Louisiana State University

LSU Scholarly Repository

LSU Historical Dissertations and Theses Graduate School

1965

Pruefer Rings.

William Walker Smith
Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://repository.lsu.edu/gradschool_disstheses

Recommended Citation

Smith, William Walker, "Pruefer Rings." (1965). LSU Historical Dissertations and Theses. 1055.
https://repository.Isu.edu/gradschool_disstheses/1055

This Dissertation is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It
has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU
Scholarly Repository. For more information, please contact gradetd@Isu.edu.


https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_disstheses
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_disstheses?utm_source=repository.lsu.edu%2Fgradschool_disstheses%2F1055&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_disstheses/1055?utm_source=repository.lsu.edu%2Fgradschool_disstheses%2F1055&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

This dissertation has been 65—-11,407
microfilmed exactly as received '

SMITH, William Walker, 1940-
PRUFER RINGS.

ILouisiana State University, Ph.D,, 1965
Mathematics

University Microfilms, Inc., Ann Arbor, Michigan



PRUFER RINGS

A Dissertation

Submitted toc the Graduate Faculty of the
Louisiana State University and
Agricultural and Mechanical College
in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

in

The Department of Mathematics

by
William Walker Smith
B.S. in Ed., Southeastern State College, 1961
M.S., Louisiana State University, 1963
May, 1965



ACKNOWLEDGMENTS

The author wishes to express his appreciation to Profeséor
. Hubert S. Butts,"uhder whose direction this dissertation
was written, for his help with this work and his guidance
during the author's graduate work. The author also.wishes
to thank his wife, Billie, for her help in p:eparing the
final manuscript. This work was doﬁe while the author was
under the support of the National Science Foundation as a

Cooperative Graduate Fellow.

ii



CHAPTER

II
IIT

TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . « . .
ABSTRACT & v v & o o o o &
INTRODUCTION AND NOTATIONS
PRUFER RINGS AND EQUIVALENT CONDITIONS
o -RINGS AND PRIMARY IDEALS OF PRUFER

RINGS . . . . .
SELECTED BIBLIOGRAPEHY . . . . . . . .
B I O GRAPHY - L] - . L] L] . L - * * ” L

iii

PAGE

ii

iv

20
43
45



ABSTRACT

In this paper R will denote a commutative ring with identity.
A Prufer ring is a ring R in which the ideals are linearly
ordered in the quotient ring RP for each proper prime ideal
P of R. R is an A-ring if and only if the distributive law
AN(B+C)=ANB+ ANC holds for all ideals A, B, and

¢ of R. A semi-multiplication ring is a ring in which A ©

B and B finitely generated imply there exists an ideal.C

such that A = BC.

In Chapter II the following ten conditions are considered
for a ring R:
I. R is an A—rihg.
II. R is a Prifer ring.
III. R is a semi-multiplication ring.
iIv. If A, B, and C are ideals of R with C finitely
generated, then (A + B):C = A:C + B:C.
V. If A, B, and C are ideals of R with A and B
finitely generated, then C:(A N B) = C:A + C:B.
VI. A = NA®C where the intersection is taken over all
quotient rings of R whicﬁ have linearly ordérea
ideal systems and e and c denote ideal extension

- and contraction, respectively.

Sdv



VII. A(B N C) = AB N AC where A, B, and C are ideals
with one of B or C regular.
VIII. (A + B)(A N B) = AB where one 6f A or B is regular.
IX. Pinitely generated regular ideals are invertible.
X. A, B, and C ideals of R, A finitely generated and

regular and AB = AC imply B = C.

Proofs are given showing that I through VI are equivalent
and VII through X are equivalent. Also, a Prifer ring
satisfies VII through X. Several properties of Prufer rings
are given, including the property that any ring between a
Prufer ring and its total quotient.ring is also a Prufer

ring.

The third chapter deals with the primarj ideal structure of
a Prufer ring. Also, & -rings, which are rings satisfying
the ascending chain bondition.for prime ideals and in which
primary ideals are prime power ideals, are studied. It is
shown if P is a prime ideal of a Prufer ring or of an o -
ring and the kernel of the natural map from R to RP’ denoted

by Ky, iS contained in P® then P™ is P-primary. If P is a

P’
non—ideﬁpotent prime ideal of a - Prufer ring, Q is a P-
primary ideal, and'KP is properly contained in Q then Q is
a prime poWef. An example is given verifying that an o -
'ring is not necessarily a Prufer ring, but an o -ring will

always satisfy the equivalent properties VII through X.



CHAPTER I

INTRODUCTION AND NOTATIONS

The rings considered in this work will be commutative with
s multiplicative identity 1 # 0. The notation will, in
general, be that of [15] with A < B meaning A is contained
in B and A < B‘meaningdA is properly contained in B. When-
ever M is a multiplicative system of R;,RM will denote the
quotient ring of R with respect to M as defined in [15].
If P is a prime ideal, theh we will follow the convention
of using Ry to represent Ry, where M = R~ P. An ideal &
is regular if it contains a regular element. We say the
ideals of R are linearly ordered through A if the following
two conditions are satisfied:
1) If B is an ideal then either A < B or B c A.
2) If B and C are ideals and B ¢ A then either B c C
or C c B.‘

If the ideals of R are linearly ordered through (0) we
gimply say the ideals of R are linearly ordered. In case
R is an integral domainrthis is the same as sayiné R is a

valuation ring.

A Prifer domain is an integral domain R such that Rp is a

valuation ring for each proper prime ideal P of R. Prlifer



domains have been investigated in~detail. In particular if
is knownrthat for an integral domain R with quoctient field.
K the following statements are equivalent:
a) Every finitely generated, non-zero ideal of R is
invertible.
b) R is & Priifer domain. |
¢) If A # (0), B and C are ideals of R such that A
is finitely generated and AB = AC, then B = C.

d) If A, B, and C are ideals of R then A N (B + C)
(ANB)+ (ANC) or, equivalently, A + (B N C)

(A +3B)n (A +20).
e) Every ideal A of R is complete, that is to say,
A = ﬂARv where the intersection is taken over all
valuation rings Rv such that R c Rv < K.
f) Every ideal of R is an intersection of valuation
ideals [16].
g) The Chinese Remainder theorem is valid in R.
Alsd, other conditions have been given by Jensen [8]. Veri-
fication of the equivalence of the above can bé found in

[101, (131, [15], ena [6].

Rings (not necessarily domains) Whichlsatisfy property 4)

are considered in [1] and [5], and are called "Arithmetis—
cher Ringe", or, simply, A-rings. It is shown in [15] that
d) and g)>are equivalent in arbitrary rings. Also, Prufer
domains have appeared in works in Homological Algebra [3]

and [7]. The first part of this paper will be devoted to



the study of these conditions (or their analogues in the

ring case) in arbitrary rings.

Definition 1.1. R is a Prifer ring if and only if the

ideals are linearly ordered in RP for each proper prime

ideal P.

Definition 1.2. A semi-multiplication ring is a ring R

having the following property: if A and B are ideals of R
with B finitely generated and A < B then there exists an

ideal C in R such that A = BC.

If we omit the condition "B finitely generated" in the
Definition 1.2 we have the ordinary multiplication ring of

Krull which is studied in [10] and [11],

Although not all of the conditions a) through g) (or their
analogues in the ring case) are equivalent, we will show the
equivalence of some. In particular, in Chaptér'z we will
prove the concepts of a Prufer ring, an A-ring, and a semi-
multiplication ring coincide. Also, other equivalenf

conditions will be given.

The remainder of this paper is devoted to the study of the
ideal structure in Prufer rings. Primary ideal.étru¢ture |
and dimehsion problems are considered. In Chapter 3, o =
rings are defined and their relation to Priifer rings is

studied.



CHAPTER II
PRUFER RINGS AND EQUIVALENT CONDITIONS

Our first results in this chapter concern Prufer rings.
Specifically, we will prove the equivalence of seversal
properties, some corresponding to those given in Chapter 1
fdr integral domains. Recall that the Chinese Remainder
Theorem is valid in R if and only if R is an A-ring, so in

this chapter we refer only to the latter condition.

