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ABSTRACT 

Various types of stress have been found to have both positive and negative effects on 

motor performance (Szalma & Hancock, 2011; Van Gemmert & Van Galen, 1997). One 

potential explanation for these diverse findings is that stress increases the amount of neuromotor 

noise in the system (Van Gemmert, 1997). Low levels of stress may have an activating effect on 

the system which may improve motor performance whereas larger levels of stress decrease 

motor performance. Research has also suggested that increases in stress increase effort (Hockey, 

1997) which may in turn facilitate motor learning (Lee, Swinnen, & Serrien, 1994). The primary 

purpose of this dissertation was to examine potential effects of cognitive and physical stress on 

motor learning. Chapter 1 provides some background information on stress and it also introduces 

some theories developed to explain the relationship between stress and human motor 

performance. Chapter 2 describes a study on the potential effects of cognitive stress on motor 

learning. It was found that additional cognitive stress hindered motor performance (p < .001) but 

did not impede motor learning of a timed aiming task when the cognitive stressor was removed 

(p > .05). The second experiment (chapter 3) is about the effects of physical stress (80dBs of 

continuous white noise) on motor learning. Results revealed that increased physical noise 

negatively affected reaction time (p < .05) on a timed aiming task but did not affect other 

performance measures (p > .05). During a no stress transfer test the group that practiced with the 

increased physical stress had marginally longer reaction times (p = .06). In chapter 4 a study 

about specificity of practice and stress (cognitive and physical) is presented. In this chapter stress 

was added during a transfer test to see if learning was specific to the environment (stress or no 

stress) during practice. The addition of cognitive stress during transfer significantly diminished 

motor performance (p < .001), but the addition of physical stress seemed not to affect motor 
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performance (p > .05). Chapter 5 provides discussion on the results from the three experiments. 

The results are discussed in the context of practice specificity and the neuromotor noise theory.    
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CHAPTER 1: INTRODUCTION 

General Introduction 

 The purpose of this chapter is to discuss some of the relevant literature to this 

dissertation. The chapter will briefly discuss stress and some of the effects of stress on motor 

performance. In addition, the theories on stress and motor performance most relevant to this 

dissertation will also be discussed. The chapter will then look at some of the literature on how 

increased effort is a potential medium to increase motor learning, and how the specificity of 

practice hypothesis potentially plays a role in stress and learning. The last portion of this chapter 

provides an overview of the following chapters.  

Stress 

Defining stress has proven to be a challenge over the years and has been defined in 

various ways in different scientific fields. Some literature has viewed stress as a stimulus 

whereas other literature has looked at it as a response (Baum, 1990; Baum & Grunberg, 1991). 

To further complicate the task of adequately defining stress, research has examined both acute 

and chronic stress. Most of the literature on human motor performance examines acute stress 

where some form of stress or stressor is added to the experimental protocol.  

One definition of stress indicates that it is a biological state in which the adaptive 

capabilities of the organism are reached or exceeded (McGrath, 1976; Wedford, 1973). Based on 

this definition stress would be viewed as a negative event in which the organism is unable to 

adjust to the demands being placed upon it. However, research has shown that in some instances 

stress may enhance performance (Jick & Payne, 1980; Van Gemmert & Van Galen, 1997). 

Therefore, the stimulus based definition of stress is more useful to the field of human motor 
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performance because it suggests that stress is a response to any task that requires an increase in 

effort (Cox, 1978).  

There are three types of stress that have been identified in the literature; emotional stress, 

cognitive stress, and physical stress. Emotional stress is the consequence of a negative emotional 

event (Christianson, 1992). It has been associated with things like worry, anxiety, personal 

problems and/or emotional distress (Van Gemmert, 1997). Increased emotional stress often 

results in decreased motor performance (Adam & Van Wieringen, 1988; Calvo, Alamo, & 

Ramos, 1990; Eysenck, 1992) and memory impairment (Christianson, 1992). One potential 

explanation for the decreased performance with emotional stress is that the performer adopts 

strategies specific to reducing the stress and lacks the attentional capacity to adequately perform 

the required task (Eysenck, Derakshan, Santos, & Calvo, 2007).  

The second stress type is cognitive stress which occurs when the amount of attentional 

capacity needed is increased. Cognitive stress has also been referred to as mental work load 

(Young, Brookhuis, Wickens, & Hancock, 2015). Cognitive stress or mental work load occurs 

when individuals are asked to perform two (or more) tasks simultaneously that each (or all) 

require(s) a portion of the attentional capacity. We are capable of performing more than one task 

simultaneously as long as the attentional capacities are not exceeded. If they are exceeded, 

performance detriments will be elicited (Kahneman, 1973; Wickens, 2002). 

The third type of stress is physical stress. Physical stress occurs from environmental 

stressors such as noise, pollution, sleep deprivation, or temperature. Physical stress may also 

increase work load if an individual must attend to multiple environmental stimuli or attend to an 

environmental stressor while performing a motor task. Research investigating the effects of noise 

on performance has received ample attention with results varying from hindering motor 
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performance to improving motor performance by decreasing reaction time (Szalma & Hancock, 

2011; Van Gemmert & Van Galen, 1997). 

In addition to the effects stress has on motor performance, it also influences physiological 

factors. Stress has been found to increase heart rate (De Ward, 1996) and blood pressure (Rau, 

2004). Stress has also been linked to an increase in brain activity (Brookhuis & De Ward, 1993), 

increased muscle activation in the upper limbs (Van Galen, Muller, Meulenbroek, & Van 

Gemmert, 2002), and increased activity in certain facial muscles (Hoogendoorn, Hoogendoorn, 

Brookhuis, & Daamen, 2010). Chronic stress has been tied to more physiological disorders such 

as cardiovascular and gastric disorders (Von Eiff, Friedrich, & Neuss, 1982; Smith, 1991). 

Stress Theory 

 One perspective that has attempted to explain both the positive and negative effects of 

stress on motor performance is the neuromotor noise theory (Van Gemmert & Van Galen, 1997). 

The motor system is inherently noisy and the noise in the system is responsible for variability 

during movement execution (De Jong & Van Galen, 1997). The neuromotor noise theory 

suggests that stress has an activating effect on the motor system. The increase in activation due 

to stress increases the neuromotor noise in the motor and information processing system. To 

adapt to the increase in noise, the system must filter it out and does so in one of two ways; by 

increasing cognitive processing time before movement execution, or by exploiting the 

mechanical properties of the limbs (i. e., increased limb stiffness).  

An increase in noise in the system has been shown to be beneficial for performance on 

simple motor tasks but detrimental to performance on more complex motor tasks. Physical stress 

has been shown to enhance response time by increasing activation but cognitive stress hinders 

response time. Both types of stressors have been found to increase limb stiffness which results in 
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an increase in pen pressure on graphical tasks (Van Gemmert, 1997). It has also been suggested 

that the human system is more resistant to physical stressors than it is to cognitive stressors (Van 

Gemmert & Van Galen, 1997). 

In addition to the neuromotor noise theory, the cognitive-energetical framework (Hockey, 

1997) may help explain the deleterious effects of stress on performance. The framework suggests 

that performance is monitored by effort and task goals. As stress increases we adjust the amount 

of effort needed to maintain or improve performance. If effort levels are maximized, task goals 

may be adjusted to ensure that goals are maintained.     

Effort and Motor Learning 

 It has been suggested that an increase in effort may facilitate motor learning (Lee, 

Swinnen, & Serrien, 1994). In a paper by Lee, Swinnen, and Serrien (1994), they call attention to 

three distinct areas of motor learning research where increased effort due to task difficulty may 

facilitate learning. The three areas discussed are modeling by a novice performer, reduced 

amounts of augmented feedback, and increased amounts of contextual interference.  

Research has shown that watching a novice or learning model is just as beneficial, if not 

more so, than watching an expert model (McCullagh & Caird, 1990). Watching a learning model 

that makes mistakes requires an increase in cognitive effort to decide what aspects of the 

performance should be replicated and which aspects should be changed. This process “actively 

engages the observer in the problem solving processes” (Lee, Swinnen, & Serrien, 1994, p. 330) 

which facilitates learning. 

 The traditional view on augmented feedback suggested that feedback was needed on each 

performance trial for learning to occur. However, research over the last three to four decades has 

demonstrated that less than 100% feedback facilitates learning (Salmoni, Schmidt, & Walter, 
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1984; Winstein & Schmidt, 1990). On trials in which feedback is not provided, the learner must 

process intrinsic information which increases cognitive effort. In addition, asking an individual 

to estimate their errors during performance or decide when to receive feedback facilitates 

learning (Lui & Wrisberg, 1997; Janelle, Kim, & Singer, 1995). In each aforementioned 

feedback modality, it is assumed that cognitive effort is increased by requiring learners to 

process both their performance and intrinsic feedback. 

 The contextual interference research has shown that increasing the amount of interference 

by practicing one task in the context of other tasks facilitates learning (Shea & Morgan, 1979; 

Hall, Dominguez, & Cavazos, 1994). This area of research typically compares a group that 

practices each task in isolation (blocked) and a group that randomly practices the multiple tasks 

(random). Performance during practice shows that random practice is detrimental to 

performance; however, when assessing performance during the retention tests, random practice 

is found to be beneficial for motor learning. The idea is that when performing a new task some 

effort must be provided and if you continue performing the same task less effort is needed. In 

contrast, if you vary practice, increased effort is needed on each trial. 

 The three areas of research discussed in the previous paragraphs: learning from a novice 

model, reducing the frequency of feedback, and increasing the amount of contextual interference, 

suggest that cognitive effort is increased because the participant must more fully engage in order 

to acquire a motor skill. A natural tie in with stress research seems logical because effort is 

increased under increasing demands of the task or additional stressors. The use of physical or 

cognitive stress provides an opportunity to increase learners’ engagement in the task which 

presumably will facilitate motor learning. Recent research investigating the effects of dual-task 

performance on motor learning has shown that practicing tasks simultaneously facilitates 
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learning of the primary task when performed without the secondary task (Goh, Sullivan, Gordon, 

Wulf, & Winstein, 2012). In addition, practicing two tasks simultaneously as opposed to the 

tasks separately facilitates learning when the tasks must be performed together at a later time 

(Gabbett, Wake, & Abernethy, 2011). 

Specificity of Practice Hypothesis 

 The specificity of practice hypothesis has suggested that skill representations are 

developed with the sensory information available during practice (Proteau, 1995; Proteau, 

Marteniuk, & Levesque, 1992). Increased amounts of practice under a specific sensory 

conditions appears to further increase the strength of the sensorimotor movement representation 

(Ivens & Marteniuk, 1997). For example, increased amounts of practice with vision leads to 

decreased performance when the task must be performed without the use of vision (Proteau, 

Tremblay, & Dejaeger, 1998). 

In addition to sensory information, research has also shown a specificity of practice for 

anxiety (Lawrence et al., 2014) and arousal (Movahedi, Sheikh, Bagherzadeh, Hemayattalab, & 

Ashayeri, 2007). When individuals practiced a basketball free-throw task under different levels 

of physical arousal, peak performance was achieved during retention testing when the same 

physical arousal level was present as in practice (Movahedi, Sheikh, Bagherzadeh, 

Hemayattalab, & Ashayeri, 2007). In addition, when learning a golf putting task under either 

high or low anxiety, retention performance is maximized when the same anxiety level is present 

(Lawrence et al., 2014). Based on these findings, it is reasonable to conclude that if a 

stress/stressor is present during practice it will become part of the memory representation and 

future performance will be maximized if the same stress/stressor is present. 
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Dissertation Outline 

 The primary purpose of this dissertation is to investigate the effects of physical and 

cognitive stress on motor learning. An additional aim is to investigate the role that specificity of 

practice may have on stress. Chapter 1 provides basic background information on stress, how 

stress may increase effort and learning, and the specificity of practice hypothesis. Chapter 2 

describes a study on the effects of cognitive stress (work load) on motor performance and motor 

learning. The increase in work load negatively affected performance (p < .001) but did not 

influence motor learning either positively or negatively (p > .05). Chapter 3 is a study on the 

effects of physical stress (80dBs of white noise) on motor performance and learning. The 

increase in physical stress did not negatively affect performance during practice or motor 

learning (p > .05). Chapter 4 describes a study in which the specificity of stress on learning is 

explored by investigating if practice with a physical or cognitive stressor improves performance 

when stress is present during a future testing situation. Results suggest that the increase in work 

load during retention/transfer performance affects performance negatively (p < .05) but an 

increase in physical noise does not affect performance (p > .05). Chapter 5 discusses the findings 

from chapters 2-4 and the implications for stress theory. The chapter also mentions potential 

limitations and future directions for research.    
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CHAPTER 2: COGNITIVE STRESS 

Introduction 

 Stress has been a popular research topic over the last few decades and the literature on 

cognitive stress or mental workload has steadily increased (Young, Brookhuis, Wickens, & 

Hancock, 2015). Stress in a general sense is any increase in load on an organism even if the task 

demands are being fulfilled (Cox, 1978). This definition of stress is important because it 

adequately defines stress whether performance changes or not. Stress or mental work load 

increases when a performer is required to attend to multiple stimuli or perform tasks 

concurrently. This divides the attentional resources available to the performer (Kahneman, 1973; 

Wickens, 2002; 2008). Wickens (2002) describes cognitive stress as “the relation between the 

demand for resources imposed by a task and the ability to supply those resources by the 

operator” (p. 161). 

If an increase in mental load exceeds the available attentional resources, performance 

decrements are likely to be elicited (Mathews et al., 2008). In a review of literature on dual task 

performance with the primary task being balance, it was concluded that the attentional demands 

of balance are related to both the difficulty of both concurrent tasks (Woollacott & Shumway-

Cook, 2002). For example, individuals perform poorer balancing on an unstable surface while 

counting backwards verbally as opposed to imagining counting backwards. The increase in 

difficulty of the secondary task (adding an additional motor component by counting backwards) 

decreased primary task performance (Yardley et al., 1999). In addition, when increasing the 

difficulty of a sporting task while responding to a separate probe reaction time task, performance 

on the reaction time task decreases (Castiello & Umilta, 1988). In general, the more difficult the 
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primary or secondary task, the more likely performance on one of the tasks will be negatively 

affected.   

