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ABSTRACT 

Resistant starch (RS) reaches the large intestine for fermentation and is considered a 

prebiotic. We wanted to determine if we could reduce fermentation for future mechanistic studies 

and how there is improved insulin sensitivity in human studies with or without increased incretin 

hormone glucagon-like peptide 1 (GLP-1). Two main studies were performed. 

In the first main study, low potency antibiotics (Ampicillin 1g/L and Neomycin 0.5g/L) 

were added to the drinking water of rats to reduce fermentation of RS. Antibiotics were used either 

prior (first) to or during (second) feeding of RS. Results demonstrated that low potency antibiotics 

given prior to resistant starch feeding were not able to prevent fermentation in the cecum 

independently of water or cecal contents gavage (donor rats fed resistant starch). Low potency 

antibiotics given during resistant starch feeding were able to reduce fermentation. 

The main purpose of second main study was to determine if resistant starch, as either an 

isolated starch or in a whole grain flour, increases gene expression of pyruvate carboxylase 

(PCase), and glucose-6-phosphatase (G6Pase). These two enzymes are involved in intestinal 

gluconeogenesis (IGN) which improves endogenous glucose control. Certain diets can trigger 

IGN. Goto-Kakizaki (GK) rats (first) and Sprague Dawley rats (second) were used to measure IGN 

gene expression in the fasted or fed state, respectively. GK rats were in four diet groups, two 

control diets (highly digestible isolated starch, CON; and low resistant starch whole grain flour, 

WG) and two high resistant starch diets (high amount of isolated resistant starch, RS; high amounts 

of resistant starch in a whole grain flour, WG+RS). Gene expression was measured in the fasted 

state with insulin injection used to model fed state. Sprague Dawley rats were fed the same diets 

but with moderate or high fat and gene expression measured in the fed state. High resistant starch 

in the diet increased IGN gene expression in the fed state, regardless of fat level. In the fasted state, 
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there were no significant increases of PCase or G6Pase even with insulin injection. Improvement 

of insulin sensitivity regardless of GLP-1 production in humans fed resistant starch may be a result 

of IGN. 
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CHAPTER 1: INTRODUCTION 

1.1. Significance of Research 

Obesity is considered a key risk factor in the development of hypertension, diabetes, 

coronary heart diseases, and colon cancer [1]. Obesity is caused as a consequence of an enriched 

fat diet and a sedentary lifestyle. The Centers for Disease Control and Prevention (CDC) stated 

that the average fat intake of American people was 33% of energy in 2010. The gut microbiota is 

now known as an environmental factor involved in body weight, energy homeostasis, nutrition, 

immunomodulation, behavior, and stress response [2, 3]. A high fat diet can lead to dysbiosis, 

which is the disruption of the normal balanced state of the gut microbiota [4]. Dysbiosis can lead 

to diseases and can be associated with pathogens or can be associated with the change of former 

symbionts into pathobionts [5] which release potential toxic products that play an important role 

in illnesses such as inflammatory bowel, chronic fatigue syndrome, obesity, cancer, colitis, and 

others [6, 7]. The obese microbiome may harvest more energy from the diet without compensation 

of increased energy expenditure [8]. Also, in obese people it has been observed that there is a 

decrease in phylum Bacteriodetes and an increase in phylum Firmicutes [2]. Cani in 2007, 

demonstrated that in mice fed a high fat diet, the variation of gut microbiota is associated with an 

increased intestinal permeability and an inflammatory endotoxemia [9]. High saturated fat diets 

can induce severe insulin resistance in skeletal muscle [10]. 

The gut microbiota is the collection of microbial populations that exists in the 

gastrointestinal tract including bacteria, archaea, viruses, and some unicellular eukaryotes. In 

humans it is estimated that there are 1014 microorganisms, and the colon has up to 1012 

microorganisms/ml which is the highest density found in humans. The interaction of the gut 

microbiota with the host has influential consequences with metabolism and health. The majority 
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of microorganisms found in the colon belong to the phyla Firmicutes, Bacteroidetes, 

Actinobacteria, and Protobacteria. 

Fermentable fiber is considered a prebiotic that stimulates the growth and/or activity of 

bacteria in the colon, and, thus, improve host health [11]. The Dietary Reference Intake (DRI) 

committee on fiber set the Adequate Intake (AI) for fiber as 35 g/day for men and 28 g/day for 

women. The Agricultural Research Service reported that the mean intake of dietary fiber is 12.1-

13.8 g/day for women and 13.5-17.9 g/day for men.  Both levels of intake are lower than 

recommended. Fermentable fiber is more bioactive than other non-fermentable fibers because 

during its fermentation gases and acids produced result in health benefits. Studies have provided 

evidence that resistant starch is a prebiotic, which stimulates the growth of beneficial bacteria in 

the colon. Our lab is interested in the fermentation of resistant starch, which is one of the many 

types of fermentable fiber.  Its fermentation involves Bacteriodes thetaiotaomicron, 

Bifidobacterium spp., and some Lactobacillus spp [12]. Bacteria, mostly in Clostridial clusters use 

the products of these bacteria, acetate and lactate, and produce butyrate [13]. Butyrate and other 

short chain fatty acids are associated with improved health [14]. 

It is important to increase the intake of fibers in the daily food consumption. A variety of 

fibers is important including consumption of fermentable fibers. Our lab is interested in the 

investigation of the benefits of consumption of resistant starch diets in dysbiosis and its role in 

obesity and diabetes. It is important to study the effects of resistant starch in rodent models of 

obesity and insulin resistance and diabetes as well as the interaction of resistant starch and high fat 

diets. In the future, more people can include the consumption of resistant starch in their daily diets 

and may improve their health.  
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1.2. Objectives 

1. Determine if lower potency antibiotics can reduce fermentation for future mechanistic 

studies in order to avoid the use of very potent antibiotics such as vancomycin. 

2. Determine if a resistant starch diet can improve the insulin sensitivity of Goto-Kakizaki 

(GK) rats. 

3. Determine if feeding an isolated high resistant starch product or a high resistant starch 

whole grain flour would result in increased intestinal gluconeogenesis (IGN) gene 

expression in either the fasted or fed state. 

4. Determine if a high fat diet affected IGN gene expression compared to a moderate fat 

diet. 
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CHAPTER 2: LITERATURE REVIEW 

2.1. Resistant Starch 

The starch properties depend on how organized are amylose and amylopectin molecules 

within the granule. Starches were classified by Englyst et al. (1992) by in vitro assay into three 

types: (1) rapidly digestible starch digested to glucose in less than 20 minutes, (2) slowly digestible 

starch digested between 20 and 120 minutes, and (3) resistant starch [15]. Any starch digested after 

120 minutes is considered a resistant starch [16]. Resistant starch resists amylase digestion in the 

small intestine and passes directly to the large intestine where it is fermented [17]. Resistant starch 

is a non-viscous fiber and it can be classified into four groups depending on source and processing. 

Resistant starch 1 is found in whole grains because starch granules are inserted in indigestible plant 

matrix. Resistant starch 2 is found in raw potatoes, wheat, high-amylose maize, and others; its 

starch granules are native. Resistant starch 3 is any crystallized starch by cooking-cooling. Finally, 

resistant starch 4 is starch chemically modified by esterification, cross-linking, or trans-

glycosylation [18]. There is a possible type 5 which is a mixture of starch with lipid moiety[19]. 

