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ABSTRACT 
 
 

This research investigated the growth kinetic parameters (Ks and µmax) of the 

Kluyveromyces marxianus yeast strain for a batch process under aerobic and anaerobic 

conditions at 45oC using the Two-Liter Bioflo® 2000 Fermentors and the Orbital Shaker 

Bed with 250mL flasks (New Brunswick Scientific).  This yeast strain was grown in 

twelve different glucose media concentrations (Anderson et al. 1986), ranging from 200 

mg/L to 80,000 mg/L.  Several analytical techniques were used, such as COD 

measurement to determine soluble and total substrate concentrations, TSS and OD 

measurements to determine biomass formation, HPLC measurements to determine 

carbohydrate concentrations, and GC measurements to determine alcohol concentrations.  

The growth kinetic parameters were investigated using the Monod Model which accounts 

for microbial growth in any environmental condition, assuming decay a constant for the 

microorganism negligible during the exponential growth phase.   The nonlinear (the ‘Lee’ 

equation) and linear (the ‘Hanes’ and the ‘Lineweaver-Burk’ equations) methods were 

used to estimate the kinetic parameters (Ks and µmax) for the aerobic and the anaerobic 

conditions.  Neither the nonlinear nor the linear method succeeded with reasonable 

estimations for the growth kinetic parameters (Ks and µmax).  The lack of information and 

investigation on the nonlinear and the linear models in the literature, concerning 

Kluyveromyces marxianus kinetic analysis initiated an investigation of these nonlinear 

and linear models using a mathematical simulation technique called the ‘Monte Carlo 

method’ with the SAS (Statistical Analysis Software) program (version 9).  The sweet 

potato waste was used as substrate for a preliminary experiment which was designed to 

determine the growth kinetic parameters at 40oC, 45oC, and 50oC and the Arrhenius 
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parameters for the Kluyveromyces marxianus yeast strain (Appendix A).  This 

preliminary experiment used the three Two-Liter Bioflo® 2000 fermentors (New 

Brunswick Scientific) for a batch process under anaerobic conditions.                
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CHAPTER 1 
 

INTRODUCTION 
 

Louisiana and North Carolina are the two largest sweet potato producing states in the 

United States, accounting for 57 percent of the 1993 output (USDA, 1993).  Sweet potato 

industries in these states, as throughout the world, generate large amounts of sweet potato 

waste.  Approximately 40% of the sweet potato waste ends up in wastewaters and as 

waste solids (Hill et al. 1992).  Therefore, certain techniques have been developed to use 

sweet potato waste to produce usable substances that will benefit society. 

Ethanol production has been investigated since 1972, when the price of oil increased 

and this scarcity prompted the development of an extensive evaluation of alternative 

technologies for the production of liquid fuels (Jones et al.1983).  Any biological 

materials, such as crops, grains, woods, food processing wastes, or any waste materials 

from agriculture, can be bioconverted to useful products such as energy, chemicals and 

feedstock (Tan et al. 1986).  These biological materials provide amounts of 

carbohydrates, proteins and biopolymers, which can be converted to usable sugars for 

microorganisms to utilize and then produce useful products. 

The current method of producing ethanol from sweet potato waste in industry is by a 

non-simultaneous saccharification followed by fermentation process (NSSF).  In the 

NSSF process, starches are broken down into glucose by high temperature acid or 

enzyme treatments, and then this glucose is cooled down for the yeast cells to use the 

glucose for growth and alcohol production (Figure 1.1).  This current method (NSSF) has 

many disadvantages such as high operation and maintenance costs, high-energy costs, 
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high capital costs, large volume of reactors are needed, and many unit operations are 

required. 

 

 

Figure 1.1 The enzyme process configured as separate hydrolysis and 
fermentation (Biofuels program (http://www.ott.doe.gov/biofuels/enzymatic.html)). 

 

A possible way for the industries to increase their economic efficiency would be by 

combining in one reactor the enzymatic step with the fermentation step.  The optimal 

temperature suitable for enzymatic activity and ethanol production to occur 

simultaneously has been determined to be 35°C with a pH of 5.8 (Suresh et al. 1999).  

However, when the temperature increases above 35oC, then the amylase activity 

increases, but this temperature is not suitable for the organism Saccharomyces cerevisiae 

(currently used by industries) to grow exponentially (Suresh et al. 1999).  Some 

industries have proposed to use a simultaneous saccharification and fermentation (SSF) 

process to produce ethanol from raw starch using the Saccharomyces cerevisiae yeast 

strain, but genetic modification of this yeast strain may be necessary for growth at high 

temperatures (above 40oC).  Therefore, one of the emergent problems associated with the 
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SSF process is the difference in optimum temperature for saccharification and 

fermentation which must be performed simultaneously in this technology.  As a 

consequence of the higher temperature requirement for saccharification, there are 

endeavors to use thermotolerant yeasts in the SSF process (Bollok et al. 2000).  Figure 

1.2 shows the schematic of SSF process available for industries.    

 

Figure 1.2 The enzyme process configured for simultaneous saccharification and 
fermentation (Biofuels program http://www.ott.doe.gov/biofuels/enzymatic.html)). 
 

The NSSF and SSF processes are both able to produce high yields of ethanol, but 

these ethanol yields could be even greater if a thermally tolerant system were designed.  

In other words, to design a system to accommodate thermotolerant yeast cells to enhance 

the yield of ethanol in SSF process.  The problem with Saccharomyces cerevisiae yeast 

and Zymomonas mobilis bacteria is that both have an optimum temperature requirement 

of 35oC for growth, while the enzymes optimum temperature in the range of 45oC to 60oC 

(Morrison 1990).  As renewable materials are used for ethanol production with 

inexpensive lignocellulosic substrates (such as sweet potato skins or softwoods), when 

lignocellulosic materials are used as a substrate in a SSF process, the fermenting yeast 
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must be adapted to inhibitors.   Therefore the most frequently investigated thermotolerant 

yeast strains are the Kluyveromyces sp. (Bollok et al. 2000).  The advantage of the heat-

tolerant yeast, such as species from Kluyveromyces sp., is that its optimum temperature 

for growth is from 45 to 50°C, which is not very different from the enzymes’ optimum 

activity temperature range (45-60°C).  The SSF process can reduce bioreactor volume, 

resulting in greater decrease of capital costs and energy expenses for industries.  Even 

though there are several journals published on ethanol production using Kluyveromyces 

sp. yeast strains, those journals have not shown complete results on growth kinetic 

parameter determinations under either aerobic or anaerobic conditions.   

The priorities of this research were to define the growth characteristics of the 

Kluyveromyces marxianus yeast strain, and to use statistical analysis software (SAS 

program) to model these growth characteristics from differential equations.   

The specific objectives of this research were as follows: 

1. To determine the growth kinetic parameters for the Kluyveromyces marxianus 

yeast strain under aerobic and anaerobic conditions from the laboratory 

experimental data sets using nonlinear and linear equations. 

2. To determine ethanol production from the Kluyveromyces marxianus yeast 

strain using Gas Chromatography (GC) under anaerobic conditions. 

3. To fit and evaluate the nonlinear and the linear equations using the ‘Monte 

Carlo’ simulation method with SAS software (Statistical Analysis Software) 

to determine the growth kinetic parameters during exponential growth phase 

for microorganisms following Monod kinetic behavior. 
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The following chapters of this thesis are as follows: Chapter 2 is the literature review 

on bioprocess engineering with several topics, such as ‘Sweet Potato Waste’, ‘Ethanol 

Production’, ‘Ethanol Producing Yeast’, ‘Fermentors’, ‘Simultaneous Saccharification 

and Fermentation’, and a summary table (2.1) of some important journal articles; Chapter 

3 is kinetic studies of Kluyveromyces marxianus under aerobic and anaerobic conditions, 

with detailed materials and methods, results and conclusions; Chapter 4 is the biological 

growth kinetic parameter determination analysis using Monte Carlo simulations with 

detailed information on how we performed this simulation; along with overall 

conclusions; references, and several appendices that were used in this thesis. 

The chapters 3 and 4 are constructed in way to satisfy the intent to publish these in 

referred journals.   
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CHAPTER 2 
 

REVIEW OF LITERATURE 
 
 
2.1 Introduction 
 

Many opportunities may be explored using different costless renewable waste 

materials with a lot of usable substrate for microorganisms to grow upon, and then 

produce useful products for society (for example, agricultural food waste, wood chips, 

molasses, whey permeate, rice straw, and newspaper waste).  Most renewable energy 

source (carbon source) can be used in a fermentation process with microorganisms to 

produce bio-ethanol.  Ethanol production benefits the society and the environment and 

may be easily produced from thermotolerant yeast strains with a capacity to withstand 

high temperatures and different types of fermentation processes.  There are a lot of ways 

to maximize ethanol production, such as through continuous SSF process with either two-

stages in sequence (first aerobic and then anaerobic stages) or with a two-stage anaerobic 

fermentation process with cell recycling (Banat et al. 1996).  Therefore, we have 

summarized some important topics to illustrate the importance of how to use renewable 

waste to produce useful products.   

 
2.2 Sweet Potato Waste 
 

One of the most promising energy producing crops is sweet potato because it has 

a long growing season, does not need to be immediately harvested, (unlike corn), is 

drought tolerant, and grows in deep sand.  In addition, six different sweet potato cultivars 

have already been studied under various cultural conditions to characterize their potential 

for ethanol production (Jones et al.1983).  Sweet potato cultivars containing ≥40% dry 
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matter (DM), and have the capacity to produce ethanol (which averaged 10 mt/ha over 

three years), were developed by Clemson University.  Different anaerobic environments 

in sweet potato root metabolisms were studied among four different sweet potato 

cultivars to observe ethanol production in those roots, which turned out to be directly 

related to the rate-limiting reaction of pyruvate decarboxylase and alcohol dehydrogenase 

enzymes (Chang et. al. 1983). Thus, in the North Carolina State University study, that 

submerged storage roots under water to replace the O2 and N2 gases with CO2 gas, this 

process was found to increase the CO2 concentration in the roots and resulted in greater 

ethanol production (Chang et. al. 1983).   

Sweet potato waste has a high content of starch and cellulose, which is a suitable 

substrate for ethanol production.  By fermenting this sweet potato waste, we can not only 

generate new sources of energy (bio-ethanol), but also help to clear our wastewaters from 

the solids of sweet potato waste (Hill et al., 1992). 

Kim and Hamdy (1985) studied the acid hydrolysis of sweet potato, which was 

conducted for maximal ethanol production using 1N HCl at 110oC.  They concluded that 

1N HCl concentration at 110oC temperature was the most effective for maximizing 

reduced sugar levels to 84.2 DE (dextrose equivalent, % dry weight), with a minimum 

amount of HMF (Hydroxymethylfurfural) formation.  They used Saccharomyces 

cerevisiae at 37oC to ferment the acid hydrolyzed SPS, and this fermentation lasted more 

than 24 hours, producing 41.6g (200 proof) alcohol from 1400mL media, containing 8% 

total solids prepared from 400g of fresh sweet potato (Kim et. al., 1984). 
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2.3 Ethanol Production 
 

Currently, ethanol blended in fuels represents more than 12% of the U.S. motor 

gasoline sales.  Ethanol blended fuel is also widely marketed across the country as a high-

octane enhancer and oxygenate that reduces air pollution and improves automobile 

performance (BBI Inc.).  Ethanol production reduces our energy costs for petroleum fuel, 

which reduces the overall gasoline prices that benefits consumers.  Ethanol can also be 

blended up to 10% under the warranties of all the major auto manufacturers, domestic 

and foreign, marketed in the U.S.A.  BBI Inc. has discovered that 80% of all revenue 

generated by an ethanol facility is spent within a 50 mile radius of the plant, thereby 

creating substantial rural economic development.   

The National Renewable Energy Laboratory (NREL) has also been researching 

other ways that ethanol can be used as a fuel additive, as it can reduce vehicles’ carbon 

monoxide and other smog-causing emissions.  “Flexible-fuel vehicles”, which run on 

mixtures of gasoline and up to 85% of ethanol, are now available on the market, which 

show the public that alternative vehicles do exist and have better qualities for our 

environment (NREL).  

The U.S. Department of Energy (DOE) has found that the ethanol industry is 

responsible for approximately 200,000 jobs, and that ethanol production creates domestic 

jobs in plant construction, plant operation, plant maintenance, and plant support in the 

communities where ethanol is being produced (DOE).  This has a tremendous impact on 

rural America where a decline in employment has placed increasing burdens on our 

cities, infrastructure and tax structures.  The federal tax receipt is increased by $3.6 
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billion annually as the economic activities created by the ethanol industry stay at high 

level productivity.  

The development of high-productivity ethanol processes and reactors can 

potentially reduce capital costs associated with new construction and expansion of 

existing facilities (Mahesh et al., 1999). The proper selection of reactor configuration and 

fermentative microorganisms can also be used to increase productivity, ethanol yields, 

and tolerance to inhibitors (Mahesh et al., 1999). 

The cost of energy to produce ethanol via fermentation is only $0.08 to 

$0.16/gallon ($0.02 to $0.04/L), significantly less than that of petroleum based 

production (National Renewable Energy Laboratory, CO). The retrieved ethanol, which 

is primarily used as a fuel additive in automobiles, will significantly diminish fuel costs 

and the amount of air pollution normally produced from petroleum alone. 

Ethanol can replace MTBE (methyl tertiary butyl ether), which is used to produce 

reformulated gasoline.  MTBE was introduced to reduce carbon monoxide and volatile 

organic compounds released into the atmosphere.  However, MTBE has already 

contaminated drinking water, which has caused tremendous damage to our public health.  

Substituting ethanol for MTBE would not cause any adverse impact to public health or to 

the environment (State of California).   

The following are several more reasons why processing sweet potato waste into 

ethanol may prove beneficial:  

(1) The uses of raw materials, such as sweet potato waste, are important for the 

production of ethanol from renewable energy resources. 



 10

(2) Decreasing the amount of wastewater to be processed will reduce the cost of 

wastewater treatment, which will also increase the quality of the discharged water. 

(3) Large amounts of solid sweet potato waste used as landfill that cause several 

environmental problems such as odor and uncontrolled biogas production from compost 

mounds can be lessened through sweet potato waste processing.  

(4) The byproducts produced by fermentation have extensive uses such as in animal feed 

and fertilizers.  

 
2.4 Ethanol Producing Yeast 
 

The necessity to isolate and select thermotolerant yeasts in nature without genetic 

modifications was researched by many investigators to ascertain if those yeast strains 

were suitable for high bio-ethanol production.   

Eighteen yeast strains from six genera were tested by Saigal D. (1994) to verify 

their ability to grow on 20% glucose media at 40°C.  Subsequently, seven strains, 

primarily Kluyveromyces sp. and Hansenula sp. were further studied to investigate if they 

presented any capability to ferment in 12-20% total sugars substrate (diluted molasses) at 

temperature ranges of 35-43°C, to produce ethanol, and to tolerate ethanol concentrations 

of 5% and 7.5% (v/v).  When the kinetic parameters were determined for the eight best 

strains at 43°C with 200g/L total sugars, Kluyveromyces species were considered the best 

strains with total reducing sugars of 4.50g/100mL/24 hours and 0.90g/100mL/48 hour, 

and an alcohol theoretical yield of 41% in 72 hours with a specific growth rate of 0.130 

hr-1.  Saccharomyces cerevisiae was used as a control strain which was not genetically 

modified to withstand high temperature (Saigal D. 1994).   
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A total of six strains were selected among 55 strains because they could grow at 

45°C, but not all could produce as high amounts of ethanol as the Saccharomyces and 

Candida strains.  Therefore, those strains were evaluated at 40°C in batch fermentations, 

and only Saccharomyces and Candida were able to meet the minimum commercial 

ethanol production of 8% (v/v) to 14%(v/v) from 14.6 %(w/v) of glucose (Hacking et. al. 

1984).   

The Institute of Renewable Energy of Madrid selected 27 yeast strains among 

Candida, Saccharomyces, and Kluyveromyces species to screen their capability to grow 

and ferment at 32-45°C.  The best yeast strains were Kluyveromyces marxianus and 

Kluyveromyces fragilis because they produced the highest ethanol concentration (38g/L) 

in a simultaneous saccharification and fermentation system (SSF) at 42-45°C in a 

cellulolytic system for 78 hours (Ballesteros et. al. 1991).    

A thermotolerant yeast strain, Kluyveromyces marxianus IMB3, was studied by 

the University of Ulster, which found this strain capable of producing 10g/L of ethanol 

during growth at 45°C on a media containing milled paper and commercial cellulase.  

Thus, this yeast strain proved to be a candidate in simultaneous saccharification and 

fermentation (SSF) to convert the substrate to ethanol in a batch system (Barron et. al. 

1995).      

The kinetics for the thermotolerant strain of the yeast Kluyveromyces marxianus 

were obtained in glucose media for five different temperatures from 30°C to 48°C, and 

the maximum growth rate was 0.38 hr-1at 45°C. The highest overall ethanol yield was 

92.2 % theoretical yield at 40°C, and when molasses media were used, the highest overall 

ethanol yield was 83% theoretical yield at 40oC (Hughes et. al. 1984).   
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2.5 Fermentors 
 

Two different types of reactors for fermentation were compared: a packed-bed 

external circulating reactor with gel beads and one with yeast entrapped in modified 

calcium alginate thin gel slices, using mash of dried sweet potato as the substrate for the 

immobilized yeast cells.  The cells presented a maximum specific growth rate of 0.536 hr-

1, and alcohol production for these two reactors averaged 9.5 g (EtOH)/L at 35oC (Yu et. 

al. 1996).  Banat et al. (1996) investigated Kluyveromyces marxianus IMB3 and found it 

capable of producing ethanol from different carbon sources such as lactose, cellobiose, 

xylose, and whey permeate, at 45°C.   A batch experiment was done to find out the 

growth rate, ethanol production, and conversion efficiency at 45°C using 10g/L of 

different carbon sources.  The growth rate in glucose media was 0.63 hr^-1, producing 

5.10g/L of ethanol and 100% conversion efficiency.  Then, they performed different 

continuous fermentation experiments.  One of these experiments was conducted under 

anaerobic chemostat condition at 45°C, with 75g/L of initial glucose and produced less 

than 1g/L of biomass and 1.8% of ethanol levels.  The second experiment used two 

fermenters in series (aerobic-anaerobic).  The third experiment used a two-stage 

anaerobic fermenter with cell recycling and was able to achieve 10 g/L greater biomass 

formation, and 4.3% (v/v) higher in ethanol production using 150 g/L of initial glucose 

concentration at 40°C, than using the batch experiment.  Unfortunately, this research had 

some problems keeping the large amount of glucose inside the reactors without being 

“washed out” faster than the product was formed this led to a lower level of product 

formation, which in turn led to the conclusion that the results were due to the rapid switch 

of the yeast cells from aerobic conditions to anaerobic conditions.  They also noticed with 
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the cell recycle step an increase in ethanol formation up to 7.7% (v/v) at 40°C, but 

eventually, over a period of weeks, cell viability reduced.  This reduction was not 

believed to be due to high levels of ethanol because found that final levels of ethanol 

reached by thermotolerant yeasts were highest at 16.5 – 20.3% (v/v) with 8% of ethanol 

initially (Freitas et al. 1998).  This yeast strain was capable of producing around 10.5 – 

12.3% (v/v) of ethanol and could withstand up to 8% (v/v) of additional external ethanol.   

 
2.6 Simultaneous Saccharification and Fermentation Process 
 

Currently, one of the most investigated processes to produce bio-ethanol from 

starch and cellulose sources is called simultaneous saccharification and fermentation 

(SSF).  The SSF process, which was first used in 1977, gives high rates and yields for 

ethanol production from biomass, when the organic substrates hydrolyzed by enzymes 

into glucose are coupled with yeast fermentation in one reactor (Mohagheghi et al. 1991).  

To operate an SSF system, an optimum temperature is required with respect to the 

saccharification enzymes, which are activated between 45-55oC.  Therefore, research on 

thermophilic microorganisms has been steadily increasing because they are capable of 

growth up to 49oC and capable of producing alcohol at and above 40°C (Banat et al. 

1992).   Some yeasts of the genus Kluyveromyces were found to be more thermotolerant 

than Saccharomyces or Candida strains (Hacking et al. 1984).    

 
2.7 Summary of Journal Articles 
 

Table 2.1 shows the summary of the few journal articles which were able to 

determine the growth kinetic parameters, such as µmax (the maximum specific growth 

rate, hr-1), Yxb (the biomass yield, mg/L/mg/L), Ks (the half saturation constant, mg/L), 
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and the product formation (maximum ethanol formed, g/L) using thermotolerant yeast 

strains.  Those articles addressed different microorganism species with different substrate 

types under aerobic or anaerobic conditions.  The information from these articles yielded 

helpful comparative data for reference growth kinetic parameters.   

The Kluyveromyces species used in many of these experiments under aerobic 

condition at 45oC showed a range for the maximum specific growth rate from 0.18 to 

0.63 hr-1, and a biomass yield of 0.2 (g/g).  The Kluyveromyces species under anaerobic 

condition at 45oC showed a range for the maximum specific growth rate from 0.09 to 

0.93 hr-1, for the biomass yield from 0.022 to 0.1 (g/g), for the half saturation constant 

(Ks) of 0.065 g/L, and for the maximum ethanol production from 0.8 to 95 g/L.    

The Zygosaccharomyces species under anaerobic condition at 43oC had a range 

for the maximum specific growth rate from 0.175-0.180 hr-1, for the biomass yield from 

0.0683-0.0731 (g/g), and for the maximum ethanol production from 29.56-28.54 g/L.  

The Candida species under anaerobic condition at 43oC had a range for the maximum 

specific growth rate of 0.190 hr-1, for the biomass yield of 0.0934 (g/g), and for the 

maximum ethanol production of 31.74 g/L.  The Hansenula species under anaerobic 

condition at 43oC had a range for the maximum specific growth rate from 0.180-0.160 hr-

1, for the biomass yield from 0.0736-0.0775 (g/g), and for the maximum ethanol 

production of 35.10 g/L.  The Saccharomyces species under anaerobic condition at 43oC 

had a range for the maximum specific growth rate from 0.09-0.536 hr-1, for the biomass 

yield of 0.049 (g/g), and for the maximum ethanol production from 2.79-28.54 g/L.    
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Table 2.1 Summary of journal articles for the growth kinetic parameters.  
 

Authors Microbes Substrates Systems µmax 
(hr-1) 

Yxb Ks Maximum 
Ethanol 

(g/L) 
Banat et al. 

1992 
Kluyveromyces 

marxianus 
IBM3 

Glucose 
medium 

(10% 
glucose 
(w/v)) 

 

Batch Orbital 
Shaker bed at 

45oC 
(Anaerobic 
condition) 

0.93 - - 59 

Lactose 
medium 
10g/L 

0.43-
0.5 

Whey 
permeate 

10g/L 

0.38-
0.43 

Cellobiose 
medium 
10g/L 

0.18-
0.3 

Xylose 
medium 
10g/L 

0.18-
0.26 

Glucose 
medium 
10g/L 

Batch Orbital 
Shaker bed at 

45oC 
(Aerobic 

condition) 

0.58-
0.63 

- Banat et al. 
1995 

Kluyveromyces 
marxianus 

IBM3 
 

Glucose 
medium 
10g/L 

Batch Orbital 
Shaker bed at 

45oC 
(Anaerobic 
condition) 

 

0.09-
0.14 

- - 

95 
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Table 2.1 continued 
 

Authors Microbes Substrates Systems µmax 
(hr-1) 

Yxb Ks Maximum 
Ethanol 

(g/L) 
Batch Orbital 
Shaker bed at 

45oC 
(Anaerobic 
condition) 

0.19-
0.63 

0.80-16.80 

Continuous 
Fermentation at 
45oC (Anaerobic 

chemostat) 

0.7-1.8 (% 
v/v) 

Continuous two 
fermenter in a 

series (aerobic-
anaerobic) at 

45oC 

3.8-4.3 (% 
v/v) 

Banat et al. 
1996 

Kluyveromyces 
marxianus 

IBM3 
 

YFM 
medium 

(10g/L of 
glucose, 
lactose, 

cellobiose, 
or xylose) 

 

Continuous two-
stage anaerobic 
fermenter with 
cell recycle at 

45oC 
 

- 

- - 

5.3-7.7 (% 
v/v) 

Barron et al. 
1995 

Kluyveromyces 
marxianus 

IBM3 

Cellulose 
medium 
(0.75% 

cellulase 
and 5% 

cellulose) 
 

Batch Orbital 
Shaker bed at 

45oC 
(Anaerobic 
condition) 

- - - 6.6 

Fleming et al. 
1993 

Kluyveromyces 
marxianus 

IBM3 

Yeast 
sucrose 
medium 
(YSM) 
(10% 

sucrose 
(w/v)) 

 

Batch Orbital 
Shaker bed at 

45oC 
(Anaerobic 
condition) 

0.7 - - 35 
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Table 2.1 continued 
 

Authors Microbes Substrates Systems µmax
(hr-1)

Yxb Ks Maximum 
Ethanol 

(g/L) 
4-Liter Braun 

Biostat-B Batch 
Fermenter at 45oC

(Aerobic 
condition) 

- 0.2 
(g/g) 

- - Hack et al. 
1998 

Kluyveromyces 
marxianus 

 
Kluyveromyces 
marxianus IMB3 

 
 

MYFM 
Glucose 
medium 

(from 15 to 
300g/L) 

Continuous 
Fermentation with 

cell recycle at 
45oC 

(Anaerobic 
condition) 

 

0.60 0.1 
(g/g) 

0.065 
g/L 

14.6 

Glucose 
medium (140 – 
160 g/L total 

sugars) 

0.38 0.022 51.0 
(% theoretical 

yield) 

Hughes et 
al. 1984 

Kluyveromyces 
marxianus 

Diluted 
Molasses 
medium 

(140 – 160 g/L 
total sugars) 

 

Batch Orbital 
Shaker bed at 

45oC 
(Anaerobic 
condition) - - 

- 

51.9 
(% theoretical 

yield) 
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Table 2.1 continued 
 
Authors Microbes Substrates Systems µmax 

(hr-1) 
Yxb Ks Maximum 

 Ethanol  
(g/L) 

Zygosaccharomyces 
sp. 

0.175 
- 

0.180 

0.0683- 
0.0731 

- 29.56 - 
28.54 

Kluyveromyces sp. 0.125 
- 

0.130 

0.0393- 
0.0453 

- 50.54 - 
44.14 

Candida sp. 
 

0.190 0.0934 - 31.74 

Hansenula sp. 
 

