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ABSTRACT

The strict topology ̂  on C(S), the bounded conti­
nuous complex valued functions on the locally compact 
Hausdorff space 8, was first introduced by R. C. Buck.
Ihe primary concern of this dissertation is the relation­
ship between 0(3)^ and its adjoint M(S), the bounded 
Radon measures. In particular, when is C(S)^ a Mackey 
space? From our answer to this question we are able to 
prove several theorems on various types of compactness 
and convergence in M(S).

Ihe first chapter contains preliminary material with 
virtually no proofs. Chapter II contains the basic pro­
perties of the strict topology. Some of these results 
are known and some of the old theorems are presented with 
new proofs. In particular, we prove Buck's result that 
C(S)^ * = M(S) and we calculate a basis for the ̂  - 
equicontinuous sets in M(S).

The third and fourth chapters contain the heart of 
this work. Chapter III begins with necessary and sufficient 
conditions for -equicontinuity in M(S) and a proof that 

) is a strong Mackey space. Using these two results 
we prove the principal theorem of this chapter. This 
result is that if S is paracompact then every ̂  -weak * 
countably compact subset of M(S) is ^  -equicontinuous;

iv
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consequently, C(S)^ is a strong Mackey space. Also we 
show that if S is the space of ordinal numbers less than 
the first uncountable then C(S^ is not a Mackey space. 
Chapter III concludes with a characterization of the 
closed subspaces of ( ) which are Mackey spaces,
and a proof that (h“,^ ) is not a Mackey space.

After a few preliminary lemmas the fourth chapter 
begins with some -results concerning ^ -equicontinuity.
For example, every ̂  -weak * compact subset of positive 
measures is 0̂ -equicontinuous. If S is metrizable then 
^  -weak. * sequential, countable, and conditional com­
pactness are all equivalent to ^ -equicontinuity. Then 
we show how the concept of ^  -equicontinuity and the 
main theorem of Chapter III can be combined to generalize, 
improve, and give new proofs of some theorems of J. 
DieudonnC on various types of sequential convergence in 
M(S). Finally we use all these facts to prove a weak 
compactness theorem of A. Grothendieck.

Chapter V contains generalizations of the preceding 
results to vector valued measures and functions. Also 
we characterize the weakly compact operators from a Banach 
space E into M(S). Using this, we show that a weakly 
compact operator from a sub space of E into M(S) can be 
extended to a weakly compact operator of E into M(S).
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INTRODUCTION

The strict topology ̂  on C(S), the bounded continuous 
complex valued functions on the locally compact space S, 
was first introduced by R, C, Buck [10,11,12], It has 
also been studied by Glicksberg [l8] and Wells [36], This 
topology has been used in the study of various problems in 
spectral synthesis (Herz [22]), spaces of bounded analytic 
functions (Shields and Rubel [31,32]), and multipliers of 
Banach algebras (Wells [35] and Wang [34]). In spite of 
these successful applications, there has as yet been no 
detailed investigation of the relationship between 0(8)̂  ̂
and its adjoint space M(S), In particular, it is not 
known whether or not C(8)yg is a Mackey space (a question 
asked by Buck [12]). It is one of the purposes of this 
dissertation to begin such an investigation.

Hie existence and description of the Mackey topology, 
the strongest topology yielding a given adjoint space, is 
a natural object for consideration, Œîiis topology can be 
described for general locally convex spaces, and there are 
several conditions (e.g. metric) which imply that a 
topology is a Mackey topology. Nevertheless, for a parti­
cular locally convex space E which is not a priori a 
Mackey space, the question: of whether or not E is a Mackey 
space may be extremely difficult. Moreover, the general

1
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description of the Mackey topology may be totally 
unsuitable for a concrete space. Indeed, the author knows 
of no examples in which a space with an intrinsically 
defined topology is shown to be a Mackey space (unless it 
has some other formally stronger property like metric; 
etc.). However, if S is a paracompact non-compact space 
then C(S)^ is a Mackey space which is not metric, 
barrelled, or bornological (Theorem 3,7).

Also we give necessary and sufficient conditions for 
a closed subspace of ^) to be a Mackey space, and
we show that (h“,^ ) is not a Mackey space. In the pro­
cess we show that ( **> ̂  ) has closed subspaces which are
not Mackey spaces. :

Tbe second purpose of this paper is to present the 
proof of several compactness and sequential convergence 
criteria for M(S). There is a wealth of literature on 
this matter. In fact, in addition to some results of our 
own on these subjects, we succeed in applying our Theorem 
3.7 to an investigation of the results of J. Dieudonné 
[13]. Our work here consists of generalizations to locally 
compact spaces, improvements, and the elimination of many 
of Dieudonne ' s sorguments through the use of Theorem 3.7.

Every effort has been made to make the reader's Job 
painless. In addition to the inclusion of detail, which 
to some may seem tedious, we have also added an index of 
symbols at the end of Chapter I. All theorems, corollaries.
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and lemmas in a given chapter have been numbered con­
secutively, Also Theorem x.y means theorem number y in 
chapter x.
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CHAPTER I 
PRELIMINARIES

In this chapter we have endeavored to present a 
variety of results and facts which we hope will facilitate 
the reading of this dissertation. Some of the terms we 
will use can be found in the literature with a meaning 
different from ours. For this reason we advise the reader 
to being with at least a cursory reading of this section.

Topology and continuous functions.
Unless otherwise stated the topological notions used 

will be that of Kelley [24]. However, there are some 
notable exceptions. To avoid cumbersome phraseology we 
shall adapt the following terminology. If X is a topo­
logical space and A a subset of X then A is countably
compact if and only if every sequence in A has a cluster
point in X (not necessarily in A). Also A is sequentially
compact if and only if every sequence in A has a subsequence
which converges to some point of X. Finally A is con­
ditionally compact if and only if A’ (the closure of A) is 
compact.

Throughout this work S will always denote a locally 
compact Hausdorff space, and int A the interior of the set 
A.

THEOREM 1.1. ([6,p. 107]) Die space S is paracompact
4
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if and only if S is the union of a pairwise disjoint 
collection of open and closed CT -compact subsets of S,

In particular, the above theorem says that if S is 
<r-compact or a topological group then S is paracompact,

LetJ\^ be the space of ordinal numbers less than the 
first uncountable ordinal-fl, with the order topology.

THEOREM 1.2. (Tong [33]) The space is not -
compact and the closure of any (T -compact set in is
compact. Every continuous function f on -O-^ is eventually 
constant (i.e., there is an x e such that for y > x
f(y) = f(x)). The Stone-Cech compactification of_QL ̂ is 
the same as. the one point compactification.

We shall let 0(8) be the space of bounded continuous 
complex valued functions on S, 0̂ (8) those which vanish at 
infinity (i.e., 0 e 0̂ (8) if and only if for every e > 0 
(s e 8 : |0(s)| > e} is compact), and 0̂ (8) the functions 
in 0(8) which vanish off some compact set (a possibly 
different set for each function). If 0 e 0(8) then N(0) = 
{s : 0(s) ^ 0) and spt (0) = N(0)“.

The uniform topology on 0(8) is the metric topology 
defined by the supremuin norm j|f|j = the least upper bound 
of (jf(s)j : s e 8}. It is easy to see that both 0(8) 
and 0q(8) are complete with respect to this norm. Also 
Og(8) is uniformly dense in 0̂ (8); i.e., if f e 0̂ (8) and 
€ > 0 there is a 0 e 0̂ (8) such that l|f-0jloo < e.

A set A O  S is said to be regularly <T -compact if 
and only if A = L_Jk  ̂where is compact and ^  .
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int K̂ +2.’ easy to see that every o” -compact set is
contained in a regularly <r-compact set. Also, every
regularly <T -compact set is open; conversely each open
(T-compact set is a regularly <T-compact set.

In all that follows wide use will be made of Urysohn's
lemma. Moreover, we will need the following results on
the existence of special types of continuous functions.

THEOREM 1.3. (Buck [12]) If 0 e Ĉ (S) then N(0) is
a regularly (J” -compact set. Conversely, if A is a regularly
(T-compact set there is a function 0 e Ĉ (S) with N(0) = A.

THEOREM 1.4. (Buck [12]) If P is a continuous
function on S such that F0 e Ĉ (S) for all 0 e Ĉ (S) then
P is bounded (P0 denotes the pointwise product of P and 0).

We shall say that a sequence in S is discrete if and
only if it is a discrete space when furnished with the
relative topology. Hence [ŝ )” is discrete if and only^ k=l
if for every n > 1 there is an open set U such that [s_] =— n n

O  . If a sequence has no limit points then it^ ■ k=l
is easily seen to be discrete. Hie converse, however, is
not true as may be seen by letting S = [0,1] and s_ = 1/n.n

THEOREM 1.5. (Buck [12]) If {s„}* is a discrete
" n=l

sequence in S and [c .is a sequence of complex numbers* n=l
converging to zero, then there is a function 0 € Ĉ (S)
such that 0(s_) = ĉ  for n >1.' n/ n —

THEOREM 1.6. (Bourbaki [&,p.4g]) If K is a compact
subset of S and {U. is an open cover of K then there

 ̂i=l
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exist functions 0 ^ , 0^ in̂ Ĉ (S) such that : (a) 0 <
0. < 1 for 1 < i < n; (b) 0. (s ) < 1 for s e S and
 ̂ i=l ^
n
5_0. (s) = 1 for s e K; and (c) 0,(s) = 0 if s / U., 1 <i=l  ̂ 1 1 -
i < n.

Recall that a real valued function f on S is lower 
semi-continuous (l.s.c.) at ŝ  e S if and only if for every 
real number a < ffŝ ) there is an open neighborhood U of 
such that f(U) > a; f is l.s.c, if and only if f is l.s.c. 
at each point of S. Hence f is l.s.c. if and only if for 
every real number a {s : f(s) >a} is open; or, equiva­
lently, (s : f(s)<a} is closed. We shall say that a 
complex valued function is l.s.c. at ŝ  e S if and only if 
both its real and imaginary parts are. For general 
information on l.s.c. functions we refer the reader to 
Bourbaki [7,pp.109-116]. However, we shall present some 
of the notions essential for our development.

Let f be a real valued function on S, s e S , and
{U ) the neighborhood system of s. Then lim inf f(t) =
® . t— »s

sup inf(f(t) : t e U}, [7,p.100].
ŝ

THEOREM 1.7. ([7,p.ll4]) If f is a real valued
function on S then f is l.s.c. at s e s if and only if
f(s) = lim inf f(t). t-r> s

THEOREM 1.8. ([7,p.ll4]) If f is a real valued
function on S and g(s) = lim inf f(t) for all s e 8, then

t ♦ s
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8

g is lower semi-continuous.
In a similar manner we define upper semi-continuity 

(u.s.c.). A real valued function f on S is u.s.c. if and 
only if for every real number a, [s ; f(s) > a) is closed; 
or, equivalently, {s : f(s) < a) is open.

Let f be a function (complex valued) on S. Then the 
oscillation of f at s is defined by osc(f,s) = inf

sup{|f(t) - f(s)j : t e Ug3, where (11̂} is the neighbor­
hood system of s. It is not hard to show that g(s) =
osc(f,s) is an u.s.c. function. Also f is continuous at
s if and only if osc(f,s) = 0.

Measure theory.
In general, a knowledge of Halmos [21] or Bourbaki 

[8] is assumed. However, we shall present some of the 
essentials here for easy reference.

The Borel sets of S, Borel (S), are usually defined 
as the elements of the <J" -ring generated by the compact 
sets of S. However, since we will always restrict our 
attention to bounded Borel measures, we will define 
Borel (S) to be the <T -algebra generated by the closed 
sets. If yt is a Borel measure then we define the 
variation of JiK by |yn|(A) = sup where

the supremum is taken over all finite Borel partitions 
[Â }̂  of A; the total variation of |Ĵ̂ equals |̂ |(8)

A measure ̂  is regular if and only if for every A e 
Borel (S) and e > 0 there is a compact set K C  A and an
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open set U 3  A such that |^(u\ k ) < e. When we say
measure we will mean a complex valued, countably additive,
regular Borel measure yuL (hence JK. is of bounded variation). 
If yjt is a measure then is a measure and is
positive (i.e., |/*\|(A) > 0 for all A e Borel (S)), The
totality of all measures is denoted by M(S), and M(S) with 
total variation norm is a Banach space.

By combining the regularity of a measure with a well 
known result [14,p.97] we have

THEOREM 1.9» If yA is a measure and A e Borel (S) 
then sup{ ĵ (K)( ; K is a compact subset of A} < ||<̂\(A) <
4 supC ^(K)j : K is a compact subset of A},

Let 8̂  be a subset of S such that with the relative 
topology 8̂  is locally compact (hence 8̂  equals the inter­
section of an open and a closed subset of 8). If yiA e M(8) 
then by the restriction of Jî. to 8̂  ̂we will mean the 
measure yUg s M(8^) defined by yUg (A) = yH (A) for 
all A € Borel (8̂ ). If e M(8̂ ) then by the extension 
of y*. to 8 we will mean the measure 0 e M(8) defined by 
%)(B) = yA(B 8̂ ) for all B e Borel (8). Usually we will 
make no distinction between JU. and its extension and merely 
considerytA as an element of M(8), If A e Borel (8) and 

e M(8) then to say that yi vanishes off A means that 
jLl(B) = 0 for all B e Borel (8) such that B A  A = D  ; 

equivalently, jyA\(S\A) = Ô.
Finally if f is a Borel function on 8 such that f is 

integrable with respect to y^ (i.e., J|f)<^ < <»), then
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10

fjw. will denote the measure 4) e M(S) such that 0(A) =
 ̂fdyl for all A e Borel (S).

Functional Analysis.
Our terminology will be that of Kelley, Namioka,

^  al [25] and Dunford and Schwartz [14], All topological 
vector spaces E will be locally convex Hausdorff spaces;
i.e., their topology is defined by a family of semi-norms 
[p] such that X e E with p(x) = 0 for all p implies x = 0 
(a semi-norm is a function p from E into the non-negative 
reals such that p(0) = 0, p(ax) = a p(x) for a e t and 
X € E, and p(x+y) < p(x) + p(y) for all x,y e E). All sets 
of the form [x : p(x) < e] where e > 0 form a subbasis for 
the neighborhood system at the origin. We will denote by 
E* the space of all continuous linear functionals on E; E* 
is called the adjoint space of E, If x e E and x* e E* 
then <x,x*> is the value of x* at x.

The weak * topology on E*, denoted by Ô E*,E), is 
the weakest topology on E* such that the function x**r-f 
<x,x*> is continuous for every x e E. The topology 
0“(E*,E) is a locally convex Hausdorff topology on E* and 
the defining semi-norms are the functions x*m— > \<x,x*>l . 
Bie adjoint space of E* with the weak* topology is 
(algebraically) E. Finally, if [x̂ *] is a net in E* then 

 ̂X *  € E* (weak *) if and only if <x,x^*> — ><x,x*> 
for every x e E,

Similarly, we define the weak topology O^E,E*) on E.
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A net {x̂ ) in E converges weakly to x e E if and only if 
<x^,x*> — ^<x,x*> for all x* e E*. Also the adjoint of E 
with the weak topology is E*.

We shall assume a familiarity with the Hahn-Banach 
theorem, the open mapping theorem, and the principle of 
uniform boundedness as presented in the two above cited 
references. Also we assume a knowledge of ’’polar sets,’’ 
If A E then A°, the polar of A, is {x* e E* ; (<x,x*>\
< 1 for all X e A), If B C E* then B° = (x e E : \<XjX*>|
< 1 for all X* e B},

If E is a Banach space then x* e E* if and only if x* 
is linear and \\x*\\ = sup [ |<x,x*>| : ||x|| < 1) < ». Also, 
this defines a norm on E* which makes E* into a Banach 
space. If E is a topological vector space then we may 
define the strong topology on E* which is analogous to 
this norm topology (in fact if E is a Banach space then 
the strong topology on E* and the norm topology are the 
same). The strong topology on E* is the topology of 
uniform convergence on bounded subsets of E, Hence a net 
{x̂ *3 in E* converges strongly to 0 if and only if for 
every bounded set B C  E, sup{ |<x,x̂ *>| : x e B)— > 0,
Even though E* with the strong topology is not necessarily 
complete, we do have the following theorem due to 
Grothendieck,

THEOREM 1,10, ([25,p,145]) The space E* is strongly 
complete if and only if every linear functional on E whose 
restriction to every bounded, weakly closed, convex and
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circled subset of E is continuous is in E*.
If F is a closed subspace of E and F-̂  = {x* e E* : 

<x,x*> = 0 for all x e F} then F* = E*/F-̂  , the quotient 
space E* mod F-** . That is, every continuous linear 
functional on F is obtained by restricting an element of 
E* to F. Not only does F* = E*/F“*" algebraically, but 
also topologically if F* has its weak * topology and E*/F̂ - 
the quotient topology derived from the weak * topology on 
E*. This topological correspondence does not hold in 
general for the strong topology (though it does for Banach 
spaces).

The second adjoint E** of E is the adjoint of E* with 
the strong topology. There is a canonical embedding of E 
into E**, where for each x e E we define x** e E** by 
<x*,x**> = <x,x*> for all x* e E*. This embedding is in 
general neither onto nor continuous when E has its initial 
topology and E** its strong topology, although it is open 
onto its image. If it is onto then E is called semi­
reflexive; if it is also continuous E is reflexive. A space 
E is semi-reflexive if and only if every bounded weakly 
closed subset of E-is weakly compact [25,p.190],

THEOREM 1.11. ([25jP.19P]) If E is semi-reflexive
and F is a closed subspace then F is semi-reflexive; and 
F*, with the strong topology, is topologically isomorphic 
to E*/F-I with the quotient topology derived from the 
strong topology on E*.
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A set H d  E* is equicontinuous if and only if for 
every e > 0 there is a neighborhood W of 0 in E such that 
if X e W, |<x,x*>) < 6 for all x* e H. Hence H is equi­
continuous if and only if d  E is a neighborhood of 
zero. Every equicontinuous set has weak * compact closure, 
but the converse is false in general.

We define another topology on E called the Mackey 
topology; this is the topology of uniform convergence on 
weak * compact convex circled subsets of E*. Since the 
initial topology on E is the topology of uniform convergence 
on equicontinuous subsets of E*, the Mackey topology is 
stronger. In fact, the Mackey topology is the strongest 
topology on E which has E* as its adjoint [25,p.173], We 
will say that E is a Mackey space if and only if its topo­
logy is the Mackey topology; hence, if and only if every 
weak * compact convex circled subset of E* is equi­
continuous. Also, we will call E a strong Mackey space if 
and only if every weak * compact (not necessarily convex 
and circled) subset of E* is equicontinuous.

THEOREM 1.12. (Riesz Representation Iheorem [21])
L is a bounded linear functional on 0̂ (8) if and only if 
there exists a unique measure yu. e M(S) such that 1>{0) =
J* 0d^ for all 0 e 0̂ (8). Also, if L and yiA. correspond in 
this way then || L|| = ||K|| = sup{ : 0 e 0^(8), ||0||̂
< 1}.

COROLLARY 1.13. If U is open in 8 and JX e M(8) then
(U) = sup{ : 0 e Ĉ (S), ||0||„ = 1, and spt(0)
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CL U} .
We will use the following theorems on the weak * and 

weak topologies for Banach spaces,
THEOREM 1.14. ([l4,p.429]) If E is a Banach space

then a subspace of E* is weak * closed if and only if its
intersection with the unit ball is weak * closed.

THEOREM 1.15. ([l4,p.430]) Let A be a subset of
the Banach space E. Then the following are equivalent:

(a) A is weakly sequentially compact;
(b) A is weakly countably compact;
(c) A is weakly conditionally compact.
Note: Theorem 1.15 is called the Eberlein-Smulian

theorem.
THEOREM I.l6. ([l4,p,434]) The closed convex hull

of a weakly compact subset of a Banach space is weakly
compact.

