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3.4 Itô’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
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Abstract

In this dissertation, the well-known Girsanov Theorem will be proved under a set

of moment conditions on exponential processes. Our conditions are motivated by

the desire to avoid using the local martingale theory in the proof of the Girsanov

Theorem. Namely, we will only use the martingale theory to prove the Girsanov

Theorem. Many sufficient conditions for the validity of the Girsanov Theorem have

been found since the publication of the result by Girsanov [7] in 1960. We will

compare our conditions with some of these sufficient conditions. As an application

of the Girsanov Theorem, we will show the nonexistence of an arbitrage in a market

and will also explain a simplified version of Black-Scholes model.

iv



Chapter 1
Introduction

The main result in this dissertation is to show the validity of the Girsanov Theorem

under a new condition in terms of moments. Under this new condition, we do not

need to use local martingale theory. In many applications, e.g., the Black-Scholes

model, this new condition is enough.

Let B(t) be a Brownian motion in a probability space (Ω,F , P ) and let {Ft; a ≤

t ≤ b} be a filtration such that B(t) is Ft-measurable for each t and for any

s ≤ t, the random variable B(t) − B(s) is independent of the σ-field Fs. We

denote by Lad (Ω, L2[a, b]) the space of all stochastic processes h(t, ω), a ≤ t ≤ b,

ω ∈ Ω such that h(t) is Ft-adapted and
∫ b
a
|h(t)|2 dt < ∞ almost surely. Also we

denote by L2
ad ([a, b]× Ω) the space of all stochastic processes h(t, ω), a ≤ t ≤ b,

ω ∈ Ω such that h(t) is Ft-adapted and
∫ b
a
E|h(t)|2 dt < ∞. It is a fact that

L2
ad ([a, b]× Ω) ⊂ Lad (Ω, L2[a, b]). An exponential process Eh(t), a ≤ t ≤ b, given

by h(t) ∈ Lad (Ω, L2[a, b]) is a stochastic process defined by

Eh(t) = e
∫ t

a h(s) dB(s)− 1
2

∫ t
a h(s)

2 ds, a ≤ t ≤ b.

Then the Girsanov Theorem states that if the exponential process Eh(t), 0 ≤ t ≤ T

given by h(t) ∈ Lad (Ω, L2[0, T ]) is a martingale, then the process given by

W (t) = B(t)−
∫ t

0

h(s) ds, 0 ≤ t ≤ T,

is a Brownian motion with respect to the probability measure Q given by dQ =

Eh(T ) dP . An exponential process Eh(t), 0 ≤ t ≤ T given by h(t) ∈ Lad (Ω, L2[0, T ])

is a martingale if and only if E[Eh(T )] = 1. So the Girsanov Theorem is true if

E[Eh(T )] = 1.
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As can be seen in the statement, the Girsanov Theorem is true for stochastic

processes h(t) ∈ Lad (Ω, L2[0, T ]) satisfying a certain condition. For our result, we

restrict the discussion to processes h(t) in L2
ad ([a, b]× Ω). It is a fact that the

stochastic integral
∫ t
a
h(s) dB(s) for h ∈ L2

ad ([a, b]× Ω) is a martingale. With the

assumption of the new moment conditions, the proof of the Girsanov Theorem

is now elementary. The idea behind these new conditions is to make some of the

stochastic integrals that appear in the proof to be martingales.

Since Girsanov [7] published his result in 1960, many results in finding a suf-

ficient condition for the validity of the Girsanov Theorem have been found. We

will compare some of these sufficient conditions for h ∈ L2
ad ([a, b]× Ω) with our

condition in Chapter 4.

In the theory of finance, an arbitrage in a market is regarded as a portfolio

that can generate a profit without any risk of losing money. This situation con-

tradicts the real life situation. One of the applications of the Girsanov Theorem is

in showing the nonexistence of an arbitrage in a market. In Chapter 5, by using

the “new” Girsanov Theorem, we will show the nonexistence of an arbitrage in a

market. We will also explain a simplified version of Black-Scholes model, a model

that determines the formula for pricing option calls.

2



Chapter 2
Background from Probability Theory

In this chapter, we review some basic ideas from probability theory which will be

needed in this dissertation.

2.1 Stochastic Processes and Brownian Motion

Definition 2.1. A stochastic process is a collection X = {X(t, ω); t ∈ T, ω ∈ Ω}

of random variables defined on a probability space (Ω,F ,P ) with index set T .

Remark 2.2. A stochastic process can also be regarded as a measurable function

X(t, ω) defined on the product space [0,∞)× Ω. In particular,

1. for fixed t, X(t, ·) is a random variable;

2. for fixed ω, X(·, ω) is a function of t.

If there is no confusion, we denote X(t, ω) by X(t) or Xt.

Remark 2.3. Usually the set T represents “time”. In the continuous case, it is an

interval of R, while in the discrete case, it is a subset of N. However the set T does

not necessarily denote the time.

Example 2.4. Let X1, X2, . . . , Xn, . . . be independent and identically distributed

random variables and let Sn = X1 +X2 + · · · +Xn. Then the sequence {Sn} is a

discrete time stochastic process.

Example 2.5. Let T = [t0,∞), where t0 is a real number. For every partition

t0 < t1 < · · · < tn, ti ∈ T, i = 1, 2, . . . , n,
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if Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1 are independent random variables for all possible

choices of partitions described above, then {Xt, t ∈ T} is a stochastic process with

independent increments.

Example 2.6. Let Xt, t = 0, 1, 2, . . . denote the rock component (e.g., lignite, shale,

sandstone, siltstone) of the tth layer of a rock. This is a discrete stochastic process

and here, t is a space variable.

Example 2.7. In the fluctuation problem of electron-photon cascade, let Xe
t denote

the number of particles with the energy value less than e at an arbitrary thickness

t of the absorber. This is a continuous stochastic process. In this case, t does not

represent time.

Now let’s look at the concept of “sameness” between two processes under a

probability measure P .

Definition 2.8. Two stochastic processesX(t) and Y (t) are equivalent if PX = PY ,

where PX and PY are the distributions for X and Y , respectively.

Example 2.9. Consider the set Ω1 = {a, b, c, d} with uniform probability. Define

the random variables X and Y such that X(a) = X(b) = 1, X(c) = X(d) = −1

and Y (a) = Y (c) = 1, Y (b) = Y (d) = −1. Then X and Y are two different random

variables on the same probability space with the same distribution. Thus they are

equivalent.

Example 2.10. Consider the sets Ω1 = {a, b, c, d} and Ω2 = {e, f}, both with

uniform probabilities. Define the random variables X and Z such that X(a) =

X(b) = 1, X(c) = X(d) = −1 and Z(e) = 1, Z(f) = −1. Then X and Z have the

same distribution (thus are equivalent), but they arise from different probability

spaces.
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Definition 2.11. A stochastic process Y (t) is a version of a stochastic process

X(t) if P{X(t) = Y (t)} = 1 for all t.

Remark 2.12. Two equivalent processes X(t) and Y (t) may have different prob-

ability spaces, whereas two versions of a process must be defined on the same

probability space.

Remark 2.13. Two processes X(t) and Y (t) which are versions of each other are

equivalent, but the converse is not true (Example 2.10).

Definition 2.14. A stochastic process Y (t) is a realization of X(t) if there is a

probability space Ω0 with P (Ω0) = 1 such that for all ω ∈ Ω0, X(t, ω) = Y (t, ω)

for all t, that is

P{ω; X(ω, t) = Y (ω, t), for all t ≥ 0} = 1.

Remark 2.15. A realization is a version, but not conversely. However, a continuous

version is a realization.

Example 2.16. Define the random variable X(t) ≡ 0 for any (t, ω) ∈ [0, 1]× [0, 1].

For fixed t ∈ [0, 1], define Y (t) =

0 if t 6= ω;

1 if t = ω.

Then Y (t) is a version of X(t) because for any t ∈ [0, 1],

P{Y (t) = X(t)} = P{t 6= ω} = 1− P{t = ω} = 1.

On the other hand, P{Y (t) = X(t) ; for any t ∈ [0, 1]} = 0. So Y (t) is not a

realization of X(t).

A famous example of a stochastic process is Brownian motion.

Definition 2.17. A stochastic process B(t, ω) is called a Brownian motion if it

satisfies the following conditions:
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1. P{ω;B(0, ω) = 0} = 1.

2. For any 0 ≤ s < t, the random variable B(t)− B(s) is normally distributed

with mean zero and variance t− s, i.e., for any a < b,

P{a ≤ B(t)−B(s) ≤ b} =
1√

2π(t− s)

∫ b

a

e−
x2

2(t−s) dx.

3. B(t, ω) has independent increments, i.e., for any 0 ≤ t1 < t2 < · · · < tn, the

random variables B(t1), B(t2)−B(t1), . . . , B(tn)−B(tn−1) are independent.

4. Almost all sample paths of B(t, ω) are continuous functions, i.e.,

P{ω ; B(·, ω) is a continuous function of t} = 1.

One way of constructing a Brownian motion is based on the following theorem

by Kolmogorov. Let R[0,∞) denote the space of all real valued functions f defined

on the interval [0,∞). Let F be the σ-field generated by sets of the form

{
f ∈ R[0,∞);

(
f(t1), . . . , f(tn)

)
∈ A

}
,

where 0 ≤ t1 < t2 < . . . < tn and A ∈ B(Rn). These sets are called cylinder sets.

Theorem 2.18. (Kolmogorov’s Extension Theorem) Suppose that associated with

each 0 ≤ t1 < t2 < . . . < tn, n ≥ 1, is a probability measure µt1,...,tn on Rn. Assume

that the family

{µt1,...,tn ; 0 ≤ t1 < . . . < tn−1 < tn, n = 1, 2, 3, . . .}

satisfies the consistency condition

µt1,...,ti−1,t̂i,ti+1,...,tn
(A1 × A2) = µt1,...,tn(A1 × R× A2),

6



where 1 ≤ i ≤ n, A1 ∈ B(Ri−1), A2 ∈ B(Rn−i) and t̂i means that ti is deleted.

Then there exists a probability measure P on
(
R[0,∞),F

)
such that

P
{
f ∈ R[0,∞);

(
f(t1), . . . , f(tn)

)
∈ A

}
= µt1,...,tn(A)

for any 0 ≤ t1 < t2 < . . . < tn, A ∈ B(Rn) and n ≥ 1.

With this theorem, the stochastic process X(t) defined by

X(t, ω) = ω(t), ω ∈ R[0,∞),

can be shown to be a Brownian motion. For more on the construction of a Brownian

motion, see [14].

Example 2.19. Let Xδ,h(t) be a random walk with jumps h and −h equally likely

at times δ, 2δ, 3δ, . . .. Assume that h2 = δ, then for each t ≥ 0, the limit

B(t) = lim
δ→0

Xδ,
√
δ(t),

is a Brownian motion.

Example 2.20. Let C[0, 1] be the Banach space of real-valued continuous functions

x on [0, 1] with x(0) = 0 and the norm given by ‖x‖∞ = sup0≤t≤1 |x(t)|. Consider

the mapping µ given by

µ(A) =

∫
U

n∏
i=1

(
1√

2π(ti − ti−1)
exp

[
−(ui − ui−1)

2

2(ti − ti−1)

])
du1 . . . dun,

where U ∈ B(Rn), the Borel σ-field of Rn and A is a set (called a cylinder set) of

the form

A = {x ∈ C[0, 1];
(
x(t1), x(t2), . . . , x(tn)

)
∈ U},

where 0 < t1 < t2 < · · · < tn ≤ 1. Then
(
C[0, 1],B(C[0, 1]), µ

)
is a probability

space and the stochastic process defined by

B(t, x) = x(t), 0 ≤ t ≤ 1, x ∈ C[0, 1],

7



is a Brownian motion, a construction due to Nobert Wiener.

Two important properties of a Brownian motion are listed below.

Theorem 2.21. Let B(t) be a Brownian motion. Then for any s, t ≥ 0, we have

E[B(s)B(t)] = min{s, t}.

Using this theorem and the definition of Brownian motion, we see that a stochas-

tic process X(t), t ≥ 0 which is normally distributed with mean zero and variance

t and satisfying E[X(s)X(t)] = min{s, t}, is a Brownian motion.

Theorem 2.22. The path of a Brownian motion is nowhere differentiable almost

surely.

2.2 Absolute Continuity and Equivalence of

Probability Measures

Definition 2.23. Let (Ω,F) be a measurable space. A probability measure Q is

absolutely continuous with respect to a probability measure P if P (A) = 0 implies

Q(A) = 0, for any A ∈ F . We denote this by Q� P .

Example 2.24. Let X be a nonnegative random variable on (Ω,F , P ) such that∫
Ω
X dP = 1. Define Q : Ω → [0,∞) by

Q(A) =

∫
A

X dP, A ∈ F .

Then Q(Ω) = 1 and Q(A) ≥ 0 for all A ∈ F . If A1, A2, . . . are disjoint sets in F ,

then

Q

(
∞⋃
n=1

An

)
= lim

n→∞
Q

(
n⋃
i=1

Ai

)
= lim

n→∞

∫
Ω

n∑
i=1

1Ai
X dP

=
∞∑
n=1

∫
An

X dP

=
∞∑
n=1

Q(An).

8



ThusQ is a probability measure on (Ω,F). If P (A) = 0, thenQ(A) =
∫
A
X dP = 0.

In fact, since 1AX = 0 on Ac (the complement of A), it follows that 1AX = 0 P -

almost surely. It is a fact in analysis that if a measurable function f = 0 µ-almost

eveywhere, then
∫

Ω
f dµ = 0. Thus we get

∫
A
X dP =

∫
Ω

1AX dP = 0. So Q is

absolutely continuous to P .

Definition 2.25. Two measures P and Q are equivalent if P and Q are absolutely

continuous with respect to each other, namely P � Q and Q � P . We denote

this by P ∼ Q (or Q ∼ P ).

2.3 Conditional Expectation

Definition 2.26. Let X be an integrable random variable in a probability space

(Ω,F ,P ) and let G ⊂ F be a sub-σ-field of F . The conditional expectation of X

given G is the unique random variable Y such that

1. Y is G-measurable.

2.
∫
G
Y dP =

∫
G
X dP for all G ∈ G.

We usually write Y = E[X|G].

Remark 2.27. The existence and uniqueness of the conditional expectation is guar-

anteed by the Radon-Nikodym Theorem.

Theorem 2.28. (Radon-Nikodym Theorem) Suppose (Ω,F , P ) is a probability

space. Let µ be a signed measure (namely µ : Ω → [−∞,∞] is a σ-additive function

on (Ω,F) such that µ(φ) = 0 for null set φ) such that µ is absolutely continuous

with respect to P . Then there exists a unique integrable function f such that

µ(A) =

∫
A

f dP, A ∈ F .

9



Remark 2.29. The function f is called the density or the Radon-Nikodym derivative

of µ with respect to P . We write f =
dµ

dP
.

The following are some simple properties of conditional expectation.

Theorem 2.30. Let (Ω,F , P ) be a probability space, G is a sub-σ-field of F and

X ∈ L1(Ω,F). Then each of the following hold almost surely:

(a) E
(
E[X|G]

)
= EX.

(b) If X is G-measurable, then E[X| G] = X.

(c) If X and G are independent, then E[X| G] = EX.

(d) If Y is G-measurable and E|XY | <∞, then E[XY | G] = Y E[X| G].

(e) If H is a sub-σ-field of G, then E
[
E[X|G]

∣∣H] = E[X|H].

(f) Let ϕ be a convex function on R and suppose that ϕ(X) is integrable with

respect to P . Then ϕ(E[X| G]) ≤ E[ϕ(X)| G].

(g) Let Xn ≥ 0, Xn ∈ L1(Ω), n = 1, 2, . . ., and assume that lim inf
n→∞

Xn ∈ L1(Ω).

Then E
[
lim inf
n→∞

Xn

∣∣∣G] ≤ lim inf
n→∞

E[Xn|G].

2.4 Martingales

One of the important properties of a Brownian motion is the martingale property.

In this section, we define the concepts of martingales and local martingales.

Definition 2.31. Let T be either Z+ (the set of positive integers) or an interval

in R. A filtration on T is an increasing family {Ft : t ∈ T} of σ-fields. A stochastic

process {Xt; t ∈ T} is said to be adapted to the filtration {Ft : t ∈ T} if for each

t, the random variable Xt is Ft-measurable.

10



Remark 2.32. We always assume that all σ-fields Ft are complete, namely if A ∈ Ft

and P (A) = 0, then B ∈ Ft for any subset B of A.

Definition 2.33. For a filtration {Ft : t ∈ T} on a probability space (Ω,F , P ),

we define Ft+ =
⋂
s>tFs for any t ∈ T . We say that the filtration {Ft : t ∈ T} is

right continuous if Ft+ = Ft for every t ∈ T . In particular, if t ∈ [a, b], a filtration

{Ft; a ≤ t ≤ b} is said to be right continuous if Ft =
⋂∞
n=1Ft+ 1

n
for all t ∈ [a, b),

where by convention Ft = Fb when t > b.

Definition 2.34. Let Xt be a stochastic process adapted to a filtration {Ft : t ∈

T} and E|Xt | < ∞ for all t ∈ T . Then Xt is called a martingale with respect to

{Ft} if for any s ≤ t in T ,

E{Xt|Fs} = Xs, almost surely. (2.1)

Remark 2.35. If the filtration is not explicitly specified, then the filtration {Ft} is

understood to be the one given by Ft = σ{Xs; s ≤ t}.

Remark 2.36. If the equality in Equation 2.1 is replaced by ≥ (or ≤), then Xt is

called a submartingale (or supermartingale) with respect to {Ft}.

Example 2.37. A Brownian motion B(t) is a martingale. In fact, for s < t,

E[B(t)| Fs] = E[(B(t)−B(s)) +B(s)| Fs]

= E[B(t)−B(s)| Fs] + E[B(s)| Fs]

= E[B(t)−B(s)] +B(s)

= B(s),

where we had used properties 2 and 3 of Definition 2.17 to get the last two equal-

ities.

11



Example 2.38. For a Brownian motion B(t), the process B(t)2 is a submartingale.

In fact, for s < t,

E[B(t)2| Fs] = E[{(B(t)−B(s)) +B(s)}2| Fs]

= E[(B(t)−B(s))2| Fs] + 2B(s)E[B(t)−B(s)| Fs]

+E[B(s)2| Fs]

= E[(B(t)−B(s))2] + 2B(s)E[B(t)−B(s)] +B(s)2

= (t− s) + 0 +B(s)2 (2.2)

> B(s)2.

From Equation 2.2 we can see that the process B(t)2 − t is a martingale.

Definition 2.39. A random variable τ : Ω → [a, b] is a stopping time with respect

to the filtration {Ft; a ≤ t ≤ b} if {ω; τ(ω) ≤ t} ∈ Ft for all t ∈ [a, b], i.e., the set

{τ ≤ t} is Ft-measurable.

Remark 2.40. The b in the above definition is allowed to be ∞.

