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ABSTRACT

The object of this work is the study of measure semigroups 
as well as general affine semigroups. We divide this study 
into three parts: finite-dimensional affine semigroups,
semigroups of measures, and compact affine topological 
semigroups.

Pinite-dimensional affine semigroups have been investigated 
by W . E. Clark, and H. Cohen and H. S. Collins. Such semi­
groups can be realized as matrix semigroups, as well as 
subalgebras of algebras over the reals. It will be shown 
in Chapter III that this class of affine semigroups can be 
used to approximate compact group-extremal affine semigroups.

Measure semigroups have been the object of much investiga­
tion; the principal investigators include H. S. Collins, 
Collins and Koch, I. Glicksberg, B. M. Kloss, J. S. Pym,
M. Rosenblatt, S. Schwarz, and J. G. Wendel. Glicksberg 
and Wendel give conditions under which certain semigroups 
of measures are the full probability measure semigroup on 
some compact semigroup. In Chapter II, we add another 
theorem in the same general area. Collins and Wendel show 
that under certain conditions, a compact affine semigroup is 
the continuous, affine homomorphic image of its probability
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measure semigroup. We remove these conditions and obtain 
this theorem for arbitrary compact affine semigroups.

A theory of representations of compact semigroups is lack­
ing due, in part, to the absence of an invariant carrying 
measure. We show, however, in Chapter III, that a group- 
extremal semigroup allows both a theory of representations 
and a theory of characters; we use this theory to show that 
certain properties of the group are carried over to the 
semigroup.

In the first chapter, we show that an abelian finite­
dimensional affine semigroup can be imbedded in a finite 
product of finite-dimensional abelian algebras of the form 
T(C), where C is the complex numbers, T is a finite­
dimensional abelian nilpotent algebra over the complexes 
and T(C) = C ® T where multiplication is defined by: 
(z,a)o(w,b) = (zw,zb + wa + ab). To accomplish this, we 
use several theorems, due to W. E. Clark, and discovered 
independently by the author. We conclude this section by 
identifying the minimal ideal of an abelian, finite­
dimensional affine semigroup as the finite direct product 
of additive reals.

In Chapter II, we extend a result first proved by Wendel, 
and under less restrictive conditions by Collins, which 
shows that the resultant map is a continuous affine homo- 
morphism between S and S when S is a compact affine
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semigroup. We use this result to reprove the fact that a 
group-extremal semigroup has a zero. We show, further, that
the resultant of an idempotent measure is in the kernel of

2the closed convex hull of its carrier. Also, if
A* ^yU.eS, where S is compact and abelian, we show yuS is the 

measure semigroup on some compact semigroup. Finally, we 
show that if S is compact and convex, and yu. e S, then the 
closed convex hull of the carrier ofyu supports a measure. 
Consequently, a group-extremal semigroup supports a 
measure.

In Chapter III, we show that a compact group-extremal semi­
group admits a sufficient system of representations by 
finite-dimensional affine semigroups. As a consequence, 
several properties of the group are extended to the semi­
group. Namely, metrizability is extended and, if the group 
is abelian, we obtain a sufficient system of affine semi­
characters. It follows immediately that an abelian, 
metrizable, group-extremal semigroup is imbeddable in the 
countable product of discs. Finally, we show that a group- 
extremal semigroup is the inverse limit of finite-dimensional 
group-extremal semigroups.
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INTRODUCTION

When affine semigroups first appeared in the literature, 
with studies done by J. G. Wendel [48], and J. E. L. Peck 
[50], as well as others in measure semigroups, it was 
assumed that the semigroup was imbedded in a larger space 
in which there was a multiplication compatible with the 
semigroup multiplication. Such semigroups, for instance, 
as the probability semigroup over a compact semigroup, and 
semigroups of operators on a Banach space are, indeed, 
imbedded in spaces in which multiplication can be performed 
outside of the semigroup. The definition we shall use here 
is due to Cohen and Collins [6]; this definition does not 
assume a multiplication outside of the semigroup. In 
Chapter II, we shall show that, under suitable conditions, 
one can assume such a multiplication does exist outside the 
semigroup.

Semigroups of measures are of comparatively recent origin; 
the earliest work seems to be the paper by Kawada and Ito- 
[20] written in 1940. Then, in 1954, Wendel's paper [48] 
created much interest in the field since he deduced the 
existence of Haar measure on a compact group by using the 
structure of the measure semigroup. Since Wendel's paper, 
there have been several contributors to the theory; among
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them are Collins [7], [8], [9], [10 ], [12], Collins and 
Koch [13], Glicksberg [17], Kloss [21 ], [22], [23], Pym [32], 
Rosen [33], Rosenblatt [34], Rosenblatt and Heble [35], 
Schwarz [42], [43], [44], and Stromberg [45].

In his 1954 paper, Wendel proved that in the probability 
semigroup over a compact group the only probability 
measures with inverse are the point measures (i.e., the 
extreme points). Cohen and Collins then showed in [6] that 
this was true in any compact affine semigroup with unit; 
that is, the only elements with inverse are extreme points.

/s/Glicksberg showed in [1 7 ] that ifyu. is an element of S for
some compact semigroup S, then w £  converges in the

i=i
^  2 Vweak-star topology to an element X e S satisfying X =A 

and A^c = yu. A = A . Further, in an invited address 
(unpublished), Wendel showed that if S is a group-extremal 
affine semigroup, then the resultant is a continuous, 
affine homomorphism from S onto S. Collins showed in [12 J 
that 'group-extremal* may be replaced by the condition that 
the extreme points form a compact semigroup. In Chapter II, 
we remove all these assumptions and show that the resultant 
is a continuous, affine homomorphism onto S if S is a 
compact affine topological semigroup. With this fact, 
together with the result of Glicksberg, it follows that for 
an arbitrary element x of a compact affine semigroup S,

1 N i 2that jy x converges to an element e = e e S which



satisfies xe = ex = e. We also use the resultant map to 
prove the fact noted by Peck [50] and Cohen and Collins [6] 
that a group-extremal semigroup has a zero.

Wendel also showed in [48] that if G is a compact group,
S = gT, and yu. 2 -jjl e S, then /US is the full probability 
semigroup over some compact group. Subsequently, Glicks­
berg showed in [17] that if S is either a compact abelian 
semigroup or a compact group, and P  is a subgroup of S, 
then <P>, the closed convex hull of P , is the full 
probability semigroup over some compact group. To complete 
this sequence of theorems, we show that if S is a compact 
abelian semigroup, and ^M2 =yu. e S, then yu.S is the full 
probability semigroup over some compact abelian semigroup.

In attempting to determine the structure of general affine 
semigroups, Cohen and Collins [6] considered the case where 
the semigroup is a convex subset of some finite-dimensional 
space. They showed that the multiplication on the semi­
group S may be extended uniquely to V(S), the manifold 
generated by S , so that V(S) becomes an affine semigroup.
In case S has a left or right zero, they showed that S may 
be realized as a semigroup of matrices. They then charac­
terized completely all one and two-dimensional affine semi­
groups. Clark then showed in [35] that an affine semigroup 
can be imbedded in a finite-dimensional algebra over the 
reals. He also showed that a finite-dimensional affine
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semigroup has a completely simple kernel (i.e., minimal 
ideal). In Chapter I, we shall show that an abelian, 
finite-dimensional affine semigroup may be imbedded in an 
abelian algebra over the complexes which is the direct 
sum of finite-dimensional abelian algebras over the com­
plexes of the form T(C), where C is the complex numbers,
T is an abelian, finite-dimensional nilpotent algebra over 
the complexes, and where T(C) = C © T, with multiplication 
defined by:

(z,a)o(w,b) = (zw,zb + wa + ab) .
We conclude Chapter I by showing that the kernel of an 
abelian, finite-dimensional affine semigroup S satisfying 
V(S) = S is degenerate or is isomorphic to a finite product 
of additive reals. Chapter III will demonstrate that 
finite-dimensional affine semigroups may be used to approxi­
mate compact, group-extremal semigroups.

Compact group-extremal affine semigroups are of much 
interest, as the model is the probability semigroup over a 
compact group. The works of Glicksberg [17], Cohen and 
Collins [6], Peck [30], and Wendel [48] all include theorems 
about such semigroups in some form. We show in Chapter II 
and III that many properties of the group of extreme points 
may be carried over to the entire semigroup. In Chapter II, 
we show that if a probability measure is concentrated on a 
compact subset, A, of a compact convex set in a locally 
convex linear space, then there is another probability
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measure concentrated on the closed convex hull of A. It 
will follow immediately that a group-extremal semigroup 
supports a probability measure, since the group supports 
Haar measure.

Several authors have contributed to the theory of repre­
sentations and the theory of characters on semigroups.
Among these contributors are Clifford [4], who showed that 
a completely simple semigroup has a faithful representation 
by (infinite) matrices, and Preston [51] who proved a 
similar statement concerning regular semigroups. Further, 
Hewitt and Zuckerman in [18] and [19] investigated semi­
characters on finite and infinite abelian semigroups, as 
did Schwarz ([57] - [41 ]) . However, in all these studies 
the underlying semigroup was assumed discrete and, naturally, 
no continuity conditions are obtained. Schwarz in [41] 
investigated characters on a compact abelian semigroup from 
the standpoint of determining the structure of the semi­
group of all such characters. He stated explicitly all 
the semicharacters of the disc, and we shall use this in 
the sequel to counter a possible conjecture.

The difficulty in obtaining continuous characters in an 
arbitrary abelian compact semigroup seems to be due in part 
to the absence of an invariant carrying measure that exists 
for compact groups. In Chapter III, we show that in spite 
of the absence of an invariant carrying measure, a group-
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extremal affine semigroup has a sufficient system of affine 
representations. If the group is abelian, these repre­
sentations may be taken to be one-dimensional, so that we 
obtain a sufficient system of affine semicharacters. As a 
consequence, a group-extremal affine semigroup is the 
inverse limit of finite-dimensional group-extremal affine 
semigroups. Further, if the group is metrizable, then the 
entire semigroup is as well. In the abelian case, if the 
group is metrizable, the semigroup can be imbedded in the 
countable product of discs under coordinate-wise multipli­
cation .



PRELIMINARIES

Definition: A semigroup is a set S together with a
function m: SxS  > S satisfying m(a,m(b,c)) =
m(m(a,b),c). If S is a Hausdorff topological space and m 
is jointly continuous on SxS to S, then S is called a 
topological semigroup. As usual, m is suppressed and 
m(a,b) is written ab.

Definition: A topological linear space is a vector space
V over the reals (or complexes) which possesses a 
Hausdorff topology in which vector addition and scalar 
multiplication are continuous in both variables simul­
taneously. If, in addition, the origin of V possesses a 
basis in this topology consisting of open convex sets U
which satisfy: x e U, 1X1 = 1 ----> \  x c U; then V is
called a locally convex linear space. Henceforth, all 
linear spaces will be locally convex.

