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ABSTRACT

The object of this work is the study of measure semigroups
as well as general affine semigroups. We divide this study
into three parts: finite-dimensional affine semigroups,
semigroups of measures, and compact affine topological

semigroups.

Finite-dimensional affine semigroups have been investigated
by W. E. Clark, and H. Cohen and H. 5. Collins. GSuch semi-
groups can be reglized as matrix semigroups, as well as
subalgebras of algebras over the reals. It will be shown
in Chapter 111 that this class of affine semigroups can be

used to approximate compact group-extremal affine semigroups.

Measure semigroups have been the object of much investiga-
tion; the principal investigators include H. S. Collins,
Collins and Koch, I. Glicksberg, B. M. Kloss, J. 5. Pym,

M. Rosenblatt, S. Schwarz, and J. G. Wendel. Glicksberg
and Wendel give conditions under which certain semigroups
of measures are the full probability measure semigroup on
some compact semigroup. In Chapter II, we add another
theorem in the same general area. Collins and Wendel show
that under certain conditions, a compact affine semigroup is

the continuous, affine homomorphic image of its probability
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measure semigroup. We remove these conditions and obtain

this theorem for arbitrary compact affine semigroups.

A theory of representations of compact semigroups is lack-
ing due, in part, to the absence of an invariant carrying
measure. We show, however, in Chapter III, that a group-
extremal semigroup allows both a theory of representations
and a theory of characters; we use this theory to show that
certain properties of the group are carried over to the

semigroup.

In the first chapter, we show that an abelian finite-
dimensional affine semigroup can be imbedded in a finite
product of finite-dimensional abelian algebras of the form
T(C), where C is the complex numbers, T is a finite-
dimensional abelian nilpotent algebra over the complexes
and T(C) = C & T where multiplication is defined by:
(z,a)o(w,b) = (2w,2b + wa + ab). To accomplish this, we
use several theorems, due to W. E, Clark, and discovered
independently by the author. We conclude this section by
identifying the minimal ideal of an abelian, finite-
dimensional affine semigroup as the finite direct product

of additive reals.

In Chapter II, we extend a result first proved by Wendel,
and under less restrictive conditions by Collins, which
shows that the resultant map is a continucus affine homo-

]

morphism between S and S when S is a compact affine



semigroup. We use this result to reprove the fact that a
group-extremal semigroup has a zero. We show, further, that
the resultant of an idempotent measure is in the kernel of
the closed convex hull of its carrier. Also, if }42 =M,

M E §, where S is compact and abelian, we show /Lg is the
measure semigroup on some compact semigroup. Finally, we
show that if S is compact and convex, and M E E, then the
closed convex hull of the cerrier of/; supports a measure,
Consequently, a group-extremal semigroup supports a

measure.

In Chapter III, we show that a compact group-extremal semi-
group admits a sufficient system of representations by
finite-dimensional affine semigroups. As a consequence,
several properties of the group are extended to the semi-
group. Namely, metrizability is extended and, if the group
is abelian, we obtain a sufficient system of affine semi-
characters. It follows immediately that an abelian,
metrizable, group-extremal semigroup is imbeddable in the
countable product of discs. PFinally, we show that a group-
extremal semigroup is the inverse limit of finite~dimensional

group~extremal semigroups.
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INTRODUCTION

When affine semigroups first appeared in the literature,
with studies done by J. G. Wendel [48], and J. E. L. Peck
[30], as well as others in measure semigroups, it was
assumed that the semigroup was imbedded in a larger space
in which there was a multiplication compatible with the
semigroup multiplication. Such semigroups, for instance,
as the probability semigroup over a compact semigroup, and
semigroups of operators on a Banach space are, indeed,
imbedded in spaces in which multiplication can be performed
outside of the semigroup. The definition we shall use here
is due to Cohen and Collins [6]; this definition does not
assume a multiplication outside of the semigroup. 1In
Chapter 1I, we shall show that, under suitable conditions,
one can assume such a multiplication does exist outside the

semigroup.

Semigroups of measures are of comparatively recent origin;
the earliest work seems to be the paper by Kawada and Ito
[20] written in 1940. Then, in 1954, Wendel's paper [48]
created much interest in the field since he deduced the

existence of Haar measure on a compact group by using the
structure of the measure semigroup. Since Wendel's paper,

there have been several contributors to the theory; among

1



them are Collins (7], [8], [9], [10], [12], Collins and

Koch [13], Glicksberg [17], Kloss [21], [22], (23], Pym [32],
Rosen [33], Rosenblatt [34], Rosenblatt and Heble [35],
Schwarz [42], [43], [44], and Stromberg [45].

In his 1954 paper, Wendel proved that in the probability
semigroup over a compact group the only probability
measures with inverse are the point measures (i.e., the
extreme points). Cohen and Collins then showed in [6] that
this was true in any compact affine semigroup with unit;

that is, the only elements with inverse are extreme points.

~at

Glicksberg showed in [17] that if m is an element of S for

some compact semigroup S, then ! 1 converges in the
s N i=1

weak-star topology to an element A ¢ S satisfying ,\2 =A
and A¢L==/&X = A . Further, in an invited address
(unpublished), Wendel showed that if S is a group-extremal
affine semigroup, then the resultant is a continuous,
affine homomorphism from S onto S. Collins showed in [12]
that 'group-extremal' may be replaced by the condition that
the extreme points form a compact semigroup. In Chapter II,
we remove all these assumptions and show that the resultant
is a continuous, affine homomorphism onto S if S is a
compact affine topological semigroup. With this fact,
together with the result of Glicksberg, it follows that for
an arbitrary element x of a compact affine semigroup S,

N
that I}E xi converges to an element e2 = e € S which

i=1



satisfies xe = ex = e. We also use the resultant map to
prove the fact noted by Peck [30] and Cohen and Collins [6)

that a group-extremal semigroup has a zero.

Wendel also showed in [48] that if G is a compact group,

S =0, and M2 = €S, then AS is the full probability
semigroup over some compact group. Subsequently, Glicks-
berg showed in [17] that if S is either a compact abelian
gsemigroup or a compact group, and (ﬂ is & subgroup of g,
then <[>, the closed convex hull of M , 18 the full
probability semigroup over some compact group. To complete
this sequence of theorems, we show that if S is a compact
abelian semigrcup, and/M2 = M e'g, then ng is the full

probability semigroup over some compact abelian semigroup.

In attempting to determine the structure of general affine
semigroups, Cohen and Collins [6] considered the case where
the semigroup is a convex subset of some finite-dimensional
space. They showed that the multiplication on the semi-
group S may be extended uniquely to V(S), the manifold
generated by S, so that V(S) becomes an affine semigroup.
In case S has a left or right zero, they showed that 5 may
be realized as a semigroup of matrices. They then charac-
terized completely all one and two-dimensional affine semi-
groups. Clark then showed in [33] that an affine semigroup
can be imbedded in a finite-dimensional algebra over the

reals. He also showed that a finite~-dimensional affine



semigroup has a completely simple kernel (i.e., minimal
ideal). In Chapter I, we shall show that‘an abelian,
finite-dimensional affine semigroup may be imbedded in an
abelian algebra over the complexes which is the direct
sum of finite-dimensional sbelian algebras over the com-
plexes of the form T(C), where C is the complex numbers,
T is an abelian, finite-dimensional nilpotent algebra over
the complexes, and where T(C) = C & T, with multiplication
defined by:

(z,a)o(w,b) = (2w,zb + wa + ab),
We conclude Chapter I by showing that the kernel of an
abelian, finite-dimensional affine semigroup S satisfying
V(S) = S is degenerate or is isomorphic to a finite product
of additive reals., Chapter III will demonstrate that
finite-dimensional affine semigroups may be used to approxi-

mate compact, group-extremal semigroups.

Compact group-extremal affine semigroups are of much
interest, as the model is the probability semigroup over a
compact group. The works of Glicksberg [17], Cohen and
Collins [6], Peck [30], and Wendel [48] all include theorems
about such semigroups in some form. We show in Chapter II
and III that many properties of the group of extreme points
may be carried over to the entire semigroup. In Chapter II,
we show that if a probability measure is concentrated on a
compact subset, A, of a compact convex set in a locally

convex linear space, then there is another probability



measure concentrated on the closed convex hull of A. It
will follow immediately that a group-extremal semigroup
supports a probability measure, since the group supports

Haar measure,

Several authors have contributed to the theory of repre-
sentations and the theory of characters on semigroups.
Among these contributors are Clifford [4], who showed that
a completely simple semigroup has a faithful representation
by (infinite) matrices, and Preston [31] who proved a
gimilar statement concerning regular semigroups. Further,
Hewitt and Zuckerman in [18] and [19] investigated semi-
characters on finite and infinite abelian semigroups, as
did Schwarz ([37] - [41]). However, in all these studies
the underlying semigroup was assumed discrete and, natursally,
no continuity conditions are obtained. Schwarz in [41]
investigated characters on a compact abelian semigroup from
the standpecint of determining the structure of the semi-
group of all such characters. He stated explicitly all

the semicharacters of the disc, and we shall use this in

the sequel to counter a possible conjecture.

The difficulty in obtaining continuocue characters in an

arbitrary abelian compact semigroup seems to be due in part
to the absence of an invariant carrying measure that exists
for compact groups. In Chapter III, we show that in spite

of the absence of an invariant carrying measure, a group-



extremal affine semigroup has a sufficient system of affine
representations. If the group is abelian, these repre-
sentations may be taken to be one-dimensional, so that we
obtain a sufficient system of affine semicharacters. As a
consequence, & group-extremal affine semigroup is the
inverse limit of finite-dimensional group-extremal affine
semigroups. PFurther, if the group is metrizable, then the
entire semigroup is as well. In the abelian case, if the
group is metrizable, the semigroup can be imbedded in the
countable product of discs under coordinate-wise multipli-

cation.



PRELIMINARIES

Definition: A semigroup is a set S together with a

> S satisfying m(a,m(b,c)) =

function m: SxS
m{m(a,b),c). If S is a Hausdorff topological space and m
is jointly continuous on Sx5 to S, then S is called a

topological semigroup. As usual, m is suppressed and

m(a,b) is written ab.

Definition: A topological linear space is a vector space

V over the reals (or complexes) which possesses a
Hausdorff topology in which vector addition and scalar
multiplication are continuous in both variables simul-
taneously. If, in addition, the origin of V possesses a
basis in this topology consisting of open convex sets U
which satisfy: x e U, IAl =1 ——> Ax € U; then V is

called a locally convex linear space. Henceforth, all

linear spaces will be locally convex.