Remark 2.41. In the case of discrete t, the requirement in Definition 2.39 is

equivalent to {τ = t} ∈ Ft because {τ = t} = {τ ≤ t} − {τ ≤ t − 1} and

{τ ≤ t} =
⋃t
k=a{τ = k}.

Given a right continuous filtration, we have the following characterization of a

stopping time.

Theorem 2.42. Let {Ft; a ≤ t ≤ b} be a right continuous filtration. The random

variable τ : Ω → [a, b] is a stopping time with respect to {Ft} if and only if

{ω; τ(ω) < t} ∈ Ft for all t ∈ [a, b].

Remark 2.43. A random variable τ is a stopping time if and only if {ω; τ(ω) >

t} ∈ Ft for all t ∈ [a, b].
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Example 2.44. If τ ≡ c ∈ [a, b], then τ is a stopping time because {τ = n} is either

an empty set φ or Ω for any n, 1 ≤ n <∞.

Example 2.45. Let {Xt} be a sequence of Ft-adapted random variables defined on

a probability space (Ω,F , P ) with filtration {Ft}. For A ∈ B(R), define

τ(ω) =

inf{t;Xt(ω) ∈ A}, for t ≥ 1,

∞, otherwise.

Then τ is a stopping time since for any finite t ≥ 1,

{τ = t} = {X1 6∈ A,X2 6∈ A, . . . , Xt−1 6∈ A,Xt ∈ A} ∈ Ft,

and for t = ∞,

{τ = ∞} = Ω− {τ <∞} ∈ Ft.

Definition 2.46. An Ft-adapted stochastic process Xt, a ≤ t ≤ b is called a

local martingale with respect to {Ft} if there exists a sequence of stopping times

τn, n = 1, 2, . . ., such that

1. τn increases monotonically to b almost surely as n→∞;

2. For each n, Xt∧τn is a martingale with respect to {Ft; a ≤ t ≤ b}.

Remark 2.47. A martingale is a local martingale (let τn = b for all n). However the

converse is not true. For an example of a local martingale which is not a martingale,

refer to [22](page 37), [11](page 168) or Example 3.18 below.

Example 2.48. Since a Brownian motion B(t) is a martingale, by the above remark,

it is a local martingale.

A cornerstone result in martingale theory is the Doob-Meyer decomposition The-

orem. This theorem states that under certain conditions, a submartingale X(t)
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with respect to a right continuous filtration {Ft} can be decomposed as a sum of

a martingale M(t) and an increasing process A(t), i.e.,

X(t) = M(t) + A(t). (2.3)

For details, see [11].

Definition 2.49. The process A(t) in Equation 2.3 is called the compensator of

X(t).

Example 2.50. The compensator of B(t)2 for a Brownian motion B(t) is t since

B(t)2 = (B(t)2 − t) + t,

and B(t)2 and B(t)2−t are submartingale and martingale respectively, by Example

2.38.

2.5 Some Inequalities

We end this chapter with a discussion of some inequalities that may be needed in

this dissertation.

Theorem 2.51. (Hölder’s inequality)

(a) (Analysis version) Let (X,B, µ) be a measure space and let f and g be two

measurable functions on X such that | f |, | g | <∞ almost everywhere on X.

Then for any p, q ∈ (1,∞) such that 1
p

+ 1
q

= 1, we have∫
X

| fg| dµ ≤
[∫

X

| f |p dµ
] 1

p
[∫

X

| g|p dµ
] 1

q

.

(b) (Probability version) Let X and Y be two random variables in a probability

space (Ω,F , P ) such that E|X|p < ∞ and E|Y |q < ∞, where 1
p

+ 1
q

= 1.

Then

E|XY | ≤ (E|X|p)
1
p (E|Y | q)

1
q .
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When p = q = 2 in the Hölder’s inequality, we have the following celebrated

inequality.

Theorem 2.52. (Schwarz’s inequality)

(a) (Analysis version or Integral form) Let (X,B, µ) be a measure space with

f and g two measurable functions on X such that | f |, | g | < ∞ almost

everywhere on X. Then∫
X

| fg| dµ ≤
[∫

X

| f |2 dµ
] 1

2
[∫

X

| g|2 dµ
] 1

2

.

(b) (Probability version or Expectation form) Suppose X and Y are random

variables with finite variances in a probability space (Ω,F , P ). Then

E|XY | ≤
√
E(X2)E(Y 2).

Theorem 2.53. (Jensen’s inequality)

(a) (Analysis version) Let (X,B, µ) be a measure space. Let g be a real valued

B-measurable and µ-integrable function on a set A ∈ B with µ(A) ∈ (0,∞).

If f is a convex function on an open interval I in R and if g(A) ⊂ I, then

f

(
1

µ(A)

∫
A

g dµ

)
≤ 1

µ(A)

∫
A

(f ◦ g) dµ,

where f ◦ g denotes the composition of f and g.

(b) (Probability version) Let X be a random variable on a probability space

(Ω,F , P ). Let f be a convex function on R, and suppose that X and f(X)

are integrable. Then

f(EX) ≤ E(f(X)).
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Chapter 3
Stochastic Integrals

Let (Ω,F , P ) be a probability space and let B(t) be a Brownian motion with

respect to P . In this chapter, we discuss integrals of the form∫ b

a

f(t) dB(t)

where f is in certain classes of functions. For each class of functions, some proper-

ties of the integral will be given. For a more detail discussion on these stochastic

integrals, the reader can refer to [14].

3.1 Wiener Integral

Let f be a real-valued square integrable function on [a, b], i.e., f ∈ L2[a, b]. Then

the integral ∫ b

a

f(t)dB(t, ω), f ∈ L2[a, b],

is called a Wiener integral.

The integrals
∫ 1

0
etdB(t),

∫ 1

0
t sin(1

t
) dB(t) and

∫ 1

0
t dB(t) are examples of Wiener

integrals.

Remark 3.1. Let C[0, 1] be the set of real-valued continuous functions x(t) on the

interval [0, 1] with x(0) = 0. The integral on C[0, 1] with respect to the Wiener

measure w in C[0, 1] is called a Wiener integral. The Wiener measure w is defined

by

w(I) =
1√

(2π)nt1(t2 − t1) · · · (tn − tn−1)∫
E

exp

[
−1

2

(
u2

1

t1
+

(u2 − u1)
2

t2 − t1
+ · · ·+ (un − un−1)

2

tn − tn−1

)]
du1du2 · · · dun,
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where E is a Borel subset of Rn and I is the cylinder set I = {x ∈ C[0, 1] :

(x(t1), . . . , x(tn)) ∈ E} for 0 < t1 < t2 < · · · < tn ≤ 1 (see [25]).

Let L2(Ω) denote the Hilbert space of square integrable real-valued random

variables on Ω with inner product 〈X, Y 〉 = E(XY ). We outline the construction

of the Wiener integral
∫ b
a
f(t) dB(t, ω).

Step 1. f is a step function

Suppose f is a step function given by

f =
n∑
i=1

ai1[ti−1,ti),

where a = t0 < ti < . . . < tn = b. Define

Istep(f) =
n∑
i=1

ai (B(ti)−B(ti−1)) .

Then Istep is linear and the random variable Istep(f) is Gaussian with mean zero

and variance E [{Istep(f)}2] =
∫ b
a
f(t)2 dt.

Step 2. f ∈ L2[a, b]

Choose a sequence {fn}∞n=1 of step functions such that fn approaches f in L2[a, b].

The sequence {Istep(fn)}∞n=1 is Cauchy in L2(Ω), hence it is convergent in L2(Ω).

We set

I(f) = lim
n→∞

Istep(fn) in L2(Ω),

and write

I(f)(ω) =

(∫ b

a

f(t) dB(t)

)
(ω), ω ∈ Ω, almost surely.

This I(f) is the Wiener integral. We also denote it by
∫ b
a
f(t) dB(t, ω) or just∫ b

a
f(t) dB(t).

Theorem 3.2. For each f ∈ L2[a, b], the Wiener integral
∫ b
a
f(t) dB(t) is a Gaus-

sian random variable with mean zero and variance ‖f‖2
L2[a,b] =

∫ b
a
|f(t)|2dt.
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Example 3.3. The (Wiener) integral
∫ 1

0
t2 dB(t) is a Gaussian random variable with

mean zero and variance
∫ 1

0
t4 dt = 1

5
.

It is easy to check that I : L2[a, b] → L2(Ω) is a linear transformation, whence

we have the following:

Corollary 3.4. If f, g ∈ L2[a, b], then

E[I(f)I(g)] =

∫ b

a

f(t)g(t) dt.

3.2 Itô Integral

Suppose B(t) is a Brownian motion, and let {Ft; a ≤ t ≤ b} be a filtration such

that

(a) for each t, B(t) is Ft-measurable,

(b) for any s ≤ t, the random variable B(t)−B(s) is independent of the σ-field

Fs.

Let L2
ad ([a, b]× Ω) denote the space of all stochastic processes f(t, ω), a ≤ t ≤ b,

ω ∈ Ω, satisfying

(i) f(t) is adapted to the filtration {Ft};

(ii)
∫ b
a
E| f(t)|2dt <∞.

Remark 3.5. Note that by Fubini’s theorem (see [2]), condition (ii) can also be

written as E
∫ b
a
| f(t)| 2 dt <∞.

The stochastic integral

∫ b

a

f(t, ω) dB(t, ω), f ∈ L2
ad ([a, b]× Ω)
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is called an Itô integral . For convenience, we suppress the ω and we just write∫ b
a
f(t) dB(t). Before presenting some examples, let us consider the construction of

the Itô integral.

Step 1. f is a step stochastic process in L2
ad([a, b]× Ω)

Suppose f is a step stochastic process given by

f(t, ω) =
n∑
i=1

ξi−1(ω) 1[ti−1,ti)(t),

where ξi−1 is Fi−1-measurable and E
[
(ξi−1)

2
]
<∞. Define

Istep(f) =
n∑
i=1

ξi−1

(
B(ti)−B(ti−1)

)
.

Then Istep is linear, E[Istep(f)] = 0 and

E
[
| Istep(f)|2

]
=

∫ b

a

E| f(t)|2 dt.

Step 2. Approximation of f ∈ L2
ad([a, b]× Ω) by step processes

Suppose f ∈ L2
ad([a, b]×Ω). Then there exists a sequence {fn(t);n ≥ 1} of step

stochastic processes in L2
ad([a, b]× Ω) such that

lim
n→∞

∫ b

a

E
[
| f(t)− fn(t)|2

]
dt = 0,

i.e., fn −→ f in L2
ad([a, b]× Ω).

Step 3. f ∈ L2
ad([a, b]× Ω)

By Steps 1 and 2, there exists a sequence {fn(t, ω);n ≥ 1} of adapted step

stochastic processes such that

lim
n,m→∞

E
(
| Istep(fn)− Istep(fm)| 2

)
= 0.
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Hence the sequence {Istep(fn)} is Cauchy in L2(Ω). For f ∈ L2
ad([a, b]× Ω), define

I(f) = lim
n→∞

Istep(fn), in L2(Ω).

Then denote I(f, ω) =
∫ b
a
f(t, ω) dB(t, ω) for f ∈ L2

ad([a, b]× Ω).

Remark 3.6. For a deterministic function f(t), the Itô integral
∫ b
a
f(t) dB(t, ω)

agrees with the Wiener integral defined in section 3.1.

Example 3.7. Let f(t, ω) = B(t, ω). Since B(t) is adapted to the filtration {Ft}, it

follows that f(t) is Ft-adapted. Also∫ b

a

E|B(t)|2 dt =

∫ b

a

t dt =
1

2
(b2 − a2) <∞.

So
∫ b
a
B(t) dB(t) is an Itô integral. In fact it can be shown (see Example 3.23) that∫ b

a

B(t) dB(t) =
1

2

(
B(b)2 −B(a)2 − (b− a)

)
. (3.1)

Example 3.8. The integral
∫ b
a
eB(t) dB(t) is an Itô integral because eB(t) is Ft-

adapted and

E
∣∣ e2B(t)

∣∣ =

∫ ∞

−∞
e2x

1√
2πt

e−
x2

2t dx

=

∫ ∞

−∞
e2t

1√
2πt

e−
(x−2t)2

2t dx

= e2t,

thus
∫ b
a
E
∣∣ eB(t)

∣∣2 dt =
∫ b
a
e2tdt = 1

2

(
e2b − e2a

)
<∞.

Theorem 3.9. Suppose that f ∈ L2
ad ([a, b]× Ω). Then the Itô integral I(f) =∫ b

a
f(t) dB(t) is a random variable with mean E[I(f)] = 0 and variance

E
(
| I(f)| 2

)
=

∫ b

a

E| f(t)| 2 dt.
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Example 3.10. Consider f(t) = sgn(B(t)). Since∫ b

a

E| sgn(B(t))|2 dt =

∫ b

a

E(1) dt = b− a <∞,

it follows that f(t) = sgn(B(t)) ∈ L2
ad ([a, b]× Ω). By Theorem 3.9, the random

variable
∫ b
a
sgn(B(t)) dB(t) has mean 0 and variance

∫ b
a
E| sgn(B(t))|2 dt = b− a.

Suppose that f ∈ L2
ad ([a, b]× Ω). Then for any t ∈ [a, b],

∫ t
a
E| f(t)| 2 dt ≤∫ b

a
E| f(t)| 2 dt < ∞. So f ∈ L2

ad ([a, t]× Ω) and the integral
∫ t
a
f(s) dB(s) is well-

defined. Consider a stochastic process given by

Xt =

∫ t

a

f(s) dB(s), a ≤ t ≤ b.

Note that by Theorem 3.9, we have

E
(
|Xt|2

)
= E

∣∣∣∣ ∫ t

a

f(s) dB(s)

∣∣∣∣2 ≤ ∫ b

a

E| f(s)|2 ds <∞.

So by Theorem 2.52, E|Xt | ≤ [E (|Xt | 2)]1/2 < ∞. Hence for each t, the random

variable Xt is integrable.

The next two theorems discuss the martingale and continuity properties of the

Itô integral.

Theorem 3.11. Suppose f ∈ L2
ad ([a, b]× Ω). Then the stochastic process

Xt =

∫ t

a

f(s) dB(s), a ≤ t ≤ b

is a martingale with respect to the filtration {Ft : a ≤ t ≤ b}.

Example 3.12. The stochastic processes
∫ t
a
B(s) dB(s) and

∫ t
a
eB(s)dB(s) are mar-

tingales.

Theorem 3.13. Suppose f ∈ L2
ad ([a, b]× Ω). Then the stochastic process

Xt =

∫ t

a

f(s) dB(s), a ≤ t ≤ b

is continuous, i.e., almost all its sample paths are continuous functions on [a, b].

21



Example 3.14. Consider f(t) = sgn(B(t)). In Example 3.10 we showed that f(t) =

sgn(B(t)) ∈ L2
ad ([a, b]× Ω). Therefore Xt =

∫ t
0
sgn(B(s)) dB(s), a ≤ t ≤ b, is a

continuous martingale by Theorems 3.11 and 3.13.

In Theorem 3.11, we showed that if f ∈ L2
ad ([a, b]× Ω), then the stochastic

process Xt =
∫ t
a
f(s) dB(s), a ≤ t ≤ b, is a martingale with respect to the filtration

{Ft}. The converse is also true, i.e., any Ft-martingale can be represented as an

Itô integral. In particular we have the following result due to Itô (see [20]).

Theorem 3.15. Let F ∈ L2 (FT , P ), then there exists a stochastic process f ∈

L2
ad ([0, T ]× Ω) such that

F = E[F ] +

∫ T

0

f(t) dB(t).

3.3 An Extension of the Itô Integral

As in previous section, we fix a Brownian motion B(t) and a filtration {Ft; a ≤

t ≤ b} such that

(a) for each t, B(t) is Ft-measurable,

(b) for any s ≤ t, the random variable B(t)−B(s) is independent of the σ-field

Fs.

In this section, we define the stochastic integral
∫ b
a
f(t) dB(t) for the stochastic

process f(t, ω) satisfying

(a) f(t) is adapted to the filtration {Ft};

(b)
∫ b
a
| f(t)|2 dt <∞ almost surely.

Condition (b) tells us that almost all sample paths are functions in the Hilbert

space L2[a, b]. Hence the map ω 7→ f(·, ω) is a measurable function from Ω to

L2[a, b].
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We will use the notation Lad(Ω, L2[a, b]) to denote the space of all stochastic

processes f(t, ω) satisfying conditions (a) and (b) above. Now we briefly outline

the definition of the stochastic integral
∫ b
a
f(t) dB(t), f ∈ Lad(Ω, L2[a, b]).

Step 1. Approximation of f ∈ Lad(Ω, L2[a, b]) by processes in L2
ad ([a, b]× Ω)

Let f ∈ Lad(Ω, L2[a, b]). Then there exists a sequence {fn} in L2
ad ([a, b]× Ω)

such that

lim
n→∞

∫ b

a

| fn(t)− f(t)|2 dt = 0

almost surely, and hence in probability.

Step 2. Approximation of f ∈ Lad(Ω, L2[a, b]) by step processes inL2
ad ([a, b]× Ω)

Let f ∈ Lad(Ω, L2[a, b]). Then there exists a sequence {fn} of step processes in

L2
ad ([a, b]× Ω) such that

lim
n→∞

∫ b

a

| fn(t)− f(t)|2 dt = 0

in probability.

Step 3. General case

With the sequence {fn} of step stochastic processes in L2
ad ([a, b]× Ω) from Step

2, define for each n

Istep(fn) =

∫ b

a

fn(t) dB(t).

It can be shown that the sequence {Istep(fn)} converges in probability. Then let∫ b

a

f(t) dB(t) = lim
n→∞

Istep(fn), in probability

for f ∈ Lad(Ω, L2[a, b]).

In the previous section, we saw that for f ∈ L2
ad ([a, b]× Ω), E

∫ b
a
| f(t)|2 dt

=
∫ b
a
E(| f(t)| 2) dt < ∞. It follows that

∫ b
a
| f(t)| 2 dt < ∞ almost surely since

if
∫ b
a
| f(t)| 2 dt = ∞, then E

∫ b
a
| f(t)| 2 dt = ∞, which is absurd. This shows that
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we have a larger class of integrands f(t, ω) for the stochastic integral
∫ b
a
f(t) dB(t),

namely L2
ad ([a, b]× Ω) ⊂ Lad(Ω, L2[a, b]). The difference between them is the pos-

sible lack of integrability for f ∈ Lad(Ω, L2[a, b]).

Example 3.16. Consider the stochastic process f(t) = eB(t)2 . Note that

E
(
| f(t)| 2

)
= E

[
e2B(t)2

]
=

∫ ∞

−∞
e2x

2 1√
2πt

e−
x2

2t dx

= 1√
1−4t

∫ ∞

−∞

1√
2π( t

1−4t)
e
− x2

2( t
1−4t) dx

=


1√

1−4t
, if 0 < t < 1

4
;

∞, if t ≥ 1
4
.