The collection of all quotient rings of R of the type Ryrs
in which the idéals‘are linearly ordered will be denoted by
{° . If 4 is an ideal of R, let [ (4) = NA®C where the
intersection is taken over all rings S e L » and e and c
denote ideal extension and contraction, respectively [15;
218]. With this notation we can now state the result we

wish to prove.

Proposition.2.1. In a ring R the following are equivalent:
I. R is an A-ring. |
II. R is a Prifer ring.
ITITI. R is a semi-multiplication ring.
IVv. If A, B, and C are ideals of R with C finitely
generated, then (A + B):C = A:C + B:C, |
V. If A, B, and C are ideals of R with A and I’

4



finitely generated, then C:(A N B) = C:A + C:B.
VI. A = (A) for each ideal A in R.
The proof follows and is in several parts. First we need

three lemmas.

Lemma 2.2, If extension is with respect to a quotient ring

Ry in which A® < B® or B® = A°, then (4 n B)® = A% n B°.

Proof: Suppose A° c B®. Let x € A° n B® = A®. If f is
the natural map from R to RM, then theré exist a € A and
m € M such that x = f(a)[f(m)]_T. Since A® — B® there
exists k € M such that ak = b € B. Therefore, X =
£(ak)[f(mk)]" ! € (A N B)®. The other containment is

always true, giving us (A N B)® = A% n B®.

Lemma 2.3. If R is a ring in which the principal ideals
are linearly ordered, then all of the ideals are linearly

ordered.’

Proof: This is clear.

Lemma 2.4. If Bc< (b,,...,b,) are ideals of R and B =

(by...,0)¢ = (b,)° in Ry, then (4:B)° = A°:B°.

Proof: We always have (A4:B)® < A%:B® so we need only prove
the other containment. ILet x € R with f(x) e A®:B® (£ is
the map from R to RMj; Now B%(x)® = (bn)e(x)e,= (b.nx)e c

©. Therefore, there is a Yn é M such ’chat.bnxyTl e A. PFor

A
each i, 1 £ 1 < n -1, let y, € M be such that by, € (bn).

Set y = Y4Tp e yﬁ. For b e B we have by1 see Y1 E (bn)’



hence byx € A. Therefore yx € A:B, but y € M implies f(x) €
(A:B)®. As m result (A:B)® = a®:38°,

I implies II

Proof: Suppose a and b are in R, an A-ring, and P is a
proper prime ideal of R. Then (a - b) + [(a) N (b)] =
(a,b), hence there exist x ¢ R and y ¢ (a) N (b) such that
a=x(a-Db) +y. If x e P then 1 - x g P. Since |
{1 - x)a:= y - xb é (b) we have (2)% < (b)®. On the other
Jhand, if x g P then bx = ax - a + y ¢ (a), hence (b)®
(a)®. Therefore, the principal ideals of Ry are linearly
ordered, and by Lemma 2.3 the ideals of R, are linearly

ordered.

I implies III

Proof: Suppose R is a Prufer ring with ideals A and C, A
is finitely generated, and C < A. Let B = {x € R |{xA < C}.
B is an ideal. By showing (AB)® = ¢® where extension is
done to R},
over, it is clear that (AB)® < ¢® so we need only verify

for each proper prime P, we have AB = C. More-

-the other containment. Let c € C. Set ¢ = g, and A-=.
(aq,...,ak,...,an), where the a, are indexed so that (a1)e c
el C (ak)e < ... C (an)e. For 1 i <n -1 there'exist

X;5 ¥; in R, with x; ¢ P, such that a;x; = a; ,y;. Let y =
(¥:§Xi)0?=%yi). It is easily seen that y € B and hence
1=1 i=k :

et ) | »
a,y € AB. Moreover, a y = c(?:qxi) and (?tixi) g P imply



(¢)® = (AB)®. Therefore, AB = C and R is a semi-multipli-

cation ring.

III implies II

Proof: Suppose R isvé semi-multiplication ring. ILet a
and b be in the proper prime ideal P of R. (b) c (a,b)
implies there exists an ideal C such that (a,b)C = (b).
Let x,y € C such that ax + by = b, If y £ P since ay ¢
(b) we have (a)e < (b)e. On the other hand, if y & P then
1 -y £ P. Moreover, b(1 ~_y) =gx e (&) and 1 -y ¢ P
imply (b)® < (a)®. It follows that R is a Prufer ring.

IT implies T

Proof: This implication is obtained using Lemma 2.2 and
the fact that the distributive laws required for an A-ring

are valid in a ring with linearly ordered ideal system.

IT implies IV and II implies V

Proof: It is eaéily-seen that IV and V are.valid in a ring
with linearly ordered ideal system. Since this is true

for each RP 1t is necessary only to show that fhe opera-
tions of addition, intersection, and quotient ideal forma-
'tion are preserved in going from R to RP,,with the desired
ideals. Intersection is preserved by Lemma 2.2. Also,

for the ideals considered in IV and V we have the hypothesis
of Lemma 2.4 satiéfied, giving us the preservation of

quotient ideal formation. Addition is always preserved.



IV implies II

Proof: Supposel(A + B):C = A:C + B:C, whenever C is
finitely generated. Let a,b e R and P be a proper prime
ideal of R. For A = (a), B = (b), and C = (a,b) the above
formula becomes R = (a):(b) + (b):{a). Therefore there
exist x € (a):(b) and y ¢ (b):(a) such that 1 = X+ y.

Now x, an element of (a):(b), implies bx = za for some z ¢
R. Moreover, © = bx + by = za + by. ¥y € (b):(a) implies
ay al(b). If y £ P then (a)€ < (v)®. 1If y-e P then 1 -~ y
g P. Since (1 - y)b = za £ (a) we have ()€ cr(a)e.
Therefore, by Lemma 2.3, the ideals of R, are linearly

ordered, hence R is a Prufer ring.

V implies IT

Proof: Suppose C:(A N B) = C:A + C:B whenever A and B are
finitely generated. Let a,b € P; a proper prime ideal of

R. Set ¢ = (a) N (b), A = (a), and B = (b). The above
formula then gives us R =_[(a) N (b)J:(a) + [(a) N (b)]:(D).
Therefore, there exist x € [(a) N (b)]:(a) and y €

[(a) N (b)]:(b) such that 1 = x + y. Since ax € (a) N (b) c
(b) there exists a z in R such that ax = bz. Thus a =

ax + ay = bz + ay., If y € P then 1 — y £ P and since

(1 - y)a = bz we get (a)® < (p)®. Ify ¢ P then y e[(a) N
(b)):(b) and we have yb ¢ (ﬁ). Therefore, (b)% < (a)°€.

- -TPhus the ideals of R

p are linearly ordered and R is a

Prufer ring.



II implies VI

Proof: If a & [ (A)_A then A:(a) = {x e R| xa ¢ A} < R.
Let P be a proper prime ideal such that A:(a) ¢ P. Thus
(A:(a))€ < Rp. But, Rp E-L: and a £ L (4) imply a € A®C,
Hence, if f:R ——> Rp is the natural map, f(a) e A®.
Therefore, there exists x g P such that ax e A, which says
x € A:(a). However, f(x) is a unit in Rp s0 (A:(a))€ = Rp,
a contradiction. Thus [ (A) < A. The other containment

always holds so they are equal.

VI impilies I

Proof: Let A, B, and C.be idesls of R. If Ry is in [
then Ry is an A-ring. When extension is done to Ry € L
we get, using Lemma 2.2, [A N (B + ¢)]% = A% n (B® + c®) =
(A° nB®) + (a®* nc®) =[(anB) + (anN ¢)]®. Therefore,
LCianB+a)]= L[AnB) +(anac)] and R must be an

A-ring. This completes the proof of Proposition 2.1.

Several properties of Prufer rings are immediate corollaries
to Proposition 2.1. Corollaries 2.5 and 1.6, which follow,
correspond to the properties a) and c¢) given in Chapter I.
They are equivealent to I through VI if R is an integral
domain, but, in a ring with proper zero divisors this need

not be true.