We will conclude this chapter with a theorem on
extreme points. If K is a convex subset of E then x e K
is an extreme point of K if and only if a,b e K such that
X = i(a+b) implies x = a = b; or, equivalently, if and n
only if X = where x. e K, a. > 0 for 1 < i < n,i=l  ̂  ̂  ̂  ̂ “

n
and = 1* implies x = x^ = ••• = x̂ . If K̂ , Kg are

convex subsets of E., E^ then a function : K, — >
n JLis called affine if and only if ( )i=l i=l

whenever x^ e K, â  > 0, and = 1.
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THEOREM 1,17. Let Ê , Eg be locally convex Hausdorff 
topological vector spaces, a compact convex subset of 
Ê  for 1 = 1,2, and : K^——>Kg a continuous affine map 
of onto Kg, If Xg is an extreme point of Kg then there 
is an extreme point of K^ such that = Xg.

COROLLARY 1.18. If e E and B C  E* is a weak * 
compact convex and circled set, then there is an extreme 
point X* of B such that <x,x*> = sup(|< x,y*>| ; y* e B),

Proof. Consider A = {<x,y*> : y* e B}. Then x is 
weak * continuous and affine from B onto A. But A is a 
compact convex and circled subset of the plane, and hence 
must be a closed disk about zero. If r = the radius of A 
then r e A. Furthermore, r is an extreme point of A, The 
conclusion is now apparent from the theorem.

COROLLARY 1.19. If E is a Banach space and x e E 
then there is an extreme point x* of ball E* such that 
%|x|| = <x,x*>.

Proof, If B = ball E* then this is an immediate 
consequence of the preceding corollary.
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INDEX OF SYMBOLS

1. Xĵ ■■ ->x : the net {x̂ } converges to x,
2. X : the net {x̂ } clusters to x,
3. c.s.n. ; continuous semi-norm,
4. a" = closure of A.
5. int A = interior of A,
6. C(S) = bounded continuous complex valued functions.
7. 0̂ (8) = elements of C(S) which vanish at
8. Cg(S) = elements of 0(8) which vanish off some compact

set,
9. N(0) = {s ; 0(s) 0 0).
10. spt(0) = N(0)"
11. osc(f,s) = inf sup{|f(t)-f(s)I : t e 11̂)

^8
12. n g = element of M(Ŝ ) such that Æ(A) = yA. g (A) for ' 1  1

all A e Borel (Ŝ ).
13. f ^  = measure 9 e M(S) such that 9 (A) = ̂  fdy& .
14. <x,x*> = value of x* at x.
15. T(E*,E) = weak * topology on E*.
16. <T(E,E*) Œ weak topology on E.
17. A° = polar of A.
18. F*̂  = (x* e E* : <x,x*> = 0 for all x e F).
19. Ç = conqolex numbers.
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CHAPTER II
GENERAL PROPERTIES OF THE STRICT TOPOLOGY

In this chapter we have brought together the basic 
topological properties of the strict topology. Many of 
the results given here are not new and can be found in the 
literature referred to in the bibliography. We present 
these known results (some of which here have new proofs) 
not only for the sake of completeness, but also to give 
evidence that the strict topology has many desirable pro­
perties and, in many ways, is more manageable than the 
norm topology when S is not compact.

The strict topology ̂  on C(S) is that locally convex 
Hausdorff topology defined by semi-norms ( || •fl0:0eĈ (S)}, 
where jjf|| ̂  = {\0̂\oo all f in C(S). Notice that if S
is compact then the strict and norm topologies are one and 
the same. Also, it is easy to see that we need only con­
sider those semi-norms defined by the functions 0 e Ĉ (S) 
such that 0 > 0. Hence, the collection of sets g  
(f € C(S): /|f‘0|„ < 1) form a subbase for the neighborhood 
system at zero. But more than this is true: the sets 
actus,lly form a neighborhood basis at the origin. In 
fact, if 0^f***»0^ e Cq(S) are all non-negative and 0(s) = 
max(0ĵ (s):1 < i < n), then 0 e 0̂ (8) and ||0f((„ < 1 
implies ||0̂ f||̂  < 1 for 1 < i < n. That is,

17
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If {f̂ ) is a net in C(S) then [f̂ ) converges strictly 
to 0 if and only if [0f̂ ] converges to zero uniformly for 
all 0 e Cq(S).

We will also have need of the compact open topology 
(denoted by c-op) on C(S). The c-op topology is defined 
by the family of semi-norms ( ||*i|0 : 0 e Ĉ (S)), Clearly 
the ^  topology is stronger than the c-op topology since it 
has a larger class of defining semirnorms. As in the 
case of the 2̂ -topology, it quickly follows that a basis 
for the c-op neighborhoods at the origin is given by the 
sets where 0 e Ĉ (S) and 0 > 0. By a.routine applica­
tion of Urysohn's lemma we see that all sets of the form 
[f 6 C(S) : |f(s)j < e for all s e K), where K C  8 is 
compact and e > 0, also form a c-op neighborhood basis at 
the origin. Hence, a net (f̂ ) in 0(8) converges to zero 
in the c-op topology if and only if it converges to zero 
uniformly on all compact sets in 8, It might be asked if 
a similar interpretation of the strict topology may be 
given; i.e., is the strict topology a topology of uniform 
convergence on a certain class of subsets of S? %e 
following theorem gives an answer which is as close as 
possible to an affirmative one. Here, as in what follows, 
C(8]̂  denotes 0(8) with the ̂  -topology.

THEOREM 2.1. (Herz[22]) An equivalent system of
neighborhoods for the origin in C(8)̂  is given as follows :
for each sequence CK_,e )" , where K C  8 is compact

^ ^ n=l ^
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with K^Cr iRt and the form an increasing sequence
of positive numbers approaching infinity, we define the
neighborhood U = {f ; sup (s)| < for n = 1,2,...).

S€K̂
Proof, Let ^  be the topology defined by the

neighborhood basis (U) given above. Let 0 e 0̂ (8) be such
that 0 > 0. By considering 0/ll0/|̂  we may suppose 0 < 0
< 1, If we -put = (s : 0(s) > for n > 1, then
is compact and d  int Let U be the Ç  -
neighborhood of zero determined by the sequence (K̂ ,n}“ .

n=l
If f e U and s € n > 2, then < 0(s) < i and
thus |f(s) 0(s)| < § = 1. If s e then |f(s)0(s)| < 
|f(s)| < 1. Therefore f e and we have ^ < 9o •

Now fix (K_,e )** . For the sake of convenient^ ^ n=l
notation we will suppose that < 2. If this is not so

1then a number smaller than ̂  would have to be used below. 
Let n. be such that -—  ---> è > > 1 since €.,<2):

let be such that -— i > > 1^— (these n. can be

chosen since monotonlcally). Thus (%)̂  > ̂  for
j

J > and k > 1, ^+l’l
Let Cĵ = for 1 < k < n^ - 1 and = L J

for k 2 ̂ 2" ®k ̂  int for k > 1, Also for each
k there is, by Theorem 1,6, a function 0-̂ e Ĉ (S) such 
that 0 < 0ĵ < 1, 0ĵ (Cĵ ) = 1, and 0ĵ (s) = 0 for s X
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Finally set 0 = 7- 0. + 2I(é) 0̂ . Then 0 e Ĉ (S)
^  3  ̂  ̂ °

and 0 > 0. If f e j|f0||„ < 1) then for s e K̂ ,
1 < J < - 1' îJ(s) > <|~ 0j(s) = -I"-, and so |f (s)| <

J J
1/ 0(s) < Ej. If k > 1, n̂  ̂< j < n̂ ^̂ , and s e then

8 e C% and 0(s) > (§)%(s) = (|)̂  > Thus |f(s)|<
3

and V ^ O  U, Therefore ̂  and ^  are the same topology, 
completing the propf.

If S is compact then the ̂  and c-op topologies agree. 
As illustrated by the following result, this is also true 
when S = the space of ordinal numbers less than the
first uncountable. First let us prove a lemma.

LEMMA 2.2. If 0̂ , 0g e 0(S) and ||f0̂ || „ < llf̂ gl)»

for all f e C(S) then |0ĵ (s)| < |0g(s)l for all s in S.
Proof. Clearly we may assume 0^ and 0g to be non­

negative, If s e S such that 02(3) < 0-̂ {̂ ) then by 
continuity there is an open set U such that s e U and for 
t e U, 0g(t) < 0ĵ (t). Let f e C(S) such that 0 < f < 1, 
f(s) = 1, and f(t) = 0 for t X U. Then l|f02l|oo .<
contradicting our hypothesis.

THEOREM 2.3. (Wang[3̂ ]) The following are equivalent:
(a) the ^ and c-op topologies agree;
(b) the closure of any T-compact set is compact;
(c) Ĉ (S) = Ĉ (S).
Proof, (a) implies (b). If A is any ^-compact set
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then by Hieorem 1.3 there is a non-negative function 0 e 
Cg(8) such that A C  N(0). But by (a) there is a function 

Cg(S) such that |f0|l„ < for all f € C(S).
By the preceding lemma this implies that 0(s) < (s)|
for all s € S. Hence A C  N(0) CT N( <p) c  spt( Y  )' and
a” is compact since spt('p) is.

(b) implies (c). If 0 e cy(S) then N(0) is - 
compact and hence, by (b), spt(0) = N(0)" is compact. 
Therefore 0 e

That (c) implies (a) is clear since this would say 
that and c-op have the same families of defining semi­
norms. Therefore, the proof is complete.

Before proceeding with our study of the basic pro­
perties of ^ we will need the following result.

LEMMA 2.4. The Banach algebra Ĉ (S) has an approxi­
mate identity. In particular, there is a net [0̂ ] in
Ĉ (S) such that 0 < 0̂  ̂< 1 for all i and Ijm 00^ = 0

uniformly for each 0 in 0̂ (3).
Proof. Let : i € I) be the collection of all 

compact subsets of S. We direct X by declaring i < j if 
and only if K C  Kj. For each i let 0^ e 0̂ (8) such that 
0 < 0^ < 1 and 0(K^) = 1. Hence [0̂ } is a net in Ĉ (S).
If 0 6 Cq (S) and 6 > 0 then {s e 8 ; |0(s)| > e/2) =

for some î  e I. If i > î  then 0̂ (s) = 1 for s e ; thus,
o

blip f |0(s)0̂ (s) - 0(s)| : s 6 8} = sup{|0(s)0ĵ (s) - 0(s]|:
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8 X ) < 2 ••!=€, Hence 00^^^ 0 uniformly, 
o
THEOREM 2,5. (Buck [12]) The following statements 

are true:
(a) The ̂  -topology and norm topology agree if and only 
if S is compact,
(b) C(8)y6 is complete,
(c) %e  ̂  -topology is metrizable if and only if S is 
compact,
(d) A set is p -bounded if and only if it is norm bounded,
(e) On bounded subsets of 0(8) the and c-op topologies 
agree,
(f) 0̂ (8) is ̂  -dense in 0(8),

Proof, (a) The ̂  -topology is always weaker than 
the norm topology; if the converse holds then there is a
non-negative function 0 e 0̂ (8) such that < ̂f0&^
for all f € 0(8). By Lemma 2,2, 0(s) > 1 for all s e 8,
Hence 8 = {s : 0(s) > 1) must be compact,

(b) Let {f̂ 3 be a yô -Oauchy net in 0(8). Then (f̂ ) 
is also a c-op Oauchy net. But it is well known that the 
completion of 0(8) with the c-op topology is the space of 
all continuous functions on 8 (not ̂ u'st the bounded ones). 
Hence there is a continuous function f on 8 such that 
f^— > f uniformly on compact subsets of 8. If 0 e 0̂ (8) 
then {0fĵ 3 is a norm Oauchy net in 0̂ (8) so there is a 
g e Og(8) such that 0 f > g uniformly. But since multi­
plication is continuous in the c-op topology and f̂ — ^f(c-op)
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we have that ^ 0f (c-op). Therefore 0f = g, and
0 f ^  0f uniformly. Since 0f e 0̂ (8) for all 0 e 0̂ (8) 
we have that f is bounded (see Theorem 1.4). That is,
f 6 C(8) and f^— ^ f(̂ &); hence C(8)^ is complete.

(c) The identity map i : C(8)-— >C(8]^ , where the 
domain has the norm topology, is always continuous. By
(b) C(8)yg is complete and if ̂  is metrizable then the 
open mapping theorem [14,p.55] implies that i is open. 
Therefore the ^  and norm topologies agree and so 8 is 
compact by (a).

(d) Since the norm topology is stronger than ̂  , 
every norm bounded set is ̂  bounded. For the converse, 
suppose A C(8) is ^  bounded but not norm bounded.
Then for each integer n there is a function f̂  e A with
jl̂ n̂ oo Z 2n. Thus there is a point ŝ  € 8 such that 
lfn(Sn)|>h, If [ŝ y* has a cluster point s e 8 and V

is a compact neighborhood of s then let 0 e 0̂ (8) be such
that 0(V) = 1. Since ŝ  e V for infinitely many n, we
have that jj0fjjj„ > ̂  for infinitely many n; contradicting
the fact that A is /Ô bounded. If {s )* has no cluster

' ^ n=l
points then it is a discrete sequence. By Theorem.1.5
there is a function 0 in 0̂ (8) such that 0(ŝ ) = 1/V^ for 
all n. Therefore (|0fj|«, > |0(Sn)̂ n(®n) | ^ implying 
again that A is not ^ bounded.

(e) Let A (C 0(8) be such that ||ffl„ < 1 for all f e 
A, and let (f̂ ) be a net in A such that f ^ f e A in the
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c-op topology. If 0 € Ĉ (S) and e > 0 let K = (s :
|0(s)| > e/4). Then K is compact and (|0fĵ - 0f|jeo < 
sup(|0(s)| (fi(s) - f*(s)j : s e K) + sup(|0(s)| |fĵ (s) - 
f(s)| : s / K) < |l0||„ sup{ |fi(s) - f(s)| : s 6 K) +
•| ||f̂  - f||gg. But f (c-op) implies there is an î
such that for i > î  jf̂ fs) - f (s) j < e/2 It0ll„ for all
s e K. Hence gf^ - f|ĵ  < ||f̂ ||̂  + ||f//̂ < 2 implies 
||0fi - 0fL < e for all i > î ,

(f) Let f e C(S), By Lemma 2,4 there is an approxi­
mate identity {0 }̂ for 0̂ (8) where 0  ̂e 0̂ (8) for all i.
If = Î0̂  then f̂  e Ĉ (S), Also, if 0 e Ĉ (S) then 0f^ = 
0 (̂0f)— ^ 0f uniformly since 0f e 0̂ (8); i,e,, f̂ — ^ f(|̂  ) 
and Ĉ (S) is dense in C(8), This concludes the proof 
of the theorem.

We now turn our attention to another ''description'' 
of the strict topology and represent C(8)^ as the pro­
jective (or inverse) limit of certain special Banach 
spaces. To do this we could use, in our context, a 
general theorem due to E, Michael [26,p,17]; but a 
direct approach is available and hence would seem more 
desirable,

LEMMA 2,6, If 0 e 0̂ (8), 8  ̂= N(0), and T^ :
C(8) I defined by T^(f) = 0f|g (the restric­

tion of 0f to 8 )̂, then T^ is a continuous linear map 
onto a nonn dense subspace of 0̂ (8 )̂.

Proof. It is clear that T0 is linear and continuous.
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To see that the image is dense we will show that for each 
X e Cg(Ŝ ) there is a function f e C(S) such that 0f(s)
= X (s) for all s e Ŝ , In fact if x e 0̂ (8̂ ) let x
be the extension of x to S such that x(s) = 0 for s X Ŝ .
Then x(s) = x(s) for s e 8^̂, an open set, and x(s) = 0 for
s e 8\spt(x) which is also open. Hence x e C^(8), Let 
^ = min(|0(s)| : s e spt(x)); then ^ > 0. Define f on 8 
by f(s) = x(s)/0(s) if s e spt(x) and f(s) = 0 if x(s) =
0. 8ince |0(s)| > pon spt(x) f is continuous on spt(x). 
Hence, spt(x) and (s : x(s) = 0} are closed sets imply
f is continuous. Also |x(s)/0(s)| <^Hx|l^ < <» for s e
spt(x) implies f e C(8), Clearly T0(f) = x, completing 
the proof.

Let I = (0̂  ; i e 1} be a net of non-negative elements 
of Cg(8) such that i < j if and only if 0̂  < 0y  and 0 e
0̂ (8) implies there is some 0̂  > \0\, For each i e I
let 8  ̂= N(0̂ ), If i,j e I and i < j then we will define 
a pap : Cg(8j)— >0^(8^), If f e C(8) and 0^(s)f(s)
= 0 for all s e Sj then f(s) = 0 for all s e 8 ,̂ But
0̂  < 0j implies 8  ̂<2 , and so 0 (̂s)f(s) = 0 for all s e
Ŝ , Hence, if we let w^j(0jf|g )=0̂ fj for all feC(8) then,

J Si
by the above remarks and Lemma 2,6, is well defined 
on a norm dense sub space of 0̂ (3̂ ). Also ||0̂ f||̂  <
(|0jf||̂  for all f € C(8) since 0^ < 0y Therefore, con­
sidered as a linear map on a norm dense subspace of 0̂ (8 )̂, 

has norm < 1, Ohus can be extended to a linear
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map of Cq(Sj) into 0̂ (8 )̂ because it is uniformly : 
continuous,

THEOREM 2,7. Kie space C(S)y8 is topologically 
isomorphic to the projective (inverse) limit {Ĉ (Ŝ }:). 
of the Banach spaces 0̂ (8̂ ), where the bonding maps are 
the maps described above.

Proof, Let f e C(S) and put f̂  = 0^f|g e 0̂ (8̂ ).

Then 6 TT(C^(8ĵ) ; i e I). If i < j  then ^̂ (̂fj)

= f̂  and hence {f̂ } e jTp (0̂ (8̂ )̂), Define T :
0(8)---^ <X*P(C^(S^)} by T(f) = (f̂ } and let ir̂ be the
projection of 1 1 (0̂ (8̂ )) onto 0̂ (8̂ ), To see that T is 
continuous, observe that ir̂ « T = T0 , the map described
in Lemma 2.6, which was shown to be continuous; thus it 
follows that T is continuous. Also if 0 g 0̂ (8) then there 
is a J el such that j0| < 0y Therefore if T(f) is in 
Vj^((g e Cg(Sj) : |( g|ĵ  < 1) then f̂  is in the unit ball of 
Cg(8j), That is, |0̂ f||̂  < 1 and so ||0f||̂  < 1, Therefore, 
TfVg)::) %j^((s e Cg(Sj) : < 1}) O  ?(C(8)) and T is
open onto its image.

Clearly T is one-one, since 0^f = 0 for all i implies 
0f = 0 for all 0 € Cq(S); from this it is clear that f =
0, This gives that T is a homeomorphism onto its image. 
Since T is linear and 0(8)^ is complete, T(C(8)) is a 
closed subspace of (P (0̂ (8̂ )̂}, On the other hand,
T(C(8)) is dense in (0̂ (8̂ )). In fact the sets of 
the form ir"̂ (Cg e 0^(8 )̂ : )| gj|̂  < r)) where r > 0
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and J e I form a neighborhood basis at zero in^(P . If 
[f̂ ) , r > 0, and j e I, then, by Lemma 2,6, there
is a function h e 0(8) such that |fj(s) - h(s)0j(s)| < r 
for s e that is, T(h) - {f̂ } e Tjl([g e Ĉ (Sj) :
llslco < A  f  P  (0̂ (8̂ )). Thus T(C(S)) is dense in

(Ĉ (Si)), and this completes the proof.
Let us now turn our attention to the calculation of 

the adjoint space of C(S)^ . To do this we will need
the following fundamental result. Not only is this lemma 
needed in the characterization of C(S)̂  *, but it will be 
a basic tool for the next two chapters. Recall that a
measure yU. vanishes off a set A if and only if ̂  (B) = 0
for all Borel sets disjoint from A; or, ĵl|(8\A) = 0.