So
∫ 1

0
E| f(t)| 2 dt = ∞, which implies that f /∈ L2

ad ([0, 1]× Ω). However, f ∈

L2
ad ([0, c]× Ω), where 0 ≤ c < 1

4
. On the other hand, since f(t) is a continuous

function of t, we have that
∫ 1

0
| f(t)| 2 dt =

∫ 1

0
e2B(t)2dt <∞. So f ∈ Lad(Ω, L2[0, 1]).

As stated above, the stochastic process f ∈ Lad(Ω, L2[a, b]) may lack the integra-

bility property. So the stochastic integral
∫ b
a
f(t) dB(t) is just a random variable

and may have infinite expectation as seen in Example 3.16. Thus the stochas-

tic process Xt =
∫ t
a
f(s) dB(s) may not be a martingale for f ∈ Lad(Ω, L2[a, b]).

However, we have the following:

Theorem 3.17. Let f ∈ Lad(Ω, L2[a, b]). Then the stochastic process

Xt =

∫ t

a

f(s) dB(s) a ≤ t ≤ b

is a local martingale with respect to the filtration {Ft; a ≤ t ≤ b}.

Example 3.18. By Theorem 3.17 and Example 3.16, the stochastic process Xt =∫ 1

0
eB(t)2 dB(t) is a local martingale but not a martingale.
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In Theorem 3.13, we saw that for f ∈ L2
ad ([a, b]× Ω), the stochastic process

Xt =
∫ t

0
f(s) dB(s) is a continuous function of t. For f ∈ Lad(Ω, L2[a, b]), we have

the following theorem.

Theorem 3.19. Let f ∈ Lad(Ω, L2[a, b]). Then the stochastic process

Xt =

∫ t

a

f(s) dB(s) a ≤ t ≤ b

has a continuous realization.

Now consider the stochastic integral
∫ t

0
B(1) dB(s), where 0 ≤ t < 1. Note that

this integral is not defined as an integral we have seen in this chapter because B(1)

is non-adapted. However this integral can be defined by extending the stochastic

integral
∫ b
a
f(t) dB(t) to non-adapted integrand f(t), as one may see in [9].

3.4 Itô’s Formula

In ordinary calculus, we deal with deterministic functions. One of the most im-

portant rules in differentiation is the Chain Rule, which states that for any dif-

ferentiable functions f and g, the composite function f ◦ g is also differentiable

and

d

dt
(f ◦ g)(t) =

d

dt
f(g(t)) = f ′(g(t))g′(t).

In terms of the Fundamental Theorem of Calculus, we have

f(g(t))− f(g(a)) =

∫ t

a

f ′(g(s))g′(s) ds.

In Itô calculus, we deal with random functions, i.e., stochastic processes and we

have the counterpart of the above Chain Rule. One must note that there is no

differentiation theory in Itô calculus since almost all sample paths of a Brownian

motion B(t) are nowhere differentiable (Theorem 2.22). Nevertheless we have the

integral version which we call the Itô formula or the change of variables formula.
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In this section, we will see several versions of Itô’s formula. For the proofs, the

reader can refer to [14].

Let B(t) be a Brownian motion. We start with the simplest form of the Itô

formula.

Theorem 3.20. Let f be a C2-function, i.e., f is twice differentiable and f ′′ is

continuous. Then

f(B(t))− f(B(a)) =

∫ t

a

f ′(B(s)) dB(s) +
1

2

∫ t

a

f ′′(B(s)) ds. (3.2)

Remark 3.21. The first integral on the right is an Itô integral as defined in Section

3.2 and the second integral is a Riemann integral for each sample path of B(s).

Remark 3.22. The extra term 1
2

∫ t
a
f ′′(B(s)) ds is a consequence of the nonzero

quadratic variation of the Brownian motion B(t). This extra term distinguishes

Itô calculus from ordinary calculus.

Example 3.23. Let f(x) = x2. Then by Equation 3.2, we get

B(t)2 −B(a)2 = 2

∫ t

a

B(s) dB(s) + (t− a)

namely ∫ t

a

B(s) dB(s) =
1

2

[
B(t)2 −B(a)2 − (t− a)

]
.

This is equivalent to Equation 3.1 in Example 3.7 with b = t.

Example 3.24. Let f(x) = x3. Then by Equation 3.2,

B(t)3 = 3

∫ t

0

B(s)2 dB(s) + 3

∫ t

0

B(s) ds.

So, ∫ t

0

B(s)2 dB(s) =
1

3
B(t)3 −

∫ t

0

B(s) ds.
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Example 3.25. Let f(x) = ex
2
. Then by Equation 3.2,

eB(t)2 − 1 = 2

∫ t

0

B(s)eB(s)2 dB(s)−
∫ t

0

(
eB(s)2 + 2B(s)2eB(s)2

)
ds.

Now consider a function f(t, x) of x and t. Set x = B(t, ω) to get a stochastic

process f(t, B(t)). Notice that now t appears in two places: as a variable of f and

in the Brownian motion B(t). For the first t, we can apply ordinary calculus. For

the second t in B(t), we need to use Itô calculus. This leads to the second version

of Itô’s formula:

Theorem 3.26. Let f(t, x) be a continuous function and have continuous partial

derivatives ∂f
∂t

, ∂f
∂x

and ∂2f
∂x2 . Then

f(t, B(t)) = f(a,B(a)) +

∫ t

a

∂f

∂x
(s, B(s)) dB(s) +

∫ t

a

∂f

∂s
(s, B(s)) ds

+
1

2

∫ t

a

∂2f

∂x2
(s, B(s)) ds. (3.3)

Example 3.27. Let f(t, x) = x2 − t. Then by Equation 3.3,

B(t)2 − t = (B(a)2 − a) +

∫ t

a

2B(s) dB(s) +

∫ t

a

(−1) ds+
1

2

∫ t

a

2 ds

= B(a)2 − a+ 2

∫ t

0

B(s) dB(s)− (t− a) + (t− a)

which gives ∫ t

a

B(s) dB(s) =
1

2

[
B(t)2 −B(a)2 − (t− a)

]
,

which is the same as in Example 3.23.

Example 3.28. Let f(t, x) = ex−
1
2
t. Then by Equation 3.3,

eB(t)− 1
2
t = 1 +

∫ t

0

eB(s)− 1
2
s dB(s)− 1

2

∫ t

0

eB(s)− 1
2
s ds+

1

2

∫ t

0

eB(s)− 1
2
s ds

= 1 +

∫ t

0

eB(s)− 1
2
s dB(s).

Note that by Theorem 3.11, eB(t)− 1
2
t is a martingale.
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Now let {Ft; a ≤ t ≤ b} be a filtration as specified for Itô integrals in Sections

3.2 and 3.3, namely

(a) for each t, B(t) is Ft-measurable,

(b) for any s < t, the random variable B(t)−B(s) is independent of the σ-field

Fs.

Recall that Lad(Ω, L2[a, b]) is the class consists of all Ft-adapted stochastic pro-

cesses f(t) such that
∫ b
a
| f(t)| 2 dt <∞ almost surely. Now we introduce the class

Lad(Ω, L1[a, b]), that is the class of all Ft-adapted stochastic processes f(t) such

that
∫ b
a
| f(t)| dt <∞ almost surely.

Definition 3.29. An Itô process is a stochastic process of the form

Xt = Xa +

∫ t

a

f(s) dB(s) +

∫ t

a

g(s) ds, a ≤ t ≤ b,

where Xa is Fa-measurable, f ∈ Lad(Ω, L2[a, b]) and g ∈ Lad(Ω, L1[a, b]).

It is common to write the equation above in the “stochastic differential” form:

dXt = f(t) dB(t) + g(t) dt.

Again, note that this “stochastic differential” form has no meaning because Brow-

nian motion paths are nowhere differentiable.

Example 3.30. Let f ∈ Lad(Ω, L2[a, b]). Then

Xt = Xa +

∫ t

a

f(s) dB(s) +

∫ t

a

f(s)2 ds, a ≤ t ≤ b,

is an Itô process. For example, let f(t) = B(t) or f(t) = eB(t) or f(t) = eB(t)2 .

Next is the third (more general) version of the Itô formula.
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Theorem 3.31. Let Xt be an Itô process given by

Xt = Xa +

∫ t

a

f(s) dB(s) +

∫ t

a

g(s) ds, a ≤ t ≤ b.

Suppose θ(t, x) is a continuous function with continuous partial derivatives ∂θ
∂t

, ∂θ
∂x

and ∂2θ
∂x2 . Then θ(t,Xt) is also an Itô process and

θ(t,Xt) = θ(a,Xa) +

∫ t

a

∂θ

∂x
(s,Xs)f(s) dB(s)

+

∫ t

a

[
∂θ

∂t
(s,Xs) +

∂θ

∂x
(s,Xs)g(s) +

1

2

∂2θ

∂x2
(s,Xs)f(s)2

]
ds. (3.4)

In using Equation 3.4, the following table called the Itô table is very useful:

Table 1 : Itô table 1

× dB(t) dt

dB(t) dt 0

dt 0 0

For example, if dXt = f(t) dB(t) + g(t) dt, then

(dXt)
2 = f(t)2(dB(t))2 + 2f(t)g(t)dB(t)dt+ g(t)2 (dt)2 = f(t)2 dt

Example 3.32. Let f ∈ Lad(Ω, L2[0, 1]). Consider the Itô process

Xt =

∫ t

0

f(s) dB(s)− 1

2

∫ t

0

f(s)2 ds, 0 ≤ t ≤ 1,

and the function θ(x) = ex. Then dXt = f(t)dB(t) − 1
2
f(t)2dt. Apply the Taylor

expansion and use Itô table 1 to get

d θ(Xt) = eXt dXt +
1

2
eXt (dXt)

2

= eXt

(
f(t) dB(t)− 1

2
f(t)2 dt

)
+

1

2
eXtf(t)2 dt

= f(t)eXt dB(t).

29



Therefore, we have

e
∫ t
0 f(s) dB(s)− 1

2

∫ t
0 f(s)2 ds = 1 +

∫ t

0

f(s)e
∫ s
0 f(u) dB(u)− 1

2

∫ s
0 f(u)2 du dB(s).

By Theorem 3.17, the stochastic process Yt = e
∫ t
0 f(s) dB(s)− 1

2

∫ t
0 f(s)2 ds is a local

martingale.

We can extend the general form of Itô’s formula in Theorem 3.31 to the multidi-

mensional case. Let B1(t), B2(t), . . . , Bm(t) be m independent Brownian motions.

Consider n Itô processes X
(1)
t , X

(2)
t , · · · , X(n)

t given by

X
(i)
t = X(i)

a +
m∑
j=1

∫ t

a

fij(s) dBj(s) +

∫ t

a

gi(s) ds, 1 ≤ i ≤ n, a ≤ t ≤ b, (3.5)

where fij ∈ Lad(Ω, L2[a, b]) and gi ∈ Lad(Ω, L1[a, b]). Equation 3.5 can be written

as a matrix equation

Xt = Xa +

∫ t

a

f(s) dB(s) +

∫ t

a

g(s) ds, a ≤ t ≤ b, (3.6)

where

B(t) =


B1(t)

...

Bm(t)

 , Xt =


X

(1)
t

...

X
(n)
t

 ,

f(t) =


f11(t) · · · f1m(t)

...
. . .

...

fn1(t) · · · fnm(t)

 , g(t) =


g1(t)

...

gn(t)

 . (3.7)

With this notation, we have the Itô formula in the multi-dimensional case.

Theorem 3.33. Let Xt be an n-dimensional Itô process given by

Xt = Xa +

∫ t

a

f(s) dB(s) +

∫ t

a

g(s) ds, a ≤ t ≤ b,
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with Xt, f(s), g(s) and B(s) as in Equation 3.7. Suppose θ(t1, x1, . . . , xn) is a

continuous function on [a, b] × Rn with continuous partial derivatives ∂θ
∂t

, ∂θ
∂xi

and

∂2θ
∂xi∂xj

for 1 ≤ i, j ≤ n. Then the stochastic differential of θ
(
t,X

(1)
t , . . . , X

(n)
t

)
is

given by

∂θ
(
t,X

(1)
t , . . . , X

(n)
t

)
=
∂θ

∂t

(
t,X

(1)
t , . . . , X

(n)
t

)
dt+

n∑
i=1

∂θ

∂xi

(
t,X

(1)
t , . . . , X

(n)
t

)
dX

(i)
t

+
1

2

n∑
i,j=1

∂2θ

∂xi∂xj

(
t,X

(1)
t , . . . , X

(n)
t

)
dX

(i)
t dX

(j)
t .

The product dX
(i)
t dX

(j)
t can be computed by using the following table

Table 2 : Itô table 2

× dBj(t) dt

dBi(t) δijdt 0

dt 0 0

The product dBi(t)dBj(t) = 0 for i 6= j is the symbolic expression of the follow-

ing fact:

Fact 3.34. Let B1(t) and B2(t) be two independent Brownian motions and let

∆n = {t0, t1, . . . , tn−1, tn} be a partition of [a, b]. So

n∑
i=1

(
B1(ti)−B1(ti−1)

)(
B2(ti)−B2(ti−1)

)
−→ 0

in L2(Ω) as ‖∆n‖ = max1≤i≤n(ti − ti−1) tends to 0.

Example 3.35. Let θ(x, y) = xy. Then we have ∂θ
∂x

= y, ∂θ
∂y

= x, ∂2θ
∂x∂y

= ∂2θ
∂y∂x

= 1

and ∂2θ
∂x2 = ∂2θ

∂y2
= 0. Hence by Theorem 3.33 for two processes Xt and Yt, we have

d(XtYt) = Yt dXt +Xt dYt +
1

2
dXt dYt +

1

2
dXtdYt

= Yt dXt +Xt dYt + dXt dYt (3.8)
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Therefore,

XtYt = XaYa +

∫ t

a

Ys dXs +

∫ t

a

Xs dYs +

∫ t

a

dXs dYs. (3.9)

Equations 3.8 and 3.9 are called the product formulas for Itô processes.

3.5 Applications of Itô’s Formula

The Itô formula plays an important role in Itô calculus. It has many useful appli-

cations in stochastic analysis. In this section, we see some of its applications. The

first is to find the Doob-Meyer decomposition for submartingales that are functions

of a Brownian motion B(t).

Let f ∈ L2
ad ([a, b]× Ω) and consider a stochastic process M(t) defined by

M(t) =

∫ t

a

f(s) dB(s), a ≤ t ≤ b.

By Theorem 3.11, we know that M(t) is a martingale. Let ϕ be a C2-function.

Then by Itô’s formula (Equation 3.2),

ϕ(M(t)) = ϕ(0) +

∫ t

a

ϕ′(M(s))f(s) dB(s) +
1

2

∫ t

a

ϕ′′(M(s))f(s)2 ds. (3.10)

Furthermore, suppose that ϕ is convex and E
∫ b
a
|ϕ′(M(t))f(t)|2dt < ∞. Then

ϕ(M(t)) is a submartingale by the conditional Jensen’s inequality (see Theorem

2.30(f)). Hence Equation 3.10 gives the Doob-Meyer decomposition of the sub-

martingale ϕ(M(t)).

Example 3.36. Let ϕ(x) = x2, M(t) = B(t) and f ≡ 1. Then by Equation 3.10,

B(t)2 = 2

∫ t

0

B(s)dB(s) + t.

The compensator of B(t)2 for Brownian motion B(t) is given by 〈B〉t = t. More

generally, for f ∈ L2
ad ([a, b]× Ω), the compensator 〈M〉t of M(t)2 is given by

〈M〉t =

∫ t

a

f(s)2 ds.
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The next application of Itô’s formula is in the proof of the Lévy Characteriza-

tion Theorem [14]. This theorem gives condition for a stochastic process to be a

Brownian motion under a certain probability measure. In the next chapter, we use

this theorem in the proof of our main result.

Theorem 3.37. (Lévy Characterization Theorem) A stochastic process M(t), a ≤

t ≤ b, is a Brownian motion if and only if there exist a probability measure Q and

a filtration {Ft} such that M(t) is a continuous martingale with respect to {Ft}

under Q, Q{M(0) = 0} = 1 and 〈M〉t = t almost surely with respect to Q for each

t.

Example 3.38. Let B(t), 0 ≤ t ≤ 1 be a Brownian motion with respect to the

probability measure P in a probability space (Ω,F , P ). Note that the process

W (t) = B(t) − t, 0 ≤ t ≤ 1 is not a Brownian motion with respect to P because

EP [B(t)− t] = −t, which is not constant.

Define Q : F → [0,∞) by

Q(A) =

∫
A

eB(1)− 1
2 dP, A ∈ F . (3.11)

Observe that

Q(Ω) =

∫
Ω

eB(1)− 1
2 dP = e−

1
2

∫
R
ex 1√

2π
e−

1
2
x2

dx =

∫
R

1√
2π
e−

1
2
(x−1)2 dx = 1.

So Q is a probability measure. We will show that W (t) is a Brownian motion with

respect to Q using Theorem 3.37.

Let Ft = σ{B(s); s ≤ t}. Note that the probability measures P and Q are

equivalent since from Equation 3.11 we can write P (A) =
∫
A
e

1
2
−B(1) dQ for A ∈ F .

Thus

Q{ω;W (0, ω) = 0} = P{ω;B(0, ω) = 0} = 1
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and

Q{ω;W (t, ω) is continuous in t} = P{ω;B(t, ω) is continuous in t} = 1.

To show that W (t) is a martingale with respect to Q, first note that eB(1)− 1
2 is

a martingale as seen in Example 3.28 with t = 1. For any A ∈ Ft,∫
A

W (t) dQ =

∫
A

W (t) eB(1)− 1
2 dP

= EP

[
1AW (t) eB(1)− 1

2

]
= EP

{
EP

[
1AW (t) eB(1)− 1

2

∣∣∣Ft]}
= EP

{
1AW (t)EP

[
eB(1)− 1

2

∣∣∣Ft]}
= EP

[
1AW (t) eB(t)− 1

2
t
]

=

∫
A

W (t) eB(t)− 1
2
t dP

With this equality, we can show that W (t) is a martingale with respect to Q if and

only if W (t)eB(t)− 1
2
t is a martingale with respect to P .

For 0 < s ≤ t, suppose W (t)eB(t)− 1
2
t is a P -martingale. Then for any A ∈ Fs,∫

A

EQ
[
W (t)

∣∣Fs] dQ =

∫
A

W (t) dQ

=

∫
A

W (t)eB(t)− 1
2
t dP

=

∫
A

EP

[
W (t)eB(t)− 1

2
t
∣∣∣Fs] dP

=

∫
A

W (s)eB(s)− 1
2
s dP

=

∫
A

W (s) dQ.

So EQ
[
W (t)

∣∣Fs] = W (s), i.e., W (t) is a Q-martingale.

Conversely, suppose that W (t) is a Q-martingale. Then we can show in a similar

manner that W (t)eB(t)− 1
2
t is a P -martingale.
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With this fact, let f(t, x) = (x − t)ex−
1
2
t. Then ∂f

∂t
= −ex− 1

2
t − 1

2
(x − t)ex−

1
2
t,

∂f
∂x

= ex−
1
2
t + (x− t)ex−

1
2
t and ∂2f

∂x2 = 2ex−
1
2
t + (x− t)ex−

1
2
t. So by Itô’s formula,

W (t)eB(t)− 1
2
t =

∫ t

0

(1 +B(s)− s) eB(s)− 1
2
s dB(s),

which implies that W (t)eB(t)− 1
2
t is a martingale with respect to P . Thus W (t) is a

martingale with respect to Q.