A proof of the following well-known theorem may be found 
in [53;117]:

Theorem A : Let A and B be disjoint compact convex sets in
a locally convex linear space V. Then there is a continuous, 
real-valued linear functional on V satisfying:

7
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max {f(z)} < min [f(z)} 
z e A z e  B

Remark: Included in Theorem A is the fact that the
continuous, real valued functionals on V separate points.

Definition: If A is a subset of a linear space V, the
closed convex hull of A (denoted by <A>) is the smallest
closed convex subset of V containing A. <A> consists of
all those elements of V which may be approximated by elements

n n
of the form: where >o, A. = 1, and x, e A

i= 1 1 i= 1 1
for i = 1, 2, n. If A is any set in V, an extreme
point of A is an element of A which is interior to no line
segment between two points of A.

The following theorem is due to Krein and Milman [24], and 
proofs may also be found in several standard sources (c .f. 
Naimark [56;62], Kelly and Namioka [53;130]).

Theorem B : If A is a compact convex set in a linear space
V, then A is the closed convex hull of its extreme points.

A proof of the following can be found in Dunford and Schwartz 
[51;440 ] .

Theorem C : If A is a compact subset of a compact convex
set S in a linear space, then the extreme points of <A> are 
again in A.

Definition: An affine semigroup S is a convex subset of a
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linear space V which is a semigroup with respect to some 
multiplication that satisfies:
(a) [ Ax + (1 - X )y]z = A(xz) + ( 1 - A )(yz)
(b) z[Ax + (1 - A )y] = A(zx) + (1 - A ) (zy) 
for x,y,z e S and 0 <_ A  £ 1 *

If, in addition, S is a topological semigroup with the 
topology inherited from V, then S is called an affine 
topological semigroup.

Definition: Two affine semigroups S and T are said to be
equivalent if there is a one-to-one affine homomorphism 
from S onto T. If S and T are affine topological semigroups, 
we require the homomorphism to be bicontinuous as well.

Since measure semigroups provide much motivation for the 
study of affine semigroups, we include here a development 
of the measure semigroups over compact semigroups.

Let S be a compact Hausdorff space, C(S) the Banach space 
of complex-valued continuous functions on S. Let M(S) 
denote the space of all complex-valued, regular Borel 
measures on S . If JLA. e M(S), and we define a function \^\ 
on the Borel sets of S by:

lytL | (E) = sup IEZj | y6( C E±
PE Ei e PE

)

where P̂ , is a partition of E by disjoint Borel sets, and 
the supremum is taken over all partitions of E, then i/<.i 
is again an element of M(S). Further M(S) is a Banach space
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under the norm given by ll/m = i/*i (S). M(S) may also be 
given the so-called 'weak-star* topology, in which a net of 
measures }a( £ -p converges to V £ M(S) if and only if

J fd̂   for a11 f e m
By the Riesz-Kakutani Theorem M(S) with the above norm is 
the adjoint of C(S), where the correspondence between a 
continuous linear functional T on C(S) and the associated 
measure is given by: T(f) = j" fdjju for all f e C(S). In
view of this correspondence, we do not distinguish between 
the measure and the linear functional it defines and write 
simply:

The sets B(S) = e M(S): IlyU|( < 1 } and
S = {yu. £ M(S) y* _> 0,yU.(S) = 1 } are compact in the weak- 
star topology.

If S is also a compact semigroup, then fory< , \) e M(S) 
there is a unique third measure in M(S) called the convolu­
tion of A  and V (written JlK * which satisfies:

Jfd(y<*V*) = = J Jf (xy )dy/ (x)dv> (y) .
This measure is obtained via the Riesz-Kakutani Theorem, 
and under this multiplication and the norm in M(S), M(S) 
is a Banach algebra.

Further, on B(S) and S the operation is binary and jointly 
continuous in the weak-* topology. Hence, B(S) and S are 
compact, affine topological semigroups. B(S) is called
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the 'hall' semigroup of S and S is called the 'probability’ 
semigroup of S .

If S is compact Hausdorff, and e S, the carrier of ju. , 
written C(yO , is the complement of the largest open set 
having yu -measure zero. Consequently, C(yx) is compact 
and for any open subset V of S, yU (V) > 0 iff V ft C(JLA~) ?

V-

A compact semigroup possesses a minimal ideal K which may 
be written as the disjoint union of minimal left (right) 
ideals and also as the disjoint union of maximal groups 
[5]. A semigroup is simple if it does not contain any 
proper ideals.

Theorem D [17]: If J*. and are elements of S, where S is 
a compact semigroup, then C(y!/*V*) = C(yLt )C( V ).

Theorem E [25]; [8]: If jj. =yOL e S, where S is a compact
semigroup, then O(jji) is a compact simple semigroup, and 
for f e C(S) the mapping x 5 ^ f(yx) d/*< y) is constant
on each minimal left ideal of C(yti) and x  > J'f(xy)c^u (y)
is constant on each minimal right ideal of C(yU.) .

Theorem F [17]: If S is compact, and either an abelian
semigroup or a group, and P  is a group in S, then <T> is 
the full probability semigroup over some compact group.

r t 2Theorem G [48 J: If G is a compact group and yU e G»
then yu G = GyU. and is the full probability semigroup over
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some compact group.

Theorem H [1]: The weak-star closed convex hull of the 
collection of all point measures of M(S) is S.

Theorem I Wendel (-unpublished) and [6]: If S is a compact
affine topological semigroup with identity, then every 
element of S with inverse is an extreme point of S.

We shall need the following theorem in Chapter I, but an 
independent proof will be given in Chapter II.

Theorem J [30]; [6]*. If S is a compact affine topological 
semigroup with identity, and if each extreme point of S 
has an inverse, then S has a zero.

Theorem K [6]: If S is a compact affine topological semi­
group, then:
(a) Each minimal left (right) ideal os S is convex.
(b) x c K (the minimal ideal of S) iff xSx = {x}; in 
particular, each element of K is idempotent.



CHAPTER I

In this chapter, we discuss affine semigroups where the 
containing linear space is of finite dimension over the 
reals. Such semigroups are referred to as finite­
dimensional .

A linear manifold in a linear space X ia a translate of a 
linear subspace. If A is a non-void subset of X, the 
manifold generated by A, written V(A), is the smallest 
linear manifold containing A.

If S is a finite-dimensional affine semigroup, Cohen and 
Collins [fi] show that the multiplication on S may be 
uniquely extended to V(S), and relative to this multiplica­
tion, V(S) is a finite-dimensional affine semigroup.

Remark: In this extension, multiplication is expressed in
terms of coordinates relative to a fixed affine basis for 
V(S), the coordinates of a product being polynomials in the 
coordinates of the elements multiplied. It follows easily 
that a finite-dimensional affine semigroup is a topological 
semigroup (i.e., multiplication is jointly continuous).

Clark shows in [3] that a finite-dimensional affine semi­
group which is a manifold is equivalent to a subsemigroup

13



u
of an algebra of finite dimension over the reals. If the 
original semigroup is abelian, Clark's construction yields 
an abelian algebra. Combining these results, we have the 
following:

Theorem 1.1 A finite-dimensional affine semigroup 3 is 
equivalent to a subsemigroup of a finite-dimensional 
algebra over the reals. If S is abelian, then the algebra 
is as well.

The following theorem is well-known, but was rediscovered 
independently by the author:

Theorem 1.2 Let A be a finite-dimensional abelian algebra 
over a field ^  where A contains a non-zero idempotent.
Then there exists e1, . e e A satisfying:
1) ei2 = eif e ^  = 0 for i 1 j.
2) e. , ..., e are linearly independent.

. n3) If e = e e A then e can be expressed: e = C A i ' ,
1=1

where A  ̂  is 0 or 1 .

Proof: If B c A, S(B ) will denote the subspace generated 
by B.

Suppose we have constructed a set e1, ..., er satisfying
p

1) and 2). Let e = e e S( {e1 , ..., er}), so that e =
r r

where \ , e . Then we have ee. = ) . =
i=l „ „ J i=l Jr . r
\ .e.. Hence, e = ee = C  A Ae.e) = C  A-j (X  i e-i ) =J J 1=1 1 A i=1
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r . 2> , e . , and since e1, . .., e are independent, it follows 
i=l 1 1O \that A ± = A i. A ± - 0 or X i = 1• Thus, if every idem-
potent of A is in S({e^, ...,er})» then 3) is satisfied and 
we are finished.

oNow suppose g = g e A, g t S({e.j, . . ., e }) ; then we have 
two cases:

Case I Suppose ge^ e S({e1 , , er}) for all i = 1, 2,
..., r. In this case, let er+1 = -ge^ge^- ... -ger + g» 
so that er+1 t S({e1f ..., er}). Further, ger+1 = er+1 
and er+1ej = “SC©1ej)- ... -g(e^e^) - ... -g(ere^) + ge^ = 
-ge^ + ge.. = 0. Then we have er+1er+l = - ( g e ^ ^ )  - ...
-(gerer+-|) + ger+1 = ger+1 = er+1 , and, since er+1 %

S({e ̂ , ..., er }), e1, ..., er+1 are independent and also
satisfy condition 1).

Case II Suppose gek i S({e1 , ..., er}) for some k, 1 < k £ 
r. Let e£ = e^ “g^* then ge£ = 0, and e^e^ = e£ so that

ekek = ekek _^gek^ek = ek * We show that ei* *'*» ek-1*
ek ’ ek+1* '**’ er are indePendent • Suppose X 1e1 + *•* +

A k ek + * ’ * + A rer = °* Then 0 = ^  1e1 + ‘ * + ̂ k ek +
. . . + A rer^ek = Ai(eiek) + • • • + A kekek + ' * ' + A rerek; =
A kekek = A kek by condition 1). Since e£ ^ 
and since ê  , ..., ejc_1 » ek+1 * er are independent, it
follows that Ai = 0 for i = 1, 2, ..., r.

Now, ge^, e1, e£» ...» » ...» er are independent by
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similar reasoning; hence, we let er+1 = gek . Then er+1e^ =

ĝek^ej = g^eke ĵ  = 0 for J * k ’ and er+lek = (gek)ek =
ge£ = 0. Clearly, er+12 = er+1 » 30 that e-| * •••! ek_1 * e£»
•••» er » er+1 satisfy 1) and 2).

If m is the largest integer for which there is a set {e1, 
..., em} satisfying 1) and 2), then by the preceding discus­
sion, 3) is also satisfied. This completes the proof of 
the theorem.

Theorem 1.3 An abelian, finite-dimensional algebra A over 
a field *3" can *>e imbedded in the direct sum of abelian,
finite dimensional algebras T^, ..., Tn where each T^ has

2an identity e^ and such that if e = e e Ti then e = e. or 
e = 0.