LEMMA 2,8. If H is a subset of M(S) then the follow­
ing two statements are equivalent:
(a) H is uniformly bounded and for every e > 0 there is 
a compact set K O  8 such that j^j(s\K) < e for all
h  € H,
(b) There is a non-negative function 0 e 0̂ (8) such that 
H C. C ylA. € M(8) : jiK, vanishes off N(0) and||^^|| < 1).

Proof, If (b) holds then H is clearly uniformly 
bounded since for each e H, (l̂|| = ft 0* <
II «'l|»||/ II < IblU If s > 0 then K = {s : 0(s) > 6]
Is compact and for each yw/e H, |̂ |(s\ k ) = J d̂ i\ =

0 V ^ ^ |lg/̂ ll s“pW(s) : 6 X K] < s.8 \ K
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For the converse let (a) hold. We may assume that
11̂ 11 < 1 for all e H. From (a) we may obtain induct
tively a sequence {K )“ of compact sets in S such that

^ n=l
C  int and |^|(s\k^) < for all ̂  in H.

For each integer n let 0^ e Ĉ (S) be such that 0 < 0̂  ̂< 1,
= 1' and D(s\K^+i) = 0. Put 0 = 2 ^  (§)%; thenn=l

00 .

0 e Cq (S) and N(0) = L J k .̂ If A e Borel (S) is such that
n=l

A N(0) = Q  then A H  = D for all n > 1. Hence if
/Vl e H, (A) < for all n > 1 and so ^(A) = 0.
Thus, every measure in H vanishes off N(0).

If s € Kn-1' ^ Z 2, then 0̂ (s) = =
0 and 0̂ (s) = 1 for k > n. Therefore 0(s) = (■̂ )̂0jç.(s)

k=n-l
2 = 2.(§)"-!. IfyK e a then P | d W  <

,  % N C l ,
i • = 1 . Hence dly*\ = J ^ dl̂ \

“' n W l
Since^ was chosen arbitrarily, the proof is complete, 

REMARKS. The first proof of a result of this type 
known to the author is found in Buck [12,p.100] where H 
consists of a single element. However, it is essential 
for all that follows that this lemma be proved in the 
generality in which we have proved it, because this 
furnishes the criterion for jB -equicontinuity in M(S)
(see Theorem 3.2 below).
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THEOREM 2.9. (Buck [12]) A linear functional L on 
C(S)  ̂ is continuous if and only if there is a unique 
measure ̂  € M(S) such that

L(f) = J fdy\. for f € C(S).
Proof. If 6 M(S) and H consists of the single 

measure yUL , then, by the inner regularity of ̂  , H 
satisfies condition (a) of the preceding lemma. Hence 
there is a function 0 e Ĉ (S), 0>O, such that vanishes 
off N(0) and |ĵ  JUjl < 1. If (f̂ ) is a net in C(S) such 
that f 0 (y%) then ^ 0 uniformly in Ĉ (S). From
this we have that J f = J" ^ 0. Therefore
if L(f) = ^ fdyiA, for all f e 0(8) then L e C(Ŝ * .

Conversely, suppose L e C(S)̂  . Since y£ is weaker
than the norm topology, the restriction of L to 0̂ (8) is 
norm continuous. Thus, by the Riesz representation theorem, 
there is a unique in M(S) such that L(0) = 0cy\ for 
all 0 e 0̂ (8). But represents ayô -continuous linear 
functional, and L and yu. agree on 0̂ (8) which isy& -dense 
in 0(8) (see Theorem 2.5 (f)). Hence L(f) == ^ fdyw, for 
all f € 0(8). This completes the proof.

8ince M(S) = 0(8̂  ̂, we can now give answers to
certain questions concerning the weak topology on 0(8)̂  .
It should be pointed out that there is a strong analogy 
between C{S)^ and 0(8) with the norm topology for 8 
compact. Besides the preceding theorem, this analogy will 
be further emphasized by the following results. Since the 
phrasing of criteria for topological properties on 0(8)
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with the norm topology necessitates passage to the Stone- 
Cech compactification of S, it might be argued that ̂  is 
more '‘natural'' than the norm topology on C(S).

COROLLARY'2.10. If {f )“ , f are in 0(8) then {f )
n=l

converges to f weakly if and only if f(s) = lim f̂ ŝ) for 
all s € S and (f̂ ) is uniformly bounded.

Proof. If {f̂ } converges to f weakly then (f̂ ) is 
weakly bounded and hence ̂  bounded. But boundedness 
and norm boundedness are equivalent by Theorem 2,5. "There­
fore Cf̂ ) is uniformly bounded. Since ^(s), the unit 
point mass at s, is in M(S), we readily get that f̂ ŝ) =

— » jfd r*(s) = f(s).
The converse follows immediately from the Lebesgue 

bounded convergence theorem.
THEOREM 2.11. (Glicksberg [17]) If F C  C(S^ then 

F is weakly conditionally compact if and only if F is 
uniformly bounded and conditionally compact for the topology 
of pointwise convergence on S.

Proof, Since we will not use this theorem and the 
proof we would present is exactly that of Glicksberg, we 
shall content ourselves with the above cited reference to 
his paper.

THEOREM 2.12. If F Cl. C(S) then the following are 
equivalent ;

(a) F is yô conditionally compact;
(b) F is uniformly bounded and c-op conditionally 

compact;
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(c) P is uniformly bounded and for every compact set
K CT S, p|ŷ  = ffj : f e P) is norm conditionally compact
in C(K);

(d) P is uniformly bounded and an equicontinuous 
family.

Proof. Clearly (a) implies (b). To see that (b) 
implies (a) note that P uniformly bounded implies that 
we may assume P C  ball C(S). But ball C(S) is c-op and 
^ -closed and on ball C(S) the ji and c-op topologies 
agree (Theorem 2.5 (e )). Hence, (b) easily implies (a) 
and the two are equivalent.

(b) implies (c). Let K be compact and (f-)*" a
^ n=l

sequence in pj^ C(K). Then for each integer n > 1
there is a g^ e P such that ĝ l = f̂ . But P is c-op

IK
conditionally compact and hence there is a function g e 
C(S) such that ĝ  ^^4»g(c-op). If f = g|% e C(K) then 
f^-^i^f uniformly on K, and so p{^ is conditionally 
compact in C(K),

(c) implies (d). Let s e S and let K be a compact 
neighborhood of s. By (c) p|^ is norm conditionally com­
pact in C(K) and hence equicontinuous [l4,p.266]. There­
fore for every e > 0 there exists a neighborhood U of s 
in K such that jf(s) - f(t)j < e for all t e U and f e P. 
But since s e int K we may choose U sufficiently small
so that U Is open in S. Hence P is equicontinuous,

(d) implies (c). This follows easily from [l4,p,266].
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(c) implies (b). Suppose F CZ bail C(S); then P" =
the c-op closure of F is contained in ball C(S). Also
F"|g CZ Q  C(K) for every compact set K O  S. Hence
for K compact F"jjç is totally bounded in C(K). Therefore
if € > 0 there are f , e  F” such that F"|„ ■
, n, . 1
W ( g  e C(K) ; Hg - fj IL < e}. That is, F" C  i=l *̂K
LJ G C(S) ; sup |f(s) - fj(s)l < €) and F” is c-op i=l s e K 1
totally bounded. Also F”^  ball C(S) and ^  = c-op on
ball C(S) implies F is c-op complete since ball 0(8) is 
^  complete. Therefore F’ is c-op compact and the proof 
of the theorem is complete.

We will conclude this chapter with a study of the 
polars of the sets = {f € C(S) ; llf0lL < 1) and their 
extreme points. Before doing this, let us say a word 
here about notation. We will denote by ' ' ̂  -weak *' ' 
the weak star topology on M(S) which it has as the adjoint 
of C(S]̂  i i.e., the 0“(M(S), C(S)) topology. This is in 
order to distinguish it from the weak * topology which 
M(S) has as the adjoint of the Banach space 0̂ (8); i.e., 
the <r(M(8), Cq(8)) topology. For an example of their 
difference, note that ball M(8) is weak * compact but it 
is far from being ^-weak * compact if 8 is not compact.

Hie next theorem is due to Glicksberg [18], His. 
proof is, however, quite complicated and we will furnish 
a comparatively simple one.
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TEÎEOREM 2.13. If 0 € Ĉ (S) then g  (. r I ° ^ /
I J fĉ i I < 1 for ail f € = ( y& : yU vanishes off N(0)

Proof, Define the map : C(S)̂  > 0̂ (8) by T^(f) =
0f for all f e C(S). Let B = ball Ĉ (S) and B* = ball M(8% 
Then T0’*̂ (B) = and is continuous. Therefore its 
adjoint T *̂ : M(S)— >M(S) is well defined and continuous 
when both domain and range have their weak * and ^ - 
weak * topologies respectively. But J fdT0*(yî ) =Jf0dyiA, 
for all f in C(S); therefore T0*(yk) = 0/1, If /I e B* 
and f e Vjj then ||f0dyU.j< |f0)|̂  ||̂|( < 1. Hence 
C  V -   ̂® [Tgf(B*)]°; i.e., < 1 for all
yU. e B*. Thus ||f|)||̂ = sup ( ||'0f(hi| : jh. e B») < 1 , or
f € Vg. That is, [T̂ *(B«)]° C  and so V^°C [Tj,*(B»)]°° 
= the ^  -weak * closure of T0*(B*), But B* is weak * 
contact in M(S) and T0* is continuous implies T0*(B*) is 
Ŝ-weak * compact and V0° = T0*(B*) = {0*0 ; ||v?|| < 1},

If = 0'D and < 1 then vanishes off N(0) 
and (̂ fX)(A) = . 0^)(A) = 9 (A D  N(0)) . Hence
ll^^l = |")|(N(0)) < (Oil < 1. If, conversely, yU, vanishes 
off N(0) and (|̂JLl|| < 1 then = 0;D where 9 = 5
hence e concluding the proof.

We will now calculate the extreme points of V0° where 
0 € Cq(S), In order to do this we need an extension of a 
result of Arens and Kelley [3] for which we give a new 
proof.
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THEOREM 2.14. A measure is an extreme point of
the unit ball of M(S) if and only if A = X  Sf \ where
\ r^  is a unimodular complex number and is the unit
point mass at some s e 8,

Proof. If Ar(s) =|(^+^) where |ll?l| < 1
and (A|= 1 then A " ^  + )• Hence we may
assume = 1. If A e Borel (S) and s e A then 1 =
I [f(A) +i>(A)] and |r(A)| , |̂ (A)| < 1. Thus T{k) = 
l) (A) = 1 since 1 is an extreme point of the unit disk 

in the plane. If s X A then 1 = (T(A U {s}) = f(A) + 1 
and hence f(A) = 0; similarly, ’v)(A) = 0. Therefore 
(T = 0 = ^(s) and so is an extreme point.

Suppose now that yX is an extreme point of ball M(S) 
and let ^  = {K ; K is a compact subset of S and 
|yt|(K) > 0}. Since yU. 0 P . We will show that
has the finite intersection property. Suppose K^,Kg e

^  and O  Kg = D > let = s\ (K̂  U  Kg). If 
\h I (̂ 3) ^ ° then jX. = ̂  ^((K^)yCi where /X̂ {A) =

n  %%) for all A € Borel (S). But =
1 for i = 1,2,3 and ̂  |̂ |(Kĵ ) = ||yi||= 1. Since yK is an

extreme point of ball M(S) yK = If |yl | (K^) = 0 we
reach the same conclusion by just having two terms in the 
above sums.

Hence |̂ |(Kg) = |/l̂| (Kg) .= |/||(K̂ )-̂  A  Kg) = 0
since K̂  ̂  Kg = 0, a contradiction. Therefore ^
0 . If F is a compact subset of K^\ Kg then F fllKg =
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P ; thus F and |̂ |(P) = 0. By inner regularity
|yA|(K]\ Kg) = 0 and so }/K\{K̂ r\ Kg) = -
|yU|(K̂ \Kg) = 1̂ 1 (K̂ ) jé 0. This shows that K^,Kg € 5lL 
implies K^ A  Kg e , Now by a simple induction 
argument we have that ^  is closed under finite inter­
sections and so there exists s e C^iK : K e ), If 
U is open and s / U then for every compact set K C  U 
|̂ |(K) = 0 since s / K. Therefore |̂ | (U) = 0 and soyK 
is concentrated on (s). Thus yti = X ^(s) A  =

THEOREM 2.15. If 0 e 0̂ (8) then ̂  is an extreme 
point of V0° if and only if yU. = ̂  0(s) /"(g) where |Xl = 1 
and s e N(0).

Proof, Lety^ be an extreme point of and let
T0 : C ( S ) ^ > Cq(S) be defined by ]̂ (f ) = 0f. Therefore 
its adjoint map T0* : M(S)— ^M(S) is given by T0* ^ )  = 
0^. Now T0* : ball M(S) ̂ ^^ 0̂  is a continuous onto 
affine map when domain and range have their relative 
weak * and ̂  -weak * topologies (see the proof of Theorem 
2.13). By Theorems 1.17 and 2.14 there exists a point 
s 6 8 and a unimodular scalar such that = T0*(AX~(s))
= A^(s)5"(s)« Since ^ 0, se N(0).

For the converse suppose ̂  = 0(s) where 0(s) ^
0. Then e 0 > and if ̂  = -̂("9 +T*) where 0 , <J" €
V0° then ^ = §( and H^^ll , < 1,
By theorem 2.14 = ̂ 4  = ̂ 9". 8ince ^ and 0"
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vanish off N(0) we have that JK = 0(s) J " = -p = ^' 
and yic is an extreme point. This completes the proof. 

In Chapter V we will give an interesting extension 
of this result to vector-valued measures.
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CHAPTER III 
THE MACKEY TOPOLOGY ON C(S)̂

This chapter is divided into two sections. The first 
section investigates a question asked by Buck [12,p.100]; 
is C(S^ a Mackey space? In Theorem 3.7 we show that the 
answer is yes if S is paracompact. Actually, as the 
theorem states, we show much more than this; it is this 
stronger result which we use to develope Chapter 17. We 
conclude section one with an example to show that C(S)̂  
is not always a Mackey space.

Section two treats the question of whether or not a 
subspace of C(S)̂  is a Mackey space provided C(S)^ is a 
Mackey space. In particular, we give necessary and suffi­
cient conditions for a ̂  -closed subspace of to be a

00Mackey space; and we show that H , the space of bounded 
analytic functions on the open unit disk, is not a Mackey 
space if it has the strict topology.
. Section. 1, C[S]̂  is a Mackey space for S paracompact. .

As in the preceding chapter '’ y) -weak *'• will be 
used to denote the weak star topology on M(S) which it has 
as the adjoint of C(S)^ . When referring to properties of 
subsets of M(S) = C(S^ * we will invariably prefix the 
symbol^ . This we hope will alleviate some of the con­
fusion that may arise from the fact that M(S) is also the

37
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adjoint of Ĉ (S). Thus, we shall refer to^ -equicontinuous 
subsets H of M(S). A subset H of M(S) Is A  -equicontinuous 
if and only if = {f e C(S) : | J'fd^ j < 1 for allyt in 
H} is a^ -neighborhood of the origin in C(S).

If E is a topological vector space then E is a Mackey 
space if and only if every weak * compact convex circled 
subset of E* is equicontinuous; E is a strong Mackey space 
if and only if every weak * compact subset of E* is equi­
continuous (see Chapter I).

The following is a classical result due to J. Schur . 
[30]. Proofs can also be found in [4,p.137] and [l4,p.296]. 
We will reproduce the proof here not only for the sake of 
convenience, but also because this result is the corner­
stone of this paper. Of course, is the Banach space of 
absolutely summable sequences of complex numbers. If x =
[z. e 0  ̂then the norm of x is Ux|| = \z.\ . The

 ̂1=1 i=l ^
Banach space adjoint of ̂  ̂  is Jt**, the space of bounded
sequences of complex numbers. Also, ĉ  is the space of
complex sequences converging to zero. Note that if S is
the space of positive integers with the discrete topology
then Cg = Ĉ (S), = C(S), and = M(S).

THEOREM 3.1. In the space a sequence converges
weakly if and only if it converges in norm.

Proof. Clearly we need only consider the case where
a sequence Cx )** of elements x e  ̂converges weakly ^ n=l ^
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to zero. That is, if x = for n > 1 and for
" 1 i=l

every bounded sequence y = (y.)* , <x_,y> = ̂  v.z.
 ̂i=l " i=l 1 1

converges to zero as n-—^ », then we must show that 
_ 08 . .

lim I z. ' \ =0. If y. = 1 for i = j and 0%for i / j n « i=l  ̂ 1
then we have lim z.(̂  ̂ = lim <x_^y> = 0 for J = 1,2,'*.,n— n-^oo “
Suppose that {x ) does not converge to zero in norm; hence

CO .
lim sup ̂  ( z , > e for some e > 0. From this we mayn— i=l
define, by induction, two monotonically increasing sequences 
of integers [n̂ ] and (r̂ J such that:
(a) n, is the first integer such that ̂  Iz.  ̂ > e;

Tmi ^
/ X .^1 ("1)1(b) rn is the first integer such that ̂  Iz, | > e/2

i=r^+l  ̂ '

(c) nĵ is the first integer greater than n̂ _̂  ̂such that 

” > 6 < e/5;

(d) rĵ is the first integer greater than r^_^ such that

> e/2 azid ^  I < e/5.

<X)Now define a bounded sequence y = {y. ) by y. =
I (n, )| -1 (n. )|ẑ  I ẑ  for 1 < i < r̂  and ŷ  ̂=

K  I ^i < i < rĵ ^̂  and k = 1,2,*...
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à '  " •  -‘ ‘"“I ^
I i - 1, (n̂ ), ^  I (nJiZ  ŷ Zi + 5 T  hi + Z L  \zi . From this' 1=1 ^ ^ 1 1=1 * ^ * i=rj^+l '

It follows that

- i = Ç i K ^  > I - f - f = To >̂ =
1,2, *'*. But 11m I Z! Yi 4̂ = 0 and thus we have an-^« 1 iTi 1 1 I
contradiction. This completes the proof.

Now let us give our basic theorem characterizing
^-equicontinuous sets.

THEOREM 3.2. If H ̂  M(S) then the following are
equivalent :
(a) H Is ̂  -equicontinuous;
(b) H Is uniformly bounded and for every net (0̂ ) In
Cg(8) such that ||0jj(eo ̂  ̂  for all 1 and 0^̂—> 0 (c-op), 
we have that 0^— ^0 uniformly on H;
(c) H Is uniformly bounded and for every e > 0 there Is
a compact set K C S such that M̂|(s\ k) < e for allyK
In H;
(d) there Is a function 0 e Ĉ (S) such that 0 > 0 and 
H d  (yK : yUl vanishes off N(0) and < 1).