0.180 
- 

0.160 

0.0736- 
0.0775 

- 35.10 

Saigal, 
1994 

Saccharomyces sp. 
 

Diluted 
Molasses 

200 g/L total 
sugars 

Batch 
fermentation 

at 43oC 
(Anaerobic 
condition) 

0.125 0.049 - 28.54 

Kluyveromyces 
fragilis 

0.21-
0.33 

35.0-56.0 

Saccharomyces 
cerevisiae 

0.09 19.0 

S. carlsbergensis 0.07 15.0 
S. muciparus 0.20 26.4 

Szczodrak 
et al. 1987 

S. marxianus 

Glucose 
medium 

(140g/L total 
sugars) 

 

Batch Orbital 
Shaker bed at 

45oC 
(Anaerobic 
condition) 

0.23 

- - 

30.4 
Batch with 

Immobilized 
cells at 35oC 

(Aerobic 
condition) 

0.536 0.8 
(g/L*hr) 

Yu et al. 
1996 

Saccharomyces 
cerevisiae K 

 

Saccharified 
Mash of 

Dried Sweet 
Potato (12.5-
13.5% total 

sugars) Immobilized 
cells in a 

packed-bed 
reactor with 
an external 
circulating 

apparatus at 
35oC 

 

- 

-         - 

2.79-2.35 
(g/L*hr) 
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CHAPTER 3 
 

KINETIC STUDIES OF KLUYVEROMYCES MARXIANUS 
UNDER AEROBIC AND ANAEROIC CONDITIONS 

 
 

The yeast strain Kluyveromyces marxianus was studied under aerobic and anaerobic 

batch conditions using glucose media in the Orbital Shaker Bed and Two-Liter Bioflo® 

2000 Fermentors to determine the kinetic parameters for this yeast growth.  Biomass 

formation and substrate utilization over time were determined with methods including 

COD total and soluble, TSS, OD, and HPLC.  Ethanol formed during the anaerobic 

environment was determined for the last experiment using GC equipment.  The kinetic 

parameters were determined for the laboratory experimental data using the linearization 

method derived from Monod Model.  The nonlinear, or logistic method, was unsuccessful 

for the laboratory experiment data sets.     

 
3.1 Materials and Methods 

 
3.1.1 Preparation of Yeast and Medium 

3.1.1.1 Culture Storage Procedure 

• Materials 

Several 250mL flasks were used to grow the yeast strain in 100 mL of glucose 

media (Appendix C).  After twelve hours of aerobic growth the cells were pipette into the 

2mL sterile cryogenic vials (Nalgene Cryoware) with the sterile glycerol (Glycerin 

Certified A.C.S by Fisher Scientific). 
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• Procedures 

Flasks (250mL Erlenmeyer) containing 100mL glucose media  were autoclaved 

according to the method described by Anderson et al. (1986) using the flask cycle for 30 

minutes.  Autoclaved glucose media was inoculated with yeasts from the stored 

cryogenic vials at room temperature.  A flask (250mL Erlenmeyer) with 30 g of glycerol 

was autoclaved using the wet cycle for 20 minutes.  Under the laminar flow hood, 1.05 

mL of the yeast culture was aseptically transferred into each cryogenic vial and 0.45mL 

of the cooled-down autoclaved glycerol was pipette into each cryogenic vial (70% yeast 

and 30% glycerol).  The cryogenic vials were stored at –200C freezer.   

 
3.1.1.2 Agar Growth 

• Materials 

Flasks (250mL Erlenmeyer) with PDA (potato dextrose agar) media were 

autoclaved and poured into the petri dishes (VWR – Polystyrene disposable sterile, 

100x15 mm) under the laminar flow hood to solidify.  

• Procedure 

The PDA media was autoclaved in 250mL flasks using the flask cycle for 20 

minutes, and poured into the petri dishes.  After the agar has hardened, the yeast culture 

was spread from the cryogenic vials into the petri dishes using a sterile metal inoculum 

loop.  Then, the petri dishes were incubated for 2 days at room temperature.  Figure 3.1.1 

shows the picture of the yeast cells from a sterile petri dish using a light-phase 

microscope.  
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Figure 3.1.1 Kluyveromyces marxianus yeast cells from agar petri dish, used to 
inoculate the glucose media.  
 

3.1.1.3 Glucose Media  

Glucose media for each pre-culture (seed) was made according to the glucose 

concentrations used in the reactors for either the “Orbital Shaker Bed” or the “Two-Liter 

Bioflo® 2000 Fermentors” experiments.  The glucose concentrations range from 200 to 

15,000 mg/L.  

• Materials 

The glucose media chemicals used in this procedure (Anderson et al. 1986) are 

available in Appendix C. 

• Procedures 

The pre-cultures were made in flasks (250mL Erlenmeyer) according to the 

designated glucose concentration, and autoclaved.  After the cool-down period, the flasks 
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were inoculated from a single colony of the petri dishes.  Then, the inoculated flasks were 

placed in the Orbital Shaker bed to grow for 24 hours at 45oC and 120 rpm.  Figure 3.1.2 

shows the picture of the yeast cells from glucose media using a light-phase microscope.  

 
Figure 3.1.2 Kluyveromyces marxianus yeast cells from of the Orbital Shaker bed 
grown aerobically in glucose media. 
 

 
3.1.2 Fermentation Reactors 

3.1.2.1 Orbital Shaker Bed  

The Orbital Shaker Bed (KC-25D, New Brunswick Scientific) was operated at 

45oC, 120rpm, from 0 to 12 hours, or from 0 to 70 hours for aerobic batch experiments.  

Flasks with 250mL volume were used with glucose media with sponges on top of the 

flasks to allow air to pass through.  The substrate concentrations used in the Orbital 

Shaker Bed were 500 mg/L and 1,000 mg/L glucose media.      
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3.1.2.2 Bioflo® 2000 Fermentors 

Three Two-Liter Bioflo® 2000 Fermentors (New Brunswick Scientific CO., INC, 

Brunswick, NJ) were used to grow the yeast strain Kluyveromyces marxianus, at 45oC, 

and stirred speed of 150 rpm.  The air pump and a nitrogen gas tank were connected to 

the Two-Gas Mixer (NBS-New Brunswick Scientific CO.), which contained a 0.2 µm 

filter connected to the air/gas inlet tubing, where a filter was used to sterilize the air 

before reaching the autoclaved glucose media in the vessels.  For the aerobic condition 

experiments, the air pump line was set at 1 vvm (vessel volume per minute), while the 

nitrogen gas line was off.  For the anaerobic condition experiments, the nitrogen gas line 

was set on 1 vvm, while the air pump line was off.  The AFS – BioCommand, a powerful 

software package for NBS fermentors, windows® based, with graphical interface and 

automated data archival system which was connected to record pH, temperature, stir 

speed, and D.O. (dissolved oxygen).  The three D.O. probes were placed in each of the 

Bioflo® 2000 vessels with the glucose media.  The three pH probes were calibrated 

before autoclaving the vessels, while the D.O. probes were polarized for more than six 

hours and then calibrated after being autoclaved.  After the calibration of the probes was 

completed, the air pump was turned off, and nitrogen gas was turned on at 1 vvm, until 

the vessels’ environment was completely anaerobic.  Nitrogen gas was then turned down 

to 0.5 vvm for the anaerobic experiments. 

  
3.1.2.3 Batch Reactor Experiments  

 
Three Two-Liter Bioflo® 2000 fermentors were inoculated with 5% of each 

substrate concentration from the pre-culture yeast (also called seed). The seed cultures 

were grown in flasks in the Orbital Shaker Bed (KC-25D, New Brunswick Scientific) for 
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24 hours, at 45oC with the speed of 150 rpm for either aerobic or anaerobic, according to 

the experiments conducted.  The seeds were grown with the desired substrate 

concentration of 200 mg/L, 400 mg/L, 800 mg/L, 1,000 mg/L, 3,000 mg/L, 5,000 mg/L, 

7,500 mg/L, 10,000mg/L, 15,000 mg/L and 80,000 mg/L to be used as inoculum of the 

same substrate concentrations already in the Bioflo® reactors.    

A variety of experiments were conducted using the three Two-Liter Bioflo® 2000 

reactors and the Orbital Shaker Bed.  Table 3.1.1 describes the experiments conducted in 

this research.  

Table 3.1.1 Summary of the Overall Reactor Experiments.  
  Orbital shaker bed 
  Aerobic environment 
  Specific growth rate and Kinetic parameters 
  
  500 mg/L glucose media Tap water 

  1,000 mg/L glucose media Tap and De-ionized water 

  Bioflo® 2000 fermentors 
  Aerobic environment Anaerobic environment 

Kinetic Parameters Specific growth rate Specific growth rate 
  Tap water 

  

1,000mg/L 
glucose 
media De-ionized water   

  Glucose media made with tap water: Glucose media made with tap water: 

  200 mg/L, 400 mg/L, 1,000mg/L 200 mg/L, 400 mg/L, 1,000mg/L 

  1,000 mg/L, 2,000 mg/L, 3,000 mg/L 

  3,000 mg/L, 10,000 mg/L, 80,000 mg/L 

  200 mg/L, 400 mg/L, 800 mg/L 5,000 mg/L, 7,500 mg/L, 15,000 mg/L 

Linear Method 
 
Hanes Plot and Lineweaver-Burk Plot 

 
Hanes Plot and Lineweaver-Burk Plot 

Glucose determination using “HPLC” 

Non-linear Method  
  
Monte Carlo technique Alcohol determination using “GC” 
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The following Figure 3.1.3 is the actual picture of one Bioflo® 2000 fermentor 

used for aerobic and anaerobic experiments during this research. 

 

Figure 3.1.3 Two-Liter Bioflo® 2000 Fermentor 
 (New Brunswick Scientific) 

 

Table 3.1.2 shows the averaged initial, maximum, and minimum values recorded 

by the AFS – BioCommand software for the D.O., and temperature probes for the aerobic 

and anaerobic experiments.   The average of the pH values were from 4.5 to 5.5 (using 

the pH paper) throughout the aerobic and anaerobic experiments for this research.  
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Table 3.1.2 Summary of the Probes Performance for the Experiments using the 2-L 
Bioflo® 2000 Reactors (New Brunswick Scientific). 

Aerobic 
Condition 

Average D.O. (Dissolved Oxygen) Average Temperature, oC 

Bioflo®  1 Initial 
103.067 

Maximum 
103.733 

Minimum 
93.733 

Initial 
45.075 

Maximum 
45.375 

Minimum 
44.5 

Bioflo®  2 Initial 
109.9 

Maximum 
103.033 

Minimum 
97.366 

Initial 
44.575 

Maximum 
45.875 

Minimum 
43.225 

Bioflo®  3 Initial 
84.1 

Maximum 
100.3 

Minimum 
72.4 

Initial 
44.825 

Maximum 
45.125 

Minimum 
44.5 

Anaerobic 
Condition 

Average D.O. (Dissolved Oxygen) Average Temperature, oC 

Bioflo®  1 Initial 
86.36 

Maximum 
43.16 

Minimum 
0 

Initial 
39.18 

Maximum 
47.36 

Minimum 
44.76 

Bioflo®  2 Initial 
76.28 

Maximum 
36.78 

Minimum 
0 

Initial 
39.32 

Maximum 
47.78 

Minimum 
43.4 

Bioflo®  3 Initial 
99.58 

Maximum 
37.32 

Minimum 
1.42 

Initial 
39.64 

Maximum 
47.74 

Minimum 
44.86 

 

3.1.3 Analytical Methods 
 
3.1.3.1 COD (Chemical Oxygen Demand) Measurement 

The COD (Chemical Oxygen Demand) procedure used for this research followed 

Method 5220D, Standard Methods (APHA, 1995).   COD is a measure of the amount of 

oxygen that is required to completely oxidize an organic compound to CO2 and H2O, 

representing substrate and biomass from a bioreactor as an equivalent mass of COD.  

Samples were analyzed for chemical oxygen demand (COD) analysis (Standard 

Method 5220 D, APHA, 1995) using the standard range (from 0 to 900 mg/L) and the 

high range (from 0 to 4,500 mg/L) in micro COD vials (Bioscience, Inc.).  The total COD 

and soluble COD were tested in this study.  The soluble COD was determined by filtering 

the samples through 0.45µm Millipore filter (mixed cellulose esters, sterile) prior to 

analysis.  The total COD and soluble COD vials’ contents were digested using the COD 

Reactor from HACH® for two hours at 302oF.  
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3.1.3.2 TSS (Total Suspended Solids) Measurement 

The TSS procedure was used (Method 2540D, Standard Methods (APHA, 1995)) 

to prepare the 0.45 µm Millipore filters (mixed cellulose esters; sterile) to determine 

biomass concentration throughout each experiment. 

3.1.3.3 OD (Optical Density) Measurement 

The Optical Density (OD) for the yeast strain was measured at 680nm.  The 

spectrophotometer used was from Spectronic Instruments, model Spectronic 20D+. 

3.1.3.4 HPLC (High Performance Liquid Chromatography) Measurement 

The Dionex DX-600 high performance liquid chromatography (HPLC) was 

equipped with; ED50 electrochemical detector (integrated pulsed amperometry detection 

(PAD), working electrode of gold, and reference pH electrode), vials used to analyze 

sugars, auto sampler AS40, GP50 gradient pump, CarboPacTM PA10 column, a mobile 

phase for conductivity detection of 200mM carbonate-free sodium hydroxide (NaOH), 

and high-quality water of high resistively (18MΩ-cm) as free of dissolved carbon dioxide 

as possible.  

• Carbohydrate Method 

High performance liquid chromatography (HPLC) has been applied to the 

characterization and quantization of the simple sugars (glucose, fructose, sucrose, 

maltose and lactose) present in a broad variety of food items, both fresh and processed 

(Hurst et al. 1979).  High-performance anion-exchange chromatography (HPAE) capable 

of separating complex mixtures of carbohydrates was used to determine the 

carbohydrates presented in the fermentation broth.  PAD detection is a powerful 



 28

technique with a broad linear range and very low detection limits.  This coupled with 

HPAE, permits direct quantification of nonderivatized carbohydrates.  The HPAE takes 

advantage of the weakly acidic nature of carbohydrates to give highly selective 

separations at a high pH using a strong anion exchange phase (Dionex technical note 20).  

The anion-exchange column used was Dionex CarboPac PA-10 4 mm (10-32), which is 

highly sensitivity for the separation of mixtures of sugar alcohol monosaccharides and 

disaccharides, using strong eluents such as carbonate-free sodium hydroxide (Dionex 

product manual, document no.031824-03).  A Dionex AS40 automated sampler was used 

to inject 25µl volumes of each sample poly-vial into a mobile phase running a gradient 

method with two eluents over a period of eighteen minutes.  The mobile phase eluents 

were composed of carbonate-free sodium hydroxide at 200mM, and high-quality de-

ionized water (18MΩ-cm), with which sodium hydroxide makes an excellent mobile 

phase for anion exchange.  The eluents (%) and flows (ml/min) used to expedite this 

method are found in Appendix B.  Figure 3.1.4 is the overall pictures of the Dionex DX-

600 system used in this research.  Concentrations of the anions were calculated from peak 

areas (Figure 3.1.6) and calibrated against the external sugar standards of 50, 100, and 

200 ppm (Figure 3.1.5) using the Dionex Peaknet System (version 6.0) software.   
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Figure 3.1.4 Picture of the actual HPLC setup and computer from our Biological 
Engineering Laboratory, LSU.  
 

 

 

 

 

 

 

 

 

Figure 3.1.5 Typical Chromatogram of External Sugar Standards for 50ppm 
(mg/L).  
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Figure 3.1.6 Typical Chromatogram of Sugar Results from ‘Sample-7t103’ (Reactor 
7,500mg/L for time 35 hours, third replicate).  
 

• Samples Method 

Table 3.1.3 shows the concentrations from anaerobic experiments where samples 

were diluted and filtered with 0.22µm syringe filters before being analyzed for sugar 

content by the HPLC.  Several replicates of the diluted samples were analyzed using the 

carbohydrates method.  

Table 3.1.3 Sample Dilutions for the Anaerobic Experiments. 
Reactors original 

concentration 
Diluted samples saved 

from the reactors 
Second dilution needed for the HPLC 

5000 mg/L ½ = 2500 mg/L 1/10 = 250 mg/L => ½ = 125 mg/L 
7500 mg/L ½ = 3750 mg/L 1/10 = 375 mg/L => ½ = 187.5 mg/L 
15000 mg/L 1/5 = 3000 mg/L 1/10 = 300 mg/L => ½ = 150 mg/L 

Reactors original 
concentration 

Diluted samples saved 
from the reactors 

Second dilution needed for the HPLC 

3,000 mg/L No dilution 3,000 => 1/10 = 300 mg/L 
10,000 mg/L 1/2.5 = 4,000 mg/L 4,000 => 1/10 = 400 mg/L 
80,000 mg/L 1/20 = 4,000 mg/L 4,000 => 1/10 = 400 mg/L 
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3.1.3.5 GC (Gas Chromatography) Measurement  

The Shimadzu’s GC-17A version 3.0 Gas Chromatography was equipped with; 

Shimadzu’s FID (Flame Ionization Detector) detector; Agilent Technology Capillary HP-

FFAP (polyethylene glycol (PEG)) Column; Gas supplies of Helium (700~800 kPa) 

(carrier gas), of Nitrogen (300~800 kPa) (make-up gas), of Hydrogen (300~500 kPa), and 

of Air (300~500 kPa); AOC-20i Auto Injector; National Scientific’s autosampler vials 

12x32 mm with septa; Fisher Scientific’s internal standard n-Propanol (C3H7OH), and 

external standards of ethanol, butanol, n-propanol, and methanol.  Figure 3.1.7 is the 

actual Shimadzu instrument from our Biological Engineering Laboratory, LSU.  

 

 

Figure 3.1.7 The actual Shimadzu GC 17-A version 3.0 Gas Chromatography 
System used to evaluate ethanol production from the anaerobic experiments.  
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• Alcohol Methods 

The Shimadzu GC 17-A version 3.0 equipped with a FID detector (output 

mVolts) and a HP-FFAP capillary column (Agilent technologies with 25m x 0.35mm) 

was used to determine the content of alcohol in the fermentation samples.  The samples, 

previously filtered through 0.45µm Millipore filters, were than filtered through.  0.20µm 

Nalgene® nylon syringe filters and 0.5ml was added to the 2ml autosampler vials 

(National Scientific) with 0.5 ml of 50 ppm n-Propanol (C3H7OH).  The n-propanol 

(Fisher Scientific) was used as the internal standard for all samples.  The AOC-20i auto 

injector was used to inject 0.5~2.0µl of sample to the split injection system, when said 

injected sample is partially split to the capillary column at an oven temperature from 

40oC to 200oC, increased at a rate of 20oC per minute.  The total program time was 15 

minutes per sample.  The method chosen was the most frequently used capillary analysis 

method to achieve highly efficient separation (Shimadzu user’s manual GC-17A).  The 

FID sensitivity changes according to the mixture ratio of the carrier gas.  Helium was 

used as the carrier gas at 600 kPa with the total flow rate of 19 ml/min.  The Shimadzu 

Class-VP version 3.0 chromatography software was used providing a complete data 

acquisition, instrument control, and analysis of the samples.  The complete alcohol setup 

parameters method may be found in Appendix D.  Figure 3.1.8 shows peaks of external 

standards (50ppm), used to calibrate unknown samples.   
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Figure 3.1.8 Typical Chromatogram for External Alcohol Standards of 
50ppm (mg/L) Concentration (plotted in mVolts versus minutes).  

 

• Alcohol Quantification 

The quantification of alcohol was accomplished using the internal standard 

method as follows: 

( )
( )is

ffsis
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DRRAC
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***
=  

Where: 

sC  = Concentration of sample 

isC  = Concentration of internal standard 

sA  = Area of sample 

isA  = Area of internal standard 

fRR  = Relative response factor for individual alcohol to internal standard 

fD  = Dilution factor of the samples (In this research fD  was equal to one). 

n-Propanol

Methanol 

Ethanol
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The concentration of internal standard isC , equal to the total volume added into 

the autosampler vials, was 0.5ml of sample plus 0.5ml of 50ppm internal standard. 

Therefore, the total isC  was 25ppm for the internal standard.  

The fRR was calculated using external standards of ethanol (ethyl alcohol USP absolute, 

200 proof from AAPER Alcohol and Chemical, Co) and n-propanol with the following 

fRR definition equation: 
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xC  = Average concentration of the external standard component (Ethanol), 

xA  = Averaged area of the external standard component (Ethanol), 

isC  = Averaged concentration of the internal standard component (n-Propanol), 

isA  = Averaged area of the internal standard component (n-Propanol). 

The fRR  used in this alcohol determination was 1.42.  The fRR  calculations are 

found in Appendix D.  
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3.1.4 Kinetic Parameter Determination 

Several phases of cell growth are observed in batch culture; a typical growth 

curve is shown in Figure 3.1.9 from Doran, 1997.  

 

Figure 3.1.9 Typical Batch Growth Curve. 

 
The growth kinetic parameters are calculated from the acceleration phase and 

continued through the growth and decline phases.  The parameters estimated were 

maximum specific growth rates, half saturation constants, and biomass yields.  The rate 

of growth is influenced by the nutrient concentration, the environmental conditions, and 

the nature of the organism itself.  The experiments were conducted under batch 

conditions based on the following methods. 

 
3.1.4.1 Monod Model  

The relationship of specific growth rate to substrate concentration often assumes 

the form of saturation kinetics.  In this case we assumed a single chemical species, S 
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(Substrate) that was growth rate limiting for the microorganisms.  Therefore, an increase 

in substrate influences the growth rate of the microbes, while changes in other nutrient 

concentrations have minimal to no effect on microbial growth.  These kinetic parameters 

are similar to the Langmuir-Hinshelwood, or Hougen-Watson, kinetics in traditional 

chemical kinetics or Michaelis-Menten kinetics for enzyme reactions (Shuler and Kargi, 

1992).  The Monod model is stated as:  

( )
( )tS

t

SK
S

+
=

*maxµµ          (3.1.1) 

where: 

µ = Specific growth rate, time-1; 

µmax = Maximum specific growth rate when S>>Ks; 

tS  = Substrate, mg/L; 

Ks = Saturation constant or half-velocity constant, mg/L.  Where Ks = S, when  

µ  = (1/2)*(µmax).  

 
3.1.4.2 Linearization Methods 

 With the linearized method; the specific growth rate (µ) is determined by 

calculating the difference in the natural log of the biomass concentrations over time 

(equation 3.1.2).  

( ) ( )( )
⎟
⎠
⎞

⎜
⎝
⎛ −

=
t

XX bobt lnlnµ        (3.1.2) 

The specific growth rate coefficient (µ) is the slope determined by plotting the 

natural log of biomass versus time for each substrate concentration during the initial 

phase of exponential growth before the substrate concentration decreases significantly. 
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Then, the determined values of specific growth rate and substrate concentration 

determined are used to estimate the kinetic parameters, maximum specific growth rate 

( maxµ ) and half saturation constant (Ks), with either the Lineweaver-Burk or Hanes, 

linear methods.  

 
3.1.4.2.1 Lineweaver-Burk Plot 

The Lineweaver-Burk equation is obtained by taking the inverse of the Monod 

Model. 
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The slope is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
maxµ

sK and the intercept is ⎟⎟
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The Lineweaver – Burk method has been widely used to determine the kinetic parameter 

values.  However, transforming the variables often distorts the errors associated with 

variables, because with small errors for S (substrate), the errors for ⎟⎟
⎠

⎞
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1  become 

relatively larger.  Whenever ⎟⎟
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µ
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⎜⎜
⎝

⎛

tS
1 are plotted, the error values may influence 

the slope significantly.  This transformation is dependent on the value of the variable; 

therefore it is not the most recommended method.  
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3.1.4.2.2 Hanes Plot 

The Hanes plot is obtained by multiplying the Lineweaver-Burk equation by the 

substrate concentration.  
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The slope is ⎟⎟
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tS versus tS . 

This method is the most recommended for many different situations, because it 

minimizes the distortions in experimental error. 

 
3.1.4.3 Nonlinear Method 

This method takes into consideration the change in substrate concentrations in a 

batch reactor as the microorganisms grow over time.   

To perform any reactor design modeling specific kinetic parameters for the 

microbial organism of interest is often necessary.  The specific growth kinetic parameters 

for any microbe are found by performing the mass balance around the biological reactor 

with respect to biomass ( bX ).  

( ) ( )bb
b XbX

dt
dX ** −=⎟

⎠
⎞

⎜
⎝
⎛ µ         (3.1.5) 

where: 

µ = Specific growth rate, time-1; 

b = Decay constant, time-1;  

bX  = Biomass concentration, mg/L; 
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Equation (3.1.5) is applied to the exponential growth phase also known as the 

logarithmic growth phase.  Assuming b is negligible during the exponential growth 

phase, equation (3.1.5) can be integrated, thus yielding:  

( ) ( )
  ⎥

⎦

⎤
⎢
⎣

⎡
−
−

=
o

bobt

tt
XX lnlnµ          (3.1.6) 

btX  and boX  = the biomass concentration at time t and at time ot . 

Equation (3.1.6) may be used to determine the specific growth rate over time for a 

given substrate concentration. 

Equation (3.1.6) may also be rearranged to result in an equation that describes the 

biomass concentration in the reactor at time t (Equation 3.1.7): 

 
( )( )))(*(* ott

bobt eXX −= µ         (3.1.7) 

Equation 3.1.8 was formulated by substituting the Monod model into the mass 

balance equation for a batch reactor with respect to biomass (Equation 3.1.5). 
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The relationship between microbial growth yield and substrate consumption is 

determined by biomass yield, which is the cell mass yield based on the limiting nutrient: 
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xbY  = (mg/L of bX / mg/L of S). 

 

 The biomass yield by definition is the rate of biomass formation over the rate of 

substrate utilization, during the exponential growth phase of the microorganism.  
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 Then, after the Monod model was substituted into the mass balance equation with 

respect to biomass, Equation 3.1.8 was integrated and the biomass yield equation was 

substituted, yielding the Lee equation (Lee, 1992).  
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Equation 3.1.10 describes how the biomass and substrate concentrations change 

with respect to time during exponential growth, as a sigmoidal-shaped batch growth 

curve.  The Monod model applies at every point in time to the batch reactor (as the 

substrate concentration decreases, the specific growth rate decreases).  Equation 3.1.10 

may be used as a design equation and as a method to estimate growth kinetic parameters 

(µmax and Ks). 