Proof: Suppose first that A has an identity u. By
Theorem 1.2, there exist linearly independent idempotents

2e1, . .., e such that e.e. = 0 for i / j and if e = e e A,n i J
then e =2 ? A a&a where X -i = 1 or X* =0. 

i= 1 1 1

Let T^ = Ae^; then T^ is an abelian, finite-dimensional 
algebra over 3* and has identity e. . If x e Ae. fl Ae. +V-J... + Aei_1 , then xe^ = x, and x = j^a^e^, where a^ e A.

But then x = xe, = J~?a.(e.e.) = 0, and it follows thati j j i *
Ae. + ... + Ae„ iB a direct sum.1 n

2 n
Further, since u = u, u = 2'"' A . e. r where / . = 1 or

i= 1 1
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Xi = 0; however, e.. = uê . = A i ( eiej) = so that

X. = 1 and u = . Then if x e A, x = xu = Z^xe. e
n3 i=l i=l

® Ae..
i=l

pFinally, if e = e e Aei, then ee^ = e, and ee. = (ee.)e. =J J
.e .

j=i 3 3
e(e.e.) = 0 for i ^ j. Now, since e = A He^, then

J- J

0 = ee. = = D k ( V j l  = >^3e j 30 that for

1 ? j» A j = © • Moreover, since ee^ = e, and e = A i ei»
so that e = ee = X  t(e±e) = )\ ^{e^e) = \  ±e = X ±( X ± e±) =

p p
A iei , it follows that \ i = and e = e^ or e = 0.
Hence, the only idempotents in Ae^ are 0 and e^, so that the
conclusion follows if A has an identity.

If A does not have an identity, we form 3"® A and define 
multiplication by:

(f,a)o(g,b) = (fg,fb + ga + ab)
Then 3  ® A with this multiplication is an abelian finite­
dimensional algebra over 3 .  Further, A is isomorphic to 
the subset of 3  © A consisting of those elements of the 
form (o,a), where a e A. Finally, if we let u - (1,0), then 
for (f,a) e 3 ©  A, (l,0)o(f,a) = (f,a + f*0 + 0*a) = (f,a). 
Thus, u is an identity for 3  ® A» and the theorem follows 
from the preceding argument.

If V is a linear manifold in the finite-dimensional space 
X, then V - a = {v - a:v e V} is a subspace of X whenever 
a e V. Further, if a,b e V, then V - a = V - b ,  so that
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associated to V is a unique linear subspace. The dimension 
of this subspace is the dimension of V.

If the dimension of V is n, and x1, ..., x e V, then if
we let m be the largest integer satisfying xm % V({x1,
x .}) then m < n + 1. We also note that if A c V, then m— 1 — r .
V(A) c. V and consists of all elements of the form £ 2  ^ i ai

Theorem 1.4 [6] If S is a one-dimensional affine semi­
group, then V(S) is equivalent to the real line under one 
of the following multiplications:

Using Theorem 1.4, we give a new proof of the following 
theorem due to Clark [3]:

Theorem 1.5 Let S be a finite-dimensional affine semi­
group satisfying S = V(S); then some power of each 
element lies in a subgroup of S.

Proof: We argue by induction on the dimension of S.

If dim S = 1, then by inspection of Theorem 1.4, the 
conclusion follows. Hence, we assume the statement true 
for dimension less than n, and let dim S = n. Let x s S,

HU-1then there is an integer m < n + 1 such that x e

i=i
where a^ e A, 1 .

(a) usual (b) xy = 0 all x,y ( c ) x y = x + y  
(d) xy = x all x,y (e) xy = y all x,y.

V(ix,x2 , . . . , xm }), but xk+1 ^ V({x, xk }) for 1 < k <
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m. Then xm+1 = X  , X . where Y J  = 1.
i=1 i= 1

Now, if X ^  0, then we define: p = (- •— -)x + (- A-^)x2 +1 A1 /1
... + (_ XjS)xm - 1 + -lxm . Note that (- -r^) + ... +

A 1 Ai A 1

(- -r-— ) + — r—  = 1 , so that p e V. Further px = (- -y^Ox2 + 
Ai Ai Ai

... + (. A s )xra + _ U " > +1 = (_ 4 2 )x2 + ... + (- 4 2 )xm +
-A 1 A1 A 1 A  1

— !— ( X  .X + ... + A  xm ) = (- \ ^ - ) x 2 + ... + (- -^2)xm + X + 
Ai m Ai Ai

x 2 + ... + -Y-^xm = x. Similarly, xp = x; hence xnp =
1 1  V \px11 = xn for all n. Then p2 = p[(- y^-)x + ... + (- )xm 1
1 m i \ 2\ / X m\ m - 1 1 m+ -y-x ] = (- + + (“ * X ^ x p p =

(- -X-~ ) x + ... + (- X  m )xm 1 + — !— Xm = p. Thus, p2 = p ,
Ai Ai Ai

and xp = px = x. Note also that p = (- -r— )x + ... +
Ai

(. A m )x»-1 + 1 * m  = x[(_ \ 2 )p + _  + 1 m-1)] =
A1 A1 A t A i

[(- -T-^Jp + ... + — r— xm _ 1 ]x. Setting y = (- -^-^)p + ... +A 1 Ai A 1

4 __ m
-r-— x - then yp = py ~ y and xy = yx = p. Hence, x is in
Xl 2 the subgroup of S determined by p = p.

If, on the other hand, A 1 =0, then xm+1 = A 2x2 + ... +
A mxm so that xm+1 e V({x2, ..., xm}). Further, since
m+1  ̂ < ..2 „mi\ . , ~ Tr/ 2 mix~ e V({x , ..., x }) it follows that V({x , ..., x }) is
a subsemigroup of S, and has dimension less than n since

2m £ n + 1. By the induction assumption, some power of x
O mis in a subgroup of V({x , ..., x }) and hence a subgroup 

of S. Therefore, some power of x is in a subgroup of S,
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and the proof is complete.

The following theorem appears in more general form in [3]; 
we shall give a proof of the version we require. First, 
we give the following:

Definition: An element x of a semigroup S with zero 0 is
called nilpotent if xn = 0 for some integer n J> 1 . N(S) is 
the set of nilpotents in S .

Theorem 1.6 An abelian, finite-dimensional affine semi­
group S with zero 0, satisfying S = V(S) and N(S) = {0 } is 
equivalent to a finite direct sum of reals and complexes.

Proof: Let T = S - 0; then T is an algebra over the reals
and is equivalent to S [6]. By assumption, N(S) = {0 }, so 
that N(T) = {0}.

By Theorem 1.2, there exist linearly independent idempotents 
el» •••» er satisfying:
(a) e.e. = 0 for i / j and 

J

Let A^ = Te^, then A^ is an abelian algebra of finite
dimension over the reals with identity e^. As in the proof
of Theorem 1.3, A^ has no other idempotents besides e^ and
0. Further, since A^ c T, N(A^) = {0} -

By Theorem 1.5, some power of each element of A^ is in a 
group in A^ . Let x ^ 0; since x ft N(Ai) it follows that

(b) e2 = e e T then
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xr is in some group in determined by a non-zero idem- 
potent, hence by e^ . It follows that each x / 0 is 
invertible with respect to the identity. Thus is a 
field of finite dimension over the reals; by the Probenius 
Theorem, A^ is either the reals or complexes, 

r r
Let I = A . = Te.; then I is an ideal in T . We show 

i=1 1 i=1
I = T. Let p e T\I, and let z = -pe1 - ... -per + p; 
then since p gf I we have z I. Note also that ze^ = 0

pfor i = 1, 2, ..., r. Hence by (b), ze = 0 for every e
e e T. By Theorem 1.5, zr , for some r, is in a subgroup of
T, and, since N(T) = {o}, the idempotent, e, of this sub­
group is different from 0. Thus, zre = ezr = zr ; but since 
ze = 0, zre = 0 so that zr = 0, and, z e N(T) . Thus, z = 0
and p e l .  Therefore, T = I = = Tei • Now, A.A. =

i=1 ^ i=1(0) and A.. D ZD A^ = {0} so that T = © Ai; clearly,
r
...J 

1=1

Definition: If A is an algebra over a field 3" let A ( ^ )  = 
'$• © A with multiplication defined by

(f,a)o(g,b) = (fg,fb + ga + ab)

o " i'1 .J i=1 " i=1
u = e. is an identity for T. This completes the proof.« j 1

Remark: If A is abelian and finite-dimensional over
then A O )  is also. The element u = (1,0), where 1 is the 
identity of <3‘, is an identity for A(3 ) ; A is imbedded in 
A( *9_) .
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Theorem 1.7 Let A he an abelian, finite-dimensional 
algebra over the reals. Further, suppose A has an identity 
u ^ 0 and no other non-zero idempotents. Then there 
exists an abelian, finite-dimensional nilpotent algebra T 
over the complexes such that A is imbedded in T ( C  ) .

Proof:
2Case I Suppose x + u = 0 has a solution xQ e A . Suppose

a.b are real and ax„ + bu = 0; if a / 0, then x„ = - ^u.* o o 0 0 o a
2 b b bHence x^ = — and hence —*u = -u. Thus, —^ + 1 = 0 or

a a av o
(—) + 1 = 0 ;  but, a and b are real. Hence a = b = 0, 

and xQ and u are independent over the reals.

If x e A, y e N(A) , then clearly xy e N(A) . Further, if 
x,y e N(A) then ax + by e N(A) for all a,b real. Thus
N(A) is an ideal in A; we show A/N(A) is isomorphic to the
complex numbers. Since A has an identity, A/N(A) also has 
an identity. Further, A/N(A) has no other non-zero idem­
potents since the same is true of A. Now if x e A and

V I  J lx =  0 (mod N(A )) for some integer r, then x e N(A); hence 
(xr)B = 0 for some integer s. Thus, x e N(A) and x =  0
(mod N(A)). Thus, N(A/N(A)) = {0}; as in the proof of
Theorem 1.6, A/N(A) is either the reals or complexes.

Suppose xQ =  X  u (mod N(A)) for some X real, X  ¥ 0. Hence, 
xQ - X u = cQ e N(A); since xQ,u are independent over the 
reals, cQ ^0. Now, there is an integer n _> 1 for which 
ĉ 1 / 0 but Cq + 1 =0. We then have (xQ - \u)c^ = c^ + 1 =
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s

0 and xQc^ - Xc^ = 0 . Consequently, x0cq “ X and

xo°o " Xxo°o = A 2°o-- but xo°o = (-»)«? ='°?< 80 that 
X 2cjJ = -Cq. Since c^ ^ 0, we have \  2 = -1 and X  i
real. Of course, this is impossible and X  = 0, so we
have x q and u are independent over the reals, modulo N(A).
Thus A/N( A ) is two-dimensional over the reals, and the
classes containing xQ and u are independent. Thus, if x e
A there are unique real numbers / ^ 0 t X Q such that x =
jUQu + ^ 0xo + c ^or some c e N(A) . Clearly, this c is
unique.

