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ABSTRACT

The strict topology f on C(S), the bounded conti-
nuous complex valued functions on the locally compact
Hausdorff space S, was first introduced by R. C. Buck.

The primary concern of this dissertation is the relation-
ship between C(S)s and its adjoint M(S), the bounded
Radon measures., In particular, when is C(S)P a Mackey
space? From oﬁr answer to this question we are able to
prove several theorems on various types of compactness
and convergence in M(S).

The first chapter contains preliminary material with
virtually no proofs, Chapter II éonta.ins the basic pro-
perties of the strict topoiogy. Some of these results
.are known and some of the o0ld theorems are presented with
new proofs, In particular, we prove Buck's result that
C(S)ﬁ * = M(S) and we calculate a basis for the g -
equicontinuous sets in M(S).

The third and fourth chapters contain the heart of

. this work. Chapter III begins with necessary and sufficient
conditions for A -equicontinuity in M(S) and a proof that
( ,(w, f ) is a strong Mackey space, Using these two results
we prove the principal theorem of this cha.ptef. This |
result is that if S is paracompact then everfr p -weak =«
, countably'compact subset of M(S) is A2 -equicontinuous;
iv

Reproduced with pérmission of.the copyright owner. Further reproduction prohibited without permission.



¢onsequently, C(Sbg is a strong Mackey space. Also we
show that if S is the space of ordinal numberé less than
the first uncountable then C(S)g is not a Mackey space,
Chapter III concludes with a characterization of the
closed subspaces of ( ]“, IA) which are Mackey spaces,
and a proof that (H“,'e ) is not a Mackey space.

After a few preliminary lemmas the fourth chaﬁter
begins with some results concerning /6 -equicontinuity.
For example, evenyfg -weak » compact subset of positive
measures 1s /g ~equicontinuous, If S is metrizable then
fs-weak * sequential, countable, and conditional com-
pactness are all equivalent to )& ~equicontinuity, Then
we show how @he concept of fs ~equicontinuity and the
main theorem of Chapter III can be combined to generalize,
improve, and give new proofs of some theorems of J.
Dieudonng'on various typéé of sequential convergence in
M(S). Finally we use all these facts to prove a weak
compacthess theorem of A, Grothendieck.

Chapter V contains generalizations of the breceding
results to vector valued measures and functions. Also
we characterize the weakly compact operators from a Banach
space E into M(S). Using this, we show that a weakly
compact operator from a subspace of E into M(S) can be

extended to a weakly compact operator of E into M(S).
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. | INTRODUCTION

The strict topology A on C(S), the bounded continuous
complex valued functions on the locally compact space S,
was first introduced by R. C. Buck [10,11,12], It has
also been studied by Glicksberg [18] and Wells [36]. This
topology has been used in the study of various problems in
spectral synthesis (Herz [22]), spaces of bounded analytic
functions (Shields and Rubel [31,32]), and multipliers of
Banach algebras (Wells [35] and Wang [34]}). In spite of
these successful applications, there has as yet been no
detailed investigation of the relationship between C(Sb&
and its adjoint space M(S). In particular, it is not
kndwn whether or not C(S)/g is a Mackey space (a question
asked by Buck [12]). It is one of the purposes of this
dissertation to begin such an investigation,

The existence and description of the Mackey topology,
the strongest topology ylelding a given adjoint space, is
a natural object for consideration, This topology can be
described for general locally convex spaces, and there are
several conditions (e.g. metric) which imply that a
topology 1s a Mackey topology. Nevertheless, for a parti-
cular locally convex space E which is not a priori a
M@ckey space, the question: of whether or not E is a Mackey
space may be extremely difficult. Moreover, the general

1
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description of the Mackey topology may.be totally
unsuitable for a concrete space. Indeed, the author knows
of no'examples in which a space with an intrinsically
defined topology is shown to be a Mackey space (unless it
has some other formelly stronger property like metric;
etc.)., However, if S is a paracompact non-compact space
then C(S%’ is a Mackey space which is not metric,
barrelled, or bornological (Theorem 3,7).
Also we give necessary and sufficient conditions for
~ a closed subspace of (fw,'@) to be a Mackey space, and
we show that (H@,f&) is not a Mackey space. In the pro-
cess we show that (,Q“,'g) has closed subspaces which are
not Mackey spaces. . .

The second purpose of this paper is to present the
proof of several compactness and sequential convergénce
criteria for M(S). There is a wealth of literature on
this matter. In fact, in addition to some results of our
own’on these subJjects, we succeed in applying our Theorem
3.7 to an investigation of the results of J. Dieudonné
[l3j. Our work here consists of generalizations to locally
compact spaces, improvements, and the elimination of many
of Dieudonné's arguments through the use of Theorem 3.7.

Every effort has been made to make the reader's Jjob
painless. In addition to the inclusion of detail, which
to some may seem tedious, we have also added an index of

symbols at the end of Chapter I, All theorems, corollaries,

Réproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and lemmas in a given chapter have been numbered con-
secutively. Also Theorem X.y means theorem number y in

chapter x,
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CHAPTER I
PRELIMINARIES

In this chapter we have endeavored to present a
variety of results and facts which we hope will facilitate
the reading of this dissertation., Some of the terms we
will use can be found in the literature with a meaning
different from ours, For this reason we advise the reader
to being with at léast a cursory reading of this section.

Topology and continuous funections.

Unless otherwise stated the topological notions used
will be that of Kelley [24]. However, there are some
notable exceptions, To avoid cumbersome phraseology we
shall adept the following terminology. If X is a topo-
logical space and A a subset of X then A is countably
compact if and only if every sequence in A has a éluster
point in X (not necessarily in A). Also A is sequentially

compact if and only if every sequence in A has a subsequence

which converges to some point of X. Finally'A is con-

ditionally compact if and only if A~ (the closure of A) is
compact;

Throughout this work S will always denote a locally
compact Hausdorff space, and int A the interior of the set
A,

THEOREM 1.1l. ([6,p.107]) The space S is paracompact
y . '
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if and only if S is the union of a pairwise disjoint
collection of open‘ and closed @~ -compact subsets of S,
In particular, the above theorem says that if S is
g -compact or a topological group then S is paracompact,
Let_ﬂ.o be the space of ordinal numbers less than the
first uncountable ordinal f), with the order topology.
THEOREM 1.2. (Tong [33]) The space L1 is not g~ -

compact and the closure of any ¢ -compact set in .flo is
compact, Every continuous function f on (L ° is eventually |
constant (i.e., there is an x e..().o such that for y > x
£(y) = £(x)). The Stone-Cech compactification of ()  is
the same as. the one point compactification.

We shall let C(S) be the space of bounded continuous

complex valued functions on S, CO(S) those which vanish at

infinity (i.e., & € CO(S) if and only if for every € > O
(s es: '¢(s)' > €} is compact), and Cc(S) the functions

in C(S) which vanish off some compact set (a possibly

different set for each function). If @ e C{S) then N(g) =
{s : #(s) # 0} and spt () = N(Z)".
The uniform topology on C(S) is the metric topology

defined by the supremum norm Hf‘L = the least upper bound
of {|f(s)] : s € 8}. It is easy to see that both C(S)
and C,(8) are complete with respect to this norm., Also
C.(S) is uniformly dense in C_(8); i.e., if f € C,(S) and
€ > 0 there is a # € C,(8) such that [|£-g]|, < e.

A set A . S is said to be regularly @ -compact if

w .
and only if A = UKn where K  is compact and K, [ <
n=1
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6

int Kn+1' It is easy to see that everyg -compact set is |
contained in a regularly o~—-compact set. Also,'every
regularly & -compagt set is open; éonversely each open
o"-compact set is a regularly ¢ -compact set, |

4In all that follows wide use will be made of Urysohn's
lemma, Moreover, we will need the following results on
'the existence of special types of continuous functions.

THEOREM 1.3, (Buck [12]) If # e C_(S) then N(#) is

a regularly (¢ -compact set, Conversély, if A is a regularly
g0 -compact set there is a function g € CO(S) with N(g) = A.
THEOREM 1.4. (Buck [12]) If F is a continuous

function on S such that Fg e co(s) for all & € co(s) then
 F is bounded (F@ denotes the pointwise product of F and @).
We shall say that a sequence in S is discrete if and
only if it is a discrete space when furnished with the
relative topology. Hence [sk}°° is discrete if and only

k=1
if for every n > 1 there is an open set U, such that [sn}

Unn {sk]w . If a sequence has no limit points then it
k=1

is easily seen to be discrete. The converse, however, is

not true as may be seen by letting S = [0,1] and sn = 1/n,

THEOREM 1.5. (Buck [12]) If {sn}°° is a discrete
n=1

.1s a sequence of complex numbers

sequence in S and {c_}~
Dn=1

converging to zero, then there is a function g e c(8)
such that #(s,) = ¢ forn > 1.
THEOREM 1.6. (Bourbaki [8,p.49]) - If K is a compact

subset of S and {Ui}n is an open cover of K then there
i=1 ’
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7

exist functions ¢i,°'-, g, in/Cc(S) such that : (a) 0K
n

g; <1 for1<igLn; (p) & ¢i(s) <1 for s € S and
i=1

n
iE;¢i(s) =1for s €X; and (c) F4(s) =01if s £ U, 1 <
=1
i< n,
Recall that a real valued function £ on S is lower

semi-continuous (l.s.c.) at s

o}
real number a < f(so) there is an open neighborhood U of 5o

€ S if and only if for every

such that £(U) > a; £ is 1l,s.c, if and only if f is 1,s.c.
at each point of S, Hence f is 1.s.c. if and only if for
every real number a {s : f(s) > a} is open; or, equiva-
lently, {s : f(s) < a} is closed. We shall say that a
complex valued function is 1l,s.c, at Sy € S if and only if
both its real and imaginary parts are, For general
information on 1l.s.c. functions we refer the reader to
‘Bourbaki [7,pp.109-116]. However, we shall present some
of the notions essential for our development.

Let £ be a real valued function on S, s € S, and

{U_.} the neighborhood system of s, Then lim inf f(t) =
8
. t=ds
sup inf{f(t) : t € U}, [7,p.100].
US
THEOREM 1.7. ([7,p.11%]) If f is a real valued

function on S then f is 1l.s.c. at s € § if and only if
£(s) = lim inf £(%). |
t=ds

THEOREM 1.8, ([7,p.11%]) If £ is a real valued

function on S and g(s) = 1lim inf £(t) for all s € S, then
t=—ds

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



g is lower semi-continuous, _

In a similar manner we define upper semi-continuity
(u.s.é.). A real valued function f on S is u.s.c, if and
only if for every real number a, {s : f(s) > a} is closed;
or, equivalently, {s : f(s) < a} is open,

Let £ be a function (cbmplex valued) on S. Then the
oscillation of f at s is defined by osc(f,s) = inf

s
sup{,f(t) - f(s), : t e U}, where {U.} is the neighbor-

hood system of s. It is not hard to show that g(s) =
osc(f,s) is an u.s.c, function. Also f is continuous at
s if and only if osc(f,s) = 0.

Measure theory.

In-general, a knowledge of Halmos [21] or Bourbaki
[8] is assumed, However, we shall present some of the
essentials here for easy reference,

The Borel sets of S, Borel (S), are usually defined
as the elements of the @ -ring generated by the compact
sets of S, However, since we will always restrict our
attention to bounded Borel measures, we will define
Borel (S) to be the @ -algebra generated by the closed

_ sets, If ,4 is a Borel measure then we define the

variation l’kl of /A by 'ﬁI(A) = sup % '/{(Ai)l, where

the supremum is taken over all finite Borel partitions

A n
{ ) i}i=l

A measure *& is regular if and only if for every A €

of A; the total variation I’g“ of ] equals \N(S).

Borel (S) and € > O there is a compact set K &€ A and an
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open set U D A such that- |N(U\ K) < €. When we say
measure we will mean a complex valued, countably additive,
regular Borel measure IS (hence /k is of bounded variation).
If m is a measure then |'M\ is a measure and }u\\ is
positive (i.e., }A\'(A) > 0 for all A € Borel (S))., The
totality of all measures is denoted by M(S) » and M(S) with
total variation norm is a Banach space,

By combining the regularity of a measure with a well
known result [14,p.97] we have

THEOREM 1.9, If/M is a measure and A € Borel (S)
then supf{ ]/&(K)l : K is a compact subset of A} < \r\(A) <
4 sup{ V\(K)l : K is a compact subset of A},

Let Sl be a subset of S such that with the relative
topology Sl is locally compact (hence S1 equa.is the inter-
section of an open and a closed subset of S), If /A € M(S)
then by the restriction of Ip\ to Sl we will mean the
measure Msl € M(Sl) defined by /(Asl(A) = /u(A) for
all A € Borel (Sl)' If /L € M(S;) then by the extension

_oi#_ to S we will mean the measure ¢ M(S) defined by
D(B) = /L(B‘/T\ S,) for all B ¢ Borel (S). Usually we will
make no distinction between /IL and its extension and merely
consider }A as an element of M(S), If A € Borel (S) and
< M(S) then to say that /u vanishes off A means that
J(B) = 0 for all B € Borel (S) such that B N A =D
equivalently, w\(S\ A) = 0.
Finally if £ is a Borel function on S such that f is

integrable with respect to /( (i.e., hf‘d}“‘ < «), then
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10

f ) will denote the measure ) € M(S) such that V(&) =
'g f%p. “for all A € Borel (S).
A

Functional Analysis,

Our terminology will be that of Kelley, Namioka,
et al [25] and Dunford and Schwartz [14]. All topological

vector spaces E will be locally convex Hausdorff spaces;

i.e., their topology is defined by a family of semi-norms
{p} such that x € E with p(x) = O for all p implies x = O
(a semi-norm is a function p from E into the non-negative
reals such that p(0) = 0, p(ax) = a p(x) for a € § and

X € E, and p(x+y) < p(x) + p(y) for all x,y € E). All sets
of the form {x : p(X) < €} where € > 0 form a subbasis for
the neighborhood system at the origin, We will denote by
E* the space of all continuous linear functionals on E; E*

is called the adjoint space of E, If x € E and x* € E*

then <x,x*> is the value of x* at x,

The weak x topology on E*, denoted by o(E*,E), is

the weakest topology on E* such that the function x*w—>
<X,X*> is continuous for every x € E, The topology
G(E*,E) is a locally convex Hausdorff topology on E* and
the defining semi-norms are the functions x*—> \<x,x*>|.
The adjoint space of E* with the weak x topology is
(aigebraically) E., Finally, if {xi*} is a net in E* then
Xy *—3 x* € E* (weak ») if and only if KX *> =D <X, X*>
for every x € E,

Similarly, we define the weak topology &(E,E*) on E,
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A net {xi} in E converges weakly to x € E if and only if -
<xi,x*> —><X,Xx*> for all x* € E¥, Also the adjoint of E
with the weak topology is E¥*,

We shall assume a familiarity with the Hahn-Banach
theorem, the open mapping theorem, and the principle of
uniform boundedness as presented in the two above cited
references, Also we assume a knowledge of !‘'polar sets,!'!
If A C E then A°, the polar of A, is {x* € E* : |<x,Xx*>|
<1 for all x € A}, If B C E* then B® = {x € E : |<x,x*)
< 1:for all x* e B},

If E is a Banach space then x* € E* if and only if x*
is linear and Wx*)| = sup {|<x,x*>| : |z} < 1} < ». Also,

—_ - this defines a norm on E* which makes E¥* into a Banach

space, If E is a topological vector space then we may

define the strong topology on E* which is analogous to

this norm topology (in fact if E is a Banach space then
the .strong topology on E* and the norm topology are the
same). The strong topology on E* is the topology of

uniform convergence on bounded subsets of E, Hence a net
{xi*] in E* converges strongly to O if and only if for
every bounded set B C E, sup{|<x,xi*>\ : X € B}=> 0,
Even though E* with the strong topology is not necessarily
complete, we do have the following theorem dﬁe to
Grothendieck. ‘

THEOREM 1.10. ([25,p.145]) The space E* is strongly

complete if and only if every linear functional on E whose

restriction to every bounded, weakly closed, convex and

» Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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circled subset of E is continuous is in E¥,

If F is a closed subspace of E and F¥+ = {x* e E*:
<X,x*> = 0 for all k € F} then F* = E*¥/P&~ | the quotient
space E* mod FL , That is s every continuous linear
functional on F is obtained by restricting an element of
E* to F, Not oniy does F* = E*/FL algebraically, but
also topologically if F* has its weak. * topology and E*/Fi
the quotient topology derived from the weak » topology on
E*, This topological correspondence does not hold in
general for the strong topology (though if does for Banach
spaces). |

The second adjoint E** of E is the adjoint of E¥* with

the strong topology. There is a canonical embedding of E
into E*¥*, where for each x € E we define x¥*¥* € E** by
X*,X*¥¥*¥> = <X,x¥*> for all x* € E¥, This embedding is in
general neither onto nor continuous when E has its initial
topology and E** its strong topology, although it is open
onto its image. If it is onto then E is called .semi-
reflexive; if it is also continuous‘E'is:ieflexive. A space
E is semi-reflexive if and only if. every bounded weakly
s closed subset . of E.is weakly compact [25,p.190].
THEOREM 1.11. ([25,p.190]). If E is semi-reflexive

and F is a closed subspace then F is semi-reflexivze; and
F*, with the strong topology, is topologically isomorphic’
to E*/FL with the quotient topology derived from the

strong topology on E¥*,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13

A set H C E* is equicontinuous if and only if for

every € > O there is a neighborhood W of O in E such that
if x € W, |Kx,x*>] < € for all x* € H, Hence H is equi-
continuous if and only if H° € E is a neighborhood of
zero, Every equicontinuous set has weak x compact closure,
but the converse is false in general,

We define another topology on E called the Mackey
topology; this is the topology of uniforﬁ convergence on
weak.* compact convex circled subsets of E¥, 3ince the
initial topology on E is the topology of uniform convergence
on equicontinuous subsets of E¥, the Mackey topology is
stronger, In fact, the Mackey topology is the strongest
topology on E which has E* as its adjoint [25,p.173]. We
will say that E is a Mackey space if and only if its topo-

logy is the Mackey topology; hence, i1f and only if every
weak * compact convex circled subset of E* is equi-

continuous., Also, we will call E a strong Mackey space if

and only if every weak * compact (not necessarily convex
and circled) subset of E* is equicontinuous.

THEOREM 1.12. (Riesz Representation Theorem [21])

L is a bounded linear functional on C_(8) if and only if
there exists a unique measure /L'e M(S) such that L(g) =
‘gQM}L for all & € CO(S). Also, if I, and /k correspopd in
this way then JLI|| = fin|l = sup{ Ifﬁd,».l : 8 e c.(s), [,
< 1l. |
COROLLARY 1.13, If U is open in S and M€ M(S) then
Lpl (V) = supf |j¢o,q : # e C,(5), 4|, = 1, and spt(P)
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C ul.

We will use the following theorems on the weak * and
weak topologies for Banach spa.ces..

THEOREM 1,14, ([14,p.429]) If E is a Banach space

then a subspace of E* is weak * closed if and only if its
intersection with the unit ball is weak x closed,
THEOREM 1.15. ([14,p.430]) Let A be a subset of

the Banach space E, Then the following are equivalent:
(a) A is weakly sequentially compact;
(b) A is weakly countably compact;
(c) A is weakly conditionally compact.
Note: iheorem 1.15 is called the Eberlein-Smulian

theorem,

THEOREM 1.16. ([14,p.43%4]) The closed convex hull

of a weakly compact subset of a Banach space is weakly
compact., ‘

We will conclude this chepter with a theorem on
extreme po:l_nt‘s. If K is a convex subset of E then x € X

is an extreme point of K if and only if a,b € K such that

X = %(a.+b) implies X = a = by or, equivalently, if and
n

only if x = Zaixi, where x; €K, a; >0 for 1 i <n,
i=1 - =

n
and E.Lai = 1, implies X = X = ++» = X, If K;, K, are

convex subsets of El’ E2 then a function WU : K&-—> K2

. n
is called affine if and only if WU( 2 a;%;) = S_a, W(x;)
. - i:l 1-“'—1

whenever xi € K, ay 2 0, and i ay = 1.
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THEOREM 1,17, Let El’ E2 b2 locally convex Hausdorff

topological vector spaces, Ki a compact convex subsget of
Ei for 1 = 1,2, and U Kl-_ayKe e continuous affine map

of Kl onto K,. If X, is an extreme point of X, then there

2
'1s an extreme point x; of K, such that 1L(xl) = Xp.

