference weight vectors is more reliable. 
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Figure 5-4 a: Comparison of the selection rules by percentage of weighted-error 
ranking difference using the Least Squares Method (n = 10) 

 

Figure 5-4 b: Comparison of the selection rules by percentage of weighted-error 
ranking difference using the Geometric Mean Method (n = 10) 
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Figure 5-4 c: Comparison of the selection rules by percentage of weighted-error 
ranking difference using the Least Squares Method (n = 15) 

 

Figure 5-4 d: Comparison of the selection rules by percentage of weighted-error 
ranking difference using the Geometric Mean Method (n = 15) 
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Figure 5-4 e: Comparison of the selection rules by percentage of weighted-error 
ranking difference using the Least Squares Method (n = 20) 

 

Figure 5-4 f: Comparison of the selection rules by percentage of weighted-error 
ranking difference using the Geometric Mean Method (n = 20) 
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5.1.5. The Average Minimum Number of Initial Comparisons for the Forth and 
Fifth Selection Rule 
 In the earlier section, we discovered that additional comparisons may be needed 

on top of the minimum 1−n  initial comparisons, to ensure that there will be a connecting 

path between all the alternatives, either directly or indirectly. To investigate the effect of 

the matrix dimension with the average minimum number of initial comparisons, a 

computational experiment was conducted with 10,000 replications with different matrix 

dimensions. The following graphs show the correlation between the matrix dimension, 

and the additional number of initial comparisons above the 1−n  comparisons: 

 

 

 

Figure 5-5 a: Additional comparisons needed to ensure a connecting path for all 
alternatives using forth selection rule 
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Figure 5-5 b: Additional comparisons needed to ensure a connecting path for all 
alternatives using fifth selection rule 

 

Observations: 

• The number of required additional initial comparisons appears to be proportional 

to the matrix dimension. 

• The average essential additional comparisons is about 15.23 % of the remaining 

missing comparisons for the forth selection rule, and about 31.8 % for the fifth 

selection rule. 
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estimated and reference weight vectors are small, even with 1−n  number of 

comparisons. 

5.2.1. Results for n = 10 

 For the minimum number of comparisons (i.e., 1−n  comparisons), the weight 

vector can be estimated with 97.6 % through 98.9 % accuracy, depending on the selection 

rule used. The calculation of the above accuracy is based on the mean absolute difference 

method without the forth and fifth selection rules. Since the average number of minimum 

comparisons for the forth and fifth selection rules is greater than 1−n , the inclusion of 

these selection rules will be misleading. 

If a higher accuracy is required, with 11+n  comparisons we can get an accuracy 

of 99.5 % regardless of the selection rule, except for the fifth rule. Therefore, for 99.5 % 

accuracy, the percentage of necessary comparisons is around 34.29 % above the 

minimum 1−n  comparisons. 

5.2.2. Results for n = 15 

 Using the mean absolute difference method on the minimum number of 

comparisons, the weight vector in this matrix dimension can be estimated with 98.0 % 

through 99.2 % accuracy. This accuracy range does not include the forth and fifth 

selection rule, because the average number of minimum comparisons for these selection 

rules are more than 1−n  comparisons.  

 When 21+n  comparisons are used, a higher accuracy of 99.5 % can be achieved 

regardless of the selection rule, except the fifth rule. Hence, to achieve 99.5 % accuracy, 

the percentage of necessary comparisons is around 23.33 % above the required 1−n  

comparisons. 

5.2.3. Results for n = 20 

 The weight vector can be estimated with 98.3 % through 99.4 % by using only the 

minimum number of comparisons (i.e., 1−n  comparisons). Again, the mean absolute 

difference method is used to determine the accuracy of the estimated weight vector, 

without considering the forth and fifth selection rules.  
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 For a higher accuracy of 99.8 %, 50+n  comparisons are needed regardless of the 

selection rule, except for the fifth rule. Thus, the percentage of necessary comparisons is 

around 30 % above the minimum 1−n  comparisons in order to achieve 99.8 % accuracy. 