Resistant starch is considered a prebiotic because it is a non-digestible food ingredient that 

stimulates the growth and/or activity of certain bacteria in the colon and, thus, benefits host health 

[20]. Bacterial fermentation of resistant starch results in production of short chain fatty acids 

(SCFAs) mainly as acetate, propionate, and butyrate. Bacteroides thetaiotaomicron, 

Bifidobacterium longum, and some Lactobacillus spp attach to the surface of starch molecules and 

produce acetate, propionate, succinate, and lactate [21]. Lactate and acetate are used by bacteria 

in Clostridium cluster IV and Clostridium cluster XIV to produce butyrate [22, 23]. Acetate, 

propionate, and butyrate are involved in energy homeostasis and metabolism. Among the many 

functions some examples are: acetate is the most abundant SCFA and it is used for ATP formation, 
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propionate is involved in hepatic lipid metabolism, and butyrate is absorbed by the colonic mucosa 

and it’s the preferred energy source [24]. 

Resistant starch has been attributed to promoting several beneficial health effects such as 

reduction of colon cancer risk [25], improvement of colon health [26], reduction of diabetes and 

reduction of body weight and fat [27], and others. Also, commercial resistant starch is available 

and can be used as a food ingredient for lowering the caloric value and improving, textural and 

organoleptic characteristics [28]. Therefore, the food industry has developed a special interest to 

use resistant starch as a food ingredient to replace rapidly digestible starch.  

Our lab uses high amylose maize resistant starch 2 (HAMRS2) which contains ~60% 

amylose and ~40% amylopectin [16]. HAMRS2 is used for animal and human studies, and 

different results have been observed. Rodent studies demonstrated postprandial glycaemia 

reduction [29], increased GLP-1 and PYY peptide [29, 30], increased energy expenditure [27], 

reduction of body fat [31], increased pancreatic beta-cell density [32], and others. Human studies 

demonstrated that inclusion of resistant starch in the diet can significantly reduce insulin levels 

[18], improve peripheral insulin resistance [33], enhance postprandial insulin sensitivity [34], 

reduce food intake [35], and others. Americans consume approximately 4.9 grams per day of 

resistant starch [36]. However, more research is required in human subjects. 

2.2. Gut Microbiota 

The human body is populated by several bacteria, archaea, viruses, and unicellular 

eukaryotes. Microbiota, microflora, or normal flora is the collection of microorganisms that coexist 

peacefully within the host. The human microbiota is estimated to contain 1014 bacterial cells, and 

70% of microbes in the human body live in the colon [37]. Gut microbiota colonization starts at 

birth and its composition depends on the way of delivery, vaginal vs. caesarean [38]. The gut 
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microbiota is dominated by two bacterial phyla: Bacteroides and Firmicutes, and in minor 

proportions: Proteobacteria, Verrucomicrobia, Actinobacteria, Fusobacteria, and Cyanobacteria 

[39]. The gut microbiota is important for the human host because it affects metabolism and immune 

functions [40]. Recent research has demonstrated that the gut microbiota plays a key role in 

diseases such as colon cancer, obesity, type 2 diabetes, and inflammatory bowel disease [41, 42]. 

Alterations of the gut microbiota composition are known as dysbiosis. Dysbiosis is the 

imbalance of gut microbiota and it is associated with diseases and conditions such as obesity, 

diabetes, Crohn’s disease, and ulcerative colitis. The Western diet (rich in fat and sugar) and life 

style contribute to the development of dysbiosis [7]. Excess food intake, or the consumption of 

wrong types of foods can result in the production of intestinal toxins. The fermentation of these 

toxins can increase the growth of pathogens. Also, usage of antibiotics may cause significant 

alterations of normal gut microbiota [43]. Dysbiosis leads to gut permeability, causing an increase 

in the passage of lipopolysaccharide (LPS), a cell wall component of gram negative bacteria, into 

the portal and systemic circulations [44].  

The gut microbiota composition is not static because it is greatly affected by the host’s diet 

[20]. The gut microbiota of obese subjects is dominated by Firmicutes in greater proportions than 

Bacteroidetes; and opposite proportions are found in lean subjects [45]. Resistant starch affects 

colonic health, fecal bulk and SCFA metabolism and stimulates probiotic bacteria growth and 

activity [28]. Resistant starch is a source of nutrients for colonic bacteria, thus it is considered as 

a tool for the modulation of the gut microbiota [46]. Studies in vitro and using animal models had 

reported increases in bifidobacteria [47, 48] and Bacteroides [49]. Probiotic bacteria stimulated by 

fermentation of resistant starch prevent colonization of the gut and infection by pathogens.  
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2.3. Antibiotics  

Antibiotics are usually used to treat infections and they are prescribed depending on the 

targeted pathogen, Gram positive or Gram negative. The usage of antibiotics could reshape the 

microbiota for short or long periods of time [50]. Cani et al. showed that mice fed a high fat diet 

that were treated with low potency antibiotics (neomycin and ampicillin) improved glucose 

tolerance and cured dysbiosis [51].  

2.4. Insulin resistance  

Insulin resistance occurs when body cells become resistant to the effect of insulin. In order 

to achieve proper effects of insulin, higher levels are demanded. Therefore, the pancreas tries to 

compensate by producing more insulin until it is not able to produce enough insulin and the 

pancreas suffers damage and type 2 diabetes develops. Insulin resistance is a risk factor for 

development of diabetes. High saturated fat diets induce severe insulin resistance. Diets containing 

HAMRS2 have demonstrated improvement in insulin resistance in partially diabetic mice [29], 

and also increased pancreatic mass [32] in Goto-Kakizaki rats, a lean model of type 2 diabetes. 

Also, humans fed diets containing HAMRS2 had demonstrated improvements in insulin sensitivity 

[33, 34, 52]. Robertson et al. observed improvement of peripheral but not hepatic insulin resistance 

by providing 40 g per day of HAMRS2 for 8 weeks in the diet of men and women with insulin 

resistance [33]. 

Diabetes mellitus is a chronic degenerative metabolic disease characterized by a high 

concentration of glucose in blood and insulin cannot clear it. Normal individuals have fasting 

glucose in a range of 80 to 100 mg/dl, pre-diabetic individuals have 101 to 125 mg/dl of fasting 

glucose, and diabetic individuals have more than 126 mg/dl of fasting glucose. Diabetic subjects 

commonly experience excessive thirst, frequent urination, hunger, fatigue, inexplicable weight 

gain or loss, and others. Diabetes has reached epidemic proportions due to an increasing sedentary 



8 

 

lifestyle, overweight, and obesity [53]. According to the National Institute of Diabetes & Digestive 

& Kidney Diseases, 35% of Americans have pre-diabetes and 11.3% of Americans older than 20 

years old already have diabetes. Diabetes includes type 1 and type 2. Diabetes type 1 is prevalent 

in children and adolescents, but now it is known as insulin independent diabetes. Diabetes type 2 

is characterized by inadequate utilization of insulin and it is the most common type of diabetes 

diagnosed in obese subjects. 

2.5. Intestinal Gluconeogenesis  

Glucogenic amino acids, and pyruvate, lactate, propionate, and glycerol are non-

carbohydrate carbon substrates utilized for generation of glucose, and this metabolic pathway is 

called gluconeogenesis. Gluconeogenesis is necessary for long fasting periods or during intensive 

exercise in order to maintain the blood glucose levels necessary for metabolic demands of brain, 

muscle and red blood cells. The liver does 90% of the gluconeogenesis and the other 10% is 

produced by the kidney.  