COROLLARY 1.18. If x € E and B & E* is a weak *

compact convex end circled set, then there is an extreme‘
point x* of B such that <x,x*> = sup{K x,y*>| : y* € B},

Pioof. Consider A = {<X,y*> : y* € B}, Then x is
weak * continuous and affine from B onto A, But A is a
compact convex.and circled subset of the plane, and hence
must be a closed disk abdut zero, If r = the radius of A
then r € A, Furthermore, r is an extreme point of A, The
conclusion 1s now apparent from the thneorem,

COROLLARY 1,19, If E is a Banach space and x € E

then there is an extreme point x* of ball E* such that
lxll = <x,x*>.
~ Proof, If B = ball E* then this is an immediate

consequence of the preceding corollary,
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12,

13.

14,
15,
16,
7.
18,

19,

| IM 5 = element of M(S;) such that /&(A)

INDEX OF SYMBOLS

xi--)x : the.net [xi} converges to x,
xi-f.:.l.'.)'x : the net {x;} clusters to x,
c.s.n, ¢ continuous semi-nqrm.

AT = closure of A,

- int A = interior of A,

C(S) = bounded continuous complex valued functions. |
C,(S) = elements of C(S) which vanish at «,
C,(8) = elements of C(S) which vanish off some compact

set,

| N(#) = {s : #(s) # O}.

spt(g) = N(g)”

osc(f,s) = %nf sup{|£(t)-£(s)| : t e U}
s

i

M 8, (A) for

all A € Borel (8,).

]

f/k = measure ¥ ¢ M(S) such that Y (a) 'S‘A. oM,
<X,X*> = value of x* at x, ’

T (E*,E) = weak x topology on E*,

0 (E,E*) = weak topology on E,

A% = polar of A,

F = (x* e E* <X,x*> = 0 for all x € F}.

§ = complex numbers,

16
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CHAPTER II
GENERAL PROPERTIES OF THE STRICT TOPOLOGY

In this chapter we have brought togéther the basic
topological properties of the strict topology. Many of
the results given here are not new and can be found in the
literature referred to in the bibliography. We present
these known results (some of which here have new proofs)
not only for the sake of completeness, but also td give
evidence that the strict topology has many desirable pro- |
perties and, in many ways, is more manageable than the
norm topology when S is not compact.

The strict topology B on C(S) is that locally convex
-Ha.uédorff' topology defined by semi-norms { uoﬂgzﬁeco(s)],
where [|ff| 4 = |[|#f]], for a1l £ in C(S). Notice that if S
is compact then the strict and norm topologies are one and
the same, Also, it 1is easy to see that we need orilj con-'
sider those semi-norms defined by the functions @ ¢ Co,(S)
such that g > O, Hence, the collection of sets V¢?_

(f e €(8): |I£7], < 1} form a subbase for the neighborhood
system at zero, But more than this is true: the sets V¢
actually form a neighborhood basis at the origin., In
fact, if 9’1""’-% € CO(S) are all non-negative and ﬁ(s) =
mex{@; (s):1 < 1 < n}, then g € C_(S) and "‘”f", <1
implies fg,ff., <1 for 1 < i< n. That is, Vy&

| -1 4
17
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If {fi'] is a net in C(S) then {fi} converges strictly
to O‘ if and only if [¢fi] converges to zero uniformly for
all g € C_(s).

We will also have need of the compact 6pen topology

(denoted by c-op) on C(S). The c-op topology is defined
by the family of semi-norms ["-\l; : g € C (8)]. Clea.z:ly
the P topology is stronger than the c-op topology since it
‘has a larger class of defining semi-norms, As in the
case of the ﬂ -topology, it quickly follows that a basis
for the c-op neighborhoods at the origin is given by the
setS-Vg where & € Cc(S) and § > O, By a.routine applica-
tion of Urysohn's lemma we see that all sets of the form
(£ e c(s) : |f(s)" < € for all s € K}, where KC S is
compac‘g'a;nd € > 0, also form a c-op neighborhood basis at
the origin, Hence, a net {fi} in C(S) converges to zero
in the c-op topology if and only if it converges to zero
uniformly on all compact sets in S, It might be asked if
a similar interpretation of the strict topology may be
given; i.,e,, is the strict topology a topology of uniform
convergence on a certain class of subsets of S? The
following theorem gives an answer which is as close as
possible to an affirmative one, Here, as in what follows,
.C(S%_ denotes C(S) with the f -topology. _
THEOREM 2.1, (Herz[22]) An equiva.lént system of

neighborhoods for the origin in C(S)P is given as follows:

for each sequence (K, en}

s, Where KnC: S is compact
n=1
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with KnC int Kn+l and the € form an increasing sequence
of positive numbers agpproaching infinity, we define the

neighborhood U = {f : sup \f(s)\ L€, forn=1,2,¢0.},
s€K
n

Proof, Let ¥ be the topology defined by the
neighborhood basis {U} given above., Let & € CO(S) be such
that § > O, By considering @/ W@l we may suppose 0 < &
<1, If weput K = (s : @(s) ->-n_-J;'I} for n > 1, then K,
1s compact and K, C int Ko41+ Let U be the @& -

neighborhood of zero determined by the segquence [I%,n}“f .
n=1

1
If £ ¢ Uand s € K\K, ;. n> 2 then zir < #(s) < & and
thus |f(s) ¢(s)l < % = 1. If s €K, then If(s)¢(s)l <
lf(s)I < 1. Therefore f € Vy and we have lg L ¥ .

Now fix [Kn, en}m . For the sake of convenient

n=1
notation we will suppose that €; £ 2. If this is not so
then a number smaller than —é— would have to be used below,
Let n, be such that e—-l— > % > —l—(nl > 1 since €.<2);
-l) - € 1=
(ny ny
| 1 lk L1
let n, pe such that —=— > (5) > (these n, can be

(my-1) ny
chosen since € =)« monotonically). Thus (%)k > }e_ for
J
j2mn and k1,
Let C, =K for 1<k<n; -1landC

Dyt
K
I

K~ J
;1 for k > 1. Alsc for each

for k > n;. Then C, €< int C,

k there is, by Theorem 1.6, a function g, € Cc(S) such

that 0 < @, <1, #,.(C.) = 1, and F (s) = 0 for s £ C, ..
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n,-1 _ .
'Finally set & = % =0y + Z(-)J;JJ Then § € C_(S)

and § >0, Iffe Vg(i.e., ufguq, < 1) then for s € K
1<3¢

J,
n, -1, #(s) 2%—5¢J(s) = %’? and so \f(s)\ <

1/ #(s) <eJ Ifk'->1,n _<_J<nk+l, and s € K, then

J
s € C and g(s) > ( ) ¢k( s) = (2) > J. Thus \.f(s)\g €5

and V¢C U, Therefore /6 and Z°are the same topology,
completing the proeof,

If S is compact then the ,5 and c-op topologies agree,
As illustrated by the following result, this is also true
when S = ﬂ o’ the space of ordinali numbers less than the

first uncountable, First let us prove a lemma,

LEMMA 2.2. If §), Fp € C(S) end ||54y)] , < <2

for all f € C(S) then |¢l(s,)| < |2a(s)| for a1l s in s,
Proof, Clearly we may assume ¢i and ¢2 to be non-
negative. If s € S such that Z5(s) < #,(s) then by
continuity there is an open set U such that s € U and for
t € U, $,(t) < $,(t). Let £ e C(S) such that 0 < f < 1,
£(s) = 1, end £(t) = O for t £ U. Then |j£g |, < 122\ -

cantradicting our hypothesis,

THEOREM 2.3, (Wang[3%]) The following are equivalent:
(a) the )8 and c-op topologies agree;

(b) the closure of any @ -compact set is compa..ct;'
(e) c(8) = CC(S).

Proof, (a) implies (b). If A is any ¢--compact set
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then by Theorem 1,3 there is a non-negative function & e
CO(S-) such that A € N(g). But by (a) there is a function
We c (s) such that Jegll, < e, for a1l £ € c(s).

By the preceding lemma this implies that #(s) < | (s)|
for all s € S, Hence A C N(g) € N(¥Y) c spt( \P ), and
A~ is compact since spt( YY) is.

"(b) implies (c¢). If @ éCa(S) then N(g) is @™ -
compact and hence, by (b), spt(g) = N(F)~ is compact.
Therefore ¢ € C_(8).

That (c¢) implies (a) is clear since this would say
that ,3 and c-op have the same families of defining semi-
nérms. Therefore, the proof is complete,

Before proceeding with our study of the basic pro-
perties of p we will need the following result,

LEMMA 2.4, The Banach algebra C,(8) has an approxi-
mate identity, In particular, there is a net [¢i] in

C,(S) such that 0 < #; <1 for all i and lim 98, =9
' i

uniformly for each g in C_(S).

Proof, Let {Ki : i € I} be the collection of all
compact subsets of S, We direct I by declaring i < J if
and only if K; &< Ky For each 1 let @, € C_(S) such that
°< $; £1 end g(K,) = 1. Hence {g;} is a net in c.(8).
If g e}co(s) and € > O then {s € S : |¢(s)l > e/2} = Kio

for some 1, € I, If i1 > i  then ¢.i(s) =1 for s € Kio; thus,

sip { |#(s)8,(s) - B(s)| : s e 8} = supl|@(s)F,(s) - F(s):
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s £ K, } <2 €, Hence ¢¢i—-)¢ uniformly,

o

nlm
]

THEOREM 2.5. (Buck [12]) The following statements

are true:

(a) The 'b -topology and norm topology agree if and only
if S is compact.

(b) C(S)P is complete,.

(c) The /5 -topology is metrizable if and only if S is
c‘omp.a.ct.

(d) A set is A -bounded if and only if it is norm bounded.
(e) On bounded subsets of C(S) the/é and c-op topologies
agree, i

(f) C,(S) is $ -dense in C(S).

Proof. (a) The ,6 -topolégy is always weaker tl'_la.n
the norm topologys; if the converse holds then there is a
non-negative function # e C_(S) such that uflm < ||f¢|‘=°
for all £ € C(S). By Lemma 2,2, @#(s) > 1 for all s € S,
"Hence S = {5 : @(s) > 1} must be compact.

(b) Let (£} be a/éa -Cauchy net in C(S). Then (£}
is a.l;o a c-op Cauchy net, But it is well known that the
completion of C(S) with the c-op topology is the space of
all continuous functions on S (not Jjust the bounded ones).
Hence there is a continuous function f on S such that
f-i——) f uniformly on compact subsets of S. If & e C_(S)
then {¢fi} is a norm Cauchy net in CO(S) so there is a
g ¢ CO(S) such that ¢fi—-)g uniformly. But since multi-
plication is continuous in the c-op topology and fi-—)f(é-op)
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we have that ¢fi-—-> @£ (c-op. Therefore @f = g; é.nd
gf,~=>» #f uniformly, Since @f e C_(S) for all § ¢ C,(8)
we have that f is bounded (see Theorem 1,4), That is,

f € C(S) and f;~> f(P); hence C(S)f is complete,

(c) The identity map 1 : C&S)-—)C(S)P » where the
domain has the norm topology, is always continuous. By
(b) C(S)p is complete and if}a is metrizable then thé-
open mapping theorem [14,p.55] implies that i is open.
Therefore the ,3 and norm topologies agree and so S is
compact by (a).

(d) Since the norm topology is stronger than f s
every norm bounded set is ,8 bounded, For the converse,
suppose A & C(S) is ,8 bounded but not_ norm bounded,

. Then for each integer n there is a function fn € A with
lIf N 2 2n. Thus there is a point s ¢ S such that

©

‘f (s )|>n. If {s_.}] has a cluster point s € S and V

is a compact neighborhood of s then let g e CC(S) be such
that #(V) = 1. Since s_ € V for infinitely many n, we
have that ||gf |, > n for infinitely meny n; contradicting

the fact that A is l& bounded, If {sn}‘” has no cluster
n=1

points then it is a discrete sequence. By Theorem.l.5
there is a function # in C_(S) such that @(s ) = 1/\n for
all n, ‘I‘hereforg, “fonﬂm > ‘¢(sn)fn(sn), > V_ﬁ_'implying
again that A is not 8 bounded.

(e) Let A € C(S) be such that e, < 1 for a1l £ e
A, and let {fi} be a net in A such that fi-’ f € A in the
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c-op topology. If # € C_(S) and € >0 let K="(s :
,|¢(s)| > €/4}, Then K is compact and "ﬁfi - ¢f"w;g
,sup(|¢(S)| fes (s) - £(s)| : s € K} + sup(|@(s)| [£4(s) -
f(s)l : s £K} < "¢"m SuP(Ifi(S) - f(s)‘ : s € K} +

7 lley - fll .. But £,~» f (c-op) implies there is an i_
such that for i > i, lfi(s) - f(s)|'5 e/2 l|9]],, for all
s € K, Hence ufi - f"co < ":f‘i”m + Jif)|., < 2 implies
floe, - 22l < € for a11 1 > 1,

(f) Let £ € C(S). By Lemma 2.4 there is an approxi-
mate identity [ﬁi] for CO(S) where ¢i € Cc(s) for all i,
If f; = f§, then I, ¢ C.(8). Also, if & ¢ co(S) then #f, =
¢1(¢f)“i’¢f uniformly since @f € CO(S); i.e., ff——Q'f(fb)
and CC(S) is P dense in C(S). This concludes the proof
of the theoren,

We now turn our attention to another !''description'?
of the strict topology and represent C(S) 1‘. as the pro-
Jective (or inverse) limit of certain special Banach

- spaces, To do this we could use, in our context, a
general theorem due to E, Michael [26,p.17]; but a
diréct approacﬁ is available and hehce would seem more
desirable,

 LEMMA 2.6, If § € C(S), S; = N(#), and Ty
C(S) ——>C,(85;) 1is defined by Ty(f) = gt s, (the restric-

tion of @f to Sl)’ then T¢ is a continuous linear map
onto a norm dense subspace of Co(sl)'

Proof. It is clear that T¢ is linear and continuous,
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To see that the image is dense we will show that for each
x €: C,(8;) there is a function f € C(S) such that @f(s)

= X (s) for all s € S In fact if x € C_(S;) let X

1°
be the extension of x to S such that X(s) = 0 for s £ S,.
Then X(s) = x(s) for s € 8,, an open set, and 'f(s) = 0 for
s € S\ spt(x) which is also open., Hence X € c,(8). Let

r = min{lﬁ(s)[ : s € spt(x)}; then f> 0. Define f on S
by f(s) = x(s)/@d(s) if s € spt(x) and f(s) = 0 if X(s) =

0. Since |¢(s)' > F on spt(x) f is continuous on sp‘p(x).
Hence, spt(x) and {s : X(s) = 0} are closed sets imply

f is continuous, Also ‘x(s)/ﬁ(s)' L F Bxll, < @ for s ¢
spt(x) implies f € C(S). Clearly Tg(f) = X, completing
the proof,
| Let I = {¢i : 1 € I} be a net of non-negative elements
of C_(S) such that i < j if and only if §; < Py, end § e
C,(S) implies there is some &, > |#|. For each i € I

let §; = N(#,). If i,J € I and i < J then we will define
a map Ty ¢ Co(sj)—')CO(Si)‘ If £ € C(S) and ¢J(s)f(s)

= 0 for all s € S:j then f(s) = 0 for all s ¢ SJ' But

Q’i <L ¢J implies sic, SJ and sa ¢i(s)f(s) =0 for all s €
S;. Hence, if we let ﬂij(gjfls )=¢'if" for 11 feC(S) then,
by the asbove remarks and Lemma 2.6, Ty Jiis well defined

on a ncerm dense subspace of CO(SJ). Also || ¢if|\°° <
’AU¢Jf|L° for all f € C(S) since Q’i < ¢j. Therefore, con-

sidered as a linear map on a norm dense subspace of CO(SJ),

Ty has norm < 1, Thus Ty4 can be extended to a linear
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map of CO(SJ) into Co(si) because it is uniformly
continuous,

THEOREM 2,7. The space C(s)8 is topologically

isomorphic to the projective (inverse) limit i@[co(si):}.
of the Banach spaces Co(Si) » where the bonding maps are
the maps T, ; described above, '

Proof, Let £ € C(S) and put f, = ¢1f|si € ¢ (5,).
Then [fi} € | I{co(si) :1e€I}, Ifi< Jthen T3 5(£5)

= f; and hence {f;} teT e JP (c o(8;)1. Define T :
c(s)-—-yg'(?{c (s )} vy T(£) = (£;) and let 7, be the
projection ofTr{Co(Si)] onto Co(sj)' To see that T is

continuous, observe that LA °o T = Tg » the map described

in Lemma 2,6, which was shown to be continuous; thus it
follows that T is continuous. Also if @ € C c'(S) then there
is a J € I such that |g| < g;. Therefore if T(f) is in
731([g € Co(5y) tll gll, < 1) then 1,
Co(S4). That is, w fll, £ 1 and so |21, < 1, Therefore,
T(Vg) D 73 (e € Co(sy) : hef_ < 13) N T(C(s)) and T is
open onto its image.

is in the unit bgll of

Clearly T is one-one, since Q’ii‘ = 0 for all i implies
gf = 0 for all g € C_(S); from this it is clear that f =
O. This gives that T is a homeomorphism onto its image,
Since T is linear and C(S)ﬁ is complete, T(C(S)) is a
closed subspace of L P (c (s;)}. on the other hang,
T(C(S)) is dense in L@ {(C,(8;)}. 1In fact the sets of
trfe form vBl([g € Co(.sj) : "}g"w < r}) ﬂf,f where r > 0O
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and J € I form a neighborhood basis at zero ing (P . If
(¢,) edf , r>0, and j € I, then, by Lemma 2,6, there
is a function h € C(S) such that ‘fJ(s) - h(s)¢J(s)| <r
for s ¢ 5,3 that is, T(h) - {£,) ¢ W:j'l({g € Co(Sy)
el, < tH N IP {c(s;)}. Thus T(C(S)) is dense in
IP (Co(Si)L and this completes the proof.

Let us now turn our attention to the calculation of
the adjoint space of C(S)ﬁ . To do this we will need
the following fundemental result, Not only is this lemma
.needed in the characterization of C(S) 8 *.*, but it will be
a basic tool for the next two chapters, Recall that a
measure /M vanishes off a set A if and only if /44 (B) =0
for all Borel sets disjoint from A; or, VL\(S\A) = 0,
| LEMMA 2.8, If H is a subset of M(S) then the follow-
ing two statements are equivalent:

(a) H is uniformly bounded and for every € > O there is
a compact set K€ S such that V\I(S\K) < € for all
Men,

(b) There is a non-negative function g € CO(S) such that
HC (e ¥(S) : m vanishes off N(F) and“%,“" < 1).

Proof, If (b) holds then H is clearly uniformly
bounded since for each MM € H, II,MII = g %}L" <
| ¢ll,,||%,}l Il < Woll., zre>0thenk=1(s:g(s) e
i.s:. compact and for each p‘e H, V\l(S\K) = s\S\Kd\r\ =

Sé\Kg’ %dlf\‘ < “%}\“ sup{@(s) : s £ K} < e,
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For the converse let (a) hold. We may assume that
|\}\“ < 1 for all /)\ € H. From (a) we may obtain induc=-

tively a sequence [Kn}w of compact sets in S such that
‘ n=1

il\n
K, & int K. and M(S\Kn) < (§) for all/u in H,
For each integer n let g € C_(S) be such that O < g <1,

g,(K) =1, and g(S\K_,,) =0. Put g = zil(%)ngn; then
nN=

[-.]
g e c (s) and N(8) =K . If A € Borel (S) is such that
n=1

AN N(¢) = then A N K, = 0 for all n > 1. Hence if
M € B (ula) < ()" for all n > 1 and so M) = o.
Thus, every measure in H vanishes off N(fg).