Corcllary 2.5. PFinitely generated regular ideals of a

Prufer ring'are invertible}
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Proof: ILet a be a regular element of the finitely gener-
ated ideal A. By property III there exists an ideal C such
th;t AC = (a). Since a is regular this implies A is
invertible.

Corollary 2.6. Suppose A, B, and C are idesals in a Prifer
ring with A finitely generated and regular. If AB = AC

then B = C.

Proof: Apply Corollary 2.5.

Corollary 2.7. A Prifer ring is integrally closed in its

total quotient ring.

Proof: It is easily shown using the same method as in [13],
that any ring satisfying the cancellation law given in
Corollary 2.6 is integrally closed in its total quotient

ring.

Corollary 2.8. If P¢ Q and Q & P are prime ideals of a

Prufer ring R, then P + Q = R,

Proof: Let p € P™Q aﬁd q € Q~P. Using property I,
(p - q) + (p) N (@) = (p,a). Therefore, there exist x ¢ R

end y € (p) N (a) such that q = x(p - q) + y. Moreover,

x e Qand 1 +x € Pimply 1 €6 P + Q.

One of the properties valid for Priifer domains is that any
ring between a Prufer domain and ites quotient field is a
Prifer domain. The next theorem shows that this property

is valid for Priifer rings.
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'Lemma 2.9. BSuppose R and S are rings such that R S < T,

where T is the total quotient ring of R. If the idesls of
R are linearly ordered, then so are those of S. |

Proof: Let a = §‘and b=2bein §, with x, y, W, z € R
and y and z regular in R. The lemma is verified if we
show either a ¢ (b)S or b ¢ (a)S. This is clearly true if-
both & and b are in R. However, if a ¢ R then y.s (x)R |

which implies that x is regular in R and % e S. Hence

b e (a)S = 8. This completes the proof of the lemma.

. Theorem 2.10. If R is a Prufer ring with total quotient

ring T and if S is a ring such that R< S ¢ T, then S ia

a Prufer ring.

Proof: Let M be a proper prime ideal in S and set P =
M N R. Consider the following diagram, where f and g are

the natural maps:

U Th
PcR—E>R

P
To prove the theorem we will define the homomorphism h so
that h(RP) c Sy < K, where X is the total quotient ring of

_h(RP). Since the ideals are linearly ordered in Ry, hence

in h(RP)?.we get by Lemma 2.9, the same is true in SM’

‘Therefore S is a Prlufer ring. Define h:iRp > Sy by

X - fix . . .
h(g%i%) = f%?% where x, y € R. It is easy to verify that

h is a well defined homomorphism using the characterization
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of the kernels of the maps f and g given in [15)]. To show

q € K let & & S,.7 There exist b and ¢ in S such that a =

f(b
f(ec

R with y and z regular in R. We must then have f(yb) =

S

where ¢ g M, ILet b = % and ¢ = g, where x, y, W, 2 €

f(x) and f(zc) = f(w). Both y and z regular in R implies
fix

f(y) and f(z) are regular in h(RP). Therefore f(b) = 5

f(w
z .

Sy and thus f(w) is also regular in h(RP). Therefore, a =

and‘f(c) =

£ 2 is an element of K. This completes the proof of the
theorem,

The next theorem.deals with the relationship between the
dimension of a Prufer ring and that of its polynomial ring.
Seidenberg [14] proveé if R is an n dimensional Priifer
domain, then R[x] is n + 1 dimensional. The same holds in

case R is a Prifer ring.

heorem 2,11. If R is an n dimensional Prufer ring and x

is an indeterminate over R, then R[x] has dimension n + 1.
Proof: Let (0) < Q, < ... <Q, < R[x] be a chain of prime

ideals in R[x]. P, = Q; "R is a prime ideal in R and

Cx .
P1[x]'='{§Z:aixl| a; € P and k a positive integer} is a

prime ideal of R[x]. Moreover (0) c P1[x] Q. IfP =
(O) then R is an integral domain and we have the result by
[14]. Therefore, we aséumg (0) < P, and hence, (0) <
P,[x]. Now R/P, is a Priufer domain and dim (R/P,) < m = 1.

are elements of K. But f(e¢) is regular in
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By Seidenberg's theorem we have dim (R/P1[x]) { n. But
R/fT[x] _ R[x1/p,[x], and P,[x] e Q, imply » - 1 £ n.
Hence r {-n + 1 which verifies that R[x] has finite dimen-
sion and, if s = dim (R[x]) then s < n + 1. DNow, let

(0) <P, < ... <P, <R be a chein of prime ideals in R.

1
Again, R/P1 is a Prufer domain of dimension n - 1 so
R/?1[x] has dimension n. But R/P1[x] ~ R[x]/P1[x] and
(0) < P1[x] imply n { 8 - 1. Therefore n + 1 = s which

completes the proof of the theorem.

We now return to the properties given in Corollaries 2.5
and 2.6. First, we will state the main proposition and
then, after proving three lemmas, we will complete the

“proof.

Propogition 2.12. In a ring R the following are equiva-

lent:
VII. A(B N C) = AB N AC where A, B, and C are ideals
with one of B or C regular.
VIII. (A + B)(A N B) = AB where one of A or B is regular.
IX. PFinitely generated regular ideals are invertible.
X. A, B, and C ideals of ﬁ, A finitely generated and

.regular, and AB = AC imply B = C.

Lemme 2.13. Let a, b, and ¢ be in R, a regular, P a proper

prime ideal of R, and (a)® < (b)® in Rp. If property VIII

is valid in R then either,(b)e c (¢)® or (¢)® = (b)°.

Proof: Suppose X € R and y € R~P are such that ay = bx.
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By VIII, (a,b,c)[(2,b) N (¢)] = (a,b)(c). Therefore bc =
X,8 + X,b + X0 where x; € (a,b) N (¢), for i =1, 2, and
5. If x5 = au + bv then %y = bxu + byv. Now be = x,a +
'x2b + acu + bev 80 bey = x1bx + xzyb + bicu + bevy.
Theréfore, bely - (xu + yv)] = (x,x + X,y)b. If z = xu +
yv £ P then (b))% c (¢)® because X3y = zb & (c). On the
other hand, if z € P since y ¢ P we have y - 2 ¢ P. Also
x, and X, are in (a,b) so we get (c)®(p)® (a,b)%(p)® =
(b)®(b)®. Moreover, (b)® is regular in Rp which implies

(¢)® = (p)®. 7This proves the lemma.

Lemma 2.14. Suppose R is a rihg in which property VIII is

valid. If A is finitely generated, P is a proper prime
ideal, and c is a regulér element of A then there exist
a1;...,an e A indexed so that A = (a1,...,an), c = a for
some k, and in‘R?(a1,...,ak_1)e c (ak)e c (ak+1)e C ve. ©
(a,)°.

Proof: TFor each generator b of A we have, by letting a =
c2 in Lemma 2.13, either (¢)® < ()% or (b)® = (c)®. Let
a1,..:,ak_1 be all the generators of A for which (ai)? c
(c)®. Tet ¢ = a,. If b1,b2fare other generators of A,
again by Lemma 2.13, with a = ¢, b1 = b, and b, = ¢, either
()€ = (b,)% or (b,)® = (v,)®. Therefore we can index the

remaining generators in the desired manner.

Lemma 2.15. Suppose a,b € R, a ring in which property X

holds, and P is a proper prime ideal of R. If ¢ is regular
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in R, and (¢)® < (az)e in Rp, then either (2)® < (1)€ or
(v)¢ = (a)®.