Nowadays, evidence of intestinal gluconeogenesis (IGN) has been observed. Recent 

research demonstrated that IGN has beneficial effects on glucose and energy homeostasis. De 

Vadder et al. observed that fermentation products of soluble fiber as propionate and butyrate 

activate IGN. IGN leads to signaling from the gut to the brain to reduce hepatic gluconeogenesis 

for better glycemic control and insulin sensitivity [54]. The intestine contributes approximately 20 

to 25% of total endogenous glucose during fasting periods [55]. Key enzymes that are involved in 

IGN are glucose-6-phosphatase (G6Pase), pyruvate carboxylase (PCase), and 

phosphoenolpyruvate carboxykinase cytosolic (PEPCK-C). G6Pase and PEPCK-C gene 

expression has been shown in rat and human small intestine [56]. Gene expression of G6Pase and 
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PEPCK-C are controlled by insulin in small intestine. IGN could have anti-obesity, antidiabetic 

effects, and regulate food intake.   
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CHAPTER 3: MICROBIOTA REDUCTION WITH LOW POTENCY ANTIBIOTICS 

AND COMPARISON OF RECOVERY WITH PREBIOTIC (RESISTANT STARCH) 

AND PROBIOTIC (CECAL TRANSPLANT BY GAVAGE) 

3.1. Introduction  

The human microbiota is estimated to contain approximately 1014 bacterial cells [45]. The 

gastrointestinal tract is the largest organ in the human body and it is rich in molecules considered 

nutrients for microorganisms [37]. The large intestine alone contains over 70% of all 

microorganisms in the human body [45]. The gut microbiota plays a key role in host health [57], 

and it is well recognized as an environmental factor that affects body weight, energy homeostasis, 

nutrition, immunodulation, behavior, and stress response [2, 8, 58]. The human gut microbiota is 

dominated mainly by phyla Bacteroidetes and Firmicutes, and has minor proportions of 

Proteobacteria, Verrucomicrobia, Actinobacteria, Fusobacteria, and Cyanobacteria [39]. Lately, 

gut microbiota has been emphasized as a critical organ that plays an essential role in health and 

disease [39]. The disturbance of the ecological equilibrium of the gut is known as dysbiosis and it 

is linked with pathological processes [59]. Cani et al. demonstrated that the low potency antibiotics 

neomycin and ampicillin improved dysbiosis [51] in obese mice. Both are broad-spectrum 

antibiotics [60]. Additionally, antibiotics can modulate gut microbiota [61] by producing drastic 

short and long term alterations [50, 62]. 

The gut microbiota is not static and it is greatly affected by composition of the host’s diet. 

Resistant starch is a fermentable fiber and is considered a prebiotic [63] because it is a substrate 

for specific beneficial endogenous microorganisms and it modifies the composition of the host gut 

microbiota [64]. The short chain fatty acids (SCFAs) production is stimulated by fermentation in 

large intestine [16]. Fermentation of resistant starch involves the attachment of Bacteroides 

thetaiotaomicron (Gram negative), Bifidobacterium longum (Gram positive), and some 

Lactobacillus spp (Gram positive) to the surface of starch molecules. Bacteroides spp fermentation 
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products are acetate, propionate and succinate; while products of Bifidobacterium spp and 

Lactobacillus spp are lactate and acetate [21]. Lactate and acetate are used by bacteria in 

Clostridium cluster IV and Clostridium cluster XIV (Gram positives) to produce butyrate [22, 23].  

Rodents have been demonstrated to be good models to study alteration of microbial 

communities by administration of antibiotics and interactions between the gut microbiota and the 

host [51, 62]. The aim of this research was to determine if low potency antibiotic treatment 

(Ampicillin 1g/L and Neomycin 0.5g/L) added to drinking water is able to reduce bacteria and 

fermentation of resistant starch by using them either prior to or during feeding of a resistant starch 

diet. The overall future purpose of the current research is to be able to do further studies to 

determine other beneficial effects of dietary resistant starch besides fermentation and SCFAs 

production. The second purpose of this research was to determine if ampicillin and neomycin can 

reduce the gut microbiota in order to avoid the use of very potent antibiotics for treatment of 

dysbiosis and if resistant starch would be able to promote recovery of the gut microbiota after 

antibiotic treatment. In order to accomplish these objectives, we conducted two studies and tested 

the effect of antibiotic treatment on the presence of bacteria that ferment resistant starch and use 

the products; and measured fermentation markers such as pH, SCFAs, and empty cecum weight. 

In Study 1.1, we determined if reduction of the microbiota prior to feeding resistant starch would 

subsequently prevent fermentation of resistant starch. Surprisingly rats were able to robustly 

ferment resistant starch after the antibiotic treatment. This result led us to the study 1.2, where we 

determined if low potency antibiotics would be able to reduce fermentation when resistant starch 

is fed at the same time as the antibiotic treatment. 
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3.2. Research Design and Methods 

Animals and diets  

For both studies, protocols were approved by the Institutional Animal Care and Use 

Committee (IACUC) at Louisiana State University. Male Sprague Dawley rats were purchased 

from Harlan Laboratories Inc. (Indianapolis, IN) at 6 weeks old, maintained in quarantine for 1 

week, and fed a standard chow diet. After quarantine, rats were stratified according to their body 

weight. Rats were housed individually in wire bottom cages at 21-22°C, 55% humidity, and 12:12 

hour light-dark cycle. Rats were fed ad libitum, and had free access to water. During the studies 

the body weight, food intake, and food spillage were measured twice a week. 

Study 1.1. Twenty nine (n=29) rats were used in this study in two phases (Fig. 3.1.). During 

the first phase, the rats were divided into two groups: resistant starch in the diet and no antibiotics 

(RS+NAB, n=10) and low dietary resistant starch with antibiotics (NRS+AB, n=19). The rats in 

RS+NAB group were fed an AIN-93M based diet (Table 3.1.) with high amylose maize resistant 

starch (HAMRS) corn starch diet for 4 weeks. When, they were euthanized the rats were divided 

into two subgroups (n=5), one for collecting cecal contents for pooling for a transplant, and the 

other subgroup had cecal contents collected individually for bacterial analyses by quantitative real-

time polymerase chain reaction (real-time qPCR). Simultaneously, the NRS+AB group was fed 

the AIN-93M diet [65], prepared, pelleted, and irradiated before use by Dyets Company 

(Bethlehem, PA) and given the antibiotic treatment for 4 weeks (Ampicillin 1g/L and Neomycin 

0.5g/L added to their drinking water). This group would have low amylose in the starch in the diet. 

The drinking water (before addition of antibiotics) and food cups for this group receiving 

antibiotics were autoclaved before use. After week four, five rats from this group were euthanized 

to individually collect cecal contents for bacterial analyses by real-time qPCR and the remaining 
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14 rats continued into the second phase. In the second phase, after antibiotic treatment, the 

remaining 14 rats from the NRS+AB group from phase 1 were divided into two subgroups (n= 7). 

The subgroups received either a control water gavage (RS+WtG) or a cecal contents gavage 

(RS+CG) from the cecal contents from RS+NAB in phase 1 of the study (RS donor rats), 

respectively. The volume for the gavages was 5 ml of 1:10 diluted cecal contents in saline solution. 

After the gavage procedure, rats were fed the RS diet used in phase 1 for 3.5 weeks. 

 

 

Figure 3.1. Experimental Design for Study 1.1. Groups included in Phase 1: NRS+AB = AIN93M 

no resistant starch diet + antibiotic treatment (Ampicillin 1g/L and Neomycin 0.5g/L added in their 

drinking water); and RS + NAB = AIN-93M based diet with high amylose maize resistant starch 

(HAMRS) corn starch + no antibiotic treatment. Groups included in Phase 2: RS+NAB = AIN-

93M based diet with high amylose maize resistant starch (HAMRS) corn starch + no antibiotic 

treatment; RS+WtG = HAMRS corn starch + Water gavage; and RS+CG = HAMRS corn starch 

diet + Cecal gavage from donors in phase 1. RS+NAB: Group from Phase 1 considered as positive 

control for Phase 2 to compare with RS+WtG and RS+CG groups. 