Proof, (a) Implies (b). If (0̂ ) Is such à met then
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 ̂for all 1 implies 0 —̂ ^ 0(^ ) by Iheorem 2.5
(e). Since H is ̂  -equicontinuous, H° is a ̂  -neighborhood 
of zero in G(S), Therefore if e > 0 there is an î  such 
that for i > iç  ̂(e.H°). Hence, if i > î  and e 
H then 0ĵdy(| < 1 or J < e; that is, 0^-^ 0
uniformly on H,

(b) implies (c). Suppose that (c) does not hold.
If {K̂  : i € I) is the collection of all compact sets in
S then there exists an e > 0 such that for every i e I,
|^il(s\Ki) > e for s o m e e  H, Thus, by Corollary
1.13 there is a function 0̂  in Ĉ (S) with ||0j „ = 1,
spt(0j|̂ )CZ and 0ĵ d JtH > e. Declare that
i < j if and only if K^Ô Kj. Therefore (0̂ ) is a net
in Cg(S) and ||0j«, < 1 for all i. If î  e I and i > î
then sup(|0 (̂s)| : s e } = 0 since spt(0 )̂ O  K. = Q .

o o
Hence, 0̂ — >0 (c-op) and (0̂ ) satisfies the conditions 
of (b). By (b), 0ĵ — » 0 uniformly on H. Therefore there 
is an î  such that if i > î  then j j0ĵ<y\ | < 6 for all 
/k e H. In particular, j j* 0^d |̂ < e for i > î ,
contradicting the choice of they^

(c) implies (d). ïhis is the substance of our Lemma
2.8.

(d) implies (a). By Glicksberg's theorem (2.13),
(d) says that H and hence it must be y) -
equicontinuous.

L3B3MMA 3.3. The strong topology on M(S) = C(S^ * is
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exactly the norm topology. Hence Ĉ (S) and C(S^ have
the same second adjoint. Also C(S)y5 is semi-reflexive
if and only if S is discrete.

Proof. %e strong topology on M(S) is, by definition,
the topology of uniform convergence on ̂  -bounded sets in
C(S), By Hieorem 2.5 (d) these are exactly the norm
bounded sets. Hence the strong topology is exactly the
topology of uniform convergence on the unit ball of C(S).
But this is the norm topology on M(S).

For the last part of the theorem let S be discrete.
îhen M(S) = i.e.,'/I e M(S) if and only if A  =

a Af \ where {s )" is some sequence in S and 
n=l ' n ' n=l
ZZ l&nl ^ " (In fact ||M|( = \a \ ̂ . Also, 0(8) consistsn=l ' n=l
of all bounded functions on S, If L e M(S)* then define 
f(s) = for all s 6 S. Since l|S*(s)l! “  ̂ all
s € S, llfjlee < (|L|| < « and hence f e 0(8). If yH =

(s*)) = =

J fd^ . nierefore C(S), = C(S).
Oonversely, suppose 0(8)^ ** = 0(8) and let se 8.

Ihâi L(yj() = yk((s)) defines a bounded linear functional 
L on M(8), Thus there is a function f e 0(8) such that 
fdy\ = ̂ ({s)) for all yW, e M(8). In particular, f (s) =

= 1 and for t ^ s f(t) = J^fdf^^^ = f^^|({s}) =
0. Therefore f is the characteristic function of singleton
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{s3 and, since f is continuous, (s) is open and closed,
This implies S is discrete and concludes the proof.

THEOREM 3.4, If S is the space of positive integers
with the discrete topology and H = M(S), then the
following are equivalent; (a) H is weakly conditionally
compact; (b) H is ̂  -weak * conditionally compact; (c)
H is norm conditionally compact; (d) H is ̂  -
equicontinuous,

Proof, It is clear that (a) and (b) are equivalent
since (Ĵ ”,^ ) = C(S)^ is semi-reflexive. Also, it is
trivial that (d) implies (b) since this is true for an
arbitrary space S, To see that (b) implies (c) let
{x )" be a sequence in H, By Theorem 1,15 we can get a 

n=l . 1
subsequence (x ) of fx̂ ) and an element x e such that
X X weakly. But according to the theorem of Schur
"kthis implies X — i^x in norm. . Thus. H is norm conditlbnally

kcompact,
If (c) holds and we wish to prove (d) then let e > 0 

and choose x ^ , € H such that H C  l^(x e ^ :

|[x - Xĵll < e/2). If for each k = 1, •••,n we let-
X. = then there is an integer N such that
K 1 i=l

< e/2 for 1 < k < n. Hence, if x = {ẑ  }‘ i=*N+l'  ̂ - - 1 ;
H then there is an integer k, 1 < k < n, such that
IIX ~ X. II < e/2, Therefore 2T | z, | < 21 \z^ ” z.^ i=N+r " i=N+l*  ̂  ̂ •
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2 T  < 6, But for  ̂this is exactly thei=N+l
formuljÿblon of 0  -equicontinuity given in Theorem 3,2 (c), 

COROLLARY 3.5. The space ( ) is a strong Mackey
space.

Before proceeding we must prove a well known fact 
concerning uniform boundedness in M(S) (actually what we 
show can be shown for barrelled spaces [25]). Ihis lemma 
will be used not only for the next theorem but also 
throughout Chapter IV.

LEMMA 3.6. If H O  M(S) is weak * bounded then H 
is uniformly bounded.

Proof. Let B = (0 e 0̂ (8) : | < 1 for all
jlK in H), Then B is a weakly closed convex circled subset 
of Cg(S). Since H is weak * bounded B is absorbing; i.e.,
0 6 Cq(S) implies there is a scalar a > 0 such that a0 e 
B, Hence there is a constant r > 0 such that |(0||„ < r 
implies 0 € B. Therefore if 0 e Ĉ (S) such that ^0^^ <
1 then r0 e B and so  ̂̂  r0(yt | < 1 for all yK e H. This 
implies that |î ||< 1/r for all yK e H and the proof is 
complete.

We are now in a position to prove one of our main 
theorems (almost all of Chapter IV will follow from this 
theorem),

THEOREM 3.7, Let S be paracompact; if H C  M(8) is 
^ -weak * countably compact then H is ̂  -equicontinuous. 
Consequently C(S)y5 is a strong Mackey space.
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Proof, Since H is ̂  -weak * countably compact it
is weak * bounded and hence uniformly bounded by the
preceding lemma. For the remainder of the proof we will
suppose that 8 is(T -compact, and afterwards we will
indicate the proof for the general case. Let S = L J d

n=l *
where is compact and int and suppose H is
not y) -equicontinuous, Since H is uniformly bounded there 
exists, by Theorem 3.2, an e > 0 such that for each compact 
set K C  S, |̂ |(s\ k) > e for some yk in H. We claim that 
there is a sequence f having the following

properties:
(a) ^ e H, 0JJ e Ĉ (S), is compact, is open

in S with U” compact and Uj A  K = fl ; n n * n
(b) Ü  U  o; C  int 
(=)
(d) Uy. = 1. spt(l̂n) ̂  V  (/Inl̂ n) <

n| +
To "see this let ; then there is ayK^ e H

such that (s\ k )̂ > e. But |yk(s\K ĵ) <
4 supC : C is a compact subset of s\ k }̂ (Theorem
1.9) . Hence there exists a compact set C O  s\ with 
|^l(C)| > e/4. Choose an open set such that is 
compact, C C  C  C  and (%\c) <

" %]. From this we have |/&%(%)(> s/4. By 
Corollary 1,13 there is a function 02 e Ĉ (S) with spt(0̂ )
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C .\>  I K L  = 1. V8. since
%  U Is compact we can find a compact set Kg.such that

U C  lut Kg, This completes the first step in the
argument necessary to obtain the sequence. The rest of
the induction is similar,

00

Since 8 = and CZ int K^^^ we have that S =

U int K_. 
n=l ^

00

Claim 1; F = L-Jspt(0 ) is closed. In fact if s e F‘ 
n=l

then 8 6 int K^ for some n > 1, Hence, for every open 
neighborhood W of s such that W Cl int K^ we have Q 0

W F = W/ni L J spt(0̂ ). Thus s e I j spt(0̂ ) F and i=l i=l
F is closed.

Claim 2: If x =  ̂J** then f (s) =n=l - X
x^^^0ĵ (s) is a well defined bounded continuous function

on S and [l̂xloo ~ l|W|oo' In fact it is clearly well
defined since at most one term in the sum is not zero.
Also, for this same reason, | ~  An=l
for all 8 € 3, and, since each ( 0^ | achieves its maximum, 
we have Hf̂ loo ~ 1° see that f^ is continuous let
s € S and let {ŝ ) be a net in S such that 8̂ —̂ ^ s. If 
s X F then F is closed implies that there is an î  such 
that for i > î , ŝ  X F, Hence for i > i^ f̂ fs) = f̂ fs^)
= 0 and thus f̂ jCŝ ) —^  f^(s), If s e F then s e spt(0̂ )
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d  for a unique integer n. Therefore there is an î
such that for i > î , ŝ  e Û . But then, if i > î ,
fx(Si) = > x̂ “ 0̂̂ (s) = f̂ fs) and so f^ e C(S).

Now define the map T: J{"-p-ĵ c(S) hy T(x) = f̂ . Then
T is an isometry and

Claim 3: T ; ( j(", ̂  ^ C(8^  is continuous. Let
{x̂ 3 be a net in such that x̂ -— 0 (^). If 0 e 0̂ (8)
and € > 0 then there is an integer N such that for x 0 K ,
I I  N.|0(s)j < e. Thus, for n > N spt(0̂ ) ^  = Q and hence

i.e., the sequence x = {\\00J1„}” is an
n=l

element of ĉ . Since x̂ »— ^ 0 (^ ) there is for every e >
0 an ig such that for i > î , ||xx̂ ||̂  < e. If x^ =

for all i then this says that for i > î
e > sup( x̂^(^^||0(s)0^(s)| : s e S and n > 1) =

|0(s)0̂ (s)| : s € S3 = I 0T(Xĵ )||̂ . Hence

T(x^)*"^0 (yô ) in. C(S) and so T is continuous.
Therefore T has a well defined adjoint T* ; M(S)— 

which is continuous when both range and domain have their 
^ -weak * topologies. Thus, T*(H) is ̂  -weak * countably 
compact in X ' and, by Theorems 3.4 and 1,15, T*(H) is 
^-equicontinuous in Now if M(S) and x e Jj"
then <x,T*(yc)> = jr(x)d^ = jf^dy* =

so that T*(^ ) = { ̂  0^djH }* . Interpreting our ̂  -

equicontinuity condition for T*(H) CT* we have that
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there is an integer N such that '^Z I \ 0„d id \ < 6/8 for
n=N+l 1 J ^ / I

all yd. € H. In particular, if n > N | 6/8 and

condition (d). But this contradicts condition (c) on our
sequence and so the proof is complete.

Note, that the reason for condition (b) on the sequence
was to ensure that L J k was both open and closed; fromn=l "
this it followed that P was closed and f^ was continuous.
This same method yields a proof if S is a topological
group, and condition (b) is replaced by the requirement
that each be a symmetric neighborhood of the identity
and ^  U” C  int ^en is an open and

n=l
closed subgroup. Both of these proofs may be subsumed in 
the proof of the case when S is paracompact. By Theorem 
1,1 S = {S„ : a e A) where the are pairwise disjointSl cL
open and closed ^-compact subsets of S. Let =
L^C(n,a) where each C(n,a) is compact and C(n,a) CZ n=l
int C(n+l,a) for n > 1 and a € A. By an induction process
similar to that used in the above proof, we obtain a
sequence of integers {h_)* such that k .,>.k ., and an n+± n

sequence in A as well as the sequence
^ n=l

f sequence of quadruples has all

the properties it had in the proof of the theorem except
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that condition (b) is replaced by = L-Jc(l^,a^), and
»

int K̂ .̂2* how proceed as above and =
k n=l

CJLJc(k ,a. ) = IJs since k  ̂> k_. Thereforen=l i=l ^  ̂ n=l ®n ^
( ] k is both open and closed,%  ̂

REMARKS. There is a class of spaces for which the 
preceding method of proof cannot work - namej.y the pseudo­
compact, non-compact spaces. For in such a space no matter
how the K^ are chosen the set F will never be closed (see
[16]).

In addition, there are spaces for which Theorem 3.7 
is not true, as the following example (of a pseudocompact 
space) illustrates.

THEOREM 3.8. If JTI.̂  is the space of ordinal numbers 
less than the first uncountable with the order topology, 
then C(^^)yj is not a Mackey space (and a fortiori not a 
strong Mackey space).

Proof. Let H be the -weak * closed convex circled 
hull of the set of all measures of the form -
^(s+1)̂ ' where s is a non-limit ordinal and s + 1 is its 
immediate successor. Besides the properties of in
Theorem 1.2 we will need the fact that if s e then
the characteristic function of [1,s] is continuous.

Let Jl, be the first uncountable ordinal and the
Stone-Cech compactification o f H e n c e  ^
U  C-Tl } and M(Ji ̂ ) = M(Jl^) @ ((f(JL))f where
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= (c  ̂ : c € f). We claim that if we
consider H as a subset of M(J1. then H is weak * closed.
If this is so then, since H is clearly contained in the .
unit ball of we would have that H is weak *
compa ctbut the weak * topology of M(relativized
to U{S\^) is exactly the ̂  -weak * topology, and so H is 
^-weak * compact.

To prove the claim, suppose that yU, is in the weak *
closure of H in . Then there is a unique measure
^ e and a scalar c e $ such that yA. = "D +
c )• must show that c = 0. If (T = ÿ  "
5"(s+l)] then <T(-n^) = Jd^ = 0. Therefore =
0 for all f  € H and so ^  = 0. Thus c = - ^ (J\g),
Since is not (T -compact and 4) vanishes off a ̂  -
compact subset of there exists a limit ordinal x
such that D vanishes off [l,x]. Let f = the character­
istic function of [l,x]. If s is any non-limit ordinal 
then either s < x or x < s. If s < x then s + 1 < x and 
f(s) = f(s + 1) ? 1. If X < s then f(a) = f(s+l) = 0, 
Hence fd^ = 0 for all (T e H and therefore 0 = f̂cyt = 
Jfd-D + cf ) = Jfd9 = •D([l,x]) = 9(JVq). Thus 

c = 0 and = "9 € But the weak * topology on

1This is because the unit ball of the adjoint of a Banach space is always weak * compact. This theorem is 
well known and will be used often without specific reference. See [l4,p,424].
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relativized to is the ̂  -weak * topology.
Since yu is in the weak * closure of H in and yK e
M(.XLq) we have that yK is in the -weak * closure of H. 
But H is -weak * closed in M(«TVq) and so ̂  e H. Thus 
H is weak * closed in M(JVj^) and so is ^  -weak * compact 
in M(A„).

However H is not ^  -equicontinuous. In fact, if it
were there would be a <T -compact set of the type N(0) such
that each measure in H vanishes off N(0), From the 
definition of H it is clear that this cannot be.
Section 2. Sub spaces of C(S)^ and the spaces ' ( ) and

)
A natural question to ask is whether or not subspaces 

of C(S^ are Mackey spaces if they have the relative 
topology and if C(S)^ is a Mackey space. Along these 
lines it is known that the completion of a Mackey space is 
a Mackey space; the converse, however, is false. In fact 
C( S ̂  is the completion of C^(S^ ; but is never
a Mackey space (unless S is compact), since the norm topo­
logy on Cq (S) is stronger than the strict topology and 
yields the same adjoint M(S).

The difficulties encountered in attacking our problem 
may be visualized as follows. Let E be a subspace of C(S) 
and i : ^ C(Sj| the injection map, with i* ; M(S)— ^
E^* its adjoint. In order to show that a subset H CL E^ * 
is ̂  -equicontinuous it is necessary and sufficient to
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show that there Is a ̂  -equicontinuous subset M(5)
such that i*Hĵ  = H. Therefore if C(S)̂  is a Mackey space 
and H O  Eyô * a yS -weak * compact convex circled set, 
then to show that H is ̂  -equicontinuous we need to find 
a ̂  -weak * compact convex circled set M(S) such
that i*H^ * H. Since * with its ̂  -weak * topology is 
topologically isomorphic to a quotient space of M(S), it 
would seem that what is needed is a version of a theorem 
of Bartle and Graves (see [5] or [27,p.375]) where both 
the domain and range have their^ -weak * topologies. 
Unfortunately, no such theorem is available in general, 
although in the special case of A *  one can use this 
theorem to great advantage (see Theorem 3,10 below).

Let E be ay^ -closed subspace of X T  and recall that 
we proved that (î *jŷ ) is a strong Mackey space by using 
Schur's theorem. It is not difficult to prove Schur's 
theorem if we assume that { is a strong Mackey 
space; hence the two theorems are equivalent, A statement 
similar to Schur's theorem turns out to be exactly what 
is needed to characterize those closed subspaces of (
which are Mackey spaces,

LEMMA 3j,9, Let E be a ̂  -closed sub space of 
Then E^ is semi-reflexive and E^ * is a Banach space 
when furnished with its strong topology. Consequently, 
the yg -weak * topology on Eyg * is its weak topology which 
it has as a Banach space.
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Proof, Since ( ) is semi-reflexive (Lemma 3.3)
and E is a closed subspace of ) we have that E is
semi-reflexive by Theorem 1.11, By the same theorem we 
have that E^ * with its strong topology is topologically 
isomorphic to j^/N with its quotient norm, where N * E ^ C  
5̂ .̂ Hence E^ * is a Banach space.

THEOREM 3.10. If E is closed in ( ^  ) then a sub­
set of E^ * is ̂  -equicontinuous if and only if it is 
norm conditionally compact.

Proof, Let H d  E^ * be^ô -equicontinuous and let 1 ;
E^—^  be the injection map, "Dien there is a
0.6 Cq such that ±*̂ 0° H, where i* ; — » E^ * = ÎVn

ois the adjoint map of i. But is -equicontinuous and 
norm closed in Therefore is norm compact in
(Iheorem 3,4), and, since i* is norm continuous, H has 
norm compact closure.

Assume that H is norm compact, Hien * is a Banach 
space and i* is a map of  ̂onto E^ *. By the Bartle- 
Graves selection theorem [27,p,375] there is a continuous 
function f : E^ * — ^ such that f(I) e i-'̂ (I) for all 
I e *. Hence f(H) is norm compact in and thus 
^Tequicontinuous. Therefore i*(f(H)) = H implies H is 
B-equicontinuous.

THEOREM 3.11. If E is a -closed sub space of then 
the follpwing are equivalent:
(a) E^ is a Mackey space;
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(b) Eyg is a strong Mackey space;
(c) every ̂  -weak * compact subset of E^* is norm
compact;
(d) every ̂  -weak * convergent sequence in Ê 5 * is norm 
convergent.

Proof, (a) is equivalent to (b). Ihis is immediate 
from Iheorem 1,16 since the ̂  -weak * and the weak topo­
logies on E^ * are the same.

(b) implies (c). If H O  E^* is yS-weak * compact 
then H is yB -equicontinuous by (b). Since it is norm 
closed the preceding theorem implies H is norm compact,

(c) implies (d). A yg -weak * convergent sequence
with its limit point is ̂  -weak * compact and hence norm
compact by (c). From this it is easy to see that the 
sequence converges in norm,

(d) implies (b). If H C  * is ̂  -weak * compact 
then it is yg -weak * sequentially compact by Theorem 1,15, 
Thus (d) implies it is norm compact, and hence - 
equicontinuous in virtue of the preceding theorem. This 
concludes the proof of the theorem.

Now let us turn our attention to H**, the space of
bounded analytic functions on the open unit disk d. For

00general information on H see [23], Iheorems 3,12 and
3.13 below were obtained quite recently by Shields and 
Rubel ([31] and [32]), We have decided to present them 
here because we obtain them by different methods, and
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because they form a direct path to our result that h“ with
its strict topology is not a Mackey space (it should be
pointed out that in the process we show there exists a
closed sub space of which is not a Mackey space).

