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Abstract

In this dissertation, the well-known Girsanov Theorem will be proved under a set
of moment conditions on exponential processes. Our conditions are motivated by
the desire to avoid using the local martingale theory in the proof of the Girsanov
Theorem. Namely, we will only use the martingale theory to prove the Girsanov
Theorem. Many sufficient conditions for the validity of the Girsanov Theorem have
been found since the publication of the result by Girsanov [7] in 1960. We will
compare our conditions with some of these sufficient conditions. As an application
of the Girsanov Theorem, we will show the nonexistence of an arbitrage in a market

and will also explain a simplified version of Black-Scholes model.

v



Chapter 1

Introduction

The main result in this dissertation is to show the validity of the Girsanov Theorem
under a new condition in terms of moments. Under this new condition, we do not
need to use local martingale theory. In many applications, e.g., the Black-Scholes
model, this new condition is enough.

Let B(t) be a Brownian motion in a probability space (2, F, P) and let {F;;a <
t < b} be a filtration such that B(t) is F;-measurable for each ¢ and for any
s < t, the random variable B(t) — B(s) is independent of the o-field F;. We
denote by Laq (Q, L?[a,b]) the space of all stochastic processes h(t,w), a <t < b,
w € Q such that h(t) is Fi-adapted and fab | h(t)|? dt < oo almost surely. Also we
denote by L2, ([a,b] x Q) the space of all stochastic processes h(t,w), a <t < b,
w € Q such that h(t) is Fi-adapted and fab E|h(t)*dt < oo. It is a fact that
L2, ([a,b] x Q) C L4q (2, L?[a,b]). An exponential process &,(t), a < t < b, given

by h(t) € Laa (2, L*[a,b]) is a stochastic process defined by
Enlt) = ef,f h(s)dB(s)—1 [T h(s)? ds7 a<t<b.
Then the Girsanov Theorem states that if the exponential process E,(t), 0 <t < T
given by h(t) € L4 (Q, L?[0,T]) is a martingale, then the process given by
W(t) = B(t) —/th(s)ds, 0<t<T,
0

is a Brownian motion with respect to the probability measure @) given by d@Q) =
En(T) dP. An exponential process &, (t), 0 <t < T given by h(t) € Laq (22, L*[0,T])
is a martingale if and only if E[E,(T)] = 1. So the Girsanov Theorem is true if

E&(T)] = 1.



As can be seen in the statement, the Girsanov Theorem is true for stochastic
processes h(t) € Lqq (2, L?[0,T)) satisfying a certain condition. For our result, we
restrict the discussion to processes h(t) in L2, ([a,b] x Q). It is a fact that the
stochastic integral fcf h(s)dB(s) for h € L%, ([a,b] x ) is a martingale. With the
assumption of the new moment conditions, the proof of the Girsanov Theorem
is now elementary. The idea behind these new conditions is to make some of the
stochastic integrals that appear in the proof to be martingales.

Since Girsanov [7] published his result in 1960, many results in finding a suf-
ficient condition for the validity of the Girsanov Theorem have been found. We
will compare some of these sufficient conditions for h € L2, ([a,b] x Q) with our
condition in Chapter 4.

In the theory of finance, an arbitrage in a market is regarded as a portfolio
that can generate a profit without any risk of losing money. This situation con-
tradicts the real life situation. One of the applications of the Girsanov Theorem is
in showing the nonexistence of an arbitrage in a market. In Chapter 5, by using
the “new” Girsanov Theorem, we will show the nonexistence of an arbitrage in a
market. We will also explain a simplified version of Black-Scholes model, a model

that determines the formula for pricing option calls.



Chapter 2
Background from Probability Theory

In this chapter, we review some basic ideas from probability theory which will be

needed in this dissertation.

2.1 Stochastic Processes and Brownian Motion
Definition 2.1. A stochastic process is a collection X = {X(t,w);t € T,w € Q}

of random variables defined on a probability space (2,F,P) with index set T

Remark 2.2. A stochastic process can also be regarded as a measurable function

X(t,w) defined on the product space [0,00) x €. In particular,

1. for fixed ¢, X(¢,-) is a random variable;

2. for fixed w, X(-,w) is a function of ¢.

If there is no confusion, we denote X (t,w) by X(t) or X,.

Remark 2.3. Usually the set T represents “time”. In the continuous case, it is an
interval of R, while in the discrete case, it is a subset of N. However the set 1" does

not necessarily denote the time.

Ezxample 2.4. Let Xy, Xs,...,X,,... be independent and identically distributed
random variables and let S,, = X; + X5 + - - + X,,. Then the sequence {S,} is a

discrete time stochastic process.

Ezample 2.5. Let T = [ty, 00), where t( is a real number. For every partition

o<ty <---<t,, t;, €T, 1=1,2,...,n,



it Xy, X4y, — Xy, - -+, Xy, — Xy, , are independent random variables for all possible
choices of partitions described above, then {X;,t € T'} is a stochastic process with

idependent increments.

Ezxample 2.6. Let Xy, t =0,1,2,... denote the rock component (e.g., lignite, shale,
sandstone, siltstone) of the tth layer of a rock. This is a discrete stochastic process

and here, t is a space variable.

Ezxample 2.7. In the fluctuation problem of electron-photon cascade, let X; denote
the number of particles with the energy value less than e at an arbitrary thickness
t of the absorber. This is a continuous stochastic process. In this case, t does not

represent time.

Now let’s look at the concept of “sameness” between two processes under a

probability measure P.

Definition 2.8. Two stochastic processes X (¢) and Y (t) are equivalentif Px = Py,

where Py and Py are the distributions for X and Y, respectively.

Ezample 2.9. Consider the set 0 = {a,b, c,d} with uniform probability. Define
the random variables X and Y such that X(a) = X(b) = 1, X(¢) = X(d) = —1
and Y(a) =Y (c) =1,Y(b) =Y(d) = —1. Then X and Y are two different random
variables on the same probability space with the same distribution. Thus they are

equivalent.

Ezample 2.10. Consider the sets € = {a,b,¢,d} and Qs = {e, f}, both with
uniform probabilities. Define the random variables X and Z such that X(a) =
X)) =1, X(c)=X(d)=—-1and Z(e) =1, Z(f) = —1. Then X and Z have the
same distribution (thus are equivalent), but they arise from different probability

spaces.



Definition 2.11. A stochastic process Y (t) is a wversion of a stochastic process

X () if P{X(t) =Y (t)} = 1 for all t.

Remark 2.12. Two equivalent processes X (t) and Y'(¢) may have different prob-
ability spaces, whereas two versions of a process must be defined on the same

probability space.

Remark 2.13. Two processes X (t) and Y (t) which are versions of each other are

equivalent, but the converse is not true (Example 2.10).

Definition 2.14. A stochastic process Y (t) is a realization of X (t) if there is a
probability space Qy with P(£2y) = 1 such that for all w € Qp, X (t,w) = Y (t,w)

for all ¢, that is

P{w; X(w,t) =Y (w,t), for all t > 0} = 1.

Remark 2.15. A realization is a version, but not conversely. However, a continuous

version is a realization.

Example 2.16. Define the random variable X (¢) = 0 for any (¢,w) € [0, 1] x [0, 1].

0 if ¢t#w;
For fixed t € [0, 1], define Y (¢) =

1 if t=w.
Then Y'(t) is a version of X (t) because for any ¢ € [0, 1],

P{Y(t) = X(1)} = P{t #w} =1 — P{t =w} = 1.

On the other hand, P{Y(t) = X(¢) ; for any t € [0,1]} = 0. So Y (¢) is not a
realization of X (¢).
A famous example of a stochastic process is Brownian motion.

Definition 2.17. A stochastic process B(t,w) is called a Brownian motion if it

satisfies the following conditions:



1. P{w;B(0,w) =0} = 1.

2. For any 0 < s < t, the random variable B(t) — B(s) is normally distributed

with mean zero and variance t — s, i.e., for any a < b,

P{a < B(t) - B(s) < b} =

1 b 2
—/ e 2t=s) dx.
\/277'(75 — S) a

3. B(t,w) has independent increments, i.e., for any 0 < ¢; <ty < --- < t,, the

random variables B(t), B(ts) — B(t1), ..., B(t,) — B(t,_1) are independent.
4. Almost all sample paths of B(t,w) are continuous functions, i.e.,

P{w; B(-,w) is a continuous function of ¢} = 1.

One way of constructing a Brownian motion is based on the following theorem
by Kolmogorov. Let RI%) denote the space of all real valued functions f defined

on the interval [0, 00). Let F be the o-field generated by sets of the form

{F €RO(f(tr),.... [(t)) € A},

where 0 < t; <ty <...<t, and A € B(R,). These sets are called cylinder sets.

Theorem 2.18. (Kolmogorov’s Extension Theorem) Suppose that associated with

each 0 <t) <ty <...<t,, n>1,1is aprobability measure p, . ¢, on R". Assume

.....

that the family



where 1 < i < n, A; € BR™), Ay € BR"™) and t. means that t; is deleted.

Then there exists a probability measure P on (R[O’OO),}") such that
P{f e ROV (f(t)),..., f(ta)) € A} = sy, 4 (A)
forany 0 <t; <ty <...<t,, A€ B(R,) andn > 1.
With this theorem, the stochastic process X (t) defined by
X(t,w) =w(t), weRO®,

can be shown to be a Brownian motion. For more on the construction of a Brownian
motion, see [14].

Example 2.19. Let X;,(t) be a random walk with jumps h and —h equally likely

at times 6,20, 36, . . .. Assume that h? = 6, then for each ¢ > 0, the limit

B(t) = lim X

(t) 6{% LRVZ (t)a

is a Brownian motion.

Ezxample 2.20. Let C[0, 1] be the Banach space of real-valued continuous functions

z on [0, 1] with 2(0) = 0 and the norm given by || 2[|oc = supg<,<; | z(t)|. Consider

the mapping p given by

M(A):/Uilj<mexp {—HD dus . . . dun,

where U € B(R™), the Borel o-field of R™ and A is a set (called a cylinder set) of
the form

A= {z € C0,1]; (z(t1),z(t2), ..., z(t,)) € U},

where 0 < #; < tp < --- < t, < 1. Then (C[0,1], B(C[0,1]), 1) is a probability

space and the stochastic process defined by

B(t,z) =z(t), 0<t<1, zeC0,1],



is a Brownian motion, a construction due to Nobert Wiener.

Two important properties of a Brownian motion are listed below.

Theorem 2.21. Let B(t) be a Brownian motion. Then for any s,t > 0, we have

E[B(s)B(t)] = min{s, t}.

Using this theorem and the definition of Brownian motion, we see that a stochas-
tic process X (t), t > 0 which is normally distributed with mean zero and variance

t and satisfying F[X (s)X (t)] = min{s, t}, is a Brownian motion.

Theorem 2.22. The path of a Brownian motion is nowhere differentiable almost

surely.

2.2 Absolute Continuity and Equivalence of
Probability Measures

Definition 2.23. Let (£2, F) be a measurable space. A probability measure @) is

absolutely continuous with respect to a probability measure P if P(A) = 0 implies

Q(A) =0, for any A € F. We denote this by @ < P.

Ezample 2.24. Let X be a nonnegative random variable on (€2, F, P) such that
Jo X dP = 1. Define Q : Q — [0, 00) by

Q(A):/AXdP, AeF.

Then Q(Q2) =1 and Q(A) > 0 for all A € F. If Ay, Ay, ... are disjoint sets in F,

then
Q (G An) = lim Q <0Al) = lim /znzlAiXdP
n—1 nee i—1 nmeeJai,
= ; /A nXdP

— ZQ(An).



Thus @ is a probability measure on (2, F). If P(A) = 0, then Q(A) = [, X dP = 0.
In fact, since 14X = 0 on A° (the complement of A), it follows that 14X = 0 P-
almost surely. It is a fact in analysis that if a measurable function f = 0 p-almost
eveywhere, then [, fdu = 0. Thus we get [, XdP = [,14XdP = 0. So Q is

absolutely continuous to P.

Definition 2.25. Two measures P and () are equivalent if P and () are absolutely
continuous with respect to each other, namely P < () and () < P. We denote

this by P ~ @ (or Q ~ P).

2.3 Conditional Expectation
Definition 2.26. Let X be an integrable random variable in a probability space
(Q,F,P) and let G C F be a sub-o-field of F. The conditional expectation of X

given G is the unique random variable Y such that
1. Y is G-measurable.
2. fGYdP = fGXdP for all G € G.

We usually write Y = E[X|G].

Remark 2.27. The existence and uniqueness of the conditional expectation is guar-

anteed by the Radon-Nikodym Theorem.

Theorem 2.28. (Radon-Nikodym Theorem) Suppose (2, F, P) is a probability
space. Let j1 be a signed measure (namely p : 2 — [—00, 00] is a o-additive function
on (2, F) such that u(¢) = 0 for null set ¢) such that p is absolutely continuous

with respect to P. Then there exists a unique integrable function f such that

M(A):/AfdP, A€ F.



Remark 2.29. The function f is called the density or the Radon-Nikodym derivative
dp

of p with respect to P. We write f = P

The following are some simple properties of conditional expectation.
Theorem 2.30. Let (2, F, P) be a probability space, G is a sub-o-field of F and
X € LY, F). Then each of the following hold almost surely:

(a) E(E[X|Q]) =FEX.

(b) If X is G-measurable, then E[X|G] = X.

(¢) If X and G are independent, then E[X|G] = EX.

(d) If Y is G-measurable and E| XY| < oo, then E[XY|G] = YE[X|G].

(e) If H is a sub-o-field of G, then E|E[X|G]|H] = E[X|H].

(f) Let ¢ be a convex function on R and suppose that o(X) is integrable with

respect to P. Then o(E[X|G]) < E[e(X)| G].

(9) Let X,, >0, X,, € L'(), n =1,2,..., and assume that liminf X,, € L' ().

n—o0

Then E [lim inf X,

n—oo

g] < liminf E[X,,|G].
2.4 Martingales
One of the important properties of a Brownian motion is the martingale property.

In this section, we define the concepts of martingales and local martingales.

Definition 2.31. Let T" be either Z, (the set of positive integers) or an interval
in R. A filtration on T is an increasing family {F; : t € T'} of o-fields. A stochastic
process {Xy;t € T} is said to be adapted to the filtration {F; : t € T} if for each

t, the random variable X; is F;-measurable.

10



Remark 2.32. We always assume that all o-fields F; are complete, namely if A € F;

and P(A) =0, then B € F, for any subset B of A.

Definition 2.33. For a filtration {F; : t € T} on a probability space (Q, F, P),

we define Fy, = ()., Fs for any ¢t € T. We say that the filtration {F, : t € T} is

s>t

right continuous if F = F; for every t € T'. In particular, if ¢ € [a, b], a filtration
{Fi;a <t < b} is said to be right continuous if F, = (), Fy 1 for all ¢t € [a,b),

where by convention F; = F, when ¢ > b.