To further illustrate the effects of an increase in difficulty of the primary task, Lam, 

Maxwell, and Masters (2010) had participants learn a golf putting task from two distances, short 

and far. They were then asked to verbally respond to a secondary reaction time task while 

performing the putting task.  Half the participants performed the far task and then the short task 

which resulted in an increase in errors (more difficulty learning environment) and half performed 

the short and then long task. It was found that the more difficult learning environment led to 

increases in reaction time of the secondary task. These results suggest that a more difficult 

learning environment leads to a decrease in attentional capacities available for a secondary task; 

thus, decreasing performance.  

It is assumed that few performance detriments will occur when cognitive stress increases 

in highly skilled performers (Bargh, 1994; Beilock, Carr, MacMahon, & Starkes, 2002). For 

example, skilled badminton players did not display slower reaction times to a probe reaction time 

task when performing a badminton task simultaneously (Abernethy, 1988). Leavitt (1979) 

suggests that performance of the primary task becomes automatic after eight years of practice 

and participants will see no performance detriments when performing the two tasks 

simultaneously. However, not every study has led to the conclusion that expert performers do not 

need to allocate some attentional resources to the primary task. To illustrate this, expert 

performers in both pistol and rifle shooting did not perform significantly different from novice 

performers on a secondary RT task (Landers, Qi, & Courtet, 1985; Rose & Christina, 1990).  

One area of research where increased cognitive stress has been beneficial is skill 

acquisition (Roche et al., 2007). As discussed previously, a primary task becomes automatic and 
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requires very little attention with increasing amounts of practice. Gabbett, Wake, and Abernethy 

(2011) had individuals practice a two-on-one drawing and passing rugby task that required 

participants to make a decision on when or if to pass the ball. They also performed a tone 

recognition task either simultaneously with the draw and pass task or they practiced the tasks one 

at a time. Those that practiced the tasks together performed better on a retention test that required 

the tasks to be performed simultaneously. In addition, dual task practice facilitated motor 

learning of the primary task when the secondary task was removed (Goh, Sullivan, Gordon, 

Wulf, & Winstein, 2012). Furthermore, participants that showed enhanced learning of the 

primary task showed performance decrements during the practice phase with both tasks. These 

results are similar to some findings of research on contextual interference where random practice 

leads to poorer performance during practice than blocked practice but enhanced performance 

during retention.  

The primary purpose of this study is to further investigate the effects of an increase in 

mental workload on motor learning. The increase in stress or workload is assumed to increase 

effort in order to maintain or potentially improve performance (Hockey, 1997). Increases in 

cognitive effort are assumed to facilitate motor learning (Lee, Swinnen, & Serrien, 1994). If 

additional workload does increase participant effort then motor learning should be facilitated. A 

secondary aim is to determine whether the neuromotor noise theory is able to predict the results 

(Van Gemmert & Van Galen, 1997). The theory suggests that an increase in stress increases 

noise in the human motor system. The noise is either filtered out by increasing processing times 

or by exploiting the biomechanical properties of the motor system. This does not mean however 

that stress always negatively affects performance. Small amounts of stress has an activating 

effect on the motor system that results in decreased reaction times. Based on the neuromotor 
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noise theory, it is hypothesized that increasing mental workload will result in decreased 

performance. However, when the increased workload is removed, performance should improve. 

Method 

Participants  

 Prior to participation, individuals read and signed the consent form approved by the 

Louisiana State University Institutional Review Board (Appendix A). Individuals then filled out 

a demographic and health questionnaire (Appendix B). Any person that reported psychological 

or neurological disorders or trouble with the use of the upper limbs was excluded from 

participation. In addition, all individuals reported having normal or corrected-to-normal vision 

and hearing. Following attrition due to the exclusion criteria, 24 individuals participated in the 

study aged between 20 and 23 (M = 20.88, SD = 0.95). All volunteers received extra credit for 

participating in one of their kinesiology classes at the University. 

Task and Equipment 

 At the beginning of the experiment participants were randomly assigned to one of two 

conditions. The primary skill, aiming at the target within exactly two seconds, was learned in this 

experiment. The aim was to determine if learning a new task would be affected if work load was 

increased due to a secondary task during acquisition, therefore a between subject design had to 

be used. The first condition required participants to perform the graphical aiming task with a 

barrier avoidance requirement described below (AT). The second condition performed the same 

task but to increase cognitive stress/work load, they were also required to perform a secondary 

task of counting backwards by threes during the procedure (WL). Participants were seated at a 

desk with a WACOM Intuos3 12 × 19 digitizing tablet (48.26 cm × 30.48 cm) that was 

connected to a computer (Dell XPS 720) with a 46.99 cm × 29.21 cm monitor. All participants 
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used a non-inking electronic pen (WACOM ZP-130) during the experiment (Figure 1). The 

digitizing tablet recorded the X and Y position of the pen tip with a sampling rate of 200 Hz and 

a spatial resolution of 0.0005 cm. MovAlyzeR (Neuroscript LLC, Tempe, Arizona, USA) 

controlled the data collection and presentation of the conditions. 

 

Figure 1: Experimental set-up showing the placement of the equipment and participant. 

 The graphical aiming task with barrier avoidance requirement (Figure 2) required 

participants to draw from one target to another in exactly two seconds while avoiding two 

rectangular barriers. During a trial, the targets and barriers appeared on the monitor and the 

participant had between 2.5 and 3.75 seconds before the go signal to place the tip of the pen on 

the start target (lower target, radius = 0.15 cm). The participant then waited for a go signal (end 

target turned green, radius = 0.15 cm) and they were instructed to initiate their movement as 

quickly as possible. Participants then drew around the left side of the first barrier (8.5 cm × 0.6 

cm), between the two barriers, and then around the right side of the second barrier (8.5 cm × 0.6 

cm) to reach the end target (higher target, radius = 0.15 cm). All participants were instructed to 

complete the task in exactly two seconds. The group that also had to count backwards by threes 

was given a random number that appeared on the screen two seconds before the second screen 

with the home position, target and barriers for the aiming task were presented (see Figure 2, 

screen 1 and 2). They were required to start counting as soon as the number appeared. They then 

continued counting during the trial and had to keep counting after the completion of the task. 
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This was done to ensure that participants were performing both tasks simultaneously and not 

only thinking of the numbers needed during the drawing. Participants counted between 9 and 11 

digits during a trial. A trial concluded when the end target was contacted which made the target 

disappear. Any trial in which the pen was lifted off the tablet before completion of the trial, the 

participant did not count while performing the aiming task, did not start on the start target, or hit 

a barrier was repeated. 

 

 

Figure 2: The top diagram shows the sequence of the task for the Aiming Task group and the 

bottom diagram shows the task for the Work Load group. (1) Blank screen or instruction to count 

backwards, (2) Aiming task appeared on the screen and participants placed the pen tip in the 

starting target, (3) target turned green, (4) participant initiated movement, (5) target was reached 

to conclude the trial. 

Procedure 

 Participants signed the informed consent and filled out the demographic and health 

questionnaire. They then completed the Perceived Stress Scale (Appendix C, Cohen, Kamarck, 

& Mermelstein, 1983) upon entering the lab. Participants were explained that they would use an 

electronic pen and a digitizing tablet that recorded the position of the pen tip. They were then 

shown the task and explained how to perform the task. Participants were instructed to place the 

tip of the pen in the center of the start target and wait for the end target to turn green. As soon as 
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the target turned green they were told to start their movement as quickly as possible and draw 

around the left side of the first barrier and then around the right side of the second barrier.  

Following instruction of the task, participants performed three practice trials to ensure 

they clearly understood the task and they were offered the opportunity to ask questions about 

anything that was not clear. They were asked to hold the pen with the normal grip they used 

while writing. It was then explained that participants had to wear noise cancelling head phones 

(Bose QuietComfort 2) and would have the movements of their hand recorded by a camcorder 

(Canon Vixia HF R300). Participants were then told that the goal of the task was to perform each 

trial in exactly 2000 milliseconds and that they would randomly receive feedback about their 

movement time on the monitor. Feedback was randomly provided on two of every six trials 

(33%). 

 During acquisition individuals performed 60 trials of the aiming task. Following 

acquisition, participants took a five minute break and filled out a modified version of the NASA 

task-load index (Appendix D; Hart, 2006). This was done to see if a difference in work load 

existed between the aiming task and the aiming task while counting backwards by threes. 

Participants then performed six retention trials where the same task under the same conditions as 

acquisition was completed. Another five minute break was taken followed by six 

retention/transfer trials where the secondary task of counting was removed (see Table 1). 

Table 1: Both groups with the task being performed during acquisition, retention, and 

retention/transfer. 

Group Acquisition Retention Retention/Transfer 

Control Aiming Task Aiming Task Aiming Task 

Cognitive Stress Aiming Task with 

verbal counting 
Aiming Task with 

verbal counting Aiming Task 
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Data Analysis 

 The data collected by MovAlyzeR was processed with a custom made Matlab-program 

(Mathworks Inc., Natick, Massachusetts, USA). The position signals of the pen tip were dual 

pass filtered with a Butterworth fourth order filter with a cut off frequency of 7 Hz. Both the 

onset and offset of the pen movement was determined by 5% of the peak velocity. The 

dependent variables analyzed were constant error (CE), absolute error (AE), variable error (VE), 

average and peak acceleration (AA and PA), path length (PL), normalized jerk (NJ), and axial 

pen pressure (PP). The goal of the task was to perform the task in two seconds so AE, CE, and 

VE provided data on the timing accuracy. To calculate AE, CE, and VE, movement time (MT) 

had to be first calculated. MT was defined as the beginning of movement to the end of 

movement. The initiation and termination of the movement were determined by using 5% of the 

peak velocity. CE is the difference between the actual and goal MT which provides bias 

information (CE=T-MT). AE is the absolute difference between the actual and goal MT which 

provides a general idea of timing accuracy (AE=|CE|). VE provides consistency around the 

average MT (VE=√(∑(MT mean – MT trial)^2/N). AA, PA, NJ, and PL provided data on the 

efficiency of the movement. Acceleration is the second derivative of displacement and provided 

information on the estimated force required to propel the pen over the surface of the tablet. Jerk 

is the rate of change in acceleration and NJ is jerk normalized for path length and duration (see 

Van Gemmert, Teulings, & Stelmach, 1998). RT and PP were collected to measure the increases 

in processing times and the biomechanical adaptations due to the increased mental load.  

 The 60 acquisition trials were analyzed in ten blocks of six. All dependent variables were 

analyzed with separate mixed factors ANOVAs with groups as the between factor and blocks as 

the within factor (i.e., 2 groups × 10 blocks). To analyze retention and retention/transfer, separate 
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mixed factors ANOVAs were applied to each dependent variable with the groups as the between 

factors and the first block of acquisition and the retention or retention/transfer block as the within 

factors (i.e., 2 group × 2 blocks). When a significant block × group interaction was observed, 

independent t-tests with a Bonferroni correction were applied to the data. The composite scores 

for the Perceived Stress Scale and the NASA task-load index were each totaled. Separate 

independent t-tests were performed to look for group differences. 

Results 

 AT had an average Perceived Stress Scale of 17.75 and WL had an average score of 

15.42. The independent sample t-test did not reveal a significant difference between the groups (t 

= -.91, p > .05). This indicates that prior to participating in the experiment; the groups did not 

have a significantly different level of stress. On the NASA task-load index AT scored on average 

58.08 and WL scored 68.50. As expected the independent sample t-test revealed a significant 

difference after the acquisition session on task-load (t = 2.26, p < .05) with WL indicating 

significantly greater task-load (Figure 3). 

 

Figure 3: Percieved Stress Scores (left) and NASA task-load index scores (right) for both groups 

with standard error bars. 

Acquisition 

Absolute Error. AE significantly decreased from the beginning of acquisition to the end 

of acquisition (Figure 4). This was supported by the significant main effect of block, F(9, 198) = 
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21.02, p < .001, ƞp2 = .49. WL had higher error scores than AT, F(1, 22) = 10.19 p <. 01, ƞp2 = 

.32. The group × block interaction was not significant (p > .05). 

Constant Error. Figure 4 shows the average CE during each block of acquisition (Figure 

4). The amount of CE was positive, indicating the aiming movements were too slow, this bias 

significantly decreased during acquisition which was supported by the main effect of block F(9, 

198) = 23.44 p < .001, ƞp2 = .52. WL displayed larger CE (i.e., a bias to move too slow) during 

acquisition than AT, F(1, 22) = 10.54, p < .01, ƞp2 = .32. No significant group × block 

interaction was found (p > .05). 

Variable Error. Both groups became more consistent during acquisition (Figure 4). This 

was supported by the significant decrease in VE, F(9, 198) = 16.17 p <. 001, ƞp2 = .42. WL was 

significantly less consistent than AT, F(1, 22) = 12.43, p < .01, ƞp2 = .36. No significant group × 

block interaction was found (p > .05).  

Average Acceleration. Participants also significantly increased AA from the beginning 

to the end of acquisition, F(9, 198) = 31.61, p < .001, ƞp2 = .59. Significantly greater AA was 

shown for the AT group, F(1, 22) = 7.75, p <. 05, ƞp2 = .26. The group × block interaction was 

also significant, F(9, 198) = 2.66, p <. 05, ƞp2 = .11 (Figure 5). 

Peak Acceleration. Figure 5 shows the average PA during each block of acquisition. 

Participants significantly increased PA during acquisition, F(9, 198) = 15.92, p < .001, ƞp2 = .42. 

Unlike AA, the main effect for group was not significant (p > .05). The group × block interaction 

also failed to reach significance (p > .05). 
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Figure 4: The average AE (top), CE (bottom right), and VE (bottom left) for each group during 

acquisition block with standard error bars. 

 

 

Figure 5: The AA (left) and PA (right) for WL and AT during each acquisition block with 

standard error bars. 

Normalized Jerk. Figure 6 displays the average NJ for each block of acquisition. Groups 

significantly decreased NJ from the beginning to the end of acquisition. This was supported by a 

significant main effect of block, F(9, 198) = 8.97, p < .01, ƞp2 = .29. The AT group also 

displayed significantly less NJ than the WL group, F(1, 22) = 6.73, p < .05, ƞp2 = .23. The group 

× block interaction was not significant, F(9, 198) = 2.25, p >. 05.  
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Path Length. For PL, a main effect of block was observed with groups increasing the 

length from the first to the sixth acquisition block, F(9, 198) = 5.36, p < .01, ƞp2 = .20. After the 

sixth block WL continued to increase in length but AT began to decrease in length (Figure 6). 