If we let C be the subspace of A spanned by u and xQ then 
C is clearly isomorphic to the complexes. By the above re­
marks, A = C © N(A) and since N(A) is an ideal we have for 
z,w e C x,y e N(A), (z + x)(w + y) = zw + zy + wx + xy. 
Hence, A = C © N(A) = N(A)(C), and N(A ) is an algebra over C

pCase II Suppose x + u = 0 has no solution in A. Let 
T = A © A, where (a,b)(x,y) = (ax - by, ay + bx); then T 
is a finite-dimensional abelian algebra over the reals. 
Further, A is isomorphic to the subset of T defined by 
{(a,0):a e A}.

The element (u,0) is an identity for T, and the element
o(0,u) is a solution of x + (u,0) = 0. We show (u,0) is 

the only non-zero idempotent of T.

p p pSuppose (a,b) = (a,b), so that (a - b , 2ab) = (a,b).
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then by an argument used in Theorem 1.6* b is invertible.
It foilows that 2a = u, or a = Then ^ = a = a2 - b2 =
^ - b2, and b2 = -^. Thus (2b)2 + u = 0 which contradicts
the assumption of this case.

Thus, b is nilpotent; we show b = 0. Suppose b ^ 0; then 
there exists an integer n such that bn / 0 and bn+1 = 0.
Now a2 - b2 = a so that a2bn - bn+2 = abn ; since bn+2 = 0 
we have a2bn = abn . However, 2ab = b, so that 2abn = bn 
as well, and, hence, 2a2bn = abn . Thus, 2a2bn = a2bn , from
which it follows that a2bn = 0. Consequently, abn = 0.
But bn - 2abn = 0, while bn / 0 . This contradiction shows 
that for no integer n is bn / 0; hence, b = 0. In view of
p p 2a - b = a we have a - a, and a = u or a = 0. Thus, (a,b) 
(0,0) or (a,b) = (u,0) are the only idempotents in T.

By Case I, T = N(T)(C), and the proof is complete.

Corollary 1.7 Let S be a finite dimensional abelian affine 
semigroup. Then there exist , ..., T , where each T^ is 
an abelian nilpotent finite-dimensional algebra over the 
complexes, and S is equivalent to a subsemigroup of

3l 7  ® t . ( c ) .i=1 1
Proof: A direct consequence of Theorems 1.1, 1.3, and 1.7.

By Theorem J, a compact, abelian affine topological semi­
group has a zero. Without compactness, this need not be
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true .

Example: Let S = R ® R (R is the real numbers) where
(x,y)o(a,b) = (0,y + b). Then S is an abelian affine
semigroup and K(S) = {(0,a):a e R). Note that K(S) is
isomorphic to the additive reals.

Clark [3] shows that a finite-dimensional affine semi­
group has a completely simple minimal ideal. The next 
theorem shows that the kernel of the above example is 
typical for abelian, finite-dimensional affine semigroups.

Theorem 1.8 Let S be an abelian, finite-dimensional affine 
semigroup satisfying S = V(S) . The kernel of S consists 
of a zero or is isomorphic to a finite product of additive 
re als .

Proof: Let K be the minimal ideal of S ; assume K is not
degenerate. Let x e K, then Kx c K and is an ideal; hence

2Kx = K . It follows easily that K is a group. If e = e is
the identity of K, then Se c K and, hence, Se = K.

By the remark preceding Theorem 1.1, S is a topological 
semigroup. Further, Se is locally compact since it is a
linear manifold. Thus, Se is a locally compact topological
semigroup which is algebraically a group. By a theorem of 
Ellis [15], Se is a topological group. Consequently, Se 
is a locally compact abelian topological group. By the 
Principle Structure Theorem [59;40], Se contains an open
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subgroup G which is isomorphic to the direct product of 
finitely many additive reals together with a compact group
H. Now Se is connected, and, since G is both open and 
closed, Se = G.

By Theorem J, <H> has a zero element. But <H> c: Se, and 
Se is a group so that <H> = {e}. Thus Se = G is isomorphic 
to the direct product of finitely many additive reals.



CHAPTER II

In this chapter we study the relationship between a compact,
affine, topological semigroup S and its associated proba-
bility semigroup S. We show that the resultant map is a
continuous affine homomorphism of S onto S. Several
properties of S are deduced from this fact. We add to the
sequence of theorems of the same category as Theorem P and
Theorem G by showing that if S is a compact abelian semi- 

2 ~group and yW. = fx e S, then ^  S is the full probability 
semigroup of some compact semigroup.

Finally, we show that a group-extremal affine semigroup 
supports a probability measure. This theorem is a conse­
quence of a general theorem to be proved about measures on 
compact convex sets in linear spaces.

If S is a compact convex set in a locally convex linear 
space, by A(S) we mean the collection of all complex­
valued continuous affine functions on S. With the norm
defined by: IlflL = sup |f(x)|, A(S) is a closed subspace

xeS
of C(S). By the remark following Theorem A of the 
Preliminaries, A(S) separates points of S.

If X is a locally convex topological linear space, by X*

27
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we mean the collection of all continuous, complex-valued 
linear functionals on S. Let F e X*, x̂  , . x e X, and 
e > 0; then define:
U(F, x1 xn ,e) = {G e X* :\F(x±)-G (x± )| <e for i = 1, 2,

n}, The collection of all possible sets of this form 
is a basis for a locally convex topology, called the 'weak- 
star' topology, on X*. If X is a Banach space, X* is a 
Banach space with norm defined by:
F e X* , then || F It = sup |f (x )| , where x e X. The unit

VI x II = 1
ball in X* is compact in the weak-star topology.

I. The Resultant map: In case S is a compact convex set
in a linear space, Choquet [2] shows that there is a 
continuous affine homomorphism from S to S . Loomis makes 
use of this fact in [26]. We give two proofs of the 
existence of such a map in two settings; the general case, 
where S is a compact convex set, and another assuming S 
to be a compact affine topological semigroup with identity.
In both cases, we show that if S is also an affine semi­
group, then this map is a homomorphism.

Theorem 2.1 If S is a compact convex set in a locally 
convex linear space, then there exists R:S ----> S satis­
fying:
1) R is continuous, affine, onto S.
2) f(R(yU.)) = Jf(y)d^t. (y) for fx e %  and f e A(S).
3) R is a homomorphism if S is an affine semigroup.
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Proof 1: Let S be a compact, convex set in the locally
convex linear space X. Imbed S in A(S)* by defining:
(1) “x(f) = f(x) where x e S, f e A(S). The mapping

Ax ----> x is affine and continuous in the weak-star topology
A

on A(S)*. Further, || x || = 1 for all x e S, so that S = 
{x:x e S} is a weak-star compact subset of the unit ball 
of A(S)* .

Fix yw.eS, and define:
(2) T ^ f  = J fdyU. for f e, A(S). It is clear that T^ e 
A(S)*, in fact [(T^fl = 1. We show that Ty* is in the

A  Aweak-star closure of S, and, hence, in S.

Let U(TyU , f-, , ..., fn »£) be a weak-star basis neighborhood 
of Tyu . By definition (2 ). > f i  = J fiaA  for each i; 
hence, there exist partitions P1, ..., P of S into disjoint 
Borel sets such that if Q = is a refinement of P^,
and Zj e then
(3) | T u (f ±) - J ^ f i(z;j)yW.(Bj) | < e* Taking Q to be a

common refinement of P ^  •••, Pn » where Q = {E.}^=1, and
z . e E . , we have: 

J J

< e for i = 1, 2,(4) iTuUj.) "
J ^

n. Setting xQ = z^ u (E..) , then xQ e S since ^yLc(E^) =
J — 1 I j -1

1 and e E^ . Further, / T^L (f±) - f±(xQ) | = | (f±) -
^ ( Z r ^ / x ' E 3))| = | TA (fi) - < e for

i = 1, 2, ..., n. Thus, since "ac (fA) - fi(x0 )» we have



50

that xQ e UfT^, f  1 , f n , e ) .  Hence, is in the
-a  A

weak-star closure of S, and, consequently, in S . By 
definition of 13, there exists an x e S such that >  “ *•
Thus, jfdyic. = T ^  f = x(f) = f(x) for all f e A(S).

%
We have shown that for e S, there is an x e S satisfying
(5) f(*> - J f d A  for all f £ A(S). Since A(S) separates
points of S, this element is unique with respect to (5).
We set x - R(yU. ) and show that J U  > R(^/0 is the desired
function.

L e tyU,^ e *S, 0 < \  <_ 1 , and f £ A(S) . Then f( XR(ytO +
O  - A )R(Y>)) = Xf (R (fJL)) + ( 1 - A  )f(R(vM = Ajfd/C +
( 1 -  A)  J  fd\> = J f d [  Ayw. + (1 -  X)v>] = f (R(  A / t  + (1 -  A ) P ; ) .

Again, since A(S) separates points, R( \jj- + (1 - A ) v̂) = 
AR(/l) + (1 - A W v 1) and JU ----> R (JU.) is affine.

^  /^et ^ e wea^~s^ar topology on S,
then by definition, (f) for each f £ C(S).
The net { R £j S must have a cluster point p. 
Suppose p ¥ R (JLL ) ; then there is an f £ A(S) satisfying 
f(p) ¥ f (R(JU-)) . Since {R( JU^ )}^ £ clusters to p, by 
continuity of f, {f (R )) clusters at f(p).
However, f(R( JU^ )) = J  fdyU«f = and jU^(f)

converges to JULii) = J"fdyi, = f(R(yU*)). Thus, f(p) = 
f (R(JJL )) and, hence, p = R {JA.) . It follows that the only 

cluster point of {R( A < )}v  ̂ is R(/* ), so that 
R( JJL^ ) ----> R (jl). Consequently,^// > R (JU.) is
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continuous.

Now if g is the point mass concentrated at x e S , and f £ 
A(S), then f(R(g)) = J fdg = f(x) . It follows that R(g) = 
x so thatyU. > R (jtl ) takes S onto S.

Finally, suppose S is a compact, affine topological semi­
group, and let f e A(S). Define
(6) fa(x) = f(xa), fa(x) = f(ax); then fa , f& £ A(S). 
Further, if yU e S, a e S then f(R(yU,)a) = fa(R(yU)) = 
j fa(y)dyU.(y) = J f(ya)d/l(y). If Jbt , V £ S, and f e A(S), 
then f (R( JLL vM ) = J = J ( J f(xy)dJUL (x) )d (y) =
J f (R(y60y)d^ (y) = JfR( ̂  ) (y )d (y) = fR(^ )(R(^ )) =
f(R(.U. )R(v )). This shows that f(R(ytiV )) = f(R(yU.)R(V )), 
and again, since A(S) separates points, R(ylW) = R(yU)R(^),
and JX ----> R(y<X ) is a homomorphism.