Proof: Since X is valid in R end (ab)(a,b,c) < -

(a,b,c)(az,bz,c) we have ab ¢ (az,ba;c). Moreover, (c¢)€ c

(a2)e implies (ab)® c (a2,b2,c)e = (az,bz)e. Therefore,

2

xa~ + zb2.

there exists y ¥ P such that aby Also

'(zb)(a,bgc) c (a,c)(a,b,c) implies zb & (a,c). Since
(¢)® (a2)e c (a)® we have (zb)® < (a,c)® = (a)°. There-
fore, there exists v ¢ P 'such that zbv = au. But we had

2 2 2 2

+ 2b~ so0 abyv = xva  + zvb~ or abyv = xva2 + abu

aby-= ka
which implies (a)(b)(yv - u) c (a)(a). If u £ P then

(a)® c (b)® bvecause zbv = au. On the other‘hand, ue?P
implies yv - u g P. Therefore (a)e(yv - wW)%(m)® =

té)e(b)e c (a)é(a)e. But ¢ reguler in R and (¢)° c (a)® '
imply (a)® is regular in Rp. Hence (b)® c (2)® completing

the proof of the lemma.

VII implies VIII

Proof: If VII is valid in R then (A + B)(A N B) =
[(Ao + B)A] N [(A + B)B] = [A% + aB] n [4B + B%] o AB. The

other containment is always true giving us (A + B)(A N B) =

AB.

VIIT implies IX

Proof: ILet A be finitely generated and ¢ be a regular and
‘¢ be a regular element.of A. Set B = (c):A. To show A is

invertible it is sufficient to prove AB = (c¢). Since
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AB c (c¢) we reduce the problem to showing (¢)® < (AB)® for
each proper prime ideal P in.R. By Lemma-2.14, let
849158, € A be indexed such that A = (a1,...,an),c = 8y
for some k, and inRP_(a1,...,ak_1)e c (ak)e < ...c (an)e.'
For each i, 1 i { n - 1 let X;,¥; € R with ¥y g P, be
such that a;y; = g, x; if 1 <1 <k -1, and a;y; = 2; X
ifk<idn-1. Ifb=y, "‘,yk—;xk +ev X, o then b e
B, hence anb € AB. But anb = y1'... Yn-12% and Yq oee yn_1

e

g P implies (ak)e‘= (¢)® < (4B) This completes the proof

of VIII implies IX.

IX implies X

Proof: This is plear.

X implies VII

Proof: TLet A, B and C be ideals of R with B regular, and
.1et P be a proper prime ideal. If ¢ & B® then there
exists ¢ € C such that (c¢)® & B®. If b is regular in B
then b2 is reguler, and (b°)€ c (b)® implies by Lemma 2.5
either (b%) < (c¢®) or (c¢)® < (b®). Since (c¢)® & (b)° we
have (b)® c (e¢)®. If x is any element of B, since (b2)e c
(c¢)® we have by Lemmg 2.5, (x)® < (¢)®. Therefore B® < ¢°.
We have shown if B and C are ideals of R, with one of B or
C regular, then either B® < ¢% or c® « B®. Therefore

(4B)® < (4C)® or (AC)®  (4B)® and by Lemma 2.2 [A(B n ¢)]°
A%(B n c)® = a%(B% n ¢®) = 4°B® n A%® = (4B)® n (aC)® =

[AB N AC]e. This is true for each proper prime ideal P
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of R, so A(B N C) = AB N AC. This completes the proof of

Proposition 2.12.

In case R has a unique maximal ideal one other condition

can be added to the list in Proposition 2.12.

Corollary 2.16. Suppose R is a ring with a unique maximal

ideal P. The conditions given in Proposition 2.12 are
equivalent to the following:
XI. The regular ideals of R are linearliy ordered and
the zero divisors, Z, form a prime ideal which is

contained in every regular ideal.

Proof: If XI holds in R and one of A or B is regaiar, then
egither A< Bor Bc A, It follows that (4 + B)(A N B) = AB
and hence property VIITI is valid. Conversely, suppose
property VIII is valid in K. Since R = Ry, we have by Lemma
2.13, if a,b ¢ R with a regular, then (a) < (b) or (b) <
(a). This gives us the regular ideals are linearly ordered
and for each regular ideal A, Z < A, If a,b € Z and

a +b g2 then a + b is regular. Therefore there exist

X,y € R such that a = x(a + b) and b = y(a + b). Moreover,
X,y e Zc P. But (a +b) = (x +y)(a + b) implies 1 =

X +y € P which is a contradiction. As a result, 7 is
closed under addition. The‘qther properties required for

Z to be a prime ideal are clearly satisfied.

- Remark. If R is a ring for which Rp satisfies propefty XI

for each proper prime ideal P of R, then R satisfies VIII
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and its equivalent conditions. This is verified by
noticing if A or B is regular, then A® or B® is regular.
As a result, if RP satisfies property XI, either A® < B®
or B «¢ A®. Therefore, [(& + B)(4A N B)]® = [4B]® for each
proper prime ideal P which implies (A + B)(A N B) = AB.
The converse of thisrstatement.is not true, We have the

following example.

Example 2.17. Let Q be the rational numbers and x,y, and

z be indeterminates over Q. Set R = Q[x,y,z] , With
T (X,yyz)

P, = (x,7,2)°%, P, = (x,y)?,_and A = (xz)e ideals of R.

S = R/P1A has one maximal ideal, P1/P1A, and every non-unit

is a zero divisor. Therefore S vacuously satisfies the

propertiesvabout regular ideals. P' = PZ/PTA is‘a'prime
[R/P1A]M+P1A Rp .
ideal. SP' = I ~ 2/(P1A) where extension is

1

to RP . This is by the permutability of residue and quo-
2

tient ring formation. But, P, < P, and hence (P1A)e =

Q(x,y,2]
P. %A% = A%, Therefore SP ~ iy (X’Y). Using bars

! 17 (x9)°
to denote residues from Q[x,y,z](x y)to Sp, we have y and
’ ’ .
X + ¥ are regular elements. In SP,; neither y ¢ (X + ¥)

nor X +y € (y), hence the regular idesls are not linearly

ordered. This gives us the desired example.

Remark. As we noticed in Corollary 2.5 and Corollary 2.6,
any ring satisfying properties I through VI will also

satisfy VII thréhgh X. There are simple examples showing
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the converse is not true, since any ring in which every
non-unit is a zero divisor will satisfy VII through X. In
this type of ring, properties VII through X place very
little restriction on the ideal theory, which is one reason-
the stronger conditions I through VI were used in defining

s Prufer ring.



CHAPTER III
ol -RINGS AND PRIMARY IDEALS OF PRﬁFER RINGS

This chapter is concerned primarily with the primery ideal
structure of a Prufer ring. Ohm [12] conéiders this in

the integral domain case. Also we consider . «-rings,
which are studied in [2], and their relationship with Prufer

rings.

Definition 3.1. R satisfies the ascending chain condition

for prime ideals (a.c.c. for primes) if and only if every

strictly ascending chain of prime ideals is finite.

Definition 3.2. R is an oL-ring if and only if the a.c.c.

for prime ideals is valid and every primary idéél is &

prime power.

The natural questions which arise are: Under what cbndi—

tions is an o ~-ring a Prufer ring? Conversely, when is a
Prifer ring an o -ring? In either an d:éring or a Prufer
ring, when ére prime power ideals primary? Answers will be
given to these questions in this chapter. Note, that if R
is an o -ring then RP is an o¢ -ring for each proper prime
ideal P. As a result, the question of when an ol -ring is

a Prufer ring can be reduced to: ''When does an ol -ring,

20
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:With a unique maximal ideal, have a iinearly ordered 1ideal
syétem?". It is not always true that such a ring has a
linearly ordered ideal system as will be seen later by
example. The next few theorems deal with this problen.
We will use the terminology of [16]) and call a ring with a

unique maximgl ideal a quasi-local ring.

Theorem 3.3, Suppose R is an « -ring with ﬁnique maximal

ideel P. If P, is prime and P, < P, then P, c P" for every

1
positive integer n and P2 < P.

Proof: We can assﬁme P1 is maximal in P since the a.c.c.
for prime ideals holds in R. Therefore, if x € P~~P, then

x g P, and P, + (x)* = P for each positive integer 1i.