Also since d〈W 〉t = (dW (t))2 = (dB(t) − dt)2 = dt, it follows that 〈W 〉t = t.

Therefore by Theorem 3.37, W (t) is a Brownian motion with respect to Q.

Example 3.39. Let B(t) be a Brownian motion with respect to a probability mea-

sure P and let Ft = σ{B(s); s ≤ t} be a filtration. Consider the random variable

Xt =
∫ t

0
sgn(B(s)) dB(s). Then obviously P{X0 = 0} = 1 and also Xt is a contin-

uous martingale with respect to P and Ft by Example 3.14. The compensator of

X2
t is given by

〈X〉t =

∫ t

0

| sgn(B(s))|2 ds =

∫ t

0

1 ds = t.

Hence by Theorem 3.37, the stochastic process Xt is a Brownian motion with

respect to the probability measure P . From Example 3.10, we have that Xt −Xs

has mean zero and variance t − s. So Xb − Xa is a Gaussian random variable

with mean 0 and variance b − a. This example shows that the stochastic integral∫ b
a
f(t) dB(t) can be Gaussian even when the integrand f(t) is not deterministic.
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Chapter 4
Girsanov Theorem

In this chapter, we prove our main result, the Girsanov Theorem. The result of

this theorem is well known for a condition on exponential process given by h in

Lad(Ω, L2[a, b]) (see [14]). Here we show the result for the exponential process given

by h in L2
ad ([a, b]× Ω) which satisfy some new moment conditions. We begin by

introducing the exponential process.

4.1 Exponential Processes

Definition 4.1. The exponential process given by h ∈ Lad(Ω, L2[0, T ]) is defined

to be the stochastic process

Eh(t) = e
∫ t
0 h(s) dB(s)− 1

2

∫ t
0 h(s)

2 ds, 0 ≤ t ≤ T.

Example 4.2. Let h(t) = 1. Then

E1(t) = e
∫ t
0 1 dB(s)− 1

2

∫ t
0 12 ds = eB(t)− 1

2
t, 0 ≤ t ≤ T

is an exponential process.

Example 4.3. Let h(t) = sgn(B(t)), namely h(0) = 0 and h(t) = B(t)
|B(t)| for t 6= 0.

Then

Eh(t) = e
∫ t
0 sgn(B(s)) dB(s)− 1

2
t, 0 ≤ t ≤ T,

is an exponential process.

Example 4.4. Let h ∈ Lad(Ω, L2[0, T ]). Then

Eh(t) = e
∫ t
0 h(s) dB(s)− 1

2

∫ t
0 h(s)

2 ds, 0 ≤ t ≤ T.
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Let Xt =
∫ t

0
h(s) dB(s)− 1

2

∫ t
0
h(s)2 ds. By applying the Itô formula (Equation 3.4)

with θ(x) = ex, we get

dEh(t) = Eh(t) dXt +
1

2
Eh(t)(dXt)

2

= Eh(t)
[
h(t) dB(t)− 1

2
h(t)2 dt

]
+

1

2
Eh(t)(h(t)2dt)

= Eh(t)h(t)dB(t).

So, Eh(t) = 1 +
∫ t

0
Eh(s)h(s) dB(s). By Theorem 3.17, Eh(t) is a local martingale.

In general, we have the following:

Theorem 4.5. The exponential process Eh(t) given by h ∈ Lad(Ω, L2[0, T ]) is a

local martingale and a supermartingale.

Proof. The process Eh(t) is a local martingale is shown in Example 4.4.

Since Eh(t) is a local martingale, there exists a sequence of stopping times τn

increasing to T almost surely such that Eh(t∧τn) is a martingale, namely for s < t,

E[Eh(t ∧ τn)|Fs] = Eh(s ∧ τn). Since Eh(s ∧ τn) → Eh(s) almost surely as n → ∞

for any s ∈ [0, T ], we have by Conditional Fatou’s lemma

E[Eh(t)| Fs] = E[lim inf
n→∞

Eh(t ∧ τn)| Fs]

≤ lim inf
n→∞

E[Eh(t ∧ τn)| Fs]

= lim inf
n→∞

Eh(s ∧ τn)

= Eh(s).

By Remark 2.35, the process Eh(t) is a supermartingale.

We know that in general a local martingale is not necessarily a martingale. The

following theorem gives a condition for which an exponential process given by

h ∈ Lad(Ω, L2[0, T ]) is a martingale.
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Theorem 4.6. Let h ∈ Lad(Ω, L2[0, T ]). Then the exponential process Eh(t), 0 ≤

t ≤ T , is a martingale if and only if E[Eh(t)] = 1, for each t ∈ [0, T ].

Proof. Refer [11], [14].

Example 4.7. Consider the exponential process in Example 4.2. Note that

E[E1(t)] = E
[
eB(t)− 1

2
t
]

= e−
1
2
tE
[
eB(t)

]
= e−

1
2
t

∫
R
ex

1√
2πt

e−
1
2

x2

t dx

= e−
1
2
t

∫
R
e

1
2
t 1√

2πt
e−

1
2

(x−t)2

t dx

= 1.

So by Theorem 4.6, E1(t) = eB(t)− 1
2
t, 0 ≤ t ≤ T is a martingale. Note that in

Example 3.28, we also showed that E1(t) = eB(t)− 1
2
t is a martingale.

We have seen in Chapter 3 that L2
ad([0, T ] × Ω) ⊂ Lad(Ω, L2[0, T ]). Thus for

h ∈ L2
ad([0, T ] × Ω), the exponential process Eh(t), 0 ≤ t ≤ T is a martingale if

E[Eh(t)] = 1 by Theorem 4.6. The next theorem gives another sufficient condition

for the exponential process Eh(t) given by h ∈ L2
ad([0, T ]× Ω) to be a martingale.

Theorem 4.8. Let h ∈ L2
ad([0, T ] × Ω). Then the exponential process Eh(t), 0 ≤

t ≤ T is a martingale if

E

∫ T

0

Eh(t)2h(t)2 dt <∞.

Proof. As in Example 4.4, use the Itô formula to get

Eh(t) = 1 +

∫ t

0

Eh(s)h(s) dB(s), 0 ≤ t ≤ T. (4.1)

So if E
∫ t

0
Eh(s)2h(s)2 ds < ∞, 0 ≤ t ≤ T , then Eh(t)h(t) ∈ L2

ad([0, T ] × Ω). Thus

Eh(t) is a martingale by Theorem 3.11.
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Example 4.9. For h(t) = 1, 0 ≤ t ≤ T ,

E

∫ t

0

Eh(s)2h(s)2 ds = E

∫ t

0

E1(s)
2 ds =

∫ t

0

E
[
E1(s)

2
]
ds.

Note that

E
[
E1(s)

2
]

= E
[
e2B(s)−s]

= e−sE
[
e2B(s)

]
= e−s

∫
R
e2x

1√
2πs

e−
1
2

x2

s dx

= e−s
∫

R
e2s

1√
2πs

e−
1
2

(x−2s)2

s dx

= es.

Thus E
∫ t

0
Eh(s)2h(s)2 ds =

∫ t
0
es ds = et − 1 < ∞. So by Theorem 4.8, E1(t) =

eB(t)− 1
2
t is a martingale, further confirming what we demonstrated in Example 4.7.

Example 4.10. Let h(t) be a deterministic function in L2[0, T ]. Since

Eh(t)2 = e2
∫ t
0 h(s) dB(s)−

∫ t
0 h(s)

2 ds = e−
∫ t
0 h(s)

2 ds e2
∫ t
0 h(s) dB(s),

it follows that

E
[
Eh(t)2

]
= e−

∫ t
0 h(s)

2 dsE
[
e2

∫ t
0 h(s) dB(s)

]
.

Furthermore
∫ t

0
h(s) dB(s) is a Wiener integral with mean 0 and variance σ2 =∫ t

0
h(s)2 ds (Theorem 3.2), so we have

E
[
e2

∫ t
0 h(s) dB(s)

]
=

1√
2πσ

∫ ∞

−∞
e2xe−

x2

2σ2 dx

= eσ
2 1√

2πσ

∫ ∞

−∞
e−

(x−2σ2)2

2σ2 ds

= e
∫ t
0 h(s)

2 ds.

Thus

E
[
Eh(t)2

]
= e−

∫ t
0 h(s)

2 ds e
∫ t
0 h(s)

2 ds = 1,
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and hence

E

∫ T

0

Eh(t)2h(t)2 dt =

∫ T

0

h(t)2E
[
Eh(t)2

]
dt =

∫ T

0

h(t)2 dt <∞.

Therefore the condition in Theorem 4.8 is satisfied for deterministic functions h(t)

in L2[0, T ].

Theorem 4.11. If h ∈ L2
ad([0, T ]× Ω) satisfies the condition that

E

∫ T

0

h(t)2Eh(t)4 dt <∞, (4.2)

then

E

∫ T

0

h(t)2Eh(t)2 dt <∞ (4.3)

and

E
[
Eh(t)2

]
= 1 + E

∫ t

0

h(s)2Eh(s)2 ds, 0 ≤ t ≤ T. (4.4)

Remark 4.12. Equation 4.2 gives another sufficient condition for the exponential

process given by h ∈ L2
ad([0, T ]× Ω) to be a martingale.

Proof. Let us write h(t)2Eh(t)2 =
(
h(t)

)(
h(t)Eh(t)2

)
. Then by using Theorem

2.52(a), we have

∫ T

0

h(t)2Eh(t)2 dt ≤
(∫ T

0

h(t)2 dt

) 1
2
(∫ T

0

h(t)2Eh(t)4 dt

) 1
2

.

Now by using Theorem 2.52(b), we get

E

∫ T

0

h(t)2Eh(t)2 dt ≤ E

[(∫ T

0

h(t)2 dt

) 1
2
(∫ T

0

h(t)2Eh(t)4 dt

) 1
2

]

≤
(
E

∫ T

0

h(t)2 dt

) 1
2
(
E

∫ T

0

h(t)2Eh(t)4 dt

) 1
2

.
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Hence Equation 4.2 implies Equation 4.3 since for h ∈ L2
ad([0, T ] × Ω), we have

E
∫ T

0
h(t)2 dt <∞.

Next note that we have from Equation 4.1 that dEh(t) = Eh(t)h(t) dB(t). By

using the Itô product formula (Equation 3.8), we get

d
(
Eh(t)2

)
= 2Eh(t)[dEh(t)] + [dEh(t)]2

= 2Eh(t)[Eh(t)h(t)dB(t)] + [Eh(t)h(t)dB(t)]2

= 2Eh(t)2h(t)dB(t) + Eh(t)2h(t)2dt.

Thus,

Eh(t)2 = 1 + 2

∫ t

0

Eh(s)2h(s) dB(s) +

∫ t

0

Eh(s)2h(s)2 ds.

Taking the expectation on both sides and since
∫ t

0
Eh(s)2h(s) dB(s) is a martingale

with mean zero (section 3.2), we get Equation 4.4.

Example 4.13. Consider h(t) = 1, 0 ≤ t ≤ T and suppose that E
∫ T

0
E1(t)

4 dt <∞.

Then by Theorem 2.52 (a) and (b),

E

∫ T

0

h(t)2E1(t)
2 dt = E

∫ T

0

(1) E1(t)
2 dt

≤ E

[
T

1
2

(∫ T

0

E1(t)
4 dt

) 1
2

]

≤ T
1
2

(
E

∫ T

0

E1(t)
4 dt

) 1
2

< ∞.

This verifies Equation 4.3 in Theorem 4.11. In Example 4.9, we saw that E[E1(t)
2] =

et. On the other hand, we have

E

∫ t

0

(1) E1(s)
2 ds = et − 1.

So Equation 4.4 is satisfied for h ≡ 1.
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4.2 Transformation of Probability Measures

In probability theory, Girsanov theorem tells how stochastic processes change under

changes in (probability) measure. In this section we discuss briefly the notion of

transformation underlying probability measures.

In basic probability theory, when considering a certain probability measure P ,

it is common to bear in mind a shape and a location for the density of the random

variable. The former is determined by the variance while the latter is determined by

the mean of the random variable. With this, a probability distribution is subjected

to two types of transformation:

1. Keep the shape of the distribution but move the density to a different loca-

tion. This is equivalent to saying that the mean is changed without changing

the variance.

2. Change the shape of the distribution but keep the density at the same loca-

tion.

We are more interested in the first type of transformation, namely changing

the mean without changing the variance. There are two methods for changing the

mean of a random variable: operation on the possible values assumed by the random

variable or operation on the probabilities associated with the random variable.

Example 4.14. A fair die is rolled and the values of the random variable X are

defined as follows:

X =


−1, roll of 1 or 4;

1, roll of 2 or 5;

3, roll of 3 or 6.

Then the mean of X is

E[X] =
1

3
(−1) +

1

3
(1) +

1

3
(3) = 1,
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and the variance is

V ar(X) = E
[
X − E[X]

]2
=

1

3
(−1− 1)2 +

1

3
(1− 1)2 +

1

3
(3− 1)2

=
8

3
.

Now define X̃ = X − 1. Then

E[X̃] =
1

3
(−1− 1) +

1

3
(1− 1) +

1

3
(3− 1) = 0,

and

V ar(X̃) = E[X̃] =
1

3
(−2)2 +

1

3
(0)2 +

1

3
(2)2 =

8

3
.

So we have changed the mean ofX to zero without changing its variance by defining

the new random variable X̃ = X − 1 (operation on the possible values).

Example 4.15. Consider the random variable as in Example 4.14. Again we want

to change the mean of X from 1 to 0 and keep the variance unchanged. Define a

new probability measure Q as follows:

P (getting 1 or 4) =
1

3
−→ Q(getting 1 or 4) =

17

24
,

P (getting 2 or 5) =
1

3
−→ Q(getting 2 or 5) =

1

12
,

P (getting 3 or 6) =
1

3
−→ Q(getting 3 or 6) =

5

24
.

Then

EQ[X] =
17

24
(−1) +

1

12
(1) +

5

24
(3) = 0,

and

V arQ(X) =
17

24
(−1)2 +

1

12
(1) +

5

24
(3) =

8

3
.

Note that the method applied here operated on the probability measure.
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Consider a normally distributed random variable Z ∼ N(m, 1). Let f(z) be the

density function and denote the implied probability measure by P with

dP =
1√
2π

e−
1
2
(z−m)2dz. (4.5)

Now define the function

ξ(z) = e
1
2
m2−zm. (4.6)

Multiply ξ(z) by dP , we get a new probability measure

ξ(z) dP =
1√
2π

e−
1
2
z2dz.

By denoting the expression 1√
2π
e−

1
2
z2dz by dP̃ , we have a new probability measure

P̃ defined by

dP̃ = ξ(z) dP =
1√
2π

e−
1
2
z2dz. (4.7)

Note that by Equations 4.5 and 4.7, the random variable Z has mean m and 0,

respectively under the probability measures P and P̃ , while the variance is equal to

1 under both P and P̃ . So the transformation from the probability P to probability

P̃ changes the mean of Z.

Remark 4.16. If we define the function ξ(z) above to be ezm−
1
2
m2

and let P̂ be the

corresponding probability measure, then transformation from P to P̂ will change

the mean of Z from m to 2m.

Now from Equation 4.7, by dividing dP̃ by dP , we get

dP̃

dP
= ξ(z).

Thus ξ(z) is actually the Radon-Nikodym derivative of P̃ with respect to P . By the

Radon-Nikodyn theorem (Theorem 2.28), we know that the function ξ(z) exists

when the probability measures P and P̃ are equivalent.
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Let B(t) be a Brownian motion with respect to the probability P in a probability

space (Ω,F , P ). Consider the process

Eh(t) = e
∫ t
0 h(s) dB(s)− 1

2

∫ t
0 h(s)

2 ds, 0 ≤ t ≤ T, h ∈ Lad
(
Ω, L2[0, T ]

)
, (4.8)

namely the exponential process discussed in Section 4.1. Suppose h(t) = m, then

Equation 4.8 becomes

Em(t) = emB(t)− 1
2
m2t,

which is similar to the ξ(z) discussed above.

Define the function

dQ = Eh(T ) dP = e
∫ T
0 h(t) dB(t)− 1

2

∫ T
0 h(t)2 dtdP. (4.9)

Suppose that E[Eh(t)] = 1 for 0 ≤ t ≤ T . Then by Example 2.24, Q is a probability

measure on (Ω,F) and Q is absolutely continuous with respect to P . If we rewrite

Equation 4.9 as

dP = (Eh(T ))−1 dQ = e
∫ T
0 h(t) dB(t)− 1

2

∫ T
0 h(t)2 dtdQ,

we get that P is absolutely continuous with respect to Q. Therefore P and Q are

equivalent probability measures.

Now we look at an example which shows how transformation of probability

measures is useful.

Example 4.17. Consider the probability measure dQ = eB(1)− 1
2 dP , where we take

h ≡ 1 and T = 1 in Equation 4.9. We can use this Q to compute the expectation

of B(t)2eB(1)− 1
2 , 0 < t ≤ 1, i.e., E

[
B(t)2eB(1)− 1

2

]
.

Note that for

E
[
B(t)2eB(1)− 1

2

]
=

∫
Ω

B(t)2eB(1)− 1
2 dP =

∫
Ω

B(t)2 dQ = EQ
[
B(t)2

]
,
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where EQ is the expectation with respect to Q. In Example 3.38, we showed that

W (t) = B(t)− t, 0 ≤ t ≤ 1 is a Brownian motion with respect to Q. Therefore

E
[
B(t)2eB(1)− 1

2

]
= EQ

[
B(t)2

]
= EQ

[
(W (t) + t)2

]
= EQ

[
W (t)2 + 2tW (t) + t2

]
= t+ t2.

In fact Example 4.17 is just a special case of the following theorem.

Theorem 4.18. Let B(t), 0 ≤ t ≤ 1, be a Brownian motion with respect to a

probability measure P . Let Q be the probability measure defined by dQ = eB(1)− 1
2dP .

Then for any function f such that EP | f(B(t))| <∞, we have∫
Ω

f(B(t)− t) dQ =

∫
Ω

f(B(t)) dP, (4.10)

which can also be expressed as EQ[f(B(t)− t)] = EP [f(B(t))].

Proof. Refer [14], page 140.

Example 4.19. Let f(x) = eiλx, for some λ ∈ R. By Equation 4.10 we see∫
Ω

eiλ(B(t)−t)dQ =

∫
Ω

eiλB(t)dP = e−
1
2
λ2t, ∀λ ∈ R,

which is equivalent to writing EQ[eiλ(B(t)−t)] = EP [eiλB(t)] = e−
1
2
λ2t. So the char-

acteristic function of B(t) − t under Q is e−
1
2
λ2t, which implies that B(t) − t is

normally distributed with mean 0 and variance t.

