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ABSTRACT

This paper is a study of relations between selected classes
of ideals in a domain D with unit. An ideal A in D is a
Valuation ideél if it is the intersection of D with an
ideal of a valuation ring R, containing D and contained in
the quotient fig}d of D. In ‘this definitioh, if
;‘vaiuation" is replaced.by_Prﬁfé? or Dedekind; we obtain

definitions for Priifer ideal or Dedekind‘ideal; respectively.

It is shown, in the first chapter, that every Prufer ideal
in D is primary if and only if- there exists only one proper
prime ideal in D, and that the set ofiPrﬁfer ideals in D
coincides with the set of primary ideals in D if and only.
if D is a rank one valuation ring. The condition that
prime ideals of D are chained is necessary and sufficient
for Priifer ideals to be semi-primary; furthermore, the set'
of Priifer ideals coincides with the set of semi-primary
ideals if and only if‘D is a valuation ring. It is also
shoWn that Prifer ideals are powers of prime ideals if and
only-if the domain D is contained in only one valuation

ring, it being P-adic for some prime ideal P of D.

In the second chapter, it is shown that D is a Dedekind
domain if every proper ideal of D is a Dedekind ideal, not

necessarily for the same Dedekind domain., Several
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necéssary and -sufficient conditions are given for D to be
an almost Dedekind domain; one of these conditions is that
1) primary ideals are Dedekind ideals, and 2) proper prime
ideals in D are maximal. This paper is concludéd by‘
studying the prime ideal struéture in D when semi-primary
ideals are valuation ideals and when primary ideals are

powers of prime ideals.
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INTRODUCTION

In this paper D will always denote an integral domain with
unit, and K will denote the quotient field of D. An ideal
A of D will be called a proper ideal if A is distinct from
(0) and D. ''Priifer domain'' will mean a domain in which
each finitely genéfaféd nonzero ideal is invgrtible. A
domain in which each proper quotieht ring is‘a discrete,
rank one valuation ring will be called an ''almost Dedekind
domain.f' “All valuations encountered in this.paper will
be.valuations of K which are non-negative on D, hence all
valuation rings encouhtered will contain D and be contained
in K. These valuations lead to a special class of ideals

in D which are called valuation ideals [11;3401.1

Definition 1

An ideal A of D is a valuation ideal if it is the inter-
section of D with an ideal of a valuation ring V which

contains D.

Note

Thé following equivalent definition will be used more often

« lPairs of numbers in brackets refer to correspond-
ingly numbered references in the Selected Bibliography and
page numbers, respectively. A single number in a bracket
refers to the correspondingly numbered reference in the
Selected Bibliography. :



in thié paper: An ideal A of D is a valuation ideal if

there exists a‘valuat'ion ring V containing D and contained

in K such that A-V(\ D = A.

Definition II

An ideal A of D will be called a Priifer ideal, or an almost
Dedekind ideal, or a Dedekind ideal if there exists'a
Priifer domain J, or an almost Dédekind domain J, or a
Dedekind domain J, respectively, such that D C J C K and
ATND = A |

- Notation

Let U denote thé set of valuation ideals of D, # the set
of Priifer ideals of D, A the set of almost Dedekind ideals -
of D, 2 the set of primary ideals of D, 4 +the set of
semi-primary ideals of D (i.e., ideals héving prime radi‘cal),
and PP the set of prime power ideals of D. The terminology
used will in general be that of Zariski and Samuel [10],

+ [11]. 1In particﬁlar, the symbol '' (C '' will indicate

containment while ''('' will indicate proper containment.

Statehent of. Problem

In a péper by Gilmer and Ohm [5]‘, a study was made of the
relationships between the set U of valuation ideals of D .
and the set 2 of priinéry ideals of D. In thi; Apap'e‘r we .
will investigate relationships between these an__d’ the other |
Acla's_ses »of ideals mentioned ébove. We note that the i‘ol-—"_
lowing containments are always true; (1) Y C P, (2) 'aC'P,"
(3) PPC J, ‘and () Y Cd. Containments (1) and (2)

-



follow since every valuation ring, respectively almost
Dedekind domain, is a Prifer domain;'(3) is obvious and

(4) is a result of [1l;342].

The following three theorems are results of Gilmer and Ohm

£5].

Theorem I

A domain J is a Priifer domain if and only if it satisfies

.any of the following equivalent Stateménts: |

a) Every nonzero finitely geﬁerated ideal of J is
invertible.

b) Jp is.a valuation ring fqr every prime.ideal P of J.
¢) Whenever A £ (0), B, C are ideals such that A is
finitely generated and AB = AC, then B = C.

d) Every ideal of J is complete (see definition,
- [1153471). |
e) Every ideal A of J, A # J, is an intersection of

valuation ideals.,

Theorem IT T
In a domain D, @fC: d if and oﬁlj if every proper prime

ideal of D is maximal.

Definition III

A domain D is said to satisfy the ascending chain condition
for prime ideals provided any strictly ascending chain of

prime ideals Pl 4 P, ( P5 ( e+ is finite.



Theorem 11T

Let D be a domain which satisfies the a.c.c. for prime
ideals. If 2 C UV, then D is a Priifer domain (and con-

versely).

Note | | | .

The following properties of extended and contracted ideals,
listed in Zariski and Samuel [10;219], will be useful.
Suppose J is a domain_ such that DC JC K; let A, B denote
ideals of D, and R, S ideals of J, then:

1) If RCS, then RMADCSsMD; if AC B, then

A3 C B.J. -

2). (RMNsS)YMDdD=(RMND)N(8MD).

3) (BS)MD D(RMD)*(8MID); (AB)«J = (A-J)+(B.d).

y (FND=-=/AOD. o

The following theorem, also from Zariski and Samuel

[10;228], will be used frequently.

Theorem IV

Let P be a prime ideal in a ring R. The mapping A-——a»A‘RP
establishes a 1-1 cofrespondence between the set of prime
(primary) ideals of R contained in P and the set of all

prime (primary) ideals in RP'



CHAPTER I

In this chapter, our attention is focused principally on
relationships between the classes of ideals 2, 2, d ,

and APin a domain D. Necessary and sufficient conditions
are given in order that PCJ, P= 4, PC2, P= 2,
and /JCP/O

Theorem 1.1

Let Vi, V2,..., V be valuation rings containing D and
contained in the quotient i‘leld K of D, let J = ﬂ v,

and denote by M. the unique maximal ideal in v, for
i=1,...yn. Then J is a‘Priifer domain and if Vk(ZVJ. for
any (k # j), then the maximal ideals of J are P, = Miﬂ J

a.nd vi = in fOI‘ i = 1,.oo’no

Proof ‘Suppose V, (C V; for some k # 1, then J = ﬂ v, o=
ﬂ V . We may therefore assume, without loss of generallty,
that Vk¢V for any (k # j). An ideal A of J is maximal
if and only if A = Min J = P; for some i, and V; = in
for each i [8;38]. If Q is any prime ideal of J, then

.QCPJ. for some j, hence JQ DJ Therefore JQ is a

P’
d
valuation ring, whence J is a Priifer domain by Theorem I.