 
3.2 Results and Discussion 
 
3.2.1 Aerobic Environment 
 

Preliminary work was elaborated upon to determine the kinetic parameters for the 

yeast strain Kluyveromyces marxianus grown in aerobic conditions.  

 
3.2.1.1 Orbital Shaker Bed 

For each experiment pre-cultures of yeast were grown on glucose media with the 

same glucose concentration, used in the experimental run.  Five percent (volume of the 

experimental flasks) of the pre-culture was used to inoculate the experiments.  Each 

experiment had four replicates per time.   
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Figure 3.2.1 shows the calibration curve for 1,000 mg/L glucose media with the 

regression equation of y=718.0489*x and R2=0.989, which was used to determine the 

TSS from OD for the following experiments.  
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R2 = 0.9889

0

20

40

60

80

100

120

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Optical Density (680nm)

To
ta

l S
us

pe
nd

ed
 S

ol
id

s,
 m

g/
L 

TS
S

 

Figure 3.2.1 The Calibration Curve for 1,000 mg/L glucose media for 
Kluyveromyces marxianus yeast strain.  

 
 

3.2.1.1.1 Substrate Concentration Comparison with Tap Water  

Two glucose media concentrations of 500 mg/L, and 1,000 mg/L made with tap 

water were investigated to determine the specific growth rate.  The specific growth rate 

of the exponential growth phase was calculated from the slope of the regression line of 

natural log biomass versus time for each substrate concentration.  The calibration curve 

equation from Figure 3.2.1 shown above was used to calculate TSS from OD.  Figure 

3.2.2 shows the entire natural log of biomass versus time for 500 mg/L glucose media.  

Figure 3.2.3 shows the exponential phase only for the specific growth rate determination.  
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Figure 3.2.2 The Natural log of biomass versus time for 500 mg/L glucose  
media.  
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Figure 3.2.3 The specific growth rate determination during exponential phase for 
500 mg/L initial substrate concentration.   

 
 

Figure 3.2.4 shows the entire natural log biomass versus time for the 1,000mg/L 

glucose concentration.  Figure 3.2.5 shows the specific growth rate determination from 

the exponential phase only, for 1,000 mg/L glucose media.    
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Figure 3.2.4 Natural log of biomass versus time for 1,000 mg/L glucose media. 

y = 0.0183x + 1.4861
R2 = 0.2108

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50

Time, hours

Ln
(B

io
m

as
s)

, m
g/

L 
TS

S

 
Figure 3.2.5 Specific growth rate for 1,000 mg/L glucose media. 

 
 

Table 3.2.1 shows the regression equations for 500 mg/L and 1,000 mg/L, for the 

exponential growth phases. 

 
Table 3.2.1 The Comparison of Specific Growth Rates for Different Substrates. 
Glucose 
Concentrations (mg/L) 

Specific Growth Rate (1/hr)  Equation R2 

500 mg/L  0.438 y=0.438x+2.637 0.943 
1,000 mg/L 0.0183 y=0.0183+1.486 0.21 
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Figure 3.2.4 showed the entire experimental data for biomass formed over time with 

an unreliable initial value of biomass at time zero.  The initial biomass value exceeded 

the final biomass value due to human sampling error.    

Table 3.2.1 showed for the 500 mg/L initial substrate concentration a specific growth 

rate of 0.438/hr, and for the 1,000 mg/L initial substrate concentration a specific growth 

rate of 0.0183/hr.  This experiment has been contradictory to some literature which has 

shown that the specific growth rate of Kluyveromyces marxianus is larger with higher 

substrate concentrations under aerobic conditions, such as 0.63 hr-1 with 40 g/L glucose 

media (Banat et al. 1996).  The R2 of 0.21 for the 1,000 mg/L initial substrate 

concentration was a very low regression fitting compared to the 500 mg/L initial 

substrate concentration with a R2 of 0.943.  Even though the 1,000 mg/L glucose media 

had more time for growth, it did not show an exponential period where the cells doubled 

during that time.  The yeast cells in the 1,000 mg/L glucose media experiment did not 

actually grow as expected, perhaps due to contamination.  

  
3.2.1.2  Two-Liter Bioflo® 2000 Fermentors 
 
3.2.1.2.1 Water Comparison with 1,000 mg/L Glucose Media 
 

Due to the unexpected results from the orbital shaker bed water experiments, 

different water types were studied using the Two-Liter Bioflo® 2000 Fermentors.  

Two different water types (tap and de-ionized) were studied at a 1,000 mg/L glucose 

media concentration, using the Two-Liter Bioflo® 2000 reactors.  The TSS for this 

experiment was calculated using the calibration curve equation already mentioned.  

Figure 3.2.6 gives the entire natural log of biomass versus time for tap and de-ionized 
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water.  Figure 3.2.7 gives the specific growth rate µ (1/hr), the regression equations, and 

R2 for both tap and de-ionized waters during the exponential growth phase only.    
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Figure 3.2.6 Natural log of biomass versus time for 1,000 mg/L initial substrate 
concentration using de-ionized and tap water. 
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Figure 3.2.7 Specific growth rate for 1,000 mg/L initial substrate concentration 
using de-ionized and tap water. 
 
 

Table 3.2.2 shows that the tap water media had a slightly higher specific growth 

rate than de-ionized water when using the two-liter Bioflo® 2000 reactors. 
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Table 3.2.2 Water Comparison for the 1,000 mg/L Glucose Concentration. 
Glucose Concentration 
1,000 mg/L 

Equation  R2 Specific Growth Rate, 
hr-1 

Tap Water y=0.055+2.78 0.986 0.055 
De-ionized Water y=0.047+2.08 0.998 0.047 

  
  

The R2 of 0.998 for de-ionized water and the R2 of 0.986 for tap water showed a 

good regression fit of the data set.  Even though the Bioflo® reactors are well sealed and 

decontaminated after autoclaving, something in the glucose environment did not allow 

the cells to double during the exponential growth phase.  We did not expect the cells to 

only grow 0.055 per hour while the substrate was not limiting growth.  We either had 

problems maintaining pH or temperature constant during the experiment.  All further 

experiments for this research were done with the Two-Liter Bioflo® 2000 Fermentors 

using tap water.   

 
3.2.1.2.2 Substrate Comparison Using Tap Water 

The substrate comparison experiment was accomplished with three two-liter Bioflo® 

2000 reactors, in duplicate.  During the first run, we evaluated substrate concentrations of 

200, 400, and 1,000 mg/L glucose media.  In the second run, we evaluated substrate 

concentrations of 200, 400, and 800 mg/L glucose media.   

Figure 3.2.8 shows the natural log of biomass versus time for the entire growth phase 

using the three two-liter Bioflo® 2000 reactors with different substrate concentrations.  

The initial substrate concentrations were as follows: 200, 400, and 1,000 mg/L.  
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Figure 3.2.8 The Ln(biomass) versus time for the Bioflo® 2000 fermentors 
first run. 
 
 

Figure 3.2.9 shows the regression equations and the specific growth rates during 

the exponential phase for the natural log of biomass versus time for the initial substrate 

concentrations of 200, 400, and 1,000 mg/L.  
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Figure 3.2.9 Specific growth rate for 200, 400, and 1,000 mg/L glucose 
media during the exponential growth phase for the first run.  

 

Figure 3.2.10 shows the entire growth phase for the second run using the three 

two-liter Bioflo® reactors for 200, 400, and 800 mg/L glucose media.   

200 mg/L

400 mg/L

1,000 mg/L
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Figure 3.2.10 The Ln(biomass) versus time for the Bioflo® 2000 fermentors 
second run. 
 
 

Figure 3.2.11 shows the regression equations during the exponential growth phase 

for the 800 mg/L initial substrate concentration.  

y = 0.0875x + 0.6306
R2 = 0.9832
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Figure 3.2.11 Specific growth rate for the 800 mg/L initial substrate 
concentration during the exponential growth phase. 

 

Table 3.2.3 shows the regression equations, R2, specific growth rates, biomass 

yields calculated from COD measurements for four reactors.  The 200 mg/L and 400 

mg/L initial substrate concentrations from the second run were cancelled due to 

undetermined growth.  
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Table 3.2.3 Summary for the Different Substrate Concentrations during 
Exponential Growth Phase.   
Original Substrate (glucose 
concentration, mg/L) 

Regression Equation R2 Biomass 
Yield, Yb (mg/L 
TSS/mg/LCOD) 

Specific 
Growth Rate, µ 

(1/hr) 
200 mg/L y = 0.0639*x + 

1.1180 (first run) 
0.2664 0.111 0.0639 

400 mg/L y = 0.0982*x + 
1.7190 (first run) 

0.8211 0.303 0.0982 

800 mg/L y = 0.0875*x + 
0.6306 (second run) 

0.9832 0.81 0.0875 

1,000 mg/L y = 0.1076*x + 
2.4278 (first run) 

0.9663 0.285 0.1076 

 
 

The biomass yield for every reactor was calculated by dividing the time into five 

parts, also called “time frames”.  For each of the five time frames biomass formed (mg/L 

TSS) was averaged for the substrate utilized (mg/L COD).  Further details on biomass 

yields are found in Appendix G, part G1.   

The 800 mg/L glucose concentration had the highest biomass yield of 0.81 (mg/L 

TSS/ mg/L COD), and the 200 mg/L glucose concentration had the lowest biomass yield 

of 0.111 (mg/L TSS / mg/L COD).   The other substrate concentrations (400 mg/L and 

1,000 mg/L) calculated the biomass yields of 0.303 and 0.285 (mg/L TSS/ mg/L COD).   

The specific growth rate for the first run of the 200 mg/L initial substrate 

concentration was 0.0639 (1/hr).  The specific growth rate for the first run of the 400 

mg/L initial substrate concentration was 0.0982 (1/hr).   

The kinetic parameters for the maximum specific growth rate, and the half saturation 

constant were both calculated from these experimental data using the linear and the 

nonlinear methods.   
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3.2.1.2.3 The Linearization Methods for the Laboratory Data Set 

The Linearization method was explained in the Materials and Methods section with 

use of the Monod equation.   

The Linearization method was applied with the “Hanes Plot” and the “Lineweaver-

Burk Plot” utilizing the averaged soluble substrate concentration (mg/L COD) and the 

specific growth rate column from Table 3.2.3.  Figure 3.2.12 shows the Hanes plot and 

Figure 3.2.13 shows the Lineweaver-Burk Plot for the aerobic experiments from the 

summary Table 3.2.3.  
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Figure 3.2.12 Hanes plot for the averaged substrate over the specific growth 
rate versus averaged substrate concentrations.   
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Figure 3.2.13 Lineweaver-Burk plot for the averaged substrate over the 
specific growth rate versus averaged substrate concentrations.   
 

 

Table 3.2.4 shows the values used by the Hanes and Lineweaver-Burk plots to 

determine the growth kinetic parameters.   

 
Table 3.2.4 Summary of the Kinetic Parameters from the Linearization Methods.    
Glucose 
Media,  
mg/L  

Averaged 
Soluble 
Substrate,  
mg/L 
COD 

Specific 
Growth 
Rate, 
1/hr 

Linearization 
Method 

Regression 
Equations  

R2 Half 
Saturation 
Constant, 
(Ks) mg/L 
COD 

Maximum 
Specific 
Growth 
Rate, 
(umax) 1/hr 

200 288.76 0.067 
400 586.81 0.053 

Hanes  
 

y=8.311x+1945.377 0.957 234.073 0.120 

800 1004.64 0.088 
1,000 1456.73 0.108 

 

Lineweaver-
Burk 

y=2071.115x+8.092 0.836 255.946 0.124 

 
 

From the regression equations we were able to determine the growth kinetic 

parameters (Ks and the µmax).  The half saturation constant (Ks) was 234.073 mg/L COD, 

and the maximum specific growth rate (µmax) was 0.120/hr for the Hanes method, and the 

half saturation constant (Ks) was 255.946 mg/L COD, and the maximum specific growth 

rate (µmax) was 0.124/hr for the Lineweaver-Burk method.  The maximum specific 

growth rates and the half saturation constants for both methods gave similar results.  But 
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the Hanes method gave a much better regression fit for the data set of an R2 = 0.957.   

The values predicted using the Hanes method is considered a more reasonable prediction 

which confirms that the Lineweaver-Burk method is not as reliable as the Hanes method 

most of the times (Robinson, 1985).     

 
3.2.1.2.4 The Nonlinear Method Approach for Laboratory Data Set Using 

Statistics Analysis Software (SAS) 
 

Statistics Analysis Software (SAS) was used to perform a nonlinear analysis on the 

aerobic experiments (200, 400, 1,000 mg/L initial substrate concentrations) and (800 

mg/L initial substrate concentration) using the two-liter Bioflo® Fermentors.  The SAS 

code for this analysis can be found in Appendix H.  The nonlinear equation (Lee, 1992) 

was used by the “proc model” from the SAS program to estimate the growth kinetic 

parameters.  The first experiment had a time period from 0 to 15 hours and the second 

experiment had a time period from 0 to 51 hours.  The initial soluble substrate (So), 

biomass yield (Yxb), and biomass (Xbo) values used to find the kinetic parameters are 

shown in Table 3.2.5.  Soluble substrate was calculated from COD measurements, 

biomass was calculated from TSS measurements, and biomass yield was calculated from 

the biomass formed (mg/L TSS) divided by the substrate utilized (mg/L COD).   

Table 3.2.5 shows the output for the kinetic parameters determined using the 

nonlinear equation (Lee, 1992).   
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Table 3.2.5 The Kinetic Parameters Results from the Nonlinear Model using SAS 
for the Aerobic Experiments. 
Glucose Media,  
mg/L 

Initial Conditions for So,  Xbo, and Yxb Half Saturation 
Constant, (Ks) 
mg/L COD 

Maximum Specific 
Growth Rate, (umax) 
1/hr 

First Bioflo®  
experiment 

(So) Soluble 
Substrate, mg/L 
COD 

(Xbo) 
Biomass 
mg/L 
TSS 

(Yxb) 
Biomass 
Yield  

  

200 288.77  0.72 0.11 -296 -0.0028 
400 586.82   3.11 0.30 -484 0.016 
1000 1456.73  8.14 029 -1329 0.014 
Second Bioflo®  
experiment 

   

800 946.01 9.87 0.81 -906 0.0039 
   

 
The Ks and µmax values for each glucose media concentration were not expected to 

be worse than the linear methods.  Either experiment did not show any improvement on 

the half saturation constants or the maximum specific growth rate; negative Ks values 

and very small µmax values were estimated in some cases.  These estimations need better 

experimental data sets without significant errors, or nearly perfect data sets to obtain 

reasonable results from the logistic equation.  Further investigations of the nonlinear and 

linear methods by developing a computer simulation using SAS were conducted to 

explain the unreasonable kinetic parameter determinations in Chapter 4 of this thesis.      

 
3.2.2 Anaerobic Environment 

 
All the following anaerobic experiments were done in the two-liter Bioflo® 2000 

fermentors.  The orbital shaker bed was only used to grow the pre-cultures (seed) 

anaerobically to be used as inoculums for the two-liter Bioflo® 2000 fermentors.   

 
3.2.2.1 Two-Liter Bioflo® 2000 Fermentors 

 
The three two-liter Bioflo® 2000 fermentors were used simultaneously for each of 

the anaerobic experiments conducted.    
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3.2.2.1.1 Substrate Concentration Comparisons 
 

Figures 3.2.14 and 3.2.15 shows the medium and high range COD standard curves 

used to determine the soluble substrate for each experiment.  The soluble substrate for the 

exponential growth phase was averaged for each experiment to determine the growth 

kinetic parameters under anaerobic condition for the Kluyveromyces marxianus yeast 

strain.  
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Figure 3.2.14 Medium Range COD Standard Curve. 
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Figures 3.2.15 High Range COD Standard Curve. 
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Figures 3.2.16 to 3.2.22 show results from four experiments conducted using 

three reactors simultaneously per experiment.  Figures 3.2.16, 17, 19 and 3.2.21 plot 

the natural log of biomass versus time for each experiment.  Figures 3.2.18, 20 and 

3.2.22 show the exponential growth phase of the natural log of biomass versus time for 

each experiment.  Figure 3.2.16 shows measurements for the first experiment, Figures 

3.2.17 and 3.2.18 show values for the second experiment, Figures 3.2.19 and 3.2.20 

show data for the third experiment, and Figures 3.2.21 and 3.2.22 show data for the 

fourth experiment.  The experiments with the initial substrate concentrations from 200 

mg/L to 3,000 mg/L used the 1,000 mg/L calibration curve equation, y (TSS) = 

718.04893 * x (OD), to determine biomass concentration.  The experiments with the 

initial substrate concentrations from 5,000 mg/L to 80,000 mg/L used the 100 g/L 

glucose media calibration curve equation, y(TSS)=17.8400097e^(3.4083693*x(OD)), 

to determine biomass concentration.  These calibration curves are shown in Appendix 

F.   
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Figure 3.2.16 The natural log of biomass versus time grown on 200, 400, and 
1,000 mg/L initial substrate concentrations.  
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 The exponential growth phase for the anaerobic reactors 200, 400, and 1,000 

mg/L (Figure 3.2.16) was not calculated due to inconsistent growth measured for this 

experiment.  
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Figure 3.2.17 The natural log of biomass versus time grown on 1,000, 2,000, and 
3,000 mg/L initial substrate concentrations.  
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Figure 3.2.18 The exponential growth phase for 1,000, 2,000, and 3,000 mg/L 
initial substrate concentrations and linear regression fits.  
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Figure 3.2.19 The natural log of biomass versus time grown on 3,000, 10,000, 
and 80,000 mg/L initial substrate concentrations.  
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Figure 3.2.20 The exponential growth phase for 3,000, and 10,000 mg/L initial 
substrate concentrations and linear regression fits. 
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Figure 3.2.21 The natural log of biomass versus time grown on 5,000, 7,500, and 
15,000 mg/L initial substrate concentrations.  
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Figure 3.2.22 The exponential growth phase for 5,000, 7,500, and 15,000 mg/L 
initial substrate concentrations and linear regression fits. 
 
 

Table 3.2.6 shows the regression equations, biomass yields, R2, and specific 

growth rates for the four experiments conducted under anaerobic conditions.   

Table 3.2.6 Summary of the Anaerobic Experiments for the Exponential Growth 
Phase.  

Original Glucose Media, 
mg/L  

Regression  
Equation 

Biomass 
Yield, Yb (mg/L 
TSS/mg/LCOD 
 

R2 Specific growth rate, (1/hr)

Second Experiment     
1,000 y=0.053x+2.367 0.1837 0.8 0.053 
2,000 y=0.091x+2.813 0.1518 0.87 0.091 
3,000 y=0.107x+3.046 0.1592 0.92 0.107 

Third Experiment     
3,000 y=0.029x+3.360 0.0734 0.88 0.029 
10,000 y=0.012x+3.129 0.1563 0.86 0.012 

Fourth Experiment     
5,000 y=0.0018x+3.075 0.0031 0.53 0.0018 
7,500 y=0.0017x+3.015 0.0057 0.76 0.0017 
15,000 y=0.0029x+3.003 0.0263 0.72 0.0029 

 
 

On the third experiment, 80,000 mg/L glucose media reactor was cancelled 

because it did not show any growth throughout the entire experiment.  It was peculiar that 

the lower substrate concentrations showed higher specific growth rates compared to the 

5,000 mg/L

7,500 mg/L

15,000 mg/L
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higher substrate concentrations.  Even though not much growth was expected in the 

anaerobic environment, the growth rate of this organism under anaerobic condition was 

lower than expected.  Since the experiments yielded erroneous results, where a lower 

specific growth rate was obtained at the higher substrate concentrations, there was not a 

point to attempt the linear and nonlinear methods.  

  
3.2.2.1.2 Soluble Substrate Determination Using HPLC Method 
 

HPLC (High Performance Liquid Chromatography) equipment was used to 

determine the glucose concentration for the two runs for samples collected during the 

fermentation experiment, filtered, and stored at -20oC.  Figures 3.2.23 and 3.2.24 are the 

calibration curves for the external sugar standards used to determine the sugar 

concentrations for the two anaerobic experiments.  Figure 3.2.23 shows the external 

glucose standard made from 50ppm, 100ppm, and 200ppm.  Figure 3.2.24 show the 

external fructose standard made from 50ppm, 100ppm, and 200ppm.  The glucose and 

fructose external standards were the only ones used in the calculations for our 

experimental data because our samples predominantly showed chromatograms with 

glucose and fructose peaks.  Figure 3.2.23 had a regression equation of y=3.391x+6.188 

with R2 equaled to 0.995, and Figure 3.2.24 had a regression equation of y=3.0596x-

15.88 with R2 equaled to 0.996.   
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Figure 3.2.23 Glucose Standard Curve.  
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Figure 3.2.24 Fructose Standard Curve. 
 
 

Figures 3.2.25, 3.2.26 and 3.2.27 show the sugar concentrations for the third anaerobic 

experiment.  Figures 3.2.28, 3.2.29 and 3.2.30 show the sugar concentrations for the 

fourth anaerobic experiment.  Figures 3.2.25 and 3.2.28 show the glucose concentration 

changing over time for both anaerobic experiments, and Figures 3.2.26 and 3.2.29 show 

the fructose concentration changing over time for both anaerobic experiments.  Figures 

3.2.27 and 3.2.30 show the glucose and fructose substrate concentrations added together 

yielding one substrate concentration changing over time for each experiment.  
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Figure 3.2.25 Glucose concentration for the third anaerobic experiment. 
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Figure 3.2.26 Fructose concentration for the third anaerobic experiment. 
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Figure 3.2.27 Total sugar substrate concentration for the third anaerobic 
experiment (glucose and fructose added together).  
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 Figure 3.2.28 Glucose concentration for the fourth anaerobic experiment. 
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 Figure 3.2.29 Fructose concentration for the fourth anaerobic experiment. 
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Figure 3.2.30 Total sugar substrate concentration for the fourth anaerobic 
experiment (glucose and fructose added together).  
 
 

The soluble substrate concentrations were determined for both experiments using 

the HPLC method.  These soluble substrate concentrations were not used to calculate the 

growth kinetic parameters with the linear and nonlinear methods, due to unreliable 

specific growth rates calculated (Table 3.2.6).  Figure 3.2.27 showed that the total sugar 

substrate concentration did not change much over time.  The substrate concentration for 
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each fermentor was increasing over time, which is not acceptable.  Figure 3.2.30 showed 

that the total sugar substrate concentration did change over time.  The substrate 

concentration for each fermentor was decreasing over time, which is expected.  

The glucose media was made in accordance to Anderson et al. (1986) that used 

BactoTM Peptone and BactoTM Yeast Extract to make the media.  Both of these 

ingredients were used by the cells as a carbon source with 10% of nitrogen, 80% of 

amino acids, and 4% of ashes.  The Peptone and Yeast Extract contain protein and free 

amino acids that contribute to carbon quantification.  The extra carbons from the Peptone 

and Yeast Extract affect the COD measurements, the biomass measurements, and 

possibly ethanol production.  Therefore, the sugar measurements (using COD technique) 

would have higher soluble substrate concentrations than using the HPLC technique, 

because the COD technique accounts for all carbon sources in the glucose media 

(Appendix C tables: C.1 and C.2).   

 
3.2.2.1.3 Product Quantification Using GC Method 
 

The overall conversion of glucose to ethanol by yeast cells can be represented 

stoichiometrically as: C6H12O6  2C2H5OH + 2CO2 

 MW   180  92       88 

From this equation, a theoretical yield of 51.1 g of ethanol can be obtained from the 

fermentation of 100 g of glucose (Jones et al. 1981). 

Microbial products can be classified in three major categories: growth-associated 

product, nongrowth-associated product, and mixed-growth-associated product formation.  

Growth-associated products are produced simultaneously to microbial exponential 

growth.  The specific rate of product formation is proportional to the specific rate of 
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growth (Shuler & Kargi, 1992).  Ethanol production is an example of product directly 

associated with the generation of energy in the cell, where ethanol is synthesized in 

pathways that produce ATP.  Ethanol and glycerol were then produced until glucose was 

depleted.  The product was only determined for the fourth experiment with 5,000, 7,500, 

and 15,000 mg/L glucose concentrations.  The product (ethanol) was determined using 

gas chromatography (GC) from 0.45µm filtered, and undiluted, frozen samples.  Figure 

3.2.31 shows the product formation over time for the three reactors.                 
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Figure 3.2.31 Ethanol concentration for the anaerobic experiment. 
 
 

Figure 3.2.31 showed that the ethanol concentration was the highest for 5,000 

mg/L initial substrate concentration fermentor achieving a maximum ethanol production 

of 70 mg/L from 21 to 42 hours.  The reactor with 15,000 mg/L glucose also showed the 

next best ethanol production increasing continuously from 0 hour until 28 hours, and then 

we can see a slow decrease over time, when it achieved a maximum ethanol production 

of 60 mg/L.   The reactor with 7,500 mg/L glucose did not show a very consistent ethanol 

production over time, but it did reach a maximum of ethanol production of 55 mg/L.  

While too early to be definitive as more replications would be desirable, the 5,000 mg/L 
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reactor had the highest ethanol production over time, even though the biomass yield was 

only 0.0031 (mg/L TSS biomass / mg/L COD substrate).  The biomass yield of the 7,500 

mg/L reactor was 0.0057 (mg/L TSS biomass / mg/L COD substrate) and the biomass 

yield of the 15,000 mg/L reactor was 0.0263 (mg/L TSS biomass / mg/L COD substrate).  

The biomass yield was calculated using the “time frame” already mentioned in section 

3.2.1.2.2, and the Figures are found in Appendix G, part G2.  

 
3.3 Conclusions 

The preliminary experiments were investigated under aerobic environment using 

the orbital shaker bed which showed us that the tap water could be used in future 

experiments, even though we experienced a low specific growth rate of 0.0183/hr.  Our 

interest in this part was to verify that this microbe would grow well in 1,000 mg/L using 

the orbital shaker bed, but it did not appear to be the case, because the 500 mg/L glucose 

concentration showed a higher specific growth rate of 0.438/hr than for 1,000 mg/L 

glucose concentration with a specific growth rate of 0.0183/hr.   The next important 

experiments were to investigate this yeast growth in the two-liter Bioflo® 2000 

fermentors (New Brunswick Scientific).   