N=29 

Sprague Dawley rats 

NRS+AB (n=19)

NRS: AIN93M no RS

AB: Ampicillin 1g/L + 
Neomycin 0.5gL

14 RATS 

ENTER 2ND PHASE

RS+WtG

n=7

RS: RS in AIN93M

WtG: Water Gavage

RS+CG

n=7

RS: RS in AIN93M

CG: Cecal Gavage 
(donor)

*5 RATS EUTHANIZED RUN 
Real Time qPCR 

RS+NAB (n=10)

RS: RS in AIN93M

5 RATS EUTHANIZED  CECAL 
CONTENTS DONORS

*5 RATS EUTHANIZED RUN 
Real Time qPCR

RS+NAB

(POSITIVE CONTROL)

* Targeted bacteria: Lactobacillus spp., Clostridial clusters XIV a & b, Bacteroides spp., Bifidobacterium spp., 16S universal 

1st PHASE: 4 weeks 2nd PHASE: 3.5 weeks 



14 

 

Table 3.1. Diets composition in Study 1.1. 

Ingredients 
  NRS1   RS 

  Grams    kcal   Grams    kcal 

Waxy corn starch2   620.69   2208.42   61.7   219.55 

High-amylose corn starch3,4   0       619   1733.2 

Sucrose   100   387   100   387 

Casein5   140   501.2   135.1   483.66 

Cellulose    50   0   0   0 

Soy bean oil6   40   353.6   34.4   304.1 

Mineral mix   35   29.4   35   29.4 

Vitamin mix   10   38.7   10   38.7 

Choline cloride   2.5   0   2.5   0 

L-Cystine   1.8   7.2   1.8   7.2 

Total   1000   3525.52   1000   3202.81 
1Diets include: NRS= AIN-93M diet [65] and RS = AIN-93M based-with purified high amylose 

maize resistant starch (HAMRS) corn starch. 
2AMIOCA® corn starch. 
3HI-MAIZE® resistant corn starch. 
4Waxy corn starch and high-amylose corn starch were gifts from Ingredion Incorporated 

(Bridgewater, NJ). 
5Casein was reduced from AIN-93M amount (140 g/kg) for RS diet based on the protein in the 

HI-MAIZE® resistant corn starch as analyzed by proximate analysis by Medallion Labs for 

Ingredion Incorporated.  
6Soy bean oil was decreased from AIN-93M amount (40 g/kg) for RS diet based on the fat in 

the HI-MAIZE® resistant corn starch as analyzed by proximate analysis by Medallion Labs for 

Ingredion Incorporated. 

 

Study 1.2. Twenty-four rats were fed ad libitum for 4 weeks and had free access to water. 

The diets provided were (1) low fat and HAMRS corn starch (LFRS), (2) high fat and HAMRS 

corn starch (HFRS), and (3) low fat and amylopectin control corn starch with no resistant starch 

(LFNRS). The compositions of the diets used are listed in Table 3.2. Two groups of rats received 

an antibiotic treatment in the drinking water containing Ampicillin 1g/L and Neomycin 0.5g/L 

(AB=antibiotic and NAB=no antibiotic). The four groups (n=6) were LFRS+AB, HFRS+AB, 

LFNRS+NAB, and LFRS+NAB, where LFNRS+NAB was considered the negative control and 

LFRS+NAB was considered the positive control. 
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Table 3.2. Diets composition Study 1.2. 

Ingredients LFRS1 HFRS LFNRS 

  Grams  kcal   Grams  kcal   Grams  kcal 

Waxy corn starch2 138.35 489.34   0.00 0.00   536.80 1898.66 

High-amylose corn starch3,4 524.00 1467.20   524.66 1469.05   0.00 0.00 

Sucrose 100.00 387.00   100.00 387.00   100.00 387.00 

Casein5 132.27 473.53   133.70 478.65   136.00 486.88 

Cellulose  18.31 0.00   0.00 0.00   135.00 0.00 

Soy bean oil6 38.87 343.61   93.44 826.01   44.00 388.96 

Lard7 0.00 0.00   100.00 900.00   0.00 0.00 

Mineral mix 35.00 29.40   35.00 29.40   35.00 29.40 

Vitamin mix 10.00 38.70   10.00 38.70   10.00 38.70 

Choline cloride 1.40 0.00   1.40 0.00   1.40 0.00 

L-Cystine 1.80 7.20   1.80 7.20   1.80 7.20 

Total 1000.00 3235.98   1000.00 4136.00   1000.00 3236.80 
1Diets include: LFRS = low fat and purified high amylose maize resistant starch (HAMRS) corn 

starch diet; HFRS = high fat and HAMRS corn starch diet; LFNRS = low fat and amylopectin 

control corn starch with no resistant starch. 
2AMIOCA® corn starch. 
3HI-MAIZE® resistant corn starch. 
4Waxy corn starch and high-amylose corn starch were gifts from Ingredion Incorporated 

(Bridgewater, NJ). 
5Casein was reduced from AIN-93M amount (140 g/kg) for three diets based on the protein in 

the AMIOCA® corn starch and HI-MAIZE® resistant corn starch as analyzed by proximate 

analysis by Medallion Labs for Ingredion Incorporated.  
6Soy bean oil was decreased from AIN-93M amount (40 g/kg) for RS diets based on the fat in 

the AMIOCA® corn starch and HI-MAIZE® resistant corn starch as analyzed by proximate 

analysis by Medallion Labs for Ingredion Incorporated. 
7Lard was added to complete ~40% fat in conjunction with soy bean oil and the fat in the HI-

MAIZE® resistant corn starch as analyzed by proximate analysis by Medallion Labs for 

Ingredion Incorporated for HFRS diet. 

 

Procedures 

In studies 1.1 and 1.2, rats were euthanized by cardiac puncture using inhalation of 

isoflurane soaked cotton balls as anesthesia in a bell jar. The gastrointestinal tract (GI) was 

removed from esophagus to anus, and then it was divided into stomach, small intestine, cecum and 

large intestine. The GI parts were weighed full and empty. Fat pads (peritoneal, retroperitoneal, 
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and epididymal) were weighed for calculation of total abdominal fat percentage per animal. 

Abdominal fat percent was calculated from abdominal cavity fat divided by body weight of the 

rats with the GI tract contents removed. Cecal contents were frozen in liquid nitrogen for further 

measurements of pH, short chain fatty acids (SCFAs), and targeted bacterial genera that ferment 

resistant starch by real-time qPCR. For Study 1.2, blood samples were collected by cardiac 

puncture for measurement of GLP-1 active with ELISA kit (ALPCO, NH) and one full cecum per 

group was kept for histology of cecum wall. 

Cecal contents pH and SCFAs analysis 

For studies 1.1 and 1.2, cecal contents were thawed and 0.5 g of each rat’s wet sample was 

homogenized in 5 ml of distilled water, for pH measurements. Subsequently, each sample was 

acidified with 1 ml of a 25% (w/w) solution of metaphosphoric acid containing 2 g/L 2-ethyl-

butiryc acid as an internal standard for SCFAs contents. Solids were separated by centrifugation 

and filtration. The supernatant was transferred to a GC autosampler vial. Concentrations of SCFAs 

were quantitatively determined by gas chromatography by a method described in previous 

publication from our laboratory [66]. 

Bacterial DNA extraction 

Study 1.1. After cecal contents were thawed, 500 mg for each rat’s sample were weighed 

and placed into a 2 ml Lysing Matrix E tube (MP Biomedicals, OH) containing 1.4 mm ceramic 

spheres, 0.1 mm silica spheres, and one 4 mm glass bead; then 825 µl of sodium phosphate, and 

275 µl of PLS solution from FastDNA® SPIN kit for Feces (MP Biomedicals, OH) were added. 