Proof 2: Here we assume S is a compact affine topological
semigroup with identity u.

Let B be the linear space of bounded linear operators on 
A(S). We describe two topologies in which B is a locally 
convex linear space, by describing a neighborhood basis at 
each point.
(P )-Topology: F e B, f1, ..., fn e A(S), s1, ..., sm £

S, £ > 0; ^p(^» ^ 1 » **•» •*•»  ̂̂ =
{G £ B: |Gfi(s.) - Ff.(s.)l <£, 1 1 i <. 1 <, j <, m} .
(SOT) [Strong Operator Topology]: F e B, f1, ..., f e
A(S), £ > 0; Us(F, f1( ..., fn , £) = {G £ B: \\Qf± - Ff±|| <
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e, 1 £ i £ n}.

For s e S, define R_ £ B by: (R f)(x) = f(xs) - fs(x).
S D

DeLeeuw and Glicksberg [25] show that s ----> R0 is a one-Q
to-one homomorphism of S into B which is SOT continuous.
They do so by showing that, for fixed f £ C(S), the map
s ----> fs is norm continuous. It is clear that s -----> R
is affine.

A  ✓sSetting S = {R_:s e Sj, then S is a compact, affine topolo-s
gical semigroup with the strong operator topology, and the 
operation of composition.

For yU. £ S , we define Tŷ  e B by:
(7) (ayf)(e) ■ J  f (sx) dy/,(x) where s £ S and f £ A(S) .
To show T^ :A(S) -- > A(S), let f £ A(S), s, t £ S,

0 £ A  £ 1; then + (1 * ^ )*) =
j f([ As + (1 - A ) t ]x)dyU. (x) = J^f(Asx + (1 - A )tx)dy^ (x)
= J [AfCsx) + (1 - A )f(tx)]dyx,(x) = A  Jf (sx)dyU (x) +
(1 - A )J" f(tx)dyx(x) = f(s) + (1 - A )3ju. f(t) , so
that V f is affine. That Tŷ  f is continuous follows 
immediately from the fact that s ----> f is norm continuous

Let f1, ..., fn € A(S), s1, ..., sm £ S, and e > 0. Fix 
i, j where 1 £ i £ n, 1 £ j £ m; then there is a partition 
P. . such that if Q = {E, is a refinement of P. . and

1  t j  K. i t — 1 1  |  J

zk e Ek , then I T^_f±Csj) - | < e.

Let Q be a common refinement of P. . where 1 £ i £ n andIf J



1 1 3 1 m » and Q = iEk'k=1; then if zk e Ek»
| Tyu.fi(sj) "< e for a11 SettinS

*0 = ^ zk / * (Ek ) > then x0 E S and (Rxo f i )Cs0 ) = fi0(so ) =

Efc). Hence, | T^l W  - V i<s^ l ' E for
all i, j , and Rx e U (T^  , f ̂ , . . . , fn , s ̂ , . . ., sm , e) .

o

This argument shows that T̂ . is in the (P) closure of S.
However, the (P) closure of S is clearly contained in the

A  ASOT closure of S and, hence, T̂ . e  S. There exists, 
therefore, an element xq e S such +V,Q+ m - u . tv,io

Rx f(s) = f °(s) = f(sxQ). Taking s = u, we have f(xQ ) =

is again a continuous affine homomorphism of S onto S, the 
proof being the same as in Proof 1. This completes the 
proof of Theorem 2.1.

Definition: A compact affine topological semigroup S with
identity u is called group-extremal if the extreme points 
of S have inverses. In this case, in view of Theorem I of 
the Preliminaries, the extreme points form the maximal 
group of the idempotent u which is well-known to be compact.

Corollary 2.1.1 [6] A compact, group-extremal semigroup 
has a zero.

means that for f e A(S), s e S, 
x_

setting
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2 iProof: Let JX = JA e S be Haar measure on the extreme
points G. Then for x e G ,  g y U = y U £ - JX. by the invariance 
of Haar measure. By Theorem 2.1, R(yU») = R(yUj) =
R(yU )R($) = R(jX )x » and, similarly, R(yU. ) = xR(yU. ) • If

x - g j X  ixi, where xi e G, S Xi = 1’ A i _> 0, then

R(yU)x = C X i R C / D X i  = ^ A i R ( / 0  = R(/<-) Similarly 
xR(JX ) = R(yU. ); by the Krein-Milman Theorem, the elements 
of the above form are dense in S. Thus, xR^U ) = R(jx)x = 
’RiJL) for all x e S, and R(JX ) is a zero for S. Note, 
then, that if S is group-extremal with zero 0, then 0 =
R( )  » where JA is Haar measure on the extreme points.
Thus, f (0) = J  fd[jx for all f e A(S) .

In [17], Glicksberg shows that if S is a compact semigroup,
1 iand jjl z S, then the sequence >_, u converges weak-star

to an element \ 2 = X  £ ̂  satisfying JA. X = XyU. = X  .
Corollary 2.1.2 If S is a compact affine topological
semigroup, and x e S, then X ^ x*- converges to an element
2 1 = 1e = e e S satisfying ex = xe = e .

1 ^  iProof: If x e S, then ^ converges to an element
^ i=1 n

\ 2 = X  e S satisfying A $  = g X  = X  . Then  ̂ ZIJx1 =

i A  i 1 A  i v- R( jy ^ ^ ), and, hence, converges to R ( A )•

Further, R ( A ) = R( X  X ) = R 2 ( X ) and R ( X  ) = R( X  g) =
R ( X  )x and R ( X  ) = xR ( X  ) •
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Remark: In the definition of an affine semigroup S, it is
not assumed that a multiplication exists outside of S in 
the linear space in which S is imbedded. However, we can 
make this assumption if S is compact and has an identity, 
since the second proof of Theorem 2.1 shows that S can be 
imbedded in the algebra of bounded linear operators on A(S).

p  a -
If S is a compact semigroup and £ S then, by
Theorem E, C(yU.) is a compact simple semigroup. Hence 
<C(yU)> is a compact semigroup.

Theorem 2.2 If S is a compact affine topological semi­
group, and ~JJL £ S, then R(yU.) is in the kernel of
<C

2Proof: Let e = e == M / i )  andyM 0 = g . T h e n y W 0 £ S, 

g/^o =/^o8 V * o  and R(/<o) = e *

Now ^ converges to X 2 = X E S which satisfies

JULq X = X yK 0 = X • Since R(y^0 ) = e, by continuity,
R( X  ) = e . Also , A = y U 0X = g/*0 X = 8 ^  ^ d  similarly,
x  = X  § • Thus, by Theorem D, C(A) = C ( A g) - c ̂ 8 'X g) = 
C(g)C( X )c(g) = e C ( X ) e  c: eSe . Further, since X2 = \  »
C( X) is a compact simple semigroup (Theorem E).
We show, next, that e £ If not there exists, by
Theorem A, an f £ A(S) such that f(e) < c < min{f(x)}.

X£ <c(A)>
However, e = R ( A ) so that f(e) = f(y)d \ (y) and,

C( A)
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thus, f f (e )d A  (y) = )  f(y)d\(y)- Then
JC( X ) J0( X)
[f(y) - f(e ) ] d A ( y )  = 0, and f(y) > f(e), imply that 

f ( y )  = f(e) for all y e C ( A ) ,  which contradicts the choice
£
off.

Consequently, e e  <C (  A  ) >  and, since < C ( X ) >  c  eSe, it 
follows that e is an identity for < C ( A ) > *  By Theorem I, 
e is an extreme point of < C ( A ) > ,  and by Theorem C, e e 
C(A )• Since C ( A  ) is simple and has an identity, it must 
be a group [50;12], Thus, C ( A ) is a group and A  is Haar 
measure on C( \ ) .
Now for x e C(A ), f e A(S), f(x) = f(ex) = fX(e) =
J fX (y)dA (y) = Jf(xy)dA(y) = J f(y)dA (y) = f(e).
Since f is arbitrary, it follows that C(A ) = {®}» and
X = g.
Since juo )\ = = y  , uni X = g. «e have gylt0 =
yU 0§ = §• However, ̂ g  = g^l0 =/A. Q , so that = gj
that is gyU. g = g- Again by Theorem D, eC{JU )e =
C(g)C(yU. )C(g) = C(gyUg) - C(g) = {e} . It follows that 
e<Q,(JL)>Q = {©}» and by repetition of a previous argument 
e e <C(ytt)>. The conclusion now follows by Theorem K(b) .

Theorem 2.2 seems to be the closest statement one can make 
in analogy to Corollary 2.1.1. One might conjecture that 
if the extreme points of a compact affine semigroup S 
consist of a finite union of groups, then S has a zero.
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To see that this need not be true consider the following:

Example: Let S = Dxl where D is the complex unit disc under
ordinary.multiplication, and where I is the interval [0,1] 
with multiplication defined by xy = x for all x,y e I.
Then S is a compact affine topological semigroup. The 
extreme points of S are S1x{l} t S1x{0}, while the kernel 
of S is {0}xl.

II. Subsemigroups of S . We now prove the theorem promised 
in the Introduction which completes the series of theorems 
given by Theorem P and Theorem G.

f
Theorem 2.3 Let S be a compact, abelian topological

T for some compact, abelian semigroup T.

Proof: In view of Theorem E, and the fact that S is abelian,
C( ,U ) is an abelian group.

j

Define R = {(x,y) e SxS:C )x = C(lt)y}; then R is a 
closed congruence on S, and S/R is a compact abelian
topological semigroup. Let :S > S/R be the natural
homomorphism of S onto S/R.

We show that (x,y) e R iff J"f (xz)d.u. ( z) = J f (yz)dyU. (z) 
for all f e C(S). If (x,y) e R, then C{jUL )x = C(/U-)y ; 
hence there exist p,q e C(^i) for which px = qy. Let

hand, suppose

2semigroup, and It c S. Then uS is equivalent to
/

f e C(S); then
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C (yU ) x C(yU)y. Then there exists p e C {JU) for which 
px i C(yU. )y • There exists f e C(S), 0 < f <_ 1 , and f(px) =
1 while f(z) = 0 for z e C(yU.)y. There exists an open set
U containing p for which f(tx) > ̂ for t e U. Since p e
C(yM.) f yM.(U) > 0; therefore, J f(xz)dyU.(z) > 

j f(xz)dyLL (z) >. £yU(U) > 0, and Jf(yz = 0, since
f (yz) = 0 for z e C(yU.). Thus, J f(xz)dyU (z) / J  f(ya)<y*(z) 
and the assertion is proved.

Let e be the identity of C(yW.) . Then C(yd)e = C(yx), so
that for x e S, C(yU. )x = C(/l )ex and, therefore, ^f(x) =
^  (ex) = ^(e)l^(x). Clearly, then, (e) is an identity
for T, so that^(e) is an identity for T.