If s € Kn\ K,.1> n 22, then ﬁl(s) = eer = ﬁn_g(s) =

O and &, (s) = 1 for k > n. Therefore &(s) = kZ.ol(-%)kﬁk(s)
=]

> gg(%)k = 2.(.:2&)’“"1, If )\ € H then % d| <
B KoNKpoy
1.1yt 1, gyl HenceS% d\/«\ = j K, % aip\

>3 S 7 2 Ipl SEMMI L gt el lon,

Since /& was chosen arbitrarily, the proof is complete.
REMARKS, The first proof of a result of this type
known to the author is found in Buck [12,p.100] where H
consists of a single element, However, it is essential
for all that follows that this lemma be proved in the
generality in which we have proved it, because this . :
furnishes the criterion for F -equicontinuity in M(S)

(see Theorem 3,2 below).
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THEOREM 2.9. (Buck [12]) A linear functional L on

C(S)’g is continuous if and only if there is a unique
measure M € M(S) such that

L(f) = J\fd/& for £ e C(8S).

Proof, If M € M(S) and H consists of the single
measure /a. » then, by the inner regularity of /L s H
satisfies condition (a) of the preceding lemma., Hence
there is a function g € C_(S), # > 0, such tha.t/u vanishes
off N(¢) and "%/A"S 1. If (£,} is a net in C(S) such
that £,—3 0 ( ,B) then @f,~=» O uniformly in C_(S). From
this we have that j‘fid/" = Sﬁfi l/( -3 0, Therefore
if L(f) = S fd/u for all £ € C(S) then L € c(s}* .

Conversely, suppose L € C(S); . Since /8 is weaker
than the norm topology, the restriction of L to CO(S) is
norm continuous, Thus, by 'the Riesz representation theorem,
there is a unique ,{ in M(S) such that L(g) = Sﬂd/k for
all & € CO(S). But /L represents a /3 -continuous linear
functional, and L and /,L agreie on Co(s) which islé -dense
in C(S) (see Theorem 2,5 (f)). Hence L(f) = fd/u for
all £ € C(S). This completes the proof,

Since M(S) = C(Sr » We can now give answers to
certain questions concerning the weak topology on C(S)ﬁ .
It should be pointed out that there is a strong analogy
between C(S),g and 0(S) with the norm topology for S
compact, Besides the preceding theorem, this analogy will
be further emphasized by the following results. Since the -
phrasing of criteria for topological properties on c(s)
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with the norm tbpology necessitates passage to the Stone-
Cech compactification of S, it might be argued that ’5 is
more '‘'natural'' than the norm topology on C(S).

COROLIARY 2,10, If [f } » £ are in C(S) then {fn]
n-l

converges to f weakly if and only if f(s) = lim £,(s) for

‘all s € S and {fn} is uniformly bounded.

Proof. If {fn} converges to f weakly then {fn] is
weakly bounded ar;d hence /5 bounded. But /A boundgdness
and norm boundedness are equivalent by Theorem 2.5. There-
fore {f } is uniformly bounded, Since é;(s), the unit
point mass at s, is in M(S), we readily get that f (s)

51‘ dg(s) o j\fd g(s) f(s).
The converse follows immediately from the Lebesgue

bounded convergence theorem,

THEOREM 2,11, (Glicksberg [17]) If F & C(S%’ then
F is weakly conditionally compact if and only if F is
p.niformly bounded and éonditionally compact for the topology
of pointwise convergence on S,

Proof, Since we will not use this theorem and the
proof we would present is exa.ctly that of Glicksberg, we
shall content ourselves with the above cited reference to
‘his paper, |

THEOREM 2,12, If F & C(S) then the following are

" equivalent:
() F is P conditionally compact;
(b) F is uniformly bounded and c-op conditionally

compact;
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| (¢) P is uniformly bounded and for every .compact set
KC s, F'K ='[f' x : L€ F} is norm conditionally compact
in C(K);

(d) F is uniformly bounded and an equicontinuous
family,

Proof, Clearly (a) implies (b). To see that (b)
implies (a.) note that F uniformly bounded implies that
we may assume F €< ball C(S). But ball C(S) is c-op and
p -closed and on ball C(S) the P and c-op topologies
agree (Theorem 2,5 (e)). Hence, (b) easily implies (a)
and the two are equivalent,

(b) implies (c). Let K be compact and {f }" a
_ n=1 "

sequence in F'K & C(X). Then for each integer n > 1
there 1is a &, € F such that gnIK = fn. But F is c-op

conditionally compact and hence there is a function g €
C(S) such that gnJ:-Ji%g(c-op). If £ = g‘K € C(K) then
fn-s-]i)f uniformly on K, and so Fl-K is conditionally
compact in C(K).

(c) implies (d). Let s € S and let K be a compact
neighborhood o‘f, s. By (c) FlK is norm conditionally com-
pact in C(K) and hence equicontinuous [14,p.266]. There-
fore for e;\'rery € > O there exists a neighborhood Uof s
in K such that |£(s) - £(t)| < e for all t ¢ U and £ ¢ F.
But since s € int K we may choose U sufficiently small
sa that U is open in S. Hence Fv is equicontinuous,

~ (d) implies (c). This follows easily from [14,p.266].
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(c¢) implies (b). Suppose F'¢ ball C(S); then F~ =
the c-op closure of F is contained in ball C(S). Also
F'IK c (F'K)" C C(K) for every compact set K &< S, Hence
for K compact‘F"K 1s totally bounded in C(K). Therefore
if € > O there are fl °",f € F such that F | <::.
L_J[g e ¢(k) : Hg - ¢ , I, < €}. That is, F~ &

U{f € C(S) : sup |f(s) - fi(s)\ < €} and F~ is c-op
i=1 s €K

totally bounded, .Also F™ ¢ ball C(S) and )8 = C-0p on
ball C(S) implies F~ is c-op complete since ball C(S) is
/B complete., Therefore F is c-op conipa.ct and the proof
of the theorem is complete, |

We will conclude this chapter with a study of the
palars of the sets Vy = (f ¢ C(S) : Negll, < 1) and their
extreme points, Before doing this, let us say a word
here about notation, We will denote by '! P -weak *'!
the weak star topolagy on M(S) which it has as the adjoint
of C(S)p' 5 i.e., the @°(M(S), C(S)) topology. This is in
‘order to distinguish it from the weak » topology which
M(S) has as the adjoint of the Banach space C_(S); i.e.,
the ¢~ (M(8S), CO(S)) topology. For an example of their
difference, note that ball M(S) is weak * compact but it
is far from being ﬁ-weak * compact if S is not compact,

The next theorem is due to Glicksberg [18]. His.
proof is, however, quite complicated and we will furnish

a comparatively simpie one,
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THEOREM 2‘.13. If § e C_(S) then v¢° = (/«:
‘S fd '.S 1 for all f ¢ Vﬁ} ={ M: vanishes off N(g)
and I%’/*"Sl]- ./A g
Proof, Define the map Tg C(S)p —>»C_(s) vy Tg(f) =
gc for all £ € C(S). Let B = ball C_(S) and B* = ball M(S)
Then Tg'l(B) = V4 and Ty is continuous. Therefore its
adjoint Ty* : M(S) ~> M(S) is well defined and continuous
.Wwhen both domain and range have their weak * and f -
weak * topologies respectively, But de'rg*( /A) =5 f,@d/L
for all f in C(S); therefore Tb*(/K) =gM. If Jh e B*
and T € Yﬁ then ”fﬁd/&\g )29, ﬂ/\" < 1. Hence Ty*(B*)
C v¢°. Let £ € [Tg*(B*)]O; 1.4, l fﬁd/;\| < 1 for all
/Ae B*, Thus ||f¢"°° = sup { lj\ﬂfd]u‘ :/& € B¥} < 1, or
f e Vy That is, [T*(8*)]1° € Vg and so v¢°c [Tg*(B*)]°°
= the fB -weak % closure of Tb*(B*). But B* is weak *
compact in M(S) and Tg* is continuous implies Tb*(B*) is
,B-wea.k * compact and V¢° = Tg*(B*) = {8V : |V <1}.
It M =gV and V|1 then J\ vanishes off N(#)
and (3 JA)(A) = (- 29)(a) = 9 (a N N(#)) . Hence -
n%,&, = I‘)"(N(ﬁ)) < ao}]g 1. If, conversely, ,l( vanishes
off N(#) and "%IA" <1 then M = g7 where 9 = %/« ;
' hence’u.e'vﬁo, concluding the proof, |
We will now calculate the extreme points of V¢9 where
g € C (S). In order to do this we need an extension of a
result of Arens and Kelley [3] for which we give a new

proof.,
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THEOREM 2,14, A measure J is an extreme point of

the unit ball of M(S) if and only if A = A 5(8) where
)\ is a unimodula.r'complex number and S (s) is the unit
point mass at some s € S,

Proof, If )\ g-(s) = %—(0‘-&-3) where Aell, VIl <1
and ‘Al: 1 then S(s) = —%( AT d‘+/\'l° ). Hence we may
assume A\ =1, If A € Borel (S) and s € A then 1 =
1 (@a) +9(a)] ena |@@), @) <1 mus o) -

Y (A) = 1 since 1 is an extreme point of the unit disk
in the plane., If s £ A then 1= (A VU(s}) = @7(a) + 1
and hence @"(A) = 0; similarly, D (A) = 0. Therefore
T=V = S(s) and so S(s) is an extreme point.

Suppose now that /A is an extreme point of ball M(S)
and let P = (K : K is a compact subset of S and
'/4|(K) > 0}. since M # 0 H %[0 . We will show that
Q(has the finite intersection property. Suppose Kl,Kz €
A and x; N K, ='D 3 let K3 = s\ (K, U Kp). If

‘}* \(K3) #0 then}* = él. VA,(Ki)/Li ‘where /(i(A) =

|M(Ki) M N Ki)3for all A € Borel (S). But "}Ai" =
1 for 1 =1,23 and |N(Ki) = '/‘"" 1. since M is an
extreme point of ball M(S) /\=/&l. If |/L|(K3) = 0 we

reach the same conclusion by Just having two terms in the

above sums, 4

Hence |M|(X;) = |M,] (%) = |[‘,(K1)-l l}\|(K1 NK) =0
since K1 N K2 = B, a contradiction, Therefore Kl f'\ K2
#0 . If F is a compact subset of Kl\ K, then F N K, =

~
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D ; thus F g?( and l,;|(F) = 0, By inner regularity
|/A|(Kl\ K,) = 0 and so JA|{X; N K,) = |MI(K;) -
MK\ ) l/\l(Kl) # 0. This shows that K,,K;, € = 8

implies K, N K, ¢ H . Now by a simple induction

argument we have that 9( is closed under finite inter-
sections and so there exists s ¢ n{K : Ke ]}, If
U is opeﬁ and s £ U then for every cdmpact set K& U
I’\I(K) = 0 since s £ K, Therefore V(l (U) = O and so/u.
is concentrated on {s}. Thus /u = >\ S(S) where /\ =
}k(s).

THEOREM 2.15. If # € C (S) then M 1is an extreme

point of V¢° if and only if/A = /\ Z(s) :(s) where lX\ =1
and s € N(&).

Proof. Let /,\ be an extreme point of V¢° and let
T¢ : c(s),r—gco(s) be defined by Tg(f) = @gf, Therefore
its adjoint map Tg* : M(S)=——pM(S) is given by Tg*(}() =
,Qf’A. Now Tﬁ* : ball M(S) ->V¢° is a continuous onto
affine maep when domain and range have their relative
weak * and P -weak * topologies (see the proof of Theorem
2.13). By Theorems 1.17 and 2.14% there exists a point
s € S and a unimodular scalar such that = Tg*(A S—(s))
=/\¢(s)§-(s).- Since /& # 0, s € N(d).
For the converse suppose /‘k = Q(S)S(S) where @(s) #
0. Thenlkevo, and if/k =—é—(‘D+0") where 'D, g ¢
v, then 'S(s) = %ﬁ =3 30+ 5T) ana Iz, el < 1.

By Theorem 2,14 S-(s) = %" = %V. Since ? and O
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vanish off N(#) we have that M = ﬁ(s)g'(s) =% =g
and /L is an extreme point. This completes the proof.
In Chapter V we will give an interesting extension

of this result to vector-valued measures.
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CHAPTER III
THE MACKEY TOPOLOGY ON c(s)ﬁ

This chapter is divided into two sections., The first
section investigates a question asked by Buck [12,p.100];
is C(S%‘ a Mackey spacé? In Theorem 3.7 we show that the
answer is yes if S is paracompact, Actually, as the
theorem states, we show much more than this; it is this
stronger result which we use to develope Chapter IV, We
conclude section one with an example to show that C(S%B
is not always a Mackey space.

Section two treats the question of whether or not a
subspace of C(S%B is a Mackey space provided C(S%g is a
Mackey space, In particular, we give necessary and suffi-
cient conditions for a p -closed subspace of X” to be a
Mackey space; and we show that Hw, the space of bounded
#nalytic functions on the open unit disk, is not a Mackey
space 1f it has the strict topology.
f.Section.l.I:C(Szg'.is"a Mackey space for S paracompact. .

As in the preceding chapter "’3 -weakf;" will be
used to denote the weak star topology on M(S) which it has
as the adjoint of C(S%@ . When referring to properties of
subsets of M(S) = C(S)s * we will invariably prefix the
symbol’g . This we hope will alleviate some of Fhe con-
fusion that may arise from the fact that M(S) is also the

37
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adjoint df CO(S). Thus, we shall refer tofs -equicontinuous
subsets H of M(S). A subset E of M(S) is 8 -equicontinuous

ffd//,l <1 for ally in

H} is 876 -neighborhood of the origin in C(S).

if and only if H° = {f e C(S) :

If E is a topological vector space then E is a Mackey
space if and only if every weak * compact convex circled

subset of E* is equicontinuous; E is a strong Mackey space

if and only if every weak * compact subset 6f E¥ is equi-
continuous (see Chapter I).

The following is a classical result due to J., Schur.
[30]. Proofs can also be found in. [4,p.137] and [14,p.296]
We will reproduce the proof here not orly for the sake of
convenience, but also.because this result is the corner-
stone of this paper. Of course, J{l is the Banach space of
absolutely summable sequences of complex numbers., If x =

{zi}w € /Q 1 then the norm of x is |jxl| = i\zi\ . The
i= i=1

=1

Banach space adjoint of X.l is JT”, the space of bounded

sequences of complex numbers, . Also, o is the space of

complex sequences converging to zero, Note that if S is

the space of positive integers with the discrete topology
Ao 1

then c, = C,(S), 2 = c(s), anda £~ = M(s).

THEOREM 3.1. In the space jll a sequence converges

weakly if and only if it convergés in norm,
Proof. Clearly we need only consider the case where

a sequence {xn}°° of elements X, € ﬂ.l converges weakly

n=1
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to zero, That is, if X, = [Z:En)}oo for n > 1 and for
- i=1

. o .
every bounded sequence y = {y ]a° s <X_,¥y> =Zy 2 (n)
_ ' i 1=1 n g i"i

converges to zero as ne=> ©, then we must show that

1im le () _o. 1f y; =1 for 1 = j and O-for i # J

n ﬁ o §=1

then we have 1lim zj(n) = 1lim <X ,¥y> =0 for J =1,2,.-,
R=p Ry

Suppose that [x } does not converge to zero in norm; hence

1im sup 2 lz (n)‘ > € for some € > O, From this we may

define, by induction, two monotonically increasing sequences

of integers [nk} and {rk} such that:

= (ny)
(2) n, is the first integer such that E' Zy l‘ > €3
. =

| 1 . (n,)
(b) r; is the first integer such that %‘ zq 1 ‘ > e€/2

and ﬁ'z l|<<-:/5,

i—r +1

(e) nk is the first 1nteger greater than n,_; such that
(n,) (o)
;lznk|>eandz::|ink'<€/5:

(d) r, is the first integer greater than rk-l' such that

!'k ©

=Z+1‘ Zi(nk)l >e/2and 2 I Azi(nk)| < €/5.

":i;!tk+l- :

]ZD

by ¥, =
1=1 1

Now define a bounded sequence y = {yy

]

for 1 {i<r) and y; =

for r, <1 £ Ten and k = 1,2,e0¢,

’z (nk+1)' -1 ()

Reproduced with.permission of the copyright owner. Further reproduction prohibited without permission.



Ty r
(n,), : K ) & (my)
Then z = E - 2z = 2 V:2 k
B l+1| i l i—-rkr.l+l i i -
r ‘ r
k-1 (n ) © (n, ) (n )'
k k k
12—1 Yi24 Z yi N . Hence < +1\ 24 <
- “"k-1
°° (n,) ﬁ. (ny) (ny)
Zy z, & z4 k z, K . .From this
i%1 i
i=1 i= r +l

(n ) (
it follows that ‘ vz k | s nk)
=1 ; +1

r
k-1 (nk) - (n )
k €E € € _ €
z - z, " \2ms-%-~-°T = for k =
i=1 ' i , i___.%l‘ i = 2 5 5 10
1,2,***., But 1lim \Zyii )\ O and thus we have a
n=ye | i=1

contradiction, ‘I'his completes the proof,
Now let us give our basic theorem characterizing
f -equicontinuous sets.

THEOREM 3.2. If H & M(S) then the following are

_equivalent:

() H is {B -equicontinuous;

(b) H is uniformiy bounded and for every net [in.] in
C.(S) such that ﬂgjﬂm <1 for all 1 and @;=P0 (c-op),
we have that ¢i—->0 uniformly on H;

(c) His uniformly bounded and for every € > O there is
a compact set K € S such that tp.\‘(S\K) < € for all /&
in H;

(d) there is a function & e c (S) such that g > O and
HC (M /.\ venishes off N(#) and \\5/4“ < 1)

Proof, (a) implies (b). If {#;]} is such a.net then
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i ‘Igi“w <1 for all i implies §,—5 O(p) by Theorem 2.5
(e). Since H is ‘5 -equ.‘gcbntinuous, H® is a /@ -neighborhood
of zero in C(S). Therefore if € > O there is an i, such
that for 1 > i @, € (e-H’), Hence, if 1 > 1 and A e
‘H then ”\% ¢id,k'_<_ lor ”ﬁid/\, £ €; that is, g;=» 0
uniformly on H,
| (b) implies (c). Suppose that (c) does not hold.
If [Ki : 1 € Ij is the collection of all compact sets in
S then there exists an € > O such that for every i € I,

"gd(s\l{i) > € for some M ; € H, Thus, by Corollary
1.13 there is a function #; in C,(S) with 24 .. = 1.
spt(2,)CC S\Ki, and Sﬁid/A 1,' > €. Declare that
1< J if and only if K,Q Ky. Therefore {#,) is a net
in C,(8) and flgfl, <1 forell i, IFi eTendi>i,

then‘sup[|¢1(s')\ :t s € Kio} = 0 since spt(ﬁi) N K, =0 .
o

Hence, ¢i—->0 {c-op) and {;Z!i} satisfies the conditions

of (b). By (b), #;~> O uniformly on H. Therefore there
J‘sdidﬁl < € for all
ﬁ € H, In particular, i‘r;zfid,(_ i‘ <eforix>i, _
contradicting the' choice of the ,( e

(c¢) implies (d). This is the substance of our Lemma
2.8. |
| (d) implies (a). By Glicksberg's theorem (2.13),

is an 1  such that if i > i then

- (d) says that H & V,* and hence it must be @ - . -
equic_ontinuous . -

+ LEMMA 3,3. '}I‘he strong topology on M(S) = ,c(S% * j..s
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exactly the norm topology. Hence C_(S) and C(S)s have
the same second adjoint. Also C(S%ﬁ is semi-reflexive
if and only if S is discrete.

Proof..‘The strong topology on M(S) is; by.definition,
vﬁhe topology of uniform convergence on.P -bounded sets in
C(S). By Theorem 2.5 (d) these are exactly the norm
_bounded sets.' Hence the strong topology is exactly the
topology of uniform convergence on the unit ball of C(S).
But this is the norm topology on M(S).