A proof of the following well-known theorem may be found

in [53;117]:

Theorem A: Let A and B be disjoint compact convex sets in

a locally convex linear space V. Then there is a continuous,

real-valued linear functional on V satisfying:



max {f(z)} < min {f(z)}
2 £ A z € B *
Remark: Included in Theorem A is the fact that the

continuous, real valued functionals on V separate points,

Definition: If A is a subset of a linear space V, the

closed convex hull of A (denoted by <A>) is the smallest
closed convex subset of V containing A. <A> consists of

all those elements of V which may be approximated by elements

n n
of the form: Egakixi where X\, 20, Ei;)i =1, and x; € A

fori=1,2, ..., n. If A is any set in V, an extreme
point of A is an element of A which is interior to no line

segment between two points of A.

The following theorem is due to Krein and Milman [24], and
proofs may also be found in several standard sources (c.f.

Naimark [56;62], Kelly and Namioka [53;130]).

Theorem B: If A is a compact convex set in a linear space

V, then A is the closed convex hull of its extreme points.

A proof of the following can be found in Dunford and Schwartz

[51;440].

Theorem C: If A is a compact subset of a compact convex

set S in a linear space, then the extreme points of <A> are

again in A,

Definition: An affine semigroup S 1s a convex subset of a




linear space V which is a semigroup with respect to some
multiplication that satisfies:

(8) [Ax+ (1 - A)ylz = A(xz) + (1 - A)(y2)

(b) z[Ax + (1 =A)y)l= Alzx) + (1 - A)(zy)
forx,y,zaSandOi)\ £ 1.

If, in addition, S is a topological semigroup with the
topology inherited from V, then S5 is called an affine

topological semigroup.

Definition: Two affine semigroups S5 and T are said to be
equivalent if there is a one-to-one affine homomorphism
from S onto T. If S and T are affine topological semigroups,

we require the homomorphism to be bicontinuous as well.

Since measure semigroups provide much motivation for the
gtudy of affine semigroups, we include here & development

of the measure semigroups over compact semigroups.

Let S be a compact Hausdorff space, C{(S) the Banach space
of complex-valued continuous functions on S. Let M(S)
denote the space of all complex-valued, regular Borel
measures on 5. If M E M(S), and we define a function b#l

on the Borel sets of S by:

) = s S| e

PE Ei € PE
where PE is a partition of E by disjoint Borel sets, and
the supremum is taken over all partitions of E, then \}bl

is again an element of M(S). Further M(S) is a Banach space
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under the norm given by ”/Ll\ = I/LI(S). M(S) may also be
given the so-called 'weak-star' topology, in which a net of
measures {/4“ }o¢ ¢ p converges to Y € M(S) if and only if
defﬁ, ——>de\) for all f € C(S).

By the Riesz-Kakutani Theorem M(S) with the above norm is
the adjoint of C(S), where the correspondence between a
continuous linear functional T on C(S) and the associated
measure is given by: T(f) = J-fdrk for all £ € C(S). 1In
view of this correspondence, we do not distinguish between
the measure and the linear functional it defines and write
simply:

M) = Jrg
The sets B(S) = {/u e M(S): IUMI\ < 1} and
S = {/u, € M(S):/,(z O,/;((S) = 1} are compact in the weak-
star topology.

If S is also a compact semigroup, then for/u,u/ e M(S)
there is a unique third measure in M(S) called the convolu-
tion of A and \'4 (written./i*\/) which satisfies:
[racus?y = (a0 = [ [emap e ().
This measure is obtained via the Riesz-Kakutani Theorem,
and under this multiplication and the norm in M(S), M(S)

is a Banach algebra.

Further, on B(S) and g'the operation is binary and jointly
continuous in the weak-* topology. Hence, B(S) and S are

compact, affine topological semigroups. B(S) is called
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Lo
the 'ball' semigroup of S and S is called the 'probability’

semigroup of S.

If S ie compact Hausdorff, and /u e'§, the carrier of/x R
written Cgu), is the complement of the largest open set
having /4—measure zero. Consequently, C(/A) is compact

and for any open subset V of S, u (V) > 0 iff V N C(pm) #
g.

A compact semigroup possesses a minimal ideal K which may
be written as the disjoint union of minimal left (right)
ideals and also as the disjoint union of maximal groups
[5]. A semigroup is simple if it does not contain any

proper ideals.

Theorem D [17]: If/u and ¥ are elements of g, where S is

a compact semigroup, then.C(}A*b’) = C(}L)C(? ).

Theorem E {23];[8]: 1If f‘2 = M e S, where S is a compact

semigroup, then C(f;) is a compact simple semigroup, and

for £ € C(S) the mapping x

> f(yx)%}((y) is constant

> jf(Xy)tyx (¥)

is constant on each minimal right ideal of Cvu,).

on each minimal left ideal of C(/() and x

Theorem F [17]): If S is compact, and either an abelian

—~—

semigroup or a group, and r1 is a group in S, then <> is

the full probability semigroup over some compact group.

Theorem G [48]: If G is a compact group and‘/42 i/&. 675,
then f45 = ?%L and is the full probability semigroup over
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some compact group.

Theorem H [1]: The weak-star closed convex hull of the

collection of all point measures of M(S) is s.

Theorem I Wendel (unpublished) and [6): If S is a compact

affine topological semigroup with identity, then every

element of S with inverse is an extreme point of S.

We shall need the following theorem in Chapter I, but an

independent proof will be given in Chapter II.

Theorem J [30]; [6]: If S is a compact affine topological

semigroup with identity, and if each extreme point of S

has an inverse, then S has a zero.

Theorem K [6]: If S is a compact affine topological semi-

group, then:
(a) Each minimal left (right) ideal os S is convex.
(b) x € K (the minimal ideal of 8) iff xSx = {x}; in

particular, each element of K is idempotent.



CHAPTER I

In this chapter, we discuss affine semigroups where the
containing linear space is of finite dimension over the
reals. Such semigroups are referred to as finite-

dimensionsal.

A linear manifold in a linear space X ia a translate of a

linear subspace. If A is a non-void subset of X, the

manifold generated by A, written V(A), is the smallest

linear manifold containing A.

If S is a finite-dimensional affine semigroup, Cohen and
Collins [6] show that the multiplication on S may be
uniquely extended to V(S), and relative to this multiplica-

tion, V(S) is a finite-dimensional affine semigroup.

Remark: In this extension, multiplication is expressed in
terms of coordinates relative to a fixed affine basis for

V(S), the coordinates of a product being polynomials in the
coordinates of the elements multiplied. It follows easily

that a finite-dimensional affine semigroup is a topological

semigroup (i.e., multiplication is jointly continuous).

Clark shows in {3] that a finite-dimensional affine semi-

group which is a manifold is equivalent to a subsemigroup

13
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of an algebra of finite dimension over the reals. 1If the
original semigroup ie abelian, Clark's construction yields
an abelian algebra. Combining these results, we have the

following:

Theorem 1.1 A finite-dimensional affine semigroup 5 is

equivalent to a subsemigroup of a finite-dimensional
algebra over the reals. If S is abelian, then the algebra

is as well.

The following theorem is well-known, but was rediscovered

independently by the author:

Thecorem 1.2 Let A be a finite-dimensional abelian algebra

over a fieldra'where A contains a non-zero idempotent.

Then there exists €1y <00y €, E A satisfying:

n
2 _ - . .
1) e = ey, eie'j = Q0 for i # j.
2) €,y ..., e, are linearly independent.
n
2 _ . _
3) If e“ = e € A then e can be expressed: e = § :Aiei

where Aj_is O or 1.
Proof: If B< A, S(B) will denote the subspace generated

by B.

Suppose we have constructed a set e,, ..., e, satisfying

1) and 2). Let e = e ¢ S({e1, ceey er}), so that e =

T r
> ;)\.e., where ) 5'3’. Then we have ee, = 2 _ A.e
=7 11 i J i=1 i

r T
)\jej' Hence, € = ee = EAi(eie) = E’\i(xiei) =

i€5 ©
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T
E %‘Xi2ei’ and since €1y ---y €, BTE independent, it follows
i=

that \; < = Ay, A

potent of A is in S({e,,...,er}), then 3) is satisfied and

i = 0 or A iy = 1. Thus, if every idem-

we are finished.

Now suppose g2 =g € A, g £ S({e1,...,er}); then we have

two cases:

Case I Suppose ge, € s({e,, ..., er}) for all i = 1, 2,

«e.y r. In this case, let €ryr = —B€,-8€,- ... -ge . + g,
so that e, , # S({ey, ..., er}). Further, ge ., = e_ .
and er+1ej = -g(e1ej)- o -g(ejej) - .. —g(erej) + gej =
-ge + gey = O. Then we have e_ ,e_ ., = -(ge1er+1) - e
-(ge e, 4) + &8,y = &€, , = e, ,, &nd, since e, ¢
5({ey, ...y e }), e,, ..., e, , are independent and also

satisfy condition 1).

Case II Suppose ge, £ S({e1, ceny er}) for some k, 1 < k £
r. Let eﬁ = e —8€, then gey = 0, and epéy = ey so that
eper = ey e} —(gek)e& = er. We show that e,, ..., e _,,

€Lts ©.,qs --+» €, are independent. Suppose )\1e1 +oee. +
Ak * ccc * Apep = 0. Then0=()\1e1+...+AkefC+

coe v Apede = Aa(ege) + o+ hpefe v oLl 4 A p€r€ =
)\kel'(ek = )\ k& by condition 1). Since ey # 0, Ay =0,

and since e seey € 49 € 4y ..., €, BTE independent, it

1'
follows that Ay = O for i = 1, 2, ..., r.

Now, g€y €45 €5y ...y €p, ..., €, are independent by

Tr
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similar reasoning; hence, we let €ryq = 88y Then erHej =

(gek)ej = g(ekej) = 0 for j # k, and e__.,e} = (gek)ei =

gey = 0. Clearly, e 2 - e so that e

r+1
satisfy 1) and 2).

r+1°* 19 "o+ Cx_ 4 Cpo

e

r* “r+1

If m is the largest integer for which there is a set {e1,
ey em} satisfying 1) and 2), then by the preceding discus-
sion, 3) is also satisfied. This completes the proof of

the theorem,

Theorem 1.3 An abelian, finite-dimensional algebra A over

a field E} can be imbedded in the direct sum of abelian,

finite dimensional algebras T1, ceny Tn where each Ti has

an identity ey and such that if e2 = e € T; thene = e; or

e = 0.

Proof: Suppose first that A has an identity u. By

Theorem 1.2, there exist linearly independent idempotents
2

By vey en such that eleJ = 0 for i # j and if e~ = e € A,

thene—:)\ e; where \; = 1 or )y =

Let T; = Ae;; then Ti is an abelian, finite-dimensional
algebra over T} and has identity ey . If x € Ae N Ae, +

ees t Aei_1, then xe; = X, and x ?;1ajej, where aJ E A.