This completes the preof.

Theorem 1.2

PC d in a domain D if and ohly if there exists only one

>



proper prime ideal in D (which is maximal, of course).

Proof: If there-exists;oniy one préper.prime ideal in D,
then every ideal in Dis primary,'hehce Prﬁfer ideals are
primary. Conversely, if Prufer ideals are prlmary, then.
valuation ideals are prlmary and hence the proper prime
ideals of D are maxlmal by Theorem II. Suppose Pl and_Pé 
are distinct maximal ideals of D. There exist valuation
rings Vl and.V2 containing D with maiimal ideals Ml and M2
If

respectively, such that M, M\ D = P ‘and‘M2f"\ D="P

1 2°
v, C V2, then M N vy C M, since M, is maximal in Vl and

hence P, = MM V) NDCMU, N D=Py. Since P, Q:P we

1°
see that V, ¢V2 and in a similar manner V, (Zvl. We set
v, N V, = J, then by Theorem 1.1, J is a Priifer domain and
M, J = Q and M;M J = Q, are the only maximal ideals
in J. Furthermore, Ql and Q2 are disfinct since neither
V, por V, is contained in the other. We have

PN P, = MNDNM,ND) =

(e, NN D}N (M, N3I) N D) =

(N D NQMND) = (e M ay) ND.
But (Qi(j Qz)(j D is a Priifer ideal, hence~/§z7ﬁ_52 = Plr\Pz.
is maximal. Therefore PlC: P, or P2C:IP1. This contra-

diction establishes the convérse.

Lemma 1.
If A is a Priifer ideal in D, then A is the intersection of

valuation ideals.
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Proof: Let J denote a Priifer domain such that AT D = A,

If 7 denotes the set of maximal ideals in J, then

Je= N J, [11:94]. Also, A*J = () A+J, [11:94], where
Mem X ' ’ e M e

each A-JM is a valuation ideal since JM is a valuation

ring for each prime ideal M of J. Therefore A = A<J(\D =

( N A M) NAD= N (A-JMﬂ D) where each A-JMﬂ D is a
MeN Me 7 ,

valuation ideal in D.

Lemma 1.4

If every ideal A of D, A # D, is a Priifer ideal, then D is

a Prifer domain.

Proof: By Lemma 1.3, every ideal A £ D is the intersection
of valuation ideals, hence D is a Priifer domain by

Theorem I-(e).

Theorem 1.5

f?: A if and only if D is a rank one valuation ring.

Proof: Let'D be a rank one valuation ring, then D has
only one proper prime ideal, it being makimal. Therefore
P C Q,by Theorem l1l.2. Since evefy ideal of D is a Prﬁfer
ideal, L C p, whence /'O = ;2 Conversely, suppose 70: -2.
By Theorem 1.2, there exists only one proper prime ideal M
in D; therefore every ideal of D is primary, hence Priufer.
Now D is a Prifer domain, by Lemma 1.4, and thus a rank

one valuation ring since D = DM‘

Theorem 1.6

In a domain D, PC Jif and only if the prime ideals of D

are chained.
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Proof: Subpose PC j and let Pl and P2 denote arbitrary
brime ideals of D. Let Vl and V, be valuation rings
containing D with maximal ideals M, and M, respectively,
such that Mlﬂ D=P, and M; M D = P,. If V;C V,, then
M, NV, CM,;, hence P, = (M, M V,) NADCM,MND="P. If
V2C V,, then PlC P, by a similar argument. If Vl(Z Vs
Vs, ¢Vl, then J = V, N V, is a Priifer domain with maximal
ideals Q = Mlﬁ J and Q, = M,MN J, by Theorem 1.1.

(Q N Q) MDD = Plﬂ Pé is a Priifer ideal in D, thus
/PP, = PN P, is prime. 1f P ZP, and P, Z Py,
there is an element x € P,, X 4 P, and an element y € Py,
y £ P, such that xy € P, N Py. Since neither x nor y is
an element of Plﬂ P2, we have contradicted the fact that
Plﬂ P, is prime. Therefore PlC P, or PECPl and hence
prime ideals in D are chained. Conversely, if the prime
ideals of D are chainéd, every ideal of D has prime

radical, hence RPC 4.

Corollary 1.7

If P = ?/in'a domain D, then the prime ideals ‘of D are

chained.

Proof: Since ﬁ = yimplies PC J, the corollary follows

by applying the above theorem.

Theorem 1 .'8

In a domain D, P -d if ana only if D is a valuation ring.

Proof: If P = 4 , the prime ideals of D are chained by

Theorem 1.6. Hence every ideal of D has prime radical and
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is thefefore a Priifer ideal. By Lemma 1l.4, D is a Priifer
domain. Since the prime ideals are chained, D has only
one maximal ideal M., Then D = DM is a valuation ring.

The converse is obvious.

Theorem 1.9

If the valuation rings containing D are chained, then

V=P

Proof: Lét A be any Priifer ideal in D and let J be a
Priifer domain with the property that A«J (VD = A, Since
J lies between D and its quotient field K, the valuation
rings containihg J are also chained. Suppose M and N are
maximal ideals in J and M # N, then Jy and Jy are valuation
rings contéininng, whence JM(: JN or JNC::JM' Suppose
Jy C Jy» then NeJp M JM C"M-JM and therefore NC M. This
contradicts the maximality of N since M # N, thus Jy ¢ Ine
Likewise, JN¢JM, hence J has only one maximal ideal,
say M. Therefbré Jd = JM is a valuation ring and hence
A-JND = A is a valuation ideal. The containment U'C A

is always true so the proof is complete.

Corollary 1.10

If the valuation rings containing D are chained, then the

prime ideals of D are chained (i.e., PCI).

Proof: Apply Theorem 1.9 and Corollary 1l.7.

Remark
Example 1.3%0 shows that the converse of the above corollary

is false.
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Theorem 1.11 , _
In a domain D, P = d if and only if P-U- j

- Proof: 1If P - xf, then D is a valuation ring by Theorem

1.8, hence P=U-= J The converse is obvious.

Theorem 1.12
If D satisfies the ascending chain condition for prime

ideals, then 4C ?/implies D is a Priifer domain.