For the last part of the theorem let S be discrete.
Then M(S) = zl(s); i.e.," M € M(S) if and only if M =

:E:a where {s_}° 1is some sequence in S and
n=1 é;(Sn) =1

nz;|a.n| <= (in fact || Rlf .-.nz;\an\). Also, C(S) consists

‘of all bounded functions on S, If L € M(S)* then define
£(s) = L( S'(s)) for all s € S. Since ||S‘(s)[! = 1 for all
s eS8, |Iff,< |Ll] <= end hence £ e c(s). 1Ir M =

:é;an's-(sn) then L(/&) = n%lanL(g(sn)) = nz(:lanf(;;sq:) =

- -,Sfdﬂ . Therefore C(S)ﬁ ** = C(8),
Conversely, suppose C(Sbg ** = C(S) and let %;é,s'
Then L(/&) = /k([s)) defines a bounded linear functional
L on M(S). Thus there is a function f ¢ C(S) such that
fd’& ==/&({s]) forAall)u, € M(S). In particular, f(s) =
-2 S(s-).’-‘"l end for t # s £(t) = S‘def(t)' - ;(t)'.({s}) -

O, Therefore f is the characteristic function of singleton
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{s} end, Since f 1is continuous, {s} is open and closed,
This implies S is discrete and concludes the proof,
THEOREM.3.4. If S is the space of positive integers

with the discrete topology and H < £ % = M(S), then the
following are equivalent: (a) H is weakly conditionally
compact; (b) H is/B -weak * conditionally compacf; (c)
H is norm conditionally compact; (d) H isfg
equicontinuous,

Proof, It is clear that (a) and (b) are equivalent
since (,QQ,P) = C,(S)A is semi-reflexive, Alsc, it is
trivial that (d) implies (b) since this is true for an
arbitrary space S, To see that (b) implies (c) let
[x }1* be a sequence in H, By Theorem 1,15 we can get a

Np=1
subsequence {xnk} of {xn} end an element x € 2_1 such that
xn--ipx:weakly. But according to the theorem of Schur
kK
this implies x -e;x in norm.  Thus H is norm conditionally

compact,
If. (c) holds and we wish to prove (d) then let € > O
and choase X ,***,X € H such that H & LJ{x el

"x - xnll < e/2}., 1If ror=eéch'k’é l,+eve5n welet:

= {zi(k)}°° then there is an integer N such that

:ét \z (k)‘ < 6/2 for 1 < k £ n, HEnce, if x = [zi} €
i=N+1 i=1

H then there is an 1nteger k, 1 < k < n, such that

“x - xkl| < e/2 Therefore :Z: \zi‘ < \Zi - zi(k‘+

i=N+1 i=N+1
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00
Z ‘ (k)| £ €, But for ,Ql this is exactly the
i=N+1

formulgtion of ﬂ -equicontinuity given in Theorem 3,2 (e).
COROLLARY 3.5. The space (2”,)8 ) is a strong Mackey

space,

Before proceeding we must prove a well knbwn fact
concerning uniform boundedness in M(S) (actually what we
show can be shown for barrelled spaces [25]), This lemma
will be used not only for the next £heorem but also
throughout Chapter IV, |

LEMMA 3.6, If HC M(S) is weak * bounded then H
is uniformly bounded,

Proof. Let B = (# € Cy(S) : \Sﬁd/'.&‘ <1 for all
,k in H}. Then B is a weakly closed convex circled subset
of CO(S). Since H is weak * bounded B is absorbing; i,e.,
# e C(S) implies there is a scalar a > O such that af e
B, Hence there is a constant r > O such that gl < =
1mplies g € B, Therefore if @ € C (8) such that “ﬁnm'_
1 then rf € B and so \S‘rsﬁd/u\ <1 for all A e H, This
implies that ||,|| £ 1/r for all M e H and the proof is
complete, | '

We are now in a position to prove one of our main
theorems (almost all of Chapter IV will follow from this
fheorem). |

THEOREM 3.7. Let S be paracompact; if H & M(S) is

ﬂ-wea.k.'* cour;ta.biy compact then H is ﬂ -equicontinuous.
Consequently C(AS)A is a strong Mackey space. | |
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Proof, . Since H is P -weak x countably compact it
is weak » bounded and hence uniformly bounded by the
preceding lemma, For the remainder of the. proof we 4will
suppose tha.t Sis¢ -compact and afterwards we will

indicate the proof for the general case. Let S = UD
' n=1

where Dn is compact and D & int D .., and suppose H is

not p <equicontinuous, Since H is uniformly.ﬁounded there
exists, by ‘I‘heorém 3.2, an € > 0 such that for each compact
set K& S, |A[(S\K) > € for some M in H. We claim that

there is a sequence {(/A n’gn’Kn’Un)}:_l having the following

properties:
(a) ,4{ n€H B € Cc(S), K, is compact, U, is open
in S with Uy compact and UZ N K = 0
() D,V X U U_ & int K .3
(c) | Pa(T)| > e/t
(@) Wl = 1, spt(g)) € U, and v‘n\(Un) <
\S?fnd/k o] + e
‘ Tosee this let K; = D; ; then there is a/l\l € H
such that |M 1 B\, > e, But‘/Al‘(S\Kl) <
4 sup{ l’(l(c)l : C is a compact subset of S\K;} (Theorem
1. 9). Hence there exists a compact set C & S\K ‘with
UAI(C)‘ > e/, Choose an open set Uy such that Ul is
compact, C & Ulc s S\Kl, and Va\l\ (Ul\ 0) <
5[\}&1(0)\ -5_-]. From this we have “Ll( )\) e/k, By
‘Corollary 1,13 the’:_re is a function @, € C (S) with spt(d,)
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Uy, \\gl\\w = 1, and \M1| (u) < \5¢ld’l\+ €/8, since
K, U U3 is compact we can find a compact set K, such that
K, U U] € int K,. This completes the first step in the
argument ne_cessa.fy to obtain the sequence, The rest of
the induction is similar,

Y (-]
since S = (_JD and D & int X, we have that S =

n=1l 1

C:,int Kn'

n=1 ‘
. ©
Cleim 1: F =|_Jspt(g,) is closed. In fact if s ¢ F~
n=l -
then s € int K for some n > 1. Hence, for every open

neighborhood W of ‘s such that W C int X , We have [ #

n-l .- " : ne
W /] F = _Wn Li_? spt(ﬁ‘i). Thus s eL_j spt(2;) € F and

F is closed,

Claim 2: If x = (x(n)}‘? € Rm then fx(s) =
n=1 .

(-2
E x(n)ﬁn(s) is a well defined bounded continuous function
n=.

on s and |lgd, = Nxffe In fact it is clearly well
defined since at most one term in the sum is not zero,

Also, for this same reason, lfx-(s)\ =§l\x(n)“¢n(s)\

for all s € S, and, since each | Q!nl achieves its maximum,
we have " fx“w = “xIL To see that £ is continuous let
s € S and let {s;] be a net in S such that s, =Ps., If
s £ F then F is closed implies that there is an i, such
‘that for 1 > 1., s, £ F. Hence for i > 1 f (s) = £, (s;)
=0 and thus £ (s;)=»f, (s). If s € F then s ¢ __s'pt(ﬁn)
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< U, for a uniqtié infegef n., Therefore there is an 1 o
such tha.t‘for i> 10, si € Un‘ But then, if i _>_‘i<'),
fe(sy) = x(n)ﬁn(si)-—) x(n)ﬁn(s) = £ (s) and so £ € C(S).
Now define the map T: k“’-—)c(s) by T(x) = f, . Then
T is an isometry and ‘
Claim 3: T (lw, P )—-yC(S)P is continuous. ILet
{xy } be a net in ,(” such th>a.‘c X;= O (ﬁ). IfdecC (S)
and € > O then there is an. integer N such that for x ¢ KN
| ‘¢(s)\ < €, Thus, for n > N spt(g,) ﬁKN B 2and hence
W2g R, < e 1.e., the sequence x = (&g ||, )" . is an

element of c . Since x;==b O ()8) there is for every € >
O an i, such that for 1 > 1, flxxl,<e. If x, =
(xg (n)} for all i then this says that for i > i
n=1
€ > sup{'x (n )“Qi(s)ﬁ (s)' :s€Sandn>1} =
sup{glgi(n)\ |8(s)8, ()| @ s €8} = Jor(x,)|.. Herice
nN=
T(x,)=>0 (P) in C(S) and so T is continuous, |
Therefore T has a well defined adjoint T* : M(S)=d L
which 1is continuous when both range and domain have their
'B-wea.k * topologies. Thus, T*(H) is P -weak * countably

compact in 1 and, by Theorems 3.4 and 1,15, T*(H) is
p-equicontinuous in ,Ql. Now if ,l € M(S) and x € l

then <x,T*(}L)> = &'(x)d/& = Ifxd,( ‘ l (n) Sﬁ d/l.

so that T*(ﬁ ) =1 Sﬂ dr,] . Interpreting ourf -

equicontinuity condition for T*(H) € 21 we have that

-
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there is an integer N such that :E::' g nﬁ/&\ < €/8 for
‘ n=N+1 :

all /,L ¢ H. In particular, if n > N \S;anl\n ‘ '< €/8 and

so Vln(Un)l < V4n| (Un) < 'Sﬁnd/l,n‘ + €¢/8 < €/4 by

condition (d), But this contradicts condition (c¢) .on our

sequence and so the proof is complete,
Note that the reason for condition (b) on the sequence

. x
‘was to ensure that u K, was both open and closed; from
' n=l

this it followed that F was closed and fx was continuous.
This same method yields a proof if S is a topological
group, and cbndition (b) is replaced by the requirement
that each Kn be a symmetric neighborhood of the identity

w .
and K2 U7 € int K .. Then {_JK is an open ana

n=1
closed subgroup, Both of these proofs may be subsumed in
the proof of the case when S is paracompact., By Theorem
1.1 8 = U {Sa. : a € A} where the S, are pa.irw.ise disjoint
open and cldsed @ -compact subsets of S, Let Sa =
Oc(n,a) where each C(n,a) is éompa.ct and C(n,a) C
I1131713:,_-'(':(n+l,a.) for n > 1 and a € A, By an induction process
similar to that used in the above proof, we obtain a

sequence of integers [kn}w such that k

sequence {ah]w in A as well as the sequence
n=1

{( ,A n? ﬁn, Un’_ Kn) }1::1.' This sequence of quadruples has all

~ the properties it had in the proof of the theorem except
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that condition (b) i1s replaced by Kn =U‘C(kn, 8‘1)’ and

C int K,41+ We now proceed as above and UKn
n=1

UUC(k n?21) —l ,S since k., > k. Therefore

UKn is both open and closed,
n=]

REMARKS, There is a class of spaces for which the
preceding method of probf cannot work - namely the pseudo-
compact, non-compact spaces. For in such a space no matter
how the Kh are chosen the set F will never be closed (see
[16]).

In addition, there are spaces for which Theorem 3.7
is not true, as the following example (of a pseudocompact
space).illustrates.

THEOREM 3.8, 'Ifﬂo is the space of ordinal numbers

less than the first uncountable with the order topblogy,
then C(no)"a ig not a Ma.ckey space (and a fortiori not a
strong Mackey space),

Proof, Let H be the f -weak x closed convex circled
hull of the set of all measures of the form 2[ o(’ (s) ~
S(s-i-l)]’ where s 1s a non-limit ordinal and s + 1 is its
immedig.te successor. Besldes the properties of Lk ° in

| Theorem 1.2 we will need the fact that if s ¢ S)_ then
the characteristic functivn» of [1,s] is continuous,

Let‘.ﬂ.-:be the first uncountable ordinal and ;).l the
Stone-Cech compactification o‘f.ﬂ. o° I'Hence .D.l =Jd2 o
U (fL) and M2 ,) = ML) O G{:(_Q_)}, where
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c{Sm_)} - {cS‘(_n_) : c e §). We claim that if we
consider H as a subset of M(J’-l) then H is weak * closed.
If this 1s so then, since H is clearly contained in tﬁe -
unit ball of M(dk ), we would have that H is weak *
compa.ct.(l); .but the weak x topology of M(..Q-l) relativized
to M(no) is exactly the p -weak * topology, and so H is
p-weak » compact,
. To prove the claim, suppose that /A is in the weak *
closure of H in M(_rll). Then there is a unique measure
Ve ML) and a scalar c € § such that JA = )+
¢ §(f)e Ve must show that ¢ = 0. If =4[ &g -
S.(s+l)] then O (L) = Jdr = 0. Therefore @ (o)) =
0 for all @"¢ H and so I\L (_f\.l) =0, Thus c = = 9 ().
Since J\.o is not (™ -compact and <) vanishes off a g -
compact subset of.i\.o, there exists a limit ordinal x
such that Y vanishes off [1,x]. Let f = the character-
istic function of'[l,x]. If s is any non-limit ordinal
then either s < x or x <s., If s<x then‘s +1 < x and
f(s) = £(s +1) =1, If x < s then £f(s) = £(s+l) = O.
Hence de" = 0 for all G € H and therefore O = Sfd/k =
| Sfd\) + ef(f) = SfdQ = V([1,x]) = '?(.ﬂ.o). Thus
¢c=0and A = vy € M. ). But the weak » topology on

. l’lhis is because the unit ball of the adjoint of a
Banach space is always weak * compact, This theorem is
well known and will be used often without specific
reference, See [14,p,424],
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M(LL,) relativized to M(SL ) is the B -weak * topology.
Since M is in the weak x closure of H in M({L,) and A ¢
M(SLL ) we have that M is in the ,6 -weak » closure of H,
But H is B -weak * closed in M( ) and so JA € B, Thus
H is weak = closed in M(Jll) and so is /5 -weak # compact
in M(‘Q—o). .

However H is not P -equicontinuous, In fact, if it
were there would be a ¢ -cdmpact set of the type N(g) such
that each measure in H vanishes off N(@), From the
definition of H it is clear that this cannot be,

Section 2. Subspaces of C(S5)@ and the spaces (2%, A) and
(5, 8)

A natural question to ask is whether or not subspaces

of C(S')ﬂ aré Mackey gpaces if they have the relative
topology and if C(S)p is a Mackey space. Along these

. lines it is known that the completion of a Mackey space is
a Mackey space; +the converse, however, is false, In fact
C(5)g 1is the completion of C,(S)g 5 but co('s), is never
a Mackey space (unless S is compact), since the norm topo- .
logy on co(s) is strongér than the strict topology and
yields the same adjoint M(S).

The difficulties encountered in attacking our problem

may be visualized as follows, Let E be a subspace of C(S)
and 1 : Eﬁ - C(S) the injection map, with i* : M(S) —=d
EP* j.ts adjoint,  In order to show that a subset H C'EP *

is P ~equicontinuous it is necessary and sufficient to
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show that there is a B -equicontinuous subset H, & M(S)
such that i*H, = H. Therefore if C(S%g ~is a Mackey space
and H C© %ﬁ'* is afs -weak * compact convex circled set,
then jtq show that H is /B -equicontinuous we need to find
a 4 -weak » compact convex circled set H, < M(S) such
that 1*H, = H, Since EF * with itsp -weak * topology is
topologically isomorphic to a quotient space of M(S), it
would seem that what is needed is a version of a theorem
of Bartle and Graves (see [5] or [27,p.375]) where both
the domain and range have their/g -weak * topologies,
Unfortunately, no such theorem is available in general,
although in the special case of Jl” one can use this
theorem to great advantage (see Theorem 3,10 below),.

Let E be a/B -closed subspace of ;Q“ and recall that
we proved that ( Q“Z/Q) i1s a strong Mackey space by using

"~ Schur's theorem. It is not difficult to prove Schur's

theorem if we assume that (,Q”,fs) is a strong Mackey
space; hence the two theorems are equivalent, A statement
similar to Schur's theorem turns out to be exactly what
is needed to characterize those closed subspaces of (R”;P)
which are Mackey spaces. _

LEMMA 3.9, Let E be-a/Q -closed subspace of )t”,
Then E’g _is semi-reflexive and Ef * is a Banach space
when furnished with its strong topology. Consequently,
the g8 -weak x topology on Eg * is its weak topology which

it has as a Banach space,
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Proof, Since (l /B) is semi-reflexive (Lemma 3,3)
and E is a closed subspace of (X /8) we have that E is
semi-reflexive by Theorem 1,11, By the same theorem we
have that Eﬁ * with its strong topology is topqlogice.lly
isomorphic to kl/N with its quotient norm, where N = E‘LC
| ﬂ’l, Hence Elg* is a Banach space,

THEOREM 3.10. If E is closed in (R, /5) then a sub-

set of E,B * ig )8 -equicontinuous if and only if it is
norm conditicnally compact, |

Proof, Let H & E/s * be/a -equicontinuous and let i :
EF—-> (Q '8 ) be the injection map., Then there is a
#. e ¢, such that i*Vﬁ = H, where i¥* : ll—-) EP QI/N
is the a.d;joint map of i, But V¢ isﬁ -equicontinuous and

“norm closed in Rl. Therefore V¢° is norm compact in ,Ql
(Theorem 3.%), and, since i* is norm continuous, H has
norm compact closure, | ‘

Assume that H is norm compact, Trlen B 13* is a Banach
space and i* is a map of ,Ql onto EP *¥, By the Bartle-
Graves selection theorem [27,p,375] there is a continuous
function f : Eg * —> Q7 such that £(I) € 1*°1(1) for all
I e E‘ . Hence f(H) is norm compact in ,\l and thus
/glsequicontinuous. Therefore i*(f(H)) = H implies H is
{3 -equicontinuous. '

THEOREM 3.11, If E is a @8 -closed subspace of X% then

_the following are equivalent:
(a) EP is a Mackey space;
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(b) Ele is a strong Mackey space;

(c) every,e -weak * compact subset of EF* is norm
compact;

(d) every /3 -weak % convergent sequence in El_s*-is norm
convergent,

Proof. (a) is equivalent to (b), This is immediate
‘from Theorem 1,16 since the '8 -weak x and the weak topo-
logies on EP* are the same,

(b) implies (c¢). If H& EP* is ,B-weak * compact
then H 1is P -equicontinuous by (b). Since it is norm
closed the preceding theorem implies H is norm compact,

(c) implies (d). A F -weak * convergent sequence
with its 1limit point is P -weak * compact and hence norm
compact by (¢). From this it is easy to see that the
sequence converges in norn,

(4) implieg (b)), IfHC Ef * is P -weak * compact
then it is IB -weak * sequentially compact by Theorem 1,15,
" Thus (d) implies it is norm compact, and hence/ﬁ -
equicontinuous in virtue of the preceding theorem, This
ebncludes the proof of the theorenm,

- Now let us turn our attention to H, the_Space‘of
bounded analytic functions on the open unit disk D, For
general information on H. see [23];' Theorems 3.12‘and
3.13 beloﬁ were obtalned quite recently by Shields and
Rubel ([31] énd-[32]). We have decided to present them

. here because we obtain them by different methods, a_nd_
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because they form a direct path to our result that H” with
Z'L..tS‘ strict topology is not a Mackey space (it should be
pointed out that in the process we show there exists a
closed subspace of (,Qw,'g) which is not a Mackey space),
We follow a method of Brown, Shields, and Zeller [9]

and- get a sequence {an} in D which has no limit points
n=1

in D and such that for all £ ¢ B, |fll, = sup{|e(e)\:

n > 1}. Hence if E 1s the subspace of ,Qw consisting of
all sequences {f(a.n)] N where £ € H® then the map T :

H ~——=»E, defined by T(f) (f(ah)}, is a linear isometry.
Moreover, since [a.n] has no limit points in D it is a
discrete séque_nce.'l Thus, if {f;} is a net in H® such that

fi——90 (F) and x = (x }® € c_, then there is a function
Bp=1 ©

g e CO(D) such that ¢(8‘n‘) =x forn>1 ('Ih'eorem 1.5).
If € > O then there is an i  such that for 1.2 i, ' -
2l < €. But for 1> 1 supilxnfi(an)\ :n>1) =
sup[,¢(an)f1(an), :n>1} < ||¢fi|'°° < € and so T(fi)—)
0 (,F ) in E, Therefore T is a continuous map from (Hm,F.)
onto EP v(a~ fact which is crucial in our development),.
 THEOREM 3,12, A subset of (H, ’5) is F -compact if

and only if it is F -closed and bounded,
Proof. Let ACH” be P -closed and bounded Since
. the ﬂ and c-op topologies agree on bounded sets in C(D),
and since the c-op topology is metric on H'[12,p.98],"
| we need only show that every sequence in A has é. ¢-op

convergent subsequence, But [f 1 & a and A uniformly
: D n=1
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bounded implies {fn} is an equicontinuous family [l,‘p.l7l].
Therefore there is a subsequence of {fn} which 'converges
to £ € A in the c-oﬁ topology.