This is supported by the significant group × block interaction, F(9, 198) = 5.04, p < .01, ƞp2 = 

.19. No significant main effect for group was found (p > .05).  

 

Figure 6: Average NJ (left) and PL (right) for WL and AT during each block of acquisition with 

standard error bars. 

 

Reaction Time. Figure 7 shows the average RT for both groups during acquisition. RT 

did not significantly increase or decrease during acquisition. This was supported by the lack of a 

significant main effect of block (p > .05). A significant main effect of group was observed with 

WL having greater RTs than AT, F(1, 22) = 9.73, p < .01, ƞp2 = .31. The group × block 

interaction failed to reach significance (p > .05). 

Pen Pressure. Figure 7 shows the average PP for both groups during each block of 

acquisition. The main effect of block was significant, F(9, 198) = 5.03, p < .01, ƞp2 = .19, which 

was driven by the AT group decreasing PP. The main effect of group was not significant (p > 

.05). The group × block interaction shown in Figure 7 was significant, F(9, 198) = 5.53, p < .01, 

ƞp2 = .20. The interaction was driven by a greater reduction of PP for AT and the lack of PP 

reduction for WL. 
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Figure 7: Average RT (left) and PP (right) during each block of acquisition with standard error 

bars. 

Retention 

Absolute Error. Groups significantly decreased AE from the beginning of acquisition to 

retention (Figure 8). This was supported by the significant main effect of block, F(1, 22) = 47.71, 

p < .001, ƞp2 = .68. WL had significantly more AE than AT, F(1, 22) = 8.13, p < .01, ƞp2 = . 

There was no significant interaction (p > .05). 

Constant Error. Figure 8 shows the average CE during the first block of acquisition and 

retention. Groups significantly decreased CE to zero, i.e. showed less bias, from the beginning of 

acquisition to retention, F(1, 22) = 54.14, p < .001, ƞp2 = .71. WL had significantly more CE 

than AT, F(1, 22) = 8.53, p < .01, ƞp2 = .28. There was no significant group × block interaction 

(p > .05). 

Variable Error. Groups significantly decreased variability from acquisition to retention 

(Figure 8). This was supported by a significant effect of block for VE, F(1, 22) = 41.26, p < .001, 

ƞp2 = .65. The WL group displayed significantly greater VE, F(1, 22) = 9.32, p < .01, ƞp2 = .30, 

than the AT group. The block × group interaction was also significant, F(1, 22) = 5.04, p < .05, 

ƞp2 = .21. The independent t-tests revealed that groups significantly differed during the first 

block of acquisition (p < .001) but not retention (p > .05). Both groups decreased VE from the 

beginning of acquisition to retention (p < .05).   
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Figure 8: Average AE (top), CE (bottom left), and VE (bottom right) for both groups during the 

first block or acquisition, retention, and transfer with standard error bars. 

Average Acceleration. Groups significantly increased AA from the beginning of 

acquisition to retention (Figure 9). This observation was supported by a significant main effect of 

block, F(1, 22) = 80.29, p < .001, ƞp2 = .79. There was also a significant main effect of group 

with WL having lower AAs, F(1, 22) = 6.33, p < .05, ƞp2 = .22. No significant group × block 

interaction was observed for AA (p > .05). 

Peak Acceleration. Groups significantly increased PA from the beginning of acquisition 

to retention (Figure 9). This observation was supported by a significant main effect of block, F(1, 

22) = 49.18, p < .001, ƞp2 = .69. The main effect of group for PA was not significant (p > .05), 

and no significant group × block interaction was observed (p > .05). 
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Figure 9: AA (left) and PA (right) for both groups during the first block or acquisition, retention, 

and transfer with standard error bars. 

Normalized Jerk. Groups displayed significantly less NJ during retention than the 

beginning of acquisition (Figure 10). This was supported by a significant main effect of block, 

F(1, 22) = 26.74, p < .001, ƞp2 = .55. WL also had greater NJ than AT, F(1, 22) = 6.67, p < .05, 

ƞp2 = .23. The group × block interaction was also significant, F(1,22) = 4.58, p < .05, ƞp2 = .17. 

The independent t-tests revealed significant group differences during the first block of 

acquisition (p < .01) but not the retention block (p > .05). WL significantly decrease NJ from the 

first block of acquisition to the retention block (p < .001), but AT did not significantly decrease 

NJ from acquisition to retention (p > .05). This may have occurred due to a floor effect where 

AT was not able to further reduce NJ. 

Path Length. The main effect of block was significant, F(1, 22) = 6.84, p < .05, ƞp2 = 

.24, but the main effect of group was not, (p > .05). The group × block interaction was 

significant, F(1,22) = 4.84, p < .05, ƞp2 = .18. The independent Bonferroni corrected t-tests failed 

to show significant differences from the beginning of acquisition to retention or between groups 

on either block (p > .05) (see Figure 10).  
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Figure 10: Average NJ (left) and PL (right) for both groups during the first block or acquisition, 

retention, and transfer with standard error bars. 

Reaction Time. Groups did not significantly decrease RT from the beginning of 

acquisition to retention (p > .05) (Figure 11). WL did have significantly higher RTs, which was 

supported by the significant main effect of group, F(1, 22) = 18.20, p <.001, ƞp2 = .45. The 

interaction was not significant (p > .05). 

Pen Pressure. Figure 11 shows the average PP during the first block of acquisition and 

retention. The main effect of block was not significant (p > .05) and neither was the main effect 

of group (p > .05). Despite a seemingly decrease of pen pressure for AT while WL seems to stay 

the same from baseline to retention, the group × block interaction failed to reach significance as 

well (p > .05). 

 

Figure 11: Average RT (left) and PP (right) for both groups during the first block or acquisition, 

retention, and transfer with standard error bars. 
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Transfer  

Absolute Error. AE significantly decreased from the beginning of acquisition to transfer 

(Figure 8). This was supported by the significant main effect of block, F(1, 22) = 44.27, p < .001, 

ƞp2 = .67. WL had significantly more AE than AT, F(1, 22) = 7.15, p < .05, ƞp2 = .25. The group 

× block interaction was also significant, F(1, 22) = 4.39, p < .05, ƞp2 = .17. The independent t-

tests revealed significant group differences during the first block of acquisition (p < .01) but not 

during transfer (p > .05). Both groups did improve from the beginning of acquisition to transfer 

(p < .05). 

Constant Error. CE significantly decreased from the beginning of acquisition to 

transfer, F(1, 22) = 55.10, p < .001, ƞp2 = .72. WL had significantly more AE than AT, F(1, 22) 

= 6.19, p < .05, ƞp2 = .22. The group × block interaction was also significant, F(1, 22) = 4.85, p 

< .05, ƞp2 = .18. The independent t-tests revealed significant group differences during the first 

block of acquisition (p < .01) but not during transfer (p > .05). Both groups significantly 

decreased CE from the beginning of acquisition to transfer (p < .01) (see Figure 8). 

Variable Error. Groups significantly decreased variability from acquisition to transfer 

(Figure 8). This was supported by a significant main effect of block for VE, F(1, 22) = 38.40, p < 

.001, ƞp2 = .64. The WL group displayed significantly greater VE, F(1, 22) = 8.61, p < .01, ƞp2 = 

.28, than the AT group. The group × block interaction was also significant, F(1, 22) = 5.89, p < 

.05, ƞp2 = .21. The independent t-tests revealed that groups significantly differed during the first 

block of acquisition (p < .01) but not transfer (p > .05). Both groups significantly decreased VE 

from the beginning of acquisition to transfer (WL, p < .001; AT, p = .05). 

Average Acceleration. Groups significantly increased AA from the beginning of 

acquisition to transfer (Figure 9). This observation was supported by a significant main effect of 
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block, F(1, 22) = 62.54, p < .001, ƞp2 = .74. The main effect of group was not significant and 

neither was the group × block interaction (p > .05). 

Peak Acceleration. Groups significantly increased PA from the beginning of acquisition 

to transfer (Figure 9). This observation was supported by a significant main effect of block, F(1, 

22) = 49.30, p < .001, ƞp2 = .69. The main effect of group for PA was not significant (p > .05). 

No significant group × block interaction was found (p > .05). 

Normalized Jerk. Groups displayed significantly less NJ during transfer than the 

beginning of acquisition (Figure 10). This was supported by a significant main effect of block, 

F(1, 22) = 27.52, p < .001, ƞp2 = .56. WL also had greater NJ than AT, F(1, 22) = 5.62, p < .05, 

ƞp2 = .20. The group × block interaction was also significant, F(1,22) = 5.66, p < .05, ƞp2 = .21. 

The independent t-tests revealed significant group differences during the first block of 

acquisition (p < .01) but not the transfer block (p > .05). WL significantly decrease NJ from the 

first block of acquisition to the transfer block (p < .001), but AT did not (p > .05). 

Path Length. Figure 10 shows the average PL during the first block of acquisition and 

transfer. Groups did not significantly change PL from the beginning of acquisition to transfer (p 

> .05). The main effect of group and the group × block interaction failed to reach significance (p 

> .05).  

Reaction Time. Groups significantly decrease RTs from the beginning of acquisition to 

transfer, F(1, 22) = 23.83, p <.001, ƞp2 = .52, (see Figure 11). This finding was driven by the 

reduction of RT by WL. The main effect of group was significant with WL having greater RTs, 

F(1, 22) = 11.77, p <.01, ƞp2 = .35. The group × block interaction was also significant, F(1,22) = 

19.60, p <.001, ƞp2 = .47. The independent t-tests revealed that WL significantly decreased RTs 



29 

 

from acquisition to transfer (p < .001) but AT did not (p > .05). The groups significantly differed 

during the first block of acquisition (p < .001) but not during transfer (p > .05). 

Pen Pressure. Figure 11 shows the average PP during the first block of acquisition and 

transfer. The main effect of block and the main effect of group did not reach significance (p > 

.05). In addition, despite a trend that seems to indicate that the pen pressure decreases for AT, 

while WL stayed relatively flat, the group × block interaction failed to reach significance as well 

(p > .05). 

Discussion 

 The primary purpose of this chapter was to investigate the effects of increased mental 

workload (cognitive stress) on the acquisition and learning of a graphical aiming task with a 

barrier avoidance requirement. All participants learned a task that required them to draw from 

one target to another, with the goal being to do it in exactly two seconds. Half the participants 

had their mental workload increased by performing a secondary task that required them to count 

backwards by threes while simultaneously performing the primary aiming task. 

 During the acquisition phase, groups significantly improved their performance for the 

dependent variables: absolute error (AE), constant error (CE), variable error (VE), average 

acceleration (AA), peak acceleration (PA) normalized jerk (NJ), path length (PL), and pen 

pressure (PP). No improvement was observed during acquisition for reaction time (RT). The 

group with increased work load performed significantly worse on all dependent variables except 

PA and PL.  

 The pattern of findings of PL and PP during acquisition merit additional discussion. For 

the variable PL, groups significantly increased PL during the first six blocks of acquisition. At 

that point, the group that only performed the aiming task (AT) began to decrease PL whereas the 
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group with additional work load (WL) continued to increase PL. At the beginning of practice 

participants focused on decreasing the MT which resulted in an increase in PL as they attempted 

to move faster (decrease movement time). Once they became more efficient in their movement 

timing, the AT group focused on decreasing PL to have more efficient movements. This pattern 

shows that the AT group became both accurate in their timing accuracy and efficient in their 

movements. The increased work load required participants to continue improving movement 

timing accuracy so they never worked on improving PL efficiency. Participants also differed in 

their pattern of acquisition for PP. The additional work load increased PP throughout acquisition. 

The group without additional workload decreased PP throughout acquisition. These results are 

typical in motor learning research where learners become more accurate in their movement 

timing and more efficient in their movements during practice (Stelmach, 1969; Winstein & 

Schmidt, 1990; Wulf, Shea, & Lewthwaite, 2010) 

 Participants improved from their baseline performance (first block of acquisition) to 

retention performance for each dependent variable except RT and PP. The additional work load 

caused performance detriments during retention for each dependent variable except NJ and PL. 

The results for acquisition and retention suggest that the increase in mental work load diminishes 

motor performance. Decreased performance due to an increase in cognitive stress has been 

previously reported. For example balance performance decreases when simultaneously counting 

backwards (Woollacott & Shumway-Cook, 2002). 

 During transfer, the additional workload was removed so both the WL group and AT 

group only performed the graphical aiming task (i.e., the AT group performed a second retention 

task). During the transfer test the groups did not significantly differ from one another. This 

indicates that stress negatively affected the acquisition of the motor task; however, performance 
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variables are no longer negatively affected when the stressor is removed. It has been suggested 

that transfer is a more useful measure to indicate learning as it shows that the skill is adaptable to 

various contexts or task variations (Johnson, 1961). Therefore, if we solely consider the transfer 

performance pattern of findings, stress did not affect motor learning indicating that practicing 

with or without stress has no negative or beneficial effects, i.e., stressors do affect motor 

performance, but do not affect motor learning.  

 These findings fail to support the hypothesis that additional workload would facilitate 

motor learning. However, the presentation of additional work load in the current experiment does 

not seem to hinder the learning of the primary motor task. One explanation is that for dual task 

practice to facilitate motor learning the two tasks being performed must engage in similar 

cognitive processes (Goh et al 2012). The tasks in the present study engage different cognitive 

areas, i.e., verbal and cognitive (Wickens, 2002; 2008). 

A second aim of the study was to explore whether the neuromotor noise theory would 

provide a framework to explain the results. The theory suggests that when the additional stressor 

is present then PP should increase. RT may increase if the activating properties of the stressor are 

nullified by the need to increase processing time to cope with the increased noise in the system. 