Proof: Since JC U implies A C U, the theorem follows

from Theorem III.

Theorem 1.1%

‘Let M be a multiplicative system in D and A an ideal of D
such that AMNM = @#. Let Dl be a domain containing D such
that A-D, M D = A, Let. D} = (Dy)y, D* = Dy, and A* = A-Dy.
Then A* = A*-D} () D*. ‘

Proof: A*C A*-D$ () D* is clear. Suppose X € A*.Dy M D* =
A.Difw D*. Then x = a(d/m) = r/n where 4 € Dl; ace A, |
"r € D, and myn € M. Therefore nad = rm and nad e_A-Dl,
rm e D, so rm € A-lew D = A, Since m,n € M, then

1/mn € D*, hence rm(1/mn) = r/n.€ A-D* = A*. Therefore

A* = A*-D} M D*.

Corollary 1.14

Let M be a multiplicative system in D and let A be a
Dedekind ideal such that AMM = #. Then A-Dy is also a
Dedekind ideal. |
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Proof: If J is a Dedekind domain with the property that
A-JND = A, then Jy is also a Dedekind domain, and by the
above theorém, A-DM = A-JMYﬂ DM' Therefore A-DM is a
Dedekind ideal. |

Remark ,
The above corollary remains valid if Dedekind is replaced

by either Prifer, valuation, or almost Dedekind.

Theorem 1,15

If every prime ideal is the radical of an almost Dedekind
ideal,. then prime ideals are almost Dedekind ideals and

conversely.

Proof: If P is a prime ideal of D, let A be an almost
Dedekind ideal.having radical P. There exists an almost
Dedekind domain J such that A-J M D - A, hence

/K737() D-/A =P. Therefore P is an almost Dedekind

ideal. The converse is' obvious.

Remark

It is easj to show, by using the remark following Cbpoilary
1.14, that .if a proper prime ideal P of D is an aimost
Dedekind ideal, then theré exists a discrete,.rank one
valuation ring V such that the centér of Vin D is P

(and conversely). Example 1.31 provides a domain with a

maximal ideal M such that M is not an almost Dedekind ideal.

Theorem 1.16

If the prime ideals of D are almost Dedekind ideals, then
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d - J if and only if the prime ideals of D are cheine'd.

Proof: If the prime ideals of D are chained, t‘rren PCY
by Theorem 1.6, hence A C 4. Conversely, if AC J, 1et
P # Q be arbitrary proper prime ideals of D. iet J and J'
be almost Dedekind domains with the property that ‘
PoJ D =P and Q-J' N D.= Q. By Theorem 1.13, we have
P-.DM = P-JMH Dy and Q+Dy = Q-Jy ) Dy, where M'= D - P and
N=D-qQ. qu'PrDM is the unique maximal ideal.in DM S0
there exists a maximal ideal R of Jy» which contains P+Jy,
such that R N Dy - P-Dy. Therefore RMAD= (RN Dy) N1 =
P-Dy (1D = P. Similarly, there exists a maximal ideal S
in J, which contains Q-Jjf, such that SMD ="Q. Jy and
Jﬁ contain J and J' reSPectively, thus are almost Dedekind'

domains [9;8]. Therefore (JM)R and (J3} )S are discrete,

rank one valuation rings and unequal since P # Q. If
either (JM)RC (JI{I)S or (JI{I) C (JM)R, .the theorem would
be proved since then QC P or PC Q. We assume that
nelther containment holds, hence T = (JM)R M (JN)S is a
Prufer domaln with exactly two max1mal 1deals, by Theoremn -
i 1. Furthermore, T has no other proper prlme ideals
since both (JM)R and (JN)S are discrete, rank one valuatlon'
rings and T(R ATy = (JM).R and T(S A1) = (JN)S, by
Theorem 1.1. By definition, T is t_hen an almost Dedekind
domain, hence (RN T MD =P, (SNTMND=Q, and |
(@GN NECNDIN D = P M Q are almost Dedekind ideals.
since L C J, then PN Q e A implies PC Q or QC P. This

completes the proof.
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Corollary 1.17

If the proper prime ideals of D are almost Dedékind ideals,

then AC Jif ana only ir PC J.

Proof: Apply Theorems 1.6 and 1.16.

Theorem 1.18 -

It Q = 3 in a domain D, then D is a valuation ring.

Proof: The prime ideals of D are almost Dedekind ideals
since ,J C a Then Q& C J implli.es prime ideals are chained,
by Theorem 1.16. Therefofe, every ideal in.D has prime
.radical, in particular pC J Now Q - J implies JC p,
hence P = zg. By Theorem 1.8, D is then a valuation ring.

Remark
EXample 1.31 shows that the converse of the above theorem

is false.

Corollary 1.19

If a = J in a domain D, then a. = .3 = P = ‘y(and conversely).

Proof: The equality p J is shown in the above theorem.
The equallty'zf ‘J then follows from Theorem 1.1l1l.

Proposition 1.20

A Priifer domain 3‘15 a valuation ring if and only if the

prime ideals of J are chained.

Proof: If J is a valuation ring, all the ideals of J are

chained. On the other hand, if the prime ideals are
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chained, there exists only one maximal ideal M in J. Then

J = 'JM is a valuation ring.

Corollary 1.21
If J is a Prifer domain, then 7/ P if and only if the

prime ideals of J are chained (i. e, PCJ)

Proof: If 'lf: /O , the prime ideals are chained by
Corollary 1.7. Cdnversely, if the prime ideals of D are

chained, J is a valuation ring by the above propoéition,

hence V- P

The following theorem due to Phillips [9;4] will be useful.

Theorem 1.22
J is an almost Dedekind domain if and only if each ideal

.of J, with prime radical, is a pfime power.

Proposition 1,23
'Ifzf pplnadomalnD thenQ ?f J 70/0

.Proof: By the above theorem, D is an almost Dedekind.
domain, hence the equality = ?/follows from Theorems II
and ITII, Every ideal in d.' has maximal radical, thus is

primary, hence & = d.

" The following theorem and corollary due to'Gilmer [2] will

also be useful here.

Theorem 1.24

Let D be an integral domain with identity. Let P)ob_e the

set of prime power ideals of D, 'Z/the set of valuation
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ideals of D, and let K be the quotient field of D. YC /PP
if and only if the following conditions hold: |
i) If P is a nonzero proper prime ideal of D;

() P® = (0) and the function vp D - {(0}—>2
- n=0 ) . .

(non-negative integers) defined by vP(x)e= i if
x € P* - P2*1 can be extended to a valuation of K.
ii) Every valuation of K, finite on D, is isomorphic

to some vP.