-1

But then x = xe; = i::a (e j) = 0, and it follows that
J=

Ae, + ... + Aen is = direct sum,

Further, since u2 = u, u = Z ?Aiei’ where ‘Ai = 1 or
i=1
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]

My
n
.y = 1 eandu-= > 'e,. Then if x € A, X = Xu = E%Txei €

i
Efj O Ae,.

i=1 i=1
i=1

0; however, ey = uey = %:ﬁ>‘i(eiej) = )jej’ so that

N
I

Finally, if e = e ¢ Ae;, then ee; = e, and ee. = (eei)e. =

J J
?2:1‘ )\jej y then
J:

e(eiej) =0 for i ¥ j. Now, since e

n n

0 = .= e le. = e.) = N that for
eeJ E()\k k) j gAk(ek J) >\J j S0 a 0

iz 3, ’Xj = 0. Moreover, since ee;, = e, and e = A je;,

so that e = ee = )\i(eie) = Ai(eie) = )\ie = )\i(}\iei) =
2 . 2
{€is 1t follows that ) { = >‘i and e = e; or e = 0.

Hence, the only idempotents in Aei are O and e;, so that the

conclusion follows if A has an identity.

If A does not have an identity, we forml‘z}e A and define
multiplication by:

(f,a)o(g,b) = (fg,fb + ga + ab)
Then o @ A with this multiplication is an abelian finite-
dimensional algebra over T}. Further, A is isomorphic to
the subset of 3 & A consisting of those elements of the
form (o,a), where a € A. Pinally, if we let u = (1,0), then
for (f,a) ¢ 3@ A, (1,0)o(f,a) = (f,a + £:0 + O+a) = (f,a).
Thus, u is an identity for '3'@ A, and the theorem follows

from the preceding argument.

If V is a linear manifold in the finite-dimensional space
X, then V - a = {v - a:v € V} is a subspace of X whenever

a ¢ V. Further, if a,b € V, then V - a = V - b, so that
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associated to V is a unique linear subspace. The dimension

of this subspace is the dimension of V.

If the dimension of V is n, and X,, ..., X, € V, then if

we let m be the largest integer satisfying x 2 V({x,, ...,

m

n_q}) then m < n + 1. We also note that if A < V, then
r

V(A) c¢ V and consists of all elements of the form 2, >‘iai
=

X

r
where a, € A, and Z%‘% = 1.
i &N

Theorem 1.4 (6] If S is a one-dimensional affine semi-

group, then V(S) is equivalent to the real line under one
of the following multiplications:

(a) wusual (b) xy = 0 all x,y (e)xy = x + ¥y

(d) =xy = x all x,y (e) xy = y all x,y.

Using Theorem 1.4, we give a new proof of the following

theorem due to Clark [3]:

Theorem 1.5 Let S be a finite-dimensional affine semi-

group satisfying S = V(S); then some power of each

element lies in a subgroup of S.

Proof: We argue by induction on the dimension of 5.

If dim S = 1, then by inspection of Theorem 1.4, the
conclusion follows. Hence, we assume the statement true

for dimension less than n, and let dim S = n. Let x € S,

then there is an integer m < n + 1 such that xm+1 €

2 k+1

v({x,x<, ..., x}), but x £ v({x, ..., xk}) for 1 < k <
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m

A = 1.

m
m. Then x™'' = Z A X where
l:

Now, if )\ # 0, then we define: p = (- %ig)x + (- %%%)xz +
1
+ (- if)x + X:-xm. Note that (-~ -.xrf) + ua. +

1
(- ==—) + = 1, so that p € V. TFurther px = (- Yx< +
A1 A1 ’ N 7

cee + (- M)xm o™t o (- é—)x R Am)xm +

A A1 N :H
1 m\_m
_)_\_1_(>\1x+,..+,\mx) (- &= )\1 +...+(--;)x + X+
EXQ + . + >‘mx“‘ - x. Similarly, xp = x; hence x"p =
A1 A1

2 )\m m-1
Xx = x for all n. Then = - X + ... + (- p 4
p a p p[( Y?) ( 71)

1 .m - Amy_ m-1 1 .m
+ x'] = (- &2)xp + ...+ (- 2=)x"_ 'p + x'p =
N X1 N A by
2 m, m-1 1 .m 2
(- JL-)x + + (- =—)x + X P Thus, p~ = p
A1 A A ’ '
and xp = px = x. Note also that p = (- ——g)x + ...t

+

(= Amyym-T -}‘T-Txm = x[(- -)i-f-)p o "] =

A2 1 _m-1 : X2
(- ==)p + . + ——X Xx. Settingy = (- £&=)p + +
[ A1 A1 ] A1
T%—xm-1 then yp = py = y and Xy = yXx = p. Hence, x is in
1
the subgroup of S5 determined by p2 = p.
If, on the other hand, ,X1 = 0, then xm+1 = )\2x2 + ... t

m+ 1

)\mxm so that x e V({x?, ..., x®}). Further, since

X1 e V({xz, ce.y, XU}) 1t follows that V({xz, ce., XT}) is

a subsemigroup of S, and has dimension less than n since

m <{n + 1. By the induction assumption, some power of x2
is in a subgroup of V({xz, ..., XT}) and hence a subgroup

of S. Therefore, some power of x is in a subgroup of 5,
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and the proof is complete.

The following theorem appears in more general form in [3];
we shall give a proof of the version we require. First,

we give the following:

Definition: An element x of a semigroup S with zero O is

called nilpotent if x™ = O for some integer n > 1, N(S) is

the set of nilpotents in S.

Theorem 1.6 An abelian, finite-dimensional affine semi-

group S with zero 6, satisfying S = V(S) and N(S) = {9} is

equivalent to a finite direct sum of reals and complexes.

Proof: Let T = S - 9; then T is an algebra over the reals
and is equivalent to S [6]. By assumption, N(S) = {8}, so
that N(T) = {0}.

By Theorem 1.2, there exist linearly independent idempotents

€,y ..., €, satisfying:

r
(a) e,e, =0 for i # j and

e

1)

(p) e2 = e € T then e = 2 ;)Ve. where }“ =0 or A, = 1.
/il i i

Let Ai = Tei, then Ai is an abelian algebra of finite

dimension over the reals with identity e As in the proof

i.
of Theorem 1.3, Ai has no other idempotents besides ey and

0. Further, since A; ¢ T, N(A;) = {0}.

By Theorem 1.5, some power of each element of Ai is in a

group in A;. Let x # O; since x g N(Ai) it follows that
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x¥ is in some group in Ay determined by a non-zero idem-
potent, hence by e,. It follows that each x # 0 is
invertible with respect to the identity. Thus Ai is a
field of finite dimension over the reals; by the Frobenius

Theorem, Ai is either the reals or complexes.

r T
Let T = Z:;Ai = E::Tei; then I is an ideal in T. We show
i=1 i=1
I =T, Let pe T\I, and let z = -pe; - ... -pe, + p;
then since p £¢ I we have 2z ¢ I. Note also that ze; = 0

fori=1,2, ..., r. Hence by (b), ze = 0 for every 62 =

r

e e T. By Theorem 1,5, z°, for some r, is in a subgroup of

T, and, since N(T) = {0}, the idempotent, e, of this sub-
group is different from O. Thus, z¥e = ez’ = zr; but since
ze = 0, z'e = 0 so that z¥ = 0, and, z € N(T). Thus, z = O

r
and p € I. Therefore, T = 1 = :Ai = i:Tei. Now, AiAj =
i=1 i=1
r

j—1
(0) and Aj n %::Ai = {0} so that T = 3 @ A;; clearly,
i=1 i=1

By
u = Z:jei is an identity for T. This completes the proof.
i=1

Definition: If A is an algebra over a field :} let A(F)

F 6 A with multiplication defined by
(f,a)o(g,b) = (fg,fb + ga + ab)

Remark: If A is abelian and finite-dimensional over T},
then A(F) is also. The element u = (1,0), where 1 is the

identity of G}, is an identity for A(?}); A is imbedded in

A(F).
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Theorem 1.7 Let A be an abelian, finite-dimensional

algebhra over the reals.

u # 0 and no other non-zero idempotents.

Further, suppose A has an identity

Then there

exists an abelian, finite-dimensional nilpotent algebra T

over the complexes such that A is imbedded in T(C ).

Proof:
Case ] Suppose x2 + u = 0 has a solution X, € A. Suppose
a,b are real and ax, + bu = 0; if a ¥ 0, then X, = - Eu.
2 2

2 _ b b b -
Hence X, = ;gu and hence ;Qu = -u. Thus, ;? + 1 = 0 or
(g)2 + 1 = 0; but, a and b are real. Hence a = b = 0,
and X, and u are independent over the reals.

If x ¢ A, y € N(A), then clearly xy € N(A).

X,y € N(A) then ax + by € N(A)

Further, if

for all a,b real. Thus

N(A) is an ideal in A; we show A/N(A) is isomorphic to the

complex numbers.

an identity.

potents since the same is true of A.

x'= 0 (mod N(A)) for some integer r, then xT

(xF)® = 0 for some integer s.

(mod N(A)).

Thus, N(A/N(A)) =

Since A has an identity, A/N(A) also has

Further, A/N(A) has no other non-zero idem-

Now if x € A and
e N(A); hence
Thus, x ¢ N(A) and x= 0

{0}; as in the proof of

Theorem 1.6, A/N(A) is either the reals or complexes.

Suppose x = Au (mod N(A)) for some A real, N\ # 0. Hence,

Xy - Au =

#0.

n+1
o)

reals, s

c? #Z 0 but ¢

c, E N(A); since X, ,u are independent over the
Now, there is an integer n > 1 for which

= 0. We then have (xo - )\u)cg = Cn+1 =

0
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n n _ n _ n
0 and X,Co - )\co = 0. Consequently, X,Co = A c, and
2.n _ n _ 2.n, 2.n _ n_ n
xoc, = Xxbco = ASel; but xJc] = (-u)c0 =-c_, 80 that
2.n _ n n 2 _ .
N°c, = -¢,. Since c; # O, we have \“° = -1 and A is
real. Of course, this is impossible and A = 0, so we

have X, and u are independent over the reals, modulo N(A).
Thus A/N(A) is two-dimensional over the reals, and the
classes containing X, and u are independent. Thus, if x €
A there are unique real numbers‘/lo, >\0 such that x =

/Aou + )\Oxo + ¢ for some ¢ € N(A). Clearly, this c is

unique.,

If‘we let C be the subspace of A spanned by u and X, then

C is clearly isomorphic to the complexes. By the above re-
marks, A = C ® N(A) and since N(A) is an ideal we have for
z,Ww € C x,y € N(A), (2 + x)(w + ¥) = 2W + 2y + WX + Xy.
Hence, A = C ® N(A) = N(A)(C), and N(A) is an algebra over C.