We follow a method of Brown, Shields, and Zeller [9]
and get a sequence in D which has no limit points

^ n=l
in b and such that for all f e h“, llf||„ = sup{|f(â )\; 
n > 1). Hence if E is the sub space of consisting of
all sequences {f(â }} where f e H then the map T ;00 n=lH — >E, defined by T(f) = {f(â )), is a linear isometry.
Moreover, since (â ) has no limit points in D it is a
discrete sequence. Ttius, if (f̂ ) is a net in H* such that
f — 0 {0 ) and X = (x )“ e c , then there is a function
 ̂ r ” n=l °

0 e Cq(D) such that == x^ for n > 1 (Iheorem 1.5).
If € > 0 then there is an î  such that for i > i_o — o
||0fll|oo < But for i > io sup{|x̂ f̂ (â )| : n > 1) = 
sup{|0(â )f̂ (aĵ )| : n > 13 < l|0fj|„ < e and so T(f^)— >
0 (^ ) in E. Therefore T is a continuous map from (H*,^ ) 
onto E^ (a fact which is crucial in our development).

THEOREM 3.12. A subset of (H*, ̂  ) is ̂  -compact if 
and only if it is 01 -closed and bounded.

Proof. Let A C  h“ be ̂  -closed and bounded. Since 
the 0  and c-op topologies agree on bounded sets in C(D), 
and since the c-op topology is metric on h‘*|:12,p,98]̂  
we need only show that every sequence in A has a c-op
convergent subsequence. But (f ) A and A uniformly

“ n=l
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bounded implies is an equicontinuous family [l,p.l?l].
Therefore there is a subsequence of {f̂ } which converges 
to f e A in the c-op topology,

THEOREM 3.13. If I is a linear functional on h" which 
is ̂  -continuous on the unit ball then I is ̂  -continuous 
on H**. Hence (H",y$ )* with its strong topology is a 
Banach space and h” is its adjoint.

Proof. Consider the map T : (H^jyg)—^ E ^  C  
defined prior to Theorem 3.12. Since T is continuous and
ball H*” is ̂  -compact, T (ball h“) is ̂  -compact in
and hence (f ( compact. Therefore E O  baJ.1 A* =
T (ball h“) is T( K f closed and thus, by Theorem
1.14, E is 0*( closed. But ̂  is stronger than the
CT ( topology and hence E is a ̂  -closed subspace
of Also ball h“ is ̂  -compact implies that the
restriction of T to ball h" is a homeomorphism. Hence 
I o T’̂  is a linear functional on E which is ̂  -continuous 
on ball E. By Lemma 3.9 * is strongly complete and so
it follows from Grothendieck's completeness theorem (Theorem
1.10) that I o T"^ 6 Ejg *. Therefore I = T*(I o t”̂ ) e 
(H***, ̂  )* and (H*, ̂  )* is strongly complete (also by Theorem
1.10). Since it is clearly a normed space we have that 
(H*,^ )* with its strong topology is a Banach space.
Finally, ball H** ^ -compact implies that every bounded set 
in (h”, yS) is weakly conditionally compact, and hence (H**,̂ ) 
is' semi-reflexive. Therefore h“ = (h“, A)**,
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COROLLARY 3.14, A linear functional I on H*” is
■

continuous if and only if there is a Lehesgue integrable 
function g on [-Tr,ir] such that 1(f) = ̂  Y f(e^^)g(8)d8

V _7T
for all f € h".

Proof. Let g e L^(-7r,7r) and B = ball h". If (f̂ )
is a sequence in B and f^— ^ f (^ ) then identify each f^
and f with its boundary values on the unit circle [23]. 
Therefore each f̂  and f determines an element of l‘“(-tt,t) 
and L°°(-v,tt) = L^ is the adjoint of the separable Banach 
space L̂ (-TT,ir) = L̂ . Hence the C“(l‘”,L̂ ) topology on 
ball l“ is metrizable, and ball L~ is compact implies there
is an h € l” and a subsequence {f } of {f ) such that

k
f ■ h C(l",L^). Therefore^(n) = f  h(0)e”̂ ®̂d© =

k  y -IT

lim ̂  (n) , for n = 0 , ± 1 , H e n c e ^ ( n )  = 0 for n <

Oi and for n > 0 ̂ ^(n) = ̂  f̂ )̂ (0). But f̂ ^— > f )

implies f^■ "—> f (c-op) and so ̂ (n) = ~  f("^(0) =
1 (n) A Alim —r f (0). Therefore h(n) = f(n) for all n, and so * *k

f(ê )̂ = h(0) for almost all 0 (see [29,p.17]). What we 
have shown is that every ^(l“,L̂ ) convergent subsequence 
of [f̂ } converges to f. Since ball l” is 0*(l“,L̂ ) 
compact we have that f^— ^ f (T(l“,L̂ ). Therefore

2 AOf course'h denotes the Fourier-Stieltjes trans­
form of h [29],
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I ( f ^ ) ) and I is ^  -continuous on ball H*, By the 
previous theorem, I e (H°°, ̂

For the converse let u ; h”— be the canonical 
imbedding. What we have shown is that u is continuous if
H** has its weak topology from (Î , and L*** has its
0”(l“,L̂ ) topology. If E = u (h“) and I e (H*,^)* then,
by an argument similar to that used in the theorem, we
have that I o u”̂  is a <r(L“*,L̂ ) continuous linear 
functional on E. By the Hahn-Banach theorem we may 
extend I o u”̂  to a (̂L**, L̂ ) continuous linear functional 
on L***, Thus there is a g e L̂ (-Tr,ir) such that I o u"̂ (h)

. & r h(0)g(0)d6 for all h e E. Therefore if f e h“,
-T

1(f) = I O u‘ (̂u(f)) = ff(e^®)g(8)d9.
V -TT

THEOREM 3.15. A subset of (H*, ̂ )*.is -
equicontinuous if and only if it is norm conditionally 
compact.

Proof, If A is a norm compact subset of (h“,yS)* 
and T : (H*, ̂  ) ——>E^ is the map described prior to
Theorem 3.12 then T* : Ep *— ^(H*, ̂ )* is an isometry 
onto (h”, .6 )*. Therefore T ”̂ (A) is norm compact in 
Ep * and hence, by %eorem 3.10, T ” (A) is ^  - 
equicontinuous. Hiis in̂ lies that there exists a 0 € ĉ  
such that T ’̂ (A) ^  But T is continuous and so
T”̂ (V0) is a 8̂ -neighborhood of zero in h”. It is
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routine to show that A ^[T"^(V^)]° and hence A is 
^  -equicontinuous.

Now suppose that A is ̂  -equicontinuous and {I )”
I ^ n=l

is a sequence in A. Hence A is ̂  -weak * conditionally 
compact and, since the ̂ 5 -weak * and weak topologies on 
(h“, a r e  the same, A is weakly sequentially compact 
by Iheorem 1.15. Therefore some subsequence of (Î )

converges weakly (= yô -weak *) to an element I of (H*, 
Assume that f I -weak *. Since ball h“ is yff -
compact, there is for each integer n a function f^ e ball

h“ such that \\l - Î \\ = (I - ^^n there is

an f e ball h" and a subsequence {f ) of {f ) such thatUk n
f„— ^ f ifi). Since {I - I_)** is /̂ -equicontinuous,
”k ' ^ n=l '
f — ^ f uniformly on {I - I ). Therefore if € > 0 there 
k

is an integer such that for n^ > N̂ , j(I - I^)(f - f )| 
€< ̂  for all n > 1, Also there is an integer Ng > such

that for n > Ng |l(f) - Î (f )\ < Hence for n^ >

"s/Ri - = (I - \ ) ( \ )  i id - - \ A  +

|(I - )(f)| < €, Oiat is ^  I  in norm and A  isk k
norm conditionally compact,

COROLLARY 3.l6. If (1̂ ), I are in (H”,yÔ)* then 
Î — ^ I in norm if and only if (a) I -weak *
and (b) (I-)” is A -equicontinuous,

■ n=l r
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THEOREM 3.17. (H is not a Mackey space.
Proof. Since (H*,^)* is a Banach space with adjoint 

space h“, it is sufficient to show that ) is not a
strong Mackey space (see Theorem 1.16). For each integer 
n > 1 define Î (f) = ̂  f(e^®)e"^^®de = ̂ (n), for all

-TT

f € h". ihen € (h”, |g)* by Corollary 3.14 and 0
(̂  -weak Clearly Î {| < 1 and since for f(z) =

e h“ Î f̂) = 1, we have that  ̂Î \\ = 1 for all n > 1. 
Hence (Î ) cannot approach zero in norm. By the preceding 
corollary (1̂ )̂ is not ̂  -equicontinuous. This concludes 
the proof.

REMARK. Theorem 3.17 answers a question posed by 
Shields and Rubel [32].

Let us close this chapter with some remarks on the 
strict topology. There are no examples known to the 
author of topological vector spaces which are Mackey spaces, 
except by virtue of some other formally stronger property
(e.g. barrelled, metric, etc.). However this is not true
of C(S)^ . We have already seen that C(S)̂  is metric 
if and only if S is compact. This same statement can be - 
made with respect to ''barrelled'’ and ''bornological.''
In fact, the unit ball is ̂  -closed and absorbs bounded 
sets, but it is a ̂  -neighborhood of zero if and only if

Âgain, ̂  is the Pourier-S^ieltjes transform of f. It is a well known fact that lim ̂ n) = 0 [29].
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S is compact. Another interesting point is that the strict 
topology gives an example of a semi-reflexive Mackey space 

) which has a closed subspace which is not a Mackey 
space - the image E of h“ under the mapping discussed 
before Theorem 3,12.
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CHAPTER IV
C0)ŒACTNE88 AND 8EQUENTIAL CONVERGENCE IN M(8)

This chapter will be devoted to an exploitation of 
our Theorem 3.7, the principal result of Chapter III,
After a number of preliminary lemmas we present some 
results relating jS -weak * compactness and sequential 
compactness with^g -equicontinuity. We then begin a dis­
cussion of a paper by J, Dieudonne [13]. In this paper 
he gives necessary and sufficient conditions for several, 
modes of sequential convergence in M(8) for 8 compact.
Our treatment of these results will fall into three cate­
gories. First, by making use of the concept ofA- 
equicontinuity, we will generalize the results of Dieudonrie 
to locally compact spaces (note that p  -equicontinuity may 
be intuitively regarded as saying that the underlying 
space 8 is ''approximately compact'' relative to the 
measures involved). For the most part these generalizations 
are connected with the sufficiency of the conditions pf 
his theorems. It can be seen that the necessity arguments 
used all have a noticeable similarity with one another.
The second facet of our development will be to replace 
these arguments by a judicious application of Theorem 3.7. 
Finally we will strengthen some of these results, and show 
how a theorem of A. Grothendieck on weak con^actness in

62
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M(S) can be obtained.
Before proceeding we will need the following 

preliminary lemmas,
LEMMA. 4.1, If is a compact subset of S and A is a 

countable subset of M(S) then there exists a compact 
set Kg 13 such that |^|(K^K^) = 0 for all ̂  e A, 
Furthermore, if S is compact then S\Kg is a regularly 
0*-compact set.

Proof. Let A = -d 5 :

Then 0 e M(8) and each jytt is absolutely continuous 
with respect to t) , We will produce a sequence of
open sets such that Cl ^n+1^  ^n+1 ̂  ^n n > 1, 
■̂ (Uĵ \k̂ ) < and is compact. By regularity, there 

is an open set with compact closure such that K^ ̂  
and '^(U^\k^) < 1, Hence, suppose that the sets Û , 

are constructed having the desired properties. Again, 
by outer regularity there is an open set 0 K^ such that 
“Î)(o\Kĵ ) < . But is compact and disjoint from the
closed set 8^(0 O  U^), Therefore there is an open set 

such that 0 n-U^ C  Thus is
compact and ^ (o\ k )̂ < ̂  ,

Let Kg » then K^ d  Kg and Kg d  implies
00 .

that Kg is compact. But s\Kg = Lj(s\u^) and
n=l

implies that s\Uj^ C  APn+l ̂  ‘̂X^n+l* s\u^ C
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int and so s\Kg is open, Ihus, Kg = Kg is
compact. Finally, \) (K^K^) < ^ for all
n > 1 implies *î)(Kg\K̂ ) = 0. Since each 
absolutely continuous with respect to S) we have

\ / i n l  l̂) = 0 for all n  > 1.
If S is compact then s\u^ is compact and so s\Kg

is (by construction) a regularly T"-compact set, Ihis 
completes the proof.

If B e Borel (S) and is a sequence in M(S) then
we will say that B is a { -quarrable set if and only if
l/̂ nl B) = 0 for all n > 1, We will also say
that B is quarrable for

LEMMA. 4,2, ([13,p.277]) If C y U C  M(S) then every
point s 6 S has a fundamental neighborhood system consisting
of open -quarrable sets.

Proof, As in the above proof we need only consider 
the lemma for a single positive measure ̂  , If V is an 
open neighborhood of t then let f e C(S) be such that 
0 < f < 1, f(t) = 1, and f(s\y) = 0, We will show that 
there are at most countably many real numbers r, 0 < r <
1, with y|(C(Cs : f(s) = r)) / 0. In fact, if this is not 
the case and there is an uncountable collection of such r,
then for some integer n > 1 there are uncount ably many
such r > — , Applying the same type of reasoning, we 
obtain an integer m > 1 and a sequence (r̂ J of real numbers 
such that ^ and yk((s : f (s) = r̂ }) > g for all k > 1,
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= «, whichTherefore Vfdu > 2 T  i) fdAA. > S  i  •
J r  - k=i r  - k=i°̂

is a contradiction. Hence, we may find an r, 0 < r < 1, 
such that ({s : f(s) = r)) = 0. Let U = {s : f(s) > r); 
then t- e U C  V and yW,(U"\u) < yK((s : f(:s) = r}) = 0.

Lemma 4.3. If K is a compact subset of S and A CZ
M(S) is countable then there is an open set W 3  K which
is A-quarrable and such that W” is compact.

Proof, Using Lemma 4.2 and the compactness of K, we 
may find a finite collection of open, A-quarrable

I Isets with compact closures such that K (2 L̂ Ju^. Let W =
, m, W
L^U, ; then W has the properties stated in the lemma, k=l ^

LEMMA 4.4.(4) ([13,p.279]) are unifomly
bounded in M(S) and yW. ̂ (̂U) — ^ yH (U) for every open 
quarrable set U then ^ ^  -weak *),

Proof. We may assume j|yU.nll ^ ̂  for n > 1. Clearly
it is only necessary to show that* Ĵ dy|( ̂ fdyLi for
all real valued functions in C(8); so let e > 0 and f €
C(S) be real valued. Choose a finite sequence
of real numbers such that r̂  < - |)f|)gg, ||f||g, < r̂ , and
0 < - r̂  < # for 1 < k < m-1. If ^ =< -J for 1 < k < m-1. If i) =

lyUni then ? e M(S) and by an argument like that

used in Lomma 4,2 there are at most a countable number of 
r's such that %) ((s : f(s) = r}) ^ 0, Hence (possibly

4See also Alexandroff [2,p,l82],
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after a small adjustment of the original r̂ ) we may choose
the r^ such that ~0 {{s : f(x) = r̂ )) = 0, for 1 < k <
m. Let = {s : r̂  ̂ <f(s) < for 1 < k < m-1, =
{s : r̂  < f  (s) < rg), and = {s : r̂  ̂< f(s) <
for 2 < k < m-1.

m-1
If S = 2ST f where is the characteristick=l ^ k̂ k̂

function of then | - J f<y ̂  | < - An̂ j
|J'sd(yu y„)|. But (|(f-g)d{^-y,^)| <

Â  - i i  1 Yn)| ' this
last inequality holding since |^- | (A^ Û ) <

I / * I ( aA  Ufe) + l / l „ l  ( * A “k) = 0 fo r  a l l  n > 1 and 1 < k <

m-1. But for s e |f(s) - r̂ | < e/4- so that 

| [ ( f - g ) d { ; . - / , „ ) |  l / y  n l ( " k )  l l / ^ - / n l l ; &

+ 
m-1

e/2 for all n > 1. Also is (yi -quarrable for 1 < k
< m-1 implies that there is an integer N such that for 
n > N IJ gdyi n - J | < e/2. Hence for n > N,
||*f<̂  - f<yi n| — + e/2 = e , completing the proof,

Many of the results that follow will make use of yS - 
equicontinuity as well as uniform boundedness. The 
following theorem gives a sufficient condition for ̂  - 
equicontinuity; for a result on uniform boundedness see 
Lemma 3.6,

THEOREM 4.5. If H is a ̂  -weak * compact subset of 
positive measures in M(S) then H isyg -equicontinuous.
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Proof, Let {K̂ ) be the collection of all compact 
subsets of S. For each 1 let 0̂  e Ĉ (S) be such that 0 < 
0^ < 1 and 0i(K^) =1. If f̂  = 1 - 01 then f̂  e 0(8),
0 < fĵ(Kĵ ) = 0. Let e > O5 if yw. € M(S)
then by inner regularity there is a such that |yi|(s\K̂ ) 
< €. Therefore I I = ^^^1 “ l/̂l <

e and so the sets { jiA : ĵ f̂ dyî j < e} form a ̂  -weak *
open cover of H, Since H is ̂  -weak * compact we can
find such that H C  LJ{ jK : |Jfj^d^|< e). Let

m
= spt (0ĵ ) and K = 0̂ .̂ Ihen ̂  e H implies that

1 J f ĵdyt I < € for some i, 1 < i < m. Hence |^((s\K) = 
yU(s\K) < yi(S) - but 0  ̂< and so >

^  ̂ î /̂  • Combining these facts we have that |̂ |(s\ k) <
^(S) - J = j(l-0ĵ )d̂  = < e and H is
^ -equicontinuous. This concludes the proof.

It is always true that ̂  -equicontinuity implies 
conditional ̂  -weak * compactness. However it is often 
the case that sequential compactness is more useful than 
compactness. For this reason we prove the following 
interesting result.

THEOREM 4.6. If 8 is locally metrizable and H C T m (S)
is ^ -equicontinuous then H is ̂  -weak  ̂sequentially
compact.

Proof, Recall that 8 is locally metrizable if and
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only if every point has a metrizable neighborhood. Since 
S is locally compact this is equivalent to the require­
ment that every compact set be metrizable. Now H isyg - 
equicontinuous implies we m ^  find a sequence {K̂ ) of 
compact sets such that C2 and |^|(s\K^) <

for all ̂  € H. Let be a sequence in H; we may

suppose IlyUjI <1 for all j > 1. Since S is locally
metrizable is a compact metric space and C(K̂ ) is 
separable for all n > 1 ([l^,p.501]), Therefore the weak 
* topology on the unit ball of M(K̂ ) is metrizable ([14, 
p.426]). Consider , where ̂ i s  the element

of M(K̂ ) which is the restriction of ̂  ̂ to =
^j(A) for all A € Borel (K̂ ); see Chapter I). Then this 
sequence is in ball M(K̂ ) so there is a measure e 
M(Ki), < 1, and a subsequence {yn. of (ykj)

such that yyt. 2 (weak *) in M(K̂ ). By an induction

argument we obtain for each integer i > 2 a subsequence 
 ̂of and a measure e M(K̂ ) with

ll'̂ ill ^ 1' such that yk 9 i (weak *) in M(Kj, ).