4.3 Girsanov Theorem

In this section we present the main result in this dissertation, namely the Gir-

sanov theorem. This result is well-known for exponential process given by h ∈

Lad(Ω, L2[0, T ]) satisfying a certain condition, which we will state in Theorem
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4.22. Then we present our result in which the exponential process given by h ∈

L2
ad([0, T ]× Ω) satisfies certain moment conditions.

Let (Ω,F , P ) be a probability space and B(t) be a Brownian motion with respect

to the probability P . Consider a stochastic process ϕ(t). Is the process B(t)−ϕ(t)

a Brownian motion? Let us look at some examples.

Example 4.20. Let ϕ(t) = c. Then B(t) − ϕ(t) = B(t) − c is just a translation of

the Brownian motion B(t). So B(t)− c is still a Brownian motion with respect to

P , but starts from −c.

Example 4.21. Let ϕ(t) = t, 0 ≤ t ≤ 1. Then by Example 3.38, we know that

B(t)− t is not a martingale with respect to P , but it is a martingale with respect

to Q given by dQ = eB(1)− 1
2 dP .

So it is natural to ask whether the process B(t)−ϕ(t) is a Brownian motion with

respect to some probability measure. The Girsanov Theorem answers this question

for a certain kind of stochastic processes.

Theorem 4.22. (Girsanov Theorem) Let h ∈ Lad(Ω, L2[0, T ]) and assume that

EP [Eh(t)] = 1 for all t ∈ [0, T ]. Then the stochastic process

W (t) = B(t)−
∫ t

0

h(s) ds, 0 ≤ t ≤ T

is a Brownian motion with respect to the probability measure Q defined by dQ =

Eh(T ) dP , namely Q(A) =
∫
A
Eh(T ) dP for A ∈ F .

Proof. Refer [14] page 143.

Before continue to show our result, we look at some lemmas.
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Lemma 4.23. Let θ ∈ L1(P ) be nonnegative such that dµ = θ dP defines a prob-

ability measure. Then for any σ-field G ⊂ F and X ∈ L1(µ), we have

Eµ[X| G] =
EP [Xθ| G]

EP [θ| G]
, µ− almost surely.

Proof. First note that EP |Xθ| =
∫

Ω
|X| θ dP =

∫
Ω
|X| dµ <∞. So the conditional

expectation EP [Xθ|G] is defined.

For any G ∈ G, by using the definition of conditional expectation and the defi-

nition of µ, we have∫
G

EP [Xθ|G] dP =

∫
G

Xθ dP =

∫
G

X dµ =

∫
G

Eµ[X|G] dµ. (4.11)

Now, by the definition of conditional expectation and by Theorem 2.30 (d),∫
G

Eµ[X|G] dµ =

∫
G

Eµ[X|G]θ dP =

∫
G

EP
[
Eµ[X|G]θ

∣∣G] dP
=

∫
G

Eµ[X|G] EP [θ|G] dP. (4.12)

From Equations 4.11 and 4.12 we get

EP [Xθ|G] = Eµ[X|G] EP [θ|G],

which implies the conclusion of the lemma.

Lemma 4.24. Suppose for h ∈ L2
ad([0, T ]×Ω), the exponential process Eh(t), 0 ≤

t ≤ T satisfies the condition EP
∫ T

0
Eh(t)4 dt <∞. Then EP

∫ t
0
B(t)2Eh(t)2 dt <∞.

Proof. By Theorem 2.52 (a) and (b), we have

EP

∫ T

0

B(t)2Eh(t)2 dt ≤ EP

[(∫ T

0

B(t)4 dt

) 1
2
(∫ T

0

Eh(t)4 dt

) 1
2

]

≤
(
EP

∫ T

0

B(t)4 dt

) 1
2
(
EP

∫ T

0

Eh(t)4 dt

) 1
2

< ∞

since EP
∫ T

0
Eh(t)4 dt <∞ and it is a fact that EP [B(t)4] = 3t2.
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Now suppose the exponential process Eh(t), 0 ≤ t ≤ T given by h ∈ L2
ad([0, T ]×

Ω) satisfies the condition in Equation 4.3, namely E
∫ T

0
h(t)2Eh(t)2 dt < ∞. Then

by Theorem 4.8, the exponential process

Eh(t) = e
∫ t
0 h(s) dB(s)− 1

2

∫ t
0 h(s)

2 ds, 0 ≤ t ≤ T,

is a martingale. Let Q be the probability measure in (Ω,F) defined by dQ =

Eh(T ) dP , i.e.,

Q(A) =

∫
A

Eh(T ) dP, A ∈ F .

Then Q and P are equivalent probability measures as discussed in Section 4.2.

Theorem 4.25. Consider the stochastic process W (t) = B(t) −
∫ t

0
h(s) ds, 0 ≤

t ≤ T . Suppose for h ∈ L2
ad([0, T ]× Ω) we have the following:

(a) EP
∫ T

0
h(t)2Eh(t)4 dt <∞,

(b) EP
∫ T

0
h(t)2B(t)8 dt <∞,

(c) EP

(∫ T
0
h(t)2 dt

)5

<∞,

(d) EP
∫ T

0
Eh(t)4 dt <∞.

Then W (t) and W (t)2 − t, 0 ≤ t ≤ T , are Q-martingales.

Remark 4.26. Conditions (b) and (c) are needed only in proving W (t)2− t is a Q-

martingale. In proving W (t) is a Q-martingale, we need EP
∫ T

0
h(t)2B(t)4 dt <∞

and EP

(∫ T
0
h(t)2 dt

)3

< ∞. However these conditions can be derived easily from

conditions (b) and (c).

Proof. (I) W (t), 0 ≤ t ≤ T , is a Q-martingale

First we will show that W (t), 0 ≤ t ≤ T , is a Q-martingale. Note that under

condition (a), we have by Equation 4.4 that EP [Eh(t)2] < ∞ for any 0 ≤ t ≤ T .
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Moreover, by using the fact (x + y)2 ≤ 2(x2 + y2) and Theorem 2.52 (b), we get

EP [W (t)2] <∞ for all 0 ≤ t ≤ T . Indeed,

EP [W (t)2] ≤ 2EP

[
B(t)2 +

(∫ t

0

h(s) ds

)2
]

≤ 2EP

[
B(t)2 + t

(∫ t

0

h(s) ds

)]
= 2

[
t+ t EP

∫ t

0

h(s) ds

]
< ∞.

Hence by Theorem 2.52 (b),

EP
(
|W (t)Eh(T )|

)
≤
(
EP (W (t)2)

) 1
2
(
EP (Eh(T ))2

) 1
2 <∞.

Thus we can consider the conditional expectation of W (t)2Eh(T ) with respect to a

σ-field.

Let 0 ≤ s < t ≤ T . By Theorem 2.30 (e) and (d), we have

EP [W (t)Eh(T )| Fs] = EP
(
EP [W (t)Eh(T )| Ft]

∣∣Fs)
= EP

(
W (t)EP [Eh(T )| Ft]

∣∣Fs)
= EP [W (t)Eh(t)| Fs], (4.13)

where the last equality follows from the fact that Eh(t) is a martingale (Remark

4.12).

On the other hand, by Lemma 4.23,

EQ[W (t)| Fs] =
EP [W (t)Eh(T )| Fs]
EP [Eh(T )| Fs]

=
EP [W (t)Eh(T )| Fs]

Eh(s)
. (4.14)

It follows from Equations 4.13 and 4.14 that

EQ[W (t)| Fs] =
EP [W (t)Eh(t)| Fs]

Eh(s)
. (4.15)
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From Equation 4.15, we see that if we can prove W (t)Eh(t) is a P -martingale,

then Equation 4.15 becomes

EQ[W (t)| Fs] =
EP [W (t)Eh(t)| Fs]

Eh(s)
=
W (s)Eh(s)
Eh(s)

= W (s)

for all s ≤ t, which shows W (t), 0 ≤ t ≤ T , is a Q-martingale.

Note that we have dW (t) = dB(t)−h(t)dt and also by Equation 4.1 that dEh(t) =

h(t)Eh(t) dB(t). Apply the Itô product formula (Equation 3.8) to obtain

d[W (t)Eh(t)] = [dW (t)]Eh(t) +W (t)dEh(t) + [dW (t)][dEh(t)]

= [dB(t)− h(t)dt]Eh(t) +W (t)h(t)Eh(t) dB(t) + h(t)Eh(t) dt

= [1 + h(t)W (t)] Eh(t) dB(t).

Hence we have for 0 ≤ t ≤ T ,

W (t)Eh(t) =

∫ t

0

[1 + h(s)W (s)]Eh(s) dB(s)

=

∫ t

0

Eh(s) dB(s) +

∫ t

0

h(s)W (s)Eh(s) dB(s). (4.16)

In order to show that W (t)Eh(t) is a P -martingale, we show that the integrals∫ t
0
Eh(s) dB(s) and

∫ t
0
h(s)W (s)Eh(s) dB(s) are P -martingales. Namely we show

that Eh(t) and h(t)W (t)Eh(t) are in L2
ad([0, T ]× Ω).

Recall that we have EP [Eh(t)2] < ∞. Thus
∫ T

0
EP [Eh(t)2] dt < ∞. So Eh(t) ∈

L2
ad([0, T ]×Ω). Next write h(t)2W (t)2Eh(t)2 as (h(t)W (t)2) (h(t)Eh(t)2) and apply

Theorem 2.52 (a) and (b) to get

EP

∫ T

0

h(t)2W (t)2Eh(t)2 dt

≤ EP

[(∫ T

0

h(t)2W (t)4 dt

) 1
2
(∫ T

0

h(t)2Eh(t)4 dt

) 1
2

]

≤
[
EP

∫ T

0

h(t)2W (t)4 dt

] 1
2
[
EP

∫ T

0

h(t)2Eh(t)4dt

] 1
2

(4.17)
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The second factor on the right hand side is finite by condition (a). For the first

factor, we use the inequality (x+ y)4 ≤ 8(x4 + y4) and Theorem 2.52 (a) to show

that∫ T

0

h(t)2W (t)4 dt =

∫ T

0

h(t)2

(
B(t)−

∫ t

0

h(s) ds

)4

dt

≤ 8

∫ T

0

h(t)2

[
B(t)4 +

(∫ t

0

h(s) ds

)4
]
dt

≤ 8

∫ T

0

h(t)2

[
B(t)4 +

(∫ t

0

1 ds

)2(∫ t

0

h(s)2 ds

)2
]
dt

≤ 8

∫ T

0

h(t)2

[
B(t)4 + T 2

(∫ T

0

h(s)2 ds

)2
]
dt

= 8

[∫ T

0

h(t)2B(t)4 dt+ T 2

(∫ T

0

h(t)2 dt

)3
]
.

So,

EP

∫ T

0

h(t)2W (t)4 dt ≤ 8EP

∫ T

0

h(t)2B(t)4 dt+ T 2EP

(∫ T

0

h(t)2 dt

)3

.

By condition (c), EP

(∫ T
0
h(t)2 dt

)3

<∞. By writing h(t)2B(t)4 as h(t) (h(t)B(t)4)

and using Theorem 2.52 (a) and (b), we get

EP

∫ T

0

h(t)2B(t)4 dt ≤ EP

[(∫ T

0

h(t)2 dt

) 1
2
(∫ T

0

h(t)2B(t)8 dt

) 1
2

]

≤
(
EP

∫ T

0

h(t)2 dt

) 1
2
(
EP

∫ T

0

h(t)2B(t)8 dt

) 1
2

,

which is finite by conditions (b) and (c). Hence EP
∫ T

0
h(t)2W (t)4 dt < ∞. By

Equation 4.17 we get that

EP

∫ T

0

h(t)2W (t)2Eh(t)2 dt <∞. (4.18)

This shows that h(t)W (t)Eh(t) is in L2
ad([0, T ]×Ω). Therefore we have proved that

W (t), 0 ≤ t ≤ T , is a Q-martingale.
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(II) W (t)2 − t, 0 ≤ t ≤ T , is a Q-martingale

Now we prove that W (t)2 − t, for 0 ≤ t ≤ T , is a Q-martingale. Similarly as in

deriving Equation 4.15, by Theorem 2.30 (e) and Lemma 4.23,

EQ
[
W (t)2 − t| Fs

]
=

EP [(W (t)2 − t) Eh(T )| Fs]
EP [Eh(T )| Fs]

=
EP
[
EP {(W (t)2 − t) Eh(T )| Ft}

∣∣Fs]
Eh(s)

=
1

Eh(s)
EP
[(
W (t)2 − t

)
Eh(t)| Fs

]
. (4.19)

From Equation 4.19, we can see that if [W (t)2 − t] Eh(t), 0 ≤ t ≤ T , is a P -

martingale, then Equation 4.19 will become

EQ
[
W (t)2 − t| Fs

]
=

EP [(W (t)2 − t) Eh(t)| Fs]
Eh(s)

=
(W (s)2 − s) Eh(s)

Eh(s)
= W (s)2 − s.

This shows that W (t)2 − t, 0 ≤ t ≤ T , is a Q-martingale.

In order to show that [W (t)2 − t] Eh(t), 0 ≤ t ≤ T , is a P -martingale, we first

note that by the Itô product formula (Equation 3.8),

d
[
W (t)2Eh(t)

]
=
[
dW (t)

]
W (t)Eh(t) +W (t) d

[
W (t)Eh(t)

]
+
[
dW (t)

]
d
[
W (t)Eh(t)

]
=
[
dB(t)− h(t) dt

]
W (t)Eh(t) +W (t)

[(
1 + h(t)W (t)

)
Eh(t) dB(t)

]
+
[
1 + h(t)W (t)

]
Eh(t) dt

=
[
2 + h(t)W (t)

]
W (t)Eh(t) dB(t) + Eh(t) dt.

Thus

W (t)2Eh(t) =

∫ t

0

[
2 + h(s)W (s)

]
W (s)Eh(s) dB(s) +

∫ t

0

Eh(s) ds. (4.20)

We show the integrand in the first integral on the right belongs to L2
ad([0, T ]×Ω),

that is we show the processes W (t)Eh(t) and h(t)W (t)2Eh(t) are in L2
ad([0, T ]×Ω).
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First, by using the inequality (x+ y)2 ≤ 2(x2 + y2), we have

EP

∫ T

0

W (t)2Eh(t)2 dt ≤ EP

∫ T

0

2

[
B(t)2 +

(∫ t

0

h(s) ds

)2
]
Eh(t)2 dt

≤ 2EP

∫ T

0

B(t)2Eh(t)2 dt

+ 2EP

∫ T

0

(∫ t

0

h(s) ds

)2

Eh(t)2 dt. (4.21)

The first expectation on the right hand side of Inequality 4.21 is finite by condition

(d) and Lemma 4.24. For the second expectation, we apply Theorem 2.52 (a) and

(b) to get

EP

∫ T

0

(∫ t

0

h(s) ds

)2

Eh(t)2 dt

≤ EP

∫ T

0

T

(∫ T

0

h(s)2 ds

)
Eh(t)2 dt

≤ T

(
EP

∫ T

0

(∫ T

0

h(s)2 ds

)2

dt

) 1
2 (

EP

∫ T

0

Eh(t)4 dt

) 1
2

. (4.22)

The second expectation in the right hand side of Inequality 4.22 is finite by con-

dition (d). For the first expectation, by Fubini’s theorem we have

EP

∫ T

0

(∫ T

0

h(s)2 ds

)2

dt =

∫ T

0

EP

(∫ T

0

h(s)2 ds

)2

dt, (4.23)

which is finite by condition (c). Thus from Inequality (4.22),

EP

∫ T

0

(∫ t

0

h(s) ds

)2

Eh(t)2 dt <∞.

Applying this to Inequality 4.21, we get

EP

∫ T

0

W (t)2Eh(t)2 dt <∞.

Therefore W (t)Eh(t) ∈ L2
ad ([0, T ]× Ω).
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Next we show that h(t)W (t)2Eh(t) is in L2
ad ([0, T ]× Ω). By using the inequality

(x+ y)4 ≤ 8(x4 + y4), we have

EP

∫ T

0

h(t)2W (t)4Eh(t)2 dt = EP

∫ T

0

h(t)2

(
B(t)−

∫ t

0

h(s) ds

)4

Eh(t)2 dt

≤ 8EP

∫ T

0

h(t)2

[
B(t)4 +

(∫ t

0

h(s) ds

)4
]
Eh(t)2 dt

= 8EP

∫ T

0

h(t)2B(t)4Eh(t)2 dt

+ 8EP

∫ T

0

h(t)2

(∫ t

0

h(s) ds

)4

Eh(t)2 dt. (4.24)

By writing h(t)2B(t)4Eh(t)2 as (h(t)B(t)4) (h(t)Eh(t)2) and by using Theorem 2.52

(a) and (b), we get

EP

∫ T

0

h(t)2B(t)4Eh(t)2 dt

≤ EP

[(∫ T

0

h(t)2B(t)8 dt

) 1
2
(∫ T

0

h(t)2Eh(t)4 dt

) 1
2

]

≤
(
EP

∫ T

0

h(t)2B(t)8 dt

) 1
2
(
EP

∫ T

0

h(t)2Eh(t)4 dt

) 1
2

, (4.25)

which is finite by conditions (a) and (b). On the other hand, by using Theorem

2.52 (a), we have

(∫ t

0

h(s) ds

)4

=

[(∫ t

0

(1)h(s) ds

)2
]2

≤
[(∫ t

0

1 ds

)(∫ t

0

h(s)2 ds

)]2

≤ T 2

(∫ T

0

h(s)2 ds

)2

. (4.26)
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Apply Inequality 4.26 to the second term in Inequality 4.24 to get

EP

∫ T

0

h(t)2

(∫ t

0

h(s) ds

)4

Eh(t)2 dt

≤ EP

∫ T

0

h(t)2

{
T 2

(∫ T

0

h(s)2 ds

)2
}
Eh(t)2 dt

= T 2EP

∫ T

0

h(t)2

(∫ T

0

h(s)2 ds

)2

Eh(t)2 dt.

By writing h(t)2
(∫ T

0
h(s)2 ds

)2

Eh(t)2 as

[
h(t)

(∫ T
0
h(s)2 ds

)2
](

h(t)Eh(t)2
)

and

using Theorem 2.52 (a) and (b), we get

EP

∫ T

0

h(t)2

(∫ T

0

h(s)2 ds

)2

Eh(t)2 dt

≤ EP

(∫ T

0

h(t)2

(∫ T

0

h(s)2 ds

)4

dt

) 1
2 (∫ T

0

h(t)2Eh(t)4 dt

) 1
2


≤

(
EP

∫ T

0

h(t)2

(∫ T

0

h(s)2 ds

)4

dt

) 1
2 (

EP

∫ T

0

h(t)2Eh(t)4 dt

) 1
2

≤

(
EP

(∫ T

0

h(t)2 dt

)5
) 1

2 (
EP

∫ T

0

h(t)2Eh(t)4 dt

) 1
2

,

which is finite by conditions (a) and (c). Hence

EP

∫ T

0

h(t)2

(∫ t

0

h(s) ds

)4

Eh(t)2 dt <∞. (4.27)

Applying Equations 4.25 and 4.27 to Equation 4.24, we get

EP

∫ T

0

h(t)2W (t)4Eh(t)2 dt <∞.