Definition 2.34. Let X; be a stochastic process adapted to a filtration {F; : t €
T} and E|X;| < oo for all t € T. Then X; is called a martingale with respect to

{F}ifforany s <tin T,
E{X:|F} = X, almost surely. (2.1)

Remark 2.35. If the filtration is not explicitly specified, then the filtration {F;} is

understood to be the one given by F;, = o{X,; s < t}.

Remark 2.36. If the equality in Equation 2.1 is replaced by > (or <), then X, is

called a submartingale (or supermartingale) with respect to {F;}.

Ezample 2.37. A Brownian motion B(t) is a martingale. In fact, for s < t,

E[B()|Fs] = E[(B(t) — B(s)) + B(s)| ]
= E[B(t) — B(s)| Fs] + E[B(s)| ]
= FE[B(t) — B(s)] + B(s)

where we had used properties 2 and 3 of Definition 2.17 to get the last two equal-

ities.

11



Example 2.38. For a Brownian motion B(t), the process B(t)? is a submartingale.

In fact, for s < t,

E[B(t)!| 7] = E{(B(t) - B(s)) + B(s)}*| 7]
= E[(B(t) - B(s))’| %] + 2B(s)E[B(t) — B(s)| 7]
+E[B(s)*| 7]
= EB[(B(t) — B(s))’] + 2B(s)E[B(t) — B(s)] + B(s)’
= (t—s)+0+ B(s)’ (2.2)

> B(s)%

From Equation 2.2 we can see that the process B(t)* — t is a martingale.

Definition 2.39. A random variable 7 :  — [a, b] is a stopping time with respect
to the filtration {Fy;a <t < b} if {w;7(w) <t} € F; for all t € [a,b], i.e., the set

{r <t} is Fi-measurable.

Remark 2.40. The b in the above definition is allowed to be oo.
Remark 2.41. In the case of discrete ¢, the requirement in Definition 2.39 is
equivalent to {r = t} € F because {7 =t} = {7 < t} —{r <t -1} and
{r<ty=Ui.{r=k}

Given a right continuous filtration, we have the following characterization of a
stopping time.
Theorem 2.42. Let {F;;a <t < b} be a right continuous filtration. The random
variable T : Q — [a,b] is a stopping time with respect to {F;} if and only if
{w;T(w) <t} € F; for allt € [a,b].
Remark 2.43. A random variable 7 is a stopping time if and only if {w;7(w) >

t} € F forall t € [a,b].

12



Ezample 2.44. If T = ¢ € [a, b], then 7 is a stopping time because {7 = n} is either

an empty set ¢ or €2 for any n, 1 < n < oc.

Ezxample 2.45. Let {X;} be a sequence of Fi-adapted random variables defined on
a probability space (2, F, P) with filtration {F;}. For A € B(R), define

inf{t; X;(w) € A}, fort>1,
0, otherwise.

Then 7 is a stopping time since for any finite ¢ > 1,
{T:t} - {Xl gAaXQ gA)"th—l €A7Xt EA} EE?

and for ¢ = oo,

{r=00} =0 — {7 <0} € F.

Definition 2.46. An F;-adapted stochastic process X;, a < t < b is called a
local martingale with respect to {F;} if there exists a sequence of stopping times

Tn,n = 1,2,..., such that
1. 7, increases monotonically to b almost surely as n — oo;
2. For each n, X, is a martingale with respect to {F;;a <t < b}.

Remark 2.47. A martingale is a local martingale (let 7,, = b for all n). However the
converse is not true. For an example of a local martingale which is not a martingale,
refer to [22](page 37), [11](page 168) or Example 3.18 below.

Ezxample 2.48. Since a Brownian motion B(t) is a martingale, by the above remark,

it is a local martingale.

A cornerstone result in martingale theory is the Doob-Meyer decomposition The-

orem. This theorem states that under certain conditions, a submartingale X ()

13



with respect to a right continuous filtration {F;} can be decomposed as a sum of

a martingale M (t) and an increasing process A(t), i.e.,
X(t) = M(t)+ A(2). (2.3)
For details, see [11].

Definition 2.49. The process A(t) in Equation 2.3 is called the compensator of
X(t).

Example 2.50. The compensator of B(t)? for a Brownian motion B(t) is ¢ since
B(t)* = (B(t)* —t) +1,

and B(t)? and B(t)?—t are submartingale and martingale respectively, by Example

2.38.

2.5 Some Inequalities

We end this chapter with a discussion of some inequalities that may be needed in

this dissertation.

Theorem 2.51. (Hoélder’s inequality)

(a) (Analysis version) Let (X, B, i) be a measure space and let f and g be two
measurable functions on X such that | f|,|g| < oo almost everywhere on X.

Then for any p,q € (1,00) such that % + % =1, we have

/X!fg\dug[/ny\pdur{/)(\gypdu];.

(b) (Probability version) Let X and Y be two random variables in a probability
space (Q, F, P) such that E| X|P < oo and E|Y|? < oo, where % —|—é = 1.
Then

E|XY| < (E|X[P)7 (E| Y] 9.

14



When p = ¢ = 2 in the Holder’s inequality, we have the following celebrated

inequality.

Theorem 2.52. (Schwarz’s inequality)

(a) (Analysis version or Integral form) Let (X, B,u) be a measure space with
f and g two measurable functions on X such that | f|,|g| < oo almost

everywhere on X. Then

[ 1 soldn < UX|f|2duH/X|g|2dur

(b) (Probability version or Expectation form) Suppose X and Y are random

variables with finite variances in a probability space (2, F, P). Then
E| XY| <\ E(X?) E(Y?).

Theorem 2.53. (Jensen’s inequality)

(a) (Analysis version) Let (X, B, ) be a measure space. Let g be a real valued
B-measurable and p-integrable function on a set A € B with pu(A) € (0,00).

If f is a convex function on an open interval I in R and if g(A) C I, then

f(ﬁ/f‘gd@ Sﬁ/fl(fog)du,

where f o g denotes the composition of f and g.

(b) (Probability version) Let X be a random variable on a probability space

(Q,F,P). Let f be a convex function on R, and suppose that X and f(X)

are integrable. Then

fEX) < E(f(X)).

15



Chapter 3

Stochastic Integrals

Let (Q,F,P) be a probability space and let B(¢) be a Brownian motion with

respect to P. In this chapter, we discuss integrals of the form

/ £(t) dB(t)

where f is in certain classes of functions. For each class of functions, some proper-
ties of the integral will be given. For a more detail discussion on these stochastic

integrals, the reader can refer to [14].

3.1 Wiener Integral
Let f be a real-valued square integrable function on [a,b], i.e., f € L?[a,b]. Then

the integral
/bf(t)dB(t,w), f € L?[a,b],
is called a Wiener integral.
The integrals fol eldB(t), fol tsin(7) dB(t) and fol t dB(t) are examples of Wiener
integrals.
Remark 3.1. Let C[0, 1] be the set of real-valued continuous functions z(¢) on the
interval [0, 1] with (0) = 0. The integral on C]0,1] with respect to the Wiener

measure w in C[0, 1] is called a Wiener integral. The Wiener measure w is defined

by

1
V@T)m(ts — ) - (e — taos)

1 (u? (up —up)? (Un — Up_1)°
o T e N g dug - - - duy,
/EeXp{ 2<t1+ S itz
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w(l) =




where E is a Borel subset of R™ and I is the cylinder set I = {x € C|0,1] :
(x(t1),...,x(ty)) € E} for 0 <ty <ty <--- <t, <1 (see [25]).

Let L%*()) denote the Hilbert space of square integrable real-valued random
variables on Q with inner product (X,Y) = E(XY'). We outline the construction

of the Wiener integral fab f(t)dB(t,w).

Step 1. f is a step function

Suppose f is a step function given by

f = Z ail[ti_l,ti%
=1

where a =ty < t; < ... <t, =b. Define

Istep(f) = Z a; (B(tl) - B(tl—l)) :

Then g, is linear and the random variable Iy.,(f) is Gaussian with mean zero
and variance E [{Ise,(f)}?] = f(f f(t)?dt.
Step 2. f € L?[a, |
Choose a sequence { f,, }o-_, of step functions such that f,, approaches f in L*[a, b].
The sequence {Ige,(fn)}, is Cauchy in L*(€2), hence it is convergent in L*(12).
We set
I(f) = lm Ligp(£) in LA(Q),

and write

I(f)(w) = </abf(t) dB(t)) (W), we, almost surely.

This I(f) is the Wiener integral. We also denote it by fabf(t) dB(t,w) or just
J2 f(t)dB(t).
Theorem 3.2. For each f € L*[a,b], the Wiener integral f;f(t) dB(t) is a Gaus-

sian random variable with mean zero and variance | f||721,, = f; |f(t)]dt.

17



Ezample 3.3. The (Wiener) integral fol t? dB(t) is a Gaussian random variable with

) 1
mean zero and variance fo thdt = %

It is easy to check that I : L?[a,b] — L*(Q) is a linear transformation, whence

we have the following:

Corollary 3.4. If f,g € L*[a,b], then

b
EI(f)1(g)] = / F(B)g(t) d.

3.2 Ito Integral

Suppose B(t) is a Brownian motion, and let {F;;a <t < b} be a filtration such

that
(a) for each t, B(t) is Fi-measurable,

(b) for any s < t, the random variable B(t) — B(s) is independent of the o-field

Fs.

Let L2, ([a,b] x Q) denote the space of all stochastic processes f(t,w), a <t <b,

w € (1, satisfying
(i) f(t) is adapted to the filtration {F;}:
(i) [PE| f(t))dt < .

Remark 3.5. Note that by Fubini’s theorem (see [2]), condition (ii) can also be

written as Efab | f(t)|?dt < 0.

The stochastic integral
b
/ f(t,w)dB(t,w), f¢€L2;([a,b]x Q)

18



is called an [to integral. For convenience, we suppress the w and we just write
f f(t) ). Before presenting some examples, let us consider the construction of

the Ito integral.

Step 1. f is a step stochastic process in L2 ([a,b] x Q)

Suppose f is a step stochastic process given by

Z& w) L,y (2),

where & _; is JF;_;-measurable and E[(&_I)Z} < 00. Define

step Z é@ z (tzfl)) .

Then I, is linear, E[ly.,(f)] = 0 and

ﬂmmmmz/Ewat

Step 2. Approzimation of f € L?,([a,b] x Q) by step processes

Suppose f € L?,([a,b] x ). Then there exists a sequence {f,(t);n > 1} of step
stochastic processes in L2,([a, b] x Q) such that

b

tim [ (] £(0) = fu(0)")dt = 0

ie., f, — fin LZ,([a,b] x Q).

Step 3. f € L?,([a,b] x Q)

By Steps 1 and 2, there exists a sequence {f,(t,w);n > 1} of adapted step

stochastic processes such that

lim E(| Istep(fn) - Istep(fm)| 2) = 0.

n,m—00
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Hence the sequence {Ig.,(f,)} is Cauchy in L*(Q2). For f € L2,([a,b] x Q), define
I(f) = lim Lyep(fn), in L*(S).
Then denote I(f,w) = fabf(t,w) dB(t,w) for f € L%,([a,b] X Q).

Remark 3.6. For a deterministic function f(¢), the It6 integral f; f(t)dB(t,w)

agrees with the Wiener integral defined in section 3.1.

Example 3.7. Let f(t,w) = B(t,w). Since B(t) is adapted to the filtration {F;}, it

follows that f(t) is Fr-adapted. Also

b b
1
/E|B(t)|2dt:/ tdtzé(bQ—a2)<oo.

So fab B(t) dB(t) is an It6 integral. In fact it can be shown (see Example 3.23) that

/ B(t)dB(t) = 7 (B®)’ ~ B(a)’ — (b—a)) (3.1)

FEzample 3.8. The integral f: eB® dB(t) is an Ito integral because e®) is F;-

adapted and

E‘ 62B(t)|

I
)

thus fab E} eB(t)}Z dt = fab etdt = %(6% — 62“) < 00.

Theorem 3.9. Suppose that f € L2, ([a,b] x Q). Then the Ité integral I(f) =

f;f(t) dB(t) is a random variable with mean E[I(f)] =0 and variance

E(1H1) = [ Elrw)dr

a
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Ezample 3.10. Consider f(t) = sgn(B(t)). Since

b b
/ E|sgn(B(t))|2dt:/ BE(l)dt = b—a < oo,
it follows that f(t) = sgn(B(t)) € L?,([a,b] X Q). By Theorem 3.9, the random

variable fab sgn(B(t)) dB(t) has mean 0 and variance ff E|sgn(B(t)))?dt =b—a.

Suppose that f € L2;([a,b] x Q). Then for any ¢ € [a, ], f; E|f(t)?dt <
fabE| f)]?dt < 0. So f € L2;([a, 1] x Q) and the integral [! f(s) dB(s) is well-
defined. Consider a stochastic process given by

X, = /tf(s)dB(s), 0 <t<b

Note that by Theorem 3.9, we have
t 2 b
E(|X,?) = E‘/ f(s)dB(s)| < / E| f(s)]*ds < 0.

So by Theorem 2.52, E| X;| < [E (] X¢| 2)]1/2 < 0. Hence for each t, the random

variable X; is integrable.
The next two theorems discuss the martingale and continuity properties of the

[to integral.

Theorem 3.11. Suppose f € L2, ([a,b] x Q). Then the stochastic process

Xt:/tf(s)dB(s), a<t<b

is a martingale with respect to the filtration {F; : a <t < b}.

Example 3.12. The stochastic processes [ B(s)dB(s) and [’ eP¢)dB(s) are mar-

tingales.

Theorem 3.13. Suppose f € L2, ([a,b] x Q). Then the stochastic process

Xt:/tf(s)dB(s), a<t<b

is continuous, i.e., almost all its sample paths are continuous functions on [a,b).
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Ezample 3.14. Consider f(t) = sgn(B(t)). In Example 3.10 we showed that f(t) =
sgn(B(t)) € L?,;([a,b] x Q). Therefore X; = f(f sgn(B(s))dB(s), a <t < b, is a

continuous martingale by Theorems 3.11 and 3.13.

In Theorem 3.11, we showed that if f € L2, ([a,b] x ), then the stochastic
process X; = f; f(s)dB(s), a <t < b,is amartingale with respect to the filtration
{F:}. The converse is also true, i.e., any Fi-martingale can be represented as an

It6 integral. In particular we have the following result due to Ito (see [20]).

Theorem 3.15. Let F' € L?(Fr, P), then there exists a stochastic process f €

L2,([0,T] x Q) such that

F— B[P+ /OT F(£)dB(?).

3.3 An Extension of the Ito Integral

As in previous section, we fix a Brownian motion B(t) and a filtration {F;a <

t < b} such that
(a) for each t, B(t) is Fi-measurable,
(b) for any s < t, the random variable B(t) — B(s) is independent of the o-field
F.

In this section, we define the stochastic integral fab f(t)dB(t) for the stochastic

process f(t,w) satisfying
(a) f(t) is adapted to the filtration {F;};

(b) fab | f(#)]? dt < oo almost surely.

Condition (b) tells us that almost all sample paths are functions in the Hilbert
space L*[a,b]. Hence the map w +— f(-,w) is a measurable function from Q to

L?[a,b).
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We will use the notation L,4(f2, L?[a,b]) to denote the space of all stochastic
processes f(t,w) satisfying conditions (a) and (b) above. Now we briefly outline

the definition of the stochastic integral ff f()dB(t), f € Laa(2, L*[a,b)).