Let i > 1 and f e be such that j|f|ĵ < 1.
Let  ̂be the extension of "D ̂  to (i.e., (A) =
*9̂ (A /I Kĵ) for all A e Borel (Kĵ ^̂ )). %en

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



69
(1+1)
1+1 j “W  » ( ■ » „ , -=5T>|-1 / 4 .  s ' Y

*1+1 ' *1+1

î, ' y "  |- /-?. Il T " ”  - I . , ' r
i 1+1 ^

I r (1+1) r . (1)
 ̂ - J k / ^ i+i :

l/l lf^l+^^1^ - (§)̂  for ail j > 1 and 1 > 1. Therefore
|| "91+1 " D i 11 < (■§)̂  for ail 1 > 1. If we regard each 
 ̂as a measure In M(S) by considering Its extension to S 

then II0)̂ +1 - *9̂ 11 < for all 1 > 1. Thus A  =

(*̂ i+i " ^ i) 1® ^ measure In M(S). We will show1=1
iCOthat the diagonal sequence (yKjj)'" converges to yW ^  -

weak *. Let f g C(S) be such that l|f|l<„ < 1. If g > 0 
choose n > 1 with (-̂ )̂  < e/3; then | Jfd^ jj - J fûjn | <

IS - ^ S « ( ^ i + 1  - -^l)t +

I ^ I L / " / " ' '  ■

+ + (|)“ < I - -?n+l)| +

But yt  ̂Is a subsequence of ^

except possibly for the first n terms. Hence there Is a
Jo such that for ) > If «(/Ijj " -)n+l)| <

*n+l '
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Therefore if J > we have | j fd/( ̂ ̂ - j fd/i | < e which

completes the proof.
COROLLARY 4.7. If S is a metric space and H C  M(S) 

then the following are equivalent:
(a) H is ̂  -equicontinuous;
(b) H is ̂  -weak * sequentially compact ;
(c) H is ^  -weak * countably compact;
(d) H is ̂  -weak * conditionally compact.
Proof. Notice that we always have that (a) implies 

(d) implies (c) and (b) implies (c). Since S is metrizable 
it is paracompact and hence, by Iheorem 3.7, (c) implies
(a). By the preceding theorem we have that (a) implies
( b ) .

COROLLARY 4.8. If S is a metric space and (f̂ ), f 
are in C(S), then f̂ r̂— ^  f ) if and only if f ^  f
uniformly on^ -weak * convergent sequences in M(8).

Proof. Suppose f f  ( j S) and let be a

j6 -weak * convergent sequence in M(S). By the preceding 
corollary we have that is & ̂  -equicontinuous set
and hence f^— ^ f uniformly on .

For the converse let ^  be the topology on C(S) of 
uniform convergence on ̂  -weak * convergent sequences in 
M(S). Suppose that f̂ ».w> f ( ̂  ). If there is a ̂  -
equicontinuous set H C  M(S) such that (f̂ ] does not
converge to f uniformly on H, then there is an e > 0 and
an increasing sequence of integers (n̂ ) with
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sup{ j - j fdyk | : yH e H) > € for all k > 1.
Hence for each k > 1 there is a measure e H with 
I ^ (f̂  - f I > 6, But S is metrizable implies there

is a subsequence  ̂ ^^k^ smd a yk e M(S) such

that JX ̂  ^-weak *. But f^— f ( Ç  ) implies there

is an integer N such that for n > N | ̂ f ^  - Ĵ fdyk̂  ̂|

< e for all i > 1. Clearly this gives us a contradiction.
Hence f^— ^ f uniformly on every ̂  -equicontinuous set;
that is, f^— ^ f (yS). This concludes the proof.

We will now turn our attention to the results of
Dieudonne [13] and Grothendieck [19], If [A_] is a

' ^ n=l
sequence in M(S) and f is a complex valued function on S 
then f is -continuous if and only if f is bounded and

and the set of discontinuities of f has -measure zero
for all n > 1. We will say that a sequence i in M(S) 
converges R-weak * (''R'* stands for Riemann) if and only 
if ^ for every [yt -continuous function
f. Even though there is no R-weak * topology, we give the 
obvious meaning to the terms R-weak * countably compact 
and R-weak * sequentially compact,

5In what follows there may arise some confusion as to the originality of the results. We will endeavor 
to settle such questions with bibliographical footnotes. 
If no footnote or reference is given then, to the best of our knowledge, the result is our own.
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THEOREM 4.9. If H C  M(S) is R-weak * countably 
compact then H is ̂  -equicontinuous.

Proof. Let H be a R-weak * countably compact subset 
of M(S). ^  Lemma 3,6 H is uniformly bounded. Therefore
if H is not^  -equicontinuous there is an € > 0 such that 
for every compact set K CZ S, |yu|(s\K) > e for someyU, e
H. We will show by induction that there is a sequence

 ̂"Where ̂  e H and is a compact subset of

S; contained in int such that: (a) > 6
for all n > 1, and (b) ^ for 1 < k < n
and n > 1. To accomplish this let be an arbitrary
compact set and e H with (s\ k )̂ > e. If

• • •, (yiln̂ K̂ ) are chosen then by inner regularity there is 
a compact set such that d  int
l/Akl 5 for 1 < k < n. Since H is not ̂  -
equicontinuous there is a  ̂ ® with (s\ k^^ĵ) >
€. Ihis completes the induction.

Let S, = v̂ IC_j then S, is an open <T-compact set. ̂ n=l " ^
If A e Borel (S) with A H  = D then A O  = 0 for
all n > 1. Thus, if k > 1 then (A) < ̂  for all n >
k which implies that |yjl̂| (A) = 0 for all k > 1. There­
fore each vanishes off 8̂ . If "D e M(S) is an R-
weak * cluster point of some subsequence of
and K is a compact set such that K O  = Q then f =

-continuous, OJius J ' f d J  fd^ . But
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^ fd-Ç ̂  = 0 for all n > 1 implies that "9 (K) =
0, and so “S) is also concentrated on

Let = CyUjj}j considered as a subset of . If
{*̂ n5 is a sequence in then there is a 9 e M(S) such 
that 9 9  R-weak *. From the preceding paragraph
we have that 9  is concentrated on and so 9  may be 
considered as an element of M(S2). If f e C(Ŝ ) then let 
f be the extension of f to S such that T(s) =0 for s / Ŝ . 
Then f is (9^}-continuous and so J fd9^ = ^ fn O

^ fd9 = ^ fd\) . Hence H^ is ayS -weak * countably com­
pact subset of M(Ŝ ), Since is <T-compact we have that 

is^  -equicontinuous by theorem 3.7. Therefore there 
exists a compact set K C  such that < E
for all n > 1, But S, = L J int K implies there is an

 ̂ n3 *
integer n such that K O  K̂ . From here it follows that

(s\ k„) = l/tnl (s\ Kn) < Ifni (®i\ k) < ««
have a contradiction to the choice of the jk ^ and K̂ , This 
concludes the proof.

REMARKS. Because of the fact that there is no R- 
weak * topology there are several pathologies which can 
occur. For example, if is an R-weak * convergent
sequence then it is not a priori true that every sub­
sequence of is R-weak * convergent. However, by
a proof similar to the preceding one it can be shown that 
every R-weak * convergent sequence in M(S) is yj -
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equicontinuous. This fact allows us to prove the following 
result,

THEOREM 4,10. If ^  are elements of M(S),
then the following are euqivaient:

(a) yK *5
(b) i) { is ̂ -equicontinuous and ii)

^(U) — ^^(U) for every (yt^]-quarrable open set U;
(c) i) is ̂ -equicontinuous, ii)yKn—

^-weak *, and iii) for every e > 0 and every compact
set K C  S such that (K) = 0 for all n > 1 there is
an open set V ID K such that {yk̂ j (V) < e for all n > 1,

Proof, (a) implies (b). Ifyn R-weak * then
(yŷjj) is ^ -equicontinuous by the remarks preceding this 
theorem. If U is an open {ykĵ )-quarrable set and f the 
characteristic function of U then f is CylAĵ }-continuous. 
Hence

(b) implies (c). By Lemma 4,4 we have (ii), To see 
(iii) let e > 0 and K be such a compact set. By Lemma 4,1
we may suppose that K is a compact Gjset, Since (yn̂ ) is
^  -equicontinuous there is a compact set D C S  such that 
jy(n|(®\®) £ ■§ all n. Applying Lemma 4,3 to the set 

D V K with A = {yw : n > 1} we obtain an open set
W O  D U K such that W" is compact, |y(̂| (s\w") < e/2 
for all n > 1, and lyk|(W"\ ¥) = lyl\Jl(W"\ W) = 0 for n >1,

The equlvaj-ence of (a) and (c) for 8 conmact is 
due to Dieudonne [13,p.29] ; the equivalence of fa) and (b) 
is our own and strengthens a result of Dieudonne [13,p.279],
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From Lemma 4.1 we have that 8̂  = W"\k is a regularly 
CT -compact subset of W“. Let "0 ̂  and iP be the elements 
of M(Ŝ ) which are the restrictions of yK ̂  and yt , 
respectively to 8 .̂ If U is an open subset of 8  ̂which is

then U O  W is open in 8. If C = the 
closure of U in 8̂  and U” is the closure of U in 8 then 
U \ u  = (C\U) {J (K A  U"); in fact this follows quite 
readily since U” C  ^  = 8 _̂ U K. Thus \u) =
|/*nl(°\u) + ° 1® ("Oj-
quarrable in 8̂ . Also since K C  W, 8^̂ = (W"\ W) ^ (w\k)
and n  W) < |yjl̂ )((U A  W)’) < A  W’) =
\/Anl((u‘\u) n W) + |y«J(u A (w-\W)) + A  w)
= (U A  W), Hence U A  W is an open -quarrable
subset of 8. Also, if A = /^n for some n > 1 then
|Al(u) = (A|(u A  w) + (Al(u A  (W\w) = lA|(u A  w)

and so A (U) = A(^ A  W). Therefore = yM.ĵ (U) =
yUn(U A  W) — >y((U A W) = /A (u) = 'i?(U), so that

^ Tk7(U) for every open { -quarrable subset of 
8 .̂ From Lemma 4,4 we have that i? ̂  ^ 'O -weak *) in
M(8 )̂, 8ince 8  ̂is (T -compact our m^n theorem (3.7) 
implies that is ^  -equicontinuous in M(8̂ ). There isj
then, a compact set C Ç  8̂  ̂such that (8^  C) < e/2
for all n. Let V = 8\C; then V is open and K C  V, Also
V = Sj\o 0  s\w u K and thus |̂ J(V) = (iln| (S^C) +

+ l/nl (̂ ) ̂  + s/a + 0 = e.
(c) implies (a). Assume ||yi ̂ || < 1 and let f be a

(yt -continuous function such that ||f||̂ <1, If e > 0
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then, since is ^-equicontinuous, there is a compact
set C  S such that \Jk -JU (s\k^) < e/8 for all n > 1,
From.Chapter I we know that K = [s : osc(f, s) > e/8}^K^ is 
compact; but K is a subset of the discontinuities of f
end so jyWjjl ® for all n > 1. By (iii) we may find
an open set V ̂  K such that (V) < e/l6 for all n > 1.
Let 0 e Ĉ (S) such that spt(0) ^  V and \\0l\̂ < 1. Ihen

by (ii) and | ~

< e/l6 for all n > 1. Ihus | | < e/l6 and so,
by Corollary 1.13, jjlA|(V) < s/16. Therefore <
IjUl (V) +/^n| (̂ ) < e/8.

For every point s e K^V, osc(f,s) < e/8, Since 
V is compact there are points ŝ , •••,ŝ  e K ^ V  and 

open sets that e \f(s) - f (ŝ )̂ I < yO ' •
Ut_. By Theorem 1,6 there k=l ^

exist functions  ̂ such that 0 < 0^ < 1,
]§!0i_(s) < 1 for all s e S with S0i.(s) = 1 for s e K^\v,k=l ^ k=l ^
and 0̂ (s) = 0 for s / 1 < k < m. Let g(s) =

^  f (ŝ )0;_(s); then g is in C(S). If s e K , \ v  then
k=l ^ ,
|g(s) - f(:s)j = (sĵ) - f ( s)}^ and this is a

convex combination of complex numbers in the disk of radius
e/8, Hence |g(s) - f(s)j < e/8 for s e K^V, If s e S
then j g ( s )  - f(s)j < 2.

By (ii) J Sclŷ n-— and so there is an integer 
N such that j - Jg<^ | < e/4 for n > N. Therefore
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ifn>N, +

lîn  ̂|Îs\k/̂'®̂"7 7"4 ̂
T + i # 7  - /  nil + (V) + 2l/l-y/J(s\K^)
< 4 . = €, therefore jH ̂  R-weak * completing the
proof.

The following is a well known result (see [l4,p,308])
which we present here for the sake of completeness,

LEMMA 4.11. Let be elements of M(S). Then
weakly if and only if {^j 3̂ is uniformly bounded 

and JX ̂ (A) — ^yt(A) for every Borel set A.
Proof. Clearly the conditions are necessary; to prove 

sufficiency we can assume ||y4̂ || < 1 for all n > 1, ylA =
0, and 0 for all A e Borel (S). Let *D =

l/^nh 9 e M(S) and |y*̂ |is absolutely
continuous with respect to for n = 1,2,•••. ^  the Radon
Nikodym theorem there is, for each n > 1, a function f^ e 
L̂ (l? ) such that yA^(A) = J f̂ d"\? for all A e Borel (S).

Now L̂ (*? ) can be isometrically and isomorphically identi-. 
fied with a closed sub space of M(S), and soyM ^  0 weakly 
if and only if f̂ —̂ ^ 0 weakly in L (̂*5 ).

Now I is in L^(*9)* if and only if there is a bounded 
Borel function g on S such that 1(f) = J fgdi) for all 
f e L^(^ ). It is Sufficient to suppose that g is real
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valued. Thus, if e > 0 let ^  be real numbers such
that â  = - ; g|L, = ||g||„, and 0 < â ^̂  ̂- < | for
1 < k < m-1. Let = (s : â  < g(s) < â ] and Â, =
Cs : a^ < g(s) < for 2 < k < m-1. Put h(s) =
m-1 m-1
^^a^^A^(s), Clearly S = I and so if s e S there is

a unique k, 1 < k < m-1, such that s e Â . Therefore
|g(s) - h(s)| = |g(s) - â \ < e/2 and so ||g - h|^ < e/2.
But Aŷ € Borel (S) for 1 < k < m-1 and so by hypothesis
^ hf̂ d'p = J* bd^^— ^ 0. Choose an integer N such that for 
n > N I ̂ hf^d^ I < e/2; therefore if n > N <

^ l|s-b||„|l̂ ll + e/2 < e.
THEOREM 4.12. If yK are in M(S) then the

following are equivalent:
(a) ^  rT^/^ weakly in M(S);
(b) Cykĵ ) is uniformly bounded and y^^(U) 9JU (\J)

for every open set U;
(c) J fd^ JfdyiA for every bounded l.s.c.

function f;
(d) (i) Ĉ jj) is y) -equicontinuous, (ii) yt

^  -weak *, and (iii) for every e > 0 and every compact set 
K O  S there is an open set V ̂  K such that ~
€ for all n > 1.

It is known that (b) imnlies (c). Dieudonn^ 
[13,p.32] showed that (c) and (d) are equivalent for S 
contact, and that (a) and (b) are equivalent if S is a 
compact metric space [13,p.35]. Later Grothendieck 
[19,p. 150] showed that (a) and (b) are equivalent for an 
arbitrary space S.
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Proof. Clearly (a) implies (b). The pattern of the 
remainder of the proof will be:

(b) implies (c) implies (d) implies (b) implies (a).
(b) in^lies (c). If P is closed in S and U = sN^P 

then yH^(F) = /^(8) - / ( ^ ( U ) - yw (U) = _/(P).
If P is any closed set and U is any open set then

U  U) = +/^(U)-^yK(p\TJ) + /(Ü) =
JiiF V U), Similarly F O  U = (P U u\^(P\u) U(u\P)]
implies that ^^(P A  U) yW(P A  U).

Let f be a real valued bounded l.s.c, function. Then 
{s : f(s) > a} is open and (s : f(s) < a} is closed for all 
real numbers a. If a < b and B = {s : a < f(s) < b} =
{s : a < f(x)) A  Cs : f(s) < b} then (B). If
e > 0 then choose real numbers â , * * * ̂ ®Sn such that â  <
- limite,' «0 < and 0 < < e/4 for 1 < k <
m-1. Put = {s : â  ̂< f (s) < for 1 < k < m-1 and

^ Therefore ^ gey. and

II g - f|j„ < €/4 (see the proof of Lemma 4.11 for a similar 
argument). Assume lyÛ i < T for all n > 1, and let N 
be an integer such that j gdyll̂  - Ĵ g(̂  | < e/2 for n > N*

I ^ |j (f-S)d(/-/„) I + Ijgyn -
j g(y| < ? 9/1 "/(nl for all n > N; that is,
J fd̂ ĵ «— ^ J fdjK . Since every l.s.c. function is of the 
form f̂  + i fg where f̂ , fg are real valued l.s.c. functions 
we have proved that (b) implies (c).
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(c) implies (d). Clearly (c) implies — ^yK(U)
for every open set since the characteristic function of an 
open set is l.s.c. In particular, this holds if U is an 
open --quarrable set. Hence yU ̂ R - w e a k  *
(Theorem 4.10) and so (i) and (ii) hold. Assume that 
II/*nil — -Â so, the proof of the general case will 
quickly follow from the case where = 0 if we make use 
of the outer regularity ofyK . Hence, let us also assume 
that JK. = 0,

To prove (iii) let K S be compact and e > 0. By
Lemma 4,1 we may assume that K is a Gf set. Combining
the yg -equicontinuity of i j K ^ )  with Lemma 4.3, we obtain
an open ( -quarrable set W C  S such that W” is compact,
j/*n| ^ 6/2 for all n >1, and K C  W. By Lemma
4.1 = W”\ K is an open (T -compact subset of W”. Let

be the restriction ofyA ̂  to 8  ̂(i.e., i) ̂  e M(Ŝ )),
and let f e C(S-ĵ) be a real valued function. If T is the
extension of f to S such that T(s) = 0 for s / then let
g(s) = lim inf T(t) for all s e S. By Theorem 1.8 g is 

t—> s
l.s.c., and since w\ K is open and T is continuous here, 
g(s) = f(s) for s e w \ k .  Also s\ W“ is open implies g(s) 
= 0 for s / W”. From (c) and the fact that (W”\ W) =
0 for n > 1 we have fdn)^ = = J Sdy» 0.

That is, ^ » 0 (̂  -weak *) in M(Sĵ ). Since 8̂  is a
<T-compact space our main theorem implies the existence 
of a compact set C C such that ji) J  (8^\ C) < e/2 for
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n > 1. Let V = s\c; then V is open, K C  V, and ^ ( v\  k)
= l/*n| ( s V )  + ly«nl(Si\c) < e.

(d) implies (b). Again, by the outer regularity of 
JH we may assume = 0; also we can suppose that ||y* <
1 for all n > 1, We will show that ^ 0 for all
closed sets P. From this it follows that if U is open
thenyWj^(U) - yM„(S) - U) -» O.

Fix the closed set F CT S and e > 0. Since is
^-equicontinuous there is a compact set K C  S such that
|yUnl(S\K) < e/2 for all n > 1. Therefore F A  K is 
compact and by (iii) there is an open set V ̂  F A  K with 
Ijnj (v\ (P A  K)) < e/4 for n > 1. Let f e 0(8) be such 
that 0 < f < 1, f(F A  K) = 1, and f(s) = 0 for s / V.
Then |/̂ (̂F)| < [^^(P A  K) 1 + |/4̂ (P A  (s\ k ))1 <

I f  ̂ P A  K^/^n( ^ I ̂  (%P r\K
jî Tdŷ n I + But f (s) = ^  ĵ (s) = 0 for s / V

and f(s) = 5[f r' = 1 for s e F A  K. Thus
li'f’ïp A  K “ 1 Sv \ p  A  K^'*/*nl ^ W L '

h  K)) < e/4 for all n > 1. Also j fd^ 0
by (ii) and so there is an integer N such that for n > N
J'fdyHnl < 6/4. Combining these facts we have that
^(P) I < € for n > N.

(b) Implies (a). Clearly we may again assume ? 0
and HyU^I < 1 for all n. Fix a Borel set A and an e > 0.
There exists a sequence {K_}* of contact subsets of Sn=l
such that A and (a \ k )̂ < - for 1 < k
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< n and n > 1. In fact exists by inner regularity.
If exist then by regularity there is a compact
set C CT A such that (a\ c) < for 1 < k < n+1.

n+1
liet V ihis easily completes the inductionk=l
and establishes the existence of the sequence .