Immediately, the tubes with cecal contents, Lysing Matrix E, sodium phosphate, and PLS solution 

were vortexed for 15 seconds, then centrifuged at 11,400 rpm for 5 minutes and supernatant was 

decanted. Next, 978 µl of sodium phosphate buffer and 122 µl of MT buffer were added into the 



17 

 

tubes and vortexed briefly. Mixture was homogenized using the FastPrep®-24 Instruments (MP 

Biomedicals, OH) for 40 seconds at speed setting 6.0 m/s. The lysate was centrifuged at 11,400 

rpm for 5 minutes, and DNA was extracted from supernatant by following FastDNA® SPIN kit 

for Feces protocol. Purified DNA was quantified using a NanoDrop® Spectrophotometer and 

diluted to 1 ng/ µl for storage at -80°C. 

Study 1.2. After cecal contents were thawed, approximately 200 mg for each rat’s sample 

were weighed and placed into a 2 ml screw-cap tube containing ~ 300 mg of 0.1 mm Zirconia 

Silica beads (BioSpec Products Inc, OK), then 100 µl of Lysis buffer prepared with 5 M NaCl, 1 

M Tris-HCl (pH 8), 0.5 M EDTA (pH 8), distilled autoclaved water and Lysozyme (Thermo 

Scientific, IL) were added. Immediately, the tubes with cecal contents, Zirconia Silica beads, and 

Lysis buffer were vortexed and incubated for 30 minutes at 37°C. Next, 1 ml of InhibitEX buffer 

from QIAamp® Fast DNA Stool Mini kit (QIAGEN, CA) was added. Next, the mixture was 

homogenized two times using a FastPrep®-24 Instrument (MP Biomedicals, OH) for 60 seconds 

at speed setting 6.5 m/s. Subsequently, the suspension was heated in a heat-block at 95°C and 250 

rpm for 5 minutes, then vortexed for 15 seconds and centrifuged for 3 minutes at 14,000 rpm. 

Finally, DNA was extracted from supernatant by following QIAamp® Fast DNA Stool Mini kit 

protocol. Purified DNA was quantified using a NanoDrop® Spectrophotometer and diluted to 1 

ng/µl for storage at -80°C. The method for DNA extraction was changed for this study due to a 

high absorbance at 230 nm wavelength in previous method used in study 1. The method for study 

2 resulted in low absorbance at 230 nm wavelength and greater purity for the DNA extract. 

Quantitative real-time PCR 

In studies 1.1 and 1.2, ABI PRISM 7900 Sequence Detection System, and SDS 2.4 

Software (Life Technologies, NY) were used to perform SYBR® Green method of real-time 
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qPCR. Targeted bacterial genera, primer sequences, annealing temperature and literature 

references are listed in Table 3.3 and 3.4 for studies 1.1 and 1.2, respectively. All reactions were 

performed using sterile MicroAmp® Optical 384-well Reaction Plates with Barcode and sealed 

with MicroAmp® Optical Adhesive Films (Life Technologies, CA). Each reaction was performed 

in triplicates and made of 5µl of 2X SYBR Green Master Mix (Life Technologies, CA), 0.5 µl of 

each primer at 10 µM (Integrated DNA Technologies, IA), 0.5 µl of 250 mg/ml bovine serum 

albumin (BSA), 0.5 µl of  nuclease free water and 3 µl of DNA template in a 10 µl total volume. 

Table 3.3. Real-time qPCR primers used to profile cecal contents samples for Study 1.1. 

Targeted bacteria Primer Sequence  
Annealing 

Temp (°C) 
Reference 

Firmicutes      

Lactobacillus spp 

F: TGG ATG CCT TGG CAC TAG GA 

55 

Haarman & 

Knol, 

2006[67] 
R: AAA TCT CCG GAT CAA AGC TTA 

CTT AT 

Clostridial cluster IV      
Clostridium leptum 

subgroup, includes 

Faecalibacterium 

prausnutzii 

F: TTA CTG GGT GTA AAG GG  

55 

Wise & 

Siragusa, 

2007[68] R: TAG AGT GCT CTT GCG TA 

Clostridium cluster 

XIVa and XIVb  
     

Clostridium coccoides 

– Eubacterium rectale 

subgroup 

F: AAA TGA CGG TAC CTG ACT AA  
55 

Matsuki et 

al., 

2002[69] 
R: CTT TGA GTT TCA TTC TTG CGA A 

Bacteroidetes      

Bacteroides group 

including Prevotella 

and Porphyromonas 

F: GAA GGT CCC CCA CAT TG 
55 

Wise & 

Siragusa, 

2007[68] R: CAA TCG GAG TTC TTC  GTG 

Actinobacteria      

Bifidobacterium spp F: GGG TGG TAA TGC CGG ATG 
55 

Bartosch et 

al., 

2005[70] 
  

R: TAA GCC ATG GAC TTT CAC ACC 

Bacterial Domain      

16S universal primers  
F: GTG STG CAY GGY YGT CGT CA 

55 

Belenguer, 

et al., 

2006[71] 
R: ACG TCR TCC MCN CCT TCC TC 
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Table 3.4. Real-time qPCR primers used to profile cecal contents samples for Study 12. 

Targeted bacteria Primer Sequence  

Annealing 

Temp 

(°C) 

Reference 

Firmicutes       

Lactobacillus spp 

F: TGG ATG CCT TGG CAC TAG GA                

R: AAA TCT CCG GAT CAA AGC TTA 

CTT AT 

60 
Haarman & 

Knol, 2006[67] 

Clostridium 

cluster XIVa and 

XIVb 

  

    

Clostridium 

coccoides – 

Eubacterium 

rectale subgroup 

F: AAA TGA CGG TAC CTG ACT AA  

60 
Matsuki et al., 

2002[69] 
R: CTT TGA GTT TCA TTC TTG CGA 

A 

Bacteroidetes       

Bacteroides group 

including 

Prevotella and 

Porphyromonas 

F: GAA GGT CCC CCA CAT TG 

60 

Wise & 

Siragusa, 

2007[68] 
R: CAA TCG GAG TTC TTC  GTG 

Actinobacteria       

Bifidobacterium 

spp 

  

F: CTC CTG GAA ACG GGT GG 

60 
Matsuda et al., 

2009[72] 
R: GGT GTT CTT CCC GAT ATC TAC 

A 

Bacterial 

Domain 
      

16S universal 

primers  

F: GTG STG CAY GGY YGT CGT CA 
60 

Belenguer, et 

al., 2006[71] R: ACG TCR TCC MCN CCT TCC TC 

 

The primers were purchased from Integrated DNA Technologies, Inc. (Coralville, IA) and 

their specificity checked with the GenBank database by blast search of primers sequences in 

National Center for Biotechnology Information website (http://www.ncbi.nlm.nih.gov) on 

September 30, 2015. The cycling conditions were one cycle of 95°C for 10 minutes, then 40 cycles 

of 95°C for 15 seconds, primer-specific annealing temperature (Table 3.2.) for 1 minute, 72°C for 

40 seconds, and one cycle of 72°C for 30 seconds. After amplification, a dissociation step of 95°C 

for 15 seconds, 60°C for 15 seconds, and 95°C for 15 seconds, was included. The results were 

http://www.ncbi.nlm.nih.gov/
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expressed as Ct values for targeted bacterial genera, where higher Ct equals lower apparent starting 

amounts of a bacterial genera DNA. For study 1.1, we stopped at the use of Ct only for analysis 

because we observed that feeding resistant starch subsequent to antibiotic treatment resulted in the 

same Ct values as rats fed resistant starch that were never treated with antibiotics. We viewed this 

as a pilot study for study 1.2. 