So h(t)W (t)2Eh(t) ∈ L2
ad([0, T ] × Ω). Therefore we have show that the stochastic

integral in Equation 4.20 is a P -martingale.
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Finally we take the conditional expectation of Equation 4.20 to get

EP
[
W (t)2Eh(t)| Fs

]
= EP

[∫ t

0

[
2 + h(u)W (u)

]
W (u)Eh(u) dB(u)

∣∣∣∣Fs] + EP

[∫ t

0

Eh(u) du
∣∣∣∣Fs]

=

∫ s

0

[
2 + h(u)W (u)

]
W (u)Eh(u) dB(u) + EP

[∫ s

0

Eh(u) du
∣∣∣∣Fs]

+ EP

[∫ t

s

Eh(u) du
∣∣∣∣Fs]

=

∫ s

0

[
2 + h(u)W (u)

]
W (u)Eh(u) dB(u) +

∫ s

0

Eh(u) du

+ EP

[∫ t

s

Eh(u) du
∣∣∣∣Fs]

= W (s)2Eh(s) + EP

[∫ t

s

Eh(u) du
∣∣∣∣Fs] . (4.28)

Since

E

{
E

[∫ t

s

Eh(u) du
∣∣∣∣Fs]} = E

{∫ t

s

Eh(u) du
}

= E

{∫ t

s

E
[
Eh(u)

∣∣Fs] du} ,
it follows that

E

[∫ t

s

Eh(u) du
∣∣∣∣Fs] =

∫ t

s

E
[
Eh(u)

∣∣Fs] du =

∫ t

s

Eh(s) du = Eh(s)(t− s).

Thus Equation 4.28 becomes

EP
[
W (t)2Eh(t)| Fs

]
= W (s)2Eh(s) + Eh(s)(t− s),

which implies that for any s ≤ t,

EP
[
(W (t)2 − t)Eh(t)| Fs

]
= (W (s)2 − s)Eh(s).

Thus [W (t)2 − t]Eh(t), 0 ≤ t ≤ T is a P -martingale. It follows from Equation 4.19

that W (t)2 − t, 0 ≤ t ≤ T is a Q-martingale.

Now we are ready to look at the “new” Girsanov Theorem. For a comparison,

we restate Theorem 4.22.
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Theorem 4.27. (Girsanov Theorem) Let h ∈ Lad(Ω, L2[0, T ]) and assume that

EP [Eh(t)] = 1 for all t ∈ [0, T ]. Then the stochastic process

W (t) = B(t)−
∫ t

0

h(s) ds, 0 ≤ t ≤ T

is a Brownian motion with respect to the probability measure Q defined by dQ =

Eh(T ) dP , namely Q(A) =
∫
A
Eh(T ) dP for A ∈ F .

Theorem 4.28. (Girsanov Theorem) Let h ∈ L2
ad([0, T ]×Ω) satisfy the conditions

(a) EP
∫ T

0
h(t)2Eh(t)4 dt <∞,

(b) EP
∫ T

0
h(t)2B(t)8 dt <∞,

(c) EP

(∫ T
0
h(t)2 dt

)5

<∞,

(d) EP
∫ T

0
Eh(t)4 dt <∞.

Then the stochastic process

W (t) = B(t)−
∫ t

0

h(s) ds, 0 ≤ t ≤ T

is a Brownian motion with respect to the probability measure Q defined by dQ =

Eh(T ) dP , namely Q(A) =
∫
A
Eh(T ) dP for A ∈ F .

Remark 4.29. Theorem 4.28 can be generalized into the multidimensional setting.

Proof. First note that by the discussion preceding Theorem 4.25, the probability

measures P and Q are equivalent. Hence Q{W (0) = 0} = 1 and W (t) is a continu-

ous stochastic process. Let {Ft} be the filtration given by Ft = σ{B(s); 0 ≤ s ≤ t},

0 ≤ t ≤ T . By Theorem 4.25, W (t) and W (t)2 − t are martingales with respect to

Q and Ft. Thus the Doob-Meyer decomposition of W (t)2 is given by

W (t)2 = [W (t)2 − t] + t.
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So 〈W 〉t = t almost surely with respect to Q for each t. Hence by the Lévy

Characterization Teorem of Brownian motion (Theorem 3.37), W (t) is a Brownian

motion with respect to Q.

4.4 Some Examples

Let us now consider some ways the Girsanov theorem may be applied.

Example 4.30. Let h(t) be a deterministic function. The corresponding exponential

process is

Eh(t) = e
∫ t
0 h(s) dB(s)− 1

2

∫ t
0 h(s)

2 ds = e−
1
2

∫ t
0 h(s)

2 ds e
∫ t
0 h(s) dB(s).

Then

EP
(
Eh(t)4

)
= e−2

∫ t
0 h(s)

2 dsEP

(
e4

∫ t
0 h(s) dB(s)

)
= e−2

∫ t
0 h(s)

2 ds e2
∫ t
0 h(s)

2 ds = 1,

(a) EP
∫ T

0
h(t)2Eh(t)4 dt =

∫ T
0
h(t)2E (Eh(t)4) dt =

∫ T
0
h(t)2 dt <∞.

(b) It is a fact that E|B(t)| 2n ≤ C| t |n, where C is a constant. Thus

EP

∫ T

0

h(t)2B(t)8 dt =

∫ T

0

h(t)2EP (B(t)8) dt ≤
∫ T

0

Ct4h(t)2 dt <∞.

(c) EP

(∫ T
0
h(t)2 dt

)5

<∞ since h(t) is a deterministic function in L2[0, T ].

(d) EP
∫ T

0
Eh(t)4 dt =

∫ T
0
EP (Eh(t)4) dt =

∫ T
0

1 dt = T <∞.

So h(t) satisfies all the conditions in Theorem 4.22. Therefore the stochastic pro-

cess W (t) = B(t)−
∫ t

0
h(s) ds, 0 ≤ t ≤ T , for deterministic h is a Brownian motion

with respect to the probability measure defined by dQ = e
∫ t
0 h(s) dB(s)− 1

2

∫ t
0 h(s)

2 ds dP.

Example 4.31. Consider the function h(t) = sgn(B(t)). The corresponding expo-

nential process is

Eh(t) = e
∫ t
0 sgn(B(s)) dB(s)− 1

2

∫ t
0 1 ds = e−

1
2
t e

∫ t
0 sgn(B(s)) dB(s).
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In Examples 3.10 and 3.39, we saw that the process Xt =
∫ t

0
sgn(B(s)) dB(s),

0 ≤ t ≤ T , is a Brownian motion with respect to the probability measure P , with

mean 0 and variance t. So

EP
[
Eh(t)4

]
= e−2tEP

[
e4

∫ t
0 sgn(B(s)) dB(s)

]
= e−2t

∫
R
e4x 1√

2π
e−

x2

2t dx

= e−2t e8t
∫

R

1√
2π
e−

(x−4t)2

2t dx

= e6t

(a) EP
∫ T

0
(h(t))2Eh(t)4 dt =

∫ T
0
EP [Eh(t)4] dt =

∫ T
0
e6t dt <∞.

(b) EP
∫ T

0
h(t)2B(t)8 dt = EP

∫ T
0
B(t)8 dt =

∫ T
0
EP (B(t)8) dt <

∫ T
0
Ct4 dt <∞.

(c) EP

(∫ T
0
h(t)2 dt

)5

= EP

(∫ T
0

1 dt
)5

= EP (T 5) <∞.

(d) EP
∫ T

0
Eh(t)4 dt =

∫ T
0
EP
(
Eh(t)4

)
dt =

∫ T
0

1 dt = T <∞.

So h(t) = sgn(B(t)) satisfies all the conditions in Theorem 4.22. Therefore the

stochastic process W (t) = B(t) −
∫ t

0
sgn(B(s)) ds, 0 ≤ t ≤ T , is a Brownian

motion with respect to the probability measure defined by

dQ = e
∫ t
0 h(s) dB(s)− 1

2

∫ t
0 h(s)

2 ds dP

= e−
1
2
t e

∫ t
0 h(s) dB(s) dP.

4.5 Comparison of Sufficient Conditions of

Girsanov Theorem

In 1960, Girsanov [7] raised the problem of finding a sufficient condition for the

exponential process Eh(t), h ∈ Lad (Ω, L2[0, T ]) to be a martingale. Since then

many sufficient conditions have been found, for example Novikov [17], Kazamaki

[13], Gihman and Skorohod [6], Liptser and Shiryaev [15] and Okada [19]. In this

section, we compare some of these conditions for h ∈ L2
ad ([0, T ]× Ω).
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Consider a probability space (Ω,F , P ). Throughout this section, the expectation

is taken with respect to P and B(t) is a Brownian motion with respect to P .

By referring to Theorem 4.6 and Theorem 4.22, we can see that the problem of

finding a sufficient condition for the exponential process Eh(t), 0 ≤ t ≤ T given by

h ∈ L2
ad ([0, T ]× Ω) to be a martingale is equivalent to finding sufficient conditions

for the validity of the Girsanov Theorem. We restate these two theorems.

Theorem 4.32. Let h ∈ Lad(Ω, L2[0, T ]). Then the exponential process Eh(t), 0 ≤

t ≤ T , given by h is a martingale if and only if E[Eh(t)] = 1, for all t ∈ [0, T ].

Theorem 4.33. Let h ∈ Lad(Ω, L2[0, T ]) and assume that E[Eh(t)] = 1 for all

t ∈ [0, T ]. Then the stochastic process

W (t) = B(t)−
∫ t

0

h(s) ds, 0 ≤ t ≤ T

is a Brownian motion with respect to the probability measure Q defined by dQ =

Eh(T ) dP , namely Q(A) =
∫
A
Eh(T ) dP for A ∈ F .

From Theorem 4.8 and Theorem 4.11, note that for h ∈ L2
ad ([0, T ]× Ω), we have

the following sufficient condition:

Theorem 4.34. For h ∈ L2
ad([0, T ]×Ω), the exponential process Eh(t), 0 ≤ t ≤ T

is a martingale, if

E

∫ T

0

h(t)2Eh(t)4 dt <∞.

Now we look at some of the sufficient conditions mentioned at the start of this

section.

Theorem 4.35. (Novikov) Let h ∈ Lad (Ω, L2[0, T ]) and let

Eh(t) = e
∫ t
0 h(s) dB(s)−

∫ t
0 h(s)

2 ds, 0 ≤ t ≤ T,
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be the exponential process given by h. If

E
[
e

1
2

∫ T
0 h(t)2 dt

]
<∞,

then E[Eh(T )] = 1.

Proof. See [17].

Theorem 4.36. (Kazamaki) If

E
[
e

1
2

∫ t
0 h(s) dB(s)

]
<∞

for each 0 ≤ t ≤ T and h ∈ Lad (Ω, L2[0, T ]), then E[Eh(T )] = 1.

Proof. See [13].

Theorem 4.37. (Gihman and Skorohod) Suppose that for some number δ > 0,

E
[
e(1+δ)

∫ T
0 h(t)2 dt

]
<∞

for h ∈ Lad (Ω, L2[0, T ]). Then E[Eh(T )] = 1.

Proof. See [6], [10].

Theorem 4.38. (Liptser and Shiryaev) Suppose that for some number δ > 0,

E
[
e(

1
2
+δ)

∫ T
0 h(t)2 dt

]
<∞

for h ∈ Lad (Ω, L2[0, T ]). Then E[Eh(T )] = 1.

Proof. See [15].

Theorem 4.39. (Gihman and Skorohod) If there exists α > 0 such that for each

t with t+ α ≤ T ,

E
[
e(1+δ)

∫ t+α
t h(s)2 ds

]
<∞

for h ∈ Lad (Ω, L2[0, T ]) and some δ > 0, then E[Eh(T )] = 1.
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Proof. See [10].

Corollary 4.40. Suppose that there exists ε > 0 and a constant C > 0 such that

E
[
e εh(t)

2
]
≤ C

for each t ∈ [0, T ] and h ∈ Lad (Ω, L2[0, T ]), then E[Eh(T )] = 1.

Proof. Fix λ > 1 and choose a finite partition {tj} of [0, T ] such that λt1, λ(t2 −

t1), . . . , λ(tT − tn−1) are all less than ε. Then by Jensen’s inequality (Theorem 2.53

(a)), for each j we have

E

(
e

[
λ

∫ tj+1
tj

h(s)2 ds
])

≤ E

(
e

[
1

tj+1−tj

∫ tj+1
tj

εh(s)2 ds

])

≤ E

(
1

tj+1 − tj

∫ tj+1

tj

e εh(s)
2

ds

)

=
1

tj+1 − tj

∫ tj+1

tj

E
[
e εh(s)

2
]
ds

≤ C.

Therefore the conclusion follows from Theorem 4.39.

Theorem 4.41. (Kallianpur) Suppose that
∫ t

0
h(s)2 ds is locally bounded. That is

for every t > 0, there exists a constant C > 0 such that∫ t

0

h(s)2 ds ≤ C almost surely.

Then E[Eh(T )] = 1.

Proof. See [10].

Remark 4.42. This theorem is also true as a corollary of Theorem 4.35 since

E
[
e

1
2

∫ T
0 h(t)2 dt

]
≤ E

[
e

1
2
C
]
<∞.
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In Chapter 3, we saw that L2
ad ([0, T ]× Ω) ⊂ Lad (Ω, L2[0, T ]). So we can summa-

rize some of the preceding sufficient conditions for h ∈ L2
ad ([0, T ]× Ω) as follows:

Theorem 4.43. For h ∈ L2
ad ([0, T ]× Ω), we get E[Eh(T )] = 1 under any one of

the following:

(a) E
∫ T

0
h(t)2Eh(t)4 dt <∞.

(b) E
[
e

1
2

∫ T
0 h(t)2 dt

]
<∞.

(c) E
[
e

1
2

∫ T
0 h(t) dB(t)

]
<∞.

(d) E
[
e(1+δ)

∫ T
0 h(t)2 dt

]
<∞, for some δ > 0.

(e) E
[
e(1+δ)

∫ t+α
t h(s)2 ds

]
<∞, for α > 0, 0 ≤ t ≤ T and some δ > 0.

(f) E
[
e(

1
2
+δ)

∫ T
0 h(t)2 dt

]
<∞, for some δ > 0.

(g) E
[
e εh(t)

2
]
≤ C, for some ε > 0 and constant C.

Theorem 4.44. From Theorem 4.43, we have the following implications.

1. (b) ⇒ (c).

2. (b) ⇒ (a) if E[h(t)4] <∞.

3. (d) ⇒ (b).

4. (d) ⇒ (c).

5. (d) ⇒ (e).

6. (d) ⇒ (f).

7. (f) ⇒ (b).
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8. (f) ⇒ (c).

9. (g) ⇒ (e).

Proof.

1. Since

e
1
2

∫ T
0 h(t) dB(t) = e

1
2

∫ T
0 h(t) dB(t)− 1

4

∫ T
0 h(t)2 dt e

1
4

∫ T
0 h(t)2 dt,

we have by Schwarz’s inequality (Theorem 2.52 (b)) that

E
[
e

1
2

∫ T
0 h(t) dB(t)

]
= E

[
e

1
2

∫ T
0 h(t) dB(t)− 1

4

∫ T
0 h(t)2 dt e

1
4

∫ T
0 h(t)2 dt

]
≤

(
E
[
e

∫ T
0 h(t) dB(t)− 1

2

∫ T
0 h(t)2 dt

]) 1
2
(
E
[
e

1
2

∫ T
0 h(t)2 dt

]) 1
2

≤
(
E
[
e

1
2

∫ T
0 h(t)2 dt

]) 1
2

< ∞.

Thus (b) implies (c).

2. First we show that E [Eh(t)8] < ∞. Note that if h ∈ L2
ad ([0, T ]× Ω), then

16h ∈ L2
ad ([0, T ]× Ω). So

E
[
Eh(t)8

]
= E

[
e8

∫ T
0 h(t) dB(t)−4

∫ T
0 h(t)2 dt

]
= E

[
e

1
2

∫ T
0 16h(t) dB(t)− 1

4

∫ T
0 (16h(t))2 dt e

15
64

∫ T
0 (16h(t))2 dt

]
≤

(
E
[
e

∫ T
0 16h(t) dB(t)− 1

2

∫ T
0 (16h(t))2 dt

]) 1
2
(
E
[
e

15
32

∫ T
0 (16h(t))2 dt

]) 1
2
.

Since E
[
e

∫ T
0 16h(t) dB(t)− 1

2

∫ T
0 (16h(t))2 dt

]
≤ 1, apply Hölder’s inequality with p =

16
15

and q = 16 to get

E
[
e

15
32

∫ T
0 (16h(t))2 dt

]
≤
(
E
[
e

1
2

∫ T
0 (16h(t))2 dt

]) 15
16
.

We thus have

E
[
Eh(t)8

]
≤
(
E
[
e

1
2

∫ T
0 (16h(t))2 dt

]) 15
32
<∞.
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Now if E [h(t)4] <∞, we have

E
[
h(t)2Eh(t)4

]
≤
(
E
[
h(t)4

]) 1
2
(
E
[
Eh(t)8

]) 1
2 <∞.

Thus E
∫ T

0
h(t)2Eh(t)4 dt =

∫ T
0
E [h(t)2Eh(t)4] dt < ∞. This shows that (b)

implies (a).

3. Since e
1
2

∫ T
0 h(t)2 dt ≤ e(1+δ)

∫ T
0 h(t)2 dt, the implication follows.

4. Since (d) implies (b) and (b) implies (c), the implication follows.

5. Since e(1+δ)
∫ t+α

t h(s)2 ds ≤ e(1+δ)
∫ T
0 h(s)2 ds for t+α ≤ T , the implication follows.

6. Since e(
1
2
+δ)

∫ T
0 h(t)2 dt ≤ e(1+δ)

∫ T
0 h(t)2 dt, the implication follows.

7. Since e
1
2

∫ T
0 h(t)2 dt ≤ e(

1
2
+δ)

∫ T
0 h(t)2 dt, the implication follows.

8. Since (f) implies (b) and (b) implies (c), the implication follows.

9. See Corollary 4.40.
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Chapter 5
Application to Finance

In the previous chapter, we proved the Girsanov theorem for stochastic processes

h ∈ L2
ad([0, T ] × Ω) satisfying some new conditions in term of moments. In this

chapter, we look at an application of the Girsanov theorem in finance. In particular,

with these new conditions, we show the nonexistence of an arbitrage in a market.

Then we demonstrate a simplified version of the Black-Scholes model. Throughout

this chapter, we consider the probability space (Ω,F , P ) and B(t) is a Brownian

motion with respect to P , unless otherwise stated.

5.1 Background from the Theory of Finance

We begin by introducing some definitions and terms in finance theory.

Let B1(t), B2(t), . . . , Bm(t) be m independent Brownian motions defined on a

probability space (Ω,F , P ). Let the filtration {Ft; t ≥ 0} be given by Ft =

σ{Bj(s); 1 ≤ j ≤ m, s ≤ t}.