From Table 3.2.4 the 1,000 mg/L glucose media had the highest specific growth 

rate of 0.1076/hr under the aerobic environment, which was not expected to be so low, 

compared to Banat et al (1995).  They found that Kluyveromyces marxianus had a 

specific growth rate ranging from 0.58 to 0.63 (hr-1) for 10,000 mg/L glucose media at 

45oC, under aerobic conditions.  The other specific growth rates from Table 3.2.4 were 

expected to have lower values than the 1,000 mg/L glucose concentration.  From Table 

3.2.5 the µmax for the Hanes plot was 0.159 (hr-1) which was higher than the Lineweaver-
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Burk plot, which was expected because when ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
µ
1  and ⎟

⎠
⎞

⎜
⎝
⎛

S
1  was plotted for the 

Lineweaver-Burk method, the small substrate concentration was further on the regression 

axis affecting the slope.  A higher µmax estimate was still expected for this yeast under 

aerobic conditions, such as 0.93 hr-1 from Fleming et al. (1993) research.  Further 

research should examine kinetic parameters studies with different substrate concentration 

range and temperature range, such as 35oC, 40oC and 50oC under aerobic conditions.  

Even though Banat et al. (1992) studied this yeast under anaerobic conditions, they also 

still showed higher specific growth rates from 0.49 to 0.53 (hr-1) at 48oC.  According to 

Doran (1997), another problem may have been oxygen limitations where dissolved-

oxygen (DO) concentrations at every point in the fermenter would need to be above the 

critical oxygen concentration, because glucose is generally consumed more rapidly than 

other sugars or carbon-containing substrates and the rates of oxygen demand are higher 

when glucose is used.  The nonlinear method fit the Lee equation (1992), which was not a 

success because the data set measured from the laboratory experiments had many errors.  

Thus, further work was done to learn how well these nonlinear and linear methods could 

fit and give reasonable kinetic parameter results from a generated data set.  This problem 

was investigated and discussed in Chapter 4.  

Under anaerobic conditions the yeast strain showed lower specific growth rate 

results than for the aerobic conditions, which were expected.  From Table 3.2.7 the 

highest specific growth rate value of 0.149 hr-1 was for the 200 mg/L glucose 

concentration, and the lowest value of 0.0022 hr-1 was for the 7,500 mg/L glucose 

concentration, which did not reach a specific growth rate of 0.09 to 0.14 hr-1 using 10,000 

mg/L initial substrate concentration at 45oC, according to Banat et al. (1995) research.  
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Higher specific growth rates for higher initial substrate concentrations were expected but 

these experiments showed the opposite.  The best R2 coefficient was 0.97 for 15,000 

mg/L initial substrate concentration with a specific growth rate of 0.005 hr-1.  The 

regression coefficient for the four experiments ranged from 0.77 to 0.97 which represent 

a reasonable and acceptable regression fitting of the data sets.  The R2 for the 7,500 mg/L 

initial substrate concentration was 0.95 showing a very reasonable regression fit of the 

data set with the lowest specific growth rate of 0.0022 hr-1.  Something was truly 

happening with either the media or the environment affecting the microbial growth under 

anaerobic conditions.         

For the first three experiments our yeast strain was not capable of sustain growth 

under anaerobic conditions for more than 20 hours (Figures 3.2.18, 3.2.20, and 3.2.22), 

and for the fourth experiment the growth started after 40 hours and continued until 100 

hours (Figure 3.2.24).  When the overall conversion of glucose to ethanol stoichiometric 

equation was applied, the theoretical yield of ethanol for 5,000 mg/L was 2,556 mg/L, for 

7,500mg/L was 3,833 mg/L, and for 15,000 mg/L was 7,665 mg/L.  Unfortunately this 

yeast strain showed a low ethanol tolerance during growth (Figure 3.2.34).   

The use of the thermotolerant yeast strain Kluyveromyces marxianus has been 

proposed as a method of improving the efficiency of fuel ethanol production from 

biomass, with the ability to operate at elevated temperatures (Hack et al. 1998).  Even 

though this yeast strain had low biomass formation and small maximum specific growth 

rates ethanol was still formed under anaerobic conditions.  According to Hack et al. 

(1998), batch fermentation was not viable for an industrial process using the K. 

marxianus strain because the initial substrate concentration would be limited by the 
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osmotolerance and the low ethanol tolerance by the yeast strain.  According to Qureshi 

and Manderson (1994), they proved that using a simple continuous process with K. 

marxianus strain was also rejected due to the incapacity of the strain to sustain growth 

under anaerobic conditions.  Therefore, future studies using this yeast strain should be 

applied to a continuous process, where the biomass could be retained in the fermenter by 

either recycling the biomass or immobilizing the biomass which would result in a higher 

cell concentration and improve ethanol productivity (Hack et al. 1998).  This yeast strain 

could also be applied to a two-stage fermenters in series with first an aerobic condition 

allowing a continuous generation of biomass, and subsequently, expose the cells to an 

anaerobic fermentative condition to maximize ethanol production.  According to Banat et 

al. (1996), they achieved a high biomass concentration of 10 g/L with ethanol levels up to 

4.3% (v/v) using the two fermenters in a series (aerobic-anaerobic) with 150 g/L initial 

substrate concentration at 40oC.   

In conclusion, many opportunities exist for improvement of the ethanol 

fermentation process for the industry and also to create new, innovative, and efficient 

technologies to advance research for any fermentation process.       
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CHAPTER 4 
 

BIOLOGICAL GROWTH KINETIC PARAMETER 
DETERMINATION ANALYSIS USING MONTE CARLO 

SIMULATIONS 
 
 
4.1 Introduction 

 
Biological engineers have been using the Monod model equation to design 

aerobic or anaerobic biological reactors/fermentors for environmental and 

biotechnological purposes.  The Monod model equation is similar to the Langmuir-

Hinshelwood and Hougen-Watson equations for traditional chemical kinetics.  It is also 

similar the Michaelis-Menten kinetics equation for enzyme reactions that accounts for 

microbial growth in most environmental conditions.     

( )
( )tS

t

SK
S

+
=

*maxµµ         (4.1.1) 

where: 

µ = Specific growth rate, time-1; 

µmax = Maximum specific growth rate when S>>Ks; 

tS = Substrate, mg/L; 

Ks = Saturation constant or half-velocity constant, mg/L.   

Where Ks = S, when µ = (1/2)*(µmax).  

 

In biological engineering, to perform a reactor design it is necessary to find the 

specific Monod model kinetic parameters for the microorganism of interest.  These 

specific growth kinetic parameters for any microbe are found by performing a mass 

balance around the biological reactor with respect to biomass ( bX ). 
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where: 

µ = Specific growth rate, time-1; 

b = Decay constant, time-1;  

bX  = Biomass concentration, mg/L; 

  

 This equation (4.1.2) is only applied to the exponential growth phase or 

logarithmic growth phase, so the decay constant (b) is assumed to be negligible and the 

estimate is the maximum specific growth rate.  The Monod model is substituted into the 

mass balance equation with respect to biomass, yielding: 
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                          (4.1.3) 

 

 The biomass yield, by definition, is the rate of biomass formation over the rate of 

substrate utilization during the exponential growth phase of the microorganism, which is 

the cell mass yield as a function of the limiting nutrient.  
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where: 

bY  = (mg/L of bX / mg/L of S). 

  

 Equation (4.1.3) is then integrated and the biomass yield equation (4.1.4) is 

substituted, yielding the Lee equation (Lee, 1992).  
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This equation (4.1.5) is also known as the logistic equation. It is a nonlinear equation 

that produces a sigmoidal-shaped batch curve during the exponential growth phase 

describing the change in biomass and substrate concentrations with respect to time.  This 

equation is used by many biological engineers and biologists to determine the growth 

kinetic parameters ( SK and maxµ ) of a microbe.  

A second nonlinear equation developed by Shuler and Kargi (1992), who used the 

same background as the Lee equation to elaborate the following sigmoidal-shaped batch 

growth curve.  This curve gives an implicit solution for biomass concentration while the 

Lee equation gives an implicit solution for biomass and substrate concentrations.   
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A third nonlinear equation was developed by Robinson (1985), who used the 

following equation (4.1.7) that describes the rate at which substrate is consumed in a 

batch system.  
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The biomass concentration ( btX ) in this equation (4.1.7) is replaced by the 

biomass derived from the biomass yield equation (4.1.4).  Following integration, the 

implicit nonlinear equation is obtained:  
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The Robinson equation (4.1.8) gives an implicit solution for substrate concentration 

change over time. 

Although equations 4.1.5, 4.1.6, and 4.1.8 can all be used to estimate growth kinetic 

parameters, they do not always converge on reasonable estimates for non-perfect data 

sets from laboratory experiments.  Further, it is not possible to know if good parameter 

estimates have been produced when the equations do converge.   

In addition to the nonlinear methods, linear methods have been utilized to find the 

kinetic parameter estimates for many microbes. One linear method was developed by 

dividing the Monod model by one, yielding the Lineweaver-Burk model.  A second 

linearized method was developed by multiplying the inverted Monod model by substrate 

concentration, yielding the Hanes model.  

The following equation shows the Lineweaver-Burk model: 
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The next equation shows the Hanes model: 
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Both linearized methods provide estimates for Ks and maxµ , but it is uncertain how 

well these models perform in comparison to the nonlinear models.  It is also uncertain 

how the nonlinear methods compare in relation to each other.  The objective of this 

research is to investigate the performance of these models and to determine which of the 

models provides the more accurate and reliable estimates.   

The “Markov Chain Monte Carlo” method, also known as “MCMC” is used 

extensively to simulate data and can be employed to test the fit of complex equations.  It 

originated in physics where the desired integrals for hydrodynamics in complicated 

geometries with internal heating were not easily determined 

(http://cscs.umich.edu/~crshalizi/notebooks/monte-carlo.html).  The well-recognized 

nonlinear and linear equations previously discussed were tested with the Monte Carlo 

method to determine which performed best.    

    
4.2 Materials and Methods 

The Monte Carlo method is a numerical method that can be described as a 

statistical simulation method.  A statistical simulation is defined in general terms to be 

any method that utilizes sequences of random numbers to perform the simulation.  It is a 

method where the properties of the distribution of the response variables are investigated 

through the use of simulated random numbers.  Simulated numerical quantities that are 

difficult or impossible to compute by purely analytic means may be determined by using 

Monte Carlo simulation to quickly identify promising statistical methods 

(http://csep1.phy.ornl.gov/mc/node1.html).  
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The Monte Carlo simulation samples from differential equations, which 

necessitate a fast and effective way to generate normally-distributed random numbers, 

utilize random sampling techniques to arrive at a solution of the physical problem.   

The basic approach of the Monte Carlo technique was to generate a data set from 

given initial conditions and to simulate the growth curve once the data set was generated.  

Then, the best fit of the nonlinear and linear equations was determined.  The Monte Carlo 

technique is only as good as the simulation.     

 
4.2.1 Data Generation  

The SAS® (Statistical Analysis Software) program was used to perform these studies.  

The values of the parameter Ks was set equal to 50 mg/L, and the parameter maxµ was set 

to 0.6 hr-1.  A normally distributed standard error of 10% was applied to both kinetic 

parameters ( maxµ  and Ks) in each iteration.  The Ks and maxµ  10% standard errors were 

intended to represent the biological variability of the microorganism over time, and 

insure that no two growth curves were exactly alike.   

The initial conditions to start the data generation were as follows: the initial biomass 

concentration ( boX ) was 0.5 mg/L and the biomass yield ( xbY ) was 0.5.  Thirteen levels of 

substrates were generated, from 200 mg/L to 1000 mg/L by levels of 50 mg/L.  The time 

frame generated was from 0 to 20 hours by 0.001 hours intervals.  The generation of data 

stopped if either the change in biomass fell below zero or the substrate level fell to 1.0 

mg/L.  The total number of simulated microbial growth curves generated was 5,000 

replicates of the 13 levels of substrate concentrations examined for total of 85,000.     

A stochastic process is a sequence of states whose evolution is determined by 

random events.  A Monte Carlo method is one that involves deliberate use of random 
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numbers in a calculation that has a stochastic structure (a stochastic model is the opposite 

of a deterministic model, where this deterministic model has all the mathematical 

relationships of fixed elements) (Despa, 1999).  In addition to the two stochastic variables 

previously mentioned (the 10% normally distributed standard errors for Ks and maxµ ) this 

study included a third term to simulate stochastic variation in the sampling.  The 

biological process was modeled at intervals of 0.001 hour, but the “sampled” data set was 

output at integer, hourly intervals.  Although the time frame was simulated from 0 to 20 

hours, the simulation was stopped when either the change in biomass reached zero or the 

substrate level was reduced to 1.0 mg/L.   

An additional stochastic variation of 1% of the total biomass was added to these 

hourly sampling values.  Due to the biomass yield definition which connects substrate 

and biomass, the standard error term given to biomass also affects the substrate.   

Equations 4.1.11 and 4.1.12 show the equations used to create the stochastic 

variables with a normally distributed standard error.  Where the function RAND is equal 

to a normally distributed random variate with mean 0 and variance 1, the equations are:   

)*10.0(* sss MEANkRANDMEANkK +=      (4.1.11) 

)*10.0(* maxmaxmax µµµ MEANRANDMEAN +=    (4.1.12) 

 
4.2.2 Data Simulation 

The goal was to simulate a microorganism’s growth behavior through a logistic 

growth pattern under aerobic conditions.  To do so, the mass balance around the reactor 

with respect to biomass was used with the Monod model substituted into the equation.  

The change in substrate over the change in biomass equals the inverse of biomass yield.  
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The equations 4.1.13 and 4.1.14, given below were coded in SAS to simulate the data sets 

for biomass produced over time and substrate utilized over time.      

( )
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SubstrateTdBiomassT

s

***max
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The “hourly” output observations included the following variables: time, SubstrateT, 

BiomassT, Yxb, dBiomassT, dSubstrateT, rep, SubstrateINIT, ks, and umax.  Plots of 

BiomassT versus time, SubstrateT versus time and BiomassT versus SubstrateT were 

developed from this data set.   

 
4.2.3 Monte Carlo Fitting the Models 

The nonlinear and linear models were fit to the hourly output data set.  The objective 

was to determine how well these models could estimate the kinetic parameters Ks 

and maxµ for an aerobic fermentor.  The nonlinear simulations used the entire available 

time frame to estimate the kinetic parameters. In laboratory experiments frequently only 

the first four hours, the exponential growth phase, are employed for fitting the kinetic 

parameter estimates of the bacteria or yeast cells.  Microorganisms often grow very 

rapidly and then quickly decay, causing a potential problem if the whole time frame is 

used to determine the kinetic parameters from a laboratory experiment.  In order to 

consider this aspect of the model we fit varying time segments to the linear equations.   
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4.2.3.1 Nonlinear Method 

The parameters of the Lee (4.1.5), Shuler & Kargi (4.1.6), and Robinson (4.1.8) 

equations were estimated using ‘proc model’ from SAS software.  The Lee equation was 

coded in the SAS program for biomass and substrate changing over time.  The Shuler & 

Kargi equation with biomass changing over time, and the Robinson equation with 

substrate changing over time, were both coded in the SAS program.  

For each of the three nonlinear equations, two types of initial substrate and biomass 

conditions were studied.  They were referred to as “fixed” and “fitted” values.  The fixed 

condition occurs when the initial values of substrate and biomass (at time = 0) were set to 

a constant intercept value.  The fixed values were the known initial substrate 

concentrations (200 to 1,000 mg/L by 50) and biomass equal to 0.5 mg/L.  The use of 

fixed values assumes that the intercepts (initial substrate and biomass concentrations) are 

known.  The alternative is to fit the intercepts.  For the fitted option initial conditions 

were provided, but the values for initial substrate and biomass are reevaluated while the 

other parameters are estimated.  The initial conditions provided were for the substrate 

concentration of 600 mg/L and biomass concentration of 0.5 mg/L.   

 When fitting nonlinear models the usual procedure is to provide starting values for 

the parameters being estimated.  When reasonable starting values are available it is 

advisable to provide these values.  If starting values are not known, SAS can provide 

starting values.  Since in practice starting values for the kinetic parameters are often not 

known, the SAS models were fitted for both cases, starting values specified and starting 

values omitted.   The parameters fitted were the two kinetic parameter values of primary 

interest (Ks and maxµ ) and the two intercepts (initial substrate and initial biomass).     
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Table 4.2.1 shows the twelve combinations (three nonlinear models * two initial 

substrate and biomass conditions * two initial starting values (kinetic parameters) 

conditions) used for evaluation.   

 
Table 4.2.1 The Twelve Combinations for the Nonlinear Method. 

Lee Equation Shuler & Kargi Equation Robinson Equation 
Fitted Fixed Fitted Fixed Fitted Fixed 

Starting 
values 
given 

Starting 
values 

not 
given 

Starting 
values 
given 

Starting 
values 

not 
given 

Starting 
values 
given 

Starting 
values 

not 
given 

Starting 
values 
given 

Starting 
values 

not 
given 

Starting 
values 
given 

Starting 
values 

not 
given 

Starting 
values 
given 

Starting 
values 

not 
given 

 

The Monte Carlo generated data was fitted to the nonlinear models.  Information 

about the fit was written to a permanent output file. This file contained the following 

variables: case being studied (table 4.2.1), initial biomass (t=0), initial substrate (t=0), 

observations number (N), Convergence Status, ks estimate, mu estimate, and replicate 

number.  The permanent output file was further subset into two files, one with 

information on successful nonlinear fits and one with fits classified as “errors”.  Fits were 

classified with errors under the following conditions: the SAS reported convergence 

status was ‘3 error’, Ks estimated was less then zero, Ks was greater than 1,000, maxµ  

less than zero, the initial substrate estimate was less than zero, and the initial substrate 

estimate was greater than 10,000.   

 
4.2.3.2 Linear Method 

The two linear equations were fit using the ‘proc reg’ function from SAS software, 

the Hanes plot and the Lineweaver-Burk plot models.   

In order to examine the necessity of fitting the exponential phase alone the time was 

divided into four ‘time frames’.  These were “Whole” (from 0 hours to 20 hours), 
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“Exponential 1” (from 0 hours to 4 hours), “Exponential 2” (from 5 hours to 8 hours), 

and “Stationary” (from 8 hours to 20 hours). 

The linear models are normally fit across various levels of substrate, in practice 

usually a wide range of substrates.  To examine the effectiveness of this approach the 

substrate concentrations were divided into five categories.  These were “Whole” (all 

available values from 200 to 1,000 by 50), “Selected” (five widely spaces values from 

200 to 1,000 by 200), “High” (from 800 to 1,000 by 50), “Medium (from 500 to 700 by 

50), and “Low (from 200 to 400 by 50).  Table 4.2.2 shows the combinations elaborated 

for each linear equation.  The first set had 10 combinations (two linear models * one time 

frame * five substrate concentrations), the second set had 12 combinations (two linear 

models * three time frames * two substrate concentrations). 

Table 4.2.2 The Combinations for the Linear Methods.  
Hanes Equation and Lineweaver-Burk Equation 

‘Time frame’: Whole (0-20 hrs) 

Substrate Concentration 

Whole Selected High Medium Low 
 

‘Time frame’: Exponential 1 (0-4 hrs) 

Substrate Concentration 

Whole Selected 
 

‘Time frame’: Exponential 2 (5-8 hrs) 

Substrate Concentration 

Whole Selected 
 

‘Time frame’: Stationary (9-20 hrs) 

Substrate Concentration 

Whole Selected 
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There were a total of 22 cases examined for the linear models.  For each case in the 

linear equations the substrate concentrations were averaged over each ‘time frame’ and 

the averaged substrates were used to calculate the specific growth rate.  The Hanes and 

Lineweaver-Burk equations were output into one permanent file.  The permanent file 

contained the variables data set (Hanes and Lineweaver-Burk) cases, and the estimated 

values for MuMax and Ks.  The SAS code for this entire research is available in 

Appendix I.   

 
4.3 Results and Discussion 

This preliminary analysis was run on 5,000 replicates.  

4.3.1 Results from the Data Generation and Simulation 

Figures 4.3.1, 4.3.2, and 4.3.4 represent the biomass formation versus time for each 

substrate respective category (High, Medium and Low), generated by the SAS software.       
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Figure 4.3.1 Biomass (mg/L) for the high substrate concentration versus time.  
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Figure 4.3.2 Biomass (mg/L) for the medium substrate concentration versus time.                                 
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Figure 4.3.3 Biomass (mg/L) for the low substrate concentration versus time.  
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Figures 4.3.4, 4.3.5, and 4.3.6 represent the substrate concentrations (high, 

medium, and low) versus time, generated by the SAS software.  
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Figure 4.3.4 The high substrate concentration (mg/L) versus time.  
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Figure 4.3.5 The medium substrate concentration (mg/L) versus time.  
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Figure 4.3.6 The low substrate concentration (mg/L) versus time.  
 
 
 

 

The simulations for each substrate and biomass concentration were separated into a 

low group (200 to 450 mg/L), a medium group (500 to 700 mg/L), and a high group (750 

to 1,000 mg/L).  The figures showed that the biomass simulation was generated over time 

for each substrate group, and that the simulated substrate was utilized. Although the time 

period for the simulation was set to 20 hours, the simulation was stopped when the 

change in biomass reached zero or the substrate level was reduced to 1 mg/L.  As a result 

the biomass was generally generated and the substrate was nearly fully utilized within 13 

hours.  The substrate concentrations were limiting the cell growth after 12 hours.  These 

figures showed that the microorganism was growing quickly until the substrate 

concentrations became depleted.  According to the Banat et. al. (1996), Kluyveromyces 

marxianus yeast strain grows exponentially under anaerobic conditions for 10 hours.  

Therefore, under aerobic conditions the time period simulated of 12 hours was expected.   
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4.3.2 Results for the Nonlinear Models 

The nonlinear models were fit to 5,000 replicates of each of seventeen different 

substrate concentrations. This produced 85,000 generated growth curves which were then 

fitted with each model.  

Table 4.3.1 shows the means of the estimated for growth kinetic parameters for each 

of the twelve combinations with errors excluded from this output (exclusion criteria given 

in 4.2.3.1).  The percentage differences were calculated for each mean of Ks and maxµ .   

The % Difference for Mean Ks 

( ) %100*
50

50
⎟
⎠
⎞

⎜
⎝
⎛ −sMeanK        (4.1.15) 

The % Difference for Mean Mu 

( ) %100*
6.0

6.0
⎟
⎠
⎞

⎜
⎝
⎛ −MeanMu        (4.1.16) 

Table 4.3.1 The Nonlinear Models Outputs for Ks and maxµ without errors.  

Dataset Substrate Category Frequency 
Mean 

Ks 

% 
Difference 
for Mean 

Ks 
Mean 
Mu 

% 
Difference 
for Mean 

Mu 
Shuler-fitted-starting value 
not given Integer (200 - 1,000 by 50) 8140 35.8548 -28.2904 0.58548 -2.42 
Shuler-fitted-starting value 
given Integer (200 - 1,000 by 50) 62917 56.6051 13.2102 0.60012 0.02 
Shuler-fixed-starting value 
not given Integer (200 - 1,000 by 50) 84987 50.1083 0.2166 0.60034 0.056667 

Shuler-fixed-given Integer (200 - 1,000 by 50) 84987 50.1079 0.2158 0.60034 0.056667 
Lee-fitted-starting value 
given Integer (200 - 1,000 by 50) 84999 49.449 -1.102 0.59925 -0.125 
Lee-fitted-staring value not 
given Integer (200 - 1,000 by 50) 84999 49.4486 -1.1028 0.59925 -0.125 
Lee-fixed-staring value 
given Integer (200 - 1,000 by 50) 84993 49.4576 -1.0848 0.59929 -0.11833 
Lee-fixed-staring value not 
given Integer (200 - 1,000 by 50) 84993 49.4576 -1.0848 0.59929 -0.11833 
Robinson-fitted-staring 
value given Integer (200 - 1,000 by 50) 5000 49.5424 -0.9152 0.59906 -0.15667 
Robinson- fitted-staring 
value not given Integer (200 - 1,000 by 50) 35018 49.6632 -0.6736 0.59938 -0.10333 
Robinson-fixed- staring 
value given Integer (200 - 1,000 by 50) 85000 49.7809 -0.4382 0.59957 -0.07167 
Robinson-fixed- staring 
value not given Integer (200 - 1,000 by 50) 85000 49.7809 -0.4382 0.59957 -0.07167 
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Table 4.3.2 shows the means of the growth kinetic parameters which were output to 

the error file.  This output was determined by setting a large range of unacceptable values 

calculated from the nonlinear models.  The percentage difference for each mean was 

calculated using the equations 4.1.15 and 4.1.16. 

 
Table 4.3.2 The Nonlinear Models Output for Ks and maxµ with errors.  

Dataset Substrate Category Frequency Mean Ks 

% 
Difference 
for Mean 

Ks 
Mean 
Mu 

% 
Difference 
for Mean 

Mu 
Shuler-fitted-starting value 
not given Integer (200 - 1,000 by 50) 76860 6.86E+72 1.37158E+73 -5.94E+28 -9.9E+30
Shuler- fitted-starting value 
given Integer (200 - 1,000 by 50) 22083 418117788.6 836235477.2 32326.03 5387572
Shuler-fixed-starting value 
not given Integer (200 - 1,000 by 50) 13 -5.86 -111.72 0.55 -8.33333
Shuler-fixed-starting value 
given Integer (200 - 1,000 by 50) 13 -5.87 -111.74 0.55 -8.33333
Lee- fitted-starting value 
given Integer (200 - 1,000 by 50) 1 -0.77 -101.54 0.56 -6.66667
Lee- fitted-starting value 
not given Integer (200 - 1,000 by 50) 1 -0.23 -100.46 0.56 -6.66667
Lee-fixed-starting value 
given Integer (200 - 1,000 by 50) 7 -3.06 -106.12 0.56 -6.66667
Lee-fixed-starting value not 
given Integer (200 - 1,000 by 50) 7 -3.06 -106.12 0.56 -6.66667
Robinson-fitted-starting 
value given Integer (200 - 1,000 by 50) 20000 -101.12 -302.24 0 -100

 

From Table 4.3.1 the percent (%) difference column shows that the worst values 

acquired for Ks and maxµ were obtained from the Shuler & Kargi equation with fitted 

initial conditions and the kinetic parameters not given.  The next worse results were 

obtained by the Robinson equation with fitted initial conditions and the kinetic 

parameters given.  The ‘Shuler-fitted-starting value not given’ combination had only 

8,140 converged values that were not placed in the error output file.  The ‘Robinson-

fitted-starting value given’ combination had only 5,000 converged values that were not 

placed in the error output file.  The two best combinations with 85,000 convergences and 

with the least % difference were the Robinson model with both fixed initial conditions 

and with either given or not-given kinetic parameters.  By looking at the % difference 
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columns for the means of Ks, we could express a rank from the largest percentage 

difference to the smallest (descending order) for the datasets as follows: the Shuler 

equation with fitted initial conditions and not given the kinetic parameters, the Shuler 

equation with fitted initial conditions and given the kinetic parameters, the Robinson 

equation with fitted initial conditions and given the kinetic parameters, and the Lee 

equation with fitted initial conditions and not given the kinetic parameters.  The fifth best 

result was Lee equation with fitted initial conditions and given the kinetic parameters, 

then both Lee equations with fixed initial conditions and either given or not given the 

kinetic parameters.  The seventh best results was the Robinson equation with fitted initial 

conditions and not given the kinetic parameters, then both the Robinson equations with 

fixed initial conditions and either given or not given the kinetic parameters.  The last best 

results were the Shuler & Kargi equations with fixed initial conditions and either given or 

not given the kinetic parameters.  The best values for Ks and maxµ determined using the 

nonlinear models were, in first place, the ‘Shuler & Kargi-fixed-starting value not given’ 

and the ‘Shuler & Kargi-fixed-starting value given’ with 50.1079 mg/L for Ks and 

0.60034 hr-1 for maxµ ; and in second place were ‘Robinson-fixed-starting value not 

given’ and the ‘Robinson-fixed-starting value given with 49.7809 mg/L for Ks and 

0.59957 hr-1 maxµ ; and in third place was ‘Robinson-fitted-starting value not given’ with 

49.6632 mg/L for Ks and 0.59938 hr-1 for maxµ .  Table 4.3.2 showed that the Shuler 

equation with fitted initial conditions and not given the kinetic parameters had the highest 

% difference for the kinetic parameters, with 1.3715E+73 mg/L for Ks and -9.9E+30 hr-1 

for maxµ , and also had 76,860 unconverged replicates.  The Robinson equation with 

fitted initial conditions and given kinetic parameters had 20,000 unconverged replicates 
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with -302.24 mg/L for the percentage difference of mean Ks and -100 hr-1 for the 

percentage difference of mean maxµ , and the third worse case was the Shuler equation 

with fitted initial conditions and given kinetic parameters with 22,083 unconverged 

replicates.   