~  o
Let f e C(S) and define f'((£(x)) = J" f (yx)dyL(. (x) . Then 
f 1 is well-defined and̂  f* £ C(T;. Let e T and define 
(P v> ) (f) = J'f'dV^ for f e C(S). Then, by the argument 
used in [17] to prove Theorem F, P is a continuous, affine 
homomorphism of T into S .

On the other hand, define >̂*:S ----> T by [l^*(vM](f) =
J f (l̂) (x) )dv* (x) for all f £ C(T) , where £ S . It is 
well-known (and easy to show) that is a continuous,
affine homomorphism. Further, = ^(x), so that

A. 0takes S onto T, aB a consequence of Theorem H.

If x e C (yU. ) * then C(yt>t)x = C (JJ. )e so that (x) = ^  (e) . 
for all x £ C(yU. ) . Then for f e C(T), ((^*yU.)(f) =
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Jf ( ̂  (x) )dyU.(x) = ^f(<£(x))<y/.(x) = ^  f̂( (e))d/U (x)
= f((g(e)) = Jf ( (x) )dg(x) = ^*(^)(f) = ^(e)(f). We 
have shown, then, that *yU = <£(«) &nd i0 thereby an 
identity for T.
Now, if f e C(S), s £ C(JJL)f then (fS)'(^(x)) =
J f s(yx)dy>L(y) = J  f (yx)dyw. (y) = f ’ (i£ (x)) . Then (fs) ' =
f ' , and (P^ = J J f(xy)dP^ (x)d/< (y) =
f (P v> ) (fy )dyU. (y) * f f (fy) ' (zjdv^ (z)d/C(y) =J C(JU. ) ' J C(fJL ) J T 'f J f ' (z)dV^ (z)dyU (y) = Jf'(z)d^(z) * (Pv*)(f).
This shows that (PvO*/^ = PV̂  , or Pv̂  e ^ S .  Also, if 
\? e Is, then [(P<$*)(V> )(f) ] = ))](f) =
Jf • (z)d (z) = Jf ' ((Q (xjjd') (x) = J Jf (yx)dyU.(y)dv> (x) =

)(f); hence, (P^*)(\^ ) = • If /(*>** V *
(i.e.. if V* £ /iS), then (P<$*)(^) = . Thus, if JJL * V* =

. A(
^  , then (P^*) ( V ) = y  , and P takes T onto jx S. Suppose 
P V* 1 = P\^2 * where \) 1 , V  2 e I • Then there exist
t|1 , t| 2 e S for which (̂ *( 6j 1 ) = -| » ^ * ^ 2  ̂ = ^  2 *
Let "T, = , T2 = then T 1 ) =

) t̂ *( £, 1 ) = v^*( €)-,); similarly, v£*(T2) = ^ 2 •
Now /F1. ^  2 e so that (Pi^MT.,) = T-j f (p (£*) ( T 2) =
T 2. However, T 1 = P(^#(’T 1) = P ̂  *( £j 1 ) = P V* 1 = P V̂ 2 =
P^*(€l2) = P(^*(T2) = T 2, s o  that y* “) = <£ *( /T*1 ) , \> 2 =

<ĵ *( *7*2 ) imply that 2 . Hence, P is one-to-one.
/v  *wyit. S and T are now equivalent, which was to be shown.
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III. Probability measures on compact, convex sets. We 
show here that given a measure e S, where S is a compact 
convex set in a linear space X, then there is a measure 
v> e S satisfying C(v* ) = <C(yU)>.

Lemma 2.4.1 Let SfK be compact Hausdorff spaces, and
f:K ----> S, a continuous function. Then f induces f*:
K ----> S which is continuous and satisfies C(f*(yU.)) =
f(C(y« )).

Proof: Define f*:K  > S by:
(fyt )(g) = Jg(f(x))dyu(x) where Jjl z K, g e C(S) .
Clearly, f*:K  > S and is weak-star continuous.

Let £ K, we show C(f*(yU.)) = f(C(yU)):
(1) C(f*(yU)) c f(C(y(/)). Suppose xQ z C(f*(ytt)) and
X0 t f(0(^ )). Then there exists g e C(S), 0 < g < 1, 
g(xQ) = 1 and g l  0 on f(C(yO). There is an open set V 
containing xQ on which g(y) > ^ for y z V. Then (f*/0(g) =
J g(y)d(fyi )(y) >, J* g(y)df*(^l)(y) > ^ (f-yO(V) > 0 ;

(fyt)(V) > 0, since V n C(f*(/0) ^ 0. However, (f*yfct)(g) = 
J g(f (y) )dytx (y) = J c  ̂ jg(f(y))dyt4 (y) = 0. This contra­

diction establishes (1).

(2) f(C(^)) ci C(f*(/A )) . Let xQ = f(yQ), where yQ z
C(yU ) and xq 0 C(f#(^t)). There is a g e C(S), 0 < g < 1, 
and an open set V containing xQ such that g(y) > ^ on V 
and g =  0 on C( f*(A) ). There is an open set U containing
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yQ such that f(U) c: V. Thus, for all y e U, g(f(y)) > 75-* 
Then we have (f*>U.)(g) « f g(y)df*/^(y) = 0 since

f Jc(f*/* )
g = 0 on C(f*/U). On the other hand, (f*yU.)(g) =
J  g ( f ( y ) ) d / l ( y )  > U f ( y ) ) d A (y) > j y k W  > 0 ;/W  (U) > 0 
since yQ e U fl 0{JX ) .f Hence (2) is established, and, 
therefore, the lemma.

Lemma 2.4.2 Let S be compact, Hausdorff, and c S

then 5n/<n converges weak-star to £ S, where

Proof: Since |f ZI^nyUn - £  ̂ nyUn || < it follows

that {T^T^nlfn )̂ --] converges in norm and, hence, weak-star 
n=i /

to an element //0 e M ( S ) .  Each e S, so that //Q a S .
(1) C(y« 0) <= flb(yUn). If not, there exists a g e  C(S),

0 < g < 1, such that J  g&JU Q > 0, but JsdyUn = 0 for all

n. But J g&jjL 0 = lim ̂ ^(^n JgdyLt n) = 0; this contradictioi

establishes (1).

(2) ^c(/^n) c c(/J0 ) • Note that

f e C(S), f >_ 0. If c( ^ n) ^ C(^(0) for some n, then there 
is a g £ C(S), 0 < g < 1, for which Jg ^  n > 0, butJ gdy K 0 = °- But ^n J «dyu.n < j gd̂ t0 ; 80 that J =
0. This contradiction establishes (2), and the lemma is
proved.
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Theorem 2.4 If S is compact and convex in the linear space 
X , and e S, then there exists V e S for which C(V ) =
<c(yu.)>.
Proof: Fix n > 1 , and let
(1) = {( X  -j X  n>  ̂En :0 <. X  i <. 1 . X ± < 1} •
Let mn e A* satisfy C(mn) = An (note that Legesque measure 
suitably restricted and normalized will do).

(2) Set = A^xC(/JL)x ... x C(jU), and
n + 1

n + 1

on K„. Note that „ £ K and C( V „ )  = , since the meas-n n n  n n ’
ure of any product set is the product of the measures.

Define hn :Kn ----> S by:
n L .

(4) hn( X 1 , . . . , X n » x-| * • • • t xn+1 ) - A i xi +

(l - Xi)xn+1 where ( ^ 1( • • •, X n ) e An , x. £ ) for

1 < i < n + 1 . Clearly, hn is continuous and

hn(Kn) = { ^ 7  X ixi : X i > 0 , f 7 j X l = 1, x l EC(/«.), 1 < i <

n + 1 } .

By Lemma 2.4.1, hn induces b.*:Kn ----> S and C(h*(^)) =
hn(c(^)) for any £, £ Kn . Let ^  n = h* ( V  n) ; thenC(£)n) =
0(h*(^>n )) = hn(C(Vn)) = hn(Kn) =
n±4 v n+1

^ ± xi : Xi > °» ̂ X ± = i , xi e C ( y U ) , i < i < n + i } .
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Lemma 2.4.2 then gives a measure A  £ s satisfying:
---------  n+1 n+1

c ( Z /  ) = T? c ( C,  ) = T? ( Z T A i X i ^ t T X i  = 1 ,  X i  > 0 ,  X
r  0 n= 1 'n n=i i=l “  1 1

The last equality is justified by
Theorem B of the Preliminaries. This measure JU Q is the
desired extension of A -

Corollary 2.4.1 Let S be a group-extremal affine semi­
group, then S supports a measure.

Proof: By assumption, the extreme points of S form a
compact group G. A compact group supports a Haar measure 
JU., and we may assume, by suitable extension of JA. to S, 
that JU. e S. Thus C(JA.) = G, and Theorem 2.4 now gives 
a supporting measure for S.



CHAPTER III

In this chapter, we give a representation theory for 
compact, group-extremal affine semigroups. In the abelian 
case, we produce a sufficient system of affine semicharacters.

Definition: A representation of an affine topological
semigroup S is a continuous affine homomorphism from S into 
the set of nxn complex matrices for some n.

Definition: If H is a Hilbert space, a completel.y-continuous
symmetric operator is a bounded linear operator T from H into 
H which satisfies:
(1) T takes a uniformly bounded set in H to a relatively 
compact set.
(2) (Tx,y) = (x,Ty) for all x, y e H.

The following theorem is well-known, and an excellent proof 
may be found in [58;232],

Theorem 3.1 Let H be a Hilbert space, and T a completely 
continuous, symmetric operator from H to H . Then there 
exists a sequence {  ̂}<jT= 1 c ^ satisfying:
O )  T ' f i  = X  for some real number X   ̂¥ 0  *
(2) 4? ^  = ^ij ^^ij Kronecker delta function).
(3) For x e H, Tx =

44
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(4) For a fixed X ¥ 0» = {x e H:Tx = X  x) is a finite­
dimensional subspace of H.

n
If G is a compact group, (G) is a complex Hilbert space
with inner product:
(1) (f,g) = J  f(x)g(xTdx for f,g e JC2(g)* Tlle norm in 
£ 2(G) is denoted by || * )l2 . Let k e C(G), where k is 
real, and k(y) = k(y-1) for all y e G. Define
T: «£2(G) ----> oC 2(G) by
(2) Tf(x) = J k(xy“1 )f (y)dy, where f e dC2(G), x e G; then
T is a completely continuous, symmetric operator in H  (c.f.

[49;204 ], [57;221 ], [55;49]).

Let S be a compact, group-extremal affine topological 
semigroup, where the extreme points are the compact group 
G. By A^(S), we shall mean the collection of functions in 
C(G) which are restrictions to G of elements of A(S).

Lemma . 1*2*1 V s ) is a norm closed subspace of C(G).