If an increase in processing time is not needed to cope with the increased noise in the system 

then RT may decrease. Our findings support the neuromotor noise theory because the increase in 

work load decreased performance (acquisition and retention) in both RT and PP. Previous 

research suggests that cognitive stress should increase processing time, thus increasing RT (Van 

Gemmert & Van Galen, 1997; Van Gemmert & Van Galen, 1998). When the additional work 

load was removed, RT returned to a similar level as a group that practiced without the additional 

work load.  
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Our findings also support the theory that an increase in stress increases effort. The data 

from the NASA task-load suggest that the presentation of the secondary backwards counting task 

did significantly increase the work load. The cognitive-energetical framework (Hockey, 1997) 

suggests that when stress is increased the performer must increase effort to compete with the 

demands of the task. If the increase in effort is not sufficient to complete the goal of the task, the 

performer will update task goals so that they are obtainable. A possible explanation for these 

results is that learners were not able to increase effort to meet the demands of the task so they 

adjusted task goals to a level that was obtainable. The lower task goal may explain why greater 

motor learning was not reported. To support this increased effort leading to increased learning, 

the amount of learning differed between the groups. WL learned more (improved more from the 

beginning of practice to retention/transfer) than the AT group. However, this effect was 

primarily caused by the WL performance at the beginning of acquisition, thus a ceiling effect for 

the performance of AT may have caused that WL improved more. 

Future research should focus on the effects of other stress types on motor learning 

because research has shown that different stressors effect motor performance differently (Van 

Gemmert & Van Galen, 1997). It is possible that the secondary task used in this study was too 

difficult and thus it possibly did not allow the learners to adequately focus on the primary motor 

task. Van Gemmert and Van Galen (1997) found that cognitive stress hindered performance 

more so than physical stress (auditory noise). It is possible that if auditory noise is used to 

increase work load/stress performance may improve and motor learning may be facilitated.   
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CHAPTER 3: PHYSICAL STRESS 

Introduction 

 According to the cognitive-energetical framework (Hockey, 1997), stress increases effort 

to temporarily improve performance or maintain performance levels. If one is unable to adjust 

performance to meet the goals of the task, the individual needs to adjust task goals to a level that 

is obtainable. The previous chapter investigated the effects of an increase in mental workload 

(i.e., cognitive stress) on the learning of a graphical timing task. It was assumed that the increase 

in work load would increase the effort of the learner and facilitate motor learning. The results 

from the previous chapter suggest that an increase in mental workload does hinder motor 

performance, but does not positively or negatively affect motor learning. A possible explanation 

for these results is that learners were not able to increase effort to meet the demands of the task 

so they adjusted task goals to a level that was obtainable. The lower task goal would explain why 

greater motor learning was not reported.   

 These results are at odds with the findings by Goh, Sullivan, Gordon, Wulf, and Winstein 

(2012). They found that dual task practice was beneficial to motor learning of the primary task. 

The secondary task that was used in the previous chapter was more difficult that the simple 

reaction time task used in Goh et al. (2012). It is possible that a less difficult secondary task or a 

lesser form of stress will facilitate motor learning.  

Van Gemmert and Van Galen (1997) found that cognitive stress (increased work load) is 

more detrimental to performance than physical stress. Physical stress also increases mental load 

when an individual attends to multiple stimuli in the environment (Van Gemmert & Van Galen, 

1994; 1998). This may occur by attending to two different stimuli, such as an auditory stimulus 

and a visual stimulus, or attending to an environmental stimulus while performing a motor task. 
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Physical stressors may include environmental stimuli such as pollution, high and low 

temperatures, or auditory noise. Physical stressors also include sleep deprivation and even the 

time of day. One physical stressor that has received a lot of attention over the years is physical 

noise (Broadbent, 1971). 

   Auditory noise has been shown to have both positive and negative effects on human 

performance (Broadbent 1979; Hockey, 1979; Van Gemmert, 1997; Welford, 1973). The effect 

of noise has been investigated on a multitude of tasks such as industrial assembly tasks (Levy-

Leboyer, 1989), simple and choice reaction time tasks (Button, Behm, Holmes, & Mackinnon, 

2004; Kyriakides & Leventhall, 1977), number writing tasks (Van Gemmert & Van Galen, 

1997), puzzle tracing tasks (Percival & Loeb, 1980), rotary pursuit tasks (Simpson, Cox, & 

Rothschild, 1974), and graphical aiming tasks (Van Gemmert & Van Galen, 1994; 1997; 1998). 

Noise can be described as any unwanted sound (Matthews, Davies, Westerman, & Stammers, 

2008). 

The results on noise and motor performance have been somewhat ambiguous. At times 

noise has hindered performance and at times improved motor performance (Van Gemmert, 

1997). Some potential explanations to explain why noise negatively affects performance is that it 

distracts the performer, reduces the attentional capacity of the performer, or increases stress 

(Matthews et al., 2008). Noise has also been found to affect physiological functions that may 

also contribute to decreased human performance, such as increases in blood pressure (Cohen, 

Evens, Krantz, & Stokols, 1980), heart rate (Carter & Beh, 1989; Parrot, Petiot, Lobreau, & 

Smolik, 1992), and eventually it may even lead to hypertension (Stanfeld & Matheson, 2003). 

Typically when noise is presented at levels at or above 95dBs performance is deteriorated 

(Staal, 2004). For example, 95dB of noise negatively affects manual dexterity and the ability to 
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manipulate a tool (Nassiri et al., 2013). 95dBs also negatively affects continuous rotary pursuit 

tracking performance (Harteley, 1981) and number writing (Van Gemmert & Van Galen, 1997). 

When noise is below 95dBs, the effects of noise on motor performance is not as clear. Research 

has shown that noise below 95dBs may have a positive or a negative effect (Staal, 2004). For 

example, noise between 80 and 85dBs improved performance on a motor tracking task (Hockey, 

1970; Gawon, 1982), impaired performance (Simpson, Cox, & Rothchild, 1974), and had no 

effect on motor performance (Abel, 2009). Similar ambiguous results have been found for choice 

RT tasks, with noise below 95dBs decreasing RT (Keuss, Van der Zee, & Van den Bree, 1990; 

Kyriakides, & Leventhall, 1977), increasing RT (Kyriakides, & Leventhall, 1977), and having no 

effect on RT (Corcoran, 1962).  

Potential explanations for these ambiguous results can be explained by the neuromotor 

noise theory (Van Gemmert & Van Galen, 1997) and to a lesser extent the Yerkes-Dodson law 

(Yerkes & Dodson, 1908). The presentation of auditory noise affects the arousal of the 

participant. This arousal then activates the system which leads to increases in neuromotor noise 

in the system. If a performer is under aroused then the increase in activation with accompanying 

neuromotor noise should have a positive effect on performance. If the performer is at an optimal 

arousal level or over aroused, the increase in activation with its increase in neuromotor noise 

should hinder motor performance. An increase in effort can suppress the effects of an increase in 

arousal by disconnecting the direct pathway between arousal and activation. 

One area of research that has received little attention is the effects of auditory noise on 

motor learning and how the results may provide additional support for the neuromotor noise 

theory. Therefore the purpose of the present study is to investigate the effects of physical stress 

in the form of auditory noise on motor learning. It is assumed that the addition of auditory noise 
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will increase the noise in the system, which signals the system to increase effort to channel 

arousal trying to obtain optimal activation levels for the task at hand. The increase in effort 

results in an increase of attention focus on relevant cues and goal directed behaviors (Gaillard, 

2008). Therefore, it is hypothesized that motor learning will be facilitated when auditory noise is 

present due to increased effort. To address secondary questions posed previously, a second 

purpose of the study is to investigate the neuromotor noise theory through reaction time and pen 

pressure. The addition of auditory noise should result in increased amounts of pen pressure as 

result of a biomechanical adaptation to cope with the accuracy constraints of the aiming task 

(i.e., an increase in neuromotor noise leads to decreases in the efficiency of trajectory formation 

and decreases in end point accuracy). Furthermore, the increase in non-specific activation in the 

motor system as result of auditory noise possibly does decrease the time to initiate the movement 

(i.e., decreases in reaction time) due to reaching activation levels earlier than without the 

increased activation levels. 

Method 

Participants 

Prior to participation, individuals read and signed the consent form approved by the 

Louisiana State University Institutional Review Board (Appendix A). Individuals then filled out 

a demographic and health questionnaire (Appendix B). Any person that reported psychological 

or neurological disorders or trouble with the use of the upper limbs was excluded from 

participation. In addition, all individuals reported having normal or corrected-to-normal vision 

and hearing. Following attrition due to the exclusion criteria, 24 individuals participated in the 

study aged between 20 and 25 years of age (M = 21.00, SD = 1.32). All volunteers received extra 

credit for participating in one of their kinesiology classes at the University. 
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Task and Equipment 

 At the beginning of the experiment participants were randomly assigned to one of two 

conditions. The first condition required participants to perform the same graphical aiming with 

obstacle avoidance task used in the previous chapter (AT). The second condition required 

participants to perform the same task but to increase physical stress, white noise was added 

(WN). For the auditory noise continuous white noise presented at 80dBs was used. The auditory 

noise was played using SimplyNoise (Reactor LLC). The same equipment used in the previous 

experiment (Chapter 2) was also used in the current study.  

Procedure 

Half of the participants were randomly placed into the physical stress group, i.e., aiming 

task with white noise (WN), and the other half were placed into the aiming task (AT) group, i.e., 

aiming task without auditory noise. Both groups completed the Perceived Stress Scale before 

participating in the study (Appendix C). The same procedure used in the previous experiment for 

the aiming task was used in the current experiment. During acquisition WN heard the 80dBs of 

continuous white noise while performing the aiming task and AT only performed the aiming 

task. Following acquisition both groups completed the modified NASA Task-Load Index 

(Appendix D). Five minutes after acquisition participants completed a six trial retention test that 

was completed in the same manner as acquisition but without feedback on movement time. Five 

minutes following retention, six trials of transfer were performed where both groups performed 

the aiming task without the presentation of noise (i.e., AT performed a second retention test, 

while WN performed a transfer test). Table 2 shows the task performed by each group during 

each phase of the experiment. Figure 12 shows the sequence of the aiming task for both WN and 

AT. 
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Table 2: Both groups with the task being performed during acquisition, retention, and 

retention/transfer. 

Group Acquisition Retention Retention/Transfer 

Control Aiming Task Aiming Task Aiming Task 

Physical Stress Aiming Task with 

80dBs of noise 
Aiming Task with 

80dBs of noise Aiming Task 

 

 

Figure 12: Diagram shows the sequence of the task for both groups. (1) Blank screen or , (2) 

Aiming task appeared on the screen and participants placed the pen tip in the starting target, (3) 

target turned green, (4) participant initiated movement, (5) target was reached to conclude the 

trial. 

Data Analysis 

 The processing and analyses of the data in the current study was the same as used in the 

previous experiment (Chapter 2). 

Results 

 The Perceived Stress Scale (PSS) scores were not significantly different for the WN (M = 

19.75, SD = 6.51) and the AT (M = 15.17, SD = 4.63) groups, t(22) = 1.99, p > .05 (Figure 13). 

In addition, the scores reported on the NASA Task-Load Index were not significantly different 

for the WN (M = 55.08, SD = 17.14) and the AT (M = 58.58, SD = 13.03) groups, t(22) = -.56, p 

> .05 (Figure 13). 
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Figure 13: Percieved Stress Scores (left) and NASA task-load scores (right) for both groups with 

standard error bars. 

Acquisition 

 Movement Time Errors. Both groups decreased MT from the beginning to the end of 

acquisition (Figure 14). This was supported by the main effect of block for AE, F(9, 198) = 

27.05, p < .001, ƞp2 = .55. Furthermore, AE did not show a significant group effect (p > .05), nor 

did it show a significant group × block interaction (p > .05). In addition, the same pattern of 

results was observed for CE, and VE. The main effects of block were both significant showing 

decreased error from the beginning to the end of acquisition, CE, F(9, 198) = 29.59, p < .001, ƞp2 

= .57, and VE, F(9, 198) = 33.13, p < .001, ƞp2 = .60. There were no significant differences 

between WN and AT for any of the error measurements (p > .05). The group × block interactions 

were also not significant (p > .05).  

Average Acceleration. Groups significantly increased their AA from the beginning to 

the end of acquisition (F(9, 198) = 27.08, p <.001, ƞp2 = .55) but did not significantly differ from 

one another (p > .05). The group by block interaction was not significant (p > .05) (Figure 15). 

Peak Acceleration. Groups significantly increased PA from the beginning to the end of 

acquisition (F(9, 198) = 9.76, p <.001, ƞp2 = .31). Neither the main effect of group nor the group 

by block interaction were significant (p > .05) (Figure 15). 
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Figure 14: Average AE (top), CE (bottom left), and VE (bottom right) for each group during 

each acquisition block with standard error bars. 

 

 

Figure 15: AA (left) and PA (right) for each group during acquisition with standard error bars. 

Normalized Jerk. Both groups demonstrated smoother movements from the beginning 

to the end of acquisition (Figure 16). This observation was supported by the significant main 

effect of block, F(9, 198) = 32.10, p < .001, ƞp2 = .59, and the absence of a significant group × 

block interaction, F(9, 198) = .17, p > .05. The groups did not perform significantly different 

from one another (p > .05). 
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 Path Length. Groups increased PL from the beginning to the end of acquisition (Figure 

15). This was supported by the significant main effect of block, F(9, 198) = 9.76, p < .001, ƞp2 = 

.31. Both the main effect of group and the group × block interaction were not significant (p > 

.05) (Figure 16). 

 

Figure 16: Average NJ (left) and PL (right) during each block of acquisition with standard error 

bars. 

Reaction Time. Groups did not significantly decrease RT during practice (Figure 17). 

This was supported by the absence of a significant main effect of block (p > .05). The WN group 

did display significantly greater RTs throughout acquisition. This observation was supported by 

the significant main effect of group, F(1, 22) = 7.54, p < .05, ƞp2 = .26, and the lack of a 

significant group × block interaction (p > .05). 

 Pen Pressure. Groups significantly decreased PP from the beginning to the end of 

acquisition (Figure 17). This was supported by a significant main effect of block, F(9, 198) = 

8.67, p < .001, ƞp2 = .28. Both the main effect of group and group by block interaction failed to 

reach significance (p > .05).  



45 

 

 

Figure 17: Average RT (left) and PP (right) during each block of acquisition with standard error 

bars. 

Retention 

Movement Time Errors. Both groups decreased MT from the beginning to the end of 

acquisition (Figure 18). This was supported by the main effect of block for AE, F(1, 22) = 34.74, 

p < .001, ƞp2 = .61. Furthermore, AE did not show a significant group effect (p > .05), nor did it 

show a significant group × block interaction (p > .05). In addition, the same pattern of results 

was observed for CE, and VE. The main effects of block were both significant showing 

decreased error from the beginning to the end of acquisition, CE, F(1, 22) = 38.87, p < .001, ƞp2 

= .64, and VE, F(1, 22) = 54.82, p < .001, ƞp2 = .71. There were no significant differences 

between WN and AT for CE or VE (p > .05). The group × block interactions were also not 

significant (p > .05).  