If P = Q k ^  then P c  A and U  J (A) = [IkJ (P)
n=l ' '

for all n > 1. We have already seen that (b) implies (d);
therefore for each integer n > 1 there is an open set
Kn »hch that IMjjI (V^\ < e for k = 1,2, • • •.

Ü "
V^; then U is open and P CZ U. Also F)

k>l. Bius |Ufe|(AP) = l/<kl(Û(ü\ F)) <00 CO n=l
Z W  < e Z  = 6/2 for all k > 1. Butn=l I n=l
jlÂ (U) — 0 and so there is an integer N such that for
n > N Therefore if n > N, | ̂ ^(A)| =
l ; i„ (P ) l  < | / * „ ( F )  -  / l . „ ( U ) |  + < e andyl 0

weakly by Lemma 4.11.
Ihis completes the proof.
REMARKS. Suppose » Jk are elements of M(S)

such that (a) ijK̂ ) is ̂  -equicontinuous, (b)
clusters to jK j) -weak *, and (c) for every compact set K
and e > 0 there is an open set V 3  K such that (v\̂  K)
< e for all n > 1. Then, as in the proof above that (d) 
implies (b), we get that (U) for every open
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set U. Also, as In the proof that (b) implies (a), we 
get that clusters toyA weakly.

Using these comments we obtain the following known 
(but rephrased in our terminology) result on weak 
compactness,

THEOREM 4,13, (Grothendieck [19,p,146]) If H C  M(s) 
then H is weakly conditionally compact if and only if (a)
H is -equicontinuous, and (b) for every compact set
K C  S and e > 0 there is an open set V K such that
|yi| :(y\K) < 6 for all ̂  e H.

Proof, Suppose H is weakly compact. Then H is
R-weak * countably compact and hence jS -equicontinuous by 
Theorem 4,9, If (b) does not hold then there is an e > 0 
and a compact set K such that for every open set V O  K 
there is a  ̂H with |y| (V\ K) > e. From this we obtain 
a sequence  ̂where (i) H, is an open

set containing K with V” compact and contained in for 
n > Ij (ii) I/I K) < ̂  for 1 < k < nj and (iii)
\yUnl (V^ K) > € for all n > 1, The existence of this 
sequence is established by induction in a manner similar 
to that used in several previous proofs. Since H is 
weakly compact the Eberlein-Smulian theorem (1,15) implies 
that has a subsequence [yt^] such that yt

weakly for some y^ e M(S), Now if then is

conqpact by (i) and K O  By the preceding theorem there
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is an open set W O  such that | (w \ k )̂ < e for all

. But by (ii) (K̂ V K) = 0 for all n > 1 and so
I ;.l n I (w\ k ) <  ̂ all Also = O v “ CT W.implies / k' n=l
there is an integer N such that V^iCW, Hence if n^ > N,

KC.V.C W. and /'A„ 1 (V„\k)< l/n contradicting (iii).k k k" ' k
Suppose that H satisfies conditions (a) and (b); 

by Theorem 1»15 we need only show that H is weakly count­
ably compact. Therefore let ( ̂  be a sequence in H. By 
(a) H is ̂  -weak * countably compact and so there is a 
measure e M(S) such that jK ^ -weak *. But
from the remarks following Theorem 4.12 we have that 
^ ^  i. weakly, and the proof is complete,
r  rA few comments on the hypothesis of the theorems of 
this chapter may be in order. In the statements of many 
of our conditions we assume that a sequence {Ji converged 
-weak * and alsp that was yô-equicontinuous. If S

is paracompact then the-equicontinuity of is
superfluous in virtue of Iheorem 3,7. Furthennore it is 
an open question as to whether or not a ̂  -weak * convergent 
sequence is ̂  -equicontinuous (note that in M(J^) every 
yS -weak * convergent sequence is ̂  -equicontinuous even 
though Iheorem 3.7 does not hold for
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CHAPTER V
VECTOR VALUED FUNCTIONS AND MEASURES

This chapter may be viewed as an appendix, in so far 
as it is concerned with generalizations of some of the 
preceding results. In particular we show how the strict 
topology can be introduced on the space C(S,E) of bounded 
continuous vector valued functions (see [12] and [36]), 
and we will indicate that many of the properties of C(S)^ 
hold also for C(S,E]̂  . The principal endeavor of this 
chapter will be to show that the adjoint space of C(S,E)̂  
is a certain space of vector valued measures. This result 
has already been obtained by Wells [36], but we will give 
a presentation based on the theory of topological tensor 
products as originated by Grothendieck [20]. Our approach 
will be to represent C(S,E)^ as a certain topological 
tensor product, and apply a general theorem on adjoints of 
tensor products. After this we will state some results 
on extreme points similar to Theorems 2,l4 and 2,15, 
Finally, we will conclude the chapter with some results of 
ours on weakly compact operators.

If E is a locally convex topological vector space, we 
will denote by C(S,E). all those continuous functions f from 
S into E such that f(S) is a bounded subset of E; i.e., for 
every continuous semi-norm (c.s.n.) p on E,

85
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sup{p(f(s)) : s €. S} < «. A function f in C(S,E) is in 
Ç̂ (S,E) if and only if f vanishes at infinity; i.e., if 
and only if for every e > 0 and each c.s.n. p on E 
{s : p(f(s)) > e) is compact.

The uniform topology on C(S,E) is defined by the 
semi-norms | • |j where p ranges over the continuous 
semi-norms on E and, |) f || ̂  = éupfp(f(s)) ; s e S} for 
all f € C(S,E). Note that if E = $ = the complexes then 
C(S,E) = C(S) and the uniform topology on C(S,E) is the 
uniform topology on C(S). It is easy to see that C(S,E) 
is uniformly complete if and only if E is complete. Also, 
if ̂  is the completion of E then the uniform completion 
of C(S,E) is C(S,E). Hence we will always assume that E 
is complete. If p is a c.s.n. on E and 0 e 0̂ (8) then let 
Vp^ = (f e C(S,E) ; < 1). The strict topology on
C(S,'E),is the topology which has as a neighborhood subbasis 
for the origin all the sets of the form where 0 is
in Ĉ (S) and p is a c.s.n. on E. Hence a net (f̂ ) in 
0(8,E) converges to zero strictly if and only if 0f̂ — ^ 0 
uniformly for all 0 e 0̂ (8).

Ihe space C(8,E)^ has many of the properties enjoyed 
by C(S)yj . In particular 0(8,E)̂  is complete and 0̂ (8,E) 
is^ -dense in 0(8,E). The proofs of these and other 
properties can be found in Buck [12], or they may be proved 
by rephrasing the analogous proofs in Chapter II.

Before proceeding we will present the fundamentals 
from the theory of tensor products. If E and F are vector
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spaces and E\ F' their algebraic duals then let B(E',F' )
be the space of bilinear functionals on E' X F'. If
X € E and y e F we define the element x ®  y of B(E%F' )
by X ®  y(x',y') = <x,x'><y,y*> for all (x',y') e E' X F'.
The tensor product E ®  F of E and F is the linear span
of (x ®  y : X € E, y e F} in B(E',F'). Hence, if (x.,y.)n  ̂ ^
e E X  F for 1 < i < n then b = ̂  x̂  0  ŷ  means b(x',y' )

n
= <x^jX'><y^jY’> for all (x',y') e E‘ X F'.

LEMMA 5,1. If b 6 E ®  F and h ^ 0 then there exist
(x.,y^) € E X F, 1 < i < n, such that b = ̂  x. 0  y. and13- i=l  ̂ ^
{x̂ , ••*,Xĵ ) and [ŷ , « * are linearly independent in
E and F respectively. n

Proof. Suppose that b = ̂  x^ ®  y^ and that the x̂
ii—J.

are not linearly independent. Then x = a.x. for some
^ S .   ̂^

n-1
sn-1 n-1

scalars &n-l' Hence b = ^i ®  ^i (S^a^x^)0i=l
8» yi +̂"'1 ® (%) =0:̂1 ® (yi + %)-

Continuing this reduction process we arrive at a set of
x̂  which is linearly independent. Hence, assume that

n-1
{x̂ , » is linearly independent. If y^ = ̂ ^ î̂ i then

n—1
by a similar argument b == ^  (x. a.x ) 0  y. and1=1 1 1 n 1

* * *ŷ n-l ^-l*n^ linearly independent 
since (x̂ , * * *̂ i s .  Continuing in this manner we arrive
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at a set of which is linearly independent. This .
concludes the proof.

Now let E and F be locally convene Hausdorff spaces.
If b e E F is such that b(x*,y*) = 0 for all x* e E*,
y* e F* then b = 0. In fact, if b / 0 then let b = 
n
^  X. (g) y. where the x. and y. form linearly independent
i=l  ̂  ̂  ̂ ^
sets in E and F respectively. By the Hahn-Banach theorem
there exists x^*,' *  ̂E* such that for each j
<x^,Xj*> = 0 for i / j and 1 for i = j. Hence if 1 < j <
n then 0 = b(xj*,y*) = <y^,y*> for y* e F*. 3hus ŷ  = 0
for 1 < j < n and so b = 0, Thus we need only consider
E ®  F as a subspace of the space of bilinear forms on
E* ®  F*. Also note that if b e E 0  F and both E* and
F* have their weak * topologies then b : E* 0  F*— is
separately continuous.

The biprojective or biequicontinuous topology Y  on
E 0  F is defined by the semi-norms p(b) = sup (\b(x*,y*)\ :
X* € P, y* e Q) where P and Q are arbitrary weak * closed
equicontinuous subsets of E* and F* respectively. We will
let (E 0  F)y denote E 0  F with the Y -topology and
E w  F be the completion of (E 0  F)^ ,

THEOREM 5.2, (Grothendieck [20,p,124]) A linear
functional L on E ^  F is Y -continuous if and only if
there exist wçak * closed equicontinuous sets P and Q
contained in E* and F* respectively, and a measure ytt e
M(P X Q) such that L(b) = ^  b(x*,y*)d (x*,y*) for

PXQ /
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all b e E 0  F.
Proof. If L is given by such a measure then |L(b)̂

< supC |b(x*,y*)\ :: X *  € P, y* e Q) and so L is
X -continuous,

Let L e (E 0  F)^ 3 then there are sets P and Q of 
the prescribed type and a constant a > 0 such that L̂(b)|
< a supCjb(x*,y*)I ; x* e P, y* e Q) = a p(b). Let x e E 
and y e F and consider the function f : P X Q— ^ $ defined 
by f(x*,y*) = X 0  y(x*,y*) = <x,x*><y,y*> for all (x*,y*) 
e P X Q. Clearly f is separately continuous if both P 
and Q have their relative weak * topologies. Moreover
f € C(P X Q)j in fact, if (Xĵ *,ŷ *) — ^ (x*,y*) in P X Q 
then |f(x*,y*) - f(x̂ *̂ yĵ *)| < |f (x* - x̂ *, y*) | +
|f(x̂ *, y^* - y*)| < X* - x̂ *>| (<y,y*>| + 
sup{l<x,x *>| : X *  € P) I <y, ŷ * - y*>| . Hence, if ĉ  =
I <yj,y*>i and Cg = sup{ |<x,x*>| : x* e P) then there is 
an î  such that for i > î  (<x, x^* - x*>j < e/gĉ  and 
{<y, y^* - y*> I < €/2Cg, Therefore if i > î  then 
|f(x̂ *,ŷ *) - f(x*,y*) I < e and so f is in C(P K Q). 
Clearly we have that each b e E ®  F defines an element of 
C(P X Q) in the same manner. Thus we can define a linear 
map T : E ^  F — >C(P X Q) by T(b)(x*,y*) = b(x*,y*) for 
all (x*,y*) e P X Q. If T(b) = 0 then |L(b)| < a p(b) = 
0; so if we set L’(T(b)) =; L(b), L' is a well defined 
bounded linear functional on a sub space of C(|* X Q). If 
we extend L' to all of C(P X Q) and apply the Riesz 
representation theorem, we obtain a measure yx e M(P X Q)
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such that L(b) = L'(T(b)) = bdM, . This completes thepx Q /
proof.

We will now prove the following known analogue of 
the Stone-Weierstrass theorem.

THEOREM 5.3. Let A be a uniformly closed sub space of 
Cq(S,E) such that 0A CL A for all 0 in Ĉ (S). Then A = 
Ĉ (8:E) if and only if for every; s e S A(s) = (f (s) : 
f € A} = E.

Proof. Clearly if A = 0̂ (8,E) then the condition 
holds. Hence suppose that A(s) = E for all s e 8 and let 
f € Cq(8,E). If p is a c.s.n. on E then there is a com­
pact set K O  S such that p(f(s)) < j for s X K. If ŝ  e 
JC then, by hypothesis, there is a function g e A (g depends 
on Sq) such that s(ŝ ) = f(ŝ )̂  By the continuity of f and 
g there is an open neighborhood U of ŝ  such that 
p(f(t) - g(t)) < Y for all t € U. From this and the com­
pactness of K we obtain a finite open cover {Û , 
of K and functions  ̂A such that p(f(s) - g (s))
< J for s € and 1 < i < n. By Theorem 1.6 we obtain
functions 0̂ , * e C (8) such that 0 < 0. < 1, 0̂  (s) =n ^ n  ̂ ^0 for s X Ug, S ̂  and ̂ 0^(s) = 1 for s e K.

n
Let g(s) = ̂ %0ĵ (s)gĵ (s); by hypothesis 0^g^ e A for 1 < i

< n and so g e A,
If s € K thenjg(s) - f(s)| =j]^0^(s)[g^(s) - f(s)]j.

But if s € 1̂ P(Si(s) - f(s)) < ̂  , and if s X then
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0 (s) = 0. Hius the above sum is a convex combination of 
elements of {x : p(x) < which is a convex set. This
implies that p(gĵ (s) - f(s)) < ̂  < 1. If s / K then g(s) - 
f(s) = ^ 0i(s)[gi(s) - f(s)] + ( ^ 0i(s))f(s) - f(s).

But p(-f (s)) < ? and a = ̂ 0 .  (s) < 1 implies p(a f (s)) <
i=l

J. If a = 0 then 0^(s) = 0 for 1 < i < n and so p(g(s) - 

f(s)) ^ p(-f(s)) < Y < 1. If a > 0 then ̂ 0j^(s)[g^(s)-f(s)]

= a Z  I 0i(s) [gi(s) - f(s)]. But ̂  i 0^(s) = 1 and

a < 1 implies that this last expression is in (x e E :
p(x) < . Therefore p(f(s) - g(s)) <3 » j < 1 for all
s € S, Since p was an arbitrary c.s.n,, we have that A
is uniformly dense in 0̂ (3,E) as well as closed. Œhus A =
Cq (S,E) and the proof is complete.

COROLLARY 5.4. The set of all functions g in 0 (S,E)n °
of the form g(s) = ^0^(s)Xj^, where 0^ € 0̂ (8) and x^ e E

for 1 < i < n, is uniformly dense in 0^(3,E).
We define a map T ! C(S) (g) E — >C(3,E) by n n

T(ZZ ^  Xj)(s) = 2% f, (s)x. for s € 3. To see that T i=l  ̂  ̂ i=l  ̂ ^n
is well defined let 0  x^ = O3 if s e 3 and x* e E*

n n
then 0 -0 = (s)<x.,x*> = <]^f. (s)x,,x*>. Since x*

l51  ̂  ̂ i=l  ̂ ^
n

was arbitrary we have that = 0 for all s e 3

and so T is well defined. We will actually show that T
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induces a hoineomorphism between C(S)̂  ^  E and C(S,E)̂  .
LEMMA 5.5. If Q C. E* is equicontinuous and p is 

the gauge of C. E then p(x) = sup{|<x,x*>\ : x* e Q) 
for each x in E.

Proof. By definition p(x) = i n f : a > 0 and ax e U 
= Iherefore let a > 0 with ax e U. If x* e Q then
|<ax,x*>| < 1 and so f<x,x* >| < ̂ . Hence q(x) =
sup{|<x,x*>| : X* e Q) < i and since a was arbitrary we 
have that q(x) < p(x). If x e E such that q(x) < 1 then
X e U = ; thus p(x) < 1 and we have, by a property of
semi-norms, the inverse inequality.

THEOREM 5.6. The map T : (C(S)̂  ®  E)yr— > C(S,E)^ 
is a topological, isomorphism onto a dense sub space of 
C(S,E)̂  . Consequently C(S,E|̂  is topologically 
isomorphic to C(S)̂  ^  E.

Proof. Let b = ®   ̂C(S)̂  0  E and suppose
that T(b) = 0. If b 0 we may suppose that the x^ are 
all linearly independent. But then *̂fj_(s)x̂  = 0 for all 
s € S implies f̂ (s) = . = f̂ (s) = 0 for all s e S.
Iherefore b = 0 and T is one-one. Let 0 e Ĉ (S), 0 > 0,
and let Q be a weak * closed equicontinuous set in E* with
p = the gauge of Q°, If x* e Q is fixed then the map
skr— f ĵ(s V <Xĵ ,x*> is in 0(8) and so 
supC I J( %f^<Xj^,x*>)(y\| : yk € V0°) =
sup{ j Jfi(s)0(s) <x^,x*> j : s € N(0)} by Corollary l.l8 
and Theorem 2.15, ^0x 2̂  ̂ i ®  5
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sup{ I % (  jf ) <x^,x*>| : yue x* € Q) =

sup(|0(s)|j ̂ f^(s) <x^,x*> I : X *  e Q, s e  N(0)} =

sup p(0(s\̂ fĵ (s)Xĵ ) : s e S} by Lemma 5.5; i.e.,
P0 jCQ(2 T̂ ‘i ®  \) = II 0* lip' It now quickly
follows that T is a homeomorphism.

Finally, by Corollary 5.4 the image of T contains 
a uniformly dense subspace of C^(8,E). But Ĉ (S,E) is 
^-dense in C(S,E) and so the image of T is ̂  -dense in 
C(S,E). Since T is a linear homeomorphism it extends to 
the completion of(C(S)^<8? E) ; i.e., T can be extended 
to a topological isomorphism of C(S)̂  ^  E onto C(S,E^ . 
This completes the proof.

In a similar manner one can prove the following 
theorem.

THEOREM 5.7. (Grothendieck [20,p.90]) The map T : 
(Cq(S) 0  E)y— " > 0̂ (8,E) is a topological isomorphism 
onto a dense subpsace of 0̂ (8,E), Consequently, Ĉ (8,E) 
with the uniform topology is topologically isomorphic to 
C ^ { S )% '  E .

REMARK. If E is a Banach space then the mapping T 
in Theorem 5.7 becomes an i some try if (Ĉ (8) ®  E)y is 
given the norm Mb# «= sup(|b(yu.,x*)\ : yiA. e ball M(S),
X* e ball E*).

COROLLARY 5.8. If 8 and R are locally compact 
Hausdorff spaces then Cq(S,Cq(R)) = 0̂ (8) ê  Ĉ (R) =
Cq(8 K  R ) .
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Proof. By the preceding theorem and the remark : 
following it we have the first equality. If we define a 
map Tg : 0̂ (8) X 0̂ (8) — » C^(S X  P) by 
Tg( ?  f ®  8 ĵ )(s,r) = f̂ĵ (s)gĵ (r) then it is easy to 
show (using the Stone-Weierstrass theorem) that Tg is an 
isometry onto a dense subspace of Ĉ (S X R), Hence we 
can get an isometry of Ĉ (S} Cq(R) onto Ĉ (S X R).
This completes the proof.