Corollary 1.25
Using the notation of the above theorem, if ?/C‘PP, then

U=PPand D is one-dimensional.

Theorem 1.26
In a domain D, P C PPif and only if D is contained in
- only one valuation ring, it being P-adic for some prime

ideal P of D.

Proof: If PC PP, then'?fC pp, hence U:Ppand D is
one-dimensional by Corollary 1.25. PFurthermore, PC PP
implies 2 (C J, thus the prime ideals of D are chained, by
- Theorem 1.6. As a consequence, D has only one proper
Prime igeal, ~and since every valuatioh: of K, finite on D,
~is P-adic for some prime ideal P of D, by Theorem 1l.24,
then there exists only one valuation ring J between D and
K. Conversely, if D is contained in only one valuation
ring J, it béing P-adic for some brime ideal P of D, then
D has a unique proper prime ideal. Therefore. 'UC PP, by
Theorem 1.24, and ¥ = P by Theorem 1,9. Hence PC P}ogﬁd'
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the proof of the theorem is complete.

Corollarx 1.27
If PC PP in a domain D, then P = ¥ =PP ana 2 -3

Proof: Since PC PP implies UCPP, Coroilarj l". 25 “’chen
gives us U= PP, hence PP C\Pand therefore P =PP = V.

2 = J since D has only one proper prime ideal.

Theorem 1 28

A necessary and sufflclent condition that D be a dlscrete,

rank one valuation ring is that D be integrally closed

andPCPR"

Proof: By Theorem 1.26, D is contéined in.only one
valuation ring J, it being P-adic for some proper. prime
ideal P of D, hence J is discrete and rank one. The |
intersection of ail valuation rings containing D, and
non-negative on D, is the integral closure of D in K,
hence D.= J since D is integrally closed. Conversely, if
D is a discrete, rank one' va-luatioh ring, every proper

" i1deal is a power of the méicimal ideai, thus pC PP, and

of course every valuation ring is integrally closed.

Note

,Thé 'jf_o'llobwing éxa;nplé shéws that integral closure is

neceééaryin the statement' of the above theorem. Qlearly,
integral closure alone is not sufficient since a Dedekind
domaih with more than one maximal ideal is} not a discrete,

rank one valuation ring.
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Example 1.29

| Coﬁsider.the domain D - {m/p + n/q/gqlm,n,p,q are rational
integers and p,q are odd}. The quotient field of D is

K.; ﬁ(/B‘), where R denotes the field of rational numbers.
Let S dénote the ring of algebraic integers in K, then

S =f{a+0b(l+S5)/2 |a,b are ratiénal integers}, since '’
{1, (1-+/?%/2} forms an integral basis of K [6;35i. Now
S is a Dedekind domain, hence every valuation v of K,
non-negative on D, is a P-adic valuation for some prime
ideal P of S, and the value group of v is the additive
group of integers. Furthermbre, the valuatidn ring corre-
"sponding to v is the quotient ring SP of S with respect to
the proper'prime ideal P in S [11;39]. Therefore, every
valuation ring contained in K and containing D, such that z
the corresponding valuation is non-negative on D, is
discrete. Now (2)+S is a prime ideal of S [6;66], hence
8(2).5.15 a discrete, rank one valuation ring. It is easy
to show that D is conta#ned in 8(2).5; but not equal. Now
1/q € D for every rational prime q # 2, hence there are no
other P-adic valuations of K, P a prime ideal of S, (and
therefore no other vaiuations of K), which are gonfnegative
on D, since a prime ideal P of S must contain one and only
one prime pgtional integer. Therefore, 8(2)-8 is the
.integraliclosure of Din K. It follows that
(2)-8(2).SIA\D =M= (2,1 + /B");b and that D has no
other proper prime ideals. Now () M2 = (0) and the

n=0
function vy : D - {0} —— Z, (the non-negative integers),
Mi+l

by vy(x) = i if x € M* - extends to coincide with the
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(2)+S-adic valuation of K. By Theorem 1,24, UV C PPana
hence U =PP by Coroilary 1.25. Since Priifer domains are
integrally closed in their quotient fields, any Priifer
domain containing D must contaiﬁ S(Z)-S’ hence be egual to
S(2)-S since there are no.rings between S(2)-S and K.
Therefore { = P.YV.-PP y but D is not a valuation ring.
Furthermore, (2)+D is M-priﬁary but not a power 6f M,
hence PP is contained in < , but not eqﬁal.

Example 1l.3%0

Let D = {a/b + c/d/iaﬁla,b,c,d are rational integers, and
b,d are odd}. The gquotient field of D is K = R(JI7")
where R denotes the field of fational numbers and

8 = f{a + b1 +/I7)/2 Ia,b are rational integers} is the
set of algebraic integers in R(J/17 ) [6;33]. Since every
va;uation of X, non-negative on D, is P-adic for somé
prime ideal P of S [11;39], we see that each prime ideal P
of S, for which there exists such a'valuation, must conﬁéin
the ideal (2)+S. Let P = (2, (1 +/17°)/2), and let

Q = (2, (1 -/I7)/2), then (2)-S = P-Q where both P and Q
are maximal ideals of S; Then P and Q are the only pfoper
prime ideals.gf S containing (2)-8S, hegce SP # SQ are the
only valuation rings containing D whose corresponding
valuations are non-negative on D. pr J = SP(W SQ is a
Dedekind domain (see Corollary 2.8 of Chapter II) and the
only proper primé ideais of J are P' = P-SP(W J and

Q' = Q-sQﬂ J. We have P' #Q', but P'(N D =Q'MD =

(2, 1 + J17")+D = M, and M is the only proper prime ideal’
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of D. Also, this prime ideal M does nbt determine a
M-adic valuation of K. The domain D.is not a valuation -

ring, yet the prime ideals of D are chained,vthgt is,fDC:J._

Note

We note that both Example 1.29 and Example 1.30 provide
a domain D such that the only valuation riﬁgs containing =
D, whose corresponding valuations are noﬁ-negatiVexop D,
are discrete and rank one, yet D is not aﬁ élmdst Dédekind
domain. Further, Example 1.29 has the propefty that the

valuation rings containing D are chained.

Example 1.31

Let I denote the set of integers, J the field of rational
numbers, and let x,y denote algebraically independent

indeterminants over J. Define a function W from J(x,y]

to I/ 2] by \L)(EZ 8, 5% igdy - min (i + §/2°). Extend

. aijﬁo ,
w to J(x,y) by w(f/g) = wW(f) - w(g) where f and g
are polynomials in J[x,y]. Then w is a valuatioﬁ of
J(x,y> and the set V of ali rationél functions h € J(x,y),
such that w (h) is non-negative, is a valuation ring.
The value group of W is dense in the set of real numbers,
hence \') 1s a non~discrete, rank one valuatlon ring. - The

maxinal ideal M of V is idempotent, thus M is not an

almost Dedekind ideal.