Average Acceleration. Groups significantly increased AA from the first block of 

acquisition to the retention block (F(1, 22) = 85.95, p <.001, ƞp2 = .80). The main effect of group 

was not significant and neither was the group by block interaction (p >.05) (Figure 19). 

Peak Acceleration. Groups significantly increased PA from the first block of acquisition 

to the retention block (F(1, 22) = 15.94, p <.001, ƞp2 = .42). The main effect of group was not 

significant and neither was the group by block interaction (p >.05) (Figure 19). 
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Figure 18: Average AE (top), CE (bottom left), and VE (bottom right) for both groups during the 

first block of acquisition, retention, and transfer with standard error bars. 

 

 

Figure 19: AA (bottom left) and PA (bottom right) for both groups during the first block of 

acquisition, retention, and transfer with standard error bars. 

Normalized Jerk. Both groups demonstrated smoother movements from the beginning 

of acquisition to retention (Figure 20). This observation was supported by the significant main 

effect of block, F(1, 22) = 38.70, p < .001, ƞp2 = .64, and the absence of a significant group × 

block interaction, F(1, 22) = .01, p > .05. The groups did not perform significantly different from 

one another (p > .05). 
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 Path Length. Groups increased PL from the beginning to the end of acquisition (Figure 

18). This was supported by the significant main effect of block, F(1, 22) = 15.94, p = .001, ƞp2 = 

.42. Both the main effect of group and the group × block interaction were not significant (p > 

.05) (Figure 20). 

 

Figure 20: Average NJ (left) and PL (right) for both groups during the first block of acquisition, 

retention, and transfer with standard error bars. 

Reaction Time. Groups did decrease RT from the beginning of acquisition to retention 

(Figure 21). This was supported by the significant main effect of block, F(1, 22) = 5.86, p < .05, 

ƞp2 = .21. The WN group displayed significantly greater RTs, as evidenced by the significant 

main effect of group, F(1, 22) = 4.96, p < .05, ƞp2 = .08. The group × block interaction was not 

significant (p > .05). 

 Pen Pressure. Groups significantly decreased PP from the beginning of acquisition to 

retention (Figure 21). This was supported by a significant main effect of block, F(1, 22) = 13.04, 

p = .002, ƞp2 = .37. Both the main effect of group and the group by block interaction were not 

significant (p > .05). 
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Figure 21: Average RT (left) and PP (right) for both groups during the first block of acquisition, 

retention, and transfer with standard errors. 

Transfer 

Movement Time Errors. Both groups decreased MT from the beginning to the end of 

acquisition (Figure 18). This was supported by the main effect of block for AE, F(1, 22) = 30.79, 

p < .001, ƞp2 = .58. Furthermore, AE did not show a significant group effect (p > .05), nor did it 

show a significant group × block interaction (p > .05). In addition, the same pattern of results 

was observed for CE, and VE. The main effects of block were both significant showing 

decreased error from the beginning to the end of acquisition, CE, F(1, 22) = 37.44, p < .001, ƞp2 

= .63, and VE, F(1, 22) = 50.33, p < .001, ƞp2 = .70. There were no significant differences 

between WN and AT for CE or VE (p > .05). The group × block interactions were also not 

significant (p > .05).  

Average Acceleration. Groups significantly increased AA from the first block of 

acquisition to the transfer block. This was supported by the significant main effect of block (F(1, 

22) = 44.77, p < .001, ƞp2 = .67. Both the main effect of group and group × block interaction 

were not significant (p > .05) (Figure 19). 

Peak Acceleration. Groups significantly increased AA from the first block of acquisition 

to the transfer block. This was supported by the significant main effect of block (F(1, 22) = 
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37.56, p < .001, ƞp2 = .63. Both the main effect of group and group × block interaction were not 

significant (p > .05) (Figure 19).  

Normalized Jerk. Both groups demonstrated smoother movements from the beginning 

of acquisition to transfer (Figure 20). This observation was supported by the significant main 

effect of block, F(1, 22) = 37.56, p < .001, ƞp2 = .63, and the absence of a significant group × 

block interaction, F(1, 22) = .01, p > .05. The groups did not perform significantly different from 

one another (p > .05). 

Path length. Groups increased PL from the beginning to the end of acquisition (Figure 

18). This was supported by the significant main effect of block, F(1, 22) = 10.16, p = .004, ƞp2 = 

.32. Both the main effect of group and the group × block interaction were not significant (p > 

.05) (Figure 20). 

Reaction Time. Groups did decrease RT from the beginning of acquisition to transfer 

(Figure 21). This was supported by the significant main effect of block, F(1, 22) = 6.01, p < .05, 

ƞp2 = .22. The PN group displayed marginally significant greater RTs, F(1, 22) = 4.08, p = .06, 

ƞp2 = .16. The group × block interaction was not significant (p > .05). 

Pen Pressure. Groups significantly decreased PP from the beginning of acquisition to 

transfer (Figure 21). This was supported by a significant main effect of block, F(1, 22) = 6.57, p 

< .05, ƞp2 = .23. Both the main effect of group and the group by block interaction were not 

significant (p > .05). 

Discussion 

The primary purpose of the present experiment was to investigate the effects of physical 

stress on motor skill performance and learning. To accomplish this half of the participants 

performed an aiming task with a barrier avoidance requirement while physical stress was 
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induced by presenting 80dBs of continuous white noise. The other half of the participants 

performed the same task but in the absence of continuous white noise.  

During acquisition, groups significantly improved their performance for the dependent 

variables: absolute error (AE), constant error (CE), variable error (VE), average acceleration 

(AA), peak acceleration (PA), normalized jerk (NJ), path length (PL), and pen pressure (PP). No 

improvement was observed during acquisition for reaction time (RT). Unlike the addition of 

cognitive stress (chapter 2), the addition of physical stress did not impact performance either 

positively or negatively for AE, CE, VE, AA, PA, NJ, PL, and PP. The addition of white noise 

did cause increased RT. 

It was hypothesized that the presentation of white noise would lead to greater motor 

learning. It was anticipated that the increase in physical stress would lead to an increase in the 

amount of effort the learner needed to put forth to accomplish the goal of the task. This increase 

in effort would then in turn facilitate motor learning. This hypothesis was not supported because 

the results during both retention and transfer failed to find a difference between the groups for all 

dependent variables except RT. For RT, groups significantly differed during retention but when 

the additional noise was removed during transfer the groups did not significantly differ.   

Previous research suggested that physical noise at 80dBs and 95dBs had an activating 

effect on the motor system that decreased processing times which resulted in decreased reaction 

times (Keuss, Van der Zee, & Van den Bree, 1990; Van Gemmert & Van Galen, 1997). In 

addition to the activating effect of noise, research has also shown that noise at or above 95dBs 

hinders motor performance (Button, Behm, Holmes, & Mackinnon, 2004; Nassiri et al., 2013). 

Our data suggest that physical stress (80dBs of continuous white noise) had no effect on motor 

performance during acquisition, retention, or transfer. This finding, that physical stress does not 
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affect performance, has not been shown frequently in the literature but some studies have 

reported similar findings (Simpson, Cox, & Rothschild, 1974; Kyriakides & Leventhall, 1977). 

One potential explanation for these results is that individuals habituated to the continuous 

auditory noise. It is possible that an intermittent auditory noise or a tone during one aspect of 

performance may elicit a different result (Van Gemmert & Van Galen, 1998). It is also possible 

that low intensity of 80dBs of auditory noise is not sufficient to affect performance either 

positively or negatively in a relative simple timed aiming task as used in the current experiment. 

A higher intensity may increase arousal and therefore increase effort which would lead to 

improvements in motor learning. 

In addition, the results of the NASA task-load index suggest that work load was not 

increased when adding 80dBs of white noise to the barrier-avoidance-aiming task. This offers 

another potential explanation as to why the white noise did not have an effect on performance or 

learning. If the additional auditory noise did not increase work load then the learners would not 

need additional effort to complete the task, so learning would not be facilitated. 

A secondary aim of this study was to investigate the neuromotor noise theory. It was 

assumed that the 80dBs of noise would have an activating effect on the motor system that would 

result in a decrease in RT. The results from this experiment showed that RT was significantly 

greater for the group with the additional white noise. This indicates that the white noise affected 

processes needed to initiate the movement possibly as result of an increase of neuromotor noise 

in the system.  

Future research should be geared towards different types and intensities of noise. More 

specifically, noise that is more difficult to habituate to or auditory noises which increase work 

load should be explored. A more direct investigation of the increase in activation and its 
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accompanying neuromotor noise when performing a fine motor should also be examined. One 

study used electromyography to investigate the relationship between increased stress and muscle 

activation when performing an aiming movement. It was found that greater cocontraction existed 

with an increase in both physical and cognitive stress (Van Galen, Muller, Meulenbroek, & Van 

Gemmert). Research should continue to investigate various noise types and intensities and the 

effects of muscle activation to better understand how stress effects performance and muscle 

activation.  
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CHAPTER 4: PRACTICE SPECIFICITY 

Introduction 

Research suggests that mental representations of a practiced motor skill are developed 

with the available sensory information used during practice (Proteau, 1995; Proteau, Marteniuk, 

& Levesque, 1992). This means that sensory information becomes part of the “motor program” 

and the specific sensory information is needed to accurately reproduce the desired motor skill. 

For example, Ivens and Marteniuk (1997) asked participants to perform rapid arm movements to 

different targets. Some participants performed these arm movements with vision or when vision 

was removed. In addition, those that practiced the rapid arm movements without vision were 

separated into a low practice amount or a high practice amount. The authors found that the group 

without vision and the higher amount of practice performed the poorest during a transfer test 

with vision. These results suggest that available sensory information becomes part of the 

movement representation or “motor program”. When the sensory information does not match the 

conditions during practice, performance will be hindered. Furthermore, when individuals learned 

to walk a 20m line that was 2.5cm wide (precision walking task) with or without vision and with 

low or high amounts of practice, those with more practice without vision performed the poorest 

on a transfer test with vision (Proteau, Tremblay, & Dejaeger, 1998). Evidence supporting the 

specificity of practice hypothesis has also been found in various tasks such as weight lifting 

(Tremblay & Proteau, 1998), visual tracking (Coull, Tremblay, & Elliott, 2001), one handed ball 

catching (Tremblay & Proteau, 2001), and an underhand volleyball serve (Travlos, 2010). 

Movahedi, Sheikh, Bagherzadeh, Hemayattalab, and Ashayeri (2007) proposed a practice 

specificity based model of arousal. They suggest that learning is specific to the arousal level of 

the performer. Based on practice specificity one would assume that the arousal during practice 
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must match the same arousal level during a future performance. However, various arousal 

theories contradict the expected findings of specificity of practice. The inverted-U theory 

(Yerkes & Dodson, 1908) suggests that performance reaches an optimal level when arousal is at 

a mid-level and drive theory suggests that performance increases as arousal increases (Hull, 

1943). To better understand the relationship between arousal and specificity of practice, 

Movahedi et al., (2007) had participants learn a basketball free throw under either high arousal 

levels or low arousal levels. They found that when arousal levels during retention/transfer were 

the same as the practice conditions performance was best. These results suggest that specificity 

of practice extends to research on arousal. 

Research has also investigated the relationship between performer anxiety and specificity 

of practice. Lawrence et al. (2013) found that when individuals learned a complex rock climbing 

task with increasing amounts of anxiety, performance on a future test was maximized when the 

anxiety matched the anxiety levels of practice. These results provide further evidence for a 

potential relationship between various types of stress and specificity of practice.  

Practice specificity has received little attention when looking at increased work load or 

increased auditory noise (cognitive and physical stressors). One would think that if a learner 

practices in a condition with additional stressors presented then future performance should be 

maximized when the same conditions are met. The results from the two previous studies do not 

align with the idea of practice specificity. The results from the previous experiments found that 

when the stress was removed in a transfer test, both the additional work load group and the 

additional white noise group did not perform significantly different than their control group. 

The first two experiments investigated the effects of two stress types (increased mental 

load and white noise) on the performance and learning of a motor skill. The primary finding in 
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these experiments is that increased amounts of stress or work load do not positively or negatively 

influence motor learning. In these experiments learners practiced a primary motor task with 

additional stress and then had the additional stress removed during a transfer test. These results 

are contrary to specificity of practice. An additional area that still needs to be explored is 

specificity of practice when learners practice without additional stress and then have a stressor 

added during a transfer test.  

The purpose of this study was to investigate the specificity of practice on increased work 

load (cognitive stress) and additional auditory noise (physical stress). If stress becomes part of 

the motor representation, then additional stress needs to be present during practice if the stressor 

will be present during a future performance. To test this, additional stress will be added during 

transfer that was not present during acquisition. A secondary aim of this study was confirm the 

results found in the previous studies.  

Method 

Participants 

Prior to participation, individuals read and signed the consent form approved by the 

Louisiana State University Institutional Review Board (Appendix A). Individuals then filled out 

a demographic and health questionnaire (Appendix B). Any person that reported psychological 

or neurological disorders or trouble with the use of the upper limbs was excluded from 

participation. In addition, all individuals reported having normal or corrected-to-normal vision 

and hearing. Following attrition due to the exclusion criteria, 48 individuals participated in the 

study aged between 19 and 24 years of age (M = 20.33, SD = 0.95). All volunteers received extra 

credit for participating in one of their kinesiology classes at the University. 
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Task and Equipment 

At the beginning of the experiment participants were randomly assigned to one of four 

conditions. Two conditions required participants to perform the same graphical aiming with 

obstacle avoidance task with movement duration requirement used in the previous chapters. The 

other two conditions were the same as the experimental conditions in chapters 2 and 3. One 

group was required to simultaneously count backwards by threes while performing the timed 

aiming task, and the other group was presented with 80dBs of continuous white noise while 

performing the timed aiming task. The same equipment used in the previous experiments 

(Chapter 2 and 3) was also used in the current study. 