Study 1.2. Several bacteria strains representing targeted genera were cultured in specific 

broths (conditions described in Table 3.5). Serial dilutions (1:10) starting with one milliliter of the 

cultured bacteria plus 9 milliliters of PBS were made. These dilutions of bacteria were spread on 

agar plates using 100 µl. Colony Forming Units (CFU) were determined for the serial dilutions 

and converted to log CFU. The specific bacteria cultured were: Lactobacillus plantarum strain 

ATCC 4163 (Lactobacillus genera), Clostridium coccoides strain ATCC 29236 (Clostridial 

cluster XIVa and b, which includes Clostridium coccoide, Eubacterium rectale subgroup, 

Lachnospiraceae, and Ruminococcus), Bacteroides fragilis strain ATCC 23745 (Bacteroides 

group, including Prevotella and Porphyromonas genera), Bifidobacterium longum strain ATCC 

15708 (Bifidobacteria genera), and Escherichia coli strain ATCC 25922 (total bacteria using 16S 

universal primers). DNA was extracted from 1 ml of undiluted broth culture by the method 

described above for study 1.2, and dilutions of DNA (serial 1:4 dilutions) were interpolated with 

dilutions for log CFU. Standard curves were constructed as Ct versus log CFU (Table 3.6). The 

primers were purchased from Integrated DNA Technologies, Inc. (Coralville, IA) and their 

specificity checked as described above in study 1.1. The cycling conditions were one cycle of 95°C 

for 10 minutes, then 40 cycles of 95°C for 15 seconds, primer-specific annealing temperature 

(Table 3.4.) for 1 minute, 78°C for 40 seconds, and after amplification a dissociation step was 

included as mentioned above. Treatment replicate log CFUs for each targeted bacteria were 
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determined using the equations for the lines obtained from standard curves. 

Table 3.5. Culture conditions Study 1.2. 

Bacteria strains Media 
Incubation 

Temp (°C) 

Time 

(hours) 

Firmicutes       

Lactobacillus plantarum  
de Man-Rogosa-Sharpe Agar (Difco 

Laboratories, MI)1 
30 48 

Clostridium coccoides  reinforced Clostridial agar (Oxoid, UK)1 37 72-96 

Bacteroidetes       

Bacteroides fragilis  
Brewer Modified Thioglycollate medium 

(BD Diagnostic Systems, MD)1 
37 72-96 

Actinobacteria       

Bifidobacterium longum  
Brewer Modified Thioglycollate medium 

(BD Diagnostic Systems, MD)1 
37 72-96 

Bacterial Domain       

16S universal        

Escherichia coli  Luria Broth (Difco Laboratories, MI)2 37 24 
1Grown in aerobic conditions. 
2Grown in a chemically generated anaerobic system using an anaerobis box GasPak™ EZ 

(Mitsubishi Gas Chemical America Inc., NY). 

 

Table 3.6. Standard curves Study 2. 

Bacteria strains Equation Slope R2 
Efficiency 

(%) 

Firmicutes         

Lactobacillus 

plantarum  

log CFU= -0.2947*(Ct)+14.694 
-3.557  0.999  91.00  

Clostridium 

coccoides  
 log CFU= -0.2395*(Ct)+12.102 -3.38  0.996  97.50  

Bacteroidetes         

Bacteroides 

fragilis  
 log CFU= -0.2881*(Ct)+11.785     -3.38  0.990  97.60  

Actinobacteria         

Bifidobacterium 

longum  
 log CFU= -0.2215*(Ct)+9.3945 -3.553  0.996  91.20  

Bacterial Domain      

16S universal   log CFU= -0.2897*(Ct)+13.815 -3.45 0.999 95.00 

Escherichia coli       
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Resistant Starch Assay 

For study 1.2, 100±5 mg of thawed cecal contents were weighed for each rat sample. 

Resistant starch was measured following the protocol of the Resistant Starch Assay Kit 

(Megazyme Inc, IL). 

Histology of cecum wall 

For study 1.2., one cecum per group was not used for cecal contents analysis and was 

placed with contents into a jar with 100 ml of 10% formalin for 72 hours until each one acquired 

a firm texture. Next, approximately one third of each hardened cecum was cut off from the bottom 

away from the two openings (small intestine or rest of large intestine) and placed into histology 

cassettes. The histologist carefully removed the contents and cut cross-sectional slices so that the 

wall of the cecum could be visualized with Hematoxylin and Eosin stain. Pictures of slides were 

made by the Cell Biology & Bioimaging Core at Pennington Biomedical Research Center using a 

NanoZoomer-SQ Digital slide scanner (Hamamatsu, Japan) at 20X magnification. Images from 

tissue samples were analyzed using NanoZoomer Digital PathologyView2 Software. The heights 

of mucosal, submucosal, and muscularis layers were measured in three different locations per slide 

image and then averaged. 

Statistical Analysis 

Statistical differences were analyzed in the Statistical Analysis Software SAS® version 

9.3. A one-way ANOVA analysis was executed and followed by F-protected least significant 

difference (LSD) post-hoc mean comparison tests using the MIXED procedure. In order to test 

equal variance, normal distribution, and to identify outliers an UNIVARIATE procedure was 

performed in the MIXED procedure. If normality assumption was not met, data were transformed 

to log10. A p value of < 0.05 was considered statistically significant. In Study 1.1, one outlier was 
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detected for Clostridium Cluster XIV (NRS+AB: 21.34) in phase 1, and in phase 2 Clostridium 

Cluster IV data was log 10 transformed for statistical analyses. In Study 1.2, two outliers were 

detected in GLP-1 active data (LFRS+AB: 2.99; LFRS+AB: 0.63), and propionate data were 

transformed to log 10 for statistical analyses. Data were presented in their original form and 

expressed as means ± standard error. 

3.3. Results 

Study 1.1. 

Cecal contents pH, ECW, SCFAs, and ABF% 

In phase 1 (Table 3.7.), as expected, the group fed resistant starch (RS+NAB) demonstrated 

greater fermentation than the group that received antibiotic treatment and no dietary resistant starch 

(NRS+AB); through lower pH of cecal contents (p<0.0002), higher production of propionate 

(p<0.0166), and lower abdominal fat percent (ABF %) (p<0.0213). Also, production of acetate 

and butyrate were not detectable in NRS+AB group. However, empty cecum weights (ECW) were 

not significantly different (p=0.0652) from one another. 

In phase 2 (Table 3.7.), rats in the RS+NAB group from phase 1 were considered a positive 

control to compare with rats in the RS+WtG and RS+CG groups for pH and SCFAs production, 

but not for ECW or ABF% because rats in the RS+NAB group were younger (11 weeks old) than 

rats in RS+WtG and RS+CG groups (14.5 weeks old) at euthanasia. The positive control group 

pH was significantly lower than RS+WtG (p<0.0067) or RS+CG (p<0.0439) groups. However, 

RS+WtG and RS+CG groups produced acetate and butyrate to the same extent as the positive 

control group. Only propionate production of RS+CG group was significantly lower than the 
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positive control (p<0.0276) but not significantly different from RS+WtG (p=0.0817) group. 

Additionally, ECW and ABF% were not significantly different between RS+WtG and RS+CG.  

Table 3.7. Cecal contents pH, ECW, SCFAs, and ABF% for study 1.11. 