Figures 4.3.7 to 4.3.18 show the results as a histogram for the midpoints of the Ks 

parameter, for each of the nonlinear combinations.  The Ks parameters were more 

sensitive than the maxµ parameters, because each maxµ  result did not show as large a 

range as the Ks, which were quite reasonable.  The majority of the maxµ parameters ranged 

from 0.5 to 0.8 (hr-1) for the nonlinear models.  The maxµ  midpoints histograms are 

available in Appendix J.  Figures 4.3.7 to 4.3.14 have their x-axis range from 0 to 110 by 

5, Figures 4.3.15 and 4.3.16 have their x-axis range from 0 to 130 mg/L by 5 mg/L, 

Figure 4.3.17 has the x-axis range from 0 to 950 mg/L by 50 mg/L, and Figure 4.3.18 has 

the x-axis range from 0 to 280 mg/L by 20 mg/L.  The y-axis for all the figures is the 

frequency of the replications.  Most of the figures were centered at the midpoint of Ks 

(50 mg/L) and they were normally distributed.       
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Figure 4.3.7 Lee Equation-Fixed-Starting Value Given 
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Figure 4.3.8 Lee Equation-Fixed-Starting Value Not Given 
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Figure 4.3.9 Lee Equation-Fitted-Starting Value Given 
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Figure 4.3.10 Lee Equation-Fitted-Starting Value Not Given 
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Figure 4.3.11 Robinson Equation-Fixed-Starting Value Given 
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Figure 4.3.12 Robinson Equation-Fixed-Starting Value Not Given 
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Figure 4.3.13 Robinson Equation-Fitted-Starting Value Given 
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Figure 4.3.14 Robinson Equation-Fitted-Starting Value Not Given 
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Figure 4.3.15 Shuler & Kargi Equation-Fixed-Starting Value Given 
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Figure 4.3.16 Shuler & Kargi Equation-Fixed-Starting Value Not Given 
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Figure 4.3.17 Shuler & Kargi Equation-Fitted-Starting Value Given 
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Figures 4.3.7 and 4.3.8 show results for the Lee equation with fixed initial conditions 

and with either given or not given kinetic parameters.  These histograms generally show a 

normal bell shaped curve with 30,000 frequencies occurring at 50 mg/L, with a 19,000 

occurring at 45 mg/L and with a 16,000 occurring at 55 mg/L for Ks.  Figures 4.3.9 and 

4.3.10 show results for the Lee equation with fitted initial conditions and with either 

given or not given kinetic parameters.  These also have a normal bell shaped curve with 

35,000 frequencies occurring at 50 mg/L, with a 19,000 mg/L occurring at 45 mg/L and 

with a 16,000 mg/L occurring at 55 mg/L for Ks.  Figures 4.3.11 and 4.3.12 show results 

for the Robinson equation with fixed initial conditions and with either given or not given 

kinetic parameters.  Here the results indicate a narrower normal bell shaped curve with 

41,000 frequencies occurring at 50 mg/L, with an 18,000 mg/L occurring at 45 mg/L and 

with 14,000 occurring at 55 mg/L for Ks.  Figure 3.4.13 showed results for the Robinson 

equation with a narrower normal bell shaped curve with only 5,100 frequencies occurring 

at 50 mg/L, with a 2,200 frequencies occurring at 45 mg/L and with a 1,400 frequencies 

occurring at 55 mg/L for Ks.  Figure 4.3.14 showed results for the Robinson equation 

with a narrow normal bell shaped curve with a 38,000 frequencies occurring at 50 mg/L, 

with a 15,000 frequencies occurring at 45 mg/L and with an 11,000 frequencies occurring 

at 55 mg/L for Ks.  Figures 4.3.15 and 4.3.16 showed results for the Shuler and Kargi 

equation with fixed initial conditions and with either given or not given kinetic 

parameters with the broadest normal bell shaped curve with a 13,500 frequencies for Ks 

occurring at 50 mg/L, with a 13,000 frequencies occurring at 45mg/L and the rest of the 

frequencies were evenly distributed from the center for the Ks.  Figures 4.3.17 and 4.3.18 

showed results for the Shuler and Kargi equation with fitted initial conditions and with 
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either given or not given kinetic parameters with a positive skewedness where the mode 

was larger than the median and the median was larger than the mean 

(mode<median<mean) for the Ks values.  Figure 4.3.16 showed 50,000 frequencies of Ks 

occurring at 50 mg/L and 10,000 frequencies occurring between 0 and 45 mg/L and the 

rest of the values were skewed to the right reaching 750 mg/L.  Figure 4.3.18 showed 

25,000 frequencies of Ks occurring at 40 mg/L, and 21,000 frequencies of Ks occurring at 

60 mg/L, and the rest of the values drifted slowly to the right reaching 280 mg/L.  The 

means of Ks for the Shuler & Kargi equation-fitted-starting value given and not given, 

and for the Robinson equation-fitted-starting value given and not given had the highest 

unconverged values due to large outliers.  The Ks values were estimated to be outside the 

acceptable range pre-determined for Ks.          

     
4.3.3 Results for the Linear Models 

Table 4.3.3 shows the average growth kinetic parameters Ks and µmax for the Hanes 

equation for each time frame and substrate concentrations.  The percentage differences 

were calculated for each mean of the kinetic parameters using the equations 4.1.15 and 

4.1.16. 
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Table 4.3.3 The Hanes equation output for each time frame and substrate 
categories.  

Dataset Time Frame 
Substrate 
Categories 

Mean 
Ks 

% Difference for 
Mean Ks 

Mean 
Mu 

% Difference for 
Mean Mu 

Hanes 
Plot Whole (0-20 hrs) Whole 54.9496 9.8992 0.60346 0.576667 

Hanes 
Plot 

Exponential-1  
(0-4 hrs) Whole -EarlyTime 49.7636 -0.4728 0.59960 -0.06667 

Hanes 
Plot 

Exponential-2  
(5-8 hrs) Whole -MiddleTime 49.8129 -0.3742 0.59969 -0.05167 

Hanes 
Plot 

Stationary  
(9-20 hrs) Whole -LateTime 72.7130 45.426 0.61498 2.496667 

Hanes 
Plot Whole (0-20 hrs) High Substrate 54.8509 9.7018 0.60358 0.596667 

Hanes 
Plot Whole (0-20 hrs) Medium Substrate 56.6322 13.2644 0.60483 0.805 

Hanes 
Plot Whole (0-20 hrs) Low Substrate 55.4965 10.993 0.60534 0.89 

Hanes 
Plot Whole (0-20 hrs) Selected 56.3800 12.76 0.60466 0.776667 

Hanes 
Plot 

Exponential-1  
(0-4 hrs) 

Selected-
Exponential1 49.6994 -0.6012 0.59957 -0.07167 

Hanes 
Plot 

Exponential-2  
(5-8 hrs) 

Selected-
Exponential2 49.8239 -0.3522 0.59970 -0.05 

Hanes 
Plot 

Stationary 
 (9-20 hrs) Selected-Stationary 75.5466 51.0932 0.61830 3.05 

 
 

Table 4.3.4 shows the averaged growth kinetic parameters Ks and µmax for the 

Lineweaver-Burk equation with each time frame and substrate concentrations.  The 

percentage differences were calculated for each mean of the kinetic parameters using the 

equations 4.1.15 and 4.1.16. 
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Table 4.3.4 The Lineweaver-Burk equation output for each time frame and 
substrate categories.   

Dataset Time Frame 
Substrate 
Categories 

Mean 
Ks 

% Difference for 
Mean Ks 

Mean 
Mu 

% Difference for 
Mean Mu 

Lineweaver-
Burk Plot 

Whole  
(0-20 hrs) Whole 55.2161 10.4322 0.60385 0.641667 

Lineweaver-
Burk Plot 

Exponential-1 
(0-4 hrs) 

Whole -
EarlyTime 49.7231 -0.5538 0.59956 -0.07333 

Lineweaver-
Burk Plot 

Exponential-2 
(5-8 hrs) 

Whole -
MiddleTime 49.7229 -0.5542 0.59959 -0.06833 

Lineweaver-
Burk Plot 

Stationary  
(9-20 hrs) Whole -LateTime 70.9740 41.948 0.61219 2.031667 

Lineweaver-
Burk Plot 

Whole  
(0-20 hrs) High Substrate 54.9880 9.976 0.60368 0.613333 

Lineweaver-
Burk Plot 

Whole  
(0-20 hrs) Medium Substrate 56.5257 13.0514 0.60471 0.785 

Lineweaver-
Burk Plot 

Whole  
(0-20 hrs) Low Substrate 57.8664 15.7328 0.61055 1.758333 

Lineweaver-
Burk Plot 

Whole  
(0-20 hrs) Selected 56.8966 13.7932 0.60534 0.89 

Lineweaver-
Burk Plot 

Exponential-1 
(0-4 hrs) 

Selected-
Exponential1 49.6890 -0.622 0.59956 -0.07333 

Lineweaver-
Burk Plot 

Exponential-2 
(5-8 hrs) 

Selected-
Exponential2 49.7509 -0.4982 0.59962 -0.06333 

Lineweaver-
Burk Plot 

Stationary 
 (9-20 hrs) 

Selected-
Stationary 74.3277 48.6554 0.61610 2.683333 

 

Tables 4.3.3 and 4.3.4 have shown that some of the % difference values of Ks and 

µmax were negative because the parameters were underestimated by Hanes and 

Lineweaver-Burk plots, with either whole or selected substrate concentrations for the 

exponential-1 and exponential-2 time frames.  Tables 4.3.3 and 4.3.4 showed the other 

values of Ks and µmax were overestimated by Hanes and Lineweaver-Burk plots.  For 

either the Hanes or the Lineweaver-Burk equations, the highest percentage difference was 

for the selected substrate concentration during the stationary time frame (9 – 20 hours); 

with 48 – 51 % larger for Ks and 2.68 – 3.05 % larger for µmax.   

The two best kinetic estimations for Ks parameter with the smallest % difference for 

the means were the selected substrate concentrations (from 200 to 1,000 by 200) during 

the exponential-2 time period (from 5 to 8 hours) for either the Hanes or the Lineweaver-

Burk plots, and the whole substrate concentrations (from 200 to 1,000 by 50) during 

exponential-2 time period (from 5 to 8 hours) for the Hanes plot, and the whole substrate 
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concentrations (from 200 to 1,000 by 50) during exponential-1 time period (from 0 to 4 

hours) for the Lineweaver-Burk plot.   

The two best kinetic estimations for µmax parameter with the smallest % difference 

for the means were the selected substrate concentrations (from 200 to 1,000 by 200) 

during exponential-2 time period (from 5 to 8 hours) for either the Hanes or the 

Lineweaver-Burk plots, and the whole substrate concentrations (from 200 to 1,000 by 50) 

during exponential-2 time period (from 5 to 8 hours) for either the Hanes or the 

Lineweaver-Burk plots.   

Therefore, the Hanes equation estimated the best µmax of 0.5997 hr-1 and Ks of 

49.8239 mg/L with selected substrate concentration from 5 to 8 hours and the 

Lineweaver-Burk equation estimated the best µmax of 0.59962 hr-1 and Ks of 49.7509 

mg/L with selected substrate concentration from 5 to 8 hours.   

There were slightly differences between both linearization methods, but the Hanes 

plot still gave smaller % differences for the kinetic parameter means than the 

Lineweaver-Burk plot.     

 
4.3.4 Comparison between Nonlinear and Linear Models    

Tables 4.3.1, 4.3.3 and 4.3.4 show the nonlinear models and the linear models 

results, respectively.  For each kinetic parameter the means and the percentage 

differences of the means from the known values are given.   

One of the more interesting and useful aspects of the Monte Carlo approach is the 

ability to compare the performance of nonlinear and the linear models.  Table 4.3.1 

shows the nonlinear output with most of the Ks results from 50.1 to 49.4 mg/L 

(considering 35.5 and 61.3 mg/L as outliers) and µmax results from 0.604 to 0.591 hr-1.  
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Table 4.3.3 shows the linear output for the Hanes equation which varied from 56.6 to 

49.6 mg/L for Ks (considering 72.7 and 75.5 mg/L as outliers) and from 0.618 to 0.599 

for µmax.  Table 4.3.4 shows the Lineweaver-Burk equation output that varied from 57.8 

to 49.6 mg/L for Ks (considering 70.9 and 74.3 mg/L as outliers) and from 0.616 to 0.599 

hr-1 for µmax.  The overall performance of nonlinear models seemed to either estimate 

correctly estimate or to underestimate the Ks values, while the linear models seemed to 

either estimate almost correctly or overestimate the Ks values.  In general for either 

method, the µmax were estimated with more accuracy than Ks estimations, but the 

nonlinear models showed a higher accuracy and smaller overestimation of µmax than the 

linear models.  Even though, for the linear and nonlinear models time frames were not 

similar, the nonlinear models still performed with more accuracy and consistent results.       

 
4.4 Conclusions  

“Biological Engineers” encounter serious problems trying to design biological reactors 

since their design is dependent on growth kinetic parameters are determined for an 

observed microbial process.  However, important design parameters depend on how well 

the models used to determine the corresponding kinetic parameters perform.  The main 

reason for this study was to determine which nonlinear and linear models gave the best 

solutions to this very important aspect of reactor design.   

The determination of growth kinetic parameter estimates can cause research problems 

when data from real laboratory experiments are used to determine those kinetic 

parameters.  Due to random variability, sampling errors and microbial growth variations, 

reasonable kinetic parameter values were not always estimated accurately using either 

nonlinear or linear models.  Mathematical modeling from Monte Carlo simulations 
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provides the ability to evaluate the current modeling methodologies used to determine the 

growth kinetic parameters.   

All simulations were done in SAS software using differential equations to generate data 

sets with simulated substrate values from 200 to 1,000 mg/L and a simulated biomass of 

0 to 500 mg/L.  The time frame was generated from 0 up to 20 hours, though the program 

output time frame from 0 to 12 hours for biomass formation and substrate utilization.  

Under these conditions, literature has shown that microorganisms grow rapidly (mainly 

bacteria and yeast cells) between 0 to 8 hours achieving exponential growth phase, and 

by 10 hours the microorganisms would have achieved stationary phase (Banat et. al. 

1996).  According to Saigal (1994), several yeast cells were evaluated growing 

exponentially between 0 to 9 hours, and also according to Hack et al. (1998), the yeast 

cells grew exponentially from 0 to 7 hours.  Thus, the time frame from 0 to 12 hours 

appears to be a reasonable time period to assume that the simulated microorganisms were 

growing exponentially.  The best nonlinear models results, which used the ‘whole’ 

substrate concentrations without failures, were the Robinson equations with fixed initial 

conditions and with either the starting value given or not-given.  The next-best nonlinear 

models results, with one failure, were the Lee equations with fitted initial conditions and 

with either the starting value given or not-given.  The most contradictory were the Shuler 

& Kargi equations with fixed initial conditions and with either the starting value given or 

not-given.  Even with thirteen failures, it had the smallest percentage difference for either 

kinetic parameter means (0.215% for Ks and 0.056% for maxµ ), the best estimations of Ks 

and maxµ .  However, this was interesting because the Shuler & Kargi equation gives an 

implicit solution for biomass concentration, and in real laboratory experiments, the 
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biomass concentrations are the hardest measurement to determine with accuracy and 

precision, as was noted with Pythium Irregulare (Zhu 2002).   

The ‘fixed’ condition, where the initial substrate and biomass concentrations were set 

to known values, had the fewest failures and the best estimates, presumably because the 

models were not required to estimate the initial conditions for substrate.  The ‘fixed’ 

condition differed from the ‘fitted’ condition in that it gave better parameter estimations 

for all the models.  In most cases it made little difference whether the initial kinetic 

parameters were provided to initialize the simulation or not.  The simulation was 

generally accurate with either choice. However, the Shuler & Kargi and Robinson 

equations gave good estimates for Ks and µmax only with fixed initial conditions.  Overall, 

the Lee equation gave the best estimates of Ks and µmax with the most reliable results with 

any of the four combinations.  

The ‘best estimations’ for the linear models, as judged by the percent differences, were 

obtained by the Hanes equation at the ‘exponential 2’ time frame (from 5 to 8 hours), 

with selected substrate (from 200 to 1,000 by 200 mg/L) and with the whole substrate 

concentrations (from 200 to 1,000 by 50 mg/L).  The Lineweaver-Burk equation had the 

best estimations at ‘exponential 2’ time frame, with selected substrate concentrations, and 

at the ‘exponential 1’ time frame (from 0 to 4 hours) with the whole substrate 

concentrations (from 200 to 1,000 by 50 mg/L).  Among the linear models Hanes 

equation produced the best kinetic parameter estimations with the least percentage 

difference for both kinetic parameters (0.352% for Ks and 0.05% for maxµ ).  The Hanes 

equation was expected to yield a better estimate than the Lineweaver-Burk equation 

because the Lineweaver-Burk equation uses the smallest substrate concentration to 
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determine the slope ⎟⎟
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.  This affects the slope determination greatly due to the fact that it is 

hardest to measure biomass concentrations at the smaller substrate concentration.  

According to Robinson (1985), the Lineweaver-Burk expression should simply be 

abandoned and the Hanes equation should be adopted.  

The linear models are based on the nonlinear models; therefore the linearized forms 

should be relied on for instructive purposes and to provide initial parameter estimates for 

the nonlinear models.  The linear versions are not as statistically reliable as their 

nonlinear forms.  

 
4.5 Future Recommendations 

(1) Larger standard errors for Ks and maxµ  should be investigated with greater 

percentages of the coefficients, such as 20% or even 25%.   

(2) The standard errors for biomass and substrate should be investigated with 

different percentage coefficients, such as 2%, 3% or even 5%.   

(3) The microorganism decay constant could be incorporated to the nonlinear 

models and investigated.  

(4) Investigation is needed of different substrate ranges, higher than those 

examined here.  

(5) Investigation is needed of alternate exclusion terms and ranges for the errors 

calculated from those used for the nonlinear models.  
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(6) Investigation is needed of the replicates that failed to converge or that were 

excluded as failures for other reasons.  This study examined only the failure 

rate and not the reasons for failure.  

In conclusion, the Monte Carlo technique shows much promise for evaluation of the 

important linear and nonlinear tools used by engineers.  Further studies and analyses 

relating to fitting nonlinear and linearized models to determine the growth kinetic 

parameters should be conducted.      
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CHAPTER 5 
 

SUMMARY AND CONCLUSIONS 
 
 

Since 1972, with the increase of the cost of oil and the possibility of shortages in 

oil supplies, extensive evaluations of alternative technologies have been pursued for 

production of liquid fuels such as bio-ethanol.  The main objectives of this research were 

to determine the growth kinetic parameters (Ks and µmax) of a thermotolerant yeast strain 

called Kluyveromyces marxianus under aerobic and anaerobic conditions, using different 

concentrations of glucose medium (Anderson et al. 1986), and at optimum temperature of 

45oC; to quantify the ethanol production under anaerobic condition from a batch process; 

and to fit and evaluate the nonlinear and linear models used in the biological growth 

kinetic parameter determination analysis using Monte Carlo simulation method. 

A maximum ethanol production of 70 mg/L from 5,000 mg/L glucose fermenter 

was achieved with a maximum specific growth rate of 0.0051 (hr-1).  Even though 

Kluyveromyces marxianus did not show much growth throughout the fermentation trails 

ethanol was formed and recovered.  There are many articles that have researched ethanol 

production from this thermotolerant yeast strain, which have shown high ethanol 

production at high temperature (45oC) and high substrate concentrations (150 g/L).  

Further studies are recommended using this yeast strain in other processes besides batch 

process, such as in continuous saccharification and fermentation processes.   

The nonlinear and linear equations used to calculate the growth kinetic parameters 

were unable to give realistic results from the experimental data set due to unreliability 

and inconsistency often associated with biological data.  Therefore, the model equations 
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were investigated for convergence properties from a realistic data set using the Monte 

Carlo simulation method.  The Monte Carlo simulation method was used to generate a 

realistic data set and simulate the data set using four combinations for three nonlinear 

models, and using eleven combinations for two linear models.  The nonlinear models had 

the better estimation values for Ks and µmax than did the linear models.  The nonlinear 

models required initial estimates of the parameters and was an iterative or recursive 

technique in which the initial parameter estimates were sequentially improved until the 

“best” estimates (for example, those that minimize differences between the observed and 

predicted values of the dependent variable) were calculated (Robinson 1985).  But the 

linear models have several limitations because they transform data sets and fit them into a 

linearized version of a nonlinear model; therefore, linear models tend to transform the 

magnitudes or types of measurement errors associated with the data sets, and the 

assumption of normally distributed measurement errors may be violated when the data 

sets are transformed and fitted to a linearized model of a nonlinear model (Robinson 

1985).   

The most interesting discoveries were that our time frame was generated from 0 

and stopped around 12 hours to form biomass while substrate was being used; that the 

Shuler & Kargi equation with fixed initial conditions and with either given or not-given 

kinetic parameters estimated the best values for Ks and µmax with the lowest percentage 

difference, such as 0.00215% for Ks mean and 0.000567% for µmax mean.  The “best” 

kinetic parameter estimations were expected from the Lee equation.  Another interesting 

discovery was to see that the Robinson equation with fixed initial conditions and with 

either given or not-given kinetic parameters did not generate any failures, even though 
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this equation is a permutation of the Lee equation, with only the substrate changing.  As 

the Robinson equation has an implicit solution for the substrate concentration, 

eliminating the effects of biomass measurement errors, it can have a smooth-fitting result 

without failures. 

  The main conclusion is that this research has opened the door for further studies 

and investigations by other researchers interested in fermentation and model evaluations.  

Many more investigations should be conducted with respect to the nonlinear models, 

such as to add the decay constant for the microorganism, to evaluate the error terms at 

smaller ranges for failure, and to investigate a larger replication size.  

As a final recommendation, future studies should focus on the Kluyveromyces 

marxianus yeast strain with different substrate concentrations and different biological 

processes, such as in continuous two-stage fermentation processes.  Also, ethanol 

production may be improved for this yeast strain by minimizing the ethanol inhibition 

present during its exponential growth phase.       
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APPENDIX A 
 

SWEET POTATO WASTE PRELIMINARY EXPERIMENT 
 

The determination of biomass and substrate concentrations using Sweet Potato 

Waste media for the Kluyveromyces marxianus yeast strain under anaerobic condition 

using the three Two-Liter Bioflo® 2000 Fermentors (New Brunswick Scientific). 

 

A.1 Introduction 

Fermentation is the oxidation/reduction of organic compounds that takes place in 

the absence of external electron acceptors.  In fermentation, internally balanced oxidation 

reactions occur, in which the oxidation of the original compound is coupled to the 

reduction of an organic compound produced in catabolism.  We have used a high 

temperature tolerant yeast strain called Kluyveromyces marxianus.      

The overall reaction for fermentation of organic compounds by yeast is as follows;  

Organic       Glucose        2 Pyruvate        2 Acetaldehyde + 2 CO2         2Ethanol + 2CO2 

 
A.2 Procedure 

a. Moisture content was determined: Mw = 100*(Mw/Mt) = 20% dry basis. 

b. 3 L glass beakers were used as reactors with hot plates and stirs motors during 10 

hours to allow the sweet potato hydrolyze.  

c. Sweet Potato was blended (500g/L dry basis) was heated up to 35-40°C for 3 

hours and cellulase enzymes were added to speed up the hydrolysis process.  

Then, the sweet potato was heated up to 65-70°C during 4 hours and amylase 

enzymes were added to speed up the starch hydrolysis.  The enzymes were added 

to convert the complex sugars (cellulose and starches) into simple sugars 

(glucose) in a short time period.   



 120

d. The particulate substrates were filtered through a long process to achieve a 

soluble substrate (S.P.Media).  The first filtration step was to separate the largest 

particles through straining the media and then using cottons fibers into a funnel to 

separate smaller particles.  The second step was to pass the left media through a 

0.2 um filtration apparatus.  The process was long and time consuming because 

many different particles sizes were going through the same 0.2 um filter. 

e. The Total reducing sugars of sweet potato media starting with is 18 g/L. 

f. Three Two-Liter Bioflo® 2000 Fermentors were autoclaved making a sterile 

environment for the media and yeast.        

g. Three Two-Liter Bioflo® 2000 Fermentors were filled with the non-sterile Sweet 

Potato Media. 

h. The reactors will be set as follows: Reactor #1 at 40°C, Reactor #2 at 45°C, and 

Reactor #3 at 50°C. 

i. Yeast has been prepared using aseptic technique, and the pre-culture yeast has 

been growing in four 250 mL flasks with 100 mL glucose media (Marchant et al.).   

j. Each four (250mL) flasks were placed in the “Orbital Shaker Bed” at 35C, 

120rpm for 24 hours.     