Step 1. Approzimation of f € L.a(Q2, L*[a,b]) by processes in L2, ([a,b] x Q)

Let f € L.4(, L?[a,b]). Then there exists a sequence {f,} in L2, ([a,b] x Q)

such that
b

lim [0 = f@)Pd =0

almost surely, and hence in probability.

Step 2. Approzimation of f € Laq(Q, L*[a, b]) by step processes in L2, ([a, b] x Q)

Let f € L,4(Q, L?[a,b]). Then there exists a sequence {f,} of step processes in
L?,([a,b] x Q) such that

lim b | fut) = f(O)]Pdt =0

n—oo
a

in probability.
Step 3. General case
With the sequence { f,} of step stochastic processes in LZ; ([a,b] x Q) from Step

2, define for each n
Lstep(fn) = / b fu(t) dB(t).
It can be shown that the sequence {I.,(f,)} converges in probability. Then let
b
/ f(t)dB(t) = 7}1_{1010 Lstep(fn), in probability
for f € Laa(Q, L?[a, b]).

In the previous section, we saw that for f € L2, ([a,b] x ), Eff | f()]? dt
:f;E(]f(t)P) dt < oo. It follows that ff|f(t)|2dt < oo almost surely since

if fab | f(t)|?dt = oo, then Eff | f(t)|?dt = oo, which is absurd. This shows that
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we have a larger class of integrands f(t,w) for the stochastic integral fab f(t)dB(t),
namely L2, ([a,b] x Q) C L44(Q, L*[a, b]). The difference between them is the pos-

sible lack of integrability for f € L,4(2, L*[a,b]).

Ezample 3.16. Consider the stochastic process f(t) = eB®* Note that

E(lf1))%) = E [62B<t)2]

o0 5 1‘2

2x 1 —

—= —_— 2t

/ e pme Hdr
— 00

22

() dx

2

_1 > S S
1-at —00 \/27T(1—t4t)

1 : 1.
\/1——74t’ 1f0<t<z,

00, if t > 1.
So [ E| f(t)|?dt = oo, which implies that f ¢ L2,([0,1] x Q). However, f €
L2,([0,¢] x ), where 0 < ¢ < 3. On the other hand, since f(t) is a continuous

function of t, we have that [ | f(t)|>dt = [, €2P@*dt < 00. S0 f € Laa(Q, L2[0,1]).

As stated above, the stochastic process f € L,4(€2, L?[a, b]) may lack the integra-
bility property. So the stochastic integral f; f(t)dB(t) is just a random variable
and may have infinite expectation as seen in Example 3.16. Thus the stochas-
tic process X; = fat f(s)dB(s) may not be a martingale for f € L,4(Q, L*[a,b]).

However, we have the following:

Theorem 3.17. Let f € L,4(Q, L?[a,b]). Then the stochastic process

t
X, :/ F(s)dB(s) a<t<b
is a local martingale with respect to the filtration {Fy;a <t < b}.

Ezxample 3.18. By Theorem 3.17 and Example 3.16, the stochastic process X; =

fol eB®” dB(t) is a local martingale but not a martingale.
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In Theorem 3.13, we saw that for f € L2, ([a,b] x Q), the stochastic process
X, = fot f(s)dB(s) is a continuous function of ¢t. For f € L,4(Q, L*[a,b]), we have

the following theorem.

Theorem 3.19. Let f € L,4(Q, L?[a,b]). Then the stochastic process

t
Xt:/ f(s)dB(s) a<t<b
has a continuous realization.

Now consider the stochastic integral fg B(1)dB(s), where 0 < t < 1. Note that
this integral is not defined as an integral we have seen in this chapter because B(1)
is non-adapted. However this integral can be defined by extending the stochastic

integral f; f(t) dB(t) to non-adapted integrand f(t¢), as one may see in [9].

3.4 1Ito’s Formula

In ordinary calculus, we deal with deterministic functions. One of the most im-
portant rules in differentiation is the Chain Rule, which states that for any dif-
ferentiable functions f and g, the composite function f o ¢ is also differentiable

and
9 (roa)t) = 1(0) = [e0)dO).

In terms of the Fundamental Theorem of Calculus, we have

o) - ota) = [ P (5) ds.

In It6 calculus, we deal with random functions, i.e., stochastic processes and we
have the counterpart of the above Chain Rule. One must note that there is no
differentiation theory in It6 calculus since almost all sample paths of a Brownian
motion B(t) are nowhere differentiable (Theorem 2.22). Nevertheless we have the

integral version which we call the Ito formula or the change of variables formula.
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In this section, we will see several versions of Ito’s formula. For the proofs, the
reader can refer to [14].
Let B(t) be a Brownian motion. We start with the simplest form of the It6

formula.

Theorem 3.20. Let [ be a C?-function, i.e., [ is twice differentiable and f" is

continuous. Then

FBO) - f(Bla) = [ F(BE)BE) +5 [ FBE)s (62

Remark 3.21. The first integral on the right is an [t0 integral as defined in Section

3.2 and the second integral is a Riemann integral for each sample path of B(s).

Remark 3.22. The extra term 3 fcf f"(B(s))ds is a consequence of the nonzero
quadratic variation of the Brownian motion B(t). This extra term distinguishes

[to calculus from ordinary calculus.

Ezample 3.23. Let f(z) = 2. Then by Equation 3.2, we get
t
B(t)? — Bla)? =2 / B(s) dB(s) + (i — a)

namely
/ B(s)dB(s) = 5 [B(t) ~ B(a)* — (t —a)]

This is equivalent to Equation 3.1 in Example 3.7 with b = t.
Example 3.24. Let f(x) = 23. Then by Equation 3.2,

B(t)* = B/tB(s)2dB(s) + B/tB(s) ds.

So,
/OB(S)QdB(s):éB(t)‘g—/O B(s) ds.
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Ezample 3.25. Let f(z) = ¢**. Then by Equation 3.2,

¢ t
PO _ 1 = 2/ B(s)eP®” dB(s) — / (eB(5)2 + 23(8)263(8)2> ds.
0 0

Now consider a function f(t,z) of x and t. Set + = B(t,w) to get a stochastic
process f(t, B(t)). Notice that now ¢ appears in two places: as a variable of f and
in the Brownian motion B(t). For the first ¢, we can apply ordinary calculus. For
the second ¢ in B(t), we need to use Ito calculus. This leads to the second version

of Itd’s formula:

Theorem 3.26. Let f(t,x) be a continuous function and have continuous partial

derivatives aa{, % and 0 f Then

f(tB(t)) = /a (s, B(s)) dB(s /a

+ s 2(3 B(s)) ds. (3.3)

Example 3.27. Let f(t,z) = 22 — t. Then by Equation 3.3,
B> -t = (B(a)’*—a)+ /t 2B(s)dB(s) + /t(—l) ds + % /t2ds
= B(a)Q—a+2/0 B(s)dB(s) — (t —a)+ (t — a)

which gives

[ B)aBes) = 5 [BO? - Ba? - (¢~ o],

which is the same as in Example 3.23.

Ezample 3.28. Let f(t,z) = e*=2'. Then by Equation 3.3,

t t t
eBO-3t = 14 / eB)-2s dB(s) — 1 / B2 g5 + l/ B35 g
0 2 Jo 2 Jo

t
= 1+/ B()=35 4B(s).
0

Note that by Theorem 3.11, eB(®~2¢ is a martingale.
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Now let {F;a <t < b} be a filtration as specified for It6 integrals in Sections

3.2 and 3.3, namely
(a) for each t, B(t) is Fi-measurable,

(b) for any s < t, the random variable B(t) — B(s) is independent of the o-field

Fs.

Recall that £,4(Q, L*[a, b]) is the class consists of all F;-adapted stochastic pro-
cesses f(t) such that f; | f(t)|?dt < oo almost surely. Now we introduce the class
L.q4(Q, La, b]), that is the class of all Fi-adapted stochastic processes f(¢) such

that f: | f(t)| dt < oo almost surely.

Definition 3.29. An It6 process is a stochastic process of the form

Xt:Xa+/tf(s)dB(s)+/tg(s)ds, a<t<hb,

where X, is F,-measurable, f € L44(Q, L?[a,b]) and g € Lqq(Q, L'[a,b]).

It is common to write the equation above in the “stochastic differential” form:
dX; = f(t)dB(t) + g(t) dt.

Again, note that this “stochastic differential” form has no meaning because Brow-

nian motion paths are nowhere differentiable.

Ezample 3.30. Let f € L,q4(Q, L?[a, b]). Then
t t
X=X, +/ f(s)dB(s) +/ f(s)?ds, a<t<b,
is an It6 process. For example, let f(t) = B(t) or f(t) = eB® or f(t) = PO’
Next is the third (more general) version of the It6 formula.
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Theorem 3.31. Let X; be an Ito process given by

Xt:Xa—{—/tf(s)dB(s)—i—/tg(s)ds, a<t<hb.

00 00

Suppose 0(t,x) is a continuous function with continuous partial derivatives %;, 5=

and g—ig. Then 0(t, X;) is also an Ité process and

0(t.X) = b0 X)+ 00 (s, X.)f(5) dB(s)
00

b G + G Xa(s) + 5555 X (5] . (30

In using Equation 3.4, the following table called the Ito table is very useful:

Table 1 : Ito table 1

X | dB(t) dt

dB(t)| dt 0

dt 0 0

For example, if dX; = f(t) dB(t) + g(t) dt, then
(dX0)* = f()*(AB(1)* + 2 (t)g(t)dB(t)dt + g(t)* (dt)* = f(t)*dt
Ezample 3.32. Let f € L,q4(, L*[0,1]). Consider the Itd process
t 1 t
Xy = dB(s) — = ds, 0<t<1,
| srane) =5 [ reras o<

and the function §(z) = e*. Then dX, = f(t)dB(t) — 5 f(t)*dt. Apply the Taylor

expansion and use [to table 1 to get

1
do(X,) = eXtht+§eXt (dX;)?

= X (f(t) dB(t) — %f(t)z dt) + % et f(t)? dt
= f()eXdB(t).
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Therefore, we have

t
i P dB(9)=1 [ f(s)7ds _ { +/ F(s)elo S Bl =3 [ fw)?du g B (g).
0

By Theorem 3.17, the stochastic process Y; = elo F(8)dB(s)=3 [ F()%ds ig 5 local

martingale.

We can extend the general form of 1t0’s formula in Theorem 3.31 to the multidi-

mensional case. Let By(t), Ba(t), ..., By(t) be m independent Brownian motions.
Consider n Itd processes Xt(l), Xt(2), e ,Xt(") given by

A ‘ m t t
XO=XP 3 [ a8+ [ a()ds 1<i<nasi<h (35)
j=17¢ ¢

where fi; € L44(Q, L?[a,b]) and g; € L,4(Q, L[a,b]). Equation 3.5 can be written

as a matrix equation

Xt:Xa+/tf(s)dB(s)—i—/tg(s)ds, a<t<b, (3.6)
where
Bi(t) X"
B(t) = , X, = ,
By(t) X
o) - fun®) [0.(0)
fey=1 - s 9= | (3.7)
fm1 (t) fnm(t) _gn(t)

With this notation, we have the [t6 formula in the multi-dimensional case.

Theorem 3.33. Let X; be an n-dimensional Ito process given by
t t
X=X, +/ f(s)dB(s) —|—/ g(s)ds, a<t<b,
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with X, f(s), g(s) and B(s) as in FEquation 3.7. Suppose O(ti,z1,...,x,) i a

continuous function on [a,b] x R™ with continuous partial derivatives %, % and

8:13 az for 1 < 1,7 < n. Then the stochastic differential of 6’<t X( ) ,Xt(n)) 15

given by

0 (t, X ,X§">>

By, . " 90 -
_ (t,X§1>,...,X§ >> dt+2%(t,Xt(l),...,Xt( >) dx®

1 , ,
D xX™Y) ax@gx
5 Ej 820] (t xW X! )dXt dx,

The product dXt(i)dXt(j ) can be computed by using the following table

Table 2 : It6 table 2

dB(t) | 6ydt 0

dt 0 0

The product dB;(t)dB;(t) = 0 for ¢ # j is the symbolic expression of the follow-
ing fact:
Fact 3.34. Let By(t) and By(t) be two independent Brownian motions and let

A, = {to,t1,...,t,_1,t,} be a partition of [a,b]. So

n

> (Bult) = Ba(ti-) (Bo(t) = Balti1)) — 0

in L*(Q) as ||A,|| = maxi<i<,(t; — t;_1) tends to 0.

Ezample 3.35. Let 0(z,y) = xy. Then we have 2 % =y, gz =z, aax—zgy = 8‘2;01 =1

and gii = g—zg = 0. Hence by Theorem 3.33 for two processes X; and Y;, we have

1 1

— Y,dX, + X, dY; + dX, dY, (3.8)
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Therefore,

t t t
Xth:XaYaJr/ YSdXs+/ Xdeer/ dX, dY,. (3.9)

a

Equations 3.8 and 3.9 are called the product formulas for Ito processes.

3.5 Applications of It6’s Formula

The It6 formula plays an important role in It6 calculus. It has many useful appli-
cations in stochastic analysis. In this section, we see some of its applications. The
first is to find the Doob-Meyer decomposition for submartingales that are functions
of a Brownian motion B(t).

Let f € L?,([a,b] x ) and consider a stochastic process M (t) defined by
ad

M(t):/tf(s)dB(s), a<t<h.

By Theorem 3.11, we know that M (t) is a martingale. Let ¢ be a C*-function.

Then by Ito’s formula (Equation 3.2),

POI(0) = p(0) + [ G IENI6) B + 5 [ M5 ds. (310)

Furthermore, suppose that ¢ is convex and Ef: |/ (M(t))f(t)|*dt < oo. Then
@(M(t)) is a submartingale by the conditional Jensen’s inequality (see Theorem
2.30(f)). Hence Equation 3.10 gives the Doob-Meyer decomposition of the sub-
martingale (M (t)).

Ezample 3.36. Let o(x) = 2%, M(t) = B(t) and f = 1. Then by Equation 3.10,

B(t)? = Q/tB(s)dB(s) +t.

The compensator of B(t)? for Brownian motion B(t) is given by (B); = t. More

generally, for f € L2, ([a,b] x Q), the compensator (M), of M(t)? is given by

)= [ 56as.
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The next application of 1t0’s formula is in the proof of the Lévy Characteriza-
tion Theorem [14]. This theorem gives condition for a stochastic process to be a
Brownian motion under a certain probability measure. In the next chapter, we use

this theorem in the proof of our main result.

Theorem 3.37. (Lévy Characterization Theorem) A stochastic process M (t), a <
t < b, is a Brownian motion if and only if there exist a probability measure () and
a filtration {F} such that M(t) is a continuous martingale with respect to {F;}
under Q, Q{M(0) =0} =1 and (M), =t almost surely with respect to Q for each

t.