Definition 5.1. A market is an Rn+1-valued Itô process

X(t) =
(
X(0)(t), X(1)(t), . . . , X(n)(t)

)
, 0 ≤ t ≤ T,

with the components specified by

dX(0)(t) = ρ(t)X(0)(t) dt, X(0)(0) = 1; (5.1)

dX(i)(t) = µi(t) dt+
∑m

j=1 σij(t) dBj(t), 1 ≤ i ≤ n. (5.2)

where the adapted stochastic processes ρ(t), µi(t) and σij(t) satisfy the conditions

that for 1 ≤ i ≤ n, 1 ≤ j ≤ m,∫ T

0

(
| ρ(t)|+ |µi(t)|+ |σij(t)|2

)
dt <∞, almost surely.
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We usually interpret X(0)(t) as the unit price of the safe investment (e.g., bond

or saving in a bank account) andX(i)(t) as the unit price of the ith risky investment

(e.g., shares).

From Equation 5.1, we can derive X(0)(t) as follows:

dX(0)(t) = ρ(t)X(0)(t) dt

dX(0)(t)− ρ(t)X(0)(t) dt = 0

e−
∫ t
0 ρ(s) ds[dX(0)(t)− ρ(t)X(0)(t) dt] = 0

d[e−
∫ t
0 ρ(s) dsX(0)(t)] = 0

e−
∫ t
0 ρ(s) dsX(0)(t) = k

X(0)(t) = ke
∫ t
0 ρ(s) ds.

Since X(0)(0) = 1, we get k = 1. So X(0)(t) = e
∫ t
0 ρ(s) ds.

Definition 5.2. A portfolio is a stochastic process θ(t) = (θ0(t), θ1(t), . . . , θn(t)),

0 ≤ t ≤ T , where θi(t)’s are Ft-adapted stochastic processes.

Remark 5.3. θi(t)’s may not be Itô processes.

We interpret θi(t) as the number of units of the ith investment.

Definition 5.4. The value of a portfolio θ(t) in a market {X(t)} is given by

V θ(t) =
n∑
i=0

θi(t)X
(0)(t) = θ(t) ·X(t),

where “·” is the dot product.

Definition 5.5. A portfolio θ(t) is called self-financing if its value V θ(t) satisfies

V θ(t) = V θ(0) +

∫ t

0

θ(s) · dX(s),

which can be written in the stochastic differential form as

dV θ(t) = θ(t) · dX(t).
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We interpret a self-financing portfolio as a system where there is no money being

brought in or taken out from it at any time.

Example 5.6. Consider the market X(t) = (1, B(t)) and the portfolio θ(t) = (1, 1).

Then the value V θ(t) of θ(t) is V θ(t) = 1+B(t). So dV θ(t) = dB(t). Also dX(t) =

(0, dB(t)). Thus

θ(t) · dX(t) = dB(t) = dV θ(t).

By Definition 5.5, the portfolio θ(t) = (1, 1) is self-financing in the market X(t) =

(1, B(t)).

Example 5.7. Consider the market X(t) = (1, B(t)) but now with the portfolio

θ(t) = (1, t). Then the value V θ(t) of θ(t) is V θ(t) = 1 + tB(t). So dV θ(t) =

B(t)dt+ tdB(t). On the other hand, dX(t) = (0, dB(t)). So

θ(t) · dX(t) = tdB(t) 6= dV θ(t).

Therefore, the portfolio θ(t) = (1, t) is not self-financing in the market X(t) =

(1, B(t)).

Theorem 5.8. If the stochastic processes θ1(t), . . . , θn(t) are given, then there

exists θ0(t) such that the portfolio θ(t) = (θ0(t), θ1(t), . . . , θn(t)) is self-financing.

Proof. We need to find θ0(t) such that dV θ(t) = θ(t) · dX(t). Note that

dV θ(t) = θ(t) · dX(t)

= θ0(t) dX
(0)(t) +

n∑
i=1

θi(t) dX
(i)(t)

= θ0(t)ρ(t)X
(0)(t) dt+

n∑
i=1

θi(t) dX
(i)(t)
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Hence

V θ(t) = V θ(0) +

∫ t

0

θ0(s)ρ(s)X
(0)(s) ds+

n∑
i=1

∫ t

0

θi(s) dX
(i)(s)

θ0(t)X
(0)(t) +

n∑
i=1

θi(t) dX
(i)(t) = V θ(0) +

∫ t

0

θ0(s)ρ(s)X
(0)(s) ds

+
n∑
i=1

∫ t

0

θi(s) dX
(i)(s). (5.3)

Let Y0(t) = θ0(t)X
(0)(t), then Equation 5.3 becomes

Y0(t) = V θ(0) +

∫ t

0

ρ(s)Y0(s) ds+
n∑
i=1

∫ t

0

θi(s) dX
(i)(s)−

n∑
i=1

θi(t) dX
(i)(t).

Now by writing dA(t) =
∑n

i=1 θi(s) dX
(i)(s)− d

(∑n
i=1 θi(t) dX

(i)(t)
)
, we have

dY0(t) = ρ(t)Y0(t) dt+ dA(t)

dY0(t)− ρ(t)Y0(t) dt = dA(t)

e−
∫ t
0 ρ(s) ds

(
dY0(t)− ρ(t)Y0(t) dt

)
= e−

∫ t
0 ρ(s) ds dA(t)

d
(
e−

∫ t
0 ρ(s) dsY0(t)

)
= e−

∫ t
0 ρ(s) ds dA(t)

dθ0(t) = e−
∫ t
0 ρ(s) ds dA(t)

θ0(t) = θ0(0) +

∫ t

0

e−
∫ s
0 ρ(u) du dA(s).

Definition 5.9. A self-financing portfolio θ(t) is called admissible if there exists a

constant K > 0 such that

V θ(t, ω) ≥ −K, for almost all (t, ω) ∈ [0, T ]× Ω0,

where P (Ω0) = 1, namely V θ(t, ω) is bounded below for all t and almost surely.

Example 5.10. Consider the portfolio θ(t) =
(
−tB(t)2 +

∫ t
0
B(s)2 ds,B(t)2

)
in the

market X(t) = (1, t). Then the value V θ(t) of θ(t) is

V θ(t) = −tB(t)2 +

∫ t

0

B(s)2 ds+ tB(t)2 =

∫ t

0

B(s)2 ds.
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Hence dV θ(t) = B(t)2 dt. On the other hand, since dX(t) = (0, dt), we have

θ(t) · dX(t) = B(t)2 dt = dV θ(t).

This shows that θ(t) is self-financing. Also θ(t) is admissible because V θ(t) =∫ t
0
B(s)2 ds is always bounded below by −K, where K is any positive constant.

Example 5.11. Now consider the portfolio θ(t) =
(
−tB(t) +

∫ t
0
B(s) ds,B(t)

)
in

the market X(t) = (1, t). Then the value V θ(t) of θ(t) is

V θ(t) = −tB(t) +

∫ t

0

B(s) ds+ tB(t) =

∫ t

0

B(s) ds.

Hence dV θ(t) = B(t) dt. On the other hand, since dX(t) = (0, dt), we have

θ(t) · dX(t) = B(t) dt = dV θ(t).

This shows that θ(t) is self-financing. However θ(t) is not admissible because

V θ(t) =
∫ t

0
B(s) ds is not bounded below.

Definition 5.12. An admissible portfolio θ(t) is an arbitrage in a market X(t),

0 ≤ t ≤ T , if the corresponding value V θ(t) satisfies the conditions

V θ(0) = 0, V θ(T ) ≥ 0, P{V θ(T ) > 0} > 0.

Example 5.13. Consider the portfolio θ(t) =
(
−tB(t)2 +

∫ t
0
B(s)2 ds,B(t)2

)
in

the market X(t) = (1, t). By Example 5.10, θ(t) is an admissible portfolio. Since

V θ(t) =
∫ t

0
B(s)2 ds, we have V θ(0) = 0 and V θ(T ) =

∫ T
0
B(s)2 ds ≥ 0. So θ(t) is

an arbitrage.

Example 5.14. Consider the portfolio θ(t) =
(
−1

2
B(t)2 − 1

2
t, B(t)

)
in the market

X(t) = (1, B(t)). Then the value V θ(t) of θ(t) is

V θ(t) =

(
−1

2
B(t)2 − 1

2
t

)
+B(t)2 =

1

2

(
B(t)2 − t

)
.
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Hence dV θ(t) = 1
2
[(2B(t)dB(t) + dt)− dt] = B(t)dB(t). On the other hand, since

dX(t) = (0, dB(t)), we have θ(t) · dX(t) = B(t)dB(t). This shows that θ(t) is self-

financing. Since V θ(t) = 1
2
(B(t)2 − t) ≥ −1

2
T , it follows that θ(t) is admissible.

We have that V θ(0) = 0. However V θ(T ) = 1
2
(B(T )2 − T ) 6≥ 0 almost surely, so

θ(t) is not an arbitrage.

Definition 5.15. A market X(t) =
(
X(0)(t), X(1)(t), . . . , X(n)(t)

)
is normalized if

X(0)(t) = 1. A normalization of a market X(t) =
(
X(0)(t), X(1)(t), . . . , X(n)(t)

)
is

the market

X̃(t) =

(
1,
X(1)(t)

X(0)(t)
, . . . ,

X(n)(t)

X(0)(t)

)
=

1

X(0)(t)
X(t).

Theorem 5.16. Suppose the portfolio θ(t) is self-financing in a market X(t), then

it is also self-financing in the normalized market X̃(t).

Proof. First note that since

X̃(t) =
1

X(0)(t)
X(t) = ξ(t)X(t),

where ξ(t) =
(
X(0)(t)

)−1
= e−

∫ t
0 ρ(s) ds, we have dX̃(t) = ξ(t) [dX(t)− ρ(t)X(t) dt].

Let Ṽ θ(t) be the value of θ(t) in X̃(t). Then

Ṽ θ(t) = θ(t) · X̃(t) = θ(t) · ξ(t)X(t) = ξ(t) [θ(t) ·X(t)] = ξ(t)V θ(t).

So by the Itô product formula (Equation 3.8),

dṼ θ(t) = ξ(t) dV θ + V θ dξ(t) + [dξ(t)][dV θ(t)]

= ξ(t) θ(t) · dX(t)− θ(t) ·X(t)ρ(t)ξ(t) dt+ 0

= θ(t) · [ξ(t) {dX(t)− ρ(t)X(t) dt}]

= θ(t) · dX̃(t).

Therefore, θ(t) is self-financing in X̃(t).
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Theorem 5.17. If the portfolio θ(t) is admissible in the market X(t), then it is

admissible in the normalized market X̃(t).

Proof. The values of θ(t) in the markets X(t) and X̃(t) are, respectively,

V θ(t) = θ(t) ·X(t) and Ṽ θ(t) = θ(t) · X̃(t).

Note that since X̃(t) = ξ(t)X(t), where ξ(t) = e−
∫ t
0 ρ(s) ds > 0, we can write

Ṽ θ(t) = θ(t) · ξ(t)X(t) = ξ(t)[θ(t) ·X(t)] = ξ(t)V θ(t).

But V θ(t) ≥ −K (by the admissibility of θ(t) in X(t)), thus we have

Ṽ θ(t) = ξ(t)V θ(t) ≥ −K,

i.e., Ṽ θ(t) is admissible in X̃(t).

Theorem 5.18. If the portfolio θ(t) is an arbitrage in the market X(t), then it is

also an arbitrage in the normalized market X̃(t).

Proof. Consider Ṽ θ(t) = e−
∫ t
0 ρ(s) ds V θ(t), the value of θ(t) in the market X̃(t). By

Theorem 5.17, θ(t) is admissible in X̃(t). Then

(a) Ṽ θ(0) = 0,

(b) Ṽ θ(T ) = e−
∫ T
0 ρ(s) ds V θ(T ) > 0 almost surely,

(c) P
{
Ṽ θ(T ) > 0

}
= P

{
V θ(T ) > 0

}
> 0.

So θ(t) is an arbitrage in the normalized market X̃(t).
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5.2 Nonexistence of an Arbitrage

According to Definition 5.12, given that a portfolio θ(t) is an arbitrage means

there is an increase in the value of the portfolio from time t = 0 to time t = T

almost surely, and a strictly positive increase with positive probability. So θ(t)

generates a profit without any risk of losing money. This clearly contradicts the

real life situation in finance. So how can we decide if a given market X(t) allows

an arbitrage or not? The following gives a simple but useful result.

Lemma 5.19. If Y (t) is a local martingale with respect to a probability measure

Q and Y (t) is bounded below, then Y (t) is a supermartingale.

Proof. By the definition of a local martingale (Definition 2.46), there exists an

increasing sequence {τn} of stopping times such that Y (t∧ τn) is a martingale, i.e.,

EQ
[
Y (t ∧ τn)

∣∣Fs] = Y (s ∧ τn) s ≤ t.

By letting n→∞, we get

lim inf EQ
[
Y (t ∧ τn)

∣∣Fs] = lim inf Y (s ∧ τn) = Y (s).

Since Y (t) is bounded below, by Fatou’s lemma for conditional expectation ([1],

Theorem 5.5.6 (b), page 223),

EQ
[
Y (t)

∣∣Fs] = EQ
[
lim inf

{
Y (t ∧ τn)

∣∣Fs}] ≤ lim inf EQ
[
Y (t ∧ τn)

∣∣Fs] = Y (s).

So Y (t) is a supermartingale.

Lemma 5.20. Suppose there exists a probability measure Q on the filtration {Ft}

such that Q is equivalent to P and the normalized market X̃(t) is a local martingale

with respect to Q. Then the market X(t) has no arbitrage.
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Proof. Suppose θ(t) is an arbitrage in X(t). Then θ(t) is also an arbitrage in X̃(t)

by Theorem 5.18.

Let Ṽ θ(t) = θ(t) · X̃(t) be the value of θ(t) in X̃(t). Since an arbitrage is self-

financing and Ṽ θ(0) = 0, we have dṼ θ(t) = θ(t) · dX̃(t) and thus

Ṽ θ(t) =

∫ t

0

θ(s) · dX̃(s).

Hence Ṽ θ(t) is a local martingale with respect to Q. Also, by the admissibility of

θ(t), Ṽ θ(t) is bounded below, i.e., there exists K > 0 such that Ṽ θ(t, ω) ≥ −K

for almost all t ∈ [0, T ], ω ∈ Ω. By Lemma 5.19, Ṽ θ(t) is a supermartingale with

respect to Q. So EQ[Ṽ θ(t)] ≤ EQ[Ṽ θ(0)] = 0.

On the other hand, since θ(t) is an arbitrage, we have Ṽ θ(T ) ≥ 0 P -almost surely

and P{Ṽ θ(T ) > 0} > 0. Hence Ṽ θ(T ) ≥ 0 Q-almost surely and Q{Ṽ θ(T ) > 0} > 0

becauseQ is equivalent to P . So EQ[Ṽ θ(T )] > 0, which is a contradiction. Therefore

the market X̃(t) has no arbitrage, likewise for X(t).

In the next theorem, we give a sufficient condition for the nonexistence of an

arbitrage in a market.

Let ρ(t), µi(t) and σij(t) be processes as in Defintion 5.1. We write µ(t) =(
µ1(t), . . . , µn(t)

)
and let σ(t) be the (n × m)-matrix with ij th entries σij. Also

let X̂(t) to be X̂(t) =
(
X(1)(t), . . . , X(n)(t)

)
. So we can write Equation 5.2 as

dX̂(t) = µ(t) dt+ σ(t) dB(t). (5.4)

Theorem 5.21. Suppose that there exists an (m × 1)-column vector valued Ft-

adapted stochastic process h(t) satisfying the following conditions:

(a) σ(t, ω)h(t, ω) = ρ(t, ω)X̂(t)− µ(t, ω) for almost all (t, ω) ∈ [0, T ]× Ω,

(b) E
∫ T

0
|h(t)|2 Eh(t)4 dt <∞,
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(c) E
∫ T

0
|h(t)|2|B(t)|8 dt <∞,

(d) E
(∫ T

0
|h(t)|2 dt

)5

<∞,

(e) E
∫ T

0
Eh(t)4 dt <∞,

where B(t) is an m-dimensional Brownian motion and Eh(t) is the exponential

process

Eh(t) = e
∫ t
0 h(s)·dB(s)− 1

2

∫ t
0 |h(s)|

2ds, 0 ≤ t ≤ T.

Then the market X(t) has no arbitrage.

Proof. By Theorem 5.18, we can assume that the market X(t) is normalized,

namely ρ(t) = 0.

Define the probability measure Q given by dQ = Eh(T ) dP . Then Q is equivalent

to P . By conditions (b) to (e), we can apply Theorem 4.28 (in the multi-dimensional

setting) to get that the process

W (t) = B(t)−
∫ t

0

h(s) ds, 0 ≤ t ≤ T,

is an m-dimensional Brownian motion with respect to Q. By Equation 5.4, we have

dX̂(t) = µ(t) dt+ σ(t) dB(t)

= µ(t) dt+ σ(t)[dW (t) + h(t)dt]

= σ(t)dW (t) + [µ(t) + σ(t)h(t)] dt

= σ(t)dW (t) + ρ(t)X̂(t) dt

= σ(t)dW (t) (ρ(t) = 0). (5.5)

So X̂(t) = X̂(0) +
∫ t

0
σ(s) dW (s). Thus X̂(t) is a local martingale with respect to

Q. By Lemma 5.20, X(t) has no arbitrage.
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Example 5.22. Consider a normalized market given by

dX(t) =
(
0, dt+ dB1(t) + 2 dB2(t),−dt+ dB1(t) + dB2(t)

)
where B1(t) and B2(t) are independent Brownian motions.

In this case, we have

σ(t) =

1 2

1 1

 and µ(t) =

 1

−1

 .

So by the system equation σ(t)h(t) = −µ(t) with h(t) =

h1(t)

h2(t)

, we have

1 1

1 2


h1(t)

h2(t)

 = −

 1

−1

 =

−1

1

 .

Solving this we get h(t) =

5

2

. By Example 4.30, this process h(t) satisfies con-

ditions (b) to (e) in Theorem 5.21. So X(t) has no arbitrage.

5.3 Black-Scholes Model

In the preceding section, we showed the nonexistence of an arbitrage in a market.

In this section, we demonstrate a simplified version of the Black-Scholes model.

The Black-Scholes model was developed in the early 70’s by Fischer Black and

Myron Scholes, based on earlier research by Edward Thorpe, Paul Samuelson and

Robert C. Merton. The Black-Scholes model gives a very useful formula for pricing

call options.

Definition 5.23. A lower bounded FT -measurable random variable Φ is called a

T-claim. A T-claim Φ is said to be attainable in a market Xt, 0 ≤ t ≤ T if there
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exist a real number r and an admissible portfolio θ(t) such that

Φ = V θ(T ) = r +

∫ T

0

θ(t) · dX(t) almost surely. (5.6)

If such a portfolio θ(t) exists, it is called a hedging portfolio for Φ.