CHAPTER II

In this chapter, we give a necessary and sufficient

condition, in terms of Dedekind ideals, fér a domain D to
be Dedekind. We also present several necessary and suffi-
"cient conditions for D to be an almost Dedekind domain and

then study the prime ideal structure of D when.gC:‘U’and
when L C PR, |

Theorem 2.1

If A is a Dedekind ideal in D, then A can be written as a
finite intersection of primary Dedekind ideals, where each

primary ideal in the representation is a valuation ideal.

Proof: Let J be a Dedekind domain having the property

e e
‘that A-JM D = A, then A-J = ;"N ... NP ", where P,,
for i~=;1,2,,,.,n, is a prime ideal 6f J and each e; is a

positive integer. Then A = A-JMD =

e e e.
(Pll NADN... N (Pnnﬂ D), where, for each i, Pilﬂ D

is a primary Dedekind ideal in D for Pifj D. Furthermore,

e. ) e,
each Pilfﬁ D is a valuation ideal since Pi%.is.a valuation
ideal in J. |

-
.

Theorem 2.2

e

If B and C are almost Dedekind (Dedekind) ideals of D for
the same almost Dedekind (Dedekind)>domain J, and if A is

20
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‘any proper ideal of D such that AB = AC, then B = C.

Proof: If AB = AC, then (AB):J = (AC).J, hence
(A-J)-(B;J) = (A+J)+(C+J). Therefore B«J = C+J since: the
cancellation law for ideals is valid in an almost Dedekind
(Dedekind) domain [4], but then B = B JMD=CJ D =2C
since both B and C are almost.Dedekind (Dedekind) ideals
for J. |

Corollary 2.3
If every pair of proper ideals of D are almost Dedekind
ideals for some almost Dedekind domain J, then D is an

almost Dedekind domain (and conversely).

Proof: If A, B, and C are ideals of D such that AB = AC
and A # (0), then B = C by the previous theorem. Therefore
the cancellation law for ideals is wvalid in D, hence D is

an almost Dedekind.domain [4].

Theorem 2.4

If prime ideals are Dedekind ideals, then each prime ideal

of D is the contraction of a prime ideal of a Dedekind

domain containing D.

L

Proof: Let P be a prime ideal of D and J a Dedekind
domain such that P-J D = P, In J, P-J factors as

S

e e ‘ :
P.J = Qll...an, where each Q; is a prime ideal of J and

ey is a positive intéger for each i, and /P 3

QM...MQ, =Q-*+Q,. Therefore, JPed AND=JPIND =
/P =P=(g;N...NYXND=(gNDN...N(WRND,
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thus P ) (Ql N ‘D) . -.--(Q,nﬂ D) implies P D) Qj () D for some
1§ £n. Hence‘.P = Qj (1D since P Q; M D for all i.

Remark
Example 1.31 provides a domain with maximal ideal M such

that M is not a Dedekind ideal.

Corollary 2.5

Suppose proper prime ideals are Dedekind ideals, and leﬁ
P be an érbitrary proper primevideal of D. Then there
exists a rank one, discrete valuation ring V such that

DCVCEK and P:VMD = P,

" Proof: Let J be'a Dedekind domain such that P-J M D =_P.
By the previous theorem, there exists a prime ideal Q_in Jd
such that @ (1D = P, hence JQ is a rank one, discrete
valuation ring. Now P°JQC: Q-JQ, thus

PCP-JQﬂ DCQ-JQﬂ D = (Q-JQﬂ J)MD=QMD-=P.
Therefore P = P-Jo M D. '

We state here a theorem due to Phillips [9;9],.

Pheorem 2.6

: J'is,an almost Dedekind domain if and pnly if.the
| foiloWing conditions hold:

1) 3 is.a Priifer domain. |

2) ?roper prime ideals of J are maximal.

3) J contains no proper idempotent prime ideal.

Theorem 2.7

If proper prime ideals are Dedekind ideals, and if PAQ
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are proper prime ideals of D, then there exists a Dedekind
domain J containing D and having prime.ideals P' and Q'
such that P'(W.D =P and Q') D = Q. Furthermore, P' and

Q' are the only prime ideals of J.

Proof: Let P £ Q be arbiﬁrary proper prime ideals of D.

By Theorem 2.4, there exist prime ideals M and N in
Dedekind domains R and § respectively, such that M D = P
and N1 D = Q. Furthermore, RM‘= V and SN = W are discrete,
rank one valuation riﬁés ﬁith maximal ideals M.V and N-W
respectively. If VC W, then N-WVC M, hence N-W()V = U
since N-W/()V is a nonzero prime ideal in V. However, this
implies P = Q, thus neither of these valuation rings is
contained in the other. We let V()W = J, then by Theorem
1.1, J is a Priifer domain with~exactly two maximal ideals,
namely M-V NJ =P anda NWNJ - Q', and also V = Jp: and
W= JQ.;' J has no proper prime ideals other thaﬁ P' and Q'
since V and W are discrete, rank one valuation rings, hence
J is an almost Dedekind domain. Since P' and beare
maiimal ideals and unequal, there eiists xeP',x¢g Q,
hence~ﬁ;§i= P'. Therefore, (x) is a power of P' since J

is an almost Dedekind domain, by Theorém 1.22. Let

(x) = (P')2 for some n ) 1. The ideal (x) is invértible,
hence P' is invertiblé [10;272]. 1Imn an‘analogous’maﬁner,
we can show that Q' is invertible, hencégJ is a ‘Dedekind

" domain since”eQer propeb prime ideal of J ié‘invertible
[1;33]. To complete the proof, we have P' (1D =
(M.VANJI)MND=MVAD=(MVAR)MND=M/)D =P, and
similarly Q' (1D = Q.
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Corollary 2.8
Let Vl’ V2,..., Vn denote rank one, discrete valuation
rings containing D and contained in the quotient field K

n

of D, then () Vi is a Dedekind domain. Furthermore, if
i=1 : -

Vk(Z VJ. for any (k # j), then the intersection has exactly

n proper prime ideals.

Proof: The corollary is proved in the previous theorem
when n = 2, The proof is similar for any finite number of

such valuation rings.

Theorem 2.9 .

If every proper ideal of D is a Dedekind ideal (not neces-
sarily for the same Dedekind domain), then D is a Dedekind

domain.