Following Gil de Lamadrid [15], we let N(S,E*) be 
the space of measures yu. defined on the Borel sets in S, 
having values in E*, and such that: (a) for each x e E,
y4̂ (A) = <x, ̂ (A)> for all A e Borel (S) defines a measure 

e M(S); (b) there is a c.s.n. p on E and a constant 
c > 0 such that for every Borel partition (Â ,•••,Â } of 
S and each finite sequence •••,â ) of unimodular .
scalars, sup{|<x, 2Ta^^(A^)>| : p(x) < 1} < c. We let 
11 ̂  Up equal the smallest of all such constants c and call 
it the p semi-variation of yt . If A e Borel (S) and yK e 
N(S,E*) then let |/̂ lp(A) = sup[ : P(Xĵ )
< 1 and is a finite Borel partition of A). Then 
[yŷlp is a countably additive measure on Borel (S). We 
call 1/̂ Ip /the p-variation of yW , and let M(S,E*) be
the collection of all thoseyt € N(S,E*) such that ||̂ \p(S)
< « for some c.s.n. p on E. If yWL e M(S,E*) and < 
» then l^lp E M(S),

If f € C(S,E) and yiA c M(S,E*) then we define 
d^f to be the limit (which exists) of sums!
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n, n>  <f where {Â )̂ is a Borel partition of
;S, e and the limit is with respect to successive 
refinements of the partitions. If p is a c.s.n, on E 
such that |/A|p(S) < « then | Jd^tf | < ||f || ̂  |ĵ (p(8). 

THEORME 5.9. A linear functional L on C(S,E) is 
-continuous if and only if there is a unique measure^ 

in M(S,E*) such that L(f) = f for all f e C(S,E).
Proof. Let yd e M(S,E*) and let p be a c.s.n. on E 

such that l^lp(S) < ». Ihen |y*|p e M(S) implies, by 
Lemma 2.8, that there is a 0 e 0̂ (3), 0>O, such that 
j/llp vanishes off N(0) and ̂  l̂ lp  ̂M(S). Therefore, if
= = J'i'S l/l\p < ” then |L(f)| = Ij'yf (. I jd(^n)(0f)|
< c ||0f J p, and so L 6 C(S,E)^ *.

Conversely, if L e C(S,E)̂  * and T : (0(3)̂  E)y 
— >̂ C(3,E)̂  is the map described in Theorem 5.6 then LOT 
is a y -continuous linear functional on 0(3)̂  E. By 
theorem 5.2 there is a ̂  -weak * closed -equicontinuous 
subset of M(3), which we may suppose to be 7^° for some 
0 € 0̂ (3), 0 > 0, a weak * closed equicontinuous set Q d  
E*, and a measure Ae M(V0° x Q) such that L( 2!^i^i) =
L o T( 51 ®  ^ x^)dX . We may assume
II X  )| < 1 and V0° ̂  ball M(3). Let p = the gauge of Q°. 
Now for each A c Borel (3) and x € E let <x,^(A)> =
J \>(A) <x,x*>d A (V,x*). Obviously ̂ (A) is a linear 
functional on E. Furthermore JX{A) e E*, for if {x̂ } is a 
net in E such that x^— ♦ 0 in E, then x^——>0 uniformly on
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Q since Q is equicontinuous. Hence, if e > 0 there is an
î  such that for i > î  |<x̂ ,x*>| < e for all x* e Q.
Thus for i > î  |<x̂  ̂̂  (A)> | = |JO(A)<x^,x*>dA (i? ,%*)|
< J\'̂ \(A) |<x^,x*>|d 1 X\(“9 ,x*) < e, so that |<x^,^ (A) >j
-^0, If (A.)* is a Borel partition of S and x. e 1 i=l ^
for 1 < i < n then <x̂ , ̂ {A^) > | =

I %  <Xj.̂ x*>dA (T?,x*) I <

5 Wl(Ai)p(Xi)d |X\(^ ,x*) < g  I l*?l(Aĵ)d IXl (-0 ,x*)

= (|Vll llAll < |\X|\ < 1, so yA is of bounded p-variation.
We must still show that e M(S) for all x e E. To see
this let X e E be fixed, f a real valued element of C(S), 
6 > 0. Let be real numbers with â  =

= |kll 00̂  and 0 < < e/2 for 1 < k < m-1.
Put A^ = {s : â  < f(s) < ag) and A^ = (s : â  < f(s) <
®k+l̂  for 2 < k < m-1; and let g = STa^ A« . Ihen

{Â )̂  is a Borel partition of S and H g - f < e/2.

If Sk e Aĵ then | ̂ ( j fdi> )<x,x*>dX (i) ,x*) -

I ] <x,x*>dX (\) ,x*) j +

|J( )<x,x*>dX (S?,x*) - <

f P(x) +jJ(é[ajt " (Â )̂)<x,x*> dX >̂ *)\ =

|p(x) - ^ ( V / x ( 4 ) U #  p N + i # (  l/xB
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But if b. is a unimodular scalar such that 
^ m-1

jm̂ l I
|̂ L_ <b̂ x̂  ̂ {\)> \ < p(x). Therefore 

I )<x,x*>dX()) ,x*) -^f(s^)^(A^)| < 6 p(x)

and so Jf(^^ exists and is equal to

Ĵ fd*5* )<x,x*>dA (\? ,x*). But if {f̂ } is a net in 0(8)

such that f » 0 (^ ) then f ^  x —^ 0 in (C(S)^ ®  E)̂ , 
and so L^(f) = L(f*x) defines an element e 0(8)^ * = 
M(8), But L̂ (f) = L(f»x) = j'fdyk̂  and so e M(S). 
Therefore M(8,E*). Also if f̂  ̂e 0(8), x̂  e E for
1 < i < n, then L(^f^x^) = ZL(fĵ Xĵ ) = "̂̂ î /̂̂ x. =

J â^(^f^x^). But T(0(8) 0  E) is dense in 0(8,E)^ 
and both L and are ^ -continuous. Hence L(f ) =
Jdyjl f for all f e 0(8,E) and the proof is complete.

This same method of proof could have been used to 
obtain the following generalization of the Riesz repre­
sentation theorem (see [15] and [36]).

THEOREM 5.10. A linear functional L on 0̂ (8,E) is 
bounded if and only if there is a measure yK e M(8,E*) 
such that L(f) = |dyUf for all f e 0q(8,E*). Also if p 
is a c.s.n, on E such that l̂ |p(8) < « then ^[^(8) =
sup{ IJ d|if| ; J fll p < 1).

REMARKS. A different approach could have been used 
to obtain Theorem 5.9. We could have proved Theorem 5.10
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first and then used it, as we used the Riesz representation 
theorem for the proof of the scalar version, to prove 
Theorem 5.9. This approach was used by Wells [36], For 
more information as well as a proof that 0^(8,E)* =
M (8,E*) see [15].

It might be asked whether or not a space of the type 
C(S,E) is actually a space of the type C(Q), If E = C(R) 
and S and R are compact then Corollary 5,8 says that 
C(S,E) = C(Q) where Q = S X R. Theorem 5.14 gives a 
partial converse to this result. Before proceeding, we 
state two theorems on extreme points. Their proofs can 
be transcribed from the proofs of their scalar valued 
analogues. Theorems 2,l4 and 2,15, and hence will not be 
repeated.

THEOREM 5.11. If E is a Banach space then a measure 
^  in M(S,E*) is an extreme point of the unit ball of 
M(S,E*) if and only ifyi/̂ = where x* is an extreme
point of ball E* and s e S. (If e M(S) and x* € E* then 
yA = t) X* means JJi(A) = -O (A)x* for all A e Borel (S)).

THEOREM 5.12, If E is a Banach space, 0 e Ç̂ (S),
and = [f e C(S,E) ; || 0(s)f (s)|| < 1 for all s e 8}
then M(S,E*) is an extreme point of =
{ X  6 M(S,E*) : I j'dA f j < 1 for all f e V̂ } if and only
if 0(s) ^g^x*, where x* is an extreme point of ball 
E* and s e N(0),

LEMMA 5.13. If 8 is compact, E is a Banach space, 
and & the extreme points of ball E*, then the set of
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extreme points of ball M(S,E*) with the weak * topology 
is homeomorphic to S \ 0 under a natural identification. 

Proof, Let A(S) = { : s € .3} and define
h; : S X £ --> ̂  (S) & = { S’(s)̂ * : s e S, x* ê ê } by
h(syX*) = J " T h e n  h is clearly one-one and onto. 
Suppose C(ŝ ,x̂ *)) is a net in S which converges to
(s,x*) e S X & , If f e C(S,E) then f(Sĵ ) — > f(s); i,e,, 
ïf(Sĵ ) - f(s)l|-> 0, But |<f(si),x^*> - <f(s),x*>|< 
|<f(ŝ ) - f(s),x^*>|l- |<f(s),x̂ * - x*>| < Ijf(ŝ ) - f(s)||
+ |<f(s),x̂ * - x*> I and both these terms can be made 
arbitrarily small, Ihus weak * in

M(8,E*) and h is continuous.
Consider h”̂  : ^  (8)g 8 x £ , If

is a net in A(S)0 which converges weak * to S
then 1 0  X  € C(8,E) for all x e E and so <x,x̂ *̂> =
<1 ®  X, <1 ®  X, 5^gjX*> = <x,x*>. Therefore

Xj.*— ^ x *  weak * in E*. If 0 e 0(8) then |0(s^)| < |\0l| ̂  
for all i implies there is a c e C such that 0(ŝ ) ^ c.
Hence, j 0(Sĵ )<x,x̂ *> - c<x, x *> J < |<x,x̂ *>| |0(ŝ ) - cj +
|c||<x,x^* - x*>) < ||x|| |0(ŝ ) - c\ + |c||<x,%i* - X * > |  ,

If c ^ 0 and € > 0 then some î , |<x,Xĵ * - x*> | < e/2 c 
for i > î . Also, 0(s^)—^i->c implies there is an i > 
î  such that j 0(s^) - c | < e/2 )|x|) , Therefore it follows 
that 0(s^)<x,x^*> -£i^<x,x*>c. If c = 0 then 0(ŝ ) — 0 
still gives this conclusion. But 0(s^)<x,x^*>— >0(s)<x,x*> 
since 0 0  x e C($,E), and so 0(s) = c. Thus there is
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one cluster point of {0(ŝ )} in the closed disk of radius 
H0I CO namely 0(s); this implies 0(s^)— ^ 0(s).
Since 0 was arbitrary we have s^— ^ s and so h”̂  is also 
continuous.

THEOREM 5.14. If S is compact and E is a Banach
space then 0(8,E) is isometrically isomorphic to C(R) for
some compact space R if and only if there is a compact
space Q such that 0(8,E) is isometric to 0(8,0(Q)) =
0(8 X  Q); i.e., R is homeomorphic to 8 X  Q.

Proof, If: the condition holds then let R = 8 X Q and
we are done. Now suppose that T :.0(8,E)— » 0(R) is an
isometry. Let ^  = the extreme points of ball E* and let
^  (8) and A  (R) be as in the proof of Lemma 5.13. If
T* is the adjoint of T and P  = the unit circle in $ then
T* defines a homeomorphism between PA(R) and ̂  A(S).
Applying the preceding lemma we have that 8 X ê and
R x p are homeomorphic. Thus R and P are compact
implies 8 < 0  is compact and so C  is compact.

Now (£,n ) is a compact transformation group where
the action of P on ^ is defined by multiplication [28].
If we define x*/^ y* (x*,y* e ê ) to mean that x* = 

i  Be y* for some 6, then ' ' is an equivalence relation
on ^ and the equivalence classes are the orbits induced 
by r on 2 * Hence, if Q =? then Q is a compact
Hausdorff space. Let p : ̂  ^ Q be the natural map.

If r c R then T*( = f((r(r))^(^)* where f  (r)
€ 8 and x(r)* e ^ . Define H : R— ^8 x Q by H(r) =
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[(T(r), p(x(r)*)]. Since ^(S)g = A(S)>C ê  and
projections are continuous, we have that the map rw— f̂lr(r) 
of R into S is continuous. Also, r **—> p(x(r)*) is con­
tinuous and so H is continuous. If H(r̂ ) = H(rg) then 
x(r^)* = ax(rg)* for some a e Va\ = 1. Hence T* ( S p 
= = {̂«-(rg)) But

T* is one-one implies r̂  = r^ and a = 1. Ihus H is one- 
one; also, since T* is onto H is onto. But R is compact 
and so H is a homeomorphism. Therefore C(S,E) = C(R) =
C(S X Q). ïhis completes the proof.

We will end this chapter with a characterization of 
the weakly compact operators from a Banach space E into 
M(S). An operator T : E ^M(S) is weakly compact if and 
only if T (ball E) is weakly conditionaJLly compact in 
M(S) (see [l4,p.482]).

If yU e N(8,E*) and we set T(x) = for all x e E 
then T is a bounded linear transformation from E into 
M(S), and H t\1 = 11̂ H , the semi-variation of yK . If, 
conversely, T is given and T* : M(S)— ->E* is its adjoint, 
we may find a measure e N(S,E*) such that T(x) =
Ohis is accomplished by letting y((A) = T*(^^) for all 
A e Borel (S) (here e M(S)* and <? , =  *i)(A) for 
all ̂  e M(S)), Thus the space of bounded linear trans­
formations from E into M(S) is N(8,E*). The details of the 
proofs of the above statements may be found in [15] or 
[l4,p.498], 8ince M(8iE*) is a subspace of N(8,E*) we
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might ask if the measures of bounded variation can be 
characterized by the linear operators which they represent. 
The answer is yes and is given by the following result,

THEOREM 5.15. If E is a Banach space then a bounded 
linear transformation of E into M(S) is weakly compact if 
and only if it can be represented by a measure in M(S,E*).

Proof, Let T(x) = and suppose is of bounded 
variation. Hence |̂ |(A) = sup{ Z  ||yU (Â )|l : {Â } is a
finite Borel partition of A} defines an element |̂ | of
M(S). We will apply Theorem 4.13 to show that :
B X l| < 1} is weakly conditionally compact in M(S). If
€ > 0 then there is a compact set K 8 such that
< €. It is easy to see that H ̂  II
< e| xB . Thus { :  II x\\ <1} is ^  -equicontinuous. If
K is a compact subset of S and e > 0 then there is an open
set V O  K such that |j»\(V\K) < e. Thus if I x|| <1
then ljl̂ l̂(v\K) < K) < e and so T is weakly .compact.

Conversely suppose T is weakly compact. Then [14, 
p.306] there is a positive measure X  in M(S) such that 
for every € > 0 there is a 5" > 0 such that if A e Borel (S)
and ^(A) < Ç then < e for all x e ball E.
Therefore if \ (A) = 0 then X (B) = 0 for all Borel sets
B <2 A and so yU|̂ (B) = 0 for all x e ball E, This implies
that ĵ l(A) - 0; that is, \ji\ is absolutely continuous with 
respect to X  • Hence there is a constant c > 0 such that 
A (A) < c implies (A) < 1. Since Xis bounded there
are at most a countable number of points (ŝ ) such

 ̂i=l
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that A  ({s 3) > 0. Also )) < « implies there is
00 .

an integer n > 1 such that c > ^2 A({s.}) =i=n+l
A({s^ : i > n+1}). Therefore |yil/(Cŝ : i > 1}) = 

^^l^l({Si)) + |̂ l({ŝ  : i > n+1}) < 1 + Z: l̂ l({ŝ })

If : i > 1} then there is a compact set
K C  Sç such that X(Sq\k) < c; hence \fi[(Ŝ  K) < 1.
Also for all s e K  X((s})=0 and so there is an open 
neighborhood of s such that A(Ug) < c. Since K is 
compact we can find open sets ^  such that K O

and X(Uĵ ) < c. Therefore \̂ \ (K) < < m.

Combining these results we get that |̂| (8) = |)Ül\({ŝ ; 
i > 1}) + IjuKk) + |^|(8q\k) < » and so e M(S,E*),

COROLLARY 5«16. If E is a Banach space then for every 
subspace of E there is a constant a = a(8,Ej) such that 
if T̂  is a weakly compact transformation from E^ into M(8) 
then T̂  can be extended to a weakly compact operator T of 
S into M(8) such that Jt || < a |(T̂|) .

Proof, It is easy to see that if ^  e M(S,E^*) 
then < 1̂ 1 (8). Let be the space of weakly
compact linear transformations from E^ into M(S) furnished 
with the operator norm. Thus is a Banach space and if
U : M(8f E^*) — is defined for each M(8,E£) by
U(yyL)(x) = for all x e Ê , then, by the preceding 
theorem, U is a one-one linear mapping from M(S,E^*) onto
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Also H u(y( )|| = \\̂1\ < 1̂ 1 (S), and so if
M(S,E^*) has its total variation norm then M(S,Ê *) is a 
Banach space and U is norm decreasing. By the open mapping 
theorem [14,p.57] there is a constant a > 0 such that 
\fk\{S) < all U(yi)|| = a llyul| . If e then let

6 M(8,Ei*) be such that U(yt̂ ) = T̂ . But M(S,E^*) = 
Co(S,Ei)* by Theorem 5.10 and so L^(f) = | cym̂ f: for all
f e Cq (S,Eĵ) defines a bounded linear functional on 
CgfSfÊ ). But Cg(8,Ê ) is clearly a subspace of 0̂ (8,E) 
and so by the Hahn-Banach theorem there is a bounded linear 
functional L on Ĉ (8>E) which extends such that \\ L \\ =
II Lĵll . If yH € M(8,E*) such that L(f) = jd y l f  for all 
f e Cg(8,E), and T is the weakly compact operator from E 
into M(8) represented b y , then 1 Tj] = ||y[|| <
— 11 ^ 1 1  = l l ^ i ^ l  ~ f / ^ l l  ^ I  ll ♦ Also if X e Ej
and 0 e 0̂ (8) then 0 ^ x e 0̂ (8,Ê ) and ^ ^
Jdyt(0 A x) = L(0 ̂  x) = Lĵ (0 ®  x) =

0 was arbitrary we have that for all x e Ê ;

i.e., T is an extension of and the proof is complete.
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CHAPTER VI 
UNSOLVED PROBLEMS

In this chapter we have listed some unsolved problems 
and questions. The list is not exhaustive, but is 
indicative of our current interest in the strict topology.

1, A natural probelm is to try to characterize 
those spaces S such that C(S)yô is a Mackey space (or a 
strong Mackey space). This seems rather difficult and at 
present there are no approaches which seem promising to 
us,

2, It would be useful to know if C(S)̂  is a Mackey 
space implies C(S)̂  is a strong Mackey space. If the 
answer is yes then we believe that Iheorem 3.7 is the 
strongest possible result along these lines,

3, Show that if S is a pseudocompact non-compact 
space then C(S^ is not a strong Mackey space,

4, If C(S^ is a Mackey space then characterize 
those spaces E such that C(S,E)̂  is a Mackey space.

5, Corollary 4,8 interests us because of its 
similarity with a theorem on metrizable topological vector 
spaces (see [25,p,212]), Can we draw the same conclusion 
for the ̂  -convergence of a net? That is, if S is 
metrizable and (f̂ ) is a net in C(S) such that f ^  0 
uniformly on ^  -weak * convergent sequences in M(S), then

105
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1 "  (/>)'does f '"V 0
6. If ( is a yS -weak * convergent sequence in 

M(S) then is ^-equicontinuous? An affirmative
answer would simplify the hypotheses of the theorems in 
Chapter IV, If the answer is negative then characterize 
those spaces S for which the answer is yes.

7. Prove a version of the Bartle-Graves selection 
theorem ([5] and [27,p.375]) where both domain and range 
have weak or weak * topologies.

8. It is easy to see that if N is a norm closed 
sub space of (and hence weakly or ̂  -weak * closed)
and E = ** then the existence of a bounded pro­
jection of onto N‘.implies that Eyg is a Mackey space. 
Thus Theorem 3.17 and the remarks following it prove the 
existence of spaces N such that no bounded projection of

onto N exists. The following question presents itself, 
If Ea is a Mackey space then is it necessary that there 
is a bounded projection of X onto E^ = N?
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