Variables 
Phase 12   Phase 23 

NRS+AB RS+NAB   RS+NAB4 RS+WtG RS+CG 

pH 8.44±0.02a 6.17±0.18b   6.17±0.19b 6.94±0.16a 6.71±0.16a 

ECW5 (g) 0.67±0.11a 0.93±0.07a   - 1.33±0.15a 1.30±0.15a 

Acetate (mmol) UND6 8.61±1.35   8.61±1.35a 9.35±1.66a 7.86±1.56a 

Propionate (mmol) 0.39±0.04b 1.66±0.32a   1.66±0.32a 1.10±0.19ab 0.93±0.19b 

Butyrate (mmol) UND  1.99±0.43   1.99±0.43a 3.24±0.54a 2.61±0.54a 

ABF%7 1.88±0.14a 1.43±0.10b   - 1.79±0.10a 1.78±0.10a 
1Data are presented in their original form and expressed as means ± standard error. P value< 0.05 

was considered statistically significant and it is represented with different letters horizontally. 
2Groups include in Phase 1: NRS+AB = AIN93M no resistant starch diet + antibiotic treatment 

(Ampicillin 1g/L and Neomycin 0.5g/L diluted in their drinking water); and RS + NAB = AIN-

93M diet based high amylose maize resistant starch (HAMRS) corn starch + no antibiotic 

treatment.  
3Groups include in Phase 2: RS+NAB = AIN-93M diet based high amylose maize resistant starch 

(HAMRS) corn starch + no antibiotic treatment; RS+WtG = HAMRS corn starch diet + Water 

gavage; and RS+CG = HAMRS corn starch diet + Cecal gavage from donors in phase 1. 
4RS+NAB: Group from Phase 1 consider as positive control for Phase 2 to compare with 

RS+WtG and RS+CG groups for pH, acetate, propionate, and butyrate. 
5ECW = Empty cecum weight. 

6UND = undetectable. 
7ABF% = Abdominal fat percent. 

 

DNA amplification of the targeted bacteria in phase 1 and phase 2 

In phase 1 (Fig. 3.2), the starting amounts of total bacteria appeared to be similar as 

amplified DNA extracts reached the threshold  at similar cycles using 16S universal primers for 

the RS+NAB group and NRS+AB group (p= 0.1118, RS+NAB’s Ct = NRS+AB’s Ct).  However, 

RS+NAB group appeared to have greater starting amounts of Bididobacterium spp (p<0.0001), 
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Clostridium cluster XIVa and b (p< 0.0001), and Lactobacillus (p<0.0007) than NRS+AB 

(RS+NAB’s Ct < NRS+AB’s Ct). Of the targeted genera, only Bacteroides for NRS+AB group 

had apparently greater starting amounts (as their amplified DNA extracts reached the threshold at 

a significantly lower cycle) than the RS+NAB group (p<0.012) (NRS+AB’s Ct < RS+NAB’s Ct). 

This result concurs with the result of propionate being the only SCFA produced for NRS+AB 

group, and propionate being one of the major fermentation products of Bacteroides spp. 

 

Figure 3.2. Cycles to threshold (Ct) for targeted bacteria in phase 1 of Study 1.1. Higher Ct means 

slower amplification. Asterisk (*) next to bars indicates a statistically significant difference (p< 

0.05). Data are presented in their original form and expressed as means ± standard error. Groups 

included in phase 1: AB+NRS = Amylopectin control corn starch with no resistant starch and 

antibiotic treatment (Ampicillin 1g/L and Neomycin 0.5g/L added in their drinking water); and 

RS+NAB = purified high amylose maize resistant starch (HAMRS) corn starch diet and no 

antibiotic treatment. 

In phase 2 (Fig 3.3), there were no differences in the apparent starting amounts of DNA for 

total bacteria with 16S universal primers (p=0.3632), Bifidobacterium spp (p=0.6529), Clostridium 

cluster XIVa and b (p=0.3329), and Lactobacillus spp (p=0.3887) between the positive control 

group (RS+NAB), RS+WtG, and RS+CG (RS+NAB’s Ct = RS+WtG’s Ct= RS+CG’s Ct). The 

positive control group had a significantly greater apparent starting amount for Bacteroides spp 
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than RS+CG group (p<0.0312) and RS+WtG (p<0.0364) (RS+NAB’s Ct < RS+WtG’s Ct; 

RS+NAB’s Ct < RS+CG’s Ct). However, the apparent starting amount of Bacteroides spp for 

RS+CG group and RS+WtG group (p=0.9322) were not significantly different (RS+WtG’s Ct= 

RS+CG’s Ct). These results demonstrated that regardless of the type of gavage (water or cecal 

contents from donor rats), the apparent amounts of all but one of the targeted genera of bacteria 

were the same. Also the groups with prior antibiotic treatment had reduced apparent amounts of 

Bacteroides spp compared to the positive control group never treated with antibiotics. This was a 

reversal from antibiotic treatment. 

 

Figure 3.3. Cycles to threshold (Ct) for targeted bacteria in phase 2 of Study 1.1. Higher Ct means 

slower amplification. Asterisk (*) next to bars indicates a statistically significant difference (p< 

0.05). Data are presented in their original form and expressed as means ± standard error. Groups 

included in Phase 2: RS+NAB = no antibiotic treatment + purified HAMRS corn starch diet; 

RS+WtG = HAMRS corn starch diet and water gavage; and RS+CG = Cecal gavage from donors 

fed resistant starch in phase 1 in HAMRS corn starch diet. 

Study 1.2. 

Cecal contents pH, ECW, SCFAs, and ABF% 

Results (Table 3.8.) demonstrated that antibiotic treatment at the same time as feeding 

resistant starch was able to diminish the ability of the rats to ferment resistant starch. The 
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LFNRS+NAB group (negative control) did not have a significantly different pH of cecal contents 

compared to groups fed resistant starch and concurrently treated with antibiotics (LFRS+AB, 

p=0.3448 and HFRS+AB, p=0.9903). As also stated above in phase 1 in study 1.1, ECW was also 

not a reliable indicator of fermentation when rats are given antibiotic treatment. ECW of groups 

given antibiotic treatment, LFRS+AB (p<0.0001) and HFRS+AB (p<0.0005), were significantly 

greater than the negative control group (LFNRS+NAB); and ECW of LFRS+AB (p=0.1940) was 

not significantly different from the positive control group (LFRS+NAB) or from the HFRS+AB 

group (p=0.1632). However, the ECW for the HFRS+AB group was significantly lower than the 

positive control group (p<0.0124). 

Acetate and butyrate short-chain fatty acid production was also reduced with antibiotic 

treatment (Table 3.8.). Acetate production for the LFRS+AB group was significantly lower than 

the positive control (p<0.0140), significantly greater than the negative control (p<0.0163), and not 

different from the HFRS+AB group (p=0.9639). Similar differences were observed for butyrate 

production except that the two groups treated with antibiotics had lower amounts than the negative 

control group (Table 3.8.). Thus, there was some increased production of acetate with the 

combination of resistant starch and antibiotics with both low and high fat diets, but the antibiotics 

reduced production compared to the positive control. Propionate production was similar for the 

two groups with low fat diets with resistant starch regardless of antibiotic treatment. The high fat 

diet with antibiotic treatment and resistant starch had less propionate production than the low fat 

group with antibiotic treatment and resistant starch, but had similar production as the positive 

control group. 

The abdominal fat percent (Table 3.8.) was different according to dietary fat levels with 

the group with a high fat diet having the greatest ABF %. ABF % was significantly greater for the 
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HFRS+AB group compared to the LFRS+AB (p<0.045), and negative control group (p<0.0263) 

or positive control group (p<0.0169). 

Table 3.8. Cecal contents pH, ECW, SCFAs, and ABF% for study 1.21. 