THEOREM 3.13. If I is a linear functional on H~ which

is ﬂ -continuous on the unit ball then I is F ~-continuous
on K ., Hence (K, A )* with its strong topology is a
Banach space 'and 4 is its adjoint,

Proof, Consider the map T : (H, §)—=DE p < A°
defined pzfior to Theorem 3.12, Since T is continuous and
ball H 1is g -compact, T (ball H) is g -compact in )
and hence ¢ (427, Rl) compact., Therefore E f}ball 2% =
T (ball H°) is @ ( 4%, §1) closed and thus, by Theorem
1.14, E is G 9”, ',Ql) closed, But ,6 is stronger than the
¢ (2”, 21) topology and hence E is a P -closed subépace
of 4. Also ball H” is p -compact implies that the
restriction of T to ball H® is a homeomorphism. Hence

1ol

is a linear functional on E which is , -continuous

on ball E. By Lemma 3.9 E' * 1s strongly complete and so

it follows from Grothendieck's completeness theorem (Theorem
1.10) that T o TL ¢ E@ *. Therefore I = T*(I O 1y ¢

(5", ﬁ )* and (H, p )* is strongly complete (also by Theorem
1.10)., Since it is clearly a normed space we have ’gha.t

(H°°, '8‘)* with its strong topology is a Banach space.

Finally, ball H°° ﬁ -compact implies that every bounded set

in (8", P ) is weakly conditionally compact, and hence '(Hw,ﬁ) '
is semi-reflexive. "Iheréfore B = (87, )@ ) Rl
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COROLLARY 3.14%, A linear functional I on H” is ,3 -
continuous if and only if there is a Lebesgue integrable

1 T

function g on [-m,m] such that I(f) = 5= f(eie)g(e)de
T

for all £ ¢ K,

Proof. Let g € LY(-m,7) and B = ball E”. If (£,
is a sequence in B and f = f ( F) then identify each f_
and f with its boundary values on the unit circle [23].
Therefore each f and f determines an element of L>(-m,T)
and L”(-m,7) = L” is the adjoint of the separable Banach
space Ll(-1r,1r) = 1!, Hence the O‘(L°°,Ll) topology on
ball L~ is metrizable, and ball L” is compact implies there

isanh € L” and a subsequence {fn } of {fn] such that

K
; © -1 N I -in6
fn;-) h @(L,L). T?lerefore h(n) = ﬁj\qrh(e)e dée =

A

lim T (n) , forn = O,il,---.(g) Hence/ﬁ(n) = 0 for n <
k

0, and for n > Olf\nk(n) = %—,— fr(lrkl) (0). But fn}:—_) f (P)
implies f == f (c-op) and so ?(n) = ;11—, f(n)(o) =
k .

(n)

1
n! nk

A A
(0). Therefore h(n) = £(n) for all n, and so
e S
£(e”) = n(6) for almost all 6 (see [29,p.17]). What we
have shown is that every o"(L°°, Ll) convergent subsequence
of {fn} converges to £, Since ball L is 0‘(L°°,Ll)

compact we have that £ —% f @ (L°°,Ll). Therefore

20i‘ cbursell'\l denotes the Fourier-Stieltjes trans-

form of h [29].
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I(f,)—3I(f) and I is A -continuous on ball H, By the
previous theorem, I ¢ (K, IB )*,

'For the converse let u : H —>L” be the canonical
imbedding., What we have shown is that u is continuous if
H® has its weak topology from (K, ﬁ)* and L” has its
0"(L°°,Ll) topology. If E = u(H”) and I € (H”,/&)* then,
by an argument similar to that used iIn the theorem, we
have that I © 'u'l is a O"(Lw,Ll) continuous linear

. functional on E, By the Hahn-Banach theorem we may

-1

extend I © u™~ to a G (L, Ll) continuous linear functional

on L”, Thus there is a g ¢ Ll(-1r,1r) such that I © u'l(h)

T
= }27,-‘ j Wh(e)g(e)de for all h € E. Therefore if £ ¢ H",

1(£) = T o wl(u(n)) = & S” £(e39)g(0)a0.
-T

THEOREM 3.15. A subset of (H°°,/$)*_ is B -

equicontinuous if and only if it is norm conditionally
compact,

Proof, If A is a norm compact subset of (H°°,/3)*
and T : (H, B )——)Ef is the map described pfior to
Theorem 3,12 then T* : EP *——) (H F)* is an isometry
onto (H ,:5 )*. Therefore T (A) is norm compact in

| EP * and hence, by Theorem 3.10, 7T (A)' is F'-
equicontinuous, This implies that there exists.a @ € o
such that T*"l-(A) c;v¢°.. But T is continuous and so :

'1(v¢) is a F -neighborhood of zero in H'. It is
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routine to show that A =["I"l('\fﬁ)]o and hence A is
ﬁ -equicontinuous,

Now suppose that A is /5 -equicontinuous and {In}w
_ n=1

is a sequence in A, Hence A is /3 -weak * conditionally
compact and, since the ,6 -weak * and weak topologies on
(Hm, P)* are the same, A is weakly sequentially compact

by Theorem 1,15, Therefore some subsequence of (1}

converges weakly (=/é -weak *) to an element I of (H°°,)‘8 )*.
Assume that I =P I /J-weak *. Since ball H is A -

compact, there is for_ each integer n a function fn € ball
H® such that \\I -I \\ = (I -1I)(f.). Then there is
n - m/Y'n’°

an £ € ball H  and a subsequence {fn } of {fn} such that’
k

f—> £ (f). since (I - )"

n n=1

is ,G-equicontinuous,
k

£, —> f uniformly on {I - In}. Therefore if € > 0O there
k

is an integer N, such that for n > N, |(I - I )(f - fnk)\
< % for all n 2 1. Also there is an integer N, > N, such
€

that for n > N, ‘I(f) - In(f)\ < 5. Hence for n, >
-z l=cC-2 )¢ )<VWTz-1 )¢£-¢ +
2) Dy nk"nk"\- e nk)‘
\(I - I )(f)\ L €. That is I, —>» I in norm and A is

Kk 13 |

norm conditionally compact,

COROLLARY 3.16. If {I_}, I are in (H", f)* then
I,—> I in norm if and only if (a) I~ I ,e ~weak *
and (b) .[In}°°_ is P -equicontinuous,

n=1
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| THEOREM 3.17. (8, 'e) is not a Mackey space. .
Proof Since (H, '3)* is a Banach space with adjoint
space B , 1t is sufficient to show that (H, )3 ) is not a
strong Mackey space (see Theorem 1.16). For each integer

T
n > 1 define I (f) = }2-‘”.0!\ f(eie)e'inede = ?(n), for all
| -7

f e H, Then I e (8%, ,@)* by Corollary 3.14 and I ==y O
-(P -weak ‘*')(3). Clearly ” In" < 1 and since for f(z) =
N eg” I (f) =1, we have that || I || =1 for all n > 1.
Hence {In} cannot approach zero in norm, By the préceding
corollary {In] is not 3 -equicontinuous. This concludes
the proof,.

-REMARK. Theorem 3.17 answers a question posed by
Shields and Rubel [32].
| Let us close this chapter with some remarks on the
strict topology. There are no examples known to the
author.of fopolbgiéal vector spaces which are Mackey spaces,
except by virtue of some other formally stronger propeity
(e.g. barrelled, metric, etc,). However this is not true
of C(S)g . We have already seen that C(s)g is metric
if and only if S is compact., This same statement can be; >
made with.res’pect to ''barrelled'' and "borriologica.l."
In fact, the unit ball is P -closed and absorbs bounded
sets, but it is a A -neighborhood of zero if and only if

3Aga.1n, ? is the Fourier-Stieltjes transform of f,

It is a well known fact that lim n) = 0 [29].
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S is compact. Another interesting point is that the striét
topology gives an example of a semi-reflexive Mackey space
(,Q w,)@ ) which has a closed subspace which is not a Mackey
space - the image E of H® under the mapping discussed

before Theorem 3,12,
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CHAPTER IV

This chapter will be devoted to an exploitation of
our Theorem 3,7, the principal result of Chapter III,
After a number of preliminary lemmas we present some
results relating F -Wweak * compactness and sequential
compactness withfg -equicontinuity, We then begin'a dis-
cussion of a paper by J. Dieudonng [13]. In this paper
he gives necessary and sufficient conditions for several
modes of sequentiael convergence in M(S) for S compact.,
Qur treatment of these results will fall into three cate-
gories. First, by making use of the concept of p-
equicontinuity, we will generalize the results of Dieudonﬁg
to locally compact spaces (note that;s -equicontinuity may
be intuitively regarded as saying that the underlying
space S 1s ''approximately compact'! relative to‘the
measures invoived). For the most part these generalizations
are connected with the sufficiency of the conditions of |
his theorems, It can be seen that the necessity arguments
used all have a noticeablé similarity with . one another.
The second facet of our development will be to replace
these arguments by a,Judicious application of Theorem 3.7.
Finally we will strengthen some of these results, and show

. how & theorem of A, Grothendieck on weak compactness in
62 |
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M(S) can be obtained, |

Before proceeding we will need the following
preliminary lemmas,

LEMMA 4.1, If X, is a compact subset of S and A is a
‘countable subset of M(S) then there exists a compact G§
set K, D K; such that Vk](Ke\Kl) = 0 for all M € A,
Furthermore, if S is compact then S\K2 is a regularly

¢" -compact set,

Proof, Let A = [,\n -, end D 2‘1(5)n “,u i Ihal -

Then ¥ € M(S) and each | }( | is absolutely continuous
with respect to ’D We will produce a sequence {U } of
open sets such that KlC: Uy C U +lc U, forn > 1,
Q(Un\ Kl). < %, and Ux; is compact. By regularity, there
is an open set Uy with compact closure such that Kl < Ul
and P (U;\ K)) <1, Hence, suppose that the sets Up,..,
Un'a.re constructed having the desired properties. Again,
by outer regularity there is an open set 0 2 Kl such that
-D(o\ n+1 . But K, is compact and disjoint from the
~closed set S\(O N U,). Therefore there is an open set
Uy,41=> K; such that U7 . & O NU, € U,. Thus U, is

compact and ‘3( +l\ l) < 9 (O\Kl) £ == n+1 .
Let K2 = ’n ) 3 then Kl c K and Kec U implies

that K3 is compact, But s\z«:2 =L_) (_s\Un) and U, & U,

vimplies that S\, c: S\v nﬁc s\U,,;. Hence \y, ©
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int (S\Un+l) and so S\K2 is open, Thus, K, = K, is
compact. Finally, V(K\X;) < V(U \K;) < = for all
n > 1 implies ‘D(Ke\ K.l) = 0, Since each \/“n\ is
absolutely continuous with respect to \) we have

\,‘n\ (K\X;) = O for all n > 1,
If S is compact then S\ Un is compa.c‘t and so S\.Ka
is (by construction) a regularly ¢ -compact set. This

completes the proof.

- If B € Borel (S) and {/Mn} is a sequence in M(S) then

we will say that B is a { #n]-gparrable set if and only if
“{n|(B'\int B) =0 for alln > 1, We will also say
that B is quarrable for [,kn}.

LEMMA 4,2, ([13,p.277]) 1If {/‘n} C M(S) then every

point s € S has a fundamental neighborhood system consisting

of open { ,An}-quarrable sets,
Proof, As in the above proof we need only consider
the J.emma for a single positive measure /A . IfV is an
open neighborhood of & then let £ € C(S) be such that
0<£<1, £(t) =1, and £(S\V) = 0. We will show that
there are at most countably many real numbers r, O L£r<
1, with ,AL({s : f(s)‘ =r}) # 0. In fact, if this is not
the case and there is an uncountable collection of such r,
then for some integer n > 1 there are uncountably many
such r '_}_% . 'Applying the same type of reasoning, we
obtain an integer m > 1 and a sequence {rk} of real numbers

1 1l
such- that r, > &+ and /A({s : £(8) =r.}) > for all k > 1.
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Therefore jfd Zi 5 by > fl + r, = o, which
A () ?“ T k=l K

is a contradiction., Hence, we may find anr, 0 < r < 1,
such that ({s : £f(s) =r}) = 0. Let U= {s : f(s) > r};
then't € U ¢ V and M(u-\u)g A(ls 5 £(s) = r}) = o,
Lemma 4.3, If K is a compact subset of S and A C
M(S) is countable then there is an open set W D K which
is A-quarrable and such that W is compact.
Proof., Using L;amma 4.2 and the compactness of K, we
may find a finite collection {U ’""Um} of open A-quarrable

m
sets with compact closures such that X & \_Ju, . Let W =
k=1 -

m
UU sthen W has the properties stated in the lemma,
k=1 .

LEMMA 4.4.(4) ([13,p.279]) If .{/“n}"f( are uniformly
bounded in M(S). and /An(U) -Q/A(U) for every open {/(n}-
quarrsble set U then ,“ n=> /A(P -weak *),

Proof. We may assume "fln" <1 forn >1, Clearly
it isl_ ?ply necessary to show that” J\ fd/(n-’j‘fd,“ for
all real valued functions in C(S); so let € > O and f €

-

C(S) bve real valued. Choose a finite sequence ry, e, T,
of real numbers such that r; < - |||, Izl < r, and
O rp - k<-§-forlgk_§_m-l. Ir V = yl"-i_-

2 (-é-)n "‘n‘ then 7 € M(S) and by an argument like that
N=

used in Lemmsa 4,2 there are at most a countable number . of

r's such that 9({s : £(s) = r}) #£ 0. Hence (possibly

4See also Alexandroff [2,p.182].
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after a small adjustment of the original r,) we may choocse
the r, such that 7)({5': f(x):-rk}) =0, for 1 <k K
m, Let U = {s : r, <f(s) < rk+1} for 1 <k <m-1, A =
{s : ry < f(s) < r,}, and A = [s : r < f(s) Lr

for 2 < k < m-1,

m-1
Ifg=9S_r kXU s where XU is the characteristic
k=1

function of U,, then I # Sfd/‘ , < “'(f-g)d(,u ,“n)'
'lj‘gd(p /“n)' But ”(f-g)d(/.\ -1y < |
= (i oagp-p <E | § emoan ] e
last inequality holding since | R- l"n' (Ak\ U) <

,,M|(Ak\ U) + |,\n| (A \U) =0for alln>1and 1<k
m-1. But for s € U, lf(s) - 1, | < e/% so that

f(f-g)d(/a -Ra) <§: T p- ,unl( )<t llp “An

€/2 for all n > 1, Also Uk is {/\ pl-quarrable for 1 < k

k+1 )

< m-1 implies that there is an integer N such that for
n>N U‘gdlL j\gd,\' £ €/2, Hence for n > N,
s‘fd/; fd/( \ Le/e2+¢e/2=¢, completing the proof.
Many of the results that follow will make use of /B
equicontinuity as well as uniform boundedness. The
following theorem gives a sufficient conditj.on for /
equicontinuity; for a result on uniform boundedness see‘

Lemma 3.6,

THEOREM 4.5, If H is a ’8 -weak * compact subset of
positive measures in M(S) then H is ,6 -equicont‘muous.
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Proof, Let {K;} be the collection of all compact
subsets of S, For each i let g, € C (S) be such that O <
g, <1end §,(K) =1, If £, = 1 -, thenf, ¢ C(S),
0<fy <1, and fi(Ki) =0, Let € > 0; if g€ M(s)
then by inner regularity there is a Ki such that ' f'(S\Ki)

< e, The%efore,Sfid/A‘ = 'fs\Kifid < l/\l (S\Ki) <

€ and so the sets [/A: l‘ffidfgl < €} form aﬁ -weak *
open cover of H, Since H isf -weak * compact we can

m :
find Kl,-u,Km such that H C %—-—Jl{ )k : \jfid,(|< €}. Let

: m
€y = spt(g;) and K = &;—{01' Then p € H implies that

‘Sfidf“ < € for some i, 1 < i < m, Hence ll(\(S\K) =
MENE) < B(s) - p(o)s but gy < Yo and so R(C;) 2
s giaM . Combining these facts we have that ‘y](s\K) <
,A(S) - sf¢id,’* = I(l-ﬁi)d)u = j‘fid/”‘ < € and H ‘i,s
p-equicontinuous. This concludes the proof,
= It is ’alw‘ays true that /B -equicontinuity implies
conditional P -weak * compa.ctne-bss. However it is often
the case that sequential compactness is more useful than
compactness., For this reason we prove the following |
ihteresting' result, ' | }
 THEOREM 4,6, If S is locally metrizable and ’H.CM(S)
is | P ~equicontinuous then H is '8 -weak sequentially
compact,

Proof., Recall that S 1s locally metrizable if and
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only if every point has a ‘metrizable neighborhood, Since
S is locally compact this is equivalent to the require-
ment that every compact set be metrizable. Now H is/a -
equicontinuous implies we 'ma,y find a sequence {Kn} of
compact sets such that K, C K, and '/"(S\IS’) < (_:2L_)n

for all,A € H, Let {/‘\J]‘=° be a sequence in H; we may
J=1 _

suppose "/‘J' <1 for all §j > 1, Since S is locally

metrizable K 1is a compact metric space and C(K;,) is

separable for all n > 1 ([14,p.501]). Therefore the weak

* topology on the unit ball of M(Kn) is metrizable ([1%,

p.426]). Consider {/Aj(l)}“ here }&J(l) is the element

; W
J=1
() ay =
of M(K,) which is the restriction of ’AJ to K, (}(J (a) =
}(J(A) for all A € Borel (K,); see Chapter I), Then this
sequence is in ball M(Kl) so there 1s a measure fDl €

M(K, ), 'Qll < 1, and a subsequence {/‘.13}3’:1 of {/(J}
such that /‘.13(12__, 2 1 (weak x) in M(X;). By an induction

argument we obtain for each integer i > 2 a subsequence

[}

L e
{,\ i.'j};j=l of [Fi'lﬁJ}le and a measure ‘Qi € M(K,) with

" 91“ £ 1, such that #13(1_)___’ Y, (weak x) in M(K, ).

Let 1 > 1 and £ € C(K,,,) be such that “_f“m <1,
Let P be the extension of Y, to K, (L.e., Py () =
-ai(A ﬂKi) fo? all A € Borel (K;,.)). Then
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\g ] £a( Vg, - qs;)l =
141
ca (i+1) N (1)
/*i+1 3 X, Wil g

1im £d (1)
g Ky /Ai ’ 141

j' eq (i+1) i J‘ eq (1)
X /‘\i+13 K, f*iﬂ;j

i+l

lim S | fa (1+1)
5o e )
i+l

= lim
J=> o

But <

. 1.1
' ﬂi-i-l.j‘KiH\ Ki.) < (5)" for all j > 1 and i > 1, Therefore
_— (1 1
AV - Pill < ()" for a11 1 > 1. If we regard each
-'D i @s a measure in M(S) by considering its extension to S
then | Dy - Vil < @) for a11 1 > 1. Thus M =

o0 .
\71 + Z(oi-i-l -V i) is a measure in M(S). We will show
i=1

that the diagonal sé uence @ converges to -
ag q {/(JJ}J=1 . ges /( f

weak x, Let f € C(S) be such that ||fll_ < 1. Ire>o0
choose n > 1 with (-:2L)n < €/3; then led/( 33 " Sfd/g \ <

\S TdR 55 - Sfd91 '%Sfd(‘oiﬂ - ‘Di)\“*
1%1\5fd(01+; - V) ‘ s \j\&ﬂfd/*;w - f%+lfd9n+l\

+ i ('%)i < \SK +lfd(/AJj - 0n+l)‘ |

+
i=n+1

J\, ' fd(ﬁjj - ~Dn+1,)
¥ni1 (1)

But [/A JJ(n+l)};___1 is a subsequence of [/(.n'*'_l 3 }

SS\Knﬂfd/‘ JJ.'