 

A.3 Materials and Methods 

The entire procedure used to make the sweet potato media is found in Chapter 3 at 

the ‘Materials and Methods’ part.  The following analytical techniques were conducted 

such as TSS, OD, soluble and total COD, and TRS.     
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A.4 Results 

Total Reducing Sugars were carried out for all the 3 reactors using the “Available 

Carbohydrates Procedure”.  The principal of the available carbohydrates procedure is to 

monitor how much reducing sugar was liberated, after the carbohydrates in foods were 

hydrolyzed by sulfuric acid, to react with DNS (3,5-dinitrosalycilic acid) reagent to form 

a red-brown reaction product, which was monitored by reading the optical density at 540 

nm in the Spectrophotometer (Carpenter 1995). 

Total reducing sugars standard curve made for sweet potato laboratory. 

 

Table A.1: Total reducing sugar standard dilutions data 

Sample ID (g/L) Mean Absorbance (540 nm) 
0 0
1 0.2275
2 0.5185
3 0.8135
4 1.0175

 

 

DNS Standard Curve

y = 0.2592x
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Figure A.1: Total reducing sugars standard curve  

 

The Standard curve was created by diluting the glucose stock solution to: 0, 1.0, 

2.0, 3.0, and 4.0 g/L (Table 1).  The regression equation of the standard TRS was, y = 
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0.2592x with R^2 = 0.9961 (Figure 1).  The slope of the standard curve is used to divide 

the yeast mean absorbance readings to find how much sugar was available in the yeast 

concentration media.   

The TSS and OD calibration curve for yeast concentrations from laboratory #2 

was used to calculate the predicted TSS for this laboratory.  The following table is the 

data collected for the calibration curve.   

 

Table A.2 The TSS and OD readings for yeast #1 culture at 0%, 20%, 50%, 60%, 80% 
and 100% concentrations.  

Sample ID 
 

Tin# 
 

1st Weighing 
dried sample + 
filter (g) 

2nd Weighing 
dried sample + 
filer (g) 

Clean 
Filter (g)

Volume 
Filtered 
(L) 

Blank Weight 
gain/loss (g) 

TSS (mg/L)
 

OD 
reading 

Blank #1 1 1.0738 1.0741 1.0738 0.025 0.00015 0 0 
Blank #2 2 1.0996 1.0998 1.0994 0.025 0.0003 0 0 
20%yeast 3 1.0919 1.0921 1.0875 0.025 - 171 0.2653
40%yeast 4 1.1002 1.1004 1.0916 0.025 - 339 0.5055
60%yeast 5 1.1002 1.1127 1.1014 0.025 - 393 0.695 
80%yeast 8 1.1174 1.1175 1.1038 0.025 - 537 0.8375
100%yeast 7 1.1122 1.1128 1.09 0.025 - 891 0.975 

The optical density (OD) readings for the yeast increased as the concentration of 

the culture solution increased because higher concentration meant higher density, which 

also meant that it had more biomass.  When there is more biomass, the solution absorbs 

more light, thus giving an increased value for absorption as the concentration increases 

(Table A.2).   
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OD vs.TSS y = 1.1251E-03x + 1.0929E-01
R2 = 8.9821E-01
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Figure A.2 Calibration curve (TSS vs. OD) for yeast. 

 

Generally, the concentration of TSS increased as the concentration of yeast 

culture increased from 0% to 20%, 50%, 60%, and 100% (Table 2). 

The optical density (OD) readings also increased as the concentrations of the yeast 

culture increased (Figure 2). 

The regression equation for the calibration curve (TSS vs. OD) of the yeast was, y = 

1.1251e^-3x + 1.0929e^-1 with R^2 = 8.9821e^-1, which equation was used to readjust 

the TSS values obtained from the sweet potato media.  

The TSS concentration values can be obtained based on an OD reading for a similar 

culture.  The OD values will be substituted as y in the regression equation and the 

equation will be solved for x, which represents the TSS concentration (Figure 2).  

 

Data Analysis for Reactor at 50oC 

 

The fermentation was carried out at 50C for a period of approximately 24 hours.  

The following table shows the observed data which was collected during laboratory 
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experiment, and the predicted data which was the calculated using the calibration curve 

equation (figure 2).  

 

Table A.3  Fermentation data at Temperature of 50C during 24 hours of experiment.  

Time (hours) 
Absorbance, 
OD (680 nm) 

Predicted 
Biomass 
Produced, 
TSS (mg/L)

Substrate 
concentration, 
Glucose (g/L) 

Observed 
Biomass 
Produced 
TSS (mg/L) 

Observed 
biomass yield 
(Yb, mg/L/mg/L) 

Predicted 
biomass yield  
(Yb mg/L/mg/L) 

0 0.66 489.4765 16.97673 0  
1.166667 0.802 615.6875 15.25764 2130 -0.07342

2.75 1.025 813.8921 8.89064 1840 0.045547 -0.03113
4.166667 1.19 960.5457 5.363322 1935 -0.02693 -0.04158
5.716667 1.205 973.8779 3.006147 1840 0.040302 -0.00566
7.166667 1.275 1036.095 1.790862 1845 -0.00411 -0.0512
8.783333 1.275 1036.095 2.179249 2300 1.171512 0
10.16667 1.275 1036.095 2.121946 4288 -34.6928 0
11.66667 1.275 1036.095 1.826517 2005 7.72775 0
23.41667 1.275 1036.095 1.727192 2160 -1.56053 0

 

The observed data are the collected data from the experiment, therefore is the real data 

that each group collect using TSS, and TRS techniques.  The predicted biomass produced 

was calculated using the calibration curve equation (figure 2). OD absorbance was read at 

680 nm and TRS absorbance was read at 540 nm. 
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Figure A.4 The natural log of the biomass growth versus time.  
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The slope of the Ln OD versus time curve during exponential growth of the yeast is the 

specific growth rate, u, for the microorganism at the substrate concentration present in the 

reactor.  

u = ln (ODt) – ln (ODo) / t – to  

u =  0.0389 hr^-1 

The predicted Ln TSS versus time plot was calculated with the calibration curve of the 

different yeast percentages from laboratory #2 (figure 2). 

The biomass yield was calculated from the predicted TSS, which values used came from 

the data collected during the lab. 

The following graph shows the growth curve of biomass while substrate is being utilized 

during 24 hours of experiment.  
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Figure A.5 The real TSS collected and TRS analysis over time 
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Figure A.6 Predicted TSS data and TRS data over time.  
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The following tables show the calculations for biomass rate of formation and substrate 

rate of utilization for the observed data.  The rate of biomass formation is RXb = (u*Xb – 

b*Xb) and the rate of substrate utilization is Rsu = ((u*Xb)/Yb). 

 

    Table A.4 The observed data used to find the rates during 8 hours. 

Time 
(hours) 

Growth 
rate, u 
(hr^-1) 

Decay 
constant, 
b (hr^-1) 

Observed 
biomass 
formed, TSS 

Obeserved, 
biomass yield (Yb, 
mg/L/mg/L) 

Rate of biomass 
formation, mg/Lhr 

Rate of Substrate 
utilization, mg/Lhr

0 0.0389 0.005 0  0   
1.166667 0.0389 0.005 2130  72.207   

2.75 0.0389 0.005 1840 0.045547 62.376 1571.463
4.166667 0.0389 0.005 1935 0.045547 65.5965 1652.599
5.716667 0.0389 0.005 1840 0.045547 62.376 1571.463
7.166667 0.0389 0.005 1845 0.045547 62.5455 1575.734
8.783333 0.0389 0.005 2300 0.045547 77.97 1964.329
10.16667 0.0389 0.005 4288 0.045547 145.3632 3662.193
11.66667 0.0389 0.005 2005 0.045547 67.9695 1712.383
23.41667 0.0389 0.005 2160 0.045547 73.224 1844.761

 

 

Table A.5 The predicted data used to find the rates during 8 hours. 

Growth 
rate, u 
(hr^-1) 

Decay 
constant, 
b (hr^-1) 

Predicted 
Biomass 
Produced, TSS 
(mg/L) 

Predicted, biomass 
yield (Yb mg/L/mg/L) 

Rate of biomass 
formation, mg/Lhr 

Rate of Substrate 
utilization, mg/Lhr

0.0389 0.005 489.4765  16.59325  
0.0389 0.005 615.6875 0.045547 20.87181  
0.0389 0.005 813.8921 0.045547 27.59094 695.1096
0.0389 0.005 960.5457 0.045547 32.5625 820.36
0.0389 0.005 973.8779 0.045547 33.01446 831.7464
0.0389 0.005 1036.095 0.045547 35.12361 884.883
0.0389 0.005 1036.095 0 35.12361  
0.0389 0.005 1036.095 0 35.12361  
0.0389 0.005 1036.095 0 35.12361  
0.0389 0.005 1036.095 0 35.12361  

 

The following graph was plotted to compare the rates of formation and utilization 

for the data collected in the lab and the predicted data calculated.  
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Figure A.7 The rates of formation and utilization at temperature 50C. 

 

Data Analysis for Reactor at 45oC 

 

This fermentation was conducted at 45C. The following table shows the observed 

data collected during the laboratory experiment, which was the real data.  The predicted 

data was calculated using the calibration regression equation y = 1.1251e^-3x + 

1.0929e^-1, where y = OD observed data and x = TSS predicted data.     

Table A.5 Fermentation data at temperature of 45C during six hours. 

Time (hours) 

Observed 
Biomass 
Average 
Produced 
TSS (mg/L) 

Substrate 
Concentration 
utilized TRS 
(mg/L) 

Absorbance, 
OD (680 nm)

Predicted 
Biomass 
produced TSS 
(mg/L) 

Predicted 
Biomass yield, Yb 
(mg/L/mg/L) 

Observed 
Biomass yield, 
Yb (mg/L/mg/L) 

0 0 0 0  
1.2 1680 2788 0.875 460.5263  

2 1380 2183 0.88 463.1579 -0.00435 0.495868
3 1800 2008 0.962 506.3158 -0.24662 -2.4
4 1510 1873 0.935 492.1053 0.105263 2.148148
5 1750 1120 0.937 493.1579 -0.0014 -0.31873
6 1560 503 0.935 492.1053 0.001706 0.307942

 

The predicted biomass produced was calculated using the calibration equation 

curve for the yeast (figure 2).  The OD absorbance read at 680 nm was used as the x 

variable in the calibration equation. 
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Ln OD vs. time
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 Figure A.8 Ln of biomass formed versus time for the data collected (LnOD) and for the 
calculated TSS values. 
  
The slope of the Ln OD versus time curve during exponential growth of the yeast is the 

specific growth rate, u for the microorganism at the substrate concentration present in the 

reactor.  

u = ln (ODt) – ln (ODo) / t – to  

u =  0.05261 hr^-1  

The predicted Ln TSS versus time plot was calculated with the calibration curve of the 

different yeast percentages from laboratory #2 (figure 2). 

The biomass yield was calculated from the predicted TSS, which values used came from 

the collected data during the laboratory experiment. 

The following graph shows the observed biomass formed and substrate utilized during 8 

hours of experiment.  
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Observed biomass & glucose vs. time 
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Figure A.9 Biomass formed (TSS) and substrate analyzed (TRS) during 8 hours of data 
colleting. 
 
The following graph is the predicted biomass formed and substrate utilized calculated 

from the calibration regression equation (Figure A.2).  
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Figure 10: Calculated biomass formed and substrate used versus time.  
 

The following tables show the calculations for biomass rate of formation and 

substrate rate of utilization for the observed data and predicted data.  The rate of biomass 

formation is RXb = (u*Xb – b*Xb) and the rate of substrate utilization is Rsu = 

((u*Xb)/Yb).     
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Table A.6 Predicted rates during 6 hours of fermentation. 

Time 
(hours) 

Growth 
rate, u 
(hr^-1) 

Decay 
constant, 
b (hr^-1) 

Predicted 
Biomass 
Produced, 
TSS (mg/L) 

Predicted, 
biomass yield (Yb 
mg/L/mg/L) 

Rate of biomass 
formation, 
mg/Lhr 

Rate of Substrate 
utilization, mg/Lhr

0 0.05261 0.005 0  0  
1.2 0.05261 0.005 460.5263  21.92566  

2 0.05261 0.005 463.1579 0.10526 22.05095 231.4909
3 0.05261 0.005 506.3158 0.10526 24.10569 253.0617
4 0.05261 0.005 492.1053 0.10526 23.42913 245.9591
5 0.05261 0.005 493.1579 0.10526 23.47925 246.4852
6 0.05261 0.005 492.1053 0.10526 23.42913 245.9591

 
 
Table A.7:Observed rates during 6 hours of fermentation.  

Time 
(hours) 

Growth 
rate, u 
(hr^-1) 

Decay 
constant, 
b (hr^-1) 

Observed 
biomass 
formed, TSS

Obeserved, 
biomass yield (Yb, 
mg/L/mg/L) 

Rate of biomass 
formation, 
mg/Lhr 

Rate of Substrate 
utilization, mg/Lhr

0 0.05261 0.005    0  
1.2 0.05261 0.005 1680  79.9848  

2 0.05261 0.005 1380 0.495868 65.7018 146.4136
3 0.05261 0.005 1800 0.495868 85.698 190.9743
4 0.05261 0.005 1510 0.495868 71.8911 160.2062
5 0.05261 0.005 1750 0.495868 83.3175 185.6695
6 0.05261 0.005 1560 0.495868 74.2716 165.5111

 

The following graph was plotted to compare the rates of formation and utilization 

for the data collected in the lab and the predicted data.  
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Figure A.11 The predicted and observed rates of biomass formation and substrate 
utilization.  
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Data Analysis for Reactor at 40oC 

 

Fermentation at a temperature of 40C was carried during 24 hours.  The following 

table shows the data collected during the laboratory experiment, which is the real data, 

and the predicted biomass formed and biomass yield, which were calculated using the 

calibration regression equation y = 1.1251e^-3x + 1.0929e^-1 (Figure A.2).    

 

Table A.8 Experiment and calculated fermentation data for 40C.  

Time 
(hrs) 

Absorbance, 
OD (680 nm) 

Substrate 
concentration, 
glucose TRS 
(mg/L) 

Observed 
biomass 
produced, 
TSS (mg/L) 

Observed 
biomass yield, 
Yb (mg/L/mg/L) 

Predicted 
biomass 
produced,  
TSS mg/L 

Predicted 
biomass yield,  
Yb (mg/L/mg/L) 

0 0.658 8217.71  487.6989 
1.5 0.562 13450 887.5 402.3731 -0.01631

3 0.755 5912 765 0.016251 573.9134 -0.02276
5 1.05 2290.7 1385 -0.17121 836.1123 -0.0724
7 1.24 3233.1 885 -0.53056 1004.986 0.179196

24 1.365 3004.28 1945 -4.63246 1116.087 -0.48554
 
The predicted biomass produced was calculated using the calibration equation curve for 

the yeast on figure 2.  The OD absorbance was read at 680 nm. 
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Figure 12: Biomass formed during a period of 24 hours. 
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The slope of the Ln OD versus time curve during exponential growth of the yeast 

is the specific growth rate, u for the microorganism at the substrate concentration present 

in the reactor.  

u = ln (ODt) – ln (ODo) / t – to  

u =  0.18818 hr^-1  

The predicted Ln TSS versus time plot was calculated with the calibration curve of the 

different yeast percentages (figure 2). 

The biomass yield was calculated from the predicted TSS, which values used 

came from the collected data during the lab. 

The following graph shows the observed biomass growth and substrate utilized 

during 24 hours of experiment. 
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Figure A.13 Biomass growth and substrate utilization during 24 hours of data analysis. 
 
The following graph shows the predicted biomass formed and substrate utilized during 24 

hours. 
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Figure A.14 Predicted biomass formed and substrate used for 24 hours.  
 
The following tables show the calculations of biomass rate of formation and substrate 

rate of utilization for the observed and predicted data.  The rate of biomass formation is 

RXb = (u*Xb – b*Xb) and the rate of substrate utilization is Rsu = ((u*Xb)/Yb). 

     

Table A.9 The rate of biomass formed and substrate utilized for the collected data during 
7 hours.   

Time(hrs) 

Growth 
rate, u 
(hr^-1) 

Decay 
constant, 
b (hr^-1) 

Observed 
biomass 
formed, 
TSS 

Obeserved, 
biomass yield 
(Yb, mg/L/mg/L)

Rate of biomass 
formation, 
mg/Lhr 

Rate of 
Substrate 
utilization, 
mg/Lhr 

0 0.18818 0.005 887.5  162.5723  
1.5 0.18818 0.005 765 0.016251 140.1327 8858.393

3 0.18818 0.005 1385 0.016251 253.7043 16037.74
5 0.18818 0.005 885 0.016251 162.1143 10247.94
7 0.18818 0.005 1945 0.016251 356.2851 22522.32

 
 
Table A.10 The rate of biomass formed and substrate utilized for the calculated data 
during 24 hours. 

Time(hrs) 

Growth 
rate, u 
(hr^-1) 

Decay 
constant, 
b (hr^-1) 

Predicted 
biomass 
formed, 
TSS 

Predicted 
biomass yield 
(Yb, mg/L/mg/L)

Net rate of 
biomass 
formation, 
mg/Lhr 

Rate of Substrate 
utilization, mg/Lhr

0 0.18818 0.005 487.6989  89.33668   
1.5 0.18818 0.005 402.3731 0.179196 73.70671 422.5472

3 0.18818 0.005 573.9134 0.179196 105.1295 602.6882
5 0.18818 0.005 836.1123 0.179196 153.1591 878.0331
7 0.18818 0.005 1004.986 0.179196 184.0934 1055.374

24 0.18818 0.005 1116.087 0.179196 204.4449 1172.046
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The following graph was plotted to compare the rates of formation and utilization 

for the data collected in the lab and the predicted data calculated.  
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Figure A.16 The predicted and observed rates of biomass formation and substrate 
utilization.  
 
 
Arrhenius Equation Calculations 

 
The temperature dependent fermentations were used to calculate arrhenius constant and 

to plot the natural log of specific growth rate versus 1/temperature (K) for 50C, 45C, and 

40C. 

Table A.11 The arrhenius calculations for the 3 fermentors. 

Growth 
rate Temperature C 

Temperature 
(K) 

1/ 
Temperature(
K) 

Assume 
maximum 
growth rate 

rate, 
day-1 Ln Rate 

Ln max 
growth 
rate 

(Ln max 
growth 
rate)*(-1) 

1/A 
(Arrhenius 
constant) 

A 
(Arrhenius 
constant) 

0.0389 50 323.15 0.003095 0.0389 0.9336 -0.06871 -3.24676 3.246761 1.42702E-33 7.0076E+32
0.05261 45 318.15 0.003143 0.05261 1.26264 0.233205 -2.94485 2.944849 3.05461E-34 3.2737E+33
0.18818 40 313.15 0.003193 0.18818 4.51632 1.507698 -1.67036 1.670356 2.37631E-35 4.2082E+34

 
The Arrhenius equation is used to caculate a reaction rate constant as a function of 

temperature.  This equation is umax  = A*e^(-Ea/RT). 

The maximum growth rate (umax) was assumed to be equal to specific growth rate (u) to 

calculate the equation values.  

umax=u=growth coefficient, hr^-1 
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A=arrhenius constant, hr^-1 

Ea=Activation energy, kJ/mol 

R=gas constant, 0.008314 kJ/molK 

T=absolute temperature, K 

In order to determine Ea for this specific fermentation it is necessary to plot Ln(u) versus 

1/(Temperature, K).  The slope of line is –Ea/R. 
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Figure A.17 The plot of Ln(u) versus 1/Temperature for the three temperatures. 
 

The regression equation of the line is y = -16003x + 52.928, and the R^2 = 

0.8931.  The Ea/R = slope = -16003, then Ea = 133.048 kJ/mol.  
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APPENDIX B 
 

B.1 DIONEX DX-600 HPLC (HIGH PERFORMANCE LIQUID 
CHROMATOGRAPHY) METHOD 
 

Dionex Peaknet software version 6.0: Carbohydrates Method Procedure 
 
-2.000 Pressure.LowerLimit = 70 
 Pressure.UpperLimit = 4000 
 %A.Equate = "WATER" 
 %B.Equate = "200 mM NaOH" 
 %C.Equate = "%C" 
 %D.Equate = "%D" 
 LoadPosition 
 Mode =  IntAmp 
 Pump_Relay_1.Closed Duration=1.00 
 IntAmp.Cell =  On 
 ECD.Data_Collection_Rate =  1.0 
 IntAmp.Electrode =  AgCl 
 pH.LowerLimit =  10.0 
 pH.UpperLimit =  13.0 
 Waveform  Time = 0.00, Potential = 0.05 
 Waveform  Time = 0.20, Potential = 0.05, Integration = Begin 
 Waveform  Time = 0.40, Potential = 0.05, Integration = End 
 Waveform  Time = 0.41, Potential =  0.75 
 Waveform  Time = 0.60, Potential =  0.75 
 Waveform  Time = 0.61, Potential = -0.15 
 Waveform  Time = 1.00, Potential = -0.15 
 0.000 ECD.Autozero 
 InjectPosition Duration=30.00 
 Flow = 1.00 
 %B = 22.0 
 %C = 0.0 
 %D = 0.0 
 Curve = 5 
0.100 IntAmp_1.AcqOn 
 
 0.100 Flow = 1.00 
 %B = 22.0 
 %C = 0.0 
 %D = 0.0 
 Curve = 5 
 1.250 Flow = 1.00 
 %B = 22.0 
 %C = 0.0 
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 %D = 0.0 
 Curve = 5 
 5.000 Flow = 1.00 
 %B = 22.0 
 %C = 0.0 
 %D = 0.0 
 Curve = 5 
 6.500 Flow = 1.00 
 %B = 44.8 
 %C = 0.0 
 %D = 0.0 
 Curve = 5 
 7.500 Flow = 1.00 
 %B = 60.0 
 %C = 0.0 
 %D = 0.0 
 Curve = 5 
 8.000 Flow = 1.00 
 %B = 100.0 
 %C = 0.0 
 %D = 0.0 
 Curve = 5 
 8.500 Flow = 1.00 
 %B = 100.0 
 %C = 0.0 
 %D = 0.0 
 Curve = 5 
 9.000 Flow = 1.00 
 %B = 100.0 
 %C = 0.0 
 %D = 0.0 
 Curve = 5 
 9.500 Flow = 1.00 
 %B = 100.0 
 %C = 0.0 
 %D = 0.0 
 Curve = 5 
10.000 Flow = 1.00 
 %B = 100.0 
 %C = 0.0 
 %D = 0.0 
 Curve = 5 
12.000 Flow = 1.00 
 %B = 100.0 
 %C = 0.0 
 %D = 0.0 
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 Curve = 5 
13.000 Flow = 1.00 
 %B = 22.0 
 %C = 0.0 
 %D = 0.0 
 Curve = 5 
17.000 Flow = 1.00 
 %B = 22.0 
 %C = 0.0 
 %D = 0.0 
 Curve = 5 
 
17.000 IntAmp_1.AcqOff 
 
 End 
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APPENDIX C 
 

GLUCOSE BROTH MEDIA AND SWEET POTATO ANALYSIS 
 
Table C.1 The Ingredients of Glucose Broth Media from Anderson et al. (1986). 
 

The Original Glucose Media 

Glucose  100g/L 

BactoTM Yeast Extract  10g/L (10% of glucose) 
BactoTM Peptone  5g/L (5% of glucose) 

(NH4)2SO4 3g/L (3% of glucose) 
KH2PO4 3g/L (3% of glucose) 

CaCl2*H2O  0.025g/L (0.025% of glucose) 
MgSO4*7H2O   0.025g/L (0.025% of glucose) 

 
 
Table C.2 The typical component analysis of BactoTM Peptone and BactoTM Yeast 
Extract (10%nitrogen, 80% amino acids (materials with carbon in it, used as 
protein which has about 4 calories per gram), 4% ash and the rest).     

 
Typical Analyses- 

Peptones and 
Hydrolysates 

Bacto 
Peptone 

Bacto Yeast 
Extract 

Total Nitrogen (%) 15.4 10.9 
Amino Nitrogen (%) 3.5 6 

ANTN 0.2 0.55 
Ash (%) 3.8 11.2 

Loss on Drying (%) 2.7 3.1 
NaCl (%) 1.7 0.1 

pH (2% solution) 7.1 6.7 
Calcium (ug/g) 18 130 

Magnesium (ug/g) 1 750 
Potassium (ug/g) 2542 31950 

Sodium (ug/g) 18440 14900 
Chloride (%) 0.9 0.38 
Sulfate (%) 0.32 0.09 

Phosphate (%) 0.4 3.27 
Alanine (% free) 1.2 4.4 
Alanine (% total) 9.2 5.6 
Arginine (%free) 2.8 1.4 
Arginine (% total) 5.8 2.6 

Asparagine (% free) 0.3 1 
Aspartic Acid (% 

free) 0.3 1.6 
Aspartic Acid (% 5 5.3 
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total) 
Cystine (% free) * 0.2 
Glutamic Acid (% 

free) 0.7 6.6 
Glutamic Acid (% 

total) 8.1 9.4 
Glutamine (% free) * 0.2 

Glycine (% free) 0.7 1 
Glycine (% total) 15.9 3 
Histidine (% free) 0.2 0.4 
Histidine (% total) 0.8 1.3 
Isoleucine (% free) 0.6 1.8 
Isoleucine (% total) 2.1 3 

Leucine (% free) 1.6 3 
Leucine (% total) 3.8 4.1 
Lysine (% free) 2.2 1.9 
Lysine (% total) 3.4 4.6 

Methionine (% free) 0.3 0.6 
Methionine (% total) 0.7 0.8 

Phenylalanine (% 
free) 1.4 2 

Phenylalanine (% 
total) 2.8 2.6 

Proline (% free) 0.3 0.8 
Proline (% total) 8.8 2 
Serine (% free) 0.4 1.3 
Serine (% total) 1.5 1.6 

Theonine (% free) 0.3 1.1 
Theonine (% total) 1.1 1.6 
Tryprophene (% 

free) 0.3 0.5 
Tyrogine (% free) 0.5 0.8 
Tyrogine (% total) 0.6 1.2 

Valine (% free) 0.7 2.2 
Valine (% total) 2.8 3.5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 141

Table C.3 The detailed analysis of sweet potato, raw, unprepared (Scientific 
Name: Ipomoea Batatas (Sweet Potatoes)). 
 