Example 3.38. Let B(t), 0 < ¢t < 1 be a Brownian motion with respect to the
probability measure P in a probability space (€2, F, P). Note that the process
W(t) = B(t) —t, 0 <t <1 is not a Brownian motion with respect to P because
Ep[B(t) — t| = —t, which is not constant.

Define @ : F — [0,00) by
Q(A) = / ePO3 4P, Ac F. (3.11)
A

Observe that

Q) = /963(1)5 dP = ez /Rex\/L?r e 2% dy = /R\/% e 2@ gy = 1.

So @ is a probability measure. We will show that W () is a Brownian motion with
respect to () using Theorem 3.37.

Let F; = o{B(s);s < t}. Note that the probability measures P and @) are
equivalent since from Equation 3.11 we can write P(A4) = [, ez B dQ for A € F.

Thus

Q{w; W(0,w) =0} = P{w; B(0,w) =0} =1
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and
Q{w; W (t,w)is continuous in t} = P{w; B(t,w) is continuous in t} = 1.

To show that W(t) is a martingale with respect to @, first note that eBM-3 s

a martingale as seen in Example 3.28 with ¢t = 1. For any A € F;,

/W(t)dQ = /W(t)eBU)—%dP
A A
— Bp [1aW (1) P03

= EP {EP |:1AW(t) eB(l)ié

)

= Ep {1AW(t)Ep [63(1)7%

— Bp [1 AW () eB(t)_%t}

= / W (t) POzt gp
A

With this equality, we can show that W (¢) is a martingale with respect to @ if and
only if W(t)eB®3t is a martingale with respect to P.

For 0 < s < t, suppose W (t)eB®~z! is a P-martingale. Then for any A € Fi,

/A Eq [W(t)|F] dQ = /A W(t)dQ

= | W(t)eBO2tqp
A

= /EP [W(t)eB(t)*%t
A

= W(s)eB(S)_%S dP
A

= [ W(s)dQ.
A

]-"S] dP

So Eq [W(t)|F,] = W(s), i.e., W(t) is a Q-martingale.
Conversely, suppose that W(t) is a Q-martingale. Then we can show in a similar

manner that W ()e?®~2" is a P-martingale.
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With this fact, let f(t,:z:) = (x —t)e* 2", Then % — —eal — s(z — t)em 3t

% = e"" 3! 4 (z — t)e* 2! and gm’; = 2¢" 3! 4 (z — t)e” 2", So by Itd’s formula,

t
W (t)ePO-3t = / (1+ B(s) — s) P25 dB(s),
0

which implies that W (¢)eB®~2 is a martingale with respect to P. Thus W (t) is a
martingale with respect to Q.
Also since d(W), = (dW(t))? = (dB(t) — dt)? = dt, it follows that (W), = t.

Therefore by Theorem 3.37, W(t) is a Brownian motion with respect to Q.

Ezample 3.39. Let B(t) be a Brownian motion with respect to a probability mea-
sure P and let F; = 0{B(s);s < t} be a filtration. Consider the random variable
X, = fot sgn(B(s)) dB(s). Then obviously P{Xy =0} = 1 and also X; is a contin-

uous martingale with respect to P and F; by Example 3.14. The compensator of

t
t—/lsgn |2ds—/1ds:t.
0

Hence by Theorem 3.37, the stochastic process X; is a Brownian motion with

X2 is given by

respect to the probability measure P. From Example 3.10, we have that X; — X
has mean zero and variance t — s. So X, — X, is a Gaussian random variable
with mean 0 and variance b — a. This example shows that the stochastic integral

f: f(t)dB(t) can be Gaussian even when the integrand f(¢) is not deterministic.
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Chapter 4

Girsanov Theorem

In this chapter, we prove our main result, the Girsanov Theorem. The result of
this theorem is well known for a condition on exponential process given by h in
L,4(2, L?[a, b]) (see [14]). Here we show the result for the exponential process given
by h in L2, ([a,b] x Q) which satisfy some new moment conditions. We begin by

introducing the exponential process.

4.1 Exponential Processes
Definition 4.1. The ezponential process given by h € L,4(Q, L*[0,T]) is defined

to be the stochastic process
gh(t) _ efot h(s) dB(s)—%fOt h(s)? ds7 0<t< T
Example 4.2. Let h(t) = 1. Then

Eu(t) = i 1B 1200 _ B~

is an exponential process.

Ezample 4.3. Let h(t) = sgn(B(t)), namely h(0) = 0 and h(t) = |§8\ for t # 0.

Then

En(t) = els smBEaBO -3 g <y < T,

is an exponential process.

Ezample 4.4. Let h € L,4(Q, L?[0,T]). Then

Eh(t) _ efg h(s)dB(s)—% [ h(s)? ds’ 0<t<T.
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Let X, = [o h(s)dB(s) — L [ h(s)?ds. By applying the Ito formula (Equation 3.4)

with 0(z) = €*, we get

dEn(t) = 5h(t)dXt+%8h<t)(dXt)2

= &Eut) h(t)dB(t)—%h(t)Zdt +%8h(t)(h(t)2dt)

= &En(t)h(t)dB(t).
So, E(t) =1+ fot En(s)h(s) dB(s). By Theorem 3.17, &,(t) is a local martingale.

In general, we have the following:

Theorem 4.5. The exponential process E,(t) given by h € La4(Q, L*[0,T]) is a

local martingale and a supermartingale.

Proof. The process &(t) is a local martingale is shown in Example 4.4.

Since &,(t) is a local martingale, there exists a sequence of stopping times 7,
increasing to 7" almost surely such that &, (tAT,) is a martingale, namely for s < ¢,
E[&n(t A 1) Fs] = En(s A 1y). Since E(s A 7,) — En(s) almost surely as n — oo

for any s € [0, 7], we have by Conditional Fatou’s lemma

E[& ()| Fs] = E[liminf &, (t A 7,)| Fs

n—oo

< liminf E[EL(t A 1) | Fs]

n—oo

= liminf &, (s A 7,)

n—oo

== gh(s).
By Remark 2.35, the process &(t) is a supermartingale. ]

We know that in general a local martingale is not necessarily a martingale. The

following theorem gives a condition for which an exponential process given by

h € L,q4(Q2, L*0,T)) is a martingale.
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Theorem 4.6. Let h € L,4(Q, L?[0,T]). Then the exponential process E,(t),0 <

t < T, is a martingale if and only if E[EL(t)] =1, for each t € [0,T].
Proof. Refer [11], [14]. O

Example 4.7. Consider the exponential process in Example 4.2. Note that

E& ()] = E [eB(t)_%t}

— ¢ 3'F [GB(t)}

So by Theorem 4.6, & (t) = eB®3t 0 < t < T is a martingale. Note that in

Example 3.28, we also showed that & () = eB®~2 is a martingale.

We have seen in Chapter 3 that L2,([0,T] x Q) C La(Q, L*[0,T]). Thus for
h € L2,([0,T] x Q), the exponential process &,(t), 0 < ¢t < T is a martingale if
E[&,(t)] = 1 by Theorem 4.6. The next theorem gives another sufficient condition

for the exponential process &,(t) given by h € L?,([0,T] x Q) to be a martingale.

Theorem 4.8. Let h € L2,([0,T] x Q). Then the exponential process E,(t), 0 <

t < T is a martingale if
T
E/ En(t)?h(t)? dt < co.
0
Proof. As in Example 4.4, use the [t6 formula to get
t
En(t) =1 +/ En(s)h(s)dB(s), 0<t<T. (4.1)
0

So if E [} Ex(s)?h(s)?ds < 00, 0 < t < T, then &,(t)h(t) € L2,([0,T] x Q). Thus

&n(t) is a martingale by Theorem 3.11. O
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Ezample 4.9. For h(t) =1,0<t < T,
t t t
E | &(s)h(s)*ds=FE | &(s)*ds= / E [&(s)?] ds.
0

0 0

Note that

E [51(8)2] - E [623(5)—3]

Thus E [; &,(s)?h(s)?ds = [, e*ds = e’ — 1 < co. So by Theorem 4.8, & (t) =

eB(1=3! is a martingale, further confirming what we demonstrated in Example 4.7.

Ezample 4.10. Let h(t) be a deterministic function in L?[0,T]. Since

5h(t)2 _ o2 Jg h(s)dB(s)— [ h(s)?ds _ o JEh(s)?ds o2 J{ h(s)dB(s)

Y

it follows that
E [5h(t)2} — o hoh()?ds [62 JEh(s) dB(s)] _

Furthermore [) h(s)dB(s) is a Wiener integral with mean 0 and variance o® =

3 h(s)?ds (Theorem 3.2), so we have

rt 1 o0 12
E [62‘]0 h(s) dB(s)i| _ GQIB—P dr
V2mo

—o0
00 2,2
2 1 _(z=20%)
— 60 2 / € 202 ds
o J -
_ efg h(s)?ds

Thus

E [8h<t)2] — e fot h(s)?ds efot h(s)*ds _ 1

Y
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and hence

E/Té’h(t)2h(t)2dt: /T h(t)* E [E4(t)?] dt = /T h(t)? dt < oco.

Therefore the condition in Theorem 4.8 is satisfied for deterministic functions h(t)

in L?0,77.

Theorem 4.11. If h € L?,([0,T] x Q) satisfies the condition that

E /O U hREN() dt < oo, (4.2)

then
E /0 U ROPEL(1 dt < o0 (4.3)

and
E[&@)*] =1+ E/Ot h(s)*En(s)? ds, 0<t<T. (4.4)

Remark 4.12. Equation 4.2 gives another sufficient condition for the exponential

process given by h € L2,([0,T] x Q) to be a martingale.

Proof. Let us write h(t)26,(t)2 = (h(t))(h(t)€x(t)?). Then by using Theorem

2.52(a), we have

/0 )R dt < ( /0 " hy? dt) ’ < /0 e dt) gy

Now by using Theorem 2.52(b), we get

(/OT h(t)? dt> : (/OT h(t)2En(t)? dt) é]
(E /OT h(z&)%lt)é (E /OT h(t)25h(7f)4chf)é
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Hence Equation 4.2 implies Equation 4.3 since for h € L?,([0,T] x ), we have
E [l h(t)?dt < co.
Next note that we have from Equation 4.1 that d&,(t) = &,(t)h(t) dB(t). By

using the It6 product formula (Equation 3.8), we get
d(En(t)?) = 2&n(1)[dER()] + [dE(E)])?
= 25, ()[EnR()dB(t)] + [Ex(H)A(t)dB(1))?
= 2&,(t)*h(t)dB(t) + & (t)*h(t)dt.
Thus,
Ent)? =1+ 2/0 En(s)?h(s) dB(s) +/0 En(s)*h(s)? ds.

Taking the expectation on both sides and since f(f En(s)?h(s) dB(s) is a martingale

with mean zero (section 3.2), we get Equation 4.4. O

Ezample 4.13. Consider h(t) = 1,0 <t < T and suppose that EfOT E(t)dt < oo.

Then by Theorem 2.52 (a) and (b),

E/Th(t)le(t)2dt = E/T(l)c‘,’l(t)2dt

IA
&S|

IA
.
7N
&
c\

N
n
=
=
QL
~
N————
[NIES

This verifies Equation 4.3 in Theorem 4.11. In Example 4.9, we saw that E[&(t)?] =

e'. On the other hand, we have

E/Ot(l) Ei(s)*ds =" — 1.

So Equation 4.4 is satisfied for h = 1.
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4.2 Transformation of Probability Measures

In probability theory, Girsanov theorem tells how stochastic processes change under
changes in (probability) measure. In this section we discuss briefly the notion of
transformation underlying probability measures.

In basic probability theory, when considering a certain probability measure P,
it is common to bear in mind a shape and a location for the density of the random
variable. The former is determined by the variance while the latter is determined by
the mean of the random variable. With this, a probability distribution is subjected

to two types of transformation:

1. Keep the shape of the distribution but move the density to a different loca-
tion. This is equivalent to saying that the mean is changed without changing

the variance.

2. Change the shape of the distribution but keep the density at the same loca-

tion.

We are more interested in the first type of transformation, namely changing
the mean without changing the variance. There are two methods for changing the
mean of a random variable: operation on the possible values assumed by the random

variable or operation on the probabilities associated with the random variable.

Erample 4.14. A fair die is rolled and the values of the random variable X are
defined as follows:
—1, roll of 1 or 4;
X =4 1, roll of 2 or 5;

3, roll of 3 or 6.
Then the mean of X is



and the variance is

Var(X) = E[X - E[X]]°

(=1 -1)*+ %(1 —-1)*+ %(3 —1)?

wloowl— I

Now define X = X — 1. Then

BIX] = %<_1—1)+%(1_1)+%(3—1) 0,

and

Var(X) = BE[X] = =(=2)? + =(0)* + =(2)* = g

1 1 1
3 3 3
So we have changed the mean of X to zero without changing its variance by defining

the new random variable X = X — 1 (operation on the possible values).

Ezxample 4.15. Consider the random variable as in Example 4.14. Again we want
to change the mean of X from 1 to 0 and keep the variance unchanged. Define a

new probability measure () as follows:

P(getting 1 or 4) = % —  Q(getting 1 or 4) = ;—Z,
P(getting 2 or 5) = % —  Q(getting 2 or 5) = %,
P(getting 3 or 6) = % —  Q(getting 3 or 6) = %
Then
Bo[X] = Jr(~1)+ 15(1) + 2(3) =0,
and
Varg(X) = 50 (-1 + (1) + 2:(3) = =

Note that the method applied here operated on the probability measure.
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Consider a normally distributed random variable Z ~ N(m, 1). Let f(z) be the
density function and denote the implied probability measure by P with

1

dP = e 2 gz, (4.5)

3

Now define the function

2

&(z) = g2 M, (4.6)

Multiply £(z) by dP, we get a new probability measure

1 1.2
2)dP = e 2% dz.
§) V2r
1

By denoting the expression or e~ 37 dz by d]g, we have a new probability measure

P defined by

1 1,2

“3%dz. 4.7
Vo (4.7)

Note that by Equations 4.5 and 4.7, the random variable Z has mean m and 0,

dP = £(z)dP =

respectively under the probability measures P and 15, while the variance is equal to
1 under both P and P. So the transformation from the probability P to probability
P changes the mean of Z.

Remark 4.16. If we define the function £(z) above to be em=3™" and let P be the
corresponding probability measure, then transformation from P to P will change
the mean of Z from m to 2m.

Now from Equation 4.7, by dividing dpP by dP, we get
L)

Thus £(z) is actually the Radon-Nikodym derivative of P with respect to P. By the
Radon-Nikodyn theorem (Theorem 2.28), we know that the function £(z) exists

when the probability measures P and P are equivalent.
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Let B(t) be a Brownian motion with respect to the probability P in a probability

space (§2, F, P). Consider the process
En(t) = elo MOVBE =3 R ds 0 <t < T b€ Loq(Q,L20,T])),  (48)

namely the exponential process discussed in Section 4.1. Suppose h(t) = m, then

Equation 4.8 becomes

which is similar to the £(z) discussed above.