Cage 1I Suppose x2 + u = 0 has no solution in A. Let

T = A @ A, where (a,b)(x,y) = (ax - by, ay + bx); then T
is a finite-dimensional abelian algebra over the reals.
Further, A is isomorphic to the subset of T defined by
{(a,0):a € A}.

The element (u,0) is an identity for T, and the element

2

(O0,u) is a solution of x° + (u,0) = 0. We show (u,0) is

the only non-zero idempotent of T.

2

Suppose (a,b)2 = (a,b), so that (a2 - b©, 2ab) = (a,b).
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Hence, 32 - b2 = g and 2ab = b, If b is not nilpotent,

then by an argument used in Theorem 1.6, b is lnvertible.

It follows that 2a = u, or a = %. Then % = a = a2 - b2 =
4 - v%, ana v° = -}, Thus (2b)° + u = O which contradicts

the assumption of this case.

Thus, b is nilpotent; we show b = 0. Suppose b ¥ 0; then

there exists an integer n such that d® # 0 and d™' = 0.

Now a° - b° = a so that a®b® - p™*2 = ab®; since V™2 = 0
we have a‘?bn = ab™. However, 2ab = b, so that 2ab™ = v
as well, and, hence, 2a2bn = ab”, Thus, 232‘0n = azbn, from

2bn = 0. Consequently, ab™ = 0.

which it follows that a
But b? = 2ab" = 0, while " # O. This contradiction shows
that for no integer n is p? # 0; hence, b = 0. 1In view of
a2 - b2 = a we have a2 = a, and a = u or a = 0, Thus, (a,b) =

(0,0) or (a,b) = (u,0) are the only idempotents in T.
By Case I, T = N(T)(C), and the proof is complete.

Corollary 1.7 Let S be a finite dimensional abelian affine

semigroup. Then there exist T1, ceey Tn, where each Ti is
an abelian nilpotent finite-dimensional algebra over the

complexes, and S is equivalent to a subsemigroup of
S T @ T.(C).
=1t

Proof: A direct consequence of Theorems 1.1, 1.3, and 1.7.

By Theorem J, a compact, abelian affine topological semi-

group has a zero. Without compactness, this need not be
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true.

Example: Let S = R @ R (R is the real numbers) where
(x,y)o(a,b) = (0,y + b). Then S is an abelian affine
semigroup and K(S) = {(0,a):a € R}. Note that K(S) is

isomorphic to the additive reals,

Clark [3] shows that a finite-dimensional affine semi-
group has a completely simple minimal ideal. The next
theorem shows that the kernel of the above example is

typical for abelian, finite-dimensional affine semigroups.

Theorem 1.8 TLet S be an abelian, finite-dimensional affine

semigroup satisfying S = V(S). The kernel of S consists
of a zero or is isomorphic to a finite product of additive

reals.

Proof: Let K be the minimal ideal of S; assume K is not
degenerate. Let x € K, then Kx ¢ K and is an ideal; hence
Kx = K. It follows easily that K is a group. If e2 = e 1is

the identity of K, then Se ¢ K and, hence, Se = K.

By the remark preceding Theorem 1.1, 5 is a topological
gsemigroup. Further, Se is locally compact since it is a
linear manifold. Thus, Se is a locally compact topological
semigroup which is algebraically a group. By a theorem of
Ellis [15], Se is a topological group. Consequently, Ge

is a locally compact abelian topological group. By the

Principle Structure Theorem [59;40], Se contains an open
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subgroup G which is isomorphic to the direct product of
finitely many additive reals together with a compact group
H. Now Se is connected, and, since G is both open and

closed, Se = G.

By Theorem J, <H> has a zero element. But <H> < Se, and
Se is a group so that <H> = {e}. Thus Se = G is isomorphic

to the direct product of finitely many additive reals.



CHAPTER II

In this chapter we study the relationship between a compact,
affine,‘topological semigroup S and its associated proba-
bility semigroup Eﬂ We show that the resultant map is a
continuous affine homomorphism of S onto S. Several
properties of S are deduced from this fact. We add to the
sequence of theorems of the same category as Theorem F and
Theorem G by showing that if S is a compact abelian semi-

group and‘/42 =M€ 5, then /4§ is the full probability

semigroup of some compact semigroup.

Finally, we show that a group-extremal affine semigroup
supports a probability measure. This theorem is a conse-~
quence of a general theorem to be proved about measures on

compact convex sets in linear spaces.

If S is a compact convex set in a locally convex linear
space, by A(S) we mean the collection of all complex-
valued continuous affine functions on S. With the norm
defined by: “fILN = sup |f(x)L A(S) is a closed subspace
of C(S). By the remaiﬁsfollowing Theorem A of the

Preliminaries, A(S) separates points of S.

If X is a locally convex topological linear space, by X*

27
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we mean the collection of all continuous, complex~valued
linear functionals on S. Let F e X*, Xyy ovey X E X, and
€ > 0; then define:

U(F, X3y 0oy xn,e) = {G € X*ﬂF(xi)~G(xi)\<e for 1 =1, 2,
..., n}. The collection of all possible sets of this form
is a basis for a locally convex topology, called the 'weak-
star' topology, on X*, If X is a Baunach space, X* is a

Banach space with norm defined by:

F e X*, then |IFIl = sup |F(x)| , where x € X. The unit
wxl =1

ball in X* is compact in the weak-star topology.

I. The Resultant map: In case S is a compact convex set

in a linear space, Choquet [2] shows that there is a
continuous affine homomorphism fromlg to S. Loomis makes
use of this fact in [26]. We give two proofs of the
existence of such a map in two settings; the general case,
where S is a compact convex set, and another assuming S

to be a compact affine topological semigroup with identity.

In both cases, we show that if S is also an affine semi-

group, then this map is a homomorphism,

Theorem 2.1 If S is a compact convex set in a locally

convex linear space, then there exists R:S > S satis-

fying:
1) R is continucus, affine, onto S.
2) f(R(}A)) = ‘{f(y)djx(y) for M eS and f ¢ A(S).

3) R is a homomorphism if S is an affine semigroup.
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Proof 1: Let S be a compact, convex set in the locally
convex linear space X. Imbed S in A(S)* by defining:
(1) X(f) = f£(x) where x € S, f € A(S). The mapping

> X is affine and continuous in the weak-star topology

X
~

on A(S)*. PFurther, || XI|| = 1 for all x ¢ S, so that S =

o~

{x:x € S} is a weak-star compact subset of the unit ball

of A(S)*.

L)

Fix pme S, and define:
(2) T/‘f = \[f@fL for f € A(S). It is clear that T £
A(S)*, in fact [[T}A” = 1. We show that ?ﬂ is in the

~
weak-star closure of g, and, hence, in 5.

Let U(?/L, PP fn,e) be a weak-star basis neighborhocod
of Tu . By definition (2), Ty f; = j.fid/.L for each i;

hence, there exist partitions P,, ..., Py of S into disjoint

Borel sets such that if Q = {Ej}j ; is a refinement of P,

d \ E.
an zJ £ i then

(3) | Tu (£,) - gé%fi(zj)foEj)( < €. Taking Q to be a

common refinement of P,, ..., P, where Q = {Ej}§=1' and

n’

z. € B we have:

J J’
(4) |T‘u(fi)-2f(z )/.(_(E)l <efori=1,2, ..,
n. Setting x = 2 1 .fi(E.), then X, € S since EE:}L(E ) =
1 and z; ¢ By, Further, ,Tﬂ'(fi) - £i(x)| = I/‘_(f)
f(Z‘z/A(E))' /‘_(fi Zf(z )/A(E)l < € for

i=1,2, ..., n. Thus, since xo(fi) = fi(xo), we have
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that X_ € U(T

o e L fn,s). Hence, T, is in the

) -
wegk-star closure of S, and, consequently, in S. By
definition of §, there exists an x € S such that T/u. =X
Thus, jfd/u. = Tuf = X(£) = £(x) for all £ e A(S).

v

We have shown that for /u. € 5, there is an x € 5 satisfying
(5) f(x) = Jf% for all f € A(S). Since A(S) separates
points of S, this element is unique with respect to (5).

We set x = R(/L) and show that/L(—> R(/U.) is the desired

function.

Let/u,\? eSS, 0< A <1, and £ € A(S). Then f()\R(/UL) +

(1 = ARV = ANER(L)) + (-AIERE)) = Afrap +

(1= Jrav = [raldm « (= XWT = 2RO + (1 =AW,
Again, since A(S) separates points, R()\/UL + (1 = A )\)) =

)\R(/l-) + (1 = ANDR(Y) and U

> R(/LL) is affine.

If Uy —DMU , X € A, in the weak-star topology on S,

then by definition, /aw(f) >/,( (f) for each f e C(S).
The net {R(/.(_( )}q, e A S S must have a cluster point p.
Suppose p # R(/u }); then there is an f £ A(S) satisfying
f(p) # f(R(/A.)). Since {R( MU, )}°< e _\ clusters to p, by
continuity of f, {f(R(/uo( ))}o( e\ clusters at f(p).
However, £(R( Uy )) = [fdu, = Mu(f), and py (f)
converges to /(L(:E) = jfd/_L = f(R(/L)). Thus, f(p) =
f(R(/L)) and, hence, p = R(/A). It follows that the only
cluster point of {R(/u"‘)}ar e A is R(/_(), so that

R(/u,( ) — R(/L). Consequently,/u—> R(/.L) is
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continuocus.

Now if % is the point mass concentrated at x € 5, and f €
A(S), then f(R(g)) = J\fdg = f(x). It follows that R(g) =
x 8o that s ——> R(W) takes S onto S.

Finally, suppose S is a compact, affine topological semi-
group, and let f € A(S). Define

(6) £2(x) = f(xa), fa(x) = f(ax); then fa, f € A(S).

a
Further, if A €S, a € S then f(R(p)a) = fa(R(/u)) =
fa(y)Q}L(y) = J\f(ya)d}L(y). If }(,») £ g, and £ ¢ A(S),
hen f(R(/(Lv‘ )) = de/&*\) = j(f f(xy)d/u(x))d\)(ﬂ
Jrmuomar o) = [rg eV () = 05ROV =
f(R(/,u)R(v‘ )). This shows that f(R(AV )) = £(R(%)IR(V)),

J

t

I

and again, since A(S) separates points, R(/u\)) = R(}L)R(\) ),

Iand’}L —_— RS*" is a homomorphism.
Proof 2: Here we assume S is a compact affine topological

semigroup with identity u.