Nutrient  Units  
Value per 

100 grams of
edible portion 

Sample 
Count  

Std. 
Error  

Proximate      
Water  G 79.78 4 1.125 
Energy  Kcal 76 0   
Energy  Kj 317 0   
Protein  G 1.57 4 0.145 
Total lipid (fat)  G 0.05 4 0.033 
Ash  G 0.99 4 0.056 
Carbohydrate, by difference  G 17.61 0   
Fiber, total dietary  G 3.0 0   
Sugars, total  G 3.89 0   
Sucrose  G 2.17 4 0.180 
Glucose (dextrose)  G 1.01 4 0.332 
Fructose  G 0.71 4 0.190 
Lactose  G 0.00 4 0.000 
Maltose  G 0.00 4 0.000 
Galactose  G 0.00 0   
Minerals      
Calcium, Ca  Mg 30 3 4.632 
Iron, Fe  Mg 0.61 3 0.070 
Magnesium, Mg  Mg 25 3 3.180 
Phosphorus, P  Mg 47 3 7.413 
Potassium, K  Mg 337 3 27.552 
Sodium, Na  Mg 13 9 1.300 
Zinc, Zn  Mg 0.30 3 0.033 
Copper, Cu  Mg 0.151 3 0.015 
Manganese, Mn  Mg 0.258 3 0.052 
Selenium, Se  Mcg 0.6 1   
Vitamins      
Vitamin C, total ascorbic acid  Mg 22.7 12 2.577 
Thiamin  Mg 0.078 4 0.007 
Riboflavin  Mg 0.061 4 0.005 
Niacin  Mg 0.557 4 0.076 
Pantothenic acid  Mg 0.800 4 0.152 
Vitamin B-6  Mg 0.209 4 0.014 
Folate, total  Mcg 14 9 1.710 
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Folic acid  Mcg 0 0   
Folate, food  Mcg 14 9 1.710 
Folate, DFE  Mcg_DFE 14 0   
Vitamin B-12  Mcg 0.00 0   
Vitamin A, IU  IU 14545 0   
Vitamin A, RAE  Mcg_RAE 727 0   
Retinol  Mcg 0 0   
Vitamin E (alpha-tocopherol)  Mg 0.26 2   
Tocopherol, beta  Mg 0.01 2   
Tocopherol, gamma  Mg 0.00 2   
Tocopherol, delta  Mg 0.00 2   
Vitamin K (phylloquinone)  Mcg 1.8 2   
Lipids      
Fatty acids, total saturated  G 0.018 0   
4:0  G 0.000 0   
6:0  G 0.000 0   
8:0  G 0.000 2   
10:0  G 0.000 2   
12:0  G 0.000 2   
14:0  G 0.000 2   
15:0  G 0.000 2   
16:0  G 0.018 2   
17:0  G 0.000 2   
18:0  G 0.001 2   
20:0  G 0.000 2   
22:0  G 0.000 2   
24:0  G 0.000 2   
Fatty acids, total monounsaturated G 0.001 0   
14:1  G 0.000 2   
15:1  G 0.000 2   
16:1 undifferentiated  G 0.000 2   
17:1  G 0.000 2   
18:1 undifferentiated  G 0.001 2   
20:1  G 0.000 2   
22:1 undifferentiated  G 0.000 2   
Fatty acids, total polyunsaturated G 0.014 0   
18:2 undifferentiated  G 0.013 2   
18:3 undifferentiated  G 0.001 2   
18:4  G 0.000 2   
20:2 n-6 c,c  G 0.000 2   
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20:3 undifferentiated  G 0.000 2   
20:4 undifferentiated  G 0.000 2   
20:5 n-3  G 0.000 2   
22:5 n-3  G 0.000 2   
22:6 n-3  G 0.000 2   
Cholesterol  Mg 0 0   
Phytosterols  Mg 12 0   
Amino acids      
Tryptophan  G 0.020 8   
Threonine  G 0.082 14   
Isoleucine  G 0.082 14   
Leucine  G 0.121 14   
Lysine  G 0.081 14   
Methionine  G 0.041 14   
Cystine  G 0.013 7   
Phenylalanine  G 0.099 14   
Tyrosine  G 0.068 14   
Valine  G 0.108 14   
Arginine  G 0.077 14   
Histidine  G 0.031 14   
Alanine  G 0.090 14   
Aspartic acid  G 0.282 14   
Glutamic acid  G 0.161 14   
Glycine  G 0.074 14   
Proline  G 0.072 14   
Serine  G 0.085 14   
Other      
Alcohol, ethyl  G 0.0 0   
Caffeine  Mg 0 0   
Theobromine  Mg 0 0   
Carotene, beta  Mcg 8727 41 235.058 
Carotene, alpha  Mcg 0 37   
Cryptoxanthin, beta  Mcg 0 34   
Lycopene  Mcg 0 1   
Lutein + zeaxanthin  Mcg 0 1   

USDA National Nutrient Database for Standard Reference, Release 16 (July 2003) 
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APPENDIX D  
 
D.1 SHIMADZU GC 17-A GAS CHROMATOGRAPHY, CLASS VP 
CHROMATOGRAPHY DATA SYSTEM 
 

The following figures D.1, D.2, and D.3 are the alcohol method setup parameters. 
 

Figure D.1 The temperature setup.  
 

Figure D.2 The inlet pressure setup.  
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Figure D.3 The detector setup.  
 
 
D.2 The RRf determination for ethanol concentration calculations.   
 

The following Table D.1 shows the RRf calculation for ethanol concentration 

determination.  

Table D.1 External Standard of Ethanol and n-Propanol areas used to calculate 
RRf. 

External Standard           
  Methanol  Ethanol  n-Propanol Butanol  RRf (etoh) 
Concentration mg/L 10 10 10 10   
AREA 590 837 1114 1347 1.330943847 
      4230   . 
            
Concentration mg/L 25 25 25 25   
AREA     10116     
      14096     
            
            
Concentration mg/L 41.66 41.66 41.66 41.66   
AREA 2332 3046 4165 4528 1.367367039 
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Concentration mg/L 50 50 50 50   
AREA 12225 14379 23138 24909 1.609152236 
AREA 8110 11486 19512 16028   
AREA 2996 3947 5590 6119   
AVERAGE AREA 7777 9937.33333 16080 15685.3333 1.618140346 
            
Concentration mg/L 83.33 83.33 83.33 83.33   
AREA 4682 6088 8747 9411 1.436760841 
            
            
Concentration mg/L 100 100 100 100   
AREA     41124     
            
Concentration mg/L 166.66 166.66 166.66 166.66   
AREA 9447 12438 17686 18758 1.330944 
            
            
Concentration mg/L 250 250 250 250   
AREA 15383 18581 28603 29668 1.330944 
            
            
Concentration mg/L 500 500 500 500   
AREA 82140 118600 232596 165287 1.330944 
AREA 30961 40243 54787 60026   
AVERAGE AREA 56550.5 79421.5 143691.5 112656.5   
            
AVERAGE CONC ppm 157.3785714 157.378571 136.2944444 157.378571 1.419399539 
AVERAGE AREA 13823.07143 18621.2619 30147.38889 27436.2619   
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APPENDIX E 
 

E.1 THE PICTURES OF THE KLUYVEROMYCES MARXIANUS 
YEAST STRAIN 
 
 

 
 

Figure E.1 Kluyveromyces marxianus cells from the sterile agar petri dish.  
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Figure E.2 Kluyveromyces marxianus cells from glucose media the aerobic 
Orbital Shaker bed. 

 

 
  

Figure E.3 Kluyveromyces marxianus cells from the glucose media anaerobic 
Bioflo® 2000 fermentor.  
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APPENDIX F 
 

THE CALIBRATION CURVES FOR KLUYVEROMYCES 
MARXIANUS 
 

The calibration curves for Kluyveromyces marxianus used for the anaerobic 

experiments which used the Two-Liter Bioflo® 2000 Fermentors.  Figure F.1 shows the 

calibration curve for 1,000 mg/L glucose media which was used by the lower substrates 

until 3,000 mg/L glucose media substrate used in the experiments.  

 

y = 718.0489x
R2 = 0.9889

0

20

40

60

80

100

120

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Optical Density, 680nm

B
io

m
as

s,
 m

g/
L 

TS
S

 

Figure F.1 The calibration curve for 1,000 mg/L glucose media yeast strain.  
 

The Figure F.2 shows the calibration curve for 100 g/L glucose media which was 

used by the substrates from 5,000 mg/L glucose concentration until 80,000 mg/L glucose 

concentration for the experiments.  
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Figure F.2 The calibration curve for 100 g/L glucose media yeast strain.  
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APPENDIX G 
 

G.1 AEROBIC CONDITIONS USING THE TWO-LITER BIOFLO® 
2000 FERMENTORS 
 
 

The following Figures G.1, G.2, and G.3 are from the first run which shows the line 

trend for the soluble substrate measured using COD, and the biomass predicted from the 

OD data set using the calibration curve already mentioned.  These figures were used to 

calculate the biomass yield by breaking the time into five parts or five “time frames” 

averaging the biomass (mg/L TSS) and the substrate (mg/L COD) over each five time 

frames.  
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Figure G.1 The whole soluble substrate (COD) and biomass (TSS) versus time 
for the 200 mg/L glucose media for the first run. 
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Figure G.2 The whole soluble substrate (COD) and biomass (TSS) versus time 
for the 400 mg/L glucose media for the first run. 
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Figure G.3 The whole soluble substrate (COD) and biomass (TSS) versus time 
for the 1,000 mg/L glucose media for the first run. 
 
 

The following figures G.4, G.5, and G.6 are from the second run which shows the 

line trend for soluble substrate measured with COD and the biomass predicted from the 

OD readings using the calibration curve already mentioned.  These figures were used to 

calculate the biomass yield by breaking the time into five parts or five “time frames” 
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averaging the biomass (mg/L TSS) and the substrate (mg/L COD) over each five time 

frames.  
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Figure G.4 The whole soluble substrate (COD) and biomass (TSS) versus time 
for the 200 mg/L glucose media for the second run. 
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Figure G.5 The whole soluble substrate (COD) and biomass (TSS) versus 
time for the 400 mg/L glucose media for the second run. 
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Figure G.6 The entire soluble substrate (COD) and biomass (TSS) versus time 

for the 800 mg/L glucose media for the second run. 
 
 
G.2 Anaerobic conditions using the Two-Liter Bioflo® 2000 Fermentors. 

The following figures G.7, G.8, and G.9 are for the 5,000, 7,500, and 15,000 mg/L 

glucose concentrations.  The soluble substrate was measured using COD and the biomass 

TSS predicted from the OD readings using the calibration curve already mentioned.  

These figures were used to calculate the biomass yield by breaking the time into seven 

parts or seven “time frames”.  The biomass (mg/L TSS) and substrate (mg/L COD) were 

averaged over each chosen time frame.  
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Figure G.7 The entire soluble substrate (COD) and biomass (TSS) versus time 
for the 5,000 mg/L glucose media. 
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Figure G.8 The entire soluble substrate (COD) and biomass (TSS) versus time 
for the 7,500 mg/L glucose media. 
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Figure G.9 The entire soluble substrate (COD) and biomass (TSS) versus time 
for the 15,000 mg/L glucose media. 
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APPENDIX H 
 

SAS CODE FOR THE AEROBIC EXPERIMENTAL DATA SET 
USING THE TWO-LITER BIOFLO® 2000 FERMENTORS 
 
H.1 SAS code for the 200, 400, and 1,000 mg/L glucose media experiment 
 
title 'SAS Nonlinear Analysis for Kinetic Parameter Determinatiion FOR 
aerobic2a august 20 2002.xls file'; 
*Bioflo2000 Fermentors were used in this experiment with 3 different 
substrates; 
*the experiment last for 15 hours; 
*scod=soluble substrate in mg/L COD units; 
*tss=biomass concentration in mg/L TSS units; 
 
data batch; 
input  time scod_200 tss_200 scod_400 tss_400 scod_1000 tss_1000; 
cards; 
0 288.77 0.72 586.82 3.11 1456.73 8.14 
1 285.98 2.63 543.18 5.51 1433.84 14.84 
2 287.84 4.31 522.75 6.22 1415.00 15.08 
3 384.40 3.83 498.61 6.22 1435.19 15.32 
4 275.77 3.59 477.25 8.86 1432.50 16.52 
5 285.98 7.66 525.53 8.86 1425.77 18.43 
6 264.62 5.27 526.46 10.77 1452.69 22.02 
7 266.48 6.70 482.82 13.64 1529.43 27.53 
8 262.77 4.31 506.04 10.29 1494.43 26.57 
9 267.41 3.59 506.96 9.81 1505.20 27.53 
10 277.62 6.46 469.82 16.52 1234.59 37.10 
11 268.34 3.83 503.25 14.36 1497.12 36.62 
12 294.34 8.14 481.89 19.87 1564.44 40.45 
13 298.05 7.18 491.18 20.58 1466.16 45.72 
14 297.12 9.33 505.11 24.17 1478.27 49.31 
15 280.41 7.42 508.82 23.22 1431.15 51.22 
; 
 
*xbo=initial biomass concentration, at time zero; 
*so=initial soluble substrate concentration, at time zero; 
****y=biomass yield (biomass mg/L TSS)/(substrate mg/L COD); 
 
data new1; set batch; 
xbo=0.72; so=288.7; y=0.11; 
s=scod_200; 
xb=tss_200; 
t=time; 
Run; 
proc print data=new1; 
title2'The logistic equation is applied for the 200mg/L glucose 
concentration media'; 
proc model data=new1; 
title2'The logistic equation is applied for the 200mg/L glucose 
concentration media'; 
parms ks umax; 
endogenous xb s; 
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exogenous t ; 
eq.g1=(((ks*y/(xbo+so*y))+1)*log(xb/xbo)+((ks*y/(xbo+so*y))*log(so/s)))
-t*umax; 
eq.g2=(xb-xbo)-y*(so-s); 
fit g1 g2; 
run; 
 
*xbo=initial biomass concentration, at time zero; 
*so=initial soluble substrate concentration, at time zero; 
 
data new2; set batch; 
xbo=3.11; so=586.8; y=0.30; 
s=scod_400; 
xb=tss_400; 
t=Time; 
Run; 
proc print data=new2; 
title2'The logistic equation is applied for the 400mg/L glucose 
concentration media'; 
 
proc model data=new2; 
title2'The logistic equation is applied for the 400mg/L glucose 
concentration media'; 
parms ks umax; 
endogenous xb s; 
exogenous t ; 
eq.g1=(((ks*y/(xbo+so*y))+1)*log(xb/xbo)+((ks*y/(xbo+so*y))*log(so/s)))
-t*umax; 
eq.g2=(xb-xbo)-y*(so-s); 
fit g1 g2;  
run; 
 
*xbo=initial biomass concentration, at time zero; 
*so=initial soluble substrate concentration, at time zero; 
 
data new3; set batch; 
xbo=8.14; so=1452.5; y=0.29; 
s=scod_1000; 
xb=tss_1000; 
t=Time; 
Run; 
 
proc print data=new3; 
title2'The logistic equation is applied for the 1,000mg/L glucose 
concentration media'; 
 
proc model data=new3; 
title2'The logistic equation is applied for the 1,000mg/L glucose 
concentration media'; 
parms ks umax; 
endogenous xb s; 
exogenous t ; 
eq.g1=(((ks*y/(xbo+so*y))+1)*log(xb/xbo)+((ks*y/(xbo+so*y))*log(so/s)))
-t*umax; 
eq.g2=(xb-xbo)-y*(so-s); 
fit g1 g2; 
run; 
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quit; 
 
H.2 SAS code for the 200, 400, and 800 mg/L glucose media experimental data set 
for aerobic conditions using the two-liter Bioflo® 2000 Fermentors. 
 
title 'SAS Nonlinear Analysis for Kinetic Parameter Determinatiion FOR 
aerobic tap september 20 2002. xls file'; 
*experiment done using the Bioflo 2000 Fermentors; 
*3 different substrate; 
*scod=soluble substrate in COD units; 
*tss=biomass concentration in TSS units; 
 
data batch; 
input   time scod_200 tss_200 scod_400 tss_400 scod_800 tss_800; 
cards; 
 
0 252.76 3.59 492.52 9.16 946.01 9.87 
9 234.18 2.33 481.37 7.00 913.48 13.64 
15 235.11 1.80 466.50 8.44 944.15 13.28 
18 252.76 1.44 497.17 7.90 953.44 16.69 
20 268.56 2.87 517.61 7.72 954.37 16.87 
22 239.75 2.33 484.16 8.08 940.43 16.16 
24 286.22 3.41 492.52 8.80 933.93 17.95 
26 277.86 3.23 525.97 7.90 953.44 17.23 
28 253.69 2.33 494.38 7.54 965.52 25.85 
35 258.34 1.44 503.67 7.72 929.28 39.67 
40 264.85 1.62 524.11 8.62 929.28 54.57 
43 270.42 0.72 503.67 6.64 929.28 69.47 
45 261.13 2.33 514.82 5.56 880.03 97.83 
47 265.77 2.87 515.75 6.28 841.93 121.17 
49 251.84 0.90 525.97 3.77 788.96 148.10 
51 262.99 1.26 520.40 6.28 751.79 170.18 
; 
****xbo=initial biomass concentration, at time zero; 
****so=initial soluble substrate concentration, at time zero; 
****y=biomass yield (biomass mg/L TSS)/(substrate mg/L COD); 
 
data new1; set batch; 
xbo=3.59; so=252.76; y=0.30; 
s=scod_200; 
xb=tss_200; 
t=Time; 
Run; 
proc print data=new1; 
title2'The logistic equation is applied for the 200mg/L glucose 
concentration media'; 
 
proc model data=new1; 
title2'The logistic equation is applied for the 200mg/L glucose 
concentration media'; 
parms ks umax; 
endogenous xb s; 
exogenous t ; 
eq.g1=(((ks*y/(xbo+so*y))+1)*log(xb/xbo)+((ks*y/(xbo+so*y))*log(so/s)))
-t*umax; 
eq.g2=(xb-xbo)-y*(so-s); 
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fit g1 g2; 
run; 
****xbo=initial biomass concentration, at time zero; 
****so=initial soluble substrate concentration, at time zero; 
 
data new2; set batch; 
xbo=9.16; so=492.52; y=0.31;    
s=scod_400; 
xb=tss_400; 
t=Time; 
Run; 
proc print data=new2; 
title2'The logistic equation is applied for the 400mg/L glucose 
concentration media'; 
 
proc model data=new2; 
title2'The logistic equation is applied for the 400mg/L glucose 
concentration media'; 
parms ks umax; 
endogenous xb s; 
exogenous t ; 
eq.g1=(((ks*y/(xbo+so*y))+1)*log(xb/xbo)+((ks*y/(xbo+so*y))*log(so/s)))
-t*umax; 
eq.g2=(xb-xbo)-y*(so-s); 
fit g1 g2;  
run; 
 
 
***xbo=initial biomass concentration, at time zero; 
***so=initial soluble substrate concentration, at time zero; 
 
data new3; set batch; 
xbo=9.87; so=946.01; y=0.81;  
s=scod_800; 
xb=tss_800; 
t=Time; 
Run; 
proc print data=new3; 
title2'The logistic equation is applied for the 800mg/L glucose 
concentration media'; 
 
proc model data=new3; 
title2'The logistic equation is applied for the 800mg/L glucose 
concentration media'; 
parms ks umax; 
endogenous xb s; 
exogenous t ; 
eq.g1=(((ks*y/(xbo+so*y))+1)*log(xb/xbo)+((ks*y/(xbo+so*y))*log(so/s)))
-t*umax; 
eq.g2=(xb-xbo)-y*(so-s); 
fit g1 g2; 
run; 
 
quit; 
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APPENDIX I 
 

SAS (VERSION 9.0) PROGRAM FOR “BIOLOGICAL GROWTH 
KINETIC PARAMETER DETERMINATION ANALYSIS USING 
MONTE CARLO SIMULATIONS” 
 
I.1 Data Generation and Simulation: step 1. 
 
dm'log;clear;output;clear'; 
options ps=80 ls=132 nocenter nodate nonumber;  **** 020304 newest file ***;  
 
libname output 'C:\Erika Reeves - Monte Carlo from Geaghan\Nonlinear e integer Output 
020604\'; 
 
 
data ONE Integer; length dataset $ 40; 
   ****** initial values - constants for the program *******; 
      seed1=8662823;    **** only one seed is needed, it changes automatically ****; 
      NoOfReps = 5000; *** number of replicates ***; 
      umax = 0.6;  
      Ks= 50;  
      Substrate0 = 500;  
      Biomass0 = 0.5;  
      dt=0.001; 
      SEumax = 0.10*umax;  
      SEks = 0.10*ks; 
do SubstrateINIT = 200 to 1000 by 50; 
 do rep = 1 to NoOfReps by 1;  
  Do time = 0 to 20 by dt; 
  If time eq 0 then do;              **** create and output time zero only ****; 
          substrate0 = substrateINIT; 
          SubstrateT  = Substrate0; 
          BiomassT = Biomass0; 
          Yb = 0.5; 
   
     dBiomassT = .; dSubstrateT = .; ksXX = .; umaxXX = .; timePred = .; 
     output; 
  end;  
 
  if time gt 0 and rep le NoOfReps then do; 
    ksXX = ks + rannor(seed1)*seks;          **** add random variation to biological 
parameter ****; 
    umaxXX = umax + rannor(seed1)*seumax;    **** add random variation to biological 
parameter ****; 
    dBiomassT = (((umaxXX*SubstrateT ) / (ksXX + SubstrateT ))) * BiomassT * dt;   
*** change of Biomass over time ****; 
    dSubstrateT = (1/Yb)*dBiomassT;         
*** change of Substrate over time ****; 
        BiomassT = BiomassT + dBiomassT; 
        SubstrateT  = SubstrateT - dSubstrateT ; 
 Yb = ((BiomassT-dBiomassT)-BiomassT)/(SubstrateT-(SubstrateT+dSubstrateT));   
*** Biomass Yield defenition ***; 
 
********this following timePred will be cancelled for the final draft *************; 
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    t0=0; 
    timePred = (( (   ((Ks*Yb + Substrate0*Yb + Biomass0)/(Substrate0*Yb + Biomass0)) * 
          log(BiomassT/Biomass0)) - ((Ks*Yb)/(Substrate0*Yb + Biomass0)) * 
          log((Yb*Substrate0 + Biomass0 - BiomassT) / (Yb*Substrate0)) ) / umaxXX ) + t0; 
***********************************************************************************; 
end; 
 
    keep time SubstrateT BiomassT Yb dbiomasst dsubstratet rep SubstrateINIT ksxx umaxxx 
timepred; 
 
** stop output when substrateT is small(reached 1 or 0.5) or dbiomassT is less than 0 **; 
if dbiomasst gt 0 and SubstrateT gt 1 then do; 
 
if ABS(time-int(time)) le 0.0000001 or ABS(time-int(time)) ge 0.9999999 then do; 
 
*if int(time) = fuzz(time) then do;            ** FUZZ to get around rounding error ****; 
 
   SEBt = 0.01*BiomassT;   ** 1% sampling error was added ****; 
      BiomassT = BiomassT + rannor(seed1)*seBt;     
 **** added sampling error with biomass term ***; 
 
  *output one;              **** detailed numerical integration not saved (too big)****; 
 
output integer; 
 
  end;  end; 
end;  
end;  
end; 
retain BiomassT SubstrateT; 
run; 
 
data output.Integer5; set integer; 
keep time SubstrateT BiomassT Yb dbiomasst dsubstratet rep SubstrateINIT ksxx umaxxx; 
run; 
 
quit; 
 
 

I.2 Graphing the substrates generated: step 2. 
 
dm'log;clear;output;clear'; 
options ps=80 ls=132 nocenter nodate nonumber;  **** 02-12-2004 separating the integer 
substrate for 3 graphs ***;  
 
libname output 'C:\Erika Reeves - Monte Carlo from Geaghan\Nonlinear 021204'; 
 
data Integer; set output.Integer5;  
   if substrateINIT GE 500 and substrateINIT le 700 then Category = 'Medium'; 
   if substrateINIT LE 450 then Category = 'Low'; 
   if substrateINIT GE 750 then Category = 'High'; 
*vars time SubstrateT BiomassT Yb dbiomasst dsubstratet rep SubstrateINIT ksxx umaxxx; 
run; 
 
*proc print data=integer noobs; 
    *var time timepred SubstrateT BiomassT Yb dbiomasst dsubstratet SubstrateINIT ksxx 
umaxxx; 
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    *title1 'Generated data'; 
*run; 
proc sort data=integer; by category; run;  
 
options ps=56 ls=132; 
*goptions device=win; 
 
proc plot data=integer; by category;   
    plot BiomassT*time; title1 'Biomass versus Time'; run; 
proc plot data=integer;  by category; 
 plot SubstrateT*time; title1 'Substrate versus Time'; run; 
proc plot data=integer;  by category; 
 plot BiomassT*SubstrateT ; title1 'Biomass versus Substrate'; run; 
 
quit; 

 
I.3 Nonlinear models fitting: step 3.  
 
dm'log;clear;output;clear'; 
options ps=80 ls=132 nocenter nodate nonumber;  **** 020304 newest file ***;  
 
libname output 'C:\Erika Reeves - Monte Carlo from Geaghan\Nonlinear e integer Output 
020604\'; 
 
data Integer; set output.Integer5;  
*keep time SubstrateT BiomassT Yb dbiomasst dsubstratet rep SubstrateINIT ksxx umaxxx; 
run; 
 
proc Sort data=integer; by SubstrateINIT rep time; run; 
options ps=256 ls=132; 
 
 
******************* NONLINEAR METHOD *******************************************; 
 
******From: Shuler and Kargi's Bioprocess Engineering Book (newest edition)- with 
changing BiomassT ***********; 
 
************************  FIXED  *********************************************; 
*********************** GIVEN INITIAL PARAMETERS *****************************; 
 
proc model data=integer MAXITER=10000 noprint;*CONVERGE=0.001; by SubstrateINIT rep; 
title1 'Kinetics model - 6.52 equation with biomassT changing - Fixed'; 
  parameters mu = 0.6 ks = 50; Substrate0 = SubstrateINIT; Biomass0 = 0.5; 
t0=0; 
eq.g1 = ((( (   ((Ks*Yb + Substrate0*Yb + Biomass0)/(Substrate0*Yb + Biomass0)) * 
      log(BiomassT/Biomass0)) - ((Ks*Yb)/(Substrate0*Yb + Biomass0)) * 
      log((Yb*Substrate0 + Biomass0 - BiomassT) / (Yb*Substrate0)) ) / mu ) + t0)- time; 
eq.g2=(BiomassT-Biomass0)-yb*(Substrate0-SubstrateT); 
fit g1 / outest=ParmEstimates1a; 
run; 
data ParmEstimates1a; set ParmEstimates1a; Dataset = 'Shuler-fixed-given'; length dataset 
$ 30; run; 
 