5.3. Comparisons of the Least Squares Method and Geometric Mean Method 
(Research Goal #3) 
 The last goal of this thesis research was to compare the Least Squares Method 

with the Geometric Mean Method. Chen (1997) has concluded that the two methods 

perform in a similar matter. In order to confirm this finding, the two methods are again 

compared using different selection rules. The following graphs will show the 

comparisons: 

 

 

Figure 5-6-1 a: Comparison of the methodologies using the mean absolute 
difference for the first selection rule (n = 10) 
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Figure 5-6-1 b: Comparison of the methodologies using the mean absolute 
difference for the second selection rule (n = 10) 

 

Figure 5-6-1 c: Comparison of the methodologies using the mean absolute 
difference for the third selection rule (n = 10) 
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Figure 5-6-1 d: Comparison of the methodologies using the mean absolute 
difference for the forth selection rule (n = 10) 

 

Figure 5-6-1 e: Comparison of the methodologies using the mean absolute 
difference for the fifth selection rule (n = 10) 

 

Comparisons of the Methodologies using Mean Absolute Difference (Rule 4)

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

6.00E-03

7.00E-03

8.00E-03

9 14 19 24 29 34 39 44

N um ber of C om parisons

Least Squares M ethod

Geom etric M ean M ethod

Comparisons of the Methodologies using Mean Absolute Difference (Rule 5)

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

3.00E-02

3.50E-02

4.00E-02

4.50E-02

9 14 19 24 29 34 39 44

N um ber of C om parisons

Least Squares M ethod

Geom etric M ean M ethod



 78 

Figure 5-6-2 a: Comparison of the methodologies using the mean absolute 
difference for the first selection rule (n = 15) 

 

Figure 5-6-2 b: Comparison of the methodologies using the mean absolute 
difference for the second selection rule (n = 15) 
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Figure 5-6-2 c: Comparison of the methodologies using the mean absolute 
difference for the third selection rule (n = 15) 

 

Figure 5-6-2 d: Comparison of the methodologies using the mean absolute 
difference for the forth selection rule (n = 15) 
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Figure 5-6-2 e: Comparison of the methodologies using the mean absolute 
difference for the fifth selection rule (n = 15) 

 

Figure 5-6-3 a: Comparison of the methodologies using the mean absolute 
difference for the first selection rule (n = 20) 
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Figure 5-6-3 b: Comparison of the methodologies using the mean absolute 
difference for the second selection rule (n = 20) 

 

Figure 5-6-3 c: Comparison of the methodologies using the mean absolute 
difference for the third selection rule (n = 20) 
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Figure 5-6-3 d: Comparison of the methodologies using the mean absolute 
difference for the forth selection rule (n = 20) 

 

Figure 5-6-3 e: Comparison of the methodologies using the mean absolute 
difference for the fifth selection rule (n = 20) 
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Observations: 

• The Geometric Mean Method performs consistently better than the Least Squares 

Method, regardless which selection rule is used. 

• The difference is not so significant under the second and fifth selection rules. 

However, this small difference will have a major impact to the ranking of the 

alternatives.  

 

To support these observations, more comparisons by using mean sum-square-error 

difference are conducted. The following graphs will show the comparisons of the two 

methodologies: 

 

Figure 5-7-1 a: Comparison of the methodologies using the mean sum-square-
error difference for the first selection rule (n = 10) 
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Figure 5-7-1 b: Comparison of the methodologies using the mean sum-square-
error difference for the second selection rule (n = 10) 

 

Figure 5-7-1 c: Comparison of the methodologies using the mean sum-square-
error difference for the third selection rule (n = 10) 
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Figure 5-7-1 d: Comparison of the methodologies using the mean sum-square-
error difference for the forth selection rule (n = 10) 

 

Figure 5-7-1 e: Comparison of the methodologies using the mean sum-square-
error difference for the fifth selection rule (n = 10) 
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Figure 5-7-2 a: Comparison of the methodologies using the mean sum-square-
error difference for the first selection rule (n = 15) 

 

Figure 5-7-2 b: Comparison of the methodologies using the mean sum-square-
error difference for the second selection rule (n = 15) 
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Figure 5-7-2 c: Comparison of the methodologies using the mean sum-square-
error difference for the third selection rule (n = 15) 

 

Figure 5-7-2 d: Comparison of the methodologies using the mean sum-square-
error difference for the forth selection rule (n = 15) 
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Figure 5-7-2 e: Comparison of the methodologies using the mean sum-square-
error difference for the fifth selection rule (n = 15) 

 

Figure 5-7-3 a: Comparison of the methodologies using the mean sum-square-
error difference for the first selection rule (n = 20) 
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Figure 5-7-3 b: Comparison of the methodologies using the mean sum-square-
error difference for the second selection rule (n = 20) 

 

Figure 5-7-3 c: Comparison of the methodologies using the mean sum-square-
error difference for the third selection rule (n = 20) 
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Figure 5-7-3 d: Comparison of the methodologies using the mean sum-square-
error difference for the forth selection rule (n = 20) 

 

Figure 5-7-3 e: Comparison of the methodologies using the mean sum-square-
error difference for the fifth selection rule (n = 20) 
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Observations: 

• The Geometric Mean Method still performs better than the Least Squares Method. 