Proof: If A and B are proper ideals of D, then there
exist Dedekind domains J, and J, such that A-Jlfj D=A
. ei e,
and B~J2fw D =3B. InJy, we have A+Jy = Py7++*P = where
‘ n
P; is.a prime ideal of J,, for each i.. Let J% = {jl(Jl)Pi._
We wish to show that A-J, = (A-3,)-33 M J;. Clearly
N (A . * . - e o o . ="
A-3,C (A J1):39% M Jy. Now A-J, = Py P =
€1 N n €1 ®n N J rj :
Pl n * o Pn = {(Pl ""Pn )'(Jl)Pl Jl} ....
e; e, .
N @y epy )-<J1>Pnﬂ Ji) =
n _ n ' n

(A.Jl).{JfE(Jl)Pi} r]Jl (A'Jl)-Jifj J,. These two
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containments give A:Jy = (A-Jl)-Ji r\Jla In a similar
manner we get a Dedekind domain Jé such that

BeJy = (B'3p):8MJy. Let J = J1(1J%, thenJ is a
Dedekind domain since it is the intersection of a finite
number of discrete, rank one valuatiqn rings, by Corollary
2.8. Furthemore, A =_A-Jlﬂ D = {(A-Jl)-Jiﬂ Jl} D =
A-33MNDDA-JMND, and ACA-J D is clear, thus
A=AJND, Ina similar manner, B-J(1D = B. Now D is
an almost Dedekind domain by Corollary 2.3. If A is an.
arbitrary'prqper ideal of D, then A can be expressed as

A ='Q1(j ...fﬁ\Qn, where each‘Qi is primary, by Theorem 2.1.
We may assume that Qk¢QJ. for any (k # j). Now since D
is an almost Dedekind domain, eagh.Qi ise? prime power, by
Theorem 1.22. For each i, we let Qi = Mil, where Mi is a

maximal ideal of D and ey is a positive integer; then
e, - e e e e.
1 n _ i TS « i A
A =M M ... r]Mn = My M_~ since the M,” are pairwise

comaximal [10;177].. Therefore A is the product of prime

ideals, hence D is a Dedekind domain.

Theorem 2.10

»A domain D is an almost Dedekind domain if and only if the
following conditions hold:
a) Primary ideals of D are Dedekind ideals.

b) Proper prime ideals of D are maximal.

Proof: If we assume conditions a) and b) above, we will
~ show that conditions 1), 2), and 3) of Theorem 2.6 are

valid. Condition b) above is the same as condition 2).
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Condition 3) is satisfied, for if P = P2 for some proper

prime ideal P of:D, then P = D, by Theorem 2.2. For
condition 1), we let P be an arbitrary proper primé ideai
of D and form the quotient ring DP. Then P-DP is the only
proper prime of'DP since proper prime ideals of b are
maximal. Furthermore, if Q is any P-primary ideal in D,
then Q-DP is primary in DP and is also a Dedekind ideal,
by Corollary l.14. Thus every proper ideal in DP is
primary for P-DP-and is also a Dedekind ideal, hence every
proper ideal in DP is the intersection of valuation ideals,
by Theorem 2.1. Then-DP is a -Prifer domain by Theorem IF(e).
But, Dp has a unique maximal ideal, so Dp = (DP)P-DP is a

valuation ring. Therefore, D is a Priifer domain since DP g
is a valuation ring for each proper prime ideal P in D, by
Theorem I-(b). 'This shows that condition 1) is valid, |
hence D is an almost ﬁedekind domain. Conversely, if D

‘is an almost Dedekind domain, we néed only to show the
validity of condition a). 'If P is an arbitrary proper
prime ideal bf D, then DP is a'Dedekind.domain, and if Q

is any P—primary ideal in D, we have Q = Q-DPIA\D. Hence

condition a) is satisfied.

Corbllary 2.11

If primary ideals are rank one, discrete valuation ideals,
and if proper prime ideals are maximal, then D is an

almost Dedekind domain and conversely..

Proof: Every rank one, discrete valuation ring is a
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Dedekind domain, thus D is an almost Dedekind domain by
‘the previous theorem. The converse also follows from the
previous theorem, for if P is any proper prime ideal of D,
then DP.is a rank one, discrete valuation ring, whence

P-primary ideals are rank one, discrete valuation ideals.

For the proofs in the remainder of this chapter, it will
be convenient to state here the following Lemmas 2.12,

2.13, 2.14 and Theorgm 2.15 due to Gilmer and Ohm [5].

Lemma 2.12

'Let D be a domain, and let A be an ideal of D such that A

00
is a valuation ideal for all n. Then B = [) A" is prime.
_ n=1

Lemma 2.13

-Let P be a’prime.ideal of a valuation ring V, and let A De
the intersection of the primary ideals belonging to P.
Then A is prime, and there exists no prime ideal Pl such

that A Pl ( P.

Lemma 2,14

Let M be a prime ideal of a domain D, and suppose there
exists a prime ideal P ( M such that there is no prime

-ideal - P, with P ( Py ( M. Then P is the intersection of

1
tﬁe"M-primary ideals of D which contain P.

Theorem 2.15

Let M be a prime ideal of a domain D, and suppose every
M-primary ideal is a valuation ideal. If there exists a

prime ideal P ( M such that there is no prime ideal Pl
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with P ( Py ( M, then P is unique (and is, in fact, the

intersection of all M-primary ideals).

Theorem 2.16

If P1 ) P2 are prime ideals of D, then there exist prime
ideals P and P* such that Pl P ) P* D) P, and there are

no prime ideals properly between P and P*,

Proof: We may aééume there exist proper prime ideals
between P, and P2, for otherwise the theorem is triVially
satisfied. Since P, ) Py, we select x € Pl,'x £ Py, and
consider the ideal (P2, (x)) - We have P, D) (Pé, (x-)) > Ps,
hence Pl contains a_prime ideal P such that P is a minimal
prime belonging to <f2, (x» [7;107]. Now we have

PlD PO (P2’ (x)) > Pse We .assume there exist prime
""ideals between P and P2, but that the theorem is not satis-
fied by any of these prime ideals. Now consider the set S
of all strictly increasing chains of prime ideals properly
between P2 and P. If C_ and Cﬁ are elements of S, we order
Cx £ Cﬂ if every ppime ideél in the chain C_ is in the
chain Cg. If Sl is an}arbitrary totally ordered subset of
S, denote by C, the chain of prime ideals haﬁing the
prbperty that if P is a prime ideal in any elemént of Sl’
then P is a prime ideal in Cl' Then Cl is-an upper bound
‘of Sl and thus every totally ordered subset of S hés_an
upper bound in S. Therefore, by.Zorn's Lemma, S contains
maximal chains. We consider then a ﬁaximal chain in S and
examine the union.g!P; of the elements of this chain. Now

lJ P} is a prime ideal and properly contains each member
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of the chain, hence EJP& = P, But x € P, so we muét have
X €E Pi'for some prime ideal P} in this chéin. We have

P D) Pg D) <P2, (x)) .. heﬁcg P-.‘,=. P4 since P is a minimal

" prime of (PE’ (xi). This;contfédicts the fact that

P ) Pj, therefore there must exist a prime ideal, |
containing P2 and contained in P, which satisfies the

theorem.