Let B be the linear space of bounded linear operators on
A(S). We describe two topologies in which B is a locally
convex linear space, by describing a neighborhood basis at
each point.

(P)-Topology: F € B, f,9 «vey £ € A(S), S1y +eey B E

n
S, € > 03 Up(F, Tys vees £0 84y ooy B, £) =

I~
.
i~
=)
——

{G € B: lei(sj) - Ffi(sj)| <€, 1 <1i<n,1
(50T) [Strong Operator Topology]: F & B, f,, ..., f €
A(S), € > 05 U(F, £,, ..., £, €) = {G e B: (lof; - Pr|| <
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e, 1 <1i < n}.

For s ¢ S, define Ry € B by: (Rsf)(x) = f(xs) = £3(x).
Deleeuw and Glicksberg [25] show that s

> Rs is a one-
to-one homomorphism of S into B which is SOT continuous.
They do so by showing that, for fixed f e C(S), the map

> f3 is norm continuous. It is clear that s >R

8 s

is affine.

Fay -~
Setting S = {R :s ¢ S}, then S is a compact, affine topolo-
gical semigroup with the strong operator topology, and the

operation of composition.

For /A e’§, we define %u_ € B by:

(7) (T}&f)(s) = J~f(sx)d}L(x) where s € S and f € A(S).

To show QM_:A(S) ——> A(S), let £ e A(S), s, t € S,

0 < A -<_‘1; then (T4 f)(As + (1 - A )t) =

{2(Ias + (1 - A)tdau() = [ £(hsx + (1 = X Jtx)du (x)
= JIntten) « (1= Mrten) Jap(x) = Afesmapx +

(1 - >\)jnf(tx)dfk(x) = >\%u f(s) + (1 = )\ )3u f(t), so

that ?M-f is affine. That ?ﬁ,f is continuous follows

immediately from the fact that s

> fs is norm continuous.

Let £,, ..., f ¢ A(S), 819 «+.y By € 5, and € > 0. Fix

m
i,j where 1 < 1 < n, 1 < j £ m; then there is a partition

_ r
P, 4 such that if Q = {Ek}kz1 is a refinement of Pi,j and

z, € Ek‘, _then | T fi(sj) - gfi(sjzk)/x(lak)] < e,

Let Q be a common refinement of‘Pi j where 1 < i < n and
¥



<) <m, and Q = {E }{_,; then if z, € E,

\ ?ﬂ_fi(sj) - éi;fi(sjzk)f*(Ek)' < e for all i,j. Setting
| Tﬂx = Ef] k/A(E ), then x, € S and (R f )(s ) = :o(sj) =
ry <F1(25%) = 13l [i 2 P (BOD) = £, (i:sazk)u(Ek))

f, (S J( ) = fi(s [é k/A k)]) = f, (i:sazk)u(Ek)) =
Eéafi(sjzk)fL(Ek)' Hence, |$/Lfi(sj) - Rxofi(sj)} { & for

all i,J, and R, ¢ UP(T y £49 cooy f

819 +eey By €).
0

n!

~
This argument shows that ?ﬂ- is in the (P) closure of S.

A
However, the (P) closure of S is clearly contained in the
”~
SOT closure of § and, hence, QM- € S. There exists,
therefore, an element X, € S such that T = R ; this
means that for f ¢ A(S), s € S, j\f(sy)%f&(y) f(s)
x ™

Ry f(s) = £ %s8) = f(sx ). Taking 8 = u, we have f(xo)
If(y)d/,( (y);: setting X, = R(/,() the map/,( > R(/A)

is again a continuous affine homomorphism of S onto 5, the

proof being the same as in Proof 1. This completes the

proof of Theorem 2.1,

Definition: A compact affine topological semigroup S with

identity u is called group-extremal if the extreme points

of S have inverses., In this case, in view of Theorem I of
the Preliminaries, the extreme points form the maximal

group of the idempotent u which is well-known to be compact.

Corollary 2.1.1 [6] A compact, group-extremal semigroup

has a zero.
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Proof: Let /42 = M € S be Haar measure on the extreme
points G. Then for x e G, 5}1 = M ¥ =/U. by the invariance
of Haar measure. By Theorem 2.1, R(/UL) = R(/u 5) =
R(/,()R(ﬁ) = R(/,l )x, and, similarly, R(/,L) = xR(/u). If

n
x = i§=1" >\ixi, where X, € G, 1S= :Xi =1, )\i 2 0, then

ROM )x ;)\iR(/u)xi = 'z:_:)\in(//.) = R(/».). Similarly
xR(/u) = R(/.(_); by the Krein-Milman Theorem, the elements
of the above form are dense in S. Thus, xR(/U.) = R(/x)x =
R(/() for all x ¢ S, and R(/L) is a zero for S. Note,
then, that if S is group-extremal with 2zero 6, then 8 =
R(/L), where/x is Haar measure on the extreme points.

Thus, f(8) = Ifd/A for all f € A(S).

In [17], Glicksberg shows that if S5 is a compact semigroup,
and /}. E E, then the sequence 1N ; :/41 converges weak-star
=1

to an element A° = N €S satisfying /u.>\= )\/LA. -

Corollary 2.1.2 If S is a compact affine topological

semigroup, and x € S, then ﬁ» E :xl converges to an element
1=1

e2 = e € 35 satisfying ex = xe = e.

Proof: If x € S, then 1ﬁ 2 ;51 converges to an element
i=1

2 . 7 S S
PN =N € S satisfying )\5 = 5)\ = A . Then N 2 =
: i=1

N N
ﬁgR(gi) = R(ﬁ .Z;agi), and, hence, converges to R( \).
= 1=

Further, R(IA) = RCAX) = R(\) and R(X) = R(\¥) =
R( A\)x and R(\) = xR(\ ).
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Remark: In the definition of an affine semigroup S, it is
not assumed that a multiplication exists outside of S in
the linear space in which S is imbedded. However, we can
make this assumption if S is compact and has an identity,
since the second proof of Theorem 2.1 shows that 5 can be

imbedded in the algebra of bounded linear operators on A(S).

If S is a compact semigroup and /,42 =/.<, £ §' then, by
Theorem E, C(/.() is a compact simple semigroup. Hence

<C(/1.)> is a compact semigroup.

Theorem 2.2 If S is a compact affine topological semi-

group, and /4.2 =ML € S, then R(/A.) is in the kernel of

<CQ/L)>.

Proof: Let e = e = R(}l) and/MO = 8/“8' Them/l,(O g?;',
§ Mo = Mo§ = Mo and R(U,) = e.

3 s
Now 11' Z ;/,(01 converges to >\2 =X € S which satisfies
1=1

/,(0)\ )\fl.o = )\ . Since R(/.(O) = e, by continuity,

R( ) e. Also, >\=/uo>\ = 8}‘0)\ = 8)\ and similarly,
A = )\8 Thus, by Theorem D, C( A) = C(>\8) = C(S)\S) =
C(S)C(A)C(S) = eC{( A)e c eSe. Further, since )\2 =\,

C( )\) is & compact simple semigroup (Theorem E).

We show, next, that e ¢ <C( )\ )>. If not there exists, by

Theorem A, an f & A(S) such that f(e) < c, < minéf(x)}.
xe<C(A)>

However, e = R(A) so that f(e) = [ f(y)d A(y) and,

C(A)
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f d = f d . Th
thus,L()\) (e)aA(y) J;( ) FAN (). Tnen
L( )\)[f(y) - f(e)JaA (y) = 0, and f(y) > f(e), imply that

f(y) = f(e) for all y e C( A), which contradicts the choice
of f.

Consequently, e € <C( A)> and, since <C{\)> c eSe, it
follows that e is an identity for <C( A )>. By Theorem I,
e is an extreme point of <C(A)>, and by Theorem C, e €
c(A\). Since C(A) is simple and has an identity, it must
be a group [50;12). Thus, C(A) is a group and X\ is Haar

measure on C( )\ ).

Now for x € C(A ), £ e A(S), f(x) = f(ex) = £X(e) =

J e ) = [rewady) = [k @) = o).
Since f is arbitrary, it follows that C(A ) = {e}, and

X =g

Since /uo>‘ = )\}J,O =X, and ) = g, we have 8/“(0
/*08 = g- However,/uog = g/.lo =/U.O, S0 that/u_o

that is 8/“8 = g§. Again by Theorem D, eC(/J. Je =
c(g)c(/u)c(g) = 0(8/"8) = C(g) = {e}. It follows that

e<C(M )>e = {e}, and by repetition of a previous argument

8

e € <C(/LL)>. The conclusion now follows by Theorem K(b).

Theorem 2.2 seems to be the closest statement one can make
in analogy to Corollary 2.1.1. One might conjecture that
if the extreme points of a compact affine semigroup S

consist of & finite union of groups, then S has a zero.
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To see that this need not be true consider the following:

Example: Let S = DxI where D is the complex unit disc under
ordinary .multiplication, and where 1 is the interval [0,1]
with multiplication defined by xy = x for all x,y € I.

Then S is a compact affine topological semigroup. The
extreme points of S are S1x{1} U STx{O}, while the kernel

of S is {0O}xI,

L ]

II. Subsemigroups of S. We now prove the theorem promised

in the Introduction which completes the series of theorems

given by Theorem F and Theorem G.

r

Theorem 2.3 Let S be a compact, abelian topological

[ -
semigroup, and 1&2 =/u. € S. Then fiS is equivalent to
;

-~

T for some compact, abelian semigroup T.
Proof: 1In view of Theorem E, and the fact that S is abelian,

C{(u) is an abelian group.

Define R = {(x,y) € SxS:Cgu.)x = C{Ww)y}; then R is a

closed congruence on 3, and S/R is a compact abelian

topological semigroup. Let @ :5 > 3/R be the natural

homomorphism of S onto S/R.

We show that (x,y) € R iff Jf(xz)d/,u.(z) - Jf(yz)d/u.(z)
for all £ ¢ C(S). If (x,y) € R, then C{)x = C(WU)y;
hence there exist p,q ¢ C(/L) for which px = qy. Let

f e C(8); thenjf(;z)dfk(z) = jf(xpz)dﬂ(z) =

j f(yqz)du (z) = j f(yz)%}L(z). On the other hand, ‘suppose
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C(/u)x & C(/I.L)y. Then there exists p € C(/U) for which
PX ¢ C(/u_)y. There exists f € C(S), 0 < f < 1, and f(px) =
1 while f(z)

O for z € C(/L)y. There exists an open set

U containing p for which f(tx) > % for t € U, Since p €
C(/A),/A(U) > 0:; therefore, jf(xz)d/&(z) >

SUf(xz)d/L(z) 2 %/,((U) > 0, and Jf(yz)d/&(z) = 0, since
£(yz) = 0 for z € C(AL). Thus, Jf(xz)d}i(z) y ff(yz)d/l(z)

and the assertion is proved.