P maximal implies that P1 + (x):L is P-primary, and hence
there exists & positive integer ey such that P1‘+ (x)1 =

P°1. Moreover, i < j implies that CH #’ej,'for otherwise

P, + (x*) = B, + (x7) and in the integral domain R/P, x +

P1 would be a unit. Therefore e, < e, < ... and also P >

2 ..., which is the second assertion. For each positive

P
integer n there exists e; > n which implies that P1 < P1 +

1
(x1) = P®1 < P,

Corollery 3.4. Suppose R, P,, and P are as in Theorem 3.3.
If P, is maximal in P then P, = NP", the intersection teken

over all positive integers n.

Proof: It is sufficient to show NP® is prime. Suppose

ab € ne? but a,b ¢ np™. There exists an integer m such
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that P = [P, + (a)][P, + (b)] = P, + (ab). Therefore P" =

Pt o +.., Which is a contradiction,

Corollary 3.5. Let P and P1 be prime ideals in an o -ring

R. IfP<P

2
P1 # P1 .

then Pc P

1

1n for each positive integer n and

Proof: Let P, be a maximal prime for which P c P2 < P1.

2

In Rp , we have by Corollary 3.4, Pze =-ﬂ(P1n)e. There-
1 .

fore, P, = P2ec = ﬂ(P1F)e°. Since (P1n)ec is a P,-primary

ideal there exists a sequence of positive integers

' B — ni .
n, £n, £ ... such that P, = iE}P1 . Moreover, P? prime
implies that the sequence {n;} can be taken to be strictly
increasing. Therefore P c P2 c P1n for each positive

integer n.

Remark. We observe (under the conditions of Corollary 3.5)
that nP1F = P' is the unique prime ideal such that P' < P,

and there are no prime ideals properly between P1 and P'.

Theorem 3.6. If R is a quasi-local o -ring then the prime

ideals of R are linearly ordered.

Pioof: Suppose the theorem is nét true. Let P =
{(Pi,Pj)llPi & Pj and P & P; with P, Py primes}. Part-
iglly order F as follows: (P,P5) < (By,By) if end only
if Pi,c Pm'and Pj < Pnf Let C be a maximal chain in P and
P, = UP;, P,

= UP; where i and j are such that (Py,B5) is
in C. Since the a.c.c. for prime idéals holds in R, there

exists a j such that (P1,Pj) is in C. This says Pj & Py

"
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hence P, ¢'P1. A similar argument gives us P, v Ps-
Therefore, (P1,P2) is ih C. Moreover, if P, < P, a prime
ideal, then P, < P, and conversely. If P and Q are prime
ideals such that P, < P and P, < Q then Pc Q or Q « P. 1If
P = ﬂQilwhere_the Qi are all of the prime ideals such that
P1 < Qi, then P2 c P end hence P1 < P and P2 < P. Since
there is a one-to-one, order preserving correspondence
between the prime ideals in RP and those in R contained in
P, we assume P is the maximal ideal of R. But Corcllary
3.4 gives us P, = np" = P2 which is & contradiction.

1
- Therefore F = ¢ and the prime ideals of R are linearly

ordered.

The next result is an immediate consequence df the preceding

theorem.

Corollary 3.7. If R is a' quasi-local o« -ring then the set

" of prime and primary ideals of R is linearly ordered.

Notation: 1In an o -ring R we denote by N(P) the largest
prime ideal properly contained in P. If P is a minimal

prime of (0), let N(P) = (0).

Theorem 3.8. If R is an o -ring with a unique maximal

ideal, then the set of zero divisors of R is & prime ideal.

Proof: TFor the remainder of this chapter we will let Z
denote the set of zero divisors of R. If Z > (0), there
exists a prime ideal P such that [P~N(P)] N Z ¥ ¢. Let

Py be the largest prime ideal with this property. Clearly,

£1
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72 < PO' Also,‘by the choice of PO, there exists X €
[Pa\\\N(PO)] Nz, In RPd, (x)® is primary for Poe so (x)° =
(Poe)n for some positive integer n. Therefore if p € P,
there exist v ¢ Po and u € R éuch that pnv = ux. But

pnv €2 and v £ 2 imply " € Z, hence p € 7. Thﬁs Py = 2.

The theorem is obvious in case Z = (0).

Lemma 3.9. Let R be a quasi-local o -ring. Suppose A is
an ideal éuch_that
1) Either A is prime and N(Z) < A, or N(Z) = A.
2) P prime and A < P imply P has the following prop-
erty: if x,y € R with x ¢ P then either x ¢ (y)
or y £ (x). |

Then A itself satisfies the property given in 2).

Proof: ‘Let X,y € R with x g A. If P is fhe minimal prime
ideal of (x), then A < P. Moreover, since the prime idesls
of R are linearly orderéd, (x)€ is Pesprimary in Rp and
therefore (x)e-= (P™)€ for some n. Now y g P implies (x)€ c
(y)®, vy € N(P) implies (v)% c (x)® = (PM)®, and y & P~N(P)
implies that there exists an m such that‘(y)é = (P™®, 1In
‘all cases we get either (x)% c (y)e or (y)% < (x)°.

Cése 1: (x)® < (y)°. Therefore, there exist u € R and

v € R"~P such that xv = yu. But v g P implies -either v ¢
(u) or u e (v). If v e (u) then xv = xwu = yu. Also,

v £ P implies that v is regular and hence u is regular.

Thus y = wx ¢ (x). If u e (v) then xv = yu = ywv, hehce

x =ywe (y).
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Case 2: (y)e c (x)®. This is treated in the same manmer

ags Case 1. This proves the lemma.

Theorem 3,10. If R is a quasi-local o -ring then the

ideals are linearly ordered through N(Z).

Proof: By using the a.c.c. for primes and Lemma 3.9 we

can conclude if x ¢ N(Z) and y £ R fhen either x € (y) or
y € (x). This gives us if A is any idesal then either A c
N(Z) or N(Z) =« A. Moreover, if A and B are any two idealé

such that N(Z) = A then either A < B or B < A.

The preceding theorem in conjunction with Theorem 3.8 gives
us: 1if R is an o -ring end P is a proper prime ideal-of
R, then in Rp the regular ideals are linearly ordered, and
the zero divisors form a prime ideal contained in every
regular ideal. Together with the remark after Corollary

2,16 in Chapter II this gives us

Corollary 3.11. An « -ring satisfies the equivalent

properties VII through X given in Proposition 2.12.

0f course we also have, in case R has a unique maximal

ideal; that the ideals of R are linearly ordered whenever
N(%) = (0). This happens if 2 is a minimal prime of (0).
If (0) is primary then'(O) is Z-primary and again we have

N(Z) = (0). Other conditions will be given later.

Lemma 3.12. ©Suppose R is a quasi-local o -ring and P is

a proper ?rime ideal of R. If y ¢ P~N(P) then for some
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integer k, (y)? = (Pk)e in Rp. Moreover, Pl o (y).

Proof: Let F be the set of primeé which do not satisfy the
above pioperty; If P is the maximal élemgnt of P then

P < M, the maximel ideal of R, for clearly M is not in F.
Now, y € P~N(P) implies that ()€ is P®-primary in Rp and
hence (y)e = (Pk)e for some integer k. If x ¢ PX then

there exist v g P and W € R such that xv = yw. Since P is
maximal in F, there is a prime Q such that P < Q and Q™ c
(V) for some integer n. By Corollary 3.5, Pc Q®c (v).

If p ¢ P then p = vz for some z, hence Xvz = ywz = Xp é (y).
k+1

Therefore P cv(y), which implies P ¢ F, a contradiction.

Thus every prime ideal of R satisfies the desired property.

If R is a ring and P is a proper prime ideal of R, KP will
denote the kernel of the natural mapping of R into RP'
Using the characterization of this kernel given in [15],
Kp = {x]| there exists y. £ P such that xy = 0}. If P is a

minimal prime of (0), then Kp is a P-primary ideal.

Corollar173;13. Suppose R is a quasi-local  -ring énd P

is the minimal prime ideal of (0). If Kp = 2 tnen PR -

(0).