@ @<

+ ¢/2,

J=1
e,XCept'possibly for the first n terms, Hence there is a

S‘K lfd(/"JJ - onﬂ)' < %

Jo such that for j > J.,

n+
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Therefore if J > j, we have ls\fd/( 3 - Ifd/t\ < € which

completes the proof,

COROLLARY 4,7, If S is a metric space and H & M(S)

then the following are equivalent:
(2) H is /6 -equi'continuouss
(b) H is P -weak * sequentially compact;
(¢) H is ﬁ'-weak * countably compact;
(d) H is .ﬁ -weak * conditionally compact.
Proof, Notice that we always have that (a) implies
(d) implies (c) and (b) implies (c). Since S is metrizable
it is paracompact and hence, by Theorem 3,7, (c) implies
(2). By the preceding theorem we have that (a) implies
(v). |
| COROLLARY 4.8, If S is a metric space and (£}, £
are in C(S), then fn—%f(’d ) if and only if L= f

uniformly on ,6 -weak * convergent sequences in M(S).

Proof, Suppose f —=» f ('6) and let {/Ln}‘? be a

n=1
/3 -weak * convergent sequence in M(S). By thé preceding
corollary we have that { IIA o) is a ﬁ -equicontinuous set
and hence f —>f unifo;'mly on { /kn}. | |
For the converse let % be the topology on C(S) of
uniforxﬁ convergence on ﬂ -weak * convergent sequences in
M(S). Suppose that f,—3f( &). If there is ap -
equicontinuous set H & M(S) such that {fn] does not
converge to f uniformly on H, then there is an € > 0 and

an increasing sequence of integers {nk} with
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sup{\f d/l(-jfd/k‘;'/k € H} > e for all k > 1,
Hence for each k > 1 there is a measure /“k € H with
\ S(fn - f)d/q €, But S is metrizable implies there

is a subsequence {/Aki i1 of {/Ak} and a/& € M(S) such

that f*k ——-3/& f?-wea.k . But f —> f( &) implies there

is an integer N such that for n >N ,Sf d/“k - J\fd/(k ‘
i’

< € for all 1> 1. Clearly this gives us a contradiction.
Hence fn—9 f uniformly on every P ~equicontinuous set;
that is, f—~> f (/B) This concludes the proof,

We will now turn our attention to the results of

Dieudonn? [13] and Grothendieck [19], If { /&n}‘” is a
n=1

sequence in M(S) and f is a complex valued function on S

then f is { }(ny}-continuous if and only if f is bounded and

and the set of discontinuities of f has V“n‘ -megsure zero
for all n > 1. We will say that a sequence {Il(n} in M(S)
converges R-weak * (''R"! stands for Riemann) if and only
if Sfd,u ———)S‘fdf for every { /{n -continuous function
f. Even though there is no R-weak * topology, we give the

obvious meaning to the terms R-weak x countabl y compact

and R-weak * sequentially compact. (5)

5 In what follows there may arise some confusion
as to the originality of the results, We will endeavor
to settle such questions with bibliographical footnotes.
If no footnote or reference is given then, to the best
of our knowledge, the result is our own.
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THEOREM 4.9.  If H M(S) is R-weak * countably

compact then H is ,a -equicontinuous,

Proof., Let H be a R-w_ea}c * countably compact subset
of M(S). By Lemma 3,6 H is uniformly bounded. Therefore
if H is not /8 -equicontinuous there is an € > O such that
for every compact set X & S, "(\(S\K) > € for some M ¢
H, We will show by induction that there is a sequence .
{(/‘n’lgu)}:;l wh'ere’k n € H and K, is a compact subset of

S.‘contained in int K ,, such that: (a) |M,\(S\K)) > ¢

1
for all n > 1, and (b) [,uk|(s\xh+l) <zforl1<k<n
and n > 1, To accomplish this let Kl be an arbitrary
compact set a.nd./gll € H with I}All (S\Kl) > e, If (/(l,Kl),

R f(n’Kn) are chosen then by inner regularity there is
a compact set K ., such that K, & int K .. and

\,‘kl (S\Ky41) <3 for 1 <k < n. Since H 1s not g -
equicontinuous there is a /*n+l € H with V(n-!-l‘ (S\Kn+1) >
€, This completes the induction,

(-]
Let Sl = UI%, then Sl is an open @* -compact set,
n=1

If A € Borel (S) with A N s; =0 then A MK =10 for
alln > 1. Thus, if k > 1 then |M,|(8) <2 for a111n >
k which implies that | /‘k' (A) = 0 for all k > 1. There-
fore each '}\k vanishes off §;. If Ve M(S) is an R~

weak * clustef point of some subsequence {Qn} of {/k n] s
and K is a compact set such that K [V S; = O then £ =

.’XK is {9 }-continuous, Thus ffdQn —E—bedQ . But
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Sfds) o= VY, (K) =0 for all n > 1 implies that P (K) =
0, and so Y is also concentrated on Sl'

Let H, = {/,(n}, considered as a subset of M(S;). If
{Qn} is a sequence in H, then there is a V € M(S) such
that ¥ n L1y, 9 R-weak *. From the preceding paragraph
we have that 7 is concentrated on S,» and so Y may be
considered as an element of M(S,). If f € C(S;) then let
T be the extension of f to S such that T(s) = O for s £ 8.

£a9 _ = S?‘d@n_‘f;

1
y'fd'D = S\fdﬁ . Hence H, is a./e -weak * countably com-

Then T is {'Dn]-continuous and so s
S

pact subset of M(S;). Since S, is @ -compact we have that
H, is P -equicontinuous by Theorem 3.7. Therefore there
exists a compact set K & csol such that lA)\(Sl\K) < €

for all n > 1. But §, = int K implies there is an
n=1

integer n such that K C Kn. From here it follows that
LAl 5\ = IALGINE) < |pg) (B1\K) < & ana e
have a contradiction to the choice of the/A n 2nd K . This
concludes the proof.

REMARKS, Because of the fact that there is no R-
weak * topology there are several pathologies which can
occur, For example, if { }An} is an R-weak « convergeht
sequence then it is not a priori true that every sub-
sequence of { }{n} is R-weak * convergent, However, by
a proof similar to the preceding one it can be shown that
every R-weak * convergent séquence in M(S) is ; -
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equiéontinuous. This fact allows us to prove the following

result,

THEOREM %.10.(®) 1r {/“n}’ Jk are elements of M(S),

then the following are eugivalent:

(a) /& > M R-weak x;

(b) 1)  pd is p-equicontinuous and 1i)
,AD(U) -—-9/A(U) for every [/& }-quarrable open set U,

(e) 1) (,Mn} is P—equicontinuous, ii)/u """/A
F-wea.k *, and iii) for every € > 0 and every compact
set K € S such that V«n](x) = 0 for all n > 1 there is
an open set V 2 K such that |/un| (V) < € for all n > 1.

Proof. (a) implies (b). If,L n—-},& -R-weak * then
{ /‘n} is ﬂ-equicontinuous by the remarks p;eceding this
theorem, If U is an open {/Ln]-quarrable set and £ the
characteristic function of U then f is Vwrg-continuous.
Hence /kn(U) -—)p. (u).

(v) implies (c). By Lemma 4.4 we have (i1). To see
(iii) let € > O and K be such a compact set, By Lemma 4,1
we may suppose that K is a compact Ggset. Since {/An} is
ﬂ -equicontinuous there is a compact set D & S such that

l}(n\(s\n) < 3 for all n. Applying Lemma 4.3 to the set
D UV X with A= {/u ,/An : n > 1} we obtain an open set
WD D U K such that W~ is compact, |;(n| (s\¥W") < /2
for all n > 1, and UA’(W \w) |/)\n\(w‘\ W) =0 for n > 1,

-

653'13 equivalence of. (a.) and (c) for S compact is
due to Dieudonné [13,p.29]; the equivalence of (a) and (b)
is our own and strengthens a result of Dieudonn 13,p.279].
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From Lemma 4.1 we have that S, = W'\K is a regularly

1
77~ -compact subset of W . Let Qn and V be the elements
of M(S-l) which are the restrictions of/« n and /IA s

respe.ctively to Sl' If U is an open subset of S, which is

{Qn}-quarrable then U AW is open in 8. If C = . the
closure of U in S; and U~ is the closure of U in S then
U"\U = (C\U) U (KAU"); in fact this follows quite -
readily since ‘U" C W =5 U K. Thus VAn\ (U"\U) =
“An](c\u) + I}AnI(KhU') = 0, since U is {V }-
quarrable in S;. Also since K € W, S, = W\w) U (W\K)
and o) (0 A W) < Ip L (@ AW < Jpg (00 A W) =
Mol CTNO) AW+l (0N G\ W) + | rp| (T N W)
V«(n\ (v A W), Hence U N W is an open [}(n}-quarra.ble
subset of S. Also, if A\ = /«n or/“ for some n > 1 then
M@ = [Alte A« @A E\ = Al W
and so )\(U) = A(U N W). Therefore V_(V) -Iun(U)
/,n(u N W) --v’/l((U N W) = M(U) = \7(U), so that
Vn(U) - v (U) for every open {'ﬂn}-quarra.ble subset of
S). From Lemma 4.4 we have that U —> 1)(/6 -weak x) in -
M(S,). Since S, is 0" -compact our main theorem (3.7)
implies that (_17n~] is Ps-equicontinuous in M(S;). There is,
then, a compact set C € S; such that |J | (5)\ C) < €/2
for all n. Iet V = S\ C; then V is open and X € V. Aiso
v=s\¢c Us\W U K and thus [0 V) = |9g| (5\ ) +
|Ral (S\WT) + [y (K) < /2 + e/2 + 0 =
(e) imPl_{l_esv (a). Assume “/{ nl] £ 1 and let f be a
({ ,t(n}-‘contin'uous function such that ||fll, < 1. Ife>o0
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then, since _[Iun}_ is ﬁ-equicontinuous, there is a compact
set K € S such that [A- M ] (S\K;) < ¢/8 for all n > 1,
From .Chapter I we know that K = {s': osc(f,s) > e/S]ﬂKl is
compact; but K is a subset of the discontinuities of f
and so’ l/un‘ (K) = 0 for all n > 1, By (iii) we may find
an open set V2 K such that M |(V) < /16 for all n > 1.
Let § € C (S) such that spt(f) & V and IIML <1, Then
yﬁd -—-)f¢d by (ii) and |y¢d \= 'S\ ga <
P ! Jo v Ar| S
},‘.kn-kv) < €/16 for all n > 1, Thus \S\ﬁd/q\ £ €/16 and so,
by Corollary 1.13, h"u,(V) < €/16, Therefore ,/(-/A,.J(V) <
|}u| (V) +I,Mn'|'(V) < €/8,

For every point s € Kl\V, osc(f,s) < €/8., Since
Kl\V is compact there are points Sys*eesS, € Kl\v g.nd
open sets Uj,<++,U  such that s, € Uy, \f(s) - f(sk)"< -§-

. m
for s € U, and Kl\V C \_Ju,. By Theorem 1.6 there
k=1
exist functions @,,<++,4 € C_ (S) such that 0 < #_< 1,

1 m M ="k =
iﬁk(s) £ 1 for all s € S with zﬁk(s) =1 for s € Kl\V,
k=1 k=1 '
and #, (s) = 0 for s £V, 1 <k {m. Let g(s) =

m o S
2. (5, )9, (s); then g is in C(S). If s € K\ V then
k=1 D -
: "g‘(s) -vf(:s)l = \%ﬂk(S)[f(sk) - f(:s)].\ and this is a
. , k=1 ’
convex combination of complex numbers in the disk of radius
€/8. Hence ‘g(s) - f(:s)l < €/8 for s € Kl\V. If seS
then [g(s) - £(s) ‘ <2,
- By (ii) ‘S‘gd n =2 gd/u and so there is an integer
N such ,thka.t‘ ”\ gd}&n - jgdlul < €/4 fér n >N, Iherefore
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if n > N, Sfd Sfd Sgd( n \
lS(f-s)d()a /A{:) <7 +/\'\r\ \(f-s)!:}l /;4,1),

”K (f-g)d(/u “Ma f-g)d(/A /un)\
§ + ll/A-;A I +2|,M-/Anl<v>+2\r-,"n|<s\xl>

4y . -1; = €, Therefore IM ——yﬂ R-weak = completing the

proof,

"I‘hé following is a well known result (see [14,p,308]) -
which we present here for the sake of completeness.

LEMMA 4,11, Let {/‘n}’/“ be elements of M(S). Then
/An /A weakly if and only if {M,] is uniformly bounded
and/An(A) --)/A(A) for every Borel set A,

‘Proof., Clearly the conditions are necessary; to prove

sufficiency we can assume |V4n|| <1 for all n > 1,/44 =
0, and M (A)~> O for all A € Borel (S). ILet? =

Z (§) ,}An, then ‘9 € M(S) and |/An\is absolutely
continuous with respect to {7 forn=1,2,**+, By the Radon

Nikodym theorem there is, for each n > 1, a function f, €
LJ-'(V) such tha.t'/An(A) = S f _dy for all A € Borel (S).
A" < ,

Now L} (9 ) can be isometrically and isomorphically identi-'
fied with a closed subspace of M(S), and so/A —% 0 weakly
if a,nd only if £~—> 0 weakly in L ('?) |

Now I is in L1(9)* if and only if there is a bounded
Borel function g on S such that I(f) = S £gd P for all
fe Ll('y ). It is sufficient to suppose that g is real
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valued, Thus, if € > 0 let 8ys%* sy be real numbers such
that a; = - fgll,s a; = llgllos and 0 < g, - a <5 for
1<k <m1, Let A) = (s :a; Lg(s) < a,] .and A =

{s : a <g(s) <2, )} for 2 <k m-1, Put h(s) =

m-1 m-1
E%T‘Ak(s)’ Clearly S = IAk and so if s € S there is
= k=1

a unique k, 1 < k < m-1, such that s € A ., Therefore

'g(s) - h(s)\ = \g(s),- a.k\ < €/2 and so “g - h“‘,° < €/2,
But A, € Borel (S) for 1 < k < m-1 and so by hypothesis
ghfnd"a = hd n—-—) O, Choose an int‘eger N such that for
n>N -”hfnﬁ ‘ < €/2; therefore if n > N angd-o\ <
Ifn(g-h)d'? + %Efnhd‘?l < "g-h"m “0" + e/2_§_ €,
TreoREM 4.12.(7) 1f (Mpls p are in M(S) then the

following are equivalent:

(a) A n--'o/u weakly in M(S);

(v) [/(n} is uniformly bounded and /An(U)-—-—P/A (U)
for every open set Uj;

(c) Sfd,nn—") Sfd/lk for every bounded 1.s,c.
function f; ‘

(d) (i.) {,ln] is P-equicontinuous, (11) /Qn""'/(
'B -weak =, and (iii) for every € > O and every compact set
K € S there is an open set V 2 K such that V(n\(v\ K) <
€ for all n > 1,

Tt is known that (b) implies (c). Dieudonnf
[13,p.32] showed that (c) and (d) are equivalent for S
compact, and that (a) and (b) are equivalent if S is a
compact metric space [13,p.35]. Later Grothendieck
[19,p.150] showed that (a) and (b) are equivalent for an
arbitrary space S. ,

-
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Proof, Clearly (a) implies (b). The pattern of the
remainder of the proof will be:

(b) implies (c) implies (d) implies (b) implieé (a);

(b) implies (c). If F is closed in § and U = S \F
then M, (F) =" K.(5) = U, (0) —=> A(S) = p(U) = J(F).
If F is any closed set and U is any open set then
Ao F W 0) = U (F\U) + Ma(V) —> m(F\D) + 4 (D) =
/((F VU), Similarly FA U= (F U UN(F\U) VW U\F)]
implies that Iun(F N U)~> /u(F N v).

Let £ be a real valued bounded 1l.s.c, function, Then
{s : £(s) > a} is open and {s : f(s) < a} is closed for all
real numbers a, If a <b and B= {s :.a < f(s) < b} =
{s : a<f£(x)} N {s : £(s) < b} then /qn(B)_.)/,((B). If

€ > 0 then choose real numbers a.l,,"-,am such that al <

Ul BEl o <2y and 0< 2, -8 <€/ forl<kg
m-1. Put A = {s : g8 <f(s) < g )} for 1 <k {m-1 and

no1 A .
g(s) = E a,kfXAk(s). Therefore Sgd}(n—) Sgdlu. and

s - fuw < €/4 (see the proof of Lemma 4,11 for a similar
argument), Assume ./“nu <1 for alln > 1, and let N

be an integer such that ‘ gd,An - S'gd/,(l < ¢/2 for n > N,
Thenl rd,‘n - jf% l gl (f—g)d(/A -,\n) | + ls‘gdlnn -
S:gd,,\ < -fr ul"/‘nl + -g- £ € for all n > N; that is,
Sfd/{n-'-b ' fd}( . Since every l,s.c. function is of the

~ form f, + 1 £, where fi, f, are real valued 1,s.c, functions

we have proved that (b) implies (c).
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(c¢) implies (d). Clearly (c) implies /An(U) —> J (V)
for every open set since the characteristic function of an
open set is l.s.,c. In particular, this holds if U is an
open [/An]-quarrable set, Hencé/dn-—a/l& R-weak =
(Theorem 4,10) and so (i) and (ii) hold. Assume that

"/An“ £ 1, Also, the proof of the general case will
quickly follow from the case where /( = 0 if we make use
of the outer regularity of /t( . Hence, let us also assume
that)&, = 0,

‘Mo prove (iii) let K € S be compact and € > O, By
Lemma 4,1 we may assume that K is a G§ set. Combining
the ,8 -~equicontinuity of { /An} with Lemma 4,3, we obtain
an open {lu }-quarrable set W € S such that W~ is compact,
U‘nl(s\w ) < €/2for alln>1, and K € W. By Lemma -
3.1 S, = W \K is an open G‘ -compact subset of W, Let
'Dn be the restriction of/k o to 8y (i.e., ), n € M(Sl)),
and let f e C(S;) be a real valued function, If T is the
extension of f to S such that ¥(s) = O for s £ S; then let
g(s) = l%m_)iz;f F(t) for all s € S. By Theorem 1,8 g is

1,s. C.s and since W\K is open and T is continuous here,
g(s) = f(s) for s € W\K Also S\ W~ is open implies g(s)
= O0Tfor s £ W, From (c) and the fact that Vl |\

0 for n > 1 we have S £49)_ = 'S‘gd a2 0.

mat is, v n—-) o (f-w_ea.k *) in M(Sl). Since Sl is a
6 -compact space our main theorem implies.the existence

of a cémpa.ct set C C Sl such that h)n] (sl\ C) £ €/2 for
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n>1, Let V=5\C; then V is open, K € V, and W(V\K)
= YAl S\ + s\ ©) < e
(@) implies (b). Again, by the outer regularity of
/( we may a.ssume/u = O3 also we can suppose that ‘/( n“ <
1 for all n > 1, We will show that /An(F)—9 O for all
closed sets F. From this it follows that if U is open
then M (V) = fA(5) - /un(s\ U) = o.
 Fix the closed set F ¢ S and € > O, Since {/(n} is
P-equicontinuous there is a compact set.K__c S such that
|/An|(s\ K) < €/2 for all n > 1. Therefore F N K is
compact and by (iii) there is an open set V2O F /) K with
Wnl W\ (F A K)) <e/4 forn>1, Let f ¢ C(S) be such
that 0 < £ <1, £(F (VN K) =1, and £(s) = O for s £V,
men | W, (™) < |pa® A 0|+ [P N N1l <
\ijn Kd}‘n\ + l/‘n“s\K) < \S(‘XF r\K"‘f)d/"n\ +
‘ fd/&n‘ + €/2. But f(s) =XF A K(s) =0 for s gV
and £(s) = F A x(8) =1 for s € F N K. Thus
“\(1F N X 'f)dﬂn\ \ SV\F N de/" n\ < “i‘““‘
Pn\ (V\(F N K)) < /4 for all n > 1. Also £dy > 0
by (ii) and so there is an integer N such that for n > N
'Y:f‘d /“n\ £ €/4. Combining these facts we have that
"(n(F)\ < e forn >N,

(b) implies (a). Clearly we may again assume /\ =0
and u/.(nl <1 for all n, Fix a Borel set A and an € > 0O,
S

There exists ‘a sequence {Kn}“ of compact subsets of
. n=

such that K, & K ., & aand |ad(a\K)) <2 for 1<k
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<n and n 2 1. In fact K exists by inner regularity. °
If-Kl, "',Kn exist then by regularity there is a compact

set C C A such that \,“kl (A\C) < 37 for 1 < k < n+l,

.o n+l
Let lg“_l = Kn Vv %:{Ck' This easily completes the induction

and establishes the existence of the sequence (k3.