Let e be the identity of C(/A ). Then C(/U.)e = c(/u), so
that for x ¢ S, C(/L )x = C(/U. )ex and, therefore, Y(x) =
LQ(ex) = kQ (e)@(x). Clearly, then, LQ (e) is an identity
for T, so that Qge) is an jidentity for T.

Let £ € C(S) and define f'((@(x)) = Jf(yx)d/l.(x). Then
f' is well-defined and: £f' € C(T). Let \) e T and define
(PY)(Ff) = If'd\) for £ ¢ C(S). Then, by the argument
used in [17] to prove Theorem F, P is a continuous, affine

(s d

L™
homomorphism of T into S.

On the other hand, define Q*:'g —> T by [Q*(\) )J(E) =
jf(lQ (x))ay (x) for all f & C(T), where V e S. 1t is
well-known (and easy to show) that @* is a continuous,
affine homomorphism. Further, ‘P*(ﬁ) = Q(()x), so that (Q*

Ne
takes S onto T, as a consequence of Theorem H.

If x ¢ C(/A.), then C(/L)x = C(/L)e so that @ (x) = \Q (e).
for all x e C(/L). Then for f e C(T), (LQ*/L)(f) =
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[2t@xnameo - Jc(ﬂ)f(‘c(x))dfk(x) - fcw)f(ue(ena,u(x)
- 2(Q(e)) = [l@x)agx) = @) (f) = @ le)(r). we

o]
have shown, tien, that Qr M = Lec()e) and is thereby an
identity for T.

Now, if f € C(S), s € C(M), then (£7) (@ (x)) =
[ Poman ) - J“f(yx)aﬁcy) = £'(Q(x)). Then (£f%)' =
g1, ana () *p)(£) = [ [r(xy)apy (au(y) =

Yy = MAW -
EO gty = [ [ @) @ey (2ap) =

o)
/u Jf'(z)d\)(z)d/u(y) = Jf'(Z)d\)(z) = (PV)(£).

f

- o)
This shows that (PY)*M = PV, or PV € uS. Also, if

V eF, then [(Pe*)(V )(£)] = [P(*(V))Nf) =
Jermagry (2) = [e@enad = [ [remamziav (x) =
(/J(*\) )(f); hence, (PQ*)(\)) = M=y . If }-(*\) =y,
(i.e., if V & uS), then (P@*)(V) =y . Thus, if/u)) -
Y » then (PLQ*)(\)) =y , and P takes T onto /ug Suppose
PV, = P‘)2’ where V., V, € T. Then there exist

in, EIE e S f:or which LQ*(E]1) = \)1, lQ*(tm) = \)2.

Let T, = /“tn' To = pt,, then @*(T,) = @*(u §1) =
“Q*(/U')\Q*(gn) = @*( §,); similarly, @*( T,) = §,.

Now T,, T, e mS so that (P*)(T;) = T,, (Pe*)(T,) =
T,. However, T, = P*(T,) = PQ*(EH) =Py, = Py, =
P*(§,) = PQ*(’rz) = T,, so that v, = e* (T, VYV, =
LQ*(’PE) imply that ‘91 = V)E' Hence, P is one-to-one.

/ug and T are now equivalent, which was to be shown.
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ITI. Probability measures on compact, convex sets. We

Laned

show here that given a measure /« e S, where 5 is a compact
convex set in a linear space X, then there is a measure

V ¢ S satisfying C(v ) = <C(M)>.

Lemma 2.4.1 Let S,K be compact Hausdorff spaces, and

f:K > S, a continuocus function. Then f induces f*:
P ——> S which is continuous and satisfies C(f*g/L)) =
£(cp)).

[ o™

Proof: Define f*-K'————>'§ by : ,
(fffL)(g) J\g(f(x))§f4(x) where M € K g £ C(8).

Clearly, f*: X —> S and is weak-star continuous.

Let M &K, we show C(f*(M)) = £(C(M)):

(1) C(f*(/x)) c:f(C(/l)). Suppose X € C(f*gpt)) and

X, ¥ f(C&AL)). Then there exists g € C(S), 0 < g < 1,
g(xo) = 1 and g® 0 on f(C(/L)). There is an open set V
on which g(y) > % for y € V. Then (ftﬁ()(g)

0
Jewamom 2 [ amar (i) 2 3 (e > o

(ft}()(V) > 0, since V N C(f*(}L)) # @. However, (f*/&)(g) =
jgcf(ynd/x(y) - [C(#)g(f(y))aﬂ(y) - 0. This contra-

containing x

diction establishes (1).

(2) f(C(/L)) c C(f*(/x)). Let x, = f(yo), where y_ ¢
C(/L) and x_ £ C(f*S;L)). There is a g € C(S8), 0 < g £ 1,
and an open set V containing x_ such that g(y) > % on V

and g = 0 on C(f*gfk)). There is an open set U containing
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Y, such that f(U) « V. Thus, for all y € U, g{(f(y)) > %.

Then we have (f* i )(g) = g(y)af*a (y) = O since
o fc(f*,u ) AL
g =0 on C(ft/t). On the other hand, (ft/g)(g) =

1
[eteomam 2 [ senap) 2 Fum > 05 ) >0
since y_ e U CS}L).' Hence (2) is established, and,

therefore, the lemma.

P

Lemma 2.4.2 Let S be compact, Hausdorff, and t/li}?;1 c 3,

1 L)
then n converges weak-star to £ 5, where
2 B fhy convers Mo <5
C = Uc .
(M) 1 ()

; I i\T ” o .
P f: S - < t foll
Troo ince ” %zignlxn n=1§n/1n < z;ign, i ollows

that {Zf:%n/4n}:=1 converges in norm and, kence, weak-star
n=

to an element /10 € M(S). Each /“i £ E, so that /uo E‘E.
(1) C(}JO) < ?b(/&n). If not, there exists a g & C(S),

0 < g <1, such that | gd > 0, but |gad = 0 for all
2 &2 M g M n

n. But J\g%O = 1lim ﬂ(%nfgdﬂn) = 0; this contradiction

m n=1
establishes (1).
- 1 .
(2) n‘tzﬁ’?(ﬂn) < C(U,). Note that En/(ln(f) 7 o(f) if

fec(s), £f>0. If Cgf‘n) v CQ}LO) for some n, then there
is a g € C(5), 0 £ g < 1, for which ‘[gd}4n_> 0, but
jgd/‘o = 0. But %n jgd/;_n < jgd/.go; so that Jgd/u,n =
0. This contradiction establishes (2), and the lemma is

proved.
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Theorem 2.4 If S is compact and convex in the linear space

la )

Lad
X, and M € S, then there exists ¥ € S for which C(V ) =

<c(/1.)>.

Proof: Fix n 2> 1, and let

(1) Ap = {(Xhyy voes M) e B0 S N <1,

Ay ).

Let m e‘Ri satisfy C(m ) = A (note that Legesque measure

=1

[

T

suitably restricted and normalized will do).

(2) Set K, = Anxc(/u)x cee X C(éé), and

n + 1

(3) ‘Qr1= mnxéif_éié_fﬁf where Qn is the product measure

n+ 1

V., e K V,) = K_, si
on Kn. Note that n £ Kn and C( n) = K since the meas-

n’
ure of any product set is the product of the measures.

Define hn:Kn —_> 5 by:

n
hn()\ﬂ .,)\n, Xy '*‘"xn+1)=lz___;>ixi+

(1 - iZ;Xi)an where ()\1, ceas A L) € AL, Xy € C(/,() for
<

1< 4

(4)

n+ 1. (learly, hn is continuous and

hn(Kn) = {gj)\ixi:)\i 2 0, gxl =1, xX; € C(/.(,), 1 <1iX

n+1}.

By Lemma 2.4.1, h_ induces h;;zn —> S and C(hﬁ(iq)) =
h, (C(%)) for any & e X . Let# _ =hx(¥ ); then C(g ) =
C(hx(V,)) = h (c(V,)) = b (K)) =



Lemma 2.4.2 then gives a measure 4/, ] satisfying:

n+1 g:}
“/%)'xff“%n)' Z:Alﬂ. x >\izo'xi

n=1 i=1
c(}; )} <c(/u.)>. The last equality is justified by
Theorem B of the Preliminaries. This measure‘/xo is the

desired extension of/.L .

Corollary 2.4.1 Let S vbe a group-extremal affine semi-

group, then S supports a measure.

Proof: By assumption, the extreme points of S form a
compact group G. A compact group supports a Haar measure
f*’ and we may assume, by suitable extension af}; to S,
that‘/x srg. Thus Cgfc) = G, and Theorem 2.4 now gives

a supporting measure for 5.



CHAPTER III

In this chapter, we give a representation theory for
compact, group-extremal affine semigroups. In the abelian

case, we produce a sufficient system of affine semicharacters.

Definition: A representation of an affine topological

semigroup S is a continuous affine homomorphism from S5 into

the set of nxn complex matrices for some n,

Definition: If H is a Hilbert space, a completely-continuous

symmetric operator is a bounded linear operator T from H into

H which satisfies:
(1) T takes a uniformly bounded set in H to a relatively
compact set.

(2) (Tx,y) = (x,Ty) for all x, y € H.

The following theorem is well-known, and an excellent proof

may be found in [58;232].

Theorem 5.1 Let H be a Hilbert space, and T a completely

continuous, symmetric operator from H to H. Then there

e =}

exists a sequence {(Qi}i=1

c H satisfying:
(1) Ttgi = )\iLQi for some real number )\i # 0.

(2) ((.Q A, j) = 51;} (Sij is the Kronecker delta functicn).
(3) Por x € H, Tx = n;(Tx,(Qn)LQn.

44
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(4) For a fixed X\ # O, M, = {x € H:Tx = A x} is a finite-

dimensional subspace of H.

If G is a compact group, 412(G) is a complex Hilbert space
with inner product:

(1) (f,g) = ff(x)E(Tchx for f,g € ¢C2(G). The norm in
J;z(G) is denoted by \l - “2. Let k € C(G), where k is
real, and k(y) = k(y-1) for all y € G. Define

T: L2(G) ——> £2(G) by

(2) Tf(x) = Ik(xy—1)f(y)dy, where f € c,CQ(G), X € G; then
T is a completely continuous, symmetric operator in H (9;24

[49;204], [57;221]), [55;49]).

Let S be a compact, group-extremal affine topological
semigroup, where the extreme points are the compact group
G. By AG(S), we shall mean the collection of functions in

C(G) which are restrictions to G of elements of A(S).