Define the function
dQ = E(T) dP = eJo MOABO=3 [ h®*dtyp (4.9)

Suppose that E[E,(t)] = 1 for 0 < t < T. Then by Example 2.24, () is a probability
measure on (2, F) and @ is absolutely continuous with respect to P. If we rewrite

Equation 4.9 as
AP = (§,(T)) " dQ = elo MOABO=5 [y k(1 dt gy

we get that P is absolutely continuous with respect to (). Therefore P and () are
equivalent probability measures.
Now we look at an example which shows how transformation of probability

measures is useful.

Ezxample 4.17. Consider the probability measure d@) = eBM—3 dP, where we take
h=1and T =1 in Equation 4.9. We can use this () to compute the expectation
of B(t)2eBU-3, 0 <t <1, ie, E [B(t)%B(l)—%].

Note that for



where Eg is the expectation with respect to (). In Example 3.38, we showed that

W(t) = B(t) —t, 0 <t <1 is a Brownian motion with respect to @). Therefore

E[B(t)QeB(“‘%} = Eq [B(t)?] = Eq [(W(t) +t)?]
= Eq [W(t)* + 2tW(t) + t*]

= t+1*

In fact Example 4.17 is just a special case of the following theorem.

Theorem 4.18. Let B(t), 0 < t < 1, be a Brownian motion with respect to a
probability measure P. Let () be the probability measure defined by dQ) = eBO-34Pp.

Then for any function f such that Ep| f(B(t))| < oo, we have

1w -vda= [ fe0)ap (4.10)
Q Q

which can also be expressed as Eq[f(B(t) —t)] = Ep[f(B(t))].

Proof. Refer [14], page 140. O

Ezample 4.19. Let f(z) = €™, for some A € R. By Equation 4.10 we see
/ 6i)\(B(t)—t)dQ _ / ei)\B(t)dP _ e—%)\Qt, o= R,
Q )

which is equivalent to writing Egle?BO-0] = Fp[eirB(0)] = =33t S the char-
acteristic function of B(t) — ¢ under Q is e~2*", which implies that B(t) — ¢ is

normally distributed with mean 0 and variance t.

4.3 Girsanov Theorem

In this section we present the main result in this dissertation, namely the Gir-
sanov theorem. This result is well-known for exponential process given by h €

L,4(2, L?[0,T]) satisfying a certain condition, which we will state in Theorem

46



4.22. Then we present our result in which the exponential process given by h €
L2,([0,T] x Q) satisfies certain moment conditions.

Let (92, F, P) be a probability space and B(t) be a Brownian motion with respect
to the probability P. Consider a stochastic process ¢(t). Is the process B(t) — o(t)

a Brownian motion? Let us look at some examples.

Example 4.20. Let ¢(t) = c¢. Then B(t) — ¢(t) = B(t) — ¢ is just a translation of
the Brownian motion B(t). So B(t) — ¢ is still a Brownian motion with respect to

P, but starts from —c.

Ezample 4.21. Let ¢(t) = t, 0 < t < 1. Then by Example 3.38, we know that
B(t) — t is not a martingale with respect to P, but it is a martingale with respect

to Q given by dQ = P~z dP.

So it is natural to ask whether the process B(t) —¢(t) is a Brownian motion with
respect to some probability measure. The Girsanov Theorem answers this question

for a certain kind of stochastic processes.

Theorem 4.22. (Girsanov Theorem) Let h € L,4(Q, L*[0,T]) and assume that

Ep[&n(t)] =1 for all t € [0,T]. Then the stochastic process
t
W(t) = B(®) —/ h(s)ds, 0<t<T
0

s a Brownian motion with respect to the probability measure (Q defined by d(Q) =

En(T)dP, namely Q(A) = [, En(T)dP for Ae F.
Proof. Refer [14] page 143. O

Before continue to show our result, we look at some lemmas.

47



Lemma 4.23. Let 0 € L'(P) be nonnegative such that du = 0 dP defines a prob-
ability measure. Then for any o-field G C F and X € L' (i), we have

Ep[X0|G]
Epl0]G]

Proof. First note that Ep|X0| = [, |X[0dP = [, |X|du < oo. So the conditional

E,[X|G] = (o — almost surely.

expectation Ep[X6|G] is defined.
For any G' € G, by using the definition of conditional expectation and the defi-

nition of u, we have
/EP[X0|Q] P - / XQdP:/Xdu: / E,[X|G] dp. (4.11)
G G e} G
Now, by the definition of conditional expectation and by Theorem 2.30 (d),
/ EX|G)du = / E,[X|G)0dP = / Ep|E,[X|G)0|G] aP
G G G
_ / E,[X|G] Erl6]G] dP. (4.12)
G
From Equations 4.11 and 4.12 we get
Ep|X0|G] = Eu[X|G] Ep[0]G],
which implies the conclusion of the lemma. m

Lemma 4.24. Suppose for h € L2,([0,T] x Q), the exponential process E(t), 0 <

t < T satisfies the condition Ep fOT En(t)tdt < co. Then Ep fot B(t)%E,(t)* dt < cc.

Proof. By Theorem 2.52 (a) and (b), we have

(/OTB(t)4alt>é (/OT Eh(t)“dt)é]
< (EP /OTB(t)“dt)% (Ep /OTgh(lt)‘*dlt)é

< o0

T
Ep / B(t)’&,(t)*dt < Ep
0

since Ep fOT En(t)tdt < 0o and it is a fact that Ep[B(t)*] = 3t2. O

48



Now suppose the exponential process &,(t), 0 <t < T given by h € L?,([0, T| x
(2) satisfies the condition in Equation 4.3, namely EfOT h(t)*E,(t)? dt < oo. Then

by Theorem 4.8, the exponential process

Enlt) = elo M) dB(s)—3 [ h(s)?ds <t<T,

Y

is a martingale. Let () be the probability measure in (2, F) defined by d@ =
gh(T) dP, i.e.,
Q(A) = / En(T)dP, AecF.
A

Then ) and P are equivalent probability measures as discussed in Section 4.2.

Theorem 4.25. Consider the stochastic process W(t) = B(t) — f(f h(s)ds, 0 <

t < T. Suppose for h € L2,([0,T] x Q) we have the following:
(a) Ep [, h(t)2E,(t)" dt < oo,
(b) Ep [ h(t)*B(t)®dt < oo,
(©) Ep (i nv2dt) < oo,
(d) Ep [} E(t)*dt < co.

Then W (t) and W(t)* —t, 0 <t < T, are Q-martingales.

Remark 4.26. Conditions (b) and (c) are needed only in proving W (t)? —t is a Q-

martingale. In proving W (t) is a Q-martingale, we need Ep fOT h(t)?B(t)* dt < oo
3

and Ep ( fOT h(t)? dt) < 0o. However these conditions can be derived easily from

conditions (b) and (c).

Proof. (I) W(t), 0 <t <T,is a @-martingale

First we will show that W (t), 0 <t < T, is a ()-martingale. Note that under

condition (a), we have by Equation 4.4 that Fp[E,(t)?] < oo for any 0 < ¢ < T.
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Moreover, by using the fact (x + y)? < 2(z* + y*) and Theorem 2.52 (b), we get

Ep[W(t)?] < oo for all 0 < ¢ < T. Indeed,

B(t)? + (/Ot h(s) ds>2]
< 2Ep {B(t)2 +t (/Oth(s) ds)]

t
= 2|te e

[

0

Ep[W(t)?] < 2Ep

< 0o0.

Hence by Theorem 2.52 (b),

N

Ep(|W(HE(T)]) < (Bp(W(t7))* (Bp(E4(T)))* < oo

Thus we can consider the conditional expectation of W ()&, (T) with respect to a
o-field.

Let 0 < s <t <T.By Theorem 2.30 (e) and (d), we have

EpW(t)EWT)| Fs] = Ep (Ep[W)EL(T)| F]|F)
= Ep (W) Ep[&(T)| F)|F)

= Ep[W(t)&EL(t)| F, (4.13)

where the last equality follows from the fact that &£,(¢) is a martingale (Remark
4.12).

On the other hand, by Lemma 4.23,

EpW)En (D) F] _ Ep[W(t)en(T)| 7]

EolW ()| Fs| = = 4.14
It follows from Equations 4.13 and 4.14 that
E t t
Bow ()| 7 = ZeV GBI F] (4.15)

gh(S)
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From Equation 4.15, we see that if we can prove W (t)&,(¢) is a P-martingale,

then Equation 4.15 becomes

Eql (o) 7] = PH RO B

for all s < ¢, which shows W (t), 0 <t < T, is a Q-martingale.
Note that we have dW (t) = dB(t)—h(t)dt and also by Equation 4.1 that d&,(t) =

h(t)EL(t) dB(t). Apply the It6 product formula (Equation 3.8) to obtain

dW()E(1)] = [dW(B)]En(E) + W () dEn(2) + [dW (1)][dEn(T)]
= [dB(t) — h(t)dt]En(t) + W ()h(t)En(t) dB(t) + h(t)En(t) dt

= [14+ht)W(t)] En(t)dB(t).
Hence we have for 0 <t < T,

W) = /0 (1 + h(s)W(s)En(s) dB(s)
= /Ogh(s)dB(s)—i—/o h(s)W (s)Er(s) dB(s). (4.16)

In order to show that W (¢)&,(t) is a P-martingale, we show that the integrals
fg En(s)dB(s) and fot h(s)W (s)Er(s)dB(s) are P-martingales. Namely we show
that &,(t) and h(t)W (t)Ex(t) are in L2,([0,T] x Q).

Recall that we have Ep[&),(t)%] < oo. Thus fOT Ep[En(t)?] dt < oco. So Ex(t) €
L2,([0,T] x Q). Next write h(t)?W (t)2E,(¢)* as (R(t)W ()?) (h(t)EL(t)?) and apply

Theorem 2.52 (a) and (b) to get

IA
S
"

{Ep /0 Th(t)25h(t)4dt] (4.17)
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The second factor on the right hand side is finite by condition (a). For the first
factor, we use the inequality (z +y)* < 8(z* + y*) and Theorem 2.52 (a) to show

that

/OTh(t)2W<t)4dt _ /OTW)? <B(t)— /O th(g)d;) dt
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So,
Ep /OT h(t)>W (t)*dt < 8 Ep /OT h(t)*B(t)* dt + T*Ep (/OT h(t)? dt) 3 :

By condition (c), Ep (fOT h(t)? dt>3 < oo. By writing h(t)?B(t)* as h(t) (h(t)B(t)?*)

and using Theorem 2.52 (a) and (b), we get

(/OT h(z&)%lzf)é (/OT h(t)2B(t)8dt) é]
< (Ep /OT h(zt)%lt)é (Ep /OT h(t)QB(t)gdtf,

which is finite by conditions (b) and (c). Hence Ep fOT h(t)*W (t)*dt < oo. By

T
Ep/ h(t)?B(t)*dt < Ep
0

Equation 4.17 we get that
T
Ep/ h(t)*W (t)2E,()? dt < oo. (4.18)
0

This shows that k()W (¢)E,(t) is in L2 ,([0, T] x ). Therefore we have proved that

W(t), 0 <t<T,isa@-martingale.
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(IT) W(t)? — ¢, 0 <t <T,is a Q-martingale

Now we prove that W ()2 — ¢, for 0 < t < T, is a Q-martingale. Similarly as in
deriving Equation 4.15, by Theorem 2.30 (e) and Lemma 4.23,

Ep (W () — 1) En(T)| Fi

Ep[&n(T)| F]

Ep [Ep {(W(t)* —t) Ex(T)| 7} | ]
1 En(s)

_ mEP[(W(t) —t) &) F] - (4.19)

From Equation 4.19, we can see that if [W(t)? —t]&,(t), 0 <t < T, is a P-

Eq [W(t)? —t|F] =

martingale, then Equation 4.19 will become

Ep[(W(t)* —t) En(1)| F]
gh(S)
(W(s)? = s) En(s)
Sh<8)
= W(s)* —s.

EQ [W(t)2 - t| Fs} =

This shows that W(t)2 —¢,0 <t < T, is a Q-martingale.
In order to show that [W(t)? —t]&,(t), 0 < t < T, is a P-martingale, we first
note that by the Ito product formula (Equation 3.8),
d [W(t)2En(t)] = [dW ()W (1)E() + W (t) d[W () Ex(1)] + [dW (t)] d[W (£)En(L)]
= [dB(t) — h(t) dt)W (£)E,(t) + W (t) [(1 + h(t)W (t))En(t) dB(t)]
+[1+ h(E)W (1)) En(t) dt
— [24 h(t)W ()] W (£)En(E) dB(t) + En(t) dt

Thus

W (£)2E, (1) = /O [2+ h(s)WV (s)] W (5)En(s) dB(s) + /0 En(s)ds.  (4.20)

We show the integrand in the first integral on the right belongs to L2,([0, T] x Q),

that is we show the processes W (¢)&,(t) and h(t)W (¢)?E,(t) are in L2,([0,T] x Q).
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First, by using the inequality (z + y)? < 2(z% + 3?), we have

B(t)* + (/Ot h(s) ds) 2] En(t)? dt

T
2 By / B()2En(1)? dt
0
2

+2EP/OT (/Oth(s) ds) E0)2dt. (421)

The first expectation on the right hand side of Inequality 4.21 is finite by condition

T T
Ep/ W(t)E,(t)*dt < Ep/ 2
0 0

IN

(d) and Lemma 4.24. For the second expectation, we apply Theorem 2.52 (a) and

(b) to get

Ep /OT (/Oth(s) ds)QSh(t)zdt
Ep /OTT (/OT h(s)? ds) E4(t)? dt

. (E ([ woras) dt)é (5. [(sra) .

The second expectation in the right hand side of Inequality 4.22 is finite by con-

IA

IN

dition (d). For the first expectation, by Fubini’s theorem we have

Ep /OT </OT h(s)2d3)2 it — /OT Ep (/OT h(s)2ds)2 dt, (4.23)

which is finite by condition (c). Thus from Inequality (4.22),

2

Ep /OT (/Oth(s) ds) En(t)? dt < .

Applying this to Inequality 4.21, we get
T
Ep / W(t)2E0(t)2 dt < oo,
0
Therefore W (¢)E,(t) € L2, ([0,T] x Q).
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Next we show that h(t)W (¢)?E,(¢) is in L2, ([0, T] x Q). By using the inequality

(z +y)* < 8(z* + y*), we have

T

Ep/OTh(t)2W(t)45h(t)2 dt = Ep/ h(t)? (B(t)—/oth(s) ds)4€h(t)2dt

0 B(t)* + (/Ot h(s) ds)4] En(t)? dt

_ s, / LB () di

T
< 8B [ hiep
0

+ 8 Ep /0 "Ry ( /O "h(s) ds)4 Eq(t)2dt. (4.20)

By writing h(t)2B(t)*&,(t)* as (h(t)B(t)*) (h(t)EL(t)?) and by using Theorem 2.52

(a) and (b), we get

Ep / R B e (1) di

< /0 B dt) : ( /0 ! dt) %]

(Ep /0 ' h(t)zB(t)Sdt)é (Ep /0 Th(t)zé’h(t)‘ldt)%, (4.25)

IN

Ep

IN

which is finite by conditions (a) and (b). On the other hand, by using Theorem

2.52 (a), we have

(frow) = [(fimon)]
(e )]
< T2(/0 h(s)2d3> : (4.26)
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Apply Inequality 4.26 to the second term in Inequality 4.24 to get

Ep /0 " hey? ( /0 ") ds>48h(t)2 dt
< Ep /OT h(t)? {T2 (/OT h(s)st)Q} Ea(t)? dt

=T?Ep /OT h(t)? (/OT h(s)? ds) 2 En(t)?dt.