-]

If F = HK“ then F < A and l/(n\ 8) = |gky| (P
for all n > 1, We have already seen that (b) implies (d);
therefore for each integer n > 1 there is an open set V. DD
1l\n+1 :
such that \'/ < € (35 for k = 1,2,°°-,
% nat M| (V\ %) < € (3) .2,

Let U = Ill__-_{vn; then U is open and FC U. Also |M]| (V\ F)

- MK \ED) < P ONED < o B gor

k > 1, Thus |}Ak|(U\F) = M (nL=Jl(Un\F)) <

,é‘f‘k\ (vn\r) <e ngi.(%)nﬂ = €/2 for all k > 1. But
,An(U) -n O and sO there is an integer N such that for
n>N ' n(U)' £ €¢/2., Therefore if n > N, “{n(A)' =
R < TRAE) - py @] + IR < e anap ;=>0
‘weakly by Lemma 4,11, |

This completes the proof.
REMARKS. Suppose (M)

(-]

R are elements of M(S)'
aet” P

such that (a) {,An} is'P -equicontinuous, (b) {/l(n}
clusters to /A P -weak *, and (c) for every compact set K
and € > O there is an open set V = K such that V‘n\ (V\ X)
£ € for alln > 1. Then, as in the proof above .that (a)
implies (b),.we‘g‘et‘ that )An(U) .E:.I’_, (U) for e{rery open
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set U, Also, as in the proof that (;:)) implies (a.),. we
get that [,‘kn} clustero' to/k weélcly.

Using these comments we obtain the following known
{(but rephrased in our terminology) result on weak
compactness,

THEOREM 4.13. (Grothendieck [19,p.146]) If H & M(S)

then H "J.s‘wea.kly conditionally compact if and only if (a)

_H is IB -equicontinuous, and (b) for every compact set
K¢ S and € > O there is an open set V =K such that
'N {V\K) < € for all }4 € H,

Proof, Suppose H is weakly compact, Then H is
R-weak * countably compa.ct and hence 'B -equicontinuous by
Theorem 4,9, If (b) does not hold then there is an € > O
and a compact set K such that for every open set VD K
there is a M € H with |Iu| (VY K) > €. From this we obtain

P
a sequence [('h n’vn))n=l where (i) }An-e H, V, is an open

set containing X with V" compact and contained in V_ for

1
n > 1; (i) |,(k|( Al \ X) <s5r for 1 < k < n; and (1ii)
\Fnl (Vn\ K) > € for all n > 1, The existence of this
sequence is established by induction in a manner similar
to that used in several previous proofs. Since H is
wea.kly compact the Eberlein-Smulian theorem (1,15) implies
that } has a subsequence } such that —
, { ,An Dseq { /(nk | ,unk ,u

weakly for some € M(S). Now if K, = QV - then is
, s | 150 W 5

compact by (1) and K & Kl.' By the preceding‘ theorem there
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is an open set W D K, such that |M_ |'(W\Kl) < € for all

Jn But by (i1) |} | (X\ K) = 0 for all n > 1 and so
ll' ‘(W\K) < e foralln. Also K, = Qvn ¢ W.implies

there is an integer N such that VI}C:W Hence if nk >N,

KV, é: W. and ].';...\nk\ (v%{\;x_)g j[/;n_'ll(w\x)_ge,_, contradicting (iii),

Suppose that H satisfies conditions (a) and (b);
by Theorem 1,15 we need only show that H is weakly count-

- ably compact, Therefore let {/An} be a sequence in H, By
(2) H is p -weak » countably compact and so there is a
measure M € M(S) such that }An_.c..l.a R ,B-wea.k *. But
from the r.ema.rks‘ following Theorem 4,12 we have that
,l.n _:J;;,/A weakly, and the proof is complete,

A few comments on the hypothesis of the theorems of
this chapter may be in order, In the statements of many
of our conditions we assume that a sequence { /ll o) converged
‘B-wea.k * and also that { /Ln} was IB -equicontinuous, If S

is paracompact then the /B -equicontinuity of { /«n} is

superfluous in virtue of Theorem 3.7. Furthefmore it is

an open question as to whether or not a /3 -weak * éonvergent

sequence is F -equicontinuous (note that in M(.Q.o) every
'IS -weak * convergent sequence is ,6 -equicohtinuous even

. though Theorem 3.7 does not hold for _Q- ).
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CHAPTER V
VECTOR VALUED FUNCTIONS AND MEASURES

This chapter may be viewed as an appendix, in so far
as it is concerned with generalizations of some of the
 preceding results, In particular we show how the strict
topology can be introduced on the space C(S,E) of bounded
continuous vector valued functions (see [12] and [36]),
and we will indicate that many of the properties of c(s)g
hold also for C(S,E)P . The principal endeavor of this
chapter will be to show thaﬁ the adjoint space of C(S,E)f
is a certain space of vector valued measures. This result
has already been obtained by Wells [36], but we will give
a presentation based on the theory of topological tensor
products as originated by Grothendieck [20]. Our approach
will be to repfeseﬁt C(S{Eyg as a certain topological
tensor product, and apply a general theorem on adjoints of
tensor products, After this we wili state some results
on extreme points similar to Theorems 2.14% and 2.15.
Finally, we will éonclude the chapter with some results of
ours on weakly compact aperators,

If E is a locally convex topological vector space, we
will denote by C(S,E) all those continuous functions f from
S into E such that £(S) is a bounded subset of E; i.e., for
every ccnfinuqus semi-norm (c.s.n.) p on E,

85
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sup{p(f(s)) : s € 8} < w. A function £ in C(S,E) is in
CO(S,E) if and only if f vanishes at infinity; i.e,, if
and only if for every € > O and each c,s.n. p on E

{s : p(£(s)) > €} is compact.

The uniform topology on C(S,E) is defined by the
semi-norms .." o’ where p ranges over the continuous
semi-norms on E and, “f||p = Sup{p(f(s)) : s € S} for
all f ¢ C(S;E).. Note that if E = § = the complexes then
C(S,E) = C(S) and the uniform topology on C(S,E) is the
uniform topology on C(S). It is easy to see that C(S,E)
is unifdrmly‘complete if and only if E is complefe. Also,
if {E\ is the completion of E then the uniform completion
of C(S,E) is C(S,%). Hence we will always assume that E
is complete, If p is a c.s.n, on E and @ e C (S) then let
Vpﬂ = {f € C(S,E) : Hf¢“p < 1}. The strict topology on

- C{S,E).is thetopblogy which has as a neighborhood subbasis
for the origin all the sets of the form Vb¢, where ¢ is
in CO(S) and p is a c.s.n. on E, Hence a net {fi] in
C(S,E) convergés to zero strictly if and only if ¢fi-—> 0
uniformly for all # € C_(S). o
The space_C(S,E%ﬁ has many of the properties enjoyed
by C(Sbe . In particular C(S,E%@ is complete ahd CO(S,E)
islg--dense in C(S,E). The proofs of these and other
properties can be found in Buck [12], or they'maylbe proved
by rephrasihg the analogpus pioofs in Chapter 1I.
.Before proceeding we will present the fundamentals

from the theory of>tenéor prbducts. If E and F are vector
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spaces and E', F' their algebraic duals then let B(E',F')
be the space of bilinear functionals on E!' X F'., If

X € E and y € F we define the element x ® y of B(E',F')
by x® y(x',y') = <X,x'><y,y'> for all (x',y') € E' X F',
The tensor product E & F of E and F is the linear span

of (x® y:Xe€E, yeF}in B(E' F'). Hence, if (x,¥,)

"€ E X Fforl(i(nthenb-—Zx ® y; means b(x',y')
i=1

= .;<xi,x'><yi,y'> for all (x',y') € E!' X F!',
=1

LEMMA 5,1, If b e E® F and b £ O then there exist
) I
(x;,¥;) € E X F, 1 <1 <n, such that b =in® y; and
S oi=) )

[xl, coe ,xn.] and {yl, coe ,yn} are linearly independent in
E and F respectively.

v n
Proof. Suppose that b = ? x5 D Yy and that the x,

are not linearly independent. Then X, = ; a,;x; for some
=1

: n- n-l1
}sc_alars 8ys***,8, 1. Hence b = g X; @ ¥; + (Eaixi)®
n-1

- Ne
Iy = %xi (4] ¥y +.iz_;xi %) (aiyn) =§xi & (yi + aiyn).

Continuing this reduction process we arrive at a set of
x'i which is 1ineaily independent, Hence, assgxrnﬁlthat |
,{xl, veeaXy } is._linearly independent, If y = %a‘iyi then
by a similar argument b = nZ-l(x +a;%x)) @ y; and

_{xl.+ alx' . ,xn 1+ e 1%, } is linearly independent

since [xl,f--,xn}‘ is, Continuing in this manner we arrive
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af a éet of yi' which is linearly independent, This
concludes .the proof, a

Now let E and F be locally convex Hausdorff spaces,
If b € E& F is such that b(x*,y*) = 0 for all x* € Ex,
y* € F* then b = 0, In fact, if b # O then let b =
izlxi vy ¥y where the Xy and y_,L fprm linearly independent
sets in E and F respectively. By the Hahn-Banach theorem
there exists x,*,++,x * € E* such that for each J
<xi,xj*> =0for 1 £ Jandlfori=J, Hence if 1 < J <
n then O = b(xJ*,y*) = <yJ,y*> for y* € F¥, Thus ¥y = 0
for 1 £ J<n and so b = 0, Thus we need only consider
E @ F as a subspace of the space of bilinear forms on
Ex @ F*, Also note that if b € E @ F and both E* and
F* have their weak * topologies then b ¢ E* () F*¥—>¢ is
separately continuous,

The biprojective or biequicontinuous topology X 6n

E @ F is defined by the semi-norms p(b) = sup {\b(x*,y*)\:
x* € P, y* € Q} where P and Q are arbitrary weak * closed
equicontinuous subsets of E* and F* respectivély. We will
let (E ® F)y denote E @ F with the ¥ -topology and
A . '
E® F be the completion of (E @ F)y .
THEOREM 5.2, (Grothendieck [20,p.12%]) A linear

functional L on E @ F is ¥ -continuous if and only if
there exist weak * closed equicontinuous sets P and Q
contained in E¥ ‘and F* respectively, and a méa.sure /L €

M(P X Q) such that L(b) = b(x*,y*)d/‘ (x*,y*) for
| PXQ
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allb € E@ F.

Proof. If L is given by such a measure then |L(b)\
< “’A“ sup { \b(x*,y*)\ 3 X*¥ € P, y*- € Q} and so L is
¥ -continuous.

Let L € (E & F)f ; then there are sets P and Q of
the prescribed type and a constant a > O such that \L(b)\
£ a sup{lb(x*,y*)l: x* € P, y* € Q} = a p(b). Let x € E
and y € F and consider the function f : P X Q-=» § defined
by £(x*,y*) = x @ y(x*,¥*) = <X, x¥<y,y*> for all (x*,y*)
€ P X Q. Clearly f is separately continuous if both P
and Q have their relative weak x topologies. Moreover
f e C(PX Q); in fact, if (xi*,yi*) —> (x*,y*) in P x Q
then 'f(x*,y*) -.f(xi*,yi*)| < |f(x* - xi*, y*)| +
Tetey, var - 79 £ I, o - xy55] konrss |+
sup{|<x,x..*>l : X* € P} |<y, yi* - y*>| . Hence, if c, =

| <y, y*>| and e, = sup{ l<x,x*>| : x* € P} then there is

an io' such that for i > i, |<x, X4 * - x*>| .5 .e/2c_.L and
|<y, yy* - v | < €/2c,. Therefore if i > i then
‘f(xi*,yi*) - P(x*,y*) ' < € and so ‘f‘is in C(P X Q).
Clearly we have that each b € E @ F defines an element of
C(P X Q) in the same manner. Thus we can define a linear
mep T : E@ F—>C(P X Q) by T(b)(x*,y*) = b(x*,y*) for
all (x*,y*) € P X Q. If T(b) = 0 then |L(b)| <& p(b) =
0; so if we set L'(T(b)) = L(‘b), L' is a well defined
bounded linear functional on a subspace of C(P X Q). If
wé 'e'xtende' to all of C(P X Q) and apply the Riesz

| representation theorem, we obtain a measure ,\ € M(P X Q)
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such that L(b) = L'(T(b)) = \f bdm . This completes the
| PXQ

proof,
We will now prove the following known analogue of

the Stone-Welerstrass theorem.

THEOREM 5,3. Let A be a uniformly closed subspace  of
C5(S,E) such that A < A for all g in C,(S). Theﬁ A =
C,(8,E) if and only if for everyis € S A(s) = {f(s) :

f € A} = E,

Proof., Clearly if A = CO(S,E) then the condition
holds. Hence suppose that A(s) = E for all s € S and let
f ¢ C,(S,E). If p is a c.s.n. on E then there is a com-
pact set K € S such that p(f(s)).g-% for 5 £ K, If 5, €
K then, by hypothesis, there is a function g € A (g depends
on so) such that g(so) = f(so), By the continuity of f and
g there is an open neighborhood U of 56 such that
p(£(t) - g(t)) < 5 for all t ¢ U, From this and the com-
pactness of K we obtain a finite open cover {Uj,++-,U }
of K and functions g;,°**,g, € A such that p(f(s) - gi(s))
S_%-for s €U, and 1 <1 <n, By Theorem 1.6 we obtain
functions ﬁl,--;,ﬂh € C.(8) suchnthathoig 2, <1, ¢i(s) =

Ofor s gU,, > F.(s) <1land 2 _g.(s) =1 for s € K,

Let g(s)'= %Eiﬁi(s)gi(s); by hypothesis #;g; € A for 1 <1
< nand so g € A, .
It s ¢ X then|g(s) - £(e)| <[4 ()1gy () - 2=

But if s € U; p(gy(s) - £(s)) <3, and if 5 £ U; then
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#;(s) = O. Thus the above sum is a convex combination of
elements of {x : p(x) < %’-} which is a convex set, This
implies that p(g;(s) - £(s)) < 3- < 1. If s £ K then g(s) -
£(s) = Zﬂi(S)[gi(S) - £(s)] + (;ﬁi(S))f(S) - £(s).

But p(-f(s)) 5-3- and a = .Zlgi(s) < 1 implies p(a £(s)) <

i= .
Z. If a=0then §(s) =0 for 1 <1< n and so p(g(s) -
£(s)) = p(-£(s)) <2< 1. If a> 0 then ;nlgi(s)[gi(s)-f(s)]
- a3 10,() (ay(s) - 1)), But 2 24 (6) = 1 ans

a < 1 implies that this last expression is in {x € E :
p(x) _{ %’-]. Therefore p(f(s) - g(s)) < 3 « %‘-S 1 for all
s € S, Since p was an arbitrary c¢,s.n., we have that A
is uniformly dense in C_ (S,E) as well as closed.> Thus A =
C,(5,E) and the proof is complete.

COROLLARY 5.4, The set of all functions g in C_(S;E)

| of the form g(s) = Zin(s)xi, where ¢ € C,(8) and x; € E

for 1 < i < n, is uniformly dense in CO(S,E).
We define a map T e 5) ® E—>C(S,E) by
T(Z fi ® xi)(s) = Zfi(s)x for s € S, To see that T

is well defined 1et ?—fi (] Xy = O0; if s € S and X* € E*
then 0 = Z; £, (8)<x,%%> = <Z: £, (s)x;,x*>. Since x*
i= i=1 :

| | =
was arbitrary we have that Zi’i(s)xi = O for all s € S
' i=1

and so T is well defined, We will actually show that T
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| induces a homeomorphism between C(S)F @ E and C(S,E)ﬁ .

LEMMA 5.5, If Q € E* is equicontinuous and p is
the gauge of ° C E then p(x) = sup{|<x,x*>| : x* € Q)
for each x in E,

Proof. By definition p(x) = inf{3 : a >O and ax e U
= @°}. Therefore let a > O with ax € U, If x* € Q then
|<a.x,x*>| < 1 and so J<x,x* >‘ < %. Hence q(x) =
sup{l(:i,x*>| s X* € QJ _<_% and since a was arbitrary we
have that q(x) < p(x). If x € E such that q(x) < 1 then
x eU=Q°; thus p(x) < 1 and we have, by a property of
semi-norms, the inverse inequality,

THEOREM 5.6. The map T : (c(s)ﬂ & E)Y-—) C(S,E)g

is a topological isomorphism onto a dense subspace of

C(S,E))g Consequently C(S,E)f is topologically
isomorphic to C(S)/g @ E.

Proof. Let b = Zfi & x; ¢ C(S)F' ® E and suppose
that T(b) = 0. If b # O we may suppose that the x; are
all linearly independent, But then z-fi(s)xi = 0 for all
s € S implies fy(s) = «-+ = f (s) = O for all s € S,
Therefore b = 0 and T is one-one, Let J ¢ CO(S), g >0,
and let Q be a weak * closed equicontinuous set in E* 'with

'p = the gauge of Qo. If x* € Q is fixed then the map
su—-)Zf‘i(s) <x;,%x*> is in C(S) and so
sup{ \S( Zfi<xi,x*>)d/\| /A € V¢ } =
sup{ ‘Zf (s)d(s) < ,x*>| : s € N(g)} by Corollary 1,18
and Theorem 2,15, He(*nce Py x 2L x)=
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supf{ \Z( Sfid/A) <xi’x*>\ : '/AAe v¢°, x* € Q) =
sup[lﬂ(s)"Zfi(s) <xi,x*>| : X*¥ € Q, s € N(@)} =

sup p(#(s)Xfi(s)x;) : s € S} by Lemna 5.5; i.e.,
ngQ(zfi ® x;) = “ g Zfixi "p‘ It now quickly
follows that T is a homeomorphism,

Finally, by Corollary 5.4 the image of T contains

-a uniformly dense subspace of C_(S,E). But C,(S,E) is
ﬁ-dense in C(S,E) and so the image of T is p -dense in
C(S,E). Since T is a linear homeomorphism it extends to
the completion of (C(S)’ @ E) ; i, e., T can be extended
to a ‘topological isomorphism of C(S)f @ E onto- C(S,Ek
This completes the proof.

In a similar manner one can prove the following
theorem.

THEOREM 5.7. (Grothendieck [20,p.90]) The map T :
(c,(8) ® E)*——b C.(S,E) is a topological isomorphism
onto a dense subpsace of C_(S,E). Consequently, C (S E)
with the uniform topology is topologica.lly isomorphic to
C, (s) @ E.

'REMARK, If E is a Banach space then the ma.oping T
in Theorem 5.7' becomes an isometry if (CO(S) ® E)Y is
given the norm Mol = sup{‘b(/g,x*)\ : g€ ball M(S),
x* € ball E*}, .