Lemma 3.2.1 AG(S) is a norm closed subspace of C(G).

Proof: Let {fn}:;1 < Ay(S) and suppose f > g € C(G).

There exists {f¥}' , c A(S), where f} restricted to G is

f,- We show {f*}*> , is Cauchy in A(S).

Let € > O; there exists N > 1 such that for m > N, and

x e G, |fm(x) - g(x)l < ¢/2. Thus, for n,m > N, and x ¢ G,
r

'fm(x) - fn(x)| <Ce. If x-= ;i___,‘)\ixi’ E)\l =1, )\i 2 0,

and x, € G, then 'f;l(x) - f;(x)l = 'f;ﬁ(t)\ixi)
im1
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fﬁ(g A= ,:é)\i[f;.(xi) - fﬁ(xi)]l =
| g)\i[fn(xi) - fm(xi)]l hS é—q;)‘i | £a(x3) - £o(x)| <

E i>\i€ = €. ©Since the elements of this form are dense in
1=

S by Theorem B, lf;(x) - f;(x)l < € for all x € S. This

shows that Ilf; - fﬁllm £ e for n,m > N, so that {fﬁ};;1 is

Cauchy in A(S). Thus, f; > f € A(S) in the uniform
norm and, since fn —> g on G, we must have g = f on G.

Thus, g € AG(S).

Remark: Included in the proof of Lemma %.1.1 are the
following facts:

(a) If a sequence of elements of A(S) converge uniformly
on G, they converge uniformly on S.

(b) If two elements of A(S) agree on G, they agree every-

where on 9.

Lemma 5.2.2 If T is defined as in (2), then Tf e C(G) for
all f € £2(G) and T:4L°(G)

> C(G) is continuous with
the supremum norm on C(G). Further, if f ¢ AG(S), then
Tf e Ag(S).

Proof: Let f € Jle(G), X,y € G; then |Tf(x) - Tf(y)| 2 _
,J\[k(xz—1) - k(yz'1)]f(z)dz|2 < J~lk(xz_1) - k(yz_1)|2dz
J|f(z)\2d|z < Ny - x 112 - Mell5. continuity follows

from the continuity of x

> kxl

Now for f,g e‘llz(G), x e G, l Tg(x) - Tf(x)]2 =
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| [ M ietn) - £ day]? ¢ f,k(xy-n;?dy Jlg(w - t(y)fay
= k2|t - gll5. Hence, ll1e - 7£l , < fixll /e - gll,

and T is continuous.

Finally, if f ¢ AG(S), there existe g ¢ A(S), where g = f

on G. Let f*(x) = J‘k(y-1)g(yx)dy; then f* € A(S) and for
- -1

x e G, f*(x) = ‘[k(y 1)g(yx)dy = ‘{k(y yf(yx)dy =

j k(xy-1)f(y)dy = (Tf) (x). Thus on G, Tf = f*, so that

Tf € AG(S).

Theorem %.2 Let S be a compact, group-extremal affine

semigroup with compact group G. If x,y € S and x # y,
there exists a representation P of 5 satisfying

(1) P(x) # P(y) |

(2) P* (&) € P(S) for all 6 ¢ S; (P*(G ) denotes the
ad joint of the operator P(G)).

Proof: Denote the identity of G by u. Then there exists
an open subset U of G containing u, and where <U>x N <Udy =
@. If not, let U= {U:U open in G, u € U}; Yis a

directed set with the partial order defined by:

(3) U KV iff Vc U. By assumption, for each U ¢ QL there
are elements Py tU € <U> satisfying PyX = th. For each
open subset W of 5 containing u, there exists an open
convex subset V of S, u € V, and for which Vc W, Let
Vo=V NG thenV e Yand if U e, v, < U, <U>c <V >c
Vcw. It follows that py,t; € W, and, therefore,

Py > u and tU > u; hence PyX > x, th —_— Y
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so that x = y. This establishes the existence of a U ¢ 2[

where <U>x N <U>y = @, Obviously, we may assume U = U"1.

By Theorem A, there axists an f_ & A(S) which satisfies

min {fo(z)} >r, > max {fo(z)}, and where f_  is & real-
ze<U>x ze<U>y

valued function. Further, there exists h € C(G) satisfying

h{u) = 1, h = 0 outside of U, and 0 { h < 1. Setting k(z) =

-1 _
h(e) + 1(2 ) tnen x(u) =1, 0 <k &1, k(z) = k(z7"),

and kx = 0 outside of U.

Then S\k(z-1)f0(zx)dz = lka(z_1)fo(zx)dz > roj\uk(z-1)dz >
j k(z_1)fo(zy)dz = J‘k(z"1)f0(zy)dz. We have shown that

U
j'k(z-1)fo(zx)dz # I\k(z"1)f0(zy)dz.

Now, let T be the operator defined by (2) which corres-
ponds to the function k. We have that Tfo(x) # Tfo(y),

and f € A(S). By Lemma 3.2.2, T:AG(S) > AG(S); if

we let H = KET§TJ:2, then again by Lemma 3.2.2, T(H) =
Trxar37£.2) c KETSTIh"a,= A;(S). The last equality comes
from Lemma >.2.1. It follows that H is an invariant sub-
space of o °(G); denote the restriction of T to H by To-
Then: |

(4) T,f(2) = j k(zy™ ' )f(y)dy = J\k(y'1)f(y2)dy for f e H,
and z € G. Also, TGfo(x) # TGfO(y).

Since T is completely continuous and symmetric, the same

is true for T,. By Theorem 3.1, there exists {(Qi};;1 < H,
T:@; = )\ilgi for some real >‘i £ 0, (‘01"(’3) =Sij,
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T,f = n§='(TGf,ch)(Qn for all f € H, and for fixed A\ ¥ O,
M, = {f ¢ H:T.f = A f} is finite dimensional. Since {9, =

TG(JX'j‘:Qi)’ it follows that ‘Qi 3 AG(S). Thus, there exists
* ;00
{lQi}i=1 c A(S), where ‘?’{ = ‘ei on G.

Define TS:A(S) —> A(S) vy
(5) Tsf(z) = Jk(y_1)f(yz)dy where f ¢ A(S), z € S. For
f ¢ A(S), let g = f|;, the restriction of £ to G. Then

Tsf(é) = Ik(y-1)f(yz)dy = Sk(zy_1)f(y)dy =
fk(zy‘”g(y)dy = TGg(z) whenever z € G. In particular,

[= =]
let g = f0|G, then T,g = Zi 1:'(‘1‘Ggo,(Qi)‘.Qi, where the

series converges in o 2(G). Fix n,m, then we have
m
E(TG%' QW - i—:{(go’ Tc@1Qs = g)\i(go.@i)(gi =
.ﬁ(go’ Q)T = TG(ﬁ(go,Qi)(Qi). Now for z e G,
i=n =n
\TG[i(f;(Sos ‘Pi)LQl](Z” ° =
-1y - 2 2
Ijk(zy )[Z(go*@i)‘ei](ymy\ < flxlls
I f.(s @yl 5= Nkl Efll(s Q)2 z:\(g 0 5)] °

goes to zero with n,m by Bessel's inequality. It follows

that ;(TGSO’Qi)Qi converges uniformly in C(G), and,
hence, converges uniformly to TGgO. By the remark following
Lemma 3.2.1, E(Tcgo,(@i)(?*i* converges uniformly on S.
Since Pgf = T.g, on G, and iZ;(TGgO,(Qi)(,Q{ converges

: =]
uniformly to T,g 6 on G, it follows that §=1(TGgO,<pi)(e;
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converges uniformly to Tsfo on S.

Since Tsfo(x) # Ts(fo(yD, it follows that for some i > 1,
Le*{(x) # (Q{(y). Now for z € G, TSQ*{(Z) = TGIQi(z) =
)\i(gi(z) = )\itpg(z)'. _ Since Tg(p % and )\1@; are elements
of A(S), and, since they agree on G, we have:

(6) Tg@% = N;jQ% ons.

Since My = {f e H:T f = )\if} is fin.ve-dimensional, there
exists an orthonormal set f,, ..., fn e My which span Mi'
We define M¥ = {f e A(S):Tgf = A;f}; then M} is finite-
dimensional. In fact if f, = f;,G where f* ¢ A(S), and

f e M}, then fIG = g € Mi and g = g;;aifi. It follows

that f = Si:aif{ by previous arguments.
i=1

In view of (%), QY e M*. Denote by B, the bounded
linear operators on M{. For 6 e 5, f ¢ M}, define
P(e)f = £% . Then 1,r% (z) = fk(y”)f"(yz)dy =

[ x ™ e(yze)ay =X f(z6) =\;£ (2) so that P(6)T e
M*. Further, if ¢, € S, then P(6T )f(2) = g€ T (z) =
flzeT) = £T(26) = P(T)f(z6) = P(6)[P(T)Ff](z); hence
6 —> P(6) is a homomorphism. Also, if 0 < A <
P(ANG + (1 = A)T)HEN2) = f(z[Ne + (1 = XN)T] =
f(A(ze) + (1 =X )(2T)) = Nf(z20) + (1 - A)f(z7T) =
[AP(@)f + (1 - X )IP(T)tNz2) =

[AP(6) + (1 - A )P(T)](£)(2). Thus, @ —> P(§) is

affine. As noted previously, & ——> f% is continuous for
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fixed £ e C(8), so that & ——> P(& ) is SOT continuous,
Since M#¥ is finite-dimensional, & —> P(6) is

continuous in any locally convex topology on B;j - The map

G > P(g~) is, therefore, a representation of S.

Further P(x)@*{(u) = (Q*i'(x) # (.Q*i*(y) = P(y)(Q{(u) so that
P(x)Q% # P(y)Q % and, hence, P(x) # P(y). If we introduce
the following bilinear form on M;:

(7) (£,8) = J’f(x)g!xidx, then (f,g) is an inner product

on M¥. In fact, if (f,f) = 0, then f = 0 on G and, since

f ¢ A(S), f= 0 on 8.

For z ¢ G, and f,g € M¥, we have (P(z)f,g) =

jfz(x)_(ﬂ FTdx = Jf(xz)—(_)'g XTdx = If(x)g(xz'1)dx -

=
-y f(x)gz (x)dx = (f,P(z“1)g). Hence, P*(z) = P(z_1) =
P'1(z) e Gl . Further, if z = i‘kizi € S, where
1=1

§>\1= 1, )\i 20, and z; € G, then (P(2) I* =
['ii:. >\1P(Zi)]* = :)\iP*(zi) = ﬁ;xiP(z?) -
= i= i=

P(Sf:>\izz1) e P(S). Then by continuity, P*(z) € P(S)
=7

for all z € S. This establishes Thecorem 3.2.