Lemma 2,17

If R is a valuation ring and P is a prime ideal of R such
.that P is the only P-primary ideal of R, then P = P2.
Furthermore, if {P.} denotes the set of prime ideals
properly contained in P, then P = LJP,‘.

o0
Proof: Suppose P # P2, then () PP = P* is a prime ideal
: n=1

~ since each P® is a valuation ideal, by Lemma 2.12. Thus

P ) P* and if P, is any prime ideal with the property that
P D P, D P*, then either PEC P, or P? D) P,, for each
integer n ) O. We consider the following two cases;
either 1) Plj P? for 'some n, or 2) PR D) P, for all n. In
case 1), P = JPP C P, imﬁlies P = Py; and in case 2),

P

1 = P* since then PlC: (N P® < P*. Therefore, if
n=1 :

P :)P1 > P*, then P = P; and thefe are no prime ideals
properly betweén P and‘P*.- Then P* is the interseqtion of
all P—primary ideals in R, by Lemma 2.1%, but this contra; '
dicts the hypothesis that P is the only P-primary ideal of

" R. Hence P = P°. TFor the second part of the lemma, we

consider two cases; either 1) there exists a prime ideal Pl
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such that Pli( P and there are no primesidealshproperly
between P, and P2,‘or 2) thére exists.no prime ideal
satisfying case 1). If case 1) holds, then P, is the
intersection of the P-primary ideals, by Theorem 2.15,
hence P1 = P and therefore case 1) cannot hold. Since
case 2) must hold, we let {P_,} denote the set of all prime
ideals of R which ‘are properly contained in P. All the
ideals of R are chained, hence g{E; is a prime ideal and

properly contains each P,, thus P = EJP;.

Theorem 2.18

o0
1f PPC Vana if P is any prime ideal of D, then [|P® = P*
n=1

is a prime ideal. Furthermore, if {Q,} denotes the set of

P-primary ideals of D, then P* D ()Q.

Proof: The first part of the theorem is a special case of
Lemma 2.12. If P is an idempotent prime ideal, then

o0
MNP® =P =P CJQ“. 'If P is not idempotent, let n
n=1 ‘

denote an arbitrary positive integer larger thaﬁ one, P-
is a valuation ideal by hypothesis, so there exists a

.valuation‘ring Rv:3 D such that Pn°vaj D = P2. Further-

more, ./Pn-Rv =P

Thus every Pv—primary ideal of Rv contracts to a P-primary

v is a prime ideal of R and Pv,f\D = P,
ideal of D. In R, we have either 1) P™.R_ contains a
P,-primary ideal, or 2) Pn-Rv contains no Pv-primary ideal.
If case 2) holds, then‘Pn-RvC: c;qk, where {Qﬁ} denotes

the set of all P -primary ideals of R,. But G]Qﬂ is a
prime ideal by Lemma 2.13, thus P_ = WC QQ,e
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implies P = QQ,,. Then P is the only P _-primary ideal

in Rv and thus Pv = Ps, by the previous lemma. Since

/P2.R_ =P ,» We have PL.R

v v v
which is properly contained in P_. If {P.) denotes the

6d§tains.every prime ideal .

set of prime ideals of R, which are propérly contained in
P, then PR D UJPF,. But P =|JF, by the previous
lemma, hence P™.R = P, . Now P = P*R, D =P (MD=P
shows P is idempotent, thus case 2) cannot hold. Therefore
case 1) holds and thus P%:R_(1 D = P" contains a P-primary
ideal. The integer n is arbitrary, thus P® contains a
'P—primary ideal for every positive integer n, and hence

P* D) )Q xwhere {Q,} denotes the set of all P-primary
ideals of D. ‘

Theorem 2.19
If JC U and P ) P* are prime ideals of D such that there

are no prime ideals properly between them, then either

on [ -]
MNP =P or [IP" = P*.
n=1 n=1

Proof: If P is an idempotent prime ideal, then N P" - P.
‘ "n=1

o0
If P is not idempotent, then [)P® is a prime ideal by the
n=1 :

above theorem. Furthermore, P* = CJQo‘where {(Qul denotes
the set of all P-primary ideals in D, by Theorem 2.15.
a0

But the previous theorem also states [)P®)) (1Qa so we
n=1

have P > (1 P2 NQ, = P*. Therefore P* = []P",
- n=1 o ' n=1

Corollary 2.20

I1r JC U ana P, ) P, are prime ideals of D, then Pil ) P,

for all n.
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Proof: By Theorem 2.16, there exist prime ideals P and P‘*.
such that Py ) P > P* ) P,, and such that there exist no
‘prime ideals properly between P and P*, By the previous

a0 o0
‘theorem, we have either N P® - P or ﬂ B® = P*, thus
n=1 n=1

Pil DP™) p* D) P, for all n.

Théo;em 2.21

If JC U and P is a prime ideal of D with the property
that if P' is any prime ideal such that P ) P' then there
is a prime ideal properly contained between P and P',

then P = P,

Proof: By the previous 'corollary, P2 ) P' for all n,

o0 . o0
hence [1P2P D P'. But [1P® is a prime ideal, by Theorem
: n=1 n=1 ' '

2;18, and contains every prime ideal P' which is properly

- -]
contained in P. We have, therefore, P O []P? and there

n=1
are no prime ideals properly contained between these two
ol
prime ideals, hence P = 1 P2 and thus P = P2.

n=1

Proposition 2.22

Let JC U ana suppose there are ,nobropetr i&‘empotent prime
ideals in D. Let P be a proper prime-ideal such that
there exists a prime ideal P* w1th ﬁhe pféperty that |

P ) P* and there are no prime ideals ﬁrbberly cont‘aiﬁed

' between P and P*. Then [1P® = P* and if P is any prime .
-n=l ) .

ideal such that P ) P, then P* ) P.

@ :
Proof: The equality (1 P2 = P* follows from Theorem 2.19.
n=1
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By Corollary 2.20, we have P ) B for eli‘n, hence
m .

M P2 D B.
n=1

Theorem 2.23

1t JC Zf and there are no proper idempotent prime ideals
in D, then the ascending chain condition for prime ideals

is valid in D.