COROLLARY 5.8, If S and R are locally compact
Hausdorff spaces then C,(S,C,(R)) = C_(S) @ CO(R) =
C,(S X R). |
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"Proof, By.the 'pieceding theoz:ém and the remark :
following it we have the first equality, If we define a
map T, : C_(S) X C_(R)==C_(S X R) by
TZ( Zfi ® g;)(s,r) = Zfi(s)gi(r) then it is easy to
show (using the Stone-Weierstrass theorem) that Ty is an
isometry onto a dense subspace of CO(S X R). Hence we |
can get an isometry of G (S) i@ -C (R) onto C_(S X R).
This completes the proof,

Following Gil de Lamadrid [15], we let N(S,E*) be
the space of ;neasures» /A defined on the Borel sets in S,
having values in E*, and such that: (a) for each X € E,
/AX(A) = <x, M(A)> for all A € Borel (S) defines a measure
Mx € M(S); (b) there is a ¢,s.n. p on E and a constant
¢ > 0 such that for every Borel partition [A veo ,A } of
S and each finite sequence {a ,-n,a.n} of unimodular .
scalars, sup[l(x, Zai,.\(Ai)>| : p(x) <1} <ec. We let
| }\II equal the smallest of all such constants ¢ and call
it the p semi-variation of A If A € Borel (S) and Me
N(S,E*) then let ,"l (A) = sup{ lZ(xi,/M(Ai)>| 2 p(xy)
< 1 and {\Ai} is a finite Borel pa.rtition of A}, Then

""p is a countably additive measure on Borel (S). We
catl |R|) the p-variation of of M, and let M(S;EX) be
the collection of all those J € N(S,E*) such that \ ’\\ (s)
< « for some c.s.n. p on E. If,ke M(S,E*) and "‘ (S) <
© then Ipl € M(S)., |

If £ ¢ C(S,E) and M € M(S,E*) then we define
JART to be the limit (which exists) of sums

m Reproduced with pérmission of the copyright owner. Further reproduction prohibited without permission.



95
n n ' :
<f(s;)s JA(A;)>, where {A,] is a Borel partition of
= 1 1 1 |

S: ei € A;, and the limit is with respect to successive

=1

refinements of the partitions, If p is a c.s.n, on E

“such that |}A|p(s) < = then ,Sd’tfl < gl p lNP(S)'

THEORME 5.9. A linear functional L on C(S,E) is

ﬁ-continuous if and only if there is a unique measure/L
in M(S,E*) such that L(f) = j‘dﬂ f for all £ € C(S,E).
Proof., Let /( € M(S,E*) and let p be a c.s.n, on E
such that M|, (5) < =. Then l/‘lp ¢ M(S) implies, by
Lemma 2,8, that there is a ﬁ € C,(8), # > 0, such that
'ﬂl vanishes off N(#) and 7 I I € M(S). Therefore, if
= S';zd j}dp < » then |L(£)| = “"d/Af‘— 'Sd(ﬁr\)(ﬁf)‘
<clles] ps and so L e c(s,_E)ﬁ |
Conversely, if L € C(S,E)F * gnd T (C(S)F D E)y
* —,-)C(S,E), is the map described in Theorem 5.6 then LoOT
is a Y -continuous linear functional on C(S)p ® E. By
theorem 5,2 there is a '3 -weak % closed 'B-equicontinuous
subset of M(S) , which we may suppose to be V¢° for some
g e co(_S), # > 0, a weak » closed equicontinuous set ¢ &
E*, and a measure Ae M(V,° x Q) such that L( Z£;%,) =
Lo £, @ %) = S( Zf, @ x;)dA. We may assume
AN <2 ana v¢°c ball M(S). Let p = the gauge of Q°.
Now for each A € Borel (S) and x € E let <x,ﬂ(A)>
X V(a) <x,x*>d)\(9,x*) Obviously /L(A) is a linear
functional on E. Furthermore ,M(A) € E*, for if {xi} is a .
net in E such that xi---) O in E, then xi-—-—)o uniformly on
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Q since "Q, is equicontinuous. Hence, 'if' € >0 there is an

i such that for 1 > i_ |<x,,x*>| < e for a11 x* ¢ a.

Thus for i > i |<xi,/A(A)>‘ \S\)(A)(x ,X*>d )\ (-O,X*)‘
S\‘D\(A) |<xl,x*>\d|)‘\(9 ,x*) < €, so that‘(xi,,A(A)>|

—>0., If (& }® is a Borel partition of S and X; € Q°
T | -

for i._<_ 1 < n then ‘Zn<xi,/&(A.) >| =
ZSV(Ai) <X. ,X*>d/\(17 x*)\
Z Slvl(Ai)p(xim M@ .x#) < ;’f:l j'lv«Ai)d 1AL (9 ,x%)

IVIIAR < WM < 2, so/A is of bounded p-variation,
We must still show that I“x € M(S) for all x € ‘E. To see
this let x € E be fixed, f a real valued element of C(S),
€ >0. Let a),***,a, be real numbers with a; = - £l _,

=flzll ,, and 0 < a5 - & < &/2 for 1 < k < m-1,
Put 4, = {s : al<f(s) <a2} and A, = {58 : g <f(s) <

a’k-&—l} for 2 { k {m-1; and let g = S&K’XAK Then

{Ai]r.1 N is a Borel partition of S and “g - f“a° £ e/2,
1=

If Sx € Ak then

mz-lf(s )y ¢ )‘ < IS[S (£-g)dV ] <x,x*>a \ (¥ *)‘
2 Al | £ g BT < ¥
‘S( ssgdﬂ )<x, X*>d A (-o,x*) - ijLf(sk)/bS((Ak)\s
m-1
£200 +| [ & 1o - 260019 B> X )| -

£ p(x) *\é‘ak - vf<sk>/«x<AK)\ <Ep(x) + -a-g | o).
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But if bk is a unimodular scalar such that

b <x Ra)> = | < piay)> | theng et =
‘m-l

El <bkx’/‘\(Ak),>\ < p(x). Therefore

m-1 ' _
| 503 zevrcemma h @50 - & 2(s) hele)| < € p0)
and so Sfdﬂx exists and 1is equal to

S(j fd9)<x,x*>dk(0 »X*), But if {fi} is a net in C(8)
S

such that £, —» O (B ) then £; @ x =>0 in (C(S)p ® E)y,
and so L (f) = L(f.x) defines an element L, € C(S)’ * =
M(S). But L(f) = L(#+x) = [ram, and so M e u(s).
Therefore /le M(S,E*). Also if f; € C(S), x; € E for
1<1<n, then L( T £,x,) = ZL(£yx,) = Zfid,uxi =

S@,&(Zrixi). ‘But T(0(S) @ E) is dense in C(S,E)F
and both L and A are f—continuous. Hence L(f) =
Sd/A f for all £ € C(S,E) and the proof is complefe.
This same method oi‘ proof could have been used to
obtain the following generalization .of the Riesz repre-
sentation theorem (see [15] and [36]).
THEOREM 5.10. A linear functional L on C,(S,E) is

bounded if and only if there is a measure A € M(S,E*)
such that L(f) = Sdpf for all f € CO(VS,E*). Also if p
is'a c.s,n, on E such that ],A‘p(s) < @ then VAlb(s) =
sup['S-d,‘\f‘ : |l fl\p. < 1}.
- REMARKS., A different approach could have been used
- : to obtain 'meorem 5.9. We 'could have proved Theorem 5,10
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first and then used it,‘as we used the Riesz représéntationA
theorem for the proof of the scalar version, to prove
Theorem 5.9, This approach was used by Wells [36], For
more information as well as a pfoof that C_(S,E)* =
M (S,E*) see [15].

— It might be asked whether or not a space of the type
C(S,E) is actually a space of the type C(Q). If E = C(R)
and S and R are compact then Corollary 5.8 says that
C(S,E) = C(Q) where Q = S X R, Theorem 5.14 gives a
partial converse to this result, Before proceeding, we
state two theorems on extreme points., Their proofs can
be transcribed from the proofs of their scalar valued
analogues, Theorems 2.1% and 2,15, and hence will not be
repeated,

THEOREM 5.11, If E is a Banach space then a measure

,A_in M(S,E*) is an extreme point of the unit ball of
M(S,E*) if and only if M= ,J}S)x*, where x* is an extreme
point of ball E* and s € §. (If V € M(S) and x* ¢ E* then
/A = Y x* means ,L(A) = Q(A)Jﬁ*' for all A € Borel (S)).
THEOREM 5,12, If E is a Banach space, g € CO(S),
and Vy = (£ € C(S,E) : | g(s)2(s)]| <1 for 211 s € s}
then K e M(S,E*) is an extreme point of v¢° =
{ N e M(S,E*) : l,fd) f‘ <1 for all f € Vy} if and only
if r&: Z(s) S}S)x*, where x* is an extreme point of ball
E* and s € N(g),
LEMMA 5,13, If S is compact, E is a Banach space,
and g the extreme points of ball E*, then the set c;f
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extreme points of ball M(S,E*) with the weak * topology
is homeomorf»hic to S X @ under a natural identification,
Proof, Let A(S) = {S(S) : s €.S} and define
h:: Sx £ —-)A(S)e. = {S(S)x* : s €8, x¥ ¢ € 3} vy
h(s,x*) = {(s)x*. Then h is clearly one-one and onto.
Suppose [(Si’xi*)} is a net in S x& which converges to
(s,x*) e 5 x& . If f ¢ c(s;E) then £(s;) —> £(s); i.e.,
“f(si) - f(s)“—> 0. But |<f(si),xi*> - L£(8),x*> \5
l<£(sy) - £(s)uxyx> | |<e(s)myx - x| < f2(sy) - 26
+ \<f(s),xi* - x*>\ and both these terms can be made

arbitrarily small, Thus S(s )xi* — S(s)x* weak * in
i

M(S,E*) and h is continuous.
Consider n~t : A(s)&’ - sx& . 1Ir {S(s )xi*}
i

is a net in A(S)€ which converges weak % to g(s)x*,

then 1 @ x € C(S,E) for all x € E and so <X,X;*> =

<1 @ x, S(s )xi*>—) <1 @ x, S(S)X*> = <X,x*>, Therefore
i

X, *—pXx* weak * In E*. If § e C(S) then |4(s;)| < |2l ..

for all i implies there is a ¢ € C such that §(s,) =Siy .,

Hence, '¢(si)<x,x_:l*> - c<x,'x'*>‘_<_ |<x,xi*>| ‘ﬁ(si) - c\ +

|c“<x,xi* - x| < “x“ \ﬁ(si) - c\ + |e] \<x,xi* - x*>‘ .

If ¢ £ 0 and € > O then some io’ \<x,xi* - x*>\ < e/2¢c

for 1 >1,. Also, ¢(si)_.°_l.>c implies there is an 1 >

i, such that |¢(si) -c I < €/2 |x|| . Therefore it follows

that #(s; )<x,x, %> .&)<x?x*>c. If c = O then §(s;) <l 0

still gives this conclusion. But @(s;)<x,x;*> =2 F(s)<x,x*>

since # @ x € C(S,E), and so @(s) = c. Thus there is
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one cluster point of {¢(si)} in the closed disk of radius

izl o in ¢, namely @(s); this implies B(s;)—>98(s).

Since @ was arbitrary we have s;—> s and so n-1

is also
continuous.

~ THEOREM 5.14%, If S is compact and E is a Banach

space then C(S,E) is isometrically isomorphic.to C(R) fof
some compact space R if and only if there is a compact

- | space Q such that C(S,E) is isometric to C(S,C(Q)) =
o(s X Q); i.e., R .is homeomorphic to S X Q.

Proof, If. . the condition holds then let R=S X Q and
we are done, Now suppose that T : C(S,E)—> C(R) is an
isometry. Let é‘ = the extreme points of ball E* and let
D (s) ena A (R) be as in the proof of Lemma 5.13, If
T* is the adjoint of T-and [® = the unit circle in § then
T* defines a homeomorphism between [ A(R) and & A(S).
Applying the preceding lemma we have that S X€ and
R xf‘ are homeomorphic., Thus R and f' are comi:act
implies S x £ is compact and so & is compact.

Now (8 ,F ) is a compact transformation group where
the action of [' on & is defined by multiplication [28].
If we define X*~w y* (x*,y* € € ) to mean that x* =
eiey* for some €, then ''py'' is an equivalence relation

- | on'e ‘and the equiva.lence ‘classes are the orbits induced
by P on 8 . Hence, if Q = g’u then Q is a compact
Hausdorff space. Let p : £ —> Q be the natural map.

If r € R then T*(J'(r)) = S(o.(r))x(r)* where 6 (r)

€ Send x(r)* e £ , Define H: R~>S x Q by H(r) =
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[€(r)s p(x(r)*)]. Since A(S)® = A(S)x &  and
projections are continuous, we have that the map r @ (r)
of R into S is continuous. Also, r»>»p(x(r)*) is con=
tinuous and so H is continuous, If H(ry) = H(r,) then |
x(rl)* = a.x(rg)*‘ for some a € ¢, Val = 1. Hence T* (S(rl)) |
= S( ‘-(rl))x(rl)* = S.(G'(re)) ax(r,)* = aT*( S(re)). But

T* is one-one implies r,=r and a = 1, Thus H is one-

2
one; also, since T* is om:o H is onto., But R is compact
and so H is a homeomorphism, Therefbre C(S,E) = C(R) =
C($ X Q). This completes the proof.

We will end this chapter with a cha.ra.cte.rization of
the weakly compact operators from a Banach space E into

M(S). An operator T : E —3M(S) is weakly compact if and

only if T (ball E) is weakly conditionally compact in
M(S) (see [14,p.482]). |

if /A € N(S,E*) and we set T(x) = My Tor all x ¢ E
then T is a bounded linear transformation from E into
M(S), and hrl = ",‘“ » the semi-variation of,\ . If,
conversely, T is given and T* : M(S)=—p E* is its adjoint,
we may find a measure /‘ € N(S,E*) such that T(x) = )(x.
This is accomplished by letting /L(A) = T*(X a) for a1l
A ¢ Borel () (here X, € M(S)* and <¥,X,> = V(A) for
a1l < € M(S)), Thus the space of bounded linear trans-
formations from E into M(S) is N(S,E*). The details of the
proofs of the above statements may be found in [15] or

[14,p.498]. Since M(S;E*) is a subspace of N(S,E*) we
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might ask if the measures of bounded variation can be
characterized by the linear operators which they represent.
The answer 1is yes and is given by the following result,

THEOREM 5.15. If E is a Banach space then a bounded

linear transformation of E into M(S) is weakly compact if
and only if it can be represented by a measure in M(S,E*),
Proof, Let T(x) =/Lx and suppose M is of bbunded
variation. Hence |’l|(A) = sup{ =2 “/-I (Ai)n : (4,1 is a
finite Borel partition of A} defines an element |,A| of
M(S). We will apply Theorem 4,13 to show that { Mx ¢
I x I < 1) is weakly conditionally compact in M(S). 1If
€ > O then there is a compact sét K & S such that Ipls\x)
< €. It is easy to see that I/lx‘(S\K) <Al \M(s\‘ﬁ);
Selbxf. Tus (M, = x| <1} is F -equicontinuous, If
K is a compact subset of S and € > O then there is an open
set V D K such that uu\(v\K) < €. Thus if § x|\ < 1,
then \}kx‘(V\ K) < \’\(V\ K) < € and so T is weakly .compact,
Conversely suppose T is weakly compact., Then (14,
p.306] there is a positive measure A in M(S) such that ;
for every € > O there is a § > O such that if A € Borel (S)
and \(A) < § then [P < € for a1l x e vall E,
Therefore if X(A) = 0 then A\ (B) = 0 for all Borel sets
BC A and SO M, (B) =0 for all x € ball E. This jmplies
that | P‘(A) = 03 that is, |,A| is absolutely continuous with
respect to ), . Hence there is a constant ¢ > O such that
A(A) < c implies W () < 1. Since \is bounded there

are at most a countable number of points {silw - such

i=1
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that A({Si}) > 0. Also ?/\({si}) < « implies there is
=1
eo__ .
an integer n > 1 such that ¢ > >_ )\({s.}) =
i=n+l1 1

A({si : 1 >n+l}). Therefore I/l’({si :i>1}) =

n | ' n

2 M + Pl s 2mad) < 21 e 2 WD) <
If 8, = S\{si : 1 > 1} then there is  a compact set

K C S, such that A(S,\K) < c; hence \'\\(so\ K) <1,

Also for all s € K )\([s}) = O and so there is an open

neighborhood U, of s such that )\(US) < c. Since K is

compact we can find open sets Uj,***,U such that K &
m - m

U, end (U,) < e. Therefore K) £ U,) < m.
\Jo, =nd A(ry) < W® <2 (ko) <

Combining these results we get that |’A‘(S) = |}A\([si :

1211) + Jul(®) + |l(S\K) < = and so M e M(S,E).
COROLLARY _5.16. If E is a Banach space then for every

subspace Ey of E there is a constant a = a(S,El) such that .
if T, is a weakly compact transformation from E, into M(S)
then Tl cé,n be extended to a weakly compact operator T of
E into M(S) such that JTi| < alln,f .

Proof. It is easy to see that if Me M(S,E,*)
then B’lll < l,ﬂ (s). Let.Y{l be the space of weakly

compact linear transformations from E, into M(S) furnished

. l .

with the operator norm. Thus Wl is a Banach space and if
U : M(S,El*)—gwl is defined for each/ke M(S,EF) by
U(/L)(x) = Px for all x € E;, then, by the preceding

theorem, U is a one-one linear mepping from M(S,El*). onto
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Wi atso Hugoll = wph < |pL(s), ana so 12
M(S,E;*) has its total variation norm ‘then. M(S,E,*) is a
Banach space and U is norm decreasing, By the open mapping
theorem [l%,p,57] there is a constant a > O such that
Ipl(s) < aIIU(,\)Il =elpll . 1r T € ‘W | then let

P € M(S,E1*) be such that U(R)) = T,. But M(S,E;*) =
CO(S,El)* by Theorem 5,10 and sa L,(f) = %/‘lfV for all
fe Co(S’El) defines & bounded linear functional L; on
C,(S,E;). But C(S,E;) is clearly a subspace of C, (S,E)
and so by the Hahn-Banach theorem there is a bounded linear
functional L on C_(S;E) which extends L, such that \L|| =
Il L. Ir K € M(S,E*) such that L(f) = Sd/ﬁf for all

f e CO(S;E), and T is the weakly compact operator from E
into M(S) represented by M , then i r) = Il < V(\(s)
=0zl = fizl - Wil(s) <almyll. Also if x e E -
and ¢ € C_(S) then ¢ @ x ¢ C,(S,E;) and ¢d/kx =

GP(F @ x) = LB @ x) = L (5 @ x) = jga/‘h.“ Since

m

1

@ was arbitrary we have that lb\‘x = /klx for all x € Ey;

i.e,, T is an extension of Tl and the proof is complete,
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CHAPTER VI
UNSOLVED PROBLEMS

In this chapter we have listed some unsolved problems
and questions, The list is not exhaustive, but is
indicative of our current inferes’c in the strict topology.

l. A natural probelm is td try to characterize
those spaces S such that C(S)/a is a Mackey space (or a
strong Mackey space). This seems rather difficult and at
present there are no approaches which seem promising to
us.,

2, It would be useful to know if C(S)P is a Mackey
space implies C(S)'P is a strong Mackey space., If the
‘answer is yes then we believe that Theorem 3.7 is the
strongest possible result along these lines.

3. Show that if S is a pseudocompact ncon-compact
space then C(Sy is not a strong Mackey space.

b, If C(S)lg is a Mackey space then characterize
those spaces E éuch that C'('S,E),g is a Mackey space.

5. Corollary 4 .8 interests us because of its
similarity with a theorem on metrizable topological vector
'spaces (see [25,p.212]). Can we draw the same conclusion
for the ]B -convergence of a net? That is, if S is
metrizable and {fij is a net in C(S) such that £f,—>0

uniformly on r@ -weak ¥ convergent sequences in‘M(S), then

105
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does fi-—)o (ﬁ )?

6. Ir (M} is a /B -weak x convergent sequence in
M(S) then is {/Qn] f—equicontinuous‘? An affirmative
answer would simplify the hypotheses of the theorems in
Chapter IV, If the answer is negative then characterize
those spaces S for which the answer is yes.

7. Prove a version of the Bartle-Graves selection
theorem ([5] and [27,p.375]) where both domain and range
have weak or weak * topologies,

8, It is easy to see that if N is a norm closed
subspace of ,Ql (and hence weakly or ﬂ -weak * closed)
and E = N4 € £ © then the existence of a bounded pro-
Jection of 11 onto N.implies that E'g is a Mackey space.
Thus Theorem 3,17 and'thevremarks following it prove the
existence of spaces’N such that no bouﬁded projection of
21 onto N exists. The following question presents itself.
If EP is a Mackey space then is it necessary that there
is a bounded projection of 21 onto E/* = N?
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