Proof: 3By the remarks prededing this corollary, Kp is P-

primary, hence for some n, Kp = P%. Tet x ¢ P* and p e P.
There exists a y ¢ P such that xy = 0. If y & Q~—N(Q)

| where Q is prime, then by Lemma 3.12, (p) €« P < Qk < (y),

for some integer k. Theréfdre‘px = 0 which implies'Pn+1 =
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(0).

Corollary 3.14. If R is a quasi-local o -ring and if

prime power ideals are primary, then the ideals of R are

linearly ordered.

Proof: Corollary 3.13 gives us with our added hypothesis
~that (0) is a primary ideal. The corollary follows from

the remarks after Corollary 3.11.

Remark. It willlbe shown later that in an « -ring all

the powers of a prime ideal are primary through KPO where
PO is a2 minimal prime of zero. OFf course, if P is not
minimal this includes all powers. In the quasi-local ring
case this says all the prime powers are primary except pos-

gibly those which are zero.

Theorem 3.15. ILet R be a quasi-local o -ring and let PO

be the minimal prime ideal of (0). The ideals of R are

linearly ordered through KP .
0
Proof: We assume P, < Z, for otherwise we have all the

ideals are linearly ordered by Theorem 3.10. By Corollary

3.13 we have for some positive integer n, Pon = (0) < Pon_1

where K, = P,"7'. Suppose x,y € R with x ¢ P, . The

proof Wigl be complete if we can show either x e (y) or y ¢
(x). We say a prime ideal P has propeity * if and only if
X,y € R with x ¢ P\\\[N(p) U KPO] implies x € (y) or y ¢

(x). Using the a.c.c. for primes it is sufficient to show:

if every prime ideal Q properly containing P has property *,
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then P has property *. Suppose P is such a prime., Clearly
(in view of Lemma 3. 12) the only case we are required to__
consider is when both x and y are in P\\\[N(P) U Kp ]
Therefore in Rp (x) and (y) are P° —prlmary S0 elther

()% < (7)€ or (y) c (x) . The two cases are treated
similarly so we consider the case (%) < (y)e. There exist
v £ P and w € R such that xv = wy. Also, v g P and every
prime Q properly containing P has prbperﬁy *¥ imply that

v e (w)orwe (v).

Case 1: v € uw. This says that w g P and u ¢ P. Moreover,

Xv = xuw = yw so (Xu - y)w = O. Therefore xu - y e Kp -
0

But (y)€ o
pRH1 c (y) (see Lemma 3.12). Thus there exists z € R such

(P°)® and y ¢ K, U N(P) imply that K, <
- 0
that xu - y = 2y. But y £ Ky and xu - y € KP imply that
. 0 0
Z € PO since KP is primary. Therefore 1 + 2z is & unit in
o :
Rand y = (1 + z)-1ux e (x).
Case 2: w = uv. Then xv = yuv which implies (x - yu)v =

0. Therefore, x - yu € K, . By Lemma 3.12 it follows that

P L]
0
x - yu € (x), hence x - yu = zx for some z € R. Again,

X - yu.e K, and x ¢ Kp imply z € Pj. Therefore,.1 - 2z is
0

P
0
a unit in R and x = (1 - z)-1uy e (y). Thus, x € (y) or

y € (x) and P has property *. As a result, every prime

ideal has property * which proves the theorem.

We have shown in a quasi—locél o —ring the ideals are

linearly ordered thrdugh KPO = Pon, for some -positive

intéger n. We also have an+1 = (0). Suppose Pon < Py
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(i.e., n > 1 and Py > (0)). Let z € B5~P,". If x and y
are non-zero elements of Pon, then there exist w,u such that
x =wz and y = uz. Moreover, w and u are not elements of

Pon = Kp . - Therefore, either w ¢ (u) or u e (w). But
0 , .
w e (u) implies x € (y), while u € (w) implies y € (x). As

a result we have the ideals of R are linearly ordered.

Summarizing, we have if either Pon = KPO = (0) or if n > 1,
the ideals of R are linearly ordered. The question that
arises is whether or not there exists =a qﬁasi—local AL -
ring, with maximal ideal P, zéro-divisors Z, minimal prime

2

Py, and (0) = Po” < By =.KPO {Zc? <_R, in which the
ideals are not linearly ordered. There is one asg will be

shown by an example at the end of this chapter.

First we consider the converse of some of the preceding
results. We have shown a quasi—local ol -ring has no proper
idémpotent primes. Our next goal is to show that a quasi-
1§cal ring with no idempotent primes, and ideals linearly
ordered through K, where P is a minimel prime ideal of (0),
is an ot -ring. At the same time we will-develop_some

theorems on the pfimary ideal structure of a Priufer ring.

Theorem 3.16. If the ideals of R are linearly ordered

through P, & prime ideal, and if Ky c Pn, then P® is P-

primary.

Proof: In Rp, P° is maximal, hence (P")° = (P®)™ is Pe-

primary. Therefore, it is sufficient to show (PT)°C < P!
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2s the other containment is always true. ILet x e (P™)®C.
There exist y # P and b ¢ P* such that xy = b = i biDs,
i=1

where by € P71 ana p; €P (assuming that n > 1, for if n =
1 the result is obvious). TFor each i, since y ¢ P and p; €
Pltheré exigts p}] € P such that Py = p]y. Hence xy =
55:bipiy = (< 5ipi)y. Moreovér y £ P implies x =~ :Z:bipi £

K, < P Therefore, there exists u ¢ P" such that x =

P
j{:bipi +u e P*. This completes the proof of the theorem.

The following'lemma is a generalization of a 1emma in a

paper by Ohm [12].

Lemma 3.17. If 4Q = P, a prime ideal, and for each maxi-

mal ideal M of R, Q° is Pe—primary‘in Ry, then Q is P-

primary.

ec ) ' i i
Q where extension and contraction is

Proof: Let Q* =
with respect to Rp. Since 4Q = P then Q* is a P-primary
jdesl. If M is a maximal ideal, then Q° < (@)% in Ry.
Let.x € (Q*)e and f be the natural map from R to.RM, then

X = f(q)[f(m)]_1 where q € Q¥ and m g M. Now q £ Q* implies
there exists ¥y ¢ P such that Qy = Q' € Q. Therefore,

xf(y) = £(ay)[£(m) ™! = £(a')[£(m)]”" vhich is in Q%. But
Q% is P®-primary (by assumption) and f(y) ¢ P%, so0 x e Q°.

e

Thus, Q~ = (Q*)® for each maximal ideal M of R which implies

Q = Q* and hence Q is P-primary. | -

Lemma 3.18. Suppose P, M, and A are ideals of R with P and
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M prime and P c M.' Let KP be the kernel of the map from R
to Rp and KPe be the kernel of the map from Ry to (RM)PB.
If Kp © A then Kpe © A® where extension is to Ry.

Proof: x is in Kpe if and only if there exists a y ¢ pe

such that xy = 0. Let f:R ——> Ry. For some a, b, m, n ¢

R with-m,n Z M and b g P we have x = .f(r:m)[f(m)]—‘f and y
£(0)[£(n) 1", Tow xy = O implies that £(a)f(b) = f£(ab) = 0
and therefore, there exists z ¢ M (hence z ¢ P) such that

abz = 0. But bz £ P implies a ¢ Kp c A. Therefore, X € A®

completing the proof.

Theorem 3.19. Suppose R is either a Prufer ring or an o -
| ring. If P is a prime ideal of R and KP c P® then PV is

P-primary.

Proof: Let M be a maximal ideal of R. If R is a Prifer

- ring the ideals of Ry are linearly ordered. By Theorem
3.15, if R is an o -ring the ideéls are at least linearly
ordered through P°. Using Lemma 3.17, if P < M we have
Kpe © (P®)® in Ry
Pe—primary. This is also true if P ¢ M. Since this argu-~

which implies by Theorem 3.16 (P%)" is

ment is valid for each maximal ideal M we have (by Temma.