• Again, although the difference under the second and fifth selection rules might be 

small, it may have a major impact in determining the ranking of the alternatives.  
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CHAPTER 6  

 

CONCLUSIONS 

 

 As stated in earlier chapters, the main focus of this thesis research was to 

determine if the way that we select our initial comparisons would have an effect in 

accurately estimating the weight vector from the incomplete AHP matrices. In order to 

answer this question, we have selected five selection rules, which are simple and easy to 

understand. These selection rules are discussed in chapter 3 with some numerical 

examples in chapter 4.  

6.1. Conclusions Regarding the First Research Goal 

• Overall, the second selection rule performs better than any other selection rules. 

Please recall that this rule requires the decision maker to first arrange the 

alternatives in decreasing order of their weights using his/her previous knowledge 

on the subject. Then, an alternative is compared with the next alternative in order 

that they are ranked. 

• This finding is expected, since the alternatives are ordered prior to be being 

estimated. Thus, more information is used. 

• Due to the nature of the second selection rule, the decision maker is expected to 

be able to rank the alternatives correctly. If this step is not possible, this selection 

rule cannot be used. 

• The third selection rule (i.e., random selection) is the next best rule that one can 

use to estimate the weight vector. 

• When we only consider the minimum initial comparisons (i.e., the 1−n  

comparisons), the first selection rule (i.e., comparisons based on a single 

alternative) performs better than the other selection rules. 

• These results are inherited, regardless of the matrix dimension used. 
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6.2. Conclusions Regarding the Second Research Goal 

• For n = 10, the minimum number of initial comparisons results in accuracies of 

97.6 % to 98.9 % depending on the selection rule used. 

• For n = 15, the accuracies of 98.0 % to 99.2 % can be achieved by only using the 

minimum number of initial comparisons (i.e., 1−n  comparisons) depending on 

the selection rule used. 

• For n = 20, the 1−n  initial comparisons results in accuracies of 98.3 % to 99.4 % 

depending on the selection rule used. 

• The above accuracy is based on the mean absolute difference method, without 

considering the forth and fifth selection rules (i.e., the highest and median 

comparison values). Since the average numbers of initial comparisons for those 

rules are above 1−n , their accuracy cannot be considered. 

• If a more accurate result is needed, we have to add additional comparisons until 

the expected accuracy is achieved. 

• For 99.5 % accuracy, most of the selection rules will be indistinguishable. The 

number of comparisons is approximately equal to 11+n  (i.e., 34.29% above the 

minimum 1−n  comparisons) for n = 10. 

• For n = 15, using 21+n  comparisons (i.e., 23.33 % above the minimum 1−n  

comparisons), an accuracy of 99.5 % can be obtained. 

• For n = 20, with 50+n comparisons (i.e., 30 % above the minimum 1−n  

comparisons), a slightly higher accuracy of 99.8 % can be obtained. 

6.3. Conclusions Regarding the Third Research Goal 

• The two methodologies are compared namely the Least Squares Method and the 

Geometric Mean Method. The Geometric Mean Method performs consistently 

better than the Least Squares Method, regardless of the selection rule used. 

• This finding is due to the way the Least Squares Method is formulated to calculate 

the weight vector. The calculation of bBBBW TT 1)( −=  may not be very accurate 

because of the approximation on the matrix inverse step. 
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6.4. Other Findings 

• The comparisons of the selection rules using the ranking differences are not very 

accurate, since the differences in the weights are very close.  

• A connecting path, which connects all the alternatives either directly or indirectly 

is sometimes hard to be formed, thus additional comparisons are required until 

such path is established.  

• The forth and fifth selection rules have more than 1−n  comparisons as their 

minimum number of initial comparisons in order to ensure a connecting path 

between all the alternatives. 

• The number of required additional comparisons increases, as the matrix 

dimension increases. 
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