By definition, a T -claim is attainable if there exists a real number r such that

if we start our fortune with r, then we can find an admissible portfolio θ(t) which

generates a value V θ(T ) at time T which equals Φ almost surely.

Let Ṽ θ(t) be the value of the admissible portfolio θ(t) in the normalized market

X̃(t) = (X(0)(t))−1X(t) = ξ(t)X(t). By the self-financing property of θ(t),

Ṽ θ(t) = r +

∫ t

0

θ(s) · dX̃(s) = r +

∫ t

0

ξ(s) θ̂(s) · dX̂(s), (5.7)

because dṼ θ(t) = ξ(t) dV θ(t) = ξ(t) dV̂θ. From Equation 5.5, we have dX̂(t) =

σ(t) dWh(t), where Wh(t) = B(t)−
∫ t

0
h(s) ds. So Equation 5.7 becomes

Ṽ θ(t) = r +

∫ t

0

ξ(s) θ̂(s) · (σ(t) dWh(t)). (5.8)

By Theorem 3.17, V θ(t) is a local martingale with respect to Q. For the sake

of integrability, the portfolio θ(t) in Equation 5.7 is always assumed to have the

property that the associated stochastic process Ṽ θ(t) in Equation 5.7 is actually a

martingale with respect to Q.

Definition 5.24. A market X(t), 0 ≤ t ≤ T is said to be complete if every T -claim

Φ is attainable.

The next theorem gives a condition for a market X(t), 0 ≤ t ≤ T to be complete.

Theorem 5.25. Let X(t), 0 ≤ t ≤ T be a market specified by ρ(t), µ(t) and σ(t)

as in Definition 5.1. Assume that there exists a process h(t) such that

(a) σ(t, ω)h(t, ω) = ρ(t, ω) X̂(t, ω)− µ(t, ω),
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(b) E
∫ T

0
|h(t)|2Eh(t)4 dt <∞,

(c) E
∫ T

0
|h(t)|2|B(t)|8 dt <∞,

(d) E
(∫ T

0
|h(t)|2 dt

)5

<∞,

(e) E
∫ T

0
Eh(t)4 dt <∞.

In addition, assume that σ{Wh(s); 0 ≤ s ≤ t} = σ{B(s); 0 ≤ s ≤ t}, 0 ≤ t ≤ T ,

where Wh(t) = B(t) −
∫ t

0
h(s) ds. Then X(t), 0 ≤ t ≤ T is complete if σ(t) has a

left inverse for almost all (t, ω) ∈ T ×Ω, i.e., there exists an (m×n)-matrix valued

adapted stochastic process L(t, ω) such that

L(t, ω)σ(t, ω) = Im, almost everywhere,

where Im is the m×m identity matrix.

Remark 5.26. Conditions (a)-(e) guarantee that the market X(t) has no arbitrage

(Theorem 5.21).

Proof. Let Φ be a T -claim. We need to find a real number r and an admissible

portfolio θ(t) such that

Φ = V θ(T ) = r +

∫ T

0

θ(t) · dX(t). (5.9)

By Equation 5.8, we have

ξ(T ) Φ = ξ(T )V θ(T ) = Ṽ θ(T )

= r +

∫ T

0

ξ(t) θ̂(t) · (σ(t) dWh(t)), (5.10)

where ξ(t) = (X(0)(t))−1 = e−
∫ t
0 ρ(s) ds. Thus we can first find r and θ̂(t) such that

Equation 5.10 holds. Then by Theorem 5.8, we can find θ0(t) to get an admissible

θ(t) satisfying Equation 5.9.
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Note that ξ(T ) Φ is measurable with respect to FWh
T , due to the assumption

that σ{Wh(s); 0 ≤ s ≤ t} = σ{B(s); 0 ≤ s ≤ t}, 0 ≤ t ≤ T . Hence ξ(T ) Φ belongs

to L2(FWh
T ). By applying Theorem 3.15 to ξ(T ) Φ, we obtain a stochastic process

f(t) ∈ L2
ad([0, T ]× Ω) such that

ξ(T ) Φ = E {ξ(T ) Φ}+

∫ T

0

f(t) dWh(t). (5.11)

By comparing Equations 5.10 and 5.11, we get

r = E {ξ(T ) Φ}

and θ̂(t) is the solution of the equation

ξ(t) θ̂(t) · (σ(t) v) = f(t) · v, ∀v ∈ Rm.

This is equivalent to the matrix equation

ξ(t) θ̂(t)∗ σ(t) = f(t)∗,

where θ̂(t)∗ denotes the transpose of θ̂(t). Equivalently,

σ(t)∗ θ̂(t) = X(0)(t) f(t). (5.12)

By hypothesis, there exists an (m× n)-matrix valued stochastic process L(t) such

that L(t)σ(t) = Im. Hence σ(t)∗ L(t)∗ = Im. Thus if θ̂(t) = X(0) L(t)∗ f(t), then

σ(t)∗ θ̂(t) = σ(t)∗
(
X(0) L(t)∗ f(t)

)
= X(0)(t)σ(t)∗ L(t)∗ f(t) = X(0)(t) f(t).

This shows that θ̂(t) = X(0) L(t)∗ f(t) is a solution of Equation 5.12.

Finally by Theorem 5.8, we can find θ0(t) such that θ(t) = (θ0(t), θ̂(t)) is a

hedging portfolio for the T -claim Φ. Therefore the market X(t) is complete.
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Example 5.27. Consider a market X(t) =
(
X0(t), X1(t), X2(t), X3(t)

)
satisfying

X0(t) = 1 and 
dX1(t)

dX2(t)

dX3(t)

 =


1

2

3

 dt+


1 0

0 1

1 1


dB1(t)

dB2(t)

 .

Then ρ(t) = 0, µ(t) =


1

2

3

 and σ(t) =


1 0

0 1

1 1

. Note that

1 0 0

0 1 0




1 0

0 1

1 1

 =

1 0

0 1

 ,
namely there is a left inverse for σ(t). Also from the equation σ(t)h(t) = ρ(t)X̂(t)−

µ(t), we can get h(t) =

1

2

. Since h(t) is a constant, Conditions (b)-(e) in Theorem

5.25 are satisfied. Therfore by Theorem 5.25, the market X(t) is complete.

Definition 5.28. A (European) option on a T -claim Φ is a guarantee to pay the

amount Φ at time t = T .

It is natural to raise the question: what is the “price” that one is willing to pay

or to sell for an option at time t = 0? Suppose a buyer pays an amount y for an

option. With this initial fortune (debt) −y, the buyer wishes that he could hedge

to time T a value V θ
−y(T ) such that

V θ
−y(T ) + Φ ≥ 0, almost surely.

This is equivalent to saying that the buyer can hedge a portfolio θ(t) such that

−y +

∫ T

0

θ(t) dX(t) + Φ ≥ 0, almost surely.
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So the maximal “price” a buyer is willing to pay for an option at time t = 0 is

Pb(Φ) = sup

{
y; ∃ θ(t) such that −y +

∫ T

0

θ(t) dX(t) + Φ ≥ 0 a.s.

}
.

On the other hand, suppose a seller receives the “price” z for this guarantee.

Then the seller can use this as the initial value in an investment strategy. With

this initial value z, the seller wishes he could hedge to time T a value V θ
z (T ) such

that

V θ
z (T ) ≥ Φ almost surely.

This is equivalent to saying that the seller can hedge a portfolio ψ(t) such that

z +

∫ T

0

ψ(t) dX(t) ≥ Φ almost surely.

So the minimal “price” a seller is willing to accept for an option at time t = 0 is

Ps(Φ) = inf

{
z; ∃ψ(t) such that z +

∫ T

0

ψ(t) dX(t) ≥ Φ a.s.

}
.

In general, Pb(Φ) ≤ Ps(Φ). In fact we have the following:

Theorem 5.29. Let X(t), 0 ≤ t ≤ T be a market specified by ρ(t), µ(t) and σ(t)

as in Definition 5.1. Suppose there exists a process h(t) such that

(a) σ(t, ω)h(t, ω) = ρ(t, ω) X̂(t, ω)− µ(t, ω),

(b) E
∫ T

0
|h(t)|2Eh(t)4 dt <∞,

(c) E
∫ T

0
|h(t)|2|B(t)|8 dt <∞,

(d) E
(∫ T

0
|h(t)|2 dt

)5

<∞,

(e) E
∫ T

0
Eh(t)4 dt <∞.
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Then for any T -claim Φ,

essinf (Φ) ≤ Pb(φ) ≤ EQ [ξ(T ) Φ] ≤ Ps(Φ) ≤ ∞,

where Q is the probability measure given by dQ = e
∫ T
0 h(t) dB(t)+ 1

2

∫ T
0 h(t)2 dt dP and

ξ(t) = (X(0)(t))−1 = e−
∫ t
0 ρ(s) ds.

Proof. By definition, essinf (Φ) = sup {b ∈ R ; P ({Φ < b}) = 0}. If x ∈ essinf (Φ),

then Φ ≥ x almost surely, thus −x ≥ −Φ almost surely. By taking the portfolio

θ(t) = 0, we get that

x ∈
{
y; ∃ θ(t) such that −y +

∫ T

0

θ(t) dX(t) + Φ ≥ 0 a.s.

}
.

So essinf (Φ) ≤ Pb(Φ).

Suppose y ∈ R and there exists θ(t) such that −y +
∫ T

0
θ(t) dX(t) ≥ −Φ almost

surely. This is equivalent to

−y +

∫ T

0

ξ(t)θ̂(t)σ(t) dWh(t) ≥ −ξ(T )Φ,

because dV θ(t) = ξ(t) dṼ θ(t) = ξ(t) θ̂(t) dX̂(t) and dX̂(t) = σ(t) dWh(t). By taking

the expectation with respect to Q, we have −y + 0 ≥ −EQ [ξ(T ) Φ], i.e.,

y ≤ EQ [ξ(T ) Φ] . (5.13)

Since this is true for any y satisfying Inequality 5.13, by taking the supremum we

get Pb(Φ) ≤ EQ [ξ(T ) Φ].

Suppose z ∈ R and there exists ψ(t) such that z +
∫ T

0
ψ(t) dX(t) ≥ Φ almost

surely. This is equivalent to

z +

∫ T

0

ξ(t)ψ̂(t)σ(t) dWh(t) ≥ ξ(T )Φ.

By taking the expectation with respect to Q, we have z + 0 ≥ EQ [ξ(T ) Φ], i.e.,

z ≥ EQ [ξ(T ) Φ] . (5.14)
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Since this is true for any z satisfying Inequality 5.14, by taking the infimum we get

Ps(Φ) ≥ EQ [ξ(T ) Φ], provided such z and ψ(t) exist. If no such z and ψ(t) exist,

then Ps(Φ) = ∞ > EQ [ξ(T ) Φ].

Definition 5.30. The price of a T -claim Φ is said to exist if Pb(Φ) = Ps(Φ). The

common value, denoted by P(Φ) is called the price of Φ at time t = 0.

In addition to the conditions in Theorem 5.29, if the market is complete and

EQ [ξ(T ) Φ] <∞, then the price of a T -claim Φ exists.

Theorem 5.31. Let X(t), 0 ≤ t ≤ T be a complete market specified by ρ(t), µ(t)

and σ(t) as in Definition 5.1. Suppose there exists a process h(t) such that

(a) σ(t, ω)h(t, ω) = ρ(t, ω) X̂(t, ω)− µ(t, ω),

(b) E
∫ T

0
|h(t)|2Eh(t)4 dt <∞,

(c) E
∫ T

0
|h(t)|2|B(t)|8 dt <∞,

(d) E
(∫ T

0
|h(t)|2 dt

)5

<∞,

(e) E
∫ T

0
Eh(t)4 dt <∞.

Moreover if EQ [ξ(T ) Φ] <∞ for a T -claim Φ in X(t), then

P(Φ) = EQ [ξ(T ) Φ] ,

where Q is the probability measure given by dQ = e
∫ T
0 h(t) dB(t)+ 1

2

∫ T
0 h(t)2 dt dP and

ξ(t) = (X(0)(t))−1 = e−
∫ t
0 ρ(s) ds.

Proof. Let Φ be a T -claim. By the completeness of the market X(t), there exists

rψ ∈ R and a portfolio ψ(t) such that

Φ = rψ +

∫ T

0

ψ(t) dX(t), almost surely.
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This is equivalent to saying

ξ(T )Φ = rψ +

∫ T

0

ξ(t)ψ̂(t) · σ(t) dWh(t).

By taking the expectation with respect to Q, we have

EQ [ξ(T )Φ] = rψ.

But rψ ∈ {y ;∃ψ(t) such that y +
∫ T

0
ψ(t) dX(t) ≥ Φ almost surely}, hence

EQ [ξ(T )Φ] ≥ Ps(Φ).

Together with EQ [ξ(T )Φ] ≤ Ps(Φ) from Theorem 5.29, we get EQ [ξ(T )Φ] =

Ps(Φ).

Similarly, by the completeness of X(t), there exists rθ ∈ R and a portfolio θ(t)

such that

−rθ +

∫ T

0

θ(t) dX(t) = −Φ, almost surely.

This is equivalent to saying

−ξ(T )Φ = −rθ +

∫ T

0

ξ(t)θ̂(t) · σ(t) dWh(t).

By taking the expectation with respect to Q, we have

−EQ [ξ(T )Φ] = −rθ

EQ [ξ(T )Φ] = rθ.

But rθ ∈ {x ;∃ θ(t) such that − x+
∫ T

0
θ(t) dX(t) + Φ ≥ 0, almost surely}, thus

EQ [ξ(T )Φ] ≤ Pb(Φ).

Together with Pb(Φ) ≤ EQ [ξ(T )Φ] from Theorem 5.29, we get EQ [ξ(T )Φ] = Pb(Φ).
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Now we explain a simplified version of Black-Scholes model. Suppose a market

X(t) =
(
X(0)(t), X(1)(t)

)
is given by

dX(0)(t) = ρ(t)X(0)(t) dt, X(0)(0) = 1;

dX(1)(t) = α(t)X(1)(t) dB(t) + β(t)X(1)(t) dt, X(1)(0) = x1.

(5.15)

We can get the solution for the equations in Equation 5.15 as follows:

dX(0)(t) = ρ(t)X(0)(t) dt

dX(0)(t)− ρ(t)X(0)(t) dt = 0

e−
∫ t
0 ρ(s) ds[dX(0)(t)− ρ(t)X(0)(t) dt] = 0

d[e−
∫ t
0 ρ(s) dsX(0)(t)] = 0

e−
∫ t
0 ρ(s) dsX(0)(t) = k

X(0)(t) = ke
∫ t
0 ρ(s) ds

X(0)(t) = e
∫ t
0 ρ(s) ds, (because X(0)(0) = 1)

and

dX(1)(t) = α(t)X(1)(t) dB(t) + β(t)X(1)(t) dt

dX(1)(t)− α(t)X(1)(t) dB(t)− β(t)X(1)(t) dt = 0

e−
∫ t
0 β(s) ds−

∫ t
0 α(s) dB(s)+ 1

2

∫ t
0 α(s)2 ds{dX(1)(t)− α(t)X(1)(t) dB(t)− β(t)X(1)(t) dt} = 0

d
{
e−

∫ t
0 β(s) ds−

∫ t
0 α(s) dB(s)+ 1

2

∫ t
0 α(s)2 dsX(1)(t)

}
= 0

e−
∫ t
0 β(s) ds−

∫ t
0 α(s) dB(s)+ 1

2

∫ t
0 α(s)2 dsX(1)(t) = k

X(1)(t) = ke
∫ t
0 β(s) ds+

∫ t
0 α(s) dB(s)− 1

2

∫ t
0 α(s)2 ds

X(1)(t) = x1e
∫ t
0 β(s) ds+

∫ t
0 α(s) dB(s)− 1

2

∫ t
0 α(s)2 ds, (5.16)

where the last equality follows since X(1)(0) = x1.
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Observe that the market X(t) is specified by ρ(t), µ(t) = β(t)X(1)(t) and σ(t) =

α(t)X(1)(t). Thus the equation in condition (a) of Theorem 5.21 becomes

α(t)X(1)(t)h(t) = ρ(t)X(1)(t)− β(t)X(1)(t),

which gives the solution for h(t) to be

h(t) =
ρ(t)− β(t)

α(t)
. (5.17)

Theorem 5.32. (Black-Scholes) Suppose a market X(t) =
(
X(0)(t), X(1)(t)

)
is

given by

dX(0)(t) = ρ(t)X(0)(t) dt, X(0)(0) = 1,

dX(1)(t) = α(t)X(1)(t) dB(t) + β(t)X(1)(t) dt, X(1)(0) = x1.

Assume that

(a) E
∫ T

0
|h(t)|2 Eh(t)4 dt <∞,

(b) E
∫ T

0
|h(t)|2|B(t)|8 dt <∞,

(c) E
(∫ T

0
|h(t)|2 dt

)5

<∞,

(d) E
∫ T

0
Eh(t)4 dt <∞,

where h(t) = ρ(t)−β(t)
α(t)

.

Suppose ρ(t) and α(t) are deterministic functions in L1[0, T ] and L2[0, T ], re-

spectively and the T -claim Φ is of the form Φ = F (X(1)(T )). Then the price at

time t = 0 of Φ is given by

P(Φ) = ξ(T )
1√

2π ‖α‖

∫ ∞

−∞
F
(
x1 e

x+
∫ T
0 (β(t)− 1

2
α(t)2) dt

)
e
− x2

2‖α‖2 dx,

where ‖α‖2 =
∫ T

0
α(t)2 dt and ξ(T ) = (X(0)(T ))−1 = e−

∫ T
0 ρ(t) dt.
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Proof. By Conditions (a)-(d) and Theorem 5.21, the market X(t) has no arbitrage.

Then by Theorem 5.25, the market is complete. So by Theorem 5.31, the price of

the T -claim Φ at time t = 0 is given by

P(Φ) = EQ [ξ(T )Φ] .

Since ρ(t) is deterministic, it follows that P(Φ) = ξ(T )EQ(Φ). By the hypothesis

Φ = F
(
X(1)(t)

)
and Equation 5.16, we have

P(Φ) = ξ(T )EQ(Φ)

= ξ(T )EQ
[
F
(
X(1)(T )

)]
= ξ(T )EQ

[
F
(
x1 e

∫ T
0 α(t) dB(t)+

∫ T
0 (β(t)− 1

2
α(t)2) dt

)]
.

Note that since α(t) is deterministic, the integral
∫ T

0
α(t) dB(t) is a Wiener integral

with mean zero and variance ‖α‖2 =
∫ T

0
α(t)2 dt (Theorem 3.2). Thus

P(Φ) = ξ(T )EQ

[
F
(
x1 e

∫ T
0 α(t) dB(t)+

∫ T
0 (β(t)− 1

2
α(t)2) dt

)]
= ξ(T )

1√
2π ‖α‖

∫ ∞

−∞
F
(
x1 e

x+
∫ T
0 (β(t)− 1

2
α(t)2) dt

)
e
− x2

2‖α‖2 dx.
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