3,17) PY is P-primary. -

Remark. Suppose R is a ring, P a prime ideal of R and P"
is P-primary. If x € Ky then there exists y g P such that
xy = 0. Therefore, xy € P" which implies x € PM.  We get

then a partial converse of Theorem 3.19: if P is P-primary
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then KP c Pn. We also note that Theorem 3.19 verifies the

remark made after Corollary 3.14.

Lemma 3.20. Suppose P # P° is a prime ideal and A is a

P-primary ideal. If the ideals of R are linearly ordered
through A then A = P" for some integer n.

Proof: We first show there exists an integer k such that
PX ¢ A. Since the ideals are linearly ordered through A
either P* <« A or A < P for each positive integer n.
Suppose A is always contained in P, Since A is P-primery
it follows that P* = NP" is not prime. Thus, there exist
a,b g P* such that ab € P¥, Since A < P* implies a,b ¢ A,
we may assume (a) < (b). PFor some positive integer m we
have A< P* <« PP c (a) < (b), hence (32) c (ab) c P*¥ <
sz.c.(az). Therefore, we have for a'positive integer k,

k _ pk+l 2 4y _ p2k

ee. « Now a“ € (a 80

2

(a®) = p* = P

there exists u € R such that a“ = ua4, hence a°(1l - ua®) =

Oeh, But 1 - ua® ¢ P and A is P-primary so a° e A.
Therefore P* = (8°) = A. Tet n be the least positive

n-1

integer such that P* < A < P (assuming that A # P). If

x e handy e PP ~_A then x € A < (y) « P*.

Therefore,
there exists z £ R such that x = zy e A. But y ¢ A implies
that z € P, hence x = zy ¢ P®. Thus A = P® which completes

the proof.

Corollary %.21. If R is a Prifer ring and Kp © P? then

there does not exist a primary ideal A such that P? < A <

Pn—?_
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Proof: Kpc P? implies by Theorem 3.19 that P" and pT
are P-priméry ideals. The corollary is an immediate conse-
quence of Lemme 3.20 and the'one—to—one correspondence be-

tween the primary ideals of R and those of Rp.

Theoren 3.22. If R is a ring with a linearly ordered ideal

system and P is a prime ideal for which P" is not primary

for some integer n, then P* = (0).

Proof: Let n be the least integer such that P" is not

primary. By Theorem 3.16 K, & P", hence PP < Kp © T,

PP < KP implies P is the minimal prime ideal of R, hence

Kp is P~primary. We then have K; = pi-] by Lemma 3.20.
Let x ¢ P71 ana y € P. Now x ¢ P Kp implies there
exists a z ¢ P such that xz = 0. Moreover, z g Pand y € P

imply y € (z), hence xy = 0. Therefore (0) = PP = PP .

« 0 L]

Theorem 3.23., If.R is & Prifer ring, Py and P prime ideals
with (0) < PO < P, then P! is P-primary for every positive
integer n.

Proof: Suppose P" is not P-primary for some n. Lemma 3.17

gives us that for some maximal ideal M, (P*)€ is not P°-

primery. Since R is a Priufer ring we have by Theorem 3.22
(P™€ = (0). Therefore, PR Ky < P
a contradiction. Thus, P? is P-primary for every positive

which implies P C PO,

integer n.
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Lemmg 3.24. Suppose Py and P are prime ideals of R with

PO < P <R. If the ideals of R are linearly ordered

through Py then NPT is prime.
Proof: For each positive integer n, PP Py 80 Py < npY =
P*¥, Therefore K

P
P ig P-primary (Theorem 3.16). Suppose ab & P* where

c Py < P" for each integer n which implies

neither & nor b is in P*. Since a,b ¢ P, there exists a

posifive integer n such that P" < (&) = (b) (or b € (a)).

2n 2n

< (ab) ¢ P* <« P", nence (ab) = P* =

en - P2n+1 = ... = (ab)2‘

This gives us that P
P Therefore, there exists a u in
R such that ab = u(ab)z, or ab(1 - uab) = 0. ab g L2
(otherwise one of a or b would be in Pgs hence in P*)

implies that 1 - uab € Py « P. Hence 1 € P, a contradiction.

Thus we have P* is a prime ideal.

Theorem 3.25. 'If R is a Prifer ring and (0) < Py < P are

prime ideals, then nP? is prime,

Proof: By Theorem 3.19, PP is P-primary for each integer

n. In R, we have by Lemma 3.24, N(PR)® = (px)°® where P* is

P
a prime ideal of R. Therefore, P* = [N(P")®]° = np" is

prime.

Theorem 3.26. Suppose R is a ring with PO the minimal prime

of‘(O) and the ideals of R are linearly ordered through

n

Ko « If Q is P-primary and P is not idempotent then Q = P

P
0
for some positive integer n.

Proof: Q a P-primary ideal implies Kp < Q. We can then
. 0
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epply Lemma 3.20 to get the desired result.

Remark. Suppose R is a ring with no idempotent prime
ideals, in which the ideals are linearly ordered through
' KPO where PO is the minimal prime ideal os zero. If P1
and P2 are prime ideals with P1 < P2 then P1 < P22 also.

As a result if P, < P, < ... is an infinite, strictly in--

1 2
creasing chain of prime ideals, then P = UPi = UP? = Pz.
But P is a prime ideal which contradicts our hypothesis.
Therefore, in such a ring as described, the a.c.c. for

prime ideals is valid. This, together with Theorem 3.26,

gives us the "converse'' mentioned before Theorem 3.16.

Theorem 3.27. Suppose P ¥ P° is a prime ideal of a Prifer
ring R. If Q is a P-primary ideal, and K; < Q -then Q is a
prime power ideal. In case P is not a minimal prime ideal

of (0) this is all the P-primaries.

Proof: 1In the proof we consider two cases.

case 1: P% is P-primary for.each positive integer n. In
Ry the ideals are linearly ordered, and (2%)® < P°, hence
Q° = (Pm)e for some integer m, by Theorem 3.26. Therefore,
Q = P". | |

Case 2: TFor some integer n, P is not P-primary. By Lemma

3.17 there exists a maximal ideal M for which (Pn

)¢ is not
P° primary. Let k be the least positive integer for which
there exists a maximal ideal M such that (Pk)e ig not P°-

primary in Ry. By Theorem 3.22, (Pk)e = (0). Moreover,
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by our assumtion on k, if t < k then pY is P-primary.
Therefore, we have P¥ Ky © Kp © P, mhe P-primary
ideals of R are linearly ordered and &ll P-primary ideals

k-1

contain KP' If P < Q then Q is a prime power by

Corollary 3.21. Suppose Ky < Qc Pk—1. In Rp we have

k-1 )e

()€ < Q% < (P¥")®, nence by Lemma 3.20, Q° = (P
P . .

Pk—1

Therefore, Q = .. The second assertion of the theorem

is obvious.

This theorem completes our discussion of primary ideals in
Prifer rings. Our final goal of this paper is to construct

the examplé-mentioned after Theorem 3.15.

Example 3.,28. We will construct a ring D having exactly
two proper prime ideals, f1 and P2, and such that P1 will
be the only P,-primery ideal and (0) = P® < P, < P, < D.
Every proper idesl C whicﬁ is not contained in‘P1 will be
a power of P2. As a result D will be an o ~ring, but we
will show the ideals are not linearly brdered in D. We
first construct the ring D and then verify the statements

number 1) through 8) which we assume in the construction of

D.

Let R = Q[x,y,z]( where Q is the field of rational

| X,¥,2) |
numbers, and Xx,y, and z are indeterminates over Q. We note
that R is a unique factorization domain with x a prime ele-
ment. Let P = (y,z)R. Then each non-zero p in P has a

unique factorization p = p1xt (t+ > 0) where'gcd(x,p1) = 1
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and p1 e P. For notational convenience we will usually
disregard unit factors of elements of R, since d € R implies
that d;= fg where f € Q[x,y,2)] and g is & unit in R. More~
over, if 4 is not a unit in R then f has constant term

Zero.