Procedure 

Twelve participants were randomly assigned to a group that completed the timed aiming 

task with the barrier avoidance during acquisition and retention but during transfer they 

performed the task with the secondary counting task (Transfer to Work Load: TWL). Another 

twelve participants performed the timed aiming task during acquisition and retention but 

performed transfer while hearing 80dBs of continuous white noise (Transfer to White Noise: 

TWN). Twelve participants performed the aiming task while counting backwards by threes 

during acquisition, retention, and transfer (Work Load: WL) and twelve participants performed 

the task while hearing white noise (White Noise: WN). Before participating in the study, 

participants signed the informed consent (Appendix A) and filled out the health and demographic 

questionnaire (Appendix B). Subsequently, they were asked to count backwards by threes as fast 

as possible from a random number presented. They were timed in their ability to count 

backwards by threes for 10 numbers (see Figure 23). Participants then completed the Perceived 

Stress Scale (Appendix C). In the current experiment the same procedure for the timed aiming 
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with obstacle avoidance task was used as in the previous experiments. During acquisition WN 

was presented with the 80dBs of continuous white noise while performing the timed aiming task 

and WL performed the task while counting backwards by threes. TWN and TWL only performed 

the timed aiming task. Following acquisition all participants completed the modified NASA 

Task-Load Index (Hart, 2006; Appendix D). Five minutes after acquisition participants 

completed a six trial retention test that was completed in the same manner as acquisition but 

without feedback on movement time. Five minutes following retention, six trials of transfer were 

performed where WL and WN performed the task in the same manner they performed 

acquisition and retention. TWL performed the transfer trials while simultaneously performing the 

counting task, and TWN performed the task while the continuous white noise was presented. 

Table 3 shows the task performed by each group during each phase of the experiment. Figure 22 

shows the sequence of the aiming task for both WN and AT. 

Table 3: Both groups with the task being performed during acquisition, retention, and 

retention/transfer. 

Group Acquisition Retention Transfer/Retention 

Control 1 Aiming Task Aiming Task Aiming Task with 

verbal counting 

Control 2 Aiming Task Aiming Task Aiming Task with 

80dBs of noise 

Cognitive Stress Aiming Task with 

verbal counting 
Aiming Task with 

verbal counting 
Aiming Task with 

verbal counting 

Physical Stress Aiming Task with 

80dBs of noise 
Aiming Task with 

80dBs of noise 
Aiming Task with 

80dBs of noise 
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Figure 22: The top diagram shows the sequence of the task for the Work Load group and the 

bottom diagram shows the task for the Aiming Task group. (1) Blank screen or instruction to 

count backwards, (2) Aiming task appeared on the screen and participants placed the pen tip in 

the starting target, (3) target turned green, (4) participant initiated movement, (5) target was 

reached to conclude the trial. 

Data Analysis 

 The data collected by MovAlyzeR was processed with a custom made Matlab-program 

(Mathworks Inc., Natick, Massachusetts, USA). The position signals of the pen tip were dual 

pass filtered with a Butterworth fourth order filter with a cut off frequency of 7 Hz. Both the 

onset and offset of the pen movement was determined by 5% of the peak velocity. The 

dependent variables analyzed were absolute error (AE), constant error (CE), variable error (VE), 

average and peak acceleration (AA and PA), path length (PL), normalized jerk (NJ), axial pen 

pressure (PP), and reaction time (RT). To calculate AE, CE, and VE; movement time (MT) had 

to be first calculated. MT was defined as the time period between the onset and offset of the 

movement (5% of the peak velocity).  AE, CE, and VE were calculated in the same manner that 

was explained in chapter 2 (i.e., CE=T-MT, AE=|CE|, and VE=√(∑(MT mean – MT trial)^2/N)). 

Acceleration is the second derivative of displacement and provided information on the estimated 

force required to propel the pen over the surface of the tablet. Jerk is the rate of change in 
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acceleration and NJ is jerk normalized for size and distance (see Van Gemmert, Teulings, & 

Stelmach, 1998). RT is the time period from the go-stimulus onset to the initiation of movement. 

 The 60 acquisition trials were analyzed in ten blocks of six. All dependent variables were 

analyzed with separate mixed factors ANOVAs with groups as the between factor and blocks as 

the within factor (i.e., 4 groups × 10 blocks). Bonferroni post hoc tests were performed to 

analyze any significant main effect of group. To analyze retention and retention/transfer, separate 

mixed factors ANOVAs were applied to each dependent variable with the groups as the between 

factors and the first block of acquisition and the retention or retention/transfer block as the within 

factors (i.e., 4 group × 2 blocks). When a significant block × group interaction was observed, 

independent t-tests with a Bonferroni correction were applied to the data. The composite scores 

for the counting ability, Perceived Stress Scale and the NASA task-load index were each totaled. 

Separate one-way ANOVAs with Bonferroni post hoc tests were performed to determine the 

presence of possible group differences. 

Results 

The length of time to count backwards by threes did not significantly differ among 

groups (F(3, 47) = 0.14, p > .05). Figure 23 shows the mean counting times with standard error 

for each group. The Perceived Stress Scale (PSS) scores were not significantly different for WL, 

TWL, WN, and TWN, F(3, 47) = 1.17, p > .05 (Figure 24). This indicates that groups did not 

start the experiment with different levels of emotional stress. Following acquisition, participants 

completed the NASA Task-load to provide an indication of the workload needed to complete the 

task (Figure 20). WL had significantly greater NASA Task-load scores than TWL (p = .002) and 

WN (p = .007), but not TWN (p > .05).  



62 

 

 

Figure 23: Average completion time to count 10 numbers in sequence backwards by threes with 

standard error bars. 

 

Figure 24: Percieved Stress Scores (left) and NASA task load index scores (right) for each group 

with standard error bars. 

Acquisition 

Movement Time Errors. Groups decreased AE from the beginning to the end of 

acquisition (Figure 25). This was supported by the main effect of block, F(9, 396) = 61.65, p < 

.001, ƞp2 = .58. Furthermore, the main effect of group was also significant for AE, F(3, 44) = 

7.60, p < .001, ƞp2 = .34, with WL having more error that the other groups. The group by block 

interaction was also significant (F(27, 396) = 8.89, p < .001, ƞp2 = .38). In addition, the same 

pattern of results was observed for CE, and VE. The main effects of block were both significant 

showing decreased error from the beginning to the end of acquisition, CE, F(9, 396) = 62.47, p < 

.001, ƞp2 = .59, and VE, F(9, 396) = 26.26, p < .001, ƞp2 = .37. For both CE and VE the main 

effects of group were significant (CE, F(3, 44) = 7.81, p < .001, ƞp2 = .35; VE, F(3, 44) = 15.03, 
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p < .001, ƞp2 = .51). For both variables WL showed more error that the other three groups. The 

group by block interactions were also significant for CE (F(27, 396) = 8.03, p < .001, ƞp2 = .35) 

and VE (F(27, 396) = 3.15, p < .001, ƞp2 = .18).  

 

Figure 25: The average AE (top), CE (bottom right), and VE (bottom left) for each group during 

each acquisition block with standard error bars. 

 

Path Length. The main effect of block was significant with the first acquisition block 

being significantly different from blocks two through nine, F(9, 396) = 7.44, p < .001, ƞp2 = .15 

(Figure 26). The main effect of group, as well as the group × block interaction were not 

significant (p > .05).  

Normalized Jerk. Groups produced significantly smoother movements from the 

beginning to the end of acquisition (Figure 26). This observation was supported by the 

significant main effect of block, F(9, 396) = 18.70, p < .001, ƞp2 = .30. The main effect of group 

was also significant, F(3, 44) = 7.00, p = .001, ƞp2 = .32. The post hoc tests revealed that WL 
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had greater NJ than the other three groups. The group × block interaction was also significant, 

F(27, 396) = 5.41, p < .001, ƞp2 = .27. 

 

Figure 26: Average PL (left) and NJ (right) for WL, TWL, WN, and TWN during each block of 

acquisition with standard error bars. 

Average Acceleration. The main effect of block for AA was significant (F(9, 396) = 

37.37, p < .001, ƞp2 = .46) with groups increasing their AA from the beginning to the end of 

acquisition (Figure 27). The main effect of group was also significant (F(3, 44) = 2.76, p = .05, 

ƞp2 = .16) with WL having lower AA than TWN. The group by block interaction was not 

significant (p > .05). 

Peak Acceleration. The main effect of block for PA was significant (F(9, 396) = 17.14, 

p < .001, ƞp2 = .28) with groups increasing their PA from the beginning to the end of acquisition 

(Figure 27). However, unlike AA, the main effect of group was not significant (p > .05). The 

group by block interaction was also not significant (p > .05).  

Reaction Time. The main effect of group was significant with a decrease in RT from the 

beginning to the end of acquisition (F(9, 396) = 1.97, p < .05, ƞp2 = .04). This was caused by the 

decrease in RT for WL (Figure 28). The main effect of group was significant (F(3, 44) = 27.03, p 

< .001, ƞp2 = .65) and the post hoc tests showed that WL had greater RTs that the other groups. 

The group by block interaction was also significant, F(27, 396) = 3.52, p < .001, ƞp2 = .19.  
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Pen Pressure. Groups significantly decreased PP from the beginning of acquisition to the 

end, F(9, 396) = 7.74, p < .001, ƞp2 = .15 (Figure 24). Neither the main effect of group or group 

by block interaction was significant (p > .05). 

 

Figure 27: The AA (left) and PA (right) for WL, TWL, WN, ans TWN during each block of 

acquisition with standard error bars. 

 

Figure 28: Average RT (left) and PP (right) during each block of acquisition with standard error 

bars. 

Retention 

Movement Time Errors. Figure 29 shows the mean AE, CE, and VE during the first 

block of acquisition and retention. The groups significantly decreased AE which was supported 

by the main effect of block, F(1, 44) = 113.56, p < .001, ƞp2 = .72. The main effect of group was 

significant (F(3, 44) = 19.23, p < .001, ƞp2 = .57) as was the group by block interaction, F(3, 44) 

= 16.44, p < .001, ƞp2 = .53. The independent t-tests revealed that WL had significantly greater 

AE during the first block of acquisition than the other groups (p < .001) but no significant 
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differences were found during retention (p > .05). All groups significantly decreased AE from 

the beginning of acquisition to retention (p < .05).  

The main effect of block was significant for CE, F(1, 44) = 116.62, p < .001, ƞp2 = .73, 

and VE, F(1, 44) = 68.71, p < .001, ƞp2 = .61, with groups decreasing error from the first block 

of acquisition to retention. The main effect of group was also significant for CE, F(3, 44) = 

18.27, p < .001, ƞp2 = .56, and VE, F(3, 44) = 9.92, p < .001, ƞp2 = .40 with WL having greater 

error than the other groups. In addition, the group × block interaction was also significant for CE, 

F(3, 44) = 15.70, p < .001, ƞp2 = .52, and VE, F(3, 44) = 6.05, p = .002, ƞp2 = .29. The 

independent t-tests showed that all groups significantly decreased both CE and VE (p < .05). 

During the first block of acquisition WL had significantly greater CE (p < .001) and VE (p < 

.01). During retention there were no significant differences between groups (p > .05).  

 

Figure 29: Average AE (top), CE (bottom left), and VE (bottom right) for both groups during the 

first block or acquisition, retention, and transfer with standard error bars. 
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 Path Length. The main effect of block for PL was significant with longer PLs being 

produced during retention than the beginning of acquisition (F(1, 44) = 8.00, p < .01, ƞp2 = .15). 

The main effect of group and the group by block interaction were not significant (p > .05) 

(Figure 30). 

 Normalized Jerk. Participants produced smoother movements during retention than at 

the beginning of acquisition (Figure 30). This was supported by the main effect of block (F(1, 

44) = 25.00, p < .001, ƞp2 = .36). The main effect of group was significant (F(3, 44) = 8.20, p < 

.001, ƞp2 = .36) and the post hoc tests revealed that WL had significantly greater NJ. The group 

by block interaction was also significant (F(3, 44) = 7.62, p < .001, ƞp2 = .34). This was most 

likely caused by the decrease in NJ for the WL condition. The independent t-tests revealed that 

WL had significantly greater NJ during the first block of acquisition than the other groups (p < 

.01) but no group differences were found in retention (p > .05). In addition, the independent t-

tests revealed that only WL significantly decreased NJ from the beginning of acquisition to 

retention (p < .001).  

 

Figure 30: Average PL (left) and NJ (right) for both groups during the first block or acquisition, 

retention, and transfer with standard error bars. 

Average Acceleration. The main effect of group for AA was significant with an increase 

in AA from the beginning of acquisition to retention (F(1, 44) = 79.07, p < .001, ƞp2 = .64). The 

main effect of group was significant (F(3, 44) = 3.96, p < .05, ƞp2 = .21). The post hoc tests 
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revealed that WL had significantly less AA than TWN. The group by block interaction was also 

significant (F(3, 44) = 2.76, p = .05, ƞp2 = .16). The independent t-tests revealed significantly 

less AA for WL than WN or TWN during the first block of acquisition (p < .01). No significant 

differences between groups were found during retention (p > .05). In addition, all groups 

significantly increase AA from the beginning of acquisition to retention (p < .01) (Figure 31). 

 Peak Acceleration. The main effect of block for PA was significant with lower PA being 

recorded during the beginning of acquisition than retention (F(1, 44) = 34.90, p < .001, ƞp2 = .44. 

Both the main effect of group and the group by block interaction were not significant (p > .05) 

(Figure 31). 

 

Figure 31: AA (left) and PA (right) for both groups during the first block or acquisition, 

retention, and transfer with standard error bars. 

 Reaction Time. The main effect of block for RT was significant (F(1, 44) = 18.46, p < 

.001, ƞp2 = .30). This was caused by the decrease in RT for the WL condition. The main effect of 

group was also significant (F(3, 44) = 43.25, p < .001, ƞp2 = .75) and the post hoc tests revealed 

that WL had greater RTs. The group by block interaction was also significant (F(3, 44) = 12.87, 

p < .001, ƞp2 = .47). The independent t-tests revealed that only the WL condition improved from 

the beginning of acquisition to retention by decreasing RT (p < .001). WL had significantly 

higher RTs during the beginning of acquisition (p < .001) and retention (p < .001) than the other 

groups (Figure 32). 
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 Pen Pressure. The main effect of block was significant with PP decreasing from the 

beginning of acquisition to retention (F(1, 44) = 7.60, p < .01, ƞp2 = .15). Both the main effect of 

group and the group by block interaction were not significant (p > .05) (Figure 32). 