By writing A(1)? (J; h(3)2d5>25h(t)2 as {h(t) (i h(s)msﬂ ((t)&n(r)?) and

using Theorem 2.52 (a) and (b), we get

Ep /OT h(t)? (/OT h(s)st)ZEh(t)Q dt
Ep [( /0 " hey? < /0 ' h(5)2d5)4 dt)é ( /0 ' h(t)28h(t)4dt) 1

(EP [ ner( /Omsmsf :

IA

IN

dt)é (Ep /O ' h(t)QSh(t)“dt) 2
<Ep ( /0 " hty? dt)5> % (Ep /0 e dt) : |

which is finite by conditions (a) and (c). Hence

IA

4

T t
Ep / ht)? ( / hs) ds) E4(t)2dt < oo, (4.27)
0 0
Applying Equations 4.25 and 4.27 to Equation 4.24, we get
T
Ep / B(E2IV (1) €4 (1)2 dt < oo,
0

So h(t)W (t)2Ex(t) € L2,([0,T] x Q). Therefore we have show that the stochastic

integral in Equation 4.20 is a P-martingale.
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Finally we take the conditional expectation of Equation 4.20 to get

Ep [W(£)2E4(1)| F]

_ U 12+ h(u)W (u)] W (u)En(u) dB(u) fs} + By [/Oteh(u) du fs]
_ /0 2 4 h(w)W ()] W ()€ (u) dB(u) + Ep Uosgh(u)du ]—"S}
el fwosl]
:/ [2+hu)W W)W ()€ () dB(u) + /Osgh(u)du
+ Ep u| 7,
= Wi(s)’(s) + Ep V En(u du]—"}. (4.28)

Since

E{E Ustgh(u)du

it follows that

E {/:gh(u) du

Thus Equation 4.28 becomes

]—"H = E{/:Eh(u) du} = E{/tE [En(w)| F] du},

]—“s} - /:E [0 (w)| 7] du = /:Eh(s) du = En(s)(t - 5).

Ep [W(t)*En(t)| Fs] = W(s)?En(s) + Enls)(t — s),
which implies that for any s <'¢,
Ep [(W(t)* = t)Eu(t)| Fs] = (W (s)* — s)En(s).

Thus [W(t)* — t]€,(t), 0 < ¢ < T is a P-martingale. It follows from Equation 4.19

that W(t)*> — ¢, 0 <t < T is a Q-martingale. O

Now we are ready to look at the “new” Girsanov Theorem. For a comparison,

we restate Theorem 4.22.

o7



Theorem 4.27. (Girsanov Theorem) Let h € L,4(Q, L*[0,T]) and assume that

Ep[&n(t)] =1 for allt € [0, T]. Then the stochastic process
¢
W(t) = B(t) —/ h(s)ds, 0<t<T
0

1s a Brownian motion with respect to the probability measure ) defined by d@Q) =

En(T) dP, namely Q(A) = fA En(T)dP for Ae F.
Theorem 4.28. (Girsanov Theorem) Let h € L?,([0,T] x Q) satisfy the conditions
(a) Ep [, h(t)2E, () dt < oo,
(b) Ep [ h(t)*B(t)®dt < oo,
© B (J7 h(t)th)s < 0,
(d) Ep [, En(t)*dt < oc.
Then the stochastic process
t
W(t) = B(#) —/0 h(s)ds, 0<t<T

s a Brownian motion with respect to the probability measure (Q defined by dQ) =

En(T)dP, namely Q(A) = [, En(T)dP for Ae F.

Remark 4.29. Theorem 4.28 can be generalized into the multidimensional setting.
Proof. First note that by the discussion preceding Theorem 4.25, the probability
measures P and ) are equivalent. Hence Q{1 (0) = 0} = 1 and W (¢) is a continu-
ous stochastic process. Let {F;} be the filtration given by F; = o{B(s);0 < s < t},

0 <t < T. By Theorem 4.25, W (t) and W (t)? — t are martingales with respect to

Q and F;. Thus the Doob-Meyer decomposition of W (t)? is given by
W(t)? = [W () —t] +t.
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So (W), = t almost surely with respect to @ for each ¢. Hence by the Lévy
Characterization Teorem of Brownian motion (Theorem 3.37), W (t) is a Brownian

motion with respect to (). O

4.4 Some Examples

Let us now consider some ways the Girsanov theorem may be applied.

Ezample 4.30. Let h(t) be a deterministic function. The corresponding exponential

process is

Enlt) = olo h(s)dB(s)=% [gh(s)?ds _ ,—3 [o h(s)?ds o[y h(s)dB(s)

Then

b (gh(t)4) _ @_2‘13 h(s)? dsEP (€4f(;5 h(s) dB(s)) _ 6—2f0t h(s)?ds 62./8S h(s)2ds -1

I

a) Ep [ h(t)2Eut) dt = [ h(t)? E (&, = [[h(t)?dt < oo.

(b) Tt is a fact that E| B(t)|*" < C|t|", where C' is a constant. Thus
T T T
Ep/ h(t)*B(t)® dt = / h(t)*Ep(B(t)®) dt < / Ct*h(t)? dt < oo.
0 0 0

(c) Ep ( fo dt) < oo since h(t) is a deterministic function in L?[0, 7).
d) Ep [ &) dt = [ Ep(En(t)") dt = [/ 1dt =T < oc.

So h(t) satisfies all the conditions in Theorem 4.22. Therefore the stochastic pro-
cess W (t fo s)ds, 0 <t < T, for deterministic h is a Brownian motion

with respect to the probability measure defined by d@) = elo h(s) —3Johs)ds gp.

Ezxample 4.31. Consider the function h(t) = sgn(B(t)). The corresponding expo-

nential process is

En(t) = eJo sam(BE)ABE)=3 J1ds — o=§t oJg s9n(B() dB(s),
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In Examples 3.10 and 3.39, we saw that the process X; = fot sgn(B(s))dB(s),
0 <t < T, is a Brownian motion with respect to the probability measure P, with

mean 0 and variance t. So

P [gh(t)él} — 6—2t EP |:€4f0t Sgn(B(S))dB(s)]

2
—2t 4r 1 -z
e / e’ =e dzx

_(z—4)? 41)2
oot 8t [ 1
= e “e /R ke dx

— bt

a) Ep [ (h(1)2Ent) dt = [, Ep[En(t)Y] dt = [ €5 dt < oc.
) Ep [ h(t)?B(t)¥dt = Ep [ B(t)*dt = [ Ep (B(t)®) dt < [, Ct*dt < 0.
(¢) Ep (fo 2dt) — Ep (fOTldt>5 = Ep(T%) < o0
d) Ep [} &) dt = [ Ep(En(t)Y) dt = [ 1dt =T < oc.
So h(t) = sgn(B(t)) satisfies all the conditions in Theorem 4.22. Therefore the
stochastic process W (t) = B(t) — f(f sgn(B(s))ds, 0 < t < T, is a Brownian
motion with respect to the probability measure defined by
dQ = efo h(s)dB(s)—% [ h(s)?ds dP
— e 3t ploMs)dBGs) gp

4.5 Comparison of Sufficient Conditions of
Girsanov Theorem

In 1960, Girsanov [7] raised the problem of finding a sufficient condition for the
exponential process &,(t), h € Laq (2, L*[0,T]) to be a martingale. Since then
many sufficient conditions have been found, for example Novikov [17], Kazamaki
[13], Gihman and Skorohod [6], Liptser and Shiryaev [15] and Okada [19]. In this

section, we compare some of these conditions for h € L2, ([0,T] x ).
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Consider a probability space (2, F, P). Throughout this section, the expectation
is taken with respect to P and B(t) is a Brownian motion with respect to P.
By referring to Theorem 4.6 and Theorem 4.22, we can see that the problem of
finding a sufficient condition for the exponential process &,(t), 0 < t < T given by
h € L2, ([0,T] x Q) to be a martingale is equivalent to finding sufficient conditions

for the validity of the Girsanov Theorem. We restate these two theorems.

Theorem 4.32. Let h € L,4(Q, L*[0,T)]). Then the exponential process Ex(t),0 <

t <T, given by h is a martingale if and only if E[E,(t)] =1, for all t € [0,T].
Theorem 4.33. Let h € L,4(Q, L?[0,T]) and assume that E[E,(t)] = 1 for all
t € [0,T]. Then the stochastic process

t

W(t) = B(#) —/ h(s)ds, 0<t<T

0
1s a Brownian motion with respect to the probability measure ) defined by d@Q) =
En(T)dP, namely Q(A) = [, En(T)dP for Ae F.

From Theorem 4.8 and Theorem 4.11, note that for h € L2, ([0,T] x Q), we have

the following sufficient condition:

Theorem 4.34. For h € L?,([0,T] x ), the exponential process Ey(t), 0 <t < T

1s a martingale, if

E/Th(t)Zgh(t)4dt < .

Now we look at some of the sufficient conditions mentioned at the start of this

section.

Theorem 4.35. (Novikov) Let h € L,q (2, L?[0,T)) and let
En(t) = oo 1) dB(s)—[g h(s)? s 0<t<T,
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be the exponential process given by h. If
E [e% Iy h(t)%} < 0,
then E&E,(T)] = 1.
Proof. See [17]. O
Theorem 4.36. (Kazamaki) If
E [eéjgh(s)dB(s)] < 00
for each 0 <t < T and h € L,q (2, L*[0,T)), then E[E,(T)] = 1.
Proof. See [13]. O
Theorem 4.37. (Gihman and Skorohod) Suppose that for some number § > 0,
E [e(1+5) Jo w2 dr] o
for h € L,q(Q, L?[0,T]). Then E[&,(T)] = 1.
Proof. See [6], [10]. O
Theorem 4.38. (Liptser and Shiryaev) Suppose that for some number 6 > 0,
E e+ Jo ) dt| ~
for h € L,q(2, L*[0,T]). Then E[&,(T)] = 1.
Proof. See [15]. O

Theorem 4.39. (Gihman and Skorohod) If there exists o > 0 such that for each

twitht+a <T,

B [t 770 e] < oo

for h € Laq (2, L*[0,T]) and some 6 > 0, then E[E,(T)] = 1.
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Proof. See [10]. O
Corollary 4.40. Suppose that there exists € > 0 and a constant C > 0 such that
E [6sh(t)2] <C

for each t € [0,T] and h € Luq (9, L?[0,T]), then E[E,(T)] = 1.

Proof. Fix A > 1 and choose a finite partition {t;} of [0, 7] such that Ay, A(t; —
t1), ..., Aty —t,—1) are all less than €. Then by Jensen’s inequality (Theorem 2.53

(a)), for each j we have

E (6[)\ fttjﬂ—l h(5)2 ds]) < E <€|:tj+1ltj ft?+l ah(8)2 ds} )
1 ti+1 )
< K —/ e€h(9)? 1g
L=ty
_ ; /tj+1 I [esh(S)Q] ds
tiv1 — 1 t;
< C.
Therefore the conclusion follows from Theorem 4.39. []

Theorem 4.41. (Kallianpur) Suppose that [, h(s)?ds is locally bounded. That is

for every t > 0, there exists a constant C > 0 such that
t
/ h(s)*ds < C  almost surely.
0
Then E[&,(T)] = 1.
Proof. See [10]. O

Remark 4.42. This theorem is also true as a corollary of Theorem 4.35 since

FE [e%jgh(t)gdt} < F [Q%C] < 00.
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In Chapter 3, we saw that L2, ([0, 7] x Q) C L4 (22, L?[0,T]). So we can summa-

rize some of the preceding sufficient conditions for h € L2, ([0, T] x Q) as follows:

Theorem 4.43. For h € L2,([0,T] x Q), we get E[E,(T)] = 1 under any one of

the following:
(a) E [ h(t)?En(t) dt < oo,
(b) E _e%ft?h(t)zdt} < 00.
(c) E _e%foTh(t)dB(t)] < 00.
(d) E :€(1+5) Io h(t)gdt} < 00, for some § > 0.
(e) £ :€(1+5) JEhGs)? ds} < o0, fora>0,0<t<T and some § > 0.

(f) E _e(%Jr‘s)foTh(t)th] < 00, for some § > 0.

(9) £ _esh(t)Q] < C, for some £ > 0 and constant C.

Theorem 4.44. From Theorem 4.43, we have the following implications.
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Proof.

1. Since

o3 S () dB(t) _ fO h(t)dB(t)—-1 [ h(t)? dt 7f0 t)th

we have by Schwarz’s inequality (Theorem 2.52 (b)) that

&

E[mfo dB()] [fo 0 dB)~1 [T ()2 de 3 [T h t)th:|
i) o)

E [ LT h(t)? dt])

IN (VAN
—~

A
8

Thus (b) implies (c).
2. First we show that F [£,(t)®] < oco. Note that if h € L2, ([0,T] x ), then
16h € L?,([0,T] x ). So
B[&(t)Y] = B[l h0an0-aiinira]
_ £ [ezfo 16h(t) dB()—4 [, (16R(8)? dt , 33 [ (16h( ))th]
< (E [efoT 16h(t) dB(t)—3 [T 16h(t))2dtD (E [632 Ji (16h( ))2dt]>5

Since F [efoT 16h(t) dB(t)—3 f (16h(t))? dt} < 1, apply Holder’s inequality with p =

% and ¢ = 16 to get

1

sl&

E [632 Jr 16h(t))2dt} < <E [6%_[5(16}1( ))2dt]>

We thus have

15

E [&n(t)*] < (E [e%-g(wh(”)%})ﬁ < 00.
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Now if E [h(t)*] < oo, we have

D=
D=

E[h(t)?E(t)"] < (E [R®)*])? (B [En(1)®])

< OQ.

Thus E [ h(t)*&, = [ E[h(t)2E4(t)"] dt < co. This shows that (b)

implies (a).

. Since ez Jo Ot < (1+9) [ h®*dt the implication follows.

. Since (d) implies (b) and (b) implies (c), the implication follows.

. Since e(1+9) [T h(s)?ds < (1+0) Jo s ds for ¢ 4@ < T, the implication follows.
. Since Gy MO dt < (1+9) [§ h(B?dt the implication follows.

. Since ez Jo h®? 39 Jy h(O?dt the implication follows.

. Since (f) implies (b) and (b) implies (c), the implication follows.

. See Corollary 4.40.
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Chapter 5

Application to Finance

In the previous chapter, we proved the Girsanov theorem for stochastic processes
h € L?,([0,T] x Q) satisfying some new conditions in term of moments. In this
chapter, we look at an application of the Girsanov theorem in finance. In particular,
with these new conditions, we show the nonexistence of an arbitrage in a market.
Then we demonstrate a simplified version of the Black-Scholes model. Throughout
this chapter, we consider the probability space (2, F, P) and B(t) is a Brownian

motion with respect to P, unless otherwise stated.