Set 8 = {[rx" + pJx°|r e R, p € P, and s is a non-negative
integer}. It is clear that S is a ring between R and
Q(x,y,2z). TFor every element a of S we denote by 6(za) a

set of associates in R, defined as follows: If a € R let

8 (a) be all the associates of a in R. If a & S~R we can
write a in the form u[rx® + pJx~° where s > 0, ged(x,p) = 1,
u is a unit in R, and r € Q[x]. Let 6 (a) be all of the
associates of r in R. To show 6 (a) is well defined we
‘must prove that-u[r1xs + p1]x-s = [rgxt + pz]x_t with

s,t > 0, ged(x,p,) = 1, ged(x,p,) = 1, and r,,r, e Q[x]
implies r, and r, are associates in R. Since xYp1pé it
follows that s = t, hence u[r1xs + p1] = rzxs +p,. Evalua-
ting‘these polynomials at y = 2 = 0 we get u'r1xs = rzxs,
where u' is u evaluated at y = 2z = 0, which is also a unit
in R. Thefefore u'r1 =T, which proves for each a in S,

8 (a) is unique. We note that in defining e (a) we have .-
if a £ SR there exists an r € o6 (a) such that a =

u[rx® + plx ° where r € Q[x], (x,p) = 1; and s > 0. Such

a representation of a will be called a normalized form. of

a.
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1) a is a unit in S if and only if a is a unit in R.

2) a e (x0)S~~R if and only if x?| r where r ¢ g (a).

(x)S is a prime ideal of S.

1

3) A= {px%|pe?P}-= (y,yx”1,...,z,zx— y++.)5 is a prime

ideal of S and A < (x)S. Moreover A = f (x")S.

e

4) In T =S4y, B°< A® where B = (y,z)S. In particular

neither yxf1 nor zx_ | is in B®.

5) If M is an ideal of T such that M ¢ T, (x")T, then M =

(xk)T for some integer k.

For our example we let D = 7/B° and (using bars to denote
residue formation) P, = Tx)T with P, = ET. By 2) and 3),
P1 and Pz
gives us if C is an ideal, C < P2 and C ¢ P1 then C = P2

are prime ideals and by 4), (0) < P, < P,. 5)

for some positive integer k.

6) In S if Q is A-primary and B« Q « A then Q = A. Also

2

A" < B.

This gives us P1 is the only P,-primery jdeal and (0) =

p. 2

4 < P1.

7) If-a = (yx_i) and b = (zx ) in D then a ¢ (b)D and

b #7(a)D.

Therefore D satisfies all the required'properties. " We now

prove statements 1) through 7).
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1) a is a unit in S if and only if a is a unit in R.

Proof: ILet a be a unit in S. If a g R then a has a
normalized form u[rx® + pJx °. Also, rx° + p not a unit
énd ged(x,p) = 1 iﬁply,aﬁq is not in R, hence for ancther
normalized form we get [rx® + pJ'sz = uv[r1xt + p1]x_t.
However s and t positive integers imply that x |p1p2, a
contradiction. Therefore if a is a unit in S then a is in

R. Since a~! is also & unit in S we have a~ @ ¢ R, hence a

is & unit in R. The other implication is obvious.
2) a e (x7)S~R if and only if x" | r where r ¢ 6 (a).
(x)S is a prime ideal in S.

Proof: Suppose a ¢ (xn)S\\\R and r € 0 (a) is such that

g = u[rx® + p]x ° is a normalized form of a. Therefore,

for some normalized form‘v[r,,xt + pﬁ]x—t we have
u[rx® + pJx~® = xnv[r1xt + p1]x-t. Since ged(x,p) = 1 we
must have t > n, Hence a = v[(r1xn)xt_n + p1]x “t is a

normalized form of a. Thus r1xn e 6 (a) which implies that
xnl r. Any element of S can be expressed in the form

u[r + px~®], where u is & unit and r € Q[x]. Moreover,
px ° g (x)S. Therefore,‘in order to show (x)S is prime it
is sufficient to prove if r, and r, are in Q[xj and r,T, €
(x)S then either ry-or T, is in (x)S. Suppose there is a
normalized form a = u[rx® + pJx ° such that r,r, = Xa.
Clearly s = 1 and we have Ty = urx® + up. This cannot
happen ifﬁr1 and r, are in Q[x]. 4s a result, if r,T, €

(x)S and ry T, E Q[x] then r,T, € (x)R a prime ideal of R.
b
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Hence, either r, e (X)R or r, £ (x)R. This completes the

proof.

1 1

3) A= {px_sl P € P} = (y,7% ,.00.,2,2% ...)S is a—prime

ideal of S and A < (x)S. Moreover A = £E1(Xn)s.

Proof: Clearly x is not an element of A. Since px ° =
xﬁ(px_s'n).s (x®)S we have A c 551(xn)5. (x)S a priﬁcipal
prime ideal of S implies £ﬁ1(xn)s is a prime ideal of S.
Therefore we needlonly show n§1(xn)s c A, Let a2 be a non-

zero element of T (x")s. Since [ (x™)R = (0) there is

-an element of SR having a normalized form u[rx® + plx~®

and an integer m > O such that a = xu[rx® + pJx™®. But

both & and upx™ ° are in (x™)S for each integer n, hence

urx® € (x™)S for each integer n. Therefore r € nﬁ1(xn)s.

If r# 0 we again get for some e > O that r = xev[r1$ct +

t

p1]x-t (where again v[r1x 4+ p1]x_t is a normalized form).

Evaluating the above at y = z =0, with v' representing v

at y = 2z = 0, we have r = xe-tv'r1 v v'r1xe. However,

this must happen for e arbitrarily large.\ Therefore r = 0O,
a contradiction. As a result we have shown if a is a non-
zero element of ﬁﬁ1(xn)s then a is of the fdrm-upxmfs.

' Therefore n§1(xn)s = A.

e

4) In T =S4y, B® < A° where B = (y,2)S. In particular

. -1 -1 ...
neither yx nor 2zx is in B®.

Proof: We first note that a € S~(x)8 if and only if

each r in 6(a) is a unit in R. To show y:c_‘f e AS—_B®



41
we must show there does not exist an a & S~(x)S such
that a(yx_T) e B. Suppose a = u[rx® + pJx " where r is a

unit in R has this property {(the case where a itself is a

unit is trivial since yx_1 g B). Therefore,

[yx—1][u(rxs + p)x-s] =‘[r2xm + pz]x_my + [rBXn + p3]x_nz.

This implies if k = m + n + s that urxky is an element of

k+1 + 2 k

,yz,zz)R. But ur is a unit in R and yx

is not an element of (yxk+1,zxk+1,y2

yx_1 g B, A similar argument gives us zx

(x y,xk T2,y

,yz,zz)R. Therefore
T ¢ p®,
5) If M is an ideal of T such that M ¢ 551(xn)T, then

M = (xk)T for some integer k.

Proof: This follows easily since (x)S is a principal prime

ideal of S and A = T, (x")s.

6) In S if Q is A-primary and Bc Q < A then Q = A. Also,

A% ¢ B.

Proof: Let px ° € A. Since x° ¢ A and xs[px—s],= p is in
B < Q then px ° € Q. Therefore A = Q. Moreover, o
[p1x_s][p2x—t] = [p1x—s—t]p2.a B which proves the second

assertion.

7) If a = (yx-1) and b = (zx—T) in D then a ¢ (b)D and
b ¢ (a)D. |

=]

Proof: If b e (a)D then there exist [rx® + plx "~ ¢ S, and

'[uxJG + P1]X_t g 8~_(x)S such that [rx® + p][yx—s_1] -

t

[uxt + p1][zx"tf1] - ¢ is in B. We write [ux” + p1]x"t so
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that u is & unit in R (this can be done in general by
allowing Pq to be zero). Since ¢ & B for some non-negative
integers m and n we get ¢ = [r2xIn + pe]yx‘m + [r3xn + p3]2xfn.
This gives us if k = s + t + mn+-n + 1 that uzxk'e
(Xk+1,yxk,y2,yz,zz)3 which is a contradiction. A similar

argument gives us a g (b)D.

This completes the construction of the example.
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