 

Figure 32: Average RT (left) and PP (right) for both groups during the first block or acquisition, 

retention, and transfer with standard error bars. 

Transfer 

Movement Time Errors. Figure 29 shows the mean AE, CE, and VE during the first 

block of acquisition and transfer. The groups significantly decreased AE which was supported by 

the main effect of block, F(1, 44) = 70.58, p < .001, ƞp2 = .62. The main effect of group was 

significant (F(3, 44) = 15.67, p < .001, ƞp2 = .52) and the post hoc tests revealed that WL had 

significantly more AE that all other groups (p < .001) and TWL had significantly more AE than 

TWN (p < .05). The group by block interaction was also significant, F(3, 44) = 17.88, p < .001, 

ƞp2 = .55. The independent t-tests revealed that WL and TWN decreased AE from baseline to 

transfer (p < .05) and WN marginally decreased AE (p = .06). As mentioned previously, WL had 

significantly greater AE during the beginning of acquisition (p < .001). However, during transfer 

TWL had significantly more AE than the other groups (p ≤ .01).  

The main effect of block was significant for CE, F(1, 44) = 69.42, p < .001, ƞp2 = .61, 

and VE, F(1, 44) = 60.29, p < .001, ƞp2 = .58, with groups decreasing error from the first block 

of acquisition to transfer. The main effect of group was also significant for CE, F(3, 44) = 15.95, 
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p < .001, ƞp2 = .52, and VE, F(3, 44) = 7.61, p < .001, ƞp2 = .34 with WL having greater error 

than the other groups. In addition, the group × block interaction was also significant for CE, F(3, 

44) = 16.52, p < .001, ƞp2 = .53, and VE, F(3, 44) = 7.99, p < .001, ƞp2 = .35. The independent t-

tests for CE showed that WL, WN, and TWN significantly improved from the beginning of 

acquisition to transfer (p < .05). During the first block of acquisition WL had significantly 

greater CE (p < .001) but during transfer TWL had significantly greater CE than the other groups 

(p ≤ .01). The independent t-tests for VE showed that WL, WN, and TWN improved from the 

beginning of acquisition to transfer (p < .05). The independent t-tests also revealed that WL had 

significantly greater VE during the first block of acquisition (p < .01) and TWL had significantly 

more VE during transfer than WN and TWN (p ≤ .01). 

 Path Length. The main effect of block for PL was significant with longer PLs being 

produced during transfer than the beginning of acquisition (F(1, 44) = 6.04, p < .05, ƞp2 = .12). 

The main effect of group and the group by block interaction were not significant (p > .05) 

(Figure 30). 

 Normalized Jerk. Participants produced smoother movements during transfer than at the 

beginning of acquisition (Figure 30). This was supported by the main effect of block (F(1, 44) = 

22.32, p < .001, ƞp2 = .34). The main effect of group was significant (F(3, 44) = 7.80, p < .001, 

ƞp2 = .35) and the post hoc tests revealed that WL had significantly greater NJ than the other 

groups (p < .05) and TWL had significantly more NJ than TWN (p < .05). The group by block 

interaction was also significant (F(3, 44) = 8.17, p < .001, ƞp2 = .36). The independent t-tests 

revealed that WL decreased NJ from the beginning of acquisition to transfer (p < .001). WL had 

significantly greater NJ during the first block of acquisition than the other groups (p < .01) and 

TWL had significantly greater NJ than WN and TWN during transfer (p < .05). 
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 Average Acceleration. The main effect of group for AA was significant with an increase 

in AA from the beginning of acquisition to transfer (F(1, 44) = 37.62, p < .001, ƞp2 = .46). The 

main effect of group was significant (F(3, 44) = 8.20, p < .001, ƞp2 = .36). The post hoc tests 

revealed that TWL had significantly lower AA than WN (p < .05) and TWN had significantly 

greater AA than WL and TWL (p < .05). The group by block interaction was also significant 

(F(3, 44) = 4.64, p < .01, ƞp2 = .24). The independent t-tests revealed that WL, WN, and TWN 

significantly increased AA from the beginning of acquisition to transfer (p < .05). During the 

first block of acquisition WL had significantly lower AA than WN and TWN (p < .01). During 

transfer TWL had significantly lower AA than the other groups (p < .05). (Figure 31). 

 Peak Acceleration. The main effect of block for PA was significant with lower PA being 

recorded during the beginning of acquisition than transfer (F(1, 44) = 34.90, p < .001, ƞp2 = .44. 

The main effect of group was significant (F(3, 44) = 3.20, p < .05, ƞp2 = .18) and the post hoc 

tests revealed that TLW had significantly lower PA than TWN (p < .05). The group by block 

interaction was also significant (F(3, 44) = 5.23, p < .01, ƞp2 = .26. The independent t-tests 

revealed that both WL and TWN significantly increased PA from the beginning of acquisition to 

transfer (p < .05). No significant differences during the first block of acquisition were found (p > 

.05) but during transfer TWL had significantly lower PA than WL and TWN (p ≤ .01).  

 Reaction Time. The main effect of block for RT was significant (F(1, 44) = 7.90, p < 

.01, ƞp2 = .15). The main effect of group was also significant (F(3, 44) = 23.67, p < .001, ƞp2 = 

.62) and the post hoc tests revealed that WL had significantly different RTs than the other three 

groups (p ≤ .01) and TWL had significantly different RTs than the other groups (p ≤ .01). The 

group by block interaction was also significant (F(3, 44) = 37.49, p < .001, ƞp2 = .72). The 

independent t-tests revealed that WL significantly decreased RT from the beginning of 
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acquisition to transfer (p < .001) and TWL significantly increased RT from the beginning of 

acquisition to transfer (p < .001). The independent t-tests revealed that WL had significantly 

greater RT during the first block of acquisition (p < .001). The independent t-tests also revealed 

that TWL had significantly greater RT than the other groups (p < .05) and WL had significantly 

higher RT than WN and TWN (p < .05) during transfer (Figure 32). 

 Pen Pressure. The main effect of block was not significant (p > .05). In addition, the 

main effect group and the group by block interaction were not significant (p > .05) (Figure 32). 

Discussion 

The purpose of this chapter was to investigate the effects of both cognitive (increased 

mental load) and physical stress (continuous white noise) on practice specificity. It was 

hypothesized that if additional stressors were present during a transfer test, performance would 

be best if the practice conditions mirrored the conditions during practice. During this experiment 

individuals learned to perform an aiming task that required them to draw to a stationary target in 

as close to two seconds as possible while avoiding two stationary barriers. The experiment 

consisted of four groups that performed the task with or without one of two stressors. The first 

group performed the task while simultaneously counting backwards by threes during acquisition, 

retention, and transfer (work load: WL). The second group performed the task without additional 

work load during acquisition and retention but performed the task with additional work load 

during transfer (transfer to work load: TWL). The third group performed the task while 80dBs of 

continuous white noise was presented during acquisition, retention, and transfer (white noise: 

WN). The last group performed the task without additional stress during acquisition and 

retention. During transfer they were presented the continuous white noise (transfer to white 

noise: TWN). 
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During the acquisition phase of the experiment, groups became significantly closer to 

performing the task in the two second criterion time (i.e., lower AE and CE closer to zero) and 

became more consistent around their average movement time (i.e., lower VE). Groups also 

produced smoother (i.e., lower NJ) and more efficient movements (i.e., faster peak and average 

accelerations, and decreased axial pen pressure). The WL group also significantly decreased 

reaction time during acquisition (i.e., lower RT). WL also had significantly more error in their 

movement time goal, significantly more normalized jerk and higher pen pressure (NJ and PP 

respectively), and significantly lower peak and average acceleration (PA and AA, respectively). 

During retention the same pattern of results was found. 

During transfer, the increased stress for TWL negatively affected performance. The TWL 

group had significantly greater AE and CE than all the other groups. TWL also had more VE 

than WN and TWN but not WL. TWL also produced movements with greater NJ than WN and 

TWN, less PA than WL and TWN, and less AA than all the other groups. TWL also had 

significantly higher RT during transfer. WL had greater RT than WN and TWN. 

The results during acquisition and retention support the findings from the previous 

experiments. The group with the increased work load had poorer timing accuracy and performed 

the movement less efficiently in chapters two and four (see figures 8, 9, 25, and 27). In the 

current experiment, the increase in work load during transfer elicited similar results, having 

poorer performance than the groups without the increase in work load. In addition, the addition 

of white noise did not significantly hinder timing accuracy or movement efficiency in chapter 

three or the current experiment (see figures 18, 19, 29, and 31).  

In the second chapter, the increase in work load negatively affected performance but 

during a transfer test without the increase in work load performance was not hindered. In the 
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third chapter it was found that continuous white noise at 80dBs did not negatively affect timing 

accuracy and performance also did not differ from a control group during a transfer test without 

the continuous white noise. Both of these examples are in contrast to specificity of practice (Shea 

& Kohl, 1990). If the results would have supported specificity of practice then the experimental 

conditions in chapters two and three should have performed poorer than the control groups 

because the practice context was different. According to specificity of practice we would assume 

that the groups with the same context as practice during transfer would perform significantly 

better on the aiming task but this was not found. 

Specificity of practice has been found for practice context (Lubow, Rifkin, & Alek, 

1976), arousal (Movahedi et al., 2007) and anxiety (Lawrence et al., 2013). In each case, learners 

performed better on a transfer test that mirrored the practice context. For example, individuals 

that learned a basketball free throw under low arousal performed better on a future test with low 

arousal and individuals that learned the task under high arousal performed better under high 

arousal (Movahedi et al., 2007). 

The specificity of practice hypothesis states that learning is specific to the sensory 

information available during acquisition of the skill. It also suggests that the sensory information 

becomes part of the movement representation and is needed reproduce the movement at high 

performance levels (Proteau, 1995; Proteau, Marteniuk, & Levesque, 1992; Coull, Tremblay, & 

Elliott, 2001). Practice specificity means that practice conditions should closely resemble both 

environmental conditions and movement characteristics that will be present during a future 

performance time (Humphreys, 1976).  

The results from the TWL group support specificity of practice because when the context 

changed performance deteriorated. However, the results from the TWN group did not support 
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specificity of practice because the added white noise during practice should have deteriorated 

performance because the performance context changed. In summary we did not support 

specificity of practice for physical stress with 80dBs of continuous white noise and did not 

support specificity of practice when a cognitive stressor is removed during transfer testing. We 

only supported specificity of practice when a cognitive stressor was added during transfer 

because it significantly hindered performance. 

Future directions for research should include additional investigations into specificity of 

various physical stressors. One limitation to this study was the low level of white noise presented 

to the participants (80dBs). We used 80 dBs because of the duration that the noise was presented 

(The European Parliament and The Council of the European Union, 2003). Increased amounts of 

noise or increased practice may lead to greater dependency on the white noise to reach peak 

performance levels.  
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CHAPTER 5: GENERAL DISCUSSION 

Overview of Findings 

The purpose of this dissertation was to investigate the effects of a cognitive stressor 

(work load) and a physical stressor (auditory noise) on motor learning. The framework of the 

practice context and its relation between stress during acquisition and the assessment also 

afforded an exploration of the specificity of practice in the context of stressors. An additional 

purpose of this dissertation was to further investigate the influence of stress on motor learning 

and how the neuromotor noise perspective may help to explain its relationship. 

 In chapter two the effects of a cognitive stressor (work load) on motor performance and 

learning was investigated. Individuals learned a timed graphical aiming task with barrier 

avoidance. They were asked to perform the task in exactly two seconds. In addition to 

performing the aforementioned task, half the participants performed a secondary arithmetic task 

that required them to count backwards by threes from a number presented on the computer 

screen. It was found that an increase in work load negatively impacted motor performance during 

acquisition. However, when the stressor was removed during a transfer test, it was found that 

motor learning was not affected.  

 Chapter three investigated the effects of auditory noise (a physical stressor) in the form of 

white noise at 80dBs on motor performance and learning. Individuals learned the same timed 

graphical aiming task used in the second chapter. Half of the participants performed the task with 

additional continuous white noise played at 80dBs. The additional auditory noise affected motor 

performance and learning neither positively nor negatively. 

 The fourth chapter explored practice specificity in the context of cognitive and physical 

stressors. The same timed graphical aiming task with barrier avoidance performed in chapters 
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two and three was used in chapter four. The main difference was that either a physical or 

cognitive stressor was introduced during transfer testing to individuals that practiced in the 

absence of an additional stressor. Similar to the results from chapter three, auditory noise did not 

affect timing errors, NJ, PL, AA, PA, or PP during acquisition, retention, or transfer. The one 

main difference was that RT was not effected by auditory noise like it was in chapter 3. The 

group that practiced with additional work load performed significantly worse during acquisition 

and retention which was similar to chapter 2. When the additional work load was removed 

during transfer the only dependent variable that was negatively affected was RT which was still 

significantly greater than the groups that practiced with white noise or practiced without and 

transferred to white noise. The group that transferred to additional work load had significantly 

greater AE, CE, AA, and RT that the other groups. The additional work load during transfer also 

had greater VE, NJ, and PA than the groups that practiced with or transferred to white noise. 

Stress and Motor Learning 

It was hypothesized that stress during acquisition of a novel motor skill would facilitate 

motor learning. This hypothesis stemmed from research suggesting that coping with increased 

stress may result in an increase of effort (Hockey, 1997) and an increase in effort should 

facilitate motor learning (Lee, Swinnen, & Serrien, 1994). Unfortunately the findings of the 

experiments did not support the hypothesis that stress during acquisition of a novel motor task 

facilitates motor learning. The findings do show that a cognitive stressor negatively affects motor 

performance while a physical stressor in the form of continuous auditory noise does not seem to 

affect motor performance.  

 To measure the amount of work load, participants completed an adapted version of the 

NASA task-load (Hart, 2006). This survey was used to make inferences that effort was increased 
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when performing the timed aiming task with a stressor. The stress condition that required 

participants to count backwards by threes significantly increased the amount of task load but the 

addition of white noise did not raise the reported task load.  

 The increase in work load and subsequent increase in effort may explain the results for 

chapter two. In the second chapter the increase in work load negatively affected motor 

performance and when the stressor was removed during transfer performance was not 

significantly different than a group that only practiced the aiming task. Hockey (1997) suggests 

that individuals are capable of maintaining performance, or even improving performance, with 

an increase in stress. This occurs because the individual increases their effort to cope with the 

increase in stress. Once the demands of the stressor exceed the limit in which increased effort 

can maintain performance, the performance will begin to decrease. When this occurs individuals 

change the goal of the task to a level that is within reach of the resources available. The increase 

in effort due to the increased work load potentially explains the results from the second chapter. 