Corollary >.2.! Let S be a compact group-extremal affine

semigroup with group G. If G is metrizable, then S is

metrizable.

Proof: Let {Ui}I;1 be a neighborhood basis at the identity

u, where U; is open in G, Uy = UI1. To each U;, we
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associate a function ke C(G) as in Theorem 3.2 which
satisfies 0 < k; < 1, ky(u) = 1, k;(2) = k;(27'), and

kiEE O outside U, . Each ky gives rise to a countable number
of representations of S. Since for x # y, it is only neces-
sary to find a neighborhood U satisfying <U>x N <Udy = @,

we can take U = Ui for some i and, thus, a representation

arising fronm ki separates x from y.

We therefore have a countable number of representations by
metrizable spaces which separate points of S. Then S is
imbedded in a countable number of metric spaces and the

conclusion follows.

Definition: Let S be an affine topological semigroup. An

affine semicharacter on S is a continuous, affine homomor-

phism from S5 to the complex unit disc.

Theorem 3,2 Let S be a compact, abelian, group-extremal

semigroup. Then for x # y, X,y € S, there exists an affine

semicharacter p such that p(x) # p(y).

Proof: By Theorem 3.2, there is a representation P of S

by elements of B(M), where M is a finite-dimensional linear
space over the complexes and B(M) is the linear space of
bounded linear operators on M, and which satisfies P(x) #

P(y) and P*(¢ ) € P(S) for all & € S.

Let M1 be a subspace of M minimal with respect to invariance

under all P(G™) for & € 5, and M, # {0} and
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A\ = {oX e B(M,):xXP(07) = P(G )X for &~ e S} A is
clearly an algebra of finite dimension over the complexes.
For X ¢ &N\ , let R(oX) = {x € M,:04(x) = 0}; then R(X)
is a subspace of M, and is invariant under all P(g) for
G € S. Since M, is minimal, we must have R(X) = {0} or
R(X) =M,. If R(K) = {0}, then o is invertible; if
R(eX) = My,

over the complexes, and, since A is finite-dimensional,

then &= 0. Thus, /Z\ is a division algebra

it is complete. By [16] and [27]), &\ ' is one-dimensional
over the complexes; this means that for o ¢ A , there

exists a complex number )\ where ¢X(x) = A\ x for x € M, .

Now for each @ € S, P(&) ¢ 2\ since S is abelian. Thus,
there exists a complex number p,(6 ) for which P(G )x =
p1(6‘)x for x e M,. Let e, # O be an element of M,. Then
{)\e1}, the space spanned by e, is invariant under all

P(6); it follows that M, = {\e,}.

Note that P(&T )e, = p,(6°T )e,, and P(6 )(P(T)e,) =
P(6)(p,(T)e,) = py(& )p, (T )e,. But P(6T) = P(O)P(T),
so that p, (6 T) = pT(G‘)p1(ﬂ'). Similarly, p, is an

affine map, since the same is true for P. Further,

I &4 _

|21(6) = 2y (T = | 2506 - 0y (T ey =

| e (&) - (™) leyll | [B(&) - (™) Iy [l | ppis

e ) €1

shows that p, is continuous and, hence, an affine semi-

character.
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Now, suppose we have constructed an orthonormal set

€15 vy € along with affine semicharacters Pyy «vey Py
which satisfy P(cr)ek = pk(d‘)ek. Let Q be the subspace
of M spanned by €14 vy € Suppose Q # M, then QJ‘, the
orthogonal complement of Q, is different from 0. If

6 € S, there exists ‘T e S for which P*(6§ )
Kk

if x € Q+, and y = Faiei, then (P(6 )x,y)

P(T). Then
(x,P*(6 )y) =

it

(x P(T)y) = (x, P(’T‘)[ZE = é (X, P(T Jey) =
o
Za (x,p;(T)ey) —ﬁa p;(‘ T )(x,e;) = 0. Thus, P(6 )x ¢

QJ‘, and QJ‘ is an invariant subspace of the representation.
Replacing M by Q in the previous argument, we obtain

€r+1 € QJ‘, and an affine semicharacter Pyss which satisfies
P(6 e

(67 )e for & € S.

k1 = Pist K+1

Repeating this argument, we finally obtain an orthonormal
basis €4s €5y ey €4 for M, and affine semicharacters
Pys sors pn,‘for which P(c)e; = p;(6 )e; for 1 <1 <n
and & ¢ S. Now P(x) # P(y); thus for some i, P(J\:)e.1 #
P(y)e:.L and, conseguently, pi(x) # pi(y). This is the

desired separating affine semicharacter.

One might approach Theorem 3.3 by attempting to extend
each character on the group to an affine semicharacter.
We give two examples: the first is an example of an
abelian group-extremal semigroup in which every character

may be extended to be an affine semicharacter; the second



55

shows that, in general, not every character can be extended.

Example 1: Let G be an arbitrary compact abelian group,

and S = G. Clearly, S is abelian and group-extremal. Now,
for each continuous character ¥ on G, define F, Q}L) =

Y'E %}L vwhere w € 8. Clearly, Fy is a continuous, affine
function. Further Fy (/4*9) = j ¥ au*y =

(15 Gapay o = [ [¥ 0¥ apmay ) -

F‘c{ ('(L)-Fx (Y ). Therefore, Fy is an affine semicharacter.
Furéher, if x € G, then Fy (§) = X"ﬁ dy = ¥ (x), so that

F‘ = ¥ on G.

Example 2: Let S be the complex unit disc, 81 the circle

group. Let p be an affine semicharacter p=X 1, p=O0;

then clearly p(0) = 0. If \x} < 1, then x" > 0, so
that [p(x)]® = p(x™) —> 0; thus, |[p(x)] < 1. It
follows that p-1(1) is subset of S . However, p_1(1) is
convex, so that p~ (1) = {1}. Now on s', p is a character;
there exists an integer n for which p(z) = z" for all

z £ S'. But then p_1(1) contains the n-th roots of unit,

so that n = 1, p(z) = 2 for z ¢ s’ and, hence, for z € S.

Therefore, the only affine semicharacters on S are p =0,
p=1, and p(z) = z. This example can be justified as well

by noting that Schwarz [41] has computed all semicharacters

of the disc; they are:
(8) X(z)=o0 (b) X(z)= 1
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O for z =0
(c) X(z) = .
]z\q'+5ﬁ 2™ for z # 0 (n an integer, 8 real,
n+co >0)

By D_, we mean the countable product of discs under
coordinate-wise multiplication. D, is an abelian group-

extremal affine semigroup.

Corollary 3.3.1 An abelian, metrizable, compact, group-

extremal affine semigroup S is equivalent to a subsemi-

group of D_.

Proof: In the proof of Corollary 3.2.7, it was shown that
S has a countable number of representations which separate
points ¢f S. Each representation gives rise to a finite

number of affine semicharacters; coneequéntly, a countable
number of affine semicharacters, say p,, Ppoy ---» separate

points. If we define F:S

> Qm by
(1) [F(x)]i = py(x), then F is clearly an equivalence

between S and a subsemigroup of D_.

Theorem 3.4 A compact, group-extremal affine semigroup S

is equivalent to the inverse limit of compact, finite-

dimensional group-extremal semigroups.

Proof: Let A be a finite collection of representations of
S, say A = {P,, ..., Pn}, where P, is a representation of
S in the finite-dimensional space M;. Thus, Pi(s) € B(Mi)

for all s € S, and Pi(S) is a compact, group-extremal affine
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semigroup.

Define f,:5 ——> B(M,) & ... ® B(Mn) by :

(1) fA(c‘) = (P1(Q?), ceey Pn(e?)). Clearly, f, is a
continuous, affine homomorphism. We define:

(2) Q = fA(S); then Q, is a compact, group-extremal,

finite-dimensional affine semigroup.

Let 7A be the collection of all finite sets of representa-
tions of S, and partial order A by containment. ?\ is then
a directed set in this partial order. If A,Be A, A c B,
. B,
define Q?A'QB
- . B _ B
(3) TLet X, = fB(so) £ QB' define QPA(xO) = fA(so). QQA

merely consists of the function which projects from QB to

> QA as follows:

Q, by deleting the coordinates in B\ A. In view of this,
and the fact that fg is a continuous affine homomorphism
for all B ¢ C&, qgf is a continuous, affine homomorphism
onto Q. Clearly, if C 2 B > A then Q{05 = Q. Thus,
{QA,@E,ﬁ} is an inverse system, and, therefore, we set
(4) Q = lim {QA,(QA,%} We wish to show S is equivalent

to Q. To do this, we define a function F on S to TP'AQA
Ae

by

(5) [F(s)], = £f,(8) for A e A, and for s € S. Note that
[F(s)], € Qu; 1f B 2 A, then LQf([F(a)]B = ©} D(tgy(e)) =
f,(8) = [F(s)],. Thus, F(s) € Q; F is clearly a continuous,
affine homomorphism of S into Q. If x # y, x,y € S, there
exists a representation P such that P(x) # P(y). Let
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A = {P}; then fA(x) = P(x) # P(y) = fA(y). Therefore,

(F(x)], = £,(x) # £,(y) = [F(y)],, so that F(x) # F(y);

this shows that F is one-to-one.

We wish to show F is onto. Let 2z € Q; for each A ¢ ?\ ’

z, € QA’ so that there exists x, € 5 such that z, = fA(xA)'

Define H(A) = {x e S:f,(x) = fA(xA)}; H(A) is a compact
subset of § for eachAeA. For A,Be%, let C = A U B;
C e 2\, and C > A and C > B. Thus, qgg(zc) = 2z, and
q?g(zc) = 2z, since z € Q. If x € H(C), then fc(x) =

¢ Slzg) = Q5(£5(x)) = £,(x), and,

similarly, zy = fB(x). Hence, fA(x) =2z, = fA(xA)’ and

fc(xc) = 25. Then z,

fB(x) = 2z = fB(xB), so that x € H(A) N H(B). This shows
that H(C) <« H(A) N H(B), and that {H(A)}AE 2 1s a directed
family of compact subsets of S, There exists an x ¢ 5,

X € AQ)\H(A), since S is compact. Then fA(x) = fA(xA) =
z, for all A e A . It follows easily that F(x) = z, so
that F is onto. Thus, S is equivalent to Q, and the proof

is complete.

Remark: In view of the close similarity between compact
affine semigroups and measure semigroups, wWe propose as a
conjecture that every compact affine semigroup is equivalent
to a semigroup of measures. It would alsoc be interesting to
see what uses can be made of Theorem 3.3 in the analysis of

compact semigroups.
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