5.1 Background from the Theory of Finance
We begin by introducing some definitions and terms in finance theory.

Let Bi(t), Ba(t),. .., By(t) be m independent Brownian motions defined on a
probability space (€2, F,P). Let the filtration {F;¢ > 0} be given by F, =

d{B(s);1<j<m,s <t}
Definition 5.1. A market is an R"*'-valued Ito process
Xt = (X9, XO@),..., X"(1), 0<t<T,
with the components specified by
dXO@t) = pt)XO@t)dt, XO(0)=1; (5.1)
AXO(t) = pi(t) dt + Y77, 03;(t) dB,(t), 1<i<n. (5.2)

where the adapted stochastic processes p(t), p;(t) and o;;(t) satisfy the conditions

that for 1 <i<mn, 1 <j5<m,

T
/ (I p@)] + | pa(8)| + | o4(¢)]?) dt < oo, almost surely.
0
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We usually interpret X (©)(¢) as the unit price of the safe investment (e.g., bond
or saving in a bank account) and X (¢) as the unit price of the ith risky investment
(e.g., shares).

From Equation 5.1, we can derive X (¢) as follows:

dXO(t) — p(t)XO(t)dt =0
e JoP@ds[aX O (1) — p(t) X O(t) dt] = 0
dleJo P& ds X O (4)] = 0
e Jo p(s)ds X ( 0(t) =k
XO() = Lelo ps)ds
Since X©(0) =1, we get k = 1. So XO(t) = elo () s,

Definition 5.2. A portfolio is a stochastic process 0(t) = (0o(t),01(t),...,0,(t)),

0 <t <T, where ;(t)’s are F;-adapted stochastic processes.

Remark 5.3. 0;(t)’s may not be It6 processes.

We interpret 6;(t) as the number of units of the ith investment.
Definition 5.4. The value of a portfolio §(t) in a market {X(¢)} is given by

Ze HXO () = (1) - X (1),

W

where is the dot product.

Definition 5.5. A portfolio (t) is called self-financing if its value V(t) satisfies

t
VOt) =v°(0) + / 0(s) - dX(s),
0
which can be written in the stochastic differential form as

dVO(t) =0(t)-dX(t).
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We interpret a self-financing portfolio as a system where there is no money being

brought in or taken out from it at any time.

Ezample 5.6. Consider the market X (¢) = (1, B(t)) and the portfolio 0(t) = (1,1).
Then the value V9(t) of 8(t) is VO(t) = 1+ B(t). So dV?(t) = dB(t). Also dX (t) =
(0,dB(t)). Thus

O(t) - dX (t) = dB(t) = dV°(t).

By Definition 5.5, the portfolio 6(¢) = (1, 1) is self-financing in the market X (t) =

(1, B(1)).

Example 5.7. Consider the market X(t) = (1, B(¢)) but now with the portfolio
6(t) = (1,t). Then the value VU(t) of 0(t) is VO(t) = 1 + tB(t). So dV(t) =
B(t)dt + tdB(t). On the other hand, dX (t) = (0,dB(t)). So

O(t) - dX(t) = tdB(t) # dV°(t).

Therefore, the portfolio §(t) = (1,t) is not self-financing in the market X (¢) =

(1, B(1)).

Theorem 5.8. If the stochastic processes 01(t),...,0,(t) are given, then there

exists Oy(t) such that the portfolio O(t) = (0o(t), 601(t), ..., 0,(t)) is self-financing.

Proof. We need to find 6y(t) such that dV%(t) = 0(t) - dX (t). Note that

dave(t) = 0(t)-dX ()

= Op(t)dXO(t) + Y 0:(t) AXV(t)

=1

= Go(t)p(t) X O(t) dt + i 0:(t) dXD(¢)
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Hence
VOt) = v00) + /teo( )p(s)X ds+2/ s)dX @ (

X #) + Z 0;(t = V%0) + /Ot 00(s)p(s) XV (s) ds

+i /0 t 0:(s) dX D (s). (5.3)
=1
Let Yy(t) = 6p(t) X© (t), then Equation 5.3 becomes
Yo(t) = VO(0) + )Y (s ds+z / s)dX (s i@i(t) dXD(t).
im1
Now by writing dA(t) = 31, i(s) dX @ (s) — d (X0, 0:(t) dX D (1)), we have
dYo(t) = p(t)Yo(?)dt + dA(t)
dYo(t) — p(t)Yo(t) dt = dA()
e~ ho P (Y (1) — p(t)Yo(t)dt) = e P gA(t)
d(c Ry = B A
dho(t) = e Jor®ds gA(p)
0o(t) = 6(0) + /0 te—fosp(u)d“dA(s).
[

Definition 5.9. A self-financing portfolio 0(t) is called admissible if there exists a

constant K > 0 such that
VO(t,w) > =K, for almost all (t,w) € [0,T] x Q,
where P() = 1, namely V(t,w) is bounded below for all ¢ and almost surely.

Ezample 5.10. Consider the portfolio 6(t) = ( C 4 fo s)?ds, B(t) ) in the

market X (¢) = (1,¢). Then the value V(t) of 0(t) is

VO(t) = —tB(t)* + /tB(s)2 ds +tB(t)* = /tB(s)2 ds.
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Hence dV(t) = B(t)? dt. On the other hand, since dX (t) = (0, dt), we have
O(t)-dX(t) = B(t)*dt = dV°(¢t).

This shows that 6(t) is self-financing. Also 6(t) is admissible because VO(t) =

f(f B(s)*ds is always bounded below by —K, where K is any positive constant.

Ezxample 5.11. Now consider the portfolio 0(t) = ( )+ fo s)ds, B(t )>

the market X (¢) = (1,¢). Then the value V?(t) of 6(t) is
VO(t) = —tB(t) + /OtB(s) ds +tB(t) = /OtB(s) ds.
Hence dV9(t) = B(t)dt. On the other hand, since dX (t) = (0,dt), we have
O(t)-dX(t) = B(t)dt = dV(t).

This shows that 6(¢) is self-financing. However 6(t) is not admissible because

VO(t) = f; B(s)ds is not bounded below.

Definition 5.12. An admissible portfolio #(t) is an arbitrage in a market X (t),

0 <t < T, if the corresponding value V?(t) satisfies the conditions
veo)y=o0, V%T)>0, P{VT)>0}>0.

Ezample 5.13. Consider the portfolio 6(t) = ( 24+ fo s)*ds, B(t) ) in
the market X (¢) = (1,t). By Example 5.10, 6(¢) is an admissible portfolio. Since

VO(t) = [! B(s)2ds, we have V?(0) = 0 and V(T) = [ B(s)2ds > 0. So 0(t) is

0 0

an arbitrage.

Ezample 5.14. Consider the portfolio 0(t) = (—3B(t)* —

5 t,B(t)) in the market

X(t) = (1, B(t)). Then the value V(t) of 6(t) is

1 1

V(0 = (~5B0? - 31) + B -

5 5 (B(t)* —t).

1
2
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Hence dV(t) = L [(2B(t)dB(t) + dt) — dt] = B(t)dB(t). On the other hand, since

1
2
dX(t) = (0,dB(t)), we have 0(t) - dX (t) = B(t)dB(t). This shows that 0(t) is self-
financing. Since VO(t) =  (B(t)> —t) > —3T, it follows that 6(¢) is admissible.

We have that V?(0) = 0. However V(T') = 5 (B(T)? —T) # 0 almost surely, so

0(t) is not an arbitrage.

Definition 5.15. A market X () = (X (¢), X(¢),..., X"(t)) is normalized if
XO(t) = 1. A normalization of a market X (t) = (X©(¢), XW(¢),..., X" (t)) is

the market

- (1) (n)
X(t) = (1,X ®m X @) _ X(j)(t) X().

Theorem 5.16. Suppose the portfolio 0(t) is self-financing in a market X (t), then

it is also self-financing in the normalized market )N((t)

Proof. First note that since

-1

where £(t) = (XO(t)) " =e” Jo P(=)ds e have dX (t) = £(t) [dX (t) — p(t) X (t) dt].

Let V() be the value of 6(¢) in X (¢). Then

VO(t) = 0(t) - X(£) = 0(1) - £()X (1) = £(8) [6(¢) - X ()] = £(0)V7(8).
So by the It6 product formula (Equation 3.8),

dVOt) = &(t)dv’ + VO dg(t) + [dE(n))[aV (1))
= £(1)0(t) - dX (1) — 6(t) - X ()p(t)(t) dt +0
= 0(t) - [6() {dX (1) — p() X (1) dt}]
= 0(t)- dX(¢).

Therefore, 0(t) is self-financing in X (t). O
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Theorem 5.17. If the portfolio 0(t) is admissible in the market X (t), then it is

admissible in the normalized market X (t).

Proof. The values of A(¢) in the markets X () and X (¢) are, respectively,
VOt =0(t)- X(t) and VO(t) =0(t)- X(¢).
Note that since X (£) = £(¢)X (t), where £(t) = e~ Jo P(9ds 5 0 we can write
V() = 0(1) - £(6) X (1) = E(@)[0(1) - X ()] = £V ().
But VY(t) > —K (by the admissibility of 6(¢) in X(¢)), thus we have
V) =€) Vo) > - K,

i.c., VO(t) is admissible in X (¢). O

Theorem 5.18. If the portfolio 6(t) is an arbitrage in the market X (t), then it is

also an arbitrage in the normalized market X (t).

Proof. Consider V(t) = e~ Jo pls) ds VO(t), the value of 6(t) in the market X (¢). By

Theorem 5.17, 6(t) is admissible in X (¢). Then
(a) V?(0) =0,
(b) VUT) = e~ Jo p(s)ds VO(T) > 0 almost surely,
(c) P {\79(T) > o} = P{V¥T) >0} >0.
So 6(t) is an arbitrage in the normalized market X (). O
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5.2 Nonexistence of an Arbitrage

According to Definition 5.12, given that a portfolio #(¢) is an arbitrage means
there is an increase in the value of the portfolio from time ¢ = 0 to time ¢t = T
almost surely, and a strictly positive increase with positive probability. So 6(t)
generates a profit without any risk of losing money. This clearly contradicts the
real life situation in finance. So how can we decide if a given market X (¢) allows

an arbitrage or not? The following gives a simple but useful result.

Lemma 5.19. If Y (t) is a local martingale with respect to a probability measure

Q and Y (t) is bounded below, then Y (t) is a supermartingale.

Proof. By the definition of a local martingale (Definition 2.46), there exists an

increasing sequence {7, } of stopping times such that Y (¢ A7,) is a martingale, i.e.,
EQ[Y(tAT)|F] =Y(sAT,) s<t.
By letting n — oo, we get
liminf Eg [Y(t A7,)| F] =liminf Y (s A 7,) = Y(s).

Since Y'(t) is bounded below, by Fatou’s lemma for conditional expectation ([1],

Theorem 5.5.6 (b), page 223),
Eq [Y ()| F| = Eq [liminf {Y(t A7,)| Fo}] <liminf Eq [Y (¢t A7,)| Fs] =Y (s).
So Y (t) is a supermartingale. O

Lemma 5.20. Suppose there exists a probability measure @) on the filtration {F;}
such that Q) is equivalent to P and the normalized market )?(t) 15 a local martingale

with respect to Q. Then the market X (t) has no arbitrage.
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Proof. Suppose 6(t) is an arbitrage in X (t). Then 6(¢) is also an arbitrage in X (¢)
by Theorem 5.18.
Let VO(t) = 6(t) - X(t) be the value of 8(t) in X(t). Since an arbitrage is self-

financing and V?(0) = 0, we have dV?(t) = 0(t) - dX (¢) and thus

7O(t) = /0 0(s) - dX(s).

Hence ‘79(t) is a local martingale with respect to ). Also, by the admissibility of
0(t), VO(t) is bounded below, i.c., there exists K > 0 such that VO(t,w) > —K
for almost all ¢t € [0,7], w € Q. By Lemma 5.19, ‘79(25) is a supermartingale with
respect to Q. So Eg[V(t)] < Eg[V?(0)] = 0.

On the other hand, since 6(¢) is an arbitrage, we have V(T) > 0 P-almost surely
and P{V?(T) > 0} > 0. Hence V?(T) > 0 Q-almost surely and Q{V¢(T) > 0} > 0
because () is equivalent to P. So Eg [VO(T)] > 0, which is a contradiction. Therefore

the market X (¢) has no arbitrage, likewise for X (¢). O

In the next theorem, we give a sufficient condition for the nonexistence of an
arbitrage in a market.

Let p(t), pi(t) and o0;;(t) be processes as in Defintion 5.1. We write pu(t) =
(1), ..., pa(t)) and let o(¢) be the (n x m)-matrix with ij th entries o;;. Also

let )?(t) to be )A((t) = (XW(1),...,X"(t)). So we can write Equation 5.2 as
dX (t) = p(t) dt + o(t) dB(t). (5.4)

Theorem 5.21. Suppose that there exists an (m x 1)-column vector valued F;-

adapted stochastic process h(t) satisfying the following conditions:
(a) o(t,w)h(t,w) = p(t,w)X (t) — u(t,w) for almost all (t,w) € [0,T] x Q,

(b) E [T h(t)]? &) dt < oo,
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(c) E fy [h(®)P|B)*dt < oo,
(@) B (f] 1m0 dt) < oo,
(€) E [, En(t)*dt < oo,

where B(t) is an m-dimensional Brownian motion and E,(t) is the exponential
process

Enlt) = eo &) dBl)=3 [iIh(e)I*ds g < < T
Then the market X (t) has no arbitrage.

Proof. By Theorem 5.18, we can assume that the market X (¢) is normalized,
namely p(t) = 0.

Define the probability measure @) given by d@ = &,(T') dP. Then @ is equivalent
to P. By conditions (b) to (e), we can apply Theorem 4.28 (in the multi-dimensional

setting) to get that the process
t
W(t) = B(t) —/ h(s)ds, 0<t<T,
0
is an m-dimensional Brownian motion with respect to (). By Equation 5.4, we have
dX(t) = p(t)dt+ o(t)dB(t)

= p(t)dt + o)W () + h(t)dt]

= o(t)dW(t) + [u(t) + o(t)h(t)] dt

= o(t)dW(t)+ p(t)X(t)dt

— o(H)AW () (pt) = 0). (5.5)

So )A((t) = X(0) + fot o(s)dW (s). Thus X (t) is a local martingale with respect to

Q. By Lemma 5.20, X (¢) has no arbitrage. O
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Example 5.22. Consider a normalized market given by
dX (t) = (0,dt + dBi(t) + 2dBs(t), —dt + dBy(t) + dBs(t))

where Bj(t) and Bs(t) are independent Brownian motions.

In this case, we have

1 2 1
o(t) = and p(t) =
11 —1
: . ha(t)
So by the system equation o (t)h(t) = —u(t) with h(t) = , we have
ha(t)
11| k() 1 ~1
12| [haot) ~1 1
D
Solving this we get h(t) = . By Example 4.30, this process h(t) satisfies con-
2

ditions (b) to (e) in Theorem 5.21. So X (¢) has no arbitrage.