The increase in effort was not enough to cope with the increases in work load during acquisition 

but the additional effort allowed the individuals to have enough resources available to learn the 

primary timed aiming task in spite of the concurrent demands needed to cope with the stressor. 

In the third chapter the addition of white noise (the physical stressor) was not sufficient to 

increase subjective ratings on the NASA task-load scale. If increased effort was not needed to 

complete the task, it makes sense that motor learning was not facilitated (nor hindered during 

acquisition). 

Neuromotor Noise Theory 

 The neuromotor noise theory (Van Gemmert, 1997; Van Gemmert & Van Galen, 1997) 

provides a comprehensive theory on stress and the subsequent changes to the motor system and 
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motor performance. The theory suggests that increases in stress increase the amount of 

neuromotor noise in the system. Low levels of stress may have an activating effect on the system 

which may improve motor performance. The increase in arousal increases activation which is 

mediated by effort, which could result in a benefit for performance. If the stress further increases 

the amount of neuromotor noise in the system gets elevated. The increased neuromotor noise 

must then be reduced for optimal performance. A reduction of neuromotor noise in the system 

can be accomplished by either increasing processing time, thus allowing to accumulate signal 

and to attenuate neuromotor noise, effectively increasing the signal-to-noise ratios, or by making 

use of the biomechanical filtering properties of the pen-limb system, i.e., increasing stiffness of 

the executing limb in order to low-pass filter the composite signal reducing or eliminating higher 

frequency noise signals. 

 The increases in neuromotor noise due to the addition of a cognitive stressor resulted in 

increased processing times (reaction time) and biomechanical adaptations (increased pen 

pressure). However when the stress was removed during a transfer test, performance was no 

longer hindered. This pattern of findings makes sense because the amount of neuromotor noise 

would be lessened when the stressor was removed, so adaptations to cope with the increases in 

neuromotor noise in the system, i.e., an increase in processing time and the biomechanical 

adaptations, would not be necessary anymore. The addition of the physical stressor also resulted 

in increases in processing times while the noise was present but it did not result in a 

biomechanical adaptation like it is suggested by the neuromotor noise perspective on stress 

during human performance. This may suggest that possibly the system recognized that only one 

solution is needed to counteract the increase in neuromotor noise in the system and thus 

“choose” the most efficient solution for the task situation, i.e., increasing reaction time, because 
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increasing stiffness would require more force production. When the white noise was removed 

during the transfer test, reaction time for the group that practiced with the white noise was 

marginally greater. However, the reaction time reported was still less that it was during 

acquisition or retention when the additional white noise was present. 

 The neuromotor noise theory is a theory that cannot only explain the effects of stress on 

motor performance but it can also be used to explain the effects of stress on motor performance 

during and after the learning experience. When a stressor is removed the amount of neuromotor 

noise in the motor system is reduced. This allows performance to return to similar performance 

levels as the level of performance of that skill without additional stress. Results from the final 

experiment showed that the group that practiced without additional work load but then 

performed the transfer task with the additional work load performed significantly worse that the 

group that practiced the task with the additional work load. These results may be explained by 

suggesting that individuals learn to cope with the increase in neuromotor noise and become more 

proficient at increasing signal-to-noise ratios. 

Specificity of Practice 

 Specificity of practice suggests that to maximize performance during the assessment, the 

practice environment should resemble the testing environment as closely as possible (Shea & 

Kohl, 1990; Movahedi, Sheikh, Bagherzadeh, Hemayattalab, & Ashayeri, 2007). The specificity 

of practice hypothesis suggests that learning is specific to the sources of sensory information 

available during practice (Proteau, 1995; Proteau, Marteniuk, & Levesque, 1992). To perform at 

an optimal level at a later time, the same sensory information should be available during practice. 

Based on specificity of practice, it was assumed that when the practice context matched 

the retention/transfer context performance would be best. The findings from the first experiment 
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did not support specificity of practice. The group that practiced with additional work load and the 

group that practiced without additional work load did not significantly differ from one another 

during a retention/transfer test when no additional work load was present. Specificity of practice 

would suggest that the group that practiced with the additional work load should perform worse 

on the task when the work load was removed. 

The second experiment also fails to support specificity of practice. The group that 

practiced the motor task with white noise did not significantly differ in performance on a 

retention/transfer test without white noise from the group that practiced the motor task without 

white noise. Based on the concept of practice specificity, performance should have suffered 

when the white noise was removed. 

The findings from the third experiment partially support practice specificity. When 

performing a retention/transfer test with additional work load, performance was significantly 

worse for the group that practiced without the additional work load. When looking at all the 

experiments together, performance is not hindered during a retention/transfer test with additional 

stress if that stress was present during practice. However, if stress is added during 

retention/transfer performance will worsen significantly. 

Limitations and Future Directions 

 There are a number of limitations to this dissertation. One limitation is that the same task 

was used in all the experiments. It is possible that results may be different when different types 

of motor and/or cognitive tasks are used. This dissertation only explored a timed aiming task. 

Different types of graphical tasks, gross motor tasks, or cognitively more demanding tasks may 

have affected performance differently. The intensity of white noise can also be considered 

another limitation. The majority of stress research that showed an effect of noise on performance 



84 

 

used a higher intensity than what was used in this dissertation but is still found (Kyriakides & 

Leventhall, 1977; Smith & Miles, 1985). For the presentation of the continuous white noise, we 

elected to use 80dBs. The European Parliament and The Council of the European Union (2003) 

mandate that workers are offered hearing protection when the intensity of auditory noise exceeds 

80dBs (furthermore, workers are required to wear the offered protection if the intensity level is 

above 85dBs).  Although our experiment did not take eight hours, we still felt that we should 

adhere to the safety standards set for workers in the interest of protecting the hearing of our 

volunteer participants. However, this did limit the generalization of our findings because it is 

possible that higher levels of intensity would result in decreases in performance during 

acquisition; i.e., alter the results of retention or transfer.  

 The use of the NASA task-load (Hart, 2006) index is another limitation. The task-load 

index was used to subjectively measure the amount of load a particular task required. The intent 

was to use the assessment to make inferences about the amount of effort expended due to the 

addition of stress during performance of the motor task. It was found that the white noise did not 

increase task-load which may explain (partly) the results. Even though the lack of finding 

increases in task-load due to the addition of white noise may fit the pattern of found results, it is 

still possible that the NASA task-load is not sensitive enough to find an increase in work load 

when adding white noise. Therefore, it is possible that effort to perform the motor task was 

altered in spite of a noticeable increase from a subjective task-load demand perspective as 

measured by the NASA task-load survey. 

 The population sampled in these experiments was one with college aged adults that are 

usually familiar with some form of tablets. This can be a limitation because age groups may 

perform differently due to familiarity with the tablet and stylus and age may change how the 
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stressor affects performance. Other age groups may also find the task more challenging which 

would change the reported scores on the NASA task-load index. 

 Future research should be geared to investigate various types and intensities of both 

cognitive load and auditory noise. The inverted-U theory (Yerkes & Dodson, 1908) suggests that 

too little or too much arousal results in decreased performance. Looking at various intensities 

and therefore various arousal levels, would allow investigation into the inverted-U as proposed 

by the theory. Increased intensity levels of auditory noise and the use of intermittent auditory 

noise sources have both been found to have negative effects on motor performance so it makes 

sense to assume that they may affect motor learning.  

Research should also investigate the effects of stress on more applied tasks to see if the 

results reported in the previous experiments are supported. It is also possible that stress affects 

fine motor skills differently than gross motor skills or stress may affect open motor skills 

differently than closed motor skills. Adopting physiological measurements would help to better 

understand the changes due to stress that occur and how these changes correlate with task 

performance. This will allow a more comprehensive understanding of the relationship between 

stress and motor learning. 

As already suggested age might be a covariate when investigating the relationship 

between stress and motor learning. Thus future research should explore whether age affect the 

relationship between stress, motor performance, and motor learning. Introducing additional stress 

may prove to be detrimental to both younger and older age groups than the age group used in the 

current experiments. This dissertation also did not investigate the third type of stressor 

mentioned in the introduction (i.e., emotional stress). No differences were found in the perceived 
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emotional stress of the participants prior to participation but it is possible that individuals with 

higher emotional stress may perform differently than individuals with lower emotional stress. 

References 

Hart, S. G. (2006). NASA-Task Load Index (NASA-TLX); 20 Years Later. Proceedings of the  

Human Factors and Ergonomics Society 50th Annual Meeting, 904-908. Santa Monica: 

HFES  

 

Hockey, G. R. J. (1997). Compensatory control in the regulation of human performance under  

stress and high workload: A cognitive-energetical framework. Biological Psychology, 45, 

73-93.  

 

Lee, T. D., Swinnen, S. P., & Serrien, D. J. (1994). Cognitive effort and motor learning. Quest,  

46, 328-344.  

 

Movahedi, A., Sheikh, M., Bagherzadeh, F., Hemayattalab, R., & Ashayeri. (2007). A practice- 

specificity-based model of arousal for achieving peak performance. Journal of Motor 

Behavior, 39 (6), 457 – 462. 

 

Proteau, L. (1995). Sensory integration in the learning of an aiming task. Canadian Journal of  

Experimental Psychology, 49, 113-120. 

 

Proteau, L., Marteniuk, R. G., & Levesque, L. (1992). A sensorimotor basis for motor learning:  

Evidence indicating specificity of practice. Quarterly Journal of Experimental 

Psychology: Section A, 44, 557-575.Shea & Kohl, 1990 

 

The European Parliament and The Council of the European Union (2003). Directive 2003/10/EC  

of the European Parliament and the Council of 6 February 2003 on the minimum health 

and safety requirements regarding the exposure of workers to the risk arising from 

physical agents (noise) (Seventeenth individual Directive within the meeting of Article 

16(1) of Directive 89/391/EEC). 

 

Van Gemmert, A. W. A. (1997). The effects of mental load and stress on the dynamics of fine  

motor tasks. NICI 97-04: Nijmegen, The Netherlands. 

 

Van Gemmert, A. W. A., & Van Galen, G. P. (1997). Stress, neuromotor noise, and human  

performance: A theoretical perspective. Journal of Experimental Psychology: Human 

Perception and Performance, 23, 1299-1313. 

 

Yerkes, R. M, & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit  

formation. Journal of Comparative Neurology of Psychology, 18, 459-482. 

 

 



87 

 

APPENDICES 

Appendix A: Consent Form 

CONSENT FORM  

  

Title of Study: The effects of mental load and auditory noise on motor skill learning.  

  

Performance Site: Fine Motor Control & Learning Laboratory (Room 71 and 74 HP Long 

Fieldhouse).  

  

Contacts: The following investigators are available for questions about this study Monday – 

Friday, 9:30am – 4:30pm.  

Mr. Christopher Aiken, M.Sc. (caiken2@tigers.lsu.edu)  

Dr. Arend Van Gemmert (gemmert@lsu.edu)  

Fine Motor Control & Learning Laboratory (225) 578-9142  

  

Purpose of the Study: To investigate the possible effects of mental load and auditory noise on 

motor skill learning.  

  

Participant Inclusion: Healthy individuals from the community of Baton Rouge, including the 

college community, who are between the age of 18 and 40 years old.   

  

Participant Exclusion: Individuals who do not have normal or corrected-to-normal vision and/or 

hearing; Individuals who report psychological, or neurological, or other altered physical 

conditions affecting control of the upper dominant limbs. Individuals who are pregnant.  

  

Number of Participants: 200  

  

Study Procedures: You will be asked to read and sign the informed consent and then you will be 

asked to fill out the Perceived Stress Scale, and a short demographic questionnaire. After filling 

out these forms you will be seated comfortably in a chair in front of a screen and digitizer tablet 

(records movements made with a pen) and you will receive an explanation of how the digitizer 

works. You will use the tablet to draw a line with a pen to connect two targets on the computer 

screen in a specified amount of time, while a film camera will also record your hand movements 

and your voice while performing the task. You may also be asked to wear noise cancellation 

head phones through which you will hear white noise at 80 decibels (similar to common 

household appliances like a dishwasher), or you will be asked to perform a second task (answer a 

mathematical equation) while drawing from one target to the next. After you have performed the 

task for a while you will get a rest of 5 minutes, before you are asked to perform the task for a 

two short periods of time with a 5 minute rest also interspersed between these two short periods.  

During the first 5 minutes rest you will be asked to fill out the NASA Task Load Index. 

Participation in the study will last approximately 2 hours.   
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Benefits: No direct benefits will be offered to individuals not belonging to the college 

community. Individuals belonging to the college community may be awarded extra credit for 

research participation in one of their classes.  

  

Risk/Discomforts: There are no foreseen risks because participation in the current study involves 

no more risk than normally associated with writing or drawing on a daily basis and hearing 

sounds that are similar to household appliances. There is the inadvertent risk that anonymity will 

not be kept. However, every effort will be made to ensure confidentiality is maintained. All data 

and participant information will be kept separate and in a password protected computer. Signed 

consent forms will be kept in a locked cabinet in a locked room.   

  

Right to Refuse: Participants may choose to withdraw or not participate in the study at any time 

without penalty or loss of any benefit that may be entitled.  

  

Privacy: Results of the study may be published; however no names or identifying information 

will be included. Identities will remain confidential unless discloser is required by law. Data will 

be kept confidential unless release is legally compelled.  

  

Financial Information: No financial compensation for participation will be obtained.  

  

Signatures: The study has been discussed with me and all my questions have been answered. I 

may direct additional questions regarding study specifics to the investigators. If I have questions 

about subjects’ rights or other concerns, I can contact Dr. Robert C. Mathews, Institutional 

Review Board, (225) 5788692, irb@lsu.edu, www.lsu.edu/irb. I agree to participate in the study 

described above and acknowledge the investigator’s obligation to provide me with signed copy 

of this consent if signed by me.  

  

Participants Signature_______________________________  

  

Date______________________________________________  
 

  

http://www.lsu.edu/irb
http://www.lsu.edu/irb
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Appendix B: Participate Record Form 
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Appendix C: Perceived Stress Scale 
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Appendix D: Adapted NASA Task-Load Index 
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