 
************************  FIXED *****************************************************; 
*********************** NOT GIVEN INITIAL PARAMETERS *********************************; 
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proc model data=integer MAXITER=10000 noprint;*CONVERGE=0.001; by SubstrateINIT rep; 
title1 'Kinetics model - 6.52 equation with biomassT changing - Fixed'; 
  parms mu ks ; Substrate0 = SubstrateINIT; Biomass0 = 0.5; 
t0=0; 
eq.g1 = ((( (   ((Ks*Yb + Substrate0*Yb + Biomass0)/(Substrate0*Yb + Biomass0)) * 
      log(BiomassT/Biomass0)) - ((Ks*Yb)/(Substrate0*Yb + Biomass0)) * 
      log((Yb*Substrate0 + Biomass0 - BiomassT) / (Yb*Substrate0)) ) / mu ) + t0) -time; 
eq.g2=(BiomassT-Biomass0)-yb*(Substrate0-SubstrateT); 
fit g1 / outest=ParmEstimates1b; 
run; 
data ParmEstimates1b; set ParmEstimates1b; Dataset = 'Shuler-fixed-notgiven'; length 
dataset $ 30; run; 
 
 
***********************************  FITTED   ***********************************; 
*********************** GIVEN INITIAL PARAMETERS *******************************; 
 
 
proc model data=integer MAXITER=20000 noprint;*CONVERGE=0.001; by SubstrateINIT rep; 
title1 'Kinetics model - 6.52 - OLS - Float'; 
  parameters mu = 0.6 ks = 50 Substrate0 = 300 Biomass0 = 0.5; 
t0=0; 
eq.g1 =( (( (   ((Ks*Yb + Substrate0*Yb + Biomass0)/(Substrate0*Yb + Biomass0)) * 
      log(BiomassT/Biomass0)) - ((Ks*Yb)/(Substrate0*Yb + Biomass0)) * 
      log((Yb*Substrate0 + Biomass0 - BiomassT) / (Yb*Substrate0)) ) / mu ) + t0)-time; 
eq.g2=(BiomassT-Biomass0)-yb*(Substrate0-SubstrateT); 
fit g1 / outest=ParmEstimates2a; 
run; 
data ParmEstimates2a; set ParmEstimates2a; Dataset = 'Shuler-float-given'; length dataset 
$ 30;run; 
 
 
***********************************  FITTED   *********************************; 
*********************** NOT GIVEN INITIAL PARAMETERS *********************************; 
 
 
proc model data=integer MAXITER=20000 noprint;*CONVERGE=0.001; by SubstrateINIT rep; 
title1 'Kinetics model - 6.52 - OLS - Float'; 
  parms mu ks Substrate0 = 300 Biomass0 = 0.5; 
t0=0; 
eq.g1 = ((( (   ((Ks*Yb + Substrate0*Yb + Biomass0)/(Substrate0*Yb + Biomass0)) * 
      log(BiomassT/Biomass0)) - ((Ks*Yb)/(Substrate0*Yb + Biomass0)) * 
      log((Yb*Substrate0 + Biomass0 - BiomassT) / (Yb*Substrate0)) ) / mu ) + t0)-time;. 
eq.g2=(BiomassT-Biomass0)-yb*(Substrate0-SubstrateT); 
fit g1 / outest=ParmEstimates2b; 
run; 
data ParmEstimates2b; set ParmEstimates2b; Dataset = 'Shuler-float-notgiven'; length 
dataset $ 30;run; 
 
 
******************************  NONLINEAR METHOD ******************************; 
 
****************************** LEE METHOD ************************************; 
 
********************************** FIXED   ****************************************; 
*********************** GIVEN INITIAL PARAMETERS ********************************; 
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proc model data=integer CONVERGE=0.001 MAXITER=10000 noprint; by SubstrateINIT rep; 
    title1 'Lee equation with biomassT and substrateT changing- Fixed'; 
parameters mu = 0.6 ks = 50; Biomass0 = 0.5; Substrate0 = SubstrateINIT; 
parms ks mu Biomass0 Substrate0; 
     endogenous BiomassT substrateT; 
     exogenous time; 
   eq.g1=(((ks*Yb/(Biomass0+Substrate0*yb))+1)*log(BiomassT/Biomass0)+ 
         ((ks*Yb/(Biomass0+Substrate0*Yb))*log(Substrate0/SubstrateT)))-time*mu; 
   eq.g2=(BiomassT-Biomass0)-yb*(Substrate0-SubstrateT); 
   fit g1  / outest=ParmEstimates3a; 
run; 
data ParmEstimates3a; set ParmEstimates3a; dataset = 'Lee-fixed-given'; length dataset $ 
30; run; 
 
*************************************  FIXED  *************************************; 
*********************** NOT GIVEN INITIAL PARAMETERS *****************************; 
 
proc model data=integer CONVERGE=0.001 MAXITER=10000 noprint; by SubstrateINIT rep; 
    title1 'Lee equation with biomassT and substrateT changing- Fixed'; 
parms mu  ks; Biomass0 = 0.5; Substrate0 = SubstrateINIT; 
     endogenous BiomassT substrateT; 
     exogenous time; 
   eq.g1=(((ks*Yb/(Biomass0+Substrate0*yb))+1)*log(BiomassT/Biomass0)+ 
         ((ks*Yb/(Biomass0+Substrate0*Yb))*log(Substrate0/SubstrateT)))-time*mu; 
   eq.g2=(BiomassT-Biomass0)-yb*(Substrate0-SubstrateT); 
   fit g1  / outest=ParmEstimates3b; 
run; 
data ParmEstimates3b; set ParmEstimates3b; dataset = 'Lee-fixed-notgiven'; length dataset 
$ 30; run; 
 
***************************  FITTED  *******************************************; 
*********************** GIVEN INITIAL PARAMETERS *******************************; 
 
proc model data=integer CONVERGE=0.001 MAXITER=10000 noprint; by SubstrateINIT rep; 
    title1 'Lee equation with biomassT and substrateT changing - Float'; 
  parameters mu = 0.6 ks = 50 Substrate0 = 300 Biomass0 = 0.5; 
     endogenous BiomassT substrateT; 
     exogenous time; 
   eq.g1=(((ks*Yb/(Biomass0+Substrate0*yb))+1)*log(BiomassT/Biomass0)+ 
         ((ks*Yb/(Biomass0+Substrate0*Yb))*log(Substrate0/SubstrateT)))-time*mu; 
   eq.g2=(BiomassT-Biomass0)-yb*(Substrate0-SubstrateT); 
   fit g1 g2 / outest=ParmEstimates4a; 
run; 
data ParmEstimates4a; set ParmEstimates4a; dataset = 'Lee-float-given'; run; 
 
 
***************************  FITTED  *******************************************; 
*********************** NOT GIVEN INITIAL PARAMETERS *****************************; 
 
proc model data=integer CONVERGE=0.001 MAXITER=10000 noprint; by SubstrateINIT rep; 
    title1 'Lee equation with biomassT and substrateT changing - Float'; 
  parms mu ks Substrate0 = 300 Biomass0 = 0.5; 
     endogenous BiomassT substrateT; 
     exogenous time; 
   eq.g1=(((ks*Yb/(Biomass0+Substrate0*yb))+1)*log(BiomassT/Biomass0)+ 
         ((ks*Yb/(Biomass0+Substrate0*Yb))*log(Substrate0/SubstrateT)))-time*mu; 
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   eq.g2=(BiomassT-Biomass0)-yb*(Substrate0-SubstrateT); 
   fit g1 g2 / outest=ParmEstimates4b; 
run; 
data ParmEstimates4b; set ParmEstimates4b; dataset = 'Lee-float-notgiven'; run; 
 
 
******  ROBINSON METHOD with Substrate changing is a permutation of LEE ******; 
************************  FIXED   ****************************************************; 
*********************** GIVEN INITIAL PARAMETERS ************************************; 
 
**From: Dr.Drapcho's master student thesis - with substrateT changing only ***; 
proc model data=integer CONVERGE=0.001 MAXITER=10000 noprint; by SubstrateINIT rep; 
    title1 'Robinson equation with SubstrateT changing - Fixed'; 
  parameters mu = 0.6 ks = 50; Biomass0 = 0.5; Substrate0 = SubstrateINIT; 
      endogenous BiomassT substrateT; 
     exogenous time; 
   eq.g1=(((ks*Yb/(Biomass0+Substrate0*yb))+1)*log((yb*(Substrate0-
SubstrateT)+Biomass0)/Biomass0)+ 
         ((ks*Yb/(Biomass0+Substrate0*Yb))*log(Substrate0/SubstrateT)))-time*mu; 
   eq.g2=(BiomassT-Biomass0)-yb*(Substrate0-SubstrateT); 
   fit g1  / outest=ParmEstimates5a; 
run; 
data ParmEstimates5a; set ParmEstimates5a; dataset = 'Robinson-fixed-given'; length 
dataset $ 40; run; 
 
 
****************************** FIXED   **************************************; 
*********************** NOT GIVEN INITIAL PARAMETERS ***************************; 
 
**From: Dr.Drapcho's master student thesis - with substrateT changing only ***; 
proc model data=integer CONVERGE=0.001 MAXITER=10000 noprint; by SubstrateINIT rep; 
    title1 'Robinson equation with SubstrateT changing - Fixed'; 
  parms ks mu; Biomass0 = 0.5; Substrate0 = SubstrateINIT; 
     endogenous BiomassT substrateT; 
     exogenous time; 
   eq.g1=(((ks*Yb/(Biomass0+Substrate0*yb))+1)*log((yb*(Substrate0-
SubstrateT)+Biomass0)/Biomass0)+ 
         ((ks*Yb/(Biomass0+Substrate0*Yb))*log(Substrate0/SubstrateT)))-time*mu; 
   eq.g2=(BiomassT-Biomass0)-yb*(Substrate0-SubstrateT); 
   fit g1  / outest=ParmEstimates5b; 
run; 
data ParmEstimates5b; set ParmEstimates5b; dataset = 'Robinson-fixed-notgiven'; length 
dataset $ 40; run; 
 
***************************  FITTED  ******************************************; 
*********************** GIVEN INITIAL PARAMETERS ******************************; 
 
**From: Dr.Drapcho's master student thesis - with substrateT changing only ***; 
proc model data=integer CONVERGE=0.001 MAXITER=10000 noprint; by SubstrateINIT rep; 
    title1 'Robinson equation with SubstrateT changing - Fixed'; 
  parameters mu = 0.6 ks = 50 Substrate0 = 300 Biomass0 = 0.5; 
      endogenous BiomassT substrateT; 
     exogenous time; 
   eq.g1=(((ks*Yb/(Biomass0+Substrate0*yb))+1)*log((yb*(Substrate0-
SubstrateT)+Biomass0)/Biomass0)+ 
         ((ks*Yb/(Biomass0+Substrate0*Yb))*log(Substrate0/SubstrateT)))-time*mu; 
   eq.g2=(BiomassT-Biomass0)-yb*(Substrate0-SubstrateT); 
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   fit g1  / outest=ParmEstimates6a; 
run; 
data ParmEstimates6a; set ParmEstimates6a; dataset = 'Robinson-float-given'; length 
dataset $ 40; run; 
***************************  FITTED *********************************************; 
*********************** NOT GIVEN INITIAL PARAMETERS ***************************; 
 
**From: Dr.Drapcho's master student thesis - with substrateT changing only ***; 
proc model data=integer CONVERGE=0.001 MAXITER=10000 noprint; by SubstrateINIT rep; 
    title1 'Robinson equation with SubstrateT changing - Fixed'; 
 parms mu ks Substrate0 = 300; Biomass0 = 0.5; 
      endogenous BiomassT substrateT; 
     exogenous time; 
   eq.g1=(((ks*Yb/(Biomass0+Substrate0*yb))+1)*log((yb*(Substrate0-
SubstrateT)+Biomass0)/Biomass0)+ 
         ((ks*Yb/(Biomass0+Substrate0*Yb))*log(Substrate0/SubstrateT)))-time*mu; 
   eq.g2=(BiomassT-Biomass0)-yb*(Substrate0-SubstrateT); 
   fit g1  / outest=ParmEstimates6b; 
run; 
data ParmEstimates6b; set ParmEstimates6b; dataset = 'Robinson-float-notgiven'; length 
dataset $ 40; run; 
 
 
**********************************************************************************; 
 
data nonlinear1 errors; length dataset $ 20 SubstrateINIT rep _NUSED_ 3 group $ 3 ; 
   set ParmEstimates1a  ParmEstimates2a  ParmEstimates3a  ParmEstimates4a  
       ParmEstimates1b  ParmEstimates2b  ParmEstimates3b  ParmEstimates4b 
    ParmEstimates5a  ParmEstimates5b  ParmEstimates6a  ParmEstimates6b; 
       if  SubstrateINIT = 200 then group='A'; 
       if  SubstrateINIT = 250 then group='B'; 
       if  SubstrateINIT = 300 then group='C'; 
       if  SubstrateINIT = 350 then group='D'; 
       if  SubstrateINIT = 400 then group='E'; 
       if  SubstrateINIT = 450 then group='F'; 
       if  SubstrateINIT = 500 then group='G'; 
       if  SubstrateINIT = 550 then group='H'; 
       if  SubstrateINIT = 600 then group='I'; 
       if  SubstrateINIT = 650 then group='J'; 
       if  SubstrateINIT = 700 then group='K'; 
       if  SubstrateINIT = 750 then group='L'; 
       if  SubstrateINIT = 800 then group='M'; 
       if  SubstrateINIT = 850 then group='N'; 
       if  SubstrateINIT = 900 then group='O'; 
       if  SubstrateINIT = 950 then group='P'; 
       if  SubstrateINIT = 1000 then group='Q'; 
 
keep Biomass0 Dataset Substrate0 SubstrateINIT _NUSED_ _STATUS_ group ks mu rep; 
   if _STATUS_ eq '3 Error' then output errors; 
     else if Ks lt 0 then output errors; 
     else if Ks gt 1000 then output errors; 
     else if mu lt 0 then output errors; 
     else if Substrate0 ne . and Substrate0 lt 0 then output errors; 
     else if Substrate0 gt 10000 then output errors; 
   else output nonlinear1; 
run; 
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data output.nonlinear5; set nonlinear1; 
   keep Biomass0 Dataset Substrate0 SubstrateINIT _NUSED_ _STATUS_ group ks mu rep; 
run; 
 
data output.Errors5; set errors; 
   keep Biomass0 Dataset Substrate0 SubstrateINIT _NUSED_ _STATUS_ group ks mu rep; 
run; 
 
*proc print data=nonlinear1; 
  *title1 'Individual observations by categories'; 
*run; 
 
proc sort data = errors; by dataset ; 
proc means data = errors ; by dataset ; 
  title1 'Means by categories for errors'; 
   var ks mu ; 
   output out=next2 mean= MeanKs MeanMu ; 
run; 
 
 
proc sort data = nonlinear1; by dataset ; 
 
 
proc means data = nonlinear1 ; by dataset ; 
  title1 'Means by categories for nonlinear without errors'; 
   var ks mu ; 
   output out=next1 mean= MeanKs MeanMu ; 
run; 
 
proc univariate data=nonlinear1 plot normal NOBYPLOT; by dataset;* SubstrateINIT; 
    var ks mu ;  
run; 
 
options ps=50 ls=99; 
proc chart data=nonlinear1;by dataset; 
vbar ks/subgroup=group; 
run; 
 
ODS HTML file='C:\ ERIKA Monte Carlo program\linear program e 
output'\NonlinearMeans.html' 
    Style=Styles.Minimal; 
 
proc print data=next1;  
  title1 'Means by categories for nonlinear without errors'; 
run; 
 
proc print data=next2;  
  title1 'Means by categories for errors'; 
run; 
ods html close; 

 
quit; 

 
I.4 Linear models fitting: step 4.  
 
dm'log;clear;output;clear'; 
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options ps=80 ls=132 nocenter nodate nonumber;  **** 020304 newest file ***;  
 
libname output 'C:\ERIKA Monte Carlo program\linear program e output'; 
 
 
data Integer; set output.Integer5;  
**************************** LINEAR METHOD ***********************************; 
 
 
ODS HTML file='C:\ERIKA Monte Carlo program\linear program e output\LinearMeans3.html' 
    Style=Styles.Minimal; 
 
**********************************************************************************; 
****************************  LINEAR METHOD  ************************************; 
*******************************************************************************; 
 
data subset1 subset2 subset3 subset4 Whole; set Integer; length category $ 40; 
Title1 "Linearization methods"; 
   lxbt = log(BiomassT); 
   Category='Whole'; 
   output Whole;  
   Category='Exponential2-MiddleTime'; 
     if time LE 4 then Category='Exponential1-EarlyTime'; 
     if time GE 8 then Category='Stationary-LateTime';  
   output subset1;  
   Category='Omit'; 
     if substrateINIT GE 500 and substrateINIT le 700 then Category = 'MediumSubstrate'; 
     if substrateINIT LE 400 then Category = 'LowSubstrate'; 
     if substrateINIT GE 800 then Category = 'HighSubstrate'; 
   output subset2;  
   Category='Omit'; 
     if  SubstrateINIT = 200  then Category = 'Select'; 
     if  SubstrateINIT = 400  then Category = 'Select'; 
     if  SubstrateINIT = 600  then Category = 'Select'; 
     if  SubstrateINIT = 800  then Category = 'Select'; 
     if  SubstrateINIT = 1000 then Category = 'Select'; 
   output subset3;  
   if category = 'Select' then do;   
     Category='Select-Exponential2'; 
     if time LE 4 then Category='Select-Exponential1'; 
     if time GE 8 then Category='Select-Stationary';  
   output subset4;  
   end;  
 
run; 
 
data categories; set subset1 subset2 subset3 subset4 whole; length dataset $ 40; 
   if Category='Omit' then delete; 
run; 
 
proc sort data=categories; by category rep substrateINIT; run;  
 
 
***********************************************************************************; 
***********************************************************************************; 
 
proc means data=categories noprint ; 
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   var substrateT; 
   by category rep substrateINIT ; 
output out=linearX mean=submean; *** the submean is the averaged substrate for each time 
period **; 
Title1 "The Three phases together over the average of the entire substrateT "; 
run; 
data linearX; set linearX; keep category rep substrateINIT submean; run; 
*proc print data=linearX; run; 
 
proc reg data=categories outest=linear2 noprint; by category rep substrateINIT;   
    title2 "First Fit step1 - plot ln(biomass) versus time to get the slope=mu"; 
    model lxbt = time; 
run; 
 
data linear1; merge linear2 linearX; by category rep substrateINIT; 
run; 
*proc print data=linear1; run; 
 
proc sort data=linear1; by category rep substrateINIT; run; 
 
data linear1; set linear1;  
   title2 "First Fit step1 - plot ln(biomass) versus time to get the slope=mu"; 
    Mu=time;    *** time is the slope in this data set***; 
    Sub_Mu  = submean / Mu;   *** The Sub_Mu is the Substrate divided by mu***; 
 inv_sub = 1 / submean; 
 inv_Mu  = 1 / Mu; 
run; 
 
*********************************************************************************; 
 
******************* HANES PLOT method *******************************************; 
************** Hanes Plot for the categories ***********************************; 
*********************************************************************************; 
 
proc reg data=linear1 outest=linear3 noprint; by category rep;  
    Title2 "Hanes Plot Calculations for the categories"; 
    model Sub_Mu = submean;  ***this submean is the real averaged substrate***; 
run; 
*proc print data=linear3; run; 
 
data linear3; length dataset $ 30; set linear3;  
   Title2 "Kinetic Parameters Calculations using Hanes Plot for the categories"; 
   MuMax = 1 / submean;  ***the submean is the slope from the regression results of 
linear2***; 
   ksXX  = MuMax * intercept; 
   Dataset = 'Hanes Plot'; 
run; 
 
data Hanes_para;   *** the kinetic parameters of Hanes calculations ****; 
     set linear3; 
   keep category rep submean MuMax ksXX Dataset; 
run;                                    
title2 "Kinetic Parameters Calculations using Hanes Plot for the categories"; 
proc print data=Hanes_para;  
 
run; 
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*********************************************************************************; 
 
**************************** Lineweaver-Burk Plot method ***********************; 
************** Lineweaver-Burk Plot method for the categories *****************; 
 
************************************************************************************; 
 
proc reg data=linear1 outest=linear4 noprint; by category rep;  
Title2 "Lineweaver-Burk Plot Calculations for the categories"; 
    model inv_Mu = inv_sub;   *** this submean is the real averaged substrate *****; 
run; 
 
 
data linear4; length dataset $ 30; set linear4;  
   Title2 "Kinetic Parameters Calculations using Lineweaver-Burk Plot for categories"; 
   MuMax = 1 /  intercept;  *** the substrateINIT is the slope from the regression 
results of linear2 ****; 
   ksXX = MuMax * inv_sub; 
Dataset='Lineweaver-Burk Plot'; 
run; 
 
data Line_para;  ***kinetic parameters for phase3 using Lineweaver-Burk plot ***; 
set linear4; 
keep category rep  submean MuMax ksXX Dataset; 
run; 
title2 "Kinetic Parameters Calculations using Lineweaver-Burk Plot for categories"; 
proc print data=Line_para; run; 
 
**************************************************************************; 
****************************** MEANS OF THE CATEGORIES ***********************; 
*************************** output results to permanent SAS datasets ************; 
 
 
data para; 
set Hanes_para Line_para; run; 
 
data linear; set para;run; 
 
proc sort data=linear; by dataset category ; run; 
proc univariate data=linear plot normal nobyplot ; by dataset category;  
var ksXX muMax; 
run; 
 
proc means data = linear noprint; by dataset category; 
  title1 'Means by categories for the integer substrates '; 
   var ksXX muMax;  
output out=new1 mean= MeanKsXX MeanMuXX ; 
run; 
proc print data=new1;run; 
 
quit; 
 
ods html close; 
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APPENDIX J 
 

J.1 THE PROGRAM USED TO DEVELOP THE HISTOGRAM 
GRAPHS FOR THE µmax AND THE Ks MEANS KINETIC 
PARAMETER ESTIMATIONS FROM THE NONLINEAR OUTPUT 
 
dm'log;clear;output;clear'; 
options ps=80 ls=132 nocenter nodate nonumber;  **** 020304 newest file ***;  
 
libname output 'C:\Erika Reeves - Monte Carlo from Geaghan\NONLINEAR 021704'; 
 
 
data nonlinear; set output.nonlinear5;  
   *vars Biomass0 Dataset Substrate0 SubstrateINIT _NUSED_ _STATUS_ group ks mu rep; 
run; 
proc sort data=nonlinear; by dataset; run; 
 
/* 
proc univariate data=nonlinear plot normal NOBYPLOT; by dataset;* SubstrateINIT; 
    var ks mu ;  
run; 
*/ 
 
GOPTIONS DEVICE=cgm GSFMODE=REPLACE GSFNAME=OUT ftext="Swiss" ftitle="Swiss"; 
GOPTIONS GSFNAME=OUT3;   
FILENAME OUT3  'C:\Erika Reeves - Monte Carlo from Geaghan\NONLINEAR 021704\NLHist1.CGM'; 
 
 
proc gchart data=nonlinear; by dataset;  
  vbar ks / type=freq midpoints=0 to 280 by 20 ;  
  ***Graphs for the Ks kinetic parameter ****; 
 
   PATTERN C=RED V=S ; 
run; 
 
 
GOPTIONS DEVICE=cgm GSFMODE=REPLACE GSFNAME=OUT ftext="Swiss" ftitle="Swiss"; 
GOPTIONS GSFNAME=OUT4;   
FILENAME OUT4  'C:\Erika Reeves - Monte Carlo from Geaghan\NONLINEAR 021704\NLHist2.CGM'; 
 
proc gchart data=nonlinear; by dataset;  
   vbar mu / type=freq midpoints=0.48 to 0.8 by 0.02;   
   ***Graphs for the mumax kinetic parameter ****; 
 
   PATTERN C=blue V=S; 
 
run; quit;  
 
 

The following Figures from J.1 to J.12 are the histograms for the µmax determined 

from the twelve nonlinear combinations using the SAS program.  The kinetic parameter, 
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µmax, has the x-axis range from 0.5 to 0.96 and the y-axis range is for the frequency that 

those values appear.  The Figure J.1 is for the Lee equation-fixed-given, the Figure J.2 is 

for the Lee equation-fixed-not given, the Figure J.3 is for the Lee equation-float-given, 

the Figure J.4 is for the Lee equation-float-not given, the Figure J.5 is for the Robinson 

equation-fixed-given, the Figure J.6 is for the Robinson equation-fixed-not given, the 

Figure J.7 is for the Robinson equation-float-given, the Figure J.8 is for the Robinson 

equation-float-not given, the Figure J.9 is for the Shuler & Kargi equation-fixed-given, 

the Figure J.10 is for the Shuler & Kargi equation-fixed-not given, the Figure J.11 is for 

the Shuler & Kargi equation-float-given, and finally the Figure J.12 is for the Shuler & 

Kargi equation-float-not given. 

FR
EQ

U
E

N
C

Y

0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

7 0 0 0 0

mu M I DPO I NT

0 . 4 8 0 . 5 0 0 . 5 2 0 . 5 4 0 . 5 6 0 . 5 8 0 . 6 0 0 . 6 2 0 . 6 4 0 . 6 6 0 . 6 8 0 . 7 0 0 . 7 2 0 . 7 4 0 . 7 6 0 . 7 8 0 . 8 0

 



 173

Figure J.1 Lee Equation – Fixed – Given for MuMax 
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Figure J.2 Lee Equation – Fixed – Not Given for MuMax 
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Figure J.3 Lee Equation – Fitted – Given for MuMax 
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Figure J.4 Lee Equation – Fitted – Not Given for MuMax 
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Figure J.5 Robinson Equation – Fixed – Given for MuMax 
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Figure J.6 Robinson Equation – Fixed – Not Given for MuMax 
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Figure J.7 Robinson Equation – Fitted – Given for MuMax 
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Figure J.8 Robinson Equation – Fitted – Not Given for MuMax 
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Figure J.9 Shuler & Kargi Equation – Fixed– Given for MuMax 
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Figure J.10 Shuler & Kargi Equation – Fixed– Not Given for MuMax 
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Figure J.11 Shuler & Kargi Equation – Fitted– Given for MuMax 
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Figure J.12 Shuler & Kargi Equation – Fitted– Not Given for MuMax 
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