Proof: Let Pl ¢ P, ( P3 ( *+*+* be an ascending chain of

prime ideals in D; then U P, = P is also prime. If this
. i
chein is not finite, then P ) P, for each j, hence P° ) P,

for each j, by Corellarj 2.20. 'Therefore pe D) (J P, and

2

thus P = P~, This contradlctlon establlshes the ascending

chain condition for prime 1deals in D.

Theorem 2,24

If.JC:?f and if there are no idempotent prime ideals in D,

then D is a Prifer domain.

Proof: By the above theorem, the ascending chain condition
for prime ideals in D is valid, hence the theorem follows

from Theorem 1l.12.

Theorem 2.25

If semi-primary ideals in D are rank one valuation ideals"
and if the ascendlng chaln condition for prime ideals is
valid, then D 1s a one-dimensional Priifer domain (and

. conversely).:

Proof: Since D is a Priifer domain, by Theorem 1.12, let

A denote an ideal of D with prime radical P. Then there
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exists a rank one valuation ring R;'containing D such that
A-vaj D. = A and also /A-Rv N DT= P. Let P, denote the

unique prime ideal of Rv’ then IA?RV =P hence A-Rv'is

v’
Pv—primary in Rv’ and A is P-primary. Therefore every
semi-primary ideal of D is primary, so J = -1, and hence

proper prime ideals of D are maximal [3;1274].

Theorem 2.26

If semi-primary ideals in D are rank one, discrete
valuation ideals, then D is an almost Dedekind domain

(and convefsely).

Proof: Since prime ideals are rank one, discrete
valuation ideals, there are no proper idempotent prime
ideals in D and therefore the ascending chain condition
for prime ideals is valid in D, by Theorem 2.23. By the
previous theorem, D is a one-dimensional Priifer domain,
hence proper prime ideals are maximal. Since ranklone,
discrete valuatioﬁ ideals are Dedekind ideals, the. theorem

follows by applying Theorem 2.10.

Theorem 2.27

If LCPPin D, and P ) P* are two prime ideals of D such
that D £ P and there are no prime ideals properly between

Q0
P and P*, then P2 is primary for every n and P* = M P2,
: ' n=1

Proof: We have P* is the intersection of the P-primary
- ideals of D which contain P* by Lemma 2.14, thus

[+ -]
P* ) rW P2, Suppose m is the smallest positive integer
n=1
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such that P® is not P-primary. Then Pm'l-DP N p = po-1

is P-primary and P%- ‘Dp N D is P-primary, but P® ¢ P% DPﬂ D.
.Therefore, PU. D,MND = Pm =1 since QC PR, but this means
PR.D, = PPl.ng so (P-Dp)™ = (P-Dp)™ L. As a result,
(P-DP)m" = (P-DP)k for any positive integer k ) m-1

henee there are no P-pr‘i’mary .ideals properly contained in
po-1, This implies, however, that P* = P° where 1 ( s ( m-1,
but P° is not a prime ideal for s ) 1. This contradiction
implies that there ‘is vno smallest positive integer m such
that P® is not P—primary, hence P2 is primary for every n.
Furthermore, if P™ Z P*, then P™*! Z P* for every i ) O,
thus P* = PJ for some 1 ( j ( m. However, pd is not a
prime ideal for j ) 1, hence P™ v) P* for every m and so

ﬂP ) P*. This, with our earlier containment, gives

- Ao,

n=1

Theorem 2.28

I1f 2C AP in D and P, > P, are prime ideals of D, then

Pil ) P, for every'pes,’i"t'ive‘integer n.

Proof: By Theorem 2'.16, there exist prime ideals P and P*
such that P; D P ) P* D'P and there are no prime ideals
properly between P and P*. From the previous theorem, we

get P2 ) ﬂP = P* for every n, hence P PR P*DP

for every positive integer n.

Theorem 2.29

I1f QCPPin D and P is a proper prime ideal, then P = pe
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if and only if P is the union of a chain of prime ideals

P, such that P ) P.

Proof: . Suppose P = EJPd and P ) P, for each prime ideal
P,. We have P2 > P, by the previous theorem and this is
true for every Py in the chain, hence P2:) EJP¢ and

therefore P = P2

. Conversely, suppose that EJP“ ( P for
evépy chain of prime ideals P« with the prbperty that

P ) P«. By Zorn's Lemma, there exists a maximal chain of
' prime»ideals‘P; such that P ) P}, hence there are no prime
ideals properly contgined beﬁzeen the prime.ideal E{P& and
P. By Theorem 2.27, UPL = (P%, thus P2 ( P and the

n=1
converse is proved.

Theorem 2.3%0

A necessary and sufficient condition that LC PPin D is
fOI‘ 2 =ppn

Proof: Suppose LC PP and lét P denote an arbitrary prime
ideal of D. We may assume that P # P2, for otherwise the
theorem is trivial. By the previous theorem, P is not the
union of a chain of prime ideals P& such that P ) Py thus
EJPd~< P for any such chain. By Zorn's Lemma, there
exists a prime ideal P* ( P such that there are no prime
ideals properly between P*'and P. Then P® is primary forh
every n, by Theorem 2.27, and hencefWDC: Jd since P is an

arbitrary prime ideal of D.
\

Theorem 2.31

Let 77 denote the set of ideals A in D such that there
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exists a prime ideal P of D for which D - P is prime to A,

that is, A-Dp MND=A. Then ¥ C PP if and only if 7 = PP.

Proof: Since 2C 7, we have & =PP by the previous
theorem, hence 77 = PP, -

Lemma 2.%2

The powers of any proper almost Dedekind ideal intersect

in (0).

Proof: Let A be an almost Dedekind ideal and let J denote
an almost Dedekind domain with the property A-d f\D = A,
Let M be any maximal ideal of J which contains A. Then
AT C AT, CMJ,, and N (AN N M-7,)" = (0) since
. M M M
n=1 n=1
Jy is a Dedekind domain. Now, since APC (AP N D, it

' follows that [)A® = (0).
n=1

Theorem 2.33

If Q.Cﬁ/oin D and proper prime ideals are almost Dedekind
ideals, then D is an almost Dedekind domain ( and

conversely).

Proof: Let P be an arbitrary proper prime ideal of D.

o0
Now [1P® = (0), by the above lemma, and therefore P is a
n=1 .

minimal proper prime of D, by Theorem 2.28. As a result,
every proper prime ideal of D is minimal and therefore
maximal, hence semi-primary ideals are primary and thus
prime powers. Then D is an almost Dedekind domain by

Theorem 1.,22. . ’ : .
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