Proof: Let 1 c AG(S) and suppose fn ----> g e C(G) .
There exists <= A(S), where f* restricted to G is
fn * We show is Cauchy in A(S).

Let e > 0; there exists N >_ 1 such that for m 2 N, and
x e G, |fm(x) - g(x)| < e/2. Thus, for n,m N, and x e G,
| fm (x) - fn (x)| < £. If X = \ ±x±f C  X ± = 1 , X ± > 0,

and x± e G, then |f*(x) - f*(x)| = iXi) '
i = 1
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= | z r A i t f j c x i )  - f * ^ ) ]  j =
I s i X i t W  - fm(xi)]| < ^ X i  | fn(Xi) - fm(xi)| <

^£ = e. Since the elements of this form are dense in

S by Theorem B, | f£(x ) - S. £ for x e S. This
shows that If f* - f* jf̂  < e for n,m _> N, so that is
Cauchy in A(S) . Thus, f*-----> f e A(S) in the uniform
norm and, since f ----> g on G, we must have g = f on G.
Thus, g £ AQ(S).

Remark: Included in the proof of Lemma 5.1.1 are the
following facts:
(a) If a sequence of elements of A(S) converge uniformly 
on G, they converge uniformly on S.
(b) If two elements of A(S) agree on G, they agree every­
where on S .

Lemma >.2.2 If T is defined as in (2), then Tf e C(G) for
all f e£.2(G) and T:^C2(G) ----> C(G) is continuous with
the supremum norm on C(G). Further, if f e AG(S), then 
Tf e Ag (S).

Proof: Let f e Ĉ.2(G), x,y e G; then | Tf(x) - Tf(y) | 2 =
|J[k(xz“1) - k(yz~1) ]f(z)dz|2 < J|k(xz-1) - k(yz_1)| 2dz • 
J|f(z)|2dz < || kx - ky||^ • ||f ||2 . Continuity follows
from the continuity of x ---- > k .

Jv.

Now for f,g e <£2(G), x  e G, | Tg(x) - Tf(x)|2 =
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I ]" k(xy”1) [g(y) - f(y)]dy(2 < |k(xy“1)|2dy |g(y) - f(y)fdy
= |lk || 2 || f " g II 2* Hence> || Tg - Tf || ^ £ || k || 2 ||f - g || 2
and T is continuous.

Finally, if f e A&(S), there exists g e A(S), where g = f
on G. Let f*(x) = J k(y“1)g(yx)dy; then f* e A(S) and for
x e G, f*(x) = Jk(y~1)g(yx)dy = Jk(y_1)f(yx)dy =
J k(xy”1)f(y)dy = (Tf) (x). Thus on G, Tf = f*, so that 
Tf e AG(S).

Theorem 3.2 Let S be a compact, group-extremal affine 
semigroup with compact group G. If x,y e S and x ^ y,
there exists a representation P of S satisfying
(1) P(x) * p(y )
(2) P* ( <T ) e P(S) for all C  £ S ; (P*(C“) denotes the
adjoint of the operator P( 0“)).

Proof: Denote the identity of G by u. Then there exists
an open subset U of G containing u, and where <U>x H <U>y =
0. If not, letl/.= {U:U open in G, u e U} ; 7/. is a 
directed set with the partial order defined by:
(5) U < V iff V c U. By assumption, for each U e T/, there 
are elements Py, ty z <U> satisfying PyX = t^y. For each 
open subset W of S containing u, there exists an open 
convex subset V of S, u z V, and for which V <= W . Let 
VQ = V n G; then VQ e J/ and if U e H, VQ < U, <U> c <VQ> c 
7 c W. It follows that py,ty e W, and, therefore, 
pG ----> u and ty ----> u; hence PyX ----> x, tyy  > y
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where <U>x D <U>y = 0f. Obviously, we may assume U = U~1 .

By Theorem A, there exists an f e A(S) which satisfies
min {f (z)} > rn > max {f (z)}, and where f is a real- 

ze<U>x 0 0 ze<U>y 0 0
valued function. Further, there exists h e C(G) satisfying 
h(u) = 1, h S  o outside of U, and 0 < h < 1. Setting k(z) = 
h (z) * then k(u) = 1, 0 < k < 1, k(z) = k(z“1),
and k s  0 outside of U.

Then J k(z“1)fQ(zx)dz = J k(z"1)fQ(zx)dz > rQ J ̂ k(z_1)dz >

J k(z-1)f0(zy)dz = J  k(z”1)fQ(zy)dz . We have shown that 
J k(z“1 )fQ(zx)dz j- J k(z~1 )fQ(zy)dz.

Now, let T be the operator defined by (2) which corres­
ponds to the function k. We have that TfQ(x) ^ TfQ(y),
and fQ e A(S). By Lemma 3.2.2, T:Ag(S) ----> Ag(S); if
we let H = Aq (3)«£2 , then again by Lemma 3.2.2, T(H) =

Tnqrsi* 2) AGtS) ** = Ag(S). The last equality comes
from Lemma 3.2.1. It follows that H is an invariant sub- 
space of cjC (G)l denote the restriction of T to H by Tg. 
Then:
(4) TQf(z) = J k(zy“1)f(y)dy = J k(y'1)f(yz)dy for f e H, 
and z e G. Also, TGfQ(x) / t g^o ^^*

Since T is completely continuous and symmetric, the same 
is true for Tg. By Theorem 3.1, there exists < <01)1=1 <= H,

Tg'01 = for 80me real * °> <<0i’<̂j) = j»
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T&f - (TGf ' ^ n ^ n  for a11 f e H ' and for fixed X ^ °»

M ̂  = {f e H ;T(,f = ^) is fini'te dimensional. Since {Q ̂ =
i), it follows that (̂ i e Aq (S). Thus, there exists

4:1 A(SK  w*iere = ^  i on G -

Define Tg:A(S) ----> A(S) by
(5) Tsf(z) = J  k(y 1)f(yz)dy where f e A(S), z e S. For 
f e A(S), let g = the restriction of f to G. Then
Tsf(z) = Jk(y-1)f(yz)dy = Jk(zy-1)f(y)dy = 
y k(zy_1)g(y)dy = T&g(z) whenever z e G. In particular,

let ®o = fo|G> then TGgo = S ( T Gg0 , ^ 1) ^ 1 , where the
2series converges in dC (G). Fix n,m, then we have 

? j ^ TGgo ’ = TG ^ i ^ i  = ^i^go ’ i =

£ < g  0'<Q i ^ G ^ i  =  T G ^ i ^ g o  * ^ i ^ i ^  * N o w  f o r  z  6  G *i=n i=n

2 ■i=n

| [ k(zy"1) [2H(g0* <p j.) ̂  i](y)dy I 2 < l| k II i *i=n

II i ■ Hkill |5nl(60^ i ) | 2
goes to zero with n,m by Bessel's inequality. It follows

-OO .
that ) (Tcgw ‘^ 1 ^ 1  converges uniformly in C(G), and,

hence, converges uniformly to TGgQ . By the remark following 

Lemma 3.2.1, S ( T CJg0 ,(^i)^ J converges uniformly on S.

Since TsfQ = TGg0 on G, and ?— J ̂ TGso* ̂ i ^  I converges
 ̂‘ OO

uniformly to TGgQ on G, it follows that ) ̂  (Tcg0 , ̂ ) (Jj> f
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converges uniformly to Tgf0 on S.

Since TgfQ(x) ^ Tg(fQ(y)), it follows that for some i >. 1 ,
/ ^j(y). Now for z e G, Tg(£j(z) = TG <^i(z) =

Xi^i(z) = Xi<f£(z)- . Since Tg ̂  J and \ ±<Q * are elements 
of A(S), and, since they agree on G, we have:
(6) Tg<pj = X ±^ f  on S.

Since = {f e H ’.T^f = i-s fnri* ce-dimensional, there
exists an orthonormal set f1, ..., fn e which span .
We define M* = {f e A(S):Tgf = X i f); "then M* is finite­
dimensional. In fact if f. = f*|r- where f* e A(S), and

Af e Mf, then f L  = g £ M. and g = > â  f ̂ . It follows1 | U x i=i

that f = ^^a,-f? ty previous arguments.
i=l

In view of (6), e . Denote hy the bounded
linear operators on M* . For 0~ e S, f e M* t define 
P( <T)f = f . Then Tgf<r(z) = j*k(y”1 )f ̂ (yz)dy =
j k(y-1 )f (yz <r)dy = X if(zo") = X if®"(z) so that P(6")f e
Mt. Further, if 0"» ̂  e s , then P( )f(z) = f®"^ (z) = 
f(ze*T) = f ̂  ( z (T) = P(l)f(z5-) = P( <T) [P( T )f ](z); hence 
6“ ----> P( 6“) is a homomorphism. Also, if 0 < X  < 1
p(X cr + ( 1 - X )T)(f)(8) = f(z[X<r + O  - X )r]) =
f (X (z <5“) + (1 - A  )(zt)) = Xf(z <r) + ( 1  - A )f(zT) =
[X p (<r )f + d  - A )p( r  )f ](z) =
[A P(G-) + (1 - X )P(T)](f)(z). Thus, c- ----> P(<r ) is
affine. As noted previously, <y ----> f®" is continuous for
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fixed f e C(S), so that <5"----> P(6") is SOT continuous.
Since M* is finite-dimensional, <T ----> P( <S~) is
continuous in any locally convex topology on Bi . The map 
 > P(o“ ) is, therefore, a representation of S.

Further P(x)(^j(u) = *(x) ¥ (^j(y) = P(y)<$*(u) so that
P(x)(p£ ¥ P(y)^ J and, hence, P(x) f P(y). If we introduce 
the following bilinear form on MJ:
(7) (f,g) = j  f(x)gTxJdx, then (f,g) is an inner product 
on Mt. In fact, if (f ,f) = 0, then f H  0 on G and, since 
f e A(S), f =  0 on S .

For z e G, and f,g e M*, we have (P(z)f,g) =
J fz(x)glx)dx = J f(xz)g(xjdx = J f(x)g(xz'1)dx =
J f(x)gz (x)dx = (f,P(z“1)g). Hence, P*(z) = P(z-1) = 
P“1(z) £ G1n - Further, if z = 2- ^ ^ i zi e where

1 = 1

*  X-i = 1» X  i > °» and zi £ G» then [P(z)l* = i=l
[ f t X i P U i ) ] *  = i X i * * ^ )  = 5 ^ X ip ( z * 1 ) =
i=1 1 1  i=1 1 i=l

P( £ x  .zT1) e P(S). Then by continuity, P*(z) e P(S) 
i=1 1 1

for all z e S. This establishes Theorem 3.2.

Corollary 3.2.1 Let S be a compact group-extremal affine 
semigroup with group G. If G is metrizable, then S is 
metrizable.