5.3 Black-Scholes Model

In the preceding section, we showed the nonexistence of an arbitrage in a market.
In this section, we demonstrate a simplified version of the Black-Scholes model.
The Black-Scholes model was developed in the early 70’s by Fischer Black and
Myron Scholes, based on earlier research by Edward Thorpe, Paul Samuelson and
Robert C. Merton. The Black-Scholes model gives a very useful formula for pricing

call options.

Definition 5.23. A lower bounded Fpr-measurable random variable ® is called a

T-claim. A T-claim ® is said to be attainable in a market X;, 0 <t < T if there
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exist a real number r and an admissible portfolio #(¢) such that
T
d=VUT)=r+ / O(t) - dX(t) almost surely. (5.6)
0

If such a portfolio 6(t) exists, it is called a hedging portfolio for ®.

By definition, a T-claim is attainable if there exists a real number r such that
if we start our fortune with =, then we can find an admissible portfolio 6(¢) which
generates a value V?(T) at time T which equals ® almost surely.

Let V(¢) be the value of the admissible portfolio A(t) in the normalized market

X(t) = (XO(1)"LX(¢) = £(¢) X (¢). By the self-financing property of 6(t),

VO(t) = r+/0 0(s) - dX(s) = 7"+/0 £(5)0(s) - dX (), (5.7)

because dVP(t) = £(t) dVO(t) = £(t) dVy. From Equation 5.5, we have dX(t) =

o(t) dWy(t), where Wy, (t) = B(t) — fg h(s)ds. So Equation 5.7 becomes

POt =+ / £(s) 0s) - (o (1) AW (). (5.8)

By Theorem 3.17, V() is a local martingale with respect to Q. For the sake
of integrability, the portfolio #(¢) in Equation 5.7 is always assumed to have the
property that the associated stochastic process 179(15) in Equation 5.7 is actually a

martingale with respect to Q.

Definition 5.24. A market X (¢), 0 < ¢ < T is said to be complete if every T-claim

® is attainable.
The next theorem gives a condition for a market X (¢), 0 < ¢ < T to be complete.

Theorem 5.25. Let X (t), 0 <t < T be a market specified by p(t), u(t) and o(t)

as in Definition 5.1. Assume that there exists a process h(t) such that

(a) 0<t7 w) h(ta w) = p(t, w) )?(ta w) - :U(ta w),
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b) E [y [h(t)%En(t) dt < oo,
¢) E Jy Ih@)PIB(#)[*dt < oo,
B (f |h(t)\2dt>5 < 0,

e) E [ &)t dt < cc.

In addition, assume that o{W},(s);0 < s <t} =0{B(s);0<s<t},0<t<T,
where Wy (t) = B(t) — fot h(s)ds. Then X(t), 0 <t < T is complete if o(t) has a
left inverse for almost all (t,w) € T X, i.e., there exists an (m X n)-matriz valued

adapted stochastic process L(t,w) such that
L(t,w)o(t,w) = I, almost everywhere,

where I, is the m x m identity matrix.

Remark 5.26. Conditions (a)-(e) guarantee that the market X (¢) has no arbitrage

(Theorem 5.21).

Proof. Let ® be a T-claim. We need to find a real number r and an admissible

portfolio (¢) such that
T
d=VT)=r +/ O(t) - dX (t). (5.9)
0
By Equation 5.8, we have

e = (VD) = V(’(T)

- / £ 81) - (o(t) AW (2)). (5.10)

where £(t) = (XO ()" = e~ Jo /94 Thus we can first find r and 6(¢) such that
Equation 5.10 holds. Then by Theorem 5.8, we can find 6y(¢) to get an admissible

(t) satisfying Equation 5.9.
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Note that &(T") @ is measurable with respect to ]—"}/V " due to the assumption
that o{Wj(s);0 < s <t} =0{B(s);0 <s<t}, 0<t<T. Hence {(T) P belongs
to L?(F;™). By applying Theorem 3.15 to £(T) ®, we obtain a stochastic process
f(t) € L2,([0,T] x Q) such that

T
)0 = (D) B+ [ 1) awie). (5.11)
0
By comparing Equations 5.10 and 5.11, we get

r=E{{(T) @}

~

and 0(t) is the solution of the equation

~

£ 0(t) - (o(t)v) = f(t) v, YoeR™

This is equivalent to the matrix equation

~

§@)0() a(t) = f(t)",

~ ~

where (t)* denotes the transpose of 0(t). Equivalently,

~

a(t) 0(t) = XO(t) £(1). (5.12)

By hypothesis, there exists an (m x n)-matrix valued stochastic process L(t) such

that L(t) o(t) = I,,. Hence o(t)* L(t)* = I,,. Thus if g(t) = XO L(t)* f(t), then

This shows that 5(25) = XO L(t)* f(t) is a solution of Equation 5.12.

Finally by Theorem 5.8, we can find 6y(¢) such that 6(t) = (6y(t),0(t)) is a

hedging portfolio for the T-claim ®. Therefore the market X (¢) is complete. ]
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Ezample 5.27. Consider a market X (t) = (Xo(t), X1(t), Xo(t), X5(t)) satisfying

Xo(t) =1 and
dX, (t) 1 10
dBi(t)
dX,(t)| = 2| dt+ |0 1
dBs(t)
dX5(t) 3 11
10
Then p(t) =0, p(t) = |2| and o(t 0 1|- Note that
11
10
1 00 10
0 1| = ;
010 01
11

namely there is a left inverse for o(t). Also from the equation o () h(t) = p(t) X (t)—

1
w(t), we can get h(t) = . Since h(t) is a constant, Conditions (b)-(e) in Theorem

2
5.25 are satisfied. Therfore by Theorem 5.25, the market X (¢) is complete.

Definition 5.28. A (European) option on a T-claim ® is a guarantee to pay the

amount ® at time ¢t =1T.

It is natural to raise the question: what is the “price” that one is willing to pay
or to sell for an option at time t = 0?7 Suppose a buyer pays an amount y for an
option. With this initial fortune (debt) —y, the buyer wishes that he could hedge

to time T a value V (T') such that
VP (T)+® >0, almost surely.
This is equivalent to saying that the buyer can hedge a portfolio 6(¢) such that

T
—y + / O(t)dX(t)+ P >0, almost surely.
0

81



So the maximal “price” a buyer is willing to pay for an option at time ¢ = 0 is
T
Pp(P) = sup {y; 30(t) such that —y —I—/ O(t)dX(t)+P>0 a.s.} :
0

On the other hand, suppose a seller receives the “price” z for this guarantee.
Then the seller can use this as the initial value in an investment strategy. With
this initial value z, the seller wishes he could hedge to time T a value V(T such

that

VO(T) > ® almost surely.

This is equivalent to saying that the seller can hedge a portfolio 1 (t) such that
T
z +/ P(t)dX(t) > & almost surely.
0

So the minimal “price” a seller is willing to accept for an option at time ¢ = 0 is

T
Py(P) = inf {z; J4(t) such that z +/ Y(t)dX(t) > o a.s.} :

0

In general, Pp(P) < Py(P). In fact we have the following:

Theorem 5.29. Let X(t), 0 <t < T be a market specified by p(t), u(t) and o(t)

as in Definition 5.1. Suppose there exists a process h(t) such that
(a) o(t,w) h(t,w) = p(t,w) X(t,w) - plt,w),
(b) E Jy [h(t)En(t)* dt < oo,
(c) B Jy In®)P[B) dt < oo,
@) B (f] o) ar) < oo,
(e) E [ &n(t) dt < oo.
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Then for any T-claim P,

essinf () < Py(6) < Eq [6(T) @] < Pu(®) < oo,

where @) is the probability measure given by dQ) = elo MO ABW+3 Jo h®*dt gp g

E(t) = (XOt) ! = e Jor)ds

Proof. By definition, essinf (®) = sup{b € R; P ({® < b}) = 0}. If = € essinf (P),
then ® > x almost surely, thus —z > —® almost surely. By taking the portfolio
0(t) = 0, we get that

T
€ {y; 36(t) such that —y —i—/ 6(t)dX(t)+P >0 a.s.} :
0

So essinf (P) < Pp(P).
Suppose y € R and there exists 6(t) such that —y + fo t)dX(t) > —® almost

surely. This is equivalent to

e+ / EOB() o (1) dW(t) > —€(T)D

~

because dVO(t) = £(t) dVO(t) = £(t) B(t) dX () and dX (t) = o(t) dW,(t). By taking
the expectation with respect to @, we have —y +0 > —Eg [£(T) @], i.e.,

y < Eql¢(T) ®]. (5.13)

Since this is true for any y satisfying Inequality 5.13, by taking the supremum we
get Py(P) < Eq [§(T) 2.
Suppose z € R and there exists ¥(t) such that z + fo (t)dX(t) > ® almost

surely. This is equivalent to

2+ [ cwitowan > e
By taking the expectation with respect to @, we have z +0 > Eg [£(T) @], i.e.,

2> Eo[€(T) ). (5.14)
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Since this is true for any z satisfying Inequality 5.14, by taking the infimum we get
Ps(®) > Eq [£(T) @], provided such z and 1(t) exist. If no such z and (t) exist,

then Py(P) = 0o > Eg [£(T) D). O

Definition 5.30. The price of a T-claim & is said to exist if Py(P) = P4(P). The

common value, denoted by P(®) is called the price of ® at time t = 0.

In addition to the conditions in Theorem 5.29, if the market is complete and

Eq [£(T) @] < oo, then the price of a T-claim @ exists.

Theorem 5.31. Let X(t), 0 <t < T be a complete market specified by p(t), w(t)

and o(t) as in Definition 5.1. Suppose there evists a process h(t) such that
(a) o(t,w) h(t,w) = p(t,w) X (t,w) — p(t,w),
(b) E Jy |h(8)PEn(t) dt < o0,
() E Jy [h()PIB()[* dt < oo,
(@) B (T 1)) < oo,
(€) E [ &n(t) dt < oo.
Moreover if Eg [€(T) ®] < co for a T-claim ® in X(t), then
P(®) = Eq [&(T) 9],

where Q) 1s the probability measure given by dQ = elo MO ABW+3 o h®*dt gp g

() = (XO @)™ = e forl)ds,

Proof. Let ® be a T-claim. By the completeness of the market X (¢), there exists

ry € R and a portfolio (¢) such that

T
D =ry +/ Y(t)dX(t), almost surely.
0
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This is equivalent to saying
T —~
DB =ro+ [ &0 o) i)
0
By taking the expectation with respect to ), we have
Eq [((T)®] = ry.
But ry € {y;3¢(t) such thaty + fOTw(t) dX(t) > ®almost surely}, hence
Eq [((T)2] = Ps(P).

Together with Eg [£(T)®] < P4(P) from Theorem 5.29, we get Eq [£(T)P] =
Ps(P).

Similarly, by the completeness of X (t), there exists ry € R and a portfolio 6(t)
such that

T
—Ty —i—/ 0(t)dX(t) = —P, almost surely.
0

This is equivalent to saying
T ~
—6(1)0 = =y + [ €OB0) a0 W),
0
By taking the expectation with respect to ), we have

—Eq [g(T)‘D] = Ty

Eq [E(T)®] = 7.
But ry € {x;36(t) such that — = + fOT 0(t)dX(t) + P > 0, almost surely}, thus
Eq [§(T)®] < Po(®).

Together with P,(®) < Eg [£(T)®] from Theorem 5.29, we get Eq [£(T)P] = Pp(P).
[
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Now we explain a simplified version of Black-Scholes model. Suppose a market

X(t) = (XO(t), XM (1)) is given by

dXOt) = pt)XO(t)dt, XO(0) = 1;
(5.15)

dXV(t) = a®) XV () dB(t) + B XV(t)dt, XD (0) = x;.

We can get the solution for the equations in Equation 5.15 as follows:

dXO@) = pt)XO(t)dt
dXO) — p)XOt)dt = 0
e o P@dsiax O ) — pt) XO(t)dt] = 0
d[e—.ﬂfﬂ(S)dsX(O)(t)] -0
e Jop@dsx O ) =
XO@) = kelor)ds

XO@) = ehr®ds  (because XO(0) = 1)
and

dXWV(t) = a(t) XV (t)dB(t) + B(t) XV (t) dt
dXW () — a(t)XD(t)dB(t) — Bt) XD (t)dt =0
e~ Jo B ds=[g a(8)dB(s)+3 Jy () ds £ g x V) (¢) — () XD () dB(t) — BHXD(t) dt} = 0
d {67 Ji B(s) ds— [ als) dB(s)+1 [y a(s)* ds x (1) (@} -0
e o 8(s) ds= [ a(9) dB(s)+5 [ (s ds X (1)(4) = f;
XO(¢) = Lelo B(s) ds+[3 a(s) dB(s)=3 [q a(s)? ds

X(l) (t) — xlef()t B(s) ds-i—fg a(s) dB(s)—% fg a(s)? ds, (516)

where the last equality follows since X(V(0) = x;.
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Observe that the market X (¢) is specified by p(t), u(t) = 8(t) XV (t) and o(t) =

a(t) XW(t). Thus the equation in condition (a) of Theorem 5.21 becomes
a(t) XV ()h(t) = p()X V(1) - 81XV (1),

which gives the solution for A(t) to be

plt) — 5(t)

ho) = =2

(5.17)

Theorem 5.32. (Black-Scholes) Suppose a market X(t) = (XO(t), X (1)) s

given by

Assume that
(a) B fy [h(t)]? E(t)" dt < oo,
(b) E Jy [h()PIB()*dt < oo,
@ B (J 1P dt) < oo,
(d) E [} &E(t)dt < oo,

where h(t) = —p(tizg(t).

Suppose p(t) and «(t) are deterministic functions in L'[0,T] and L?*[0,T], re-
spectively and the T-claim ® is of the form ® = F(XW(T)). Then the price at

time t =0 of ® is given by

1 o T 1 2 __=?
P@) =61 = / F (g et (0—4007) ) 5 gy,

where ||a||2 — fOTOé(t)2 dt and S(T) _ (X(O)(T))—l _ e*foTP(t)dt,
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Proof. By Conditions (a)-(d) and Theorem 5.21, the market X (¢) has no arbitrage.
Then by Theorem 5.25, the market is complete. So by Theorem 5.31, the price of

the T-claim ® at time ¢t = 0 is given by
P(®) = Eq [€(T)®].

Since p(t) is deterministic, it follows that P(®) = £(T")Eq(®). By the hypothesis

® = F (X"(t)) and Equation 5.16, we have
P(®) = &(T) Eq(®)

= &(T) Eq [F (X(D))]

= E(T) Eq [F (1 fd «® PO (010 )|

Note that since «(t) is deterministic, the integral fOT a(t) dB(t) is a Wiener integral

with mean zero and variance ||a||* = fOT a(t)*dt (Theorem 3.2). Thus

P@) = €(T) Eq [F (i ef 204208 (0-3ot0?) )]

1 > T 1 2 __z®
= 1) 7= F <$1 et (30 =300 )dt> e 2el? .
v2r flafl J-o
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