Proof: Let be a neighborhood basis at the identity
u, where is open in G, = U71. To each , we
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associate a function k.̂  e C(G) as in Theorem 5.2 which
__  -|

satisfies 0 < k± < 1, k±(u) = i„ ki(z) = k±{z ), and
0 outside . Each k^ gives rise to a countable number 

of representations of S. Since for x ^ y, it is only neces­
sary to find a neighborhood U satisfying <U>x f) <U>y = 0, 
we can take U = for some i and, thus, a representation 
arising from k^ separates x from y.

We therefore have a countable number of representations by 
metrizable spaces which separate points of S. Then S is 
imbedded in a countable number of metric Bpaces and the 
conclusion follows.

Definition: Let S be an affine topological semigroup. An
affine semicharacter on S is a continuous, affine homomor­
phism from S to the complex unit disc.

Theorem 5.3 Let S be a compact, abelian, group-extremal 
semigroup. Then for x ^ y, x,y e S, there exists an affine 
semicharacter p such that p(x) ^ p(y)•

Proof: By Theorem 3.2, there is a representation P of S
by elements of B(M), where M is a finite-dimensional linear 
space over the complexes and B(M) is the linear space of 
bounded linear operators on M, and which satisfies P(x) +

P(y) and P*(<T) e P(S) for all <3~ e S .

Let M1 be a subBpace of M minimal with respect to invariance 
under all P(C“) for <5“ e S , and M1 ^ {0} and
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A  = {<*£ B(M1 ) :c*P(<r) = P(0“)cX for <T e S}. A  is 
clearly an algebra of finite dimension over the complexes. 
For 0< £ , let R(o< ) = {x e M1 : o*.(x) = 0}; then R(0< )
is a subspace of M1 and is invariant under all P(0") for

e S. Since M1 is minimal, we must have R((?<) = {0} or
R(0<) = M1. If R(^() = {0}, then is invertible; if
R(o() = M1 , then o(z0, Thus, A  is a division algebra
over the complexes, and, since A  is finite-dimensional,
it is complete. By [16] and [27 ], A  is one-dimensional
over the complexes; this means that for &  £ A  * there
exists a complex number \  where ©<(x) = X  x for x £ .

Now for each O' £ S, P(0“) e /\ since S is abelian. Thus, 
there exists a complex number p ^ C )  for which P((j*)x = 
p^O'Jx for x e M1 . Let e1 ? 0 be an element of . Then
{ X e ^ ,  the space spanned by e1 , is invariant under all
P(O'); it follows that - { X 6^*

Note that P(6'T )e1 = p1(<rT)e1, and P( O" ) (P( T  )e 1 ) =
P(<T )(p.,(T )e,) = Pl(0* )Pl(T )en . But P( <TT ) = P( (T)P(T ) , 
so that p ^ T T )  = p., ( fl“ )p1 (T ) • Similarly, p1 is an 
affine map, since the same is true for P. Further,

|P,«r) - Pi(t )| = |Pl«r> - p,(r)|j{4^- =
|| [P^g-) - Pi(-T-) ]ejf || 1P(6-) - P( T) ]e, )| _ This

FT]] iT®TH
shows that p1 is continuous and, hence, an affine semi- 
character .
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Now, suppose we have constructed an orthonormal set
e1( e^ along with affine semicharacters p1 , * * * * Pjc
which satisfy P(C“ )ek = PfcCcrJe^. Le't Q be the subspace
of M spanned by e ^  . .., e^■ Suppose Q + M, then Q"*“ , the
orthogonal complement of Q, is different from 0. If
0 “ e S , there exists 'T £ S for which P*(G") = P(T). Then

, k
if x e Q , and y = 2 Z aiei» then (P(C")x,y) = (x,P*(tf“)y) =

(x,P(T)y) = (x,P(r )[ia.e,]) = jf' I.(x,P(T )e.) =
k _ii = 1 “

2Z a, (x,p. (T)e, ) = 7 :  j.p A't*)(x,e±) = 0. Thus, P(fl“ )x e
i=l 1 1 1 “  1 1
Q^, and Q1̂* is an invariant subspace of the representation. 
Replacing M by Q in the previous argument, we obtain 
ek+1 e Q"*“, and an affine semicharacter P^+1 which satisfies 
P(6-)ek+1 = pk+1 (G“)ek+1 for <3“ e S.

Repeating this argument, we finally obtain an orthonormal 
basis e1, e^, ..., en for M, and affine semicharacters 
P -1 > • * • * Pn » for which P( 0“)ei = pi(0" for 1 < i < n 
and O" e S . Now P(x) ? P(y); thus for some i, P(x)ei ^
PfyJe^ and, consequently, p^x) ^ P-^y) ■ This is the
desired separating affine semicharacter.

One might approach Theorem 3.3 by attempting to extend 
each character on the group to an affine semicharacter.
We give two examples: the first is an example of an
abelian group-extremal semigroup in which every character 
may be extended to be an affine semicharacter; the second
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shows that, in general, not every character can be extended.

Example 1: Let G be an arbitrary compact abelian group,
and S * G. Clearly, S is abelian and group-extremal. Now, 
for each continuous character ^ on G, define P ̂ (y£L) =
\ '6 dyU. where jul e S . Clearly, is a continuous, affine
function. Further P ^ ( ^ * V )  = J ^ dyU*V* =

^   ̂(xy)dyU(x)dV(y) = J'J'tf(x)#(y)dyW(x)dv>(y) =
P , (U )*F^ (V )• Therefore, P^ is an affine semicharacter. 
Further, if x e G, then Fy (g) = J ̂  d£ = ^  (x), so that 
Fj = 'ft on G .

1Example 2 : Let S be the complex unit disc, S the circle 
group. Let p be an affine semicharacter p ^ l ,  p ^ O ;
then clearly p(0) = 0. If \x\ < 1, then xn --- > 0, so
that [p(x) ]n = p(xn ) ----> 0; thus, ( p(x)| < 1. It

— 1 1 — 1follows that p~ (1) is subset of S . However, p (1) is
1 1 convex, so that p” (1) = {1}. Now on S , p is a character;

there exists an integer n for which p(z) = zn for all
z e S1. But then p-1(l) contains the n-th roots of unit,
so that n = 1, p(z) = z for z e S1 and, hence, for z e S.

Therefore, the only affine semicharacters on S are p r- 0,
p5E 1, and p(z) = z. This example can be justified as well 
by noting that Schwarz [41 ] has computed all semicharacters 
of the disc; they are:
(a) % ( z ) ~ 0  (b) ^C(z)= 1
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I 0 for z = 0
(0) /(z) ='J

I \ z \Qr +V* *zn for z ^ 0 (n an integer,^ real,
n + cK >0)

By D^, we mean the countable product of discs under 
coordinate-wise multiplication. is an abelian group-
extremal affine semigroup.

Corollary 3.3.1 An abelian, metrizable, compact, group- 
extremal affine semigroup S is equivalent to a subsemi­
group of D^.

Proof: In the proof of Corollary 3.2.1, it was shown that
S has a countable number of representations which separate 
points of S. Each representation gives rise to a finite 
number of affine semicharacters; consequently, a countable 
number of affine semicharacters, say p1, p2* •••» separate 
points. If we define F:S ----> by
(1) [F(x)]^ = p^(x), then P is clearly an equivalence
between S and a subsemigroup of D^.

Theorem 3.4 A compact, group-extremal affine semigroup S 
is equivalent to the inverse limit of compact, finite­
dimensional group-extremal semigroups.

Proof: Let A be a finite collection of representations of
S, say A = {P1 , ..., Pn J, where P.̂ is a representation of 
S in the finite-dimensional space lV̂ . Thus, Pi(s) e BCM^) 
for all s e S, and P^(S) is a compact, group-extremal affine
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semigroup.

Define fA :S ----> B(M1) © ... © B(Mn) by:
(1) fA(<T) = (P., (S')...... ?n( 6“)). Clearly, fA is a
continuous, affine homomorphism. We define:
(2) Qa = fA(S); then QA is a compact, group-extremal, 
finite-dimensional affine semigroup.

Let be the collection of all finite sets of representa­
tions of S, and partial order by containment. ^  is then 
a directed set in this partial order. If A,B e ^  , A c B, 
define ----> QA as follows:
(3) Let xQ = fB(s0) e QB i define ((?®(x0) = fA(sQ) . ®
merely consists of the function which projects from Qg to 
Qa by deleting the coordinates in B\A. In view of this, 
and the fact that fg is a continuous affine homomorphism 
for all B e (^A is a continuous, affine homomorphism
onto QA . Clearly, if C > B > A then A . Thus,
{QA» ̂ A* ̂  is an inverse system, and, therefore, we set
(4) Q = lim {Qa , We wish to show S is equivalent
to Q. To do this, we define a function F on S to TP Qa

Ae %  A
By
(5) [P(s)]A = f a( s) for A e ^  , and for s e S. Note that 
[P(s)]A e Qa ; if B > A, then 1(>J( [F( s) ]B) = l$J(fB(a>) = 
PA(s) = [f(0)]a * Thus, P(s) e Q; P is clearly a continuous, 
affine homomorphism of S into Q. If x / y, x,y e S, there 
exists a representation P such that P(x) ^ P(y). Let
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A = {P}; then fA(x) = P(x) ^ P(y) = fA(y). Therefore,
[F(x)]a = fA(x) j fA(y) = [F(y)]A , so that F(x) i- P(y);
this shows that P is one-to-one.

We wish to show F is onto. Let z e Q; for each A e A  ,
zA £ Qa » so that there exists xA e S such that zA = fA(XA ).

Define H(A) = {x e S:fA(x) * fA^xA ^ ; H Â  ̂is a comPact
subset of S for each A e A  • For A »B e A , let C = A U B;
G £ A i  and C >_ A and C ^ B. Thus, (^A(zĉ  = za and 
(^g(zc) = zB , since z e Q. If x £ H(C), then fc(x) =

fc(xc) = zc - Then zA = ^ ' ^ ZC^ = ^ A ^ fC^x^  = fA^x ^’ and * 
similarly, zB = fB(x). Hence, f*A(x ) = ZA * fA^xA ^ f and 
fB(x) = zB = fg(XB), so that x e H(A) 0 H(B). This shows 
that H(C) c H(A) n H(B) , and that {H(A)}Ae ̂  is a directed 
family of compact subsets of S. There exists an x e S, 
x e a Q a H Â *̂ since S is compact. Then PA(x) = fA(xA) = 
zA for all A e  A . It follows easily that F(x) = z, so 
that F is onto. Thus, S is equivalent to Q, and the proof 
is complete.

Remark: In view of the close similarity between compact 
affine semigroups and measure semigroups, we propose as a 
conjecture that every compact affine semigroup is equivalent 
to a semigroup of measures. It would alBo be interesting to 
see what uses can be made of Theorem 3.5 in the analysis of 
compact semigroups.
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