Variables LFRS+AB2 HFRS+AB LFNRS+NAB3 LFRS+NAB4 

pH 8.23±0.06a 8.39±0.07a 8.39±0.10a 6.05±0.18b 

ECW5 (g) 1.27±0.07ab 1.08±0.07b 0.51±0.04c 1.45±0.15a 

Acetate (mmol) 0.151±0.024b 0.149±0.035bc 0.060±0.007c 0.469±0.080a 

Propionate (mmol) 0.096±0.004a 0.074±0.006b 0.013±0.018c 0.087±0.023ab 

Butyrate (mmol) 0.004±0.001c 0.004±0.002c 0.013±0.021b 0.074±0.007a 

ABF%6 1.46±0.14b 1.81±0.05a 1.41±0.13b 1.38±0.12b 
1Data are presented in their original form and expressed as means ± standard error. P value< 

0.05 was considered statistically significant and it is represented with different letters 

horizontally.  
2Groups include: LFRS+AB = low fat, purified high amylose maize resistant starch (HAMRS) 

corn starch diet, antibiotic treatment (Ampicillin 1g/L and Neomycin 0.5g/L added in their 

drinking water); HFRS+AB = high fat, HAMRS corn starch diet, antibiotic treatment; 

LFNRS+NAB = low fat, AIN-93M no resistant starch diet, no antibiotic treatment; and 

LFRS+NAB = low fat, HAMRS corn starch diet, no antibiotic treatment. 
3LFNRS+NAB = negative control.       
4LFRS+NAB = positive control.       
5ECW = Empty cecum weight.       
6ABF% = Abdominal fat percent. 

 

Targeted bacteria 

The results for standard curves of bacteria are listed in table 3.9. For Bacteroides spp, 

Bifidobacterium spp, and Clostridium cluster XIVa and b bacteria not all standard dilutions fell 

within the acceptable range for amplification of 90 (slope = -3.6) to 110% (slope = -3.0). However, 

some treatment replicates for rats treated with antibiotics for some genera fell below the lowest 

acceptable standard; and some treatment replicates from rats not treated with antibiotics fell above 

the highest acceptable standard. This was in line with our hypotheses for this study. To address 

this, the equations for the two lines, acceptable slope and inclusion of a standard that when included 
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gave a line with an efficiency below 90% (~80%), were used to determine the treatment replicate 

log CFU. The results for the samples were less than 1% different for the two equations and were 

considered acceptable for statistical analysis. Other options were deemed either technically not 

possible or not feasible.  For example, greater dilutions of some treatment replicates from rats not 

treated with antibiotics resulted in too low amounts of DNA to promote amplification; and for 

extraction of some treatment replicates for rats treated with antibiotics much greater amounts of 

precious cecal contents would be required. 

Table 3.9. Standard curves for study 1.2. 

Bacteria strains Equation Slope R2 
Efficiency 

(%) 

Firmicutes         

Lactobacillus 

plantarum  

log CFU= -

0.2947*(Ct)+14.694 
-3.557  0.999  91.00  

Clostridium 

coccoides  

log CFU= -

0.2395*(Ct)+12.102 
-3.38  0.996  97.50  

Bacteroidetes         

Bacteroides 

fragilis  

log CFU= -

0.2881*(Ct)+11.785 
-3.38  0.990  97.60  

Actinobacteria         

Bifidobacterium 

longum  

log CFU= -

0.2215*(Ct)+9.3945 
-3.553  0.996  91.20  

Bacterial Domain      

16S universal  
log CFU= -

0.2897*(Ct)+13.815 
-3.45 0.999 95.00 

Escherichia coli       

 

Primers for Lactobacillus spp. and Clostridium cluster XIVa and b were initially designed 

for use with a Taqman® probe [67, 69], but the specificity of the probe did not allow for detection 

of amplification. Therefore, we successfully changed to use of the primers with SYBR green. The 

primers for Lactobacillus spp. resulted in 89% specificity and Clostridium cluster XIVa and b 

resulted in 60% specificity excluding chloroplasts and clones. Primers initially used for 
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Bifidobacterium spp.[70], exhibited two peaks in the melting curve at ~80oC that appeared to not 

be primer dimers based on the high temperature for melting. We changed to the primers from 

Matsuda et al[72]. Primers for Bacteroides spp. and Bifidobacterium spp. had 57% and 75%, 

specificity, respectively. 

The results for targeted bacteria expressed in log CFU are shown in Table 3.10. The 

negative control group (LNRS+NAB) had the greatest log CFU of Lactobacillus spp. compared to 

LFRS+AB group (p<0.0333) or HFRS+AB group (p<0.0334). However, the negative control 

group was not significantly different from the positive control group (LFRS+NAB, p=0.1453). 

Also, the positive control group was not significantly different from LFRS+AB group (p=0.3512) 

or HFRS+AB group (p=0.2206). The log CFU of Clostridium cluster XIVa and b were not 

significantly different among the four groups. The negative control group had the lowest log CFU 

of Bacteroides spp. compared to the positive control group (p<0.0114), LFRS+AB group 

(p<0.0008) or HFRS+AB group (p<0.0463). However, the positive control group had similar log 

CFU of Bacteroides spp. as LFRS+AB group (p=0.2285) or HFRS+AB group (p=0.4949). The 

positive and negative control groups had similar (p=0.9416) log CFU of Bifidobacterium spp. and 

they both had greater log CFU compared to LFRS+AB group (LFRS+NAB, p=0.0056; 

LFNRS+NAB, p<0.0065) or HFRS+AB group (LFRS+NAB, p<0.0426; LFNRS+NAB, 

p<0.0487). Additionally, the LFRS+AB and the HFRS+AB groups had similar (p=0.4180) log 

CFU of Bifidobacterium spp. Finally, the 16S universal bacteria domain log CFU for the 

LFRS+AB group was greater than log CFU of the HFRS+AB group (p<0.0286) or the negative 

control group (p<0.0018), but not significantly different from the positive control group 

(p=0.0528). The negative control group had the lowest log CFU of 16S universal bacteria domain 
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compared to the LFRS+AB group, however it was not significantly different from the positive 

control group (p=0.1169) or the HFRS+AB group (p=0.1977). 

Table 3.10. Bacteria genera in log CFU for study 1.2. 

 Bacterial Populations2  

(log CFU) 
LFRS+AB                         HFRS+AB                                     LFNRS+NAB3                                      LFRS+NAB4                                              

Lactobacillus spp.  5.48±0.40b   5.20±0.49b   6.75±0.07a   6.04±0.39ab 

Clostridium XIVa and b 6.36±0.34a   5.91±0.55a   6.74±0.12a   6.66±0.43a 

Bacteroides spp.  5.00±0.23a   3.74±0.59a   2.35±0.56b   4.19±0.32a 

Bifidobacterium spp. 2.62±0.27b   3.27±0.97b   4.95±0.54a   5.01±0.49a 

16S universal 9.27±0.11a   8.83±0.14b   8.58±0.12b   8.88±0.14ab 
1Data are presented in their original form and expressed as means ± standard error. P value< 

0.05 was considered statistically significant and it is represented with different letters 

horizontally.  
2Groups include: LFRS+AB = low fat, purified high amylose maize resistant starch (HAMRS) 

corn starch diet, and antibiotic treatment (Ampicillin 1g/L and Neomycin 0.5g/L added in their 

drinking water); HFRS+AB = high fat, HAMRS corn starch diet, and antibiotic treatment; 

LFNRS+NAB = low fat, amylopectin control corn starch with no resistant starch, and no 

antibiotic treatment; and LFRS+NAB = low fat, HAMRS corn starch diet, and no antibiotic 

treatment. 
3LFNRS+NAB: Negative control group 
4LFRS+NAB: Positive control group 

 

GLP-1 active secretion in plasma 

Previous research demonstrated that feeding resistant starch stimulates GLP-1 active 

secretion [30, 31]. GLP-1 active (Fig. 3.4.) measured in plasma in groups given antibiotic 

treatment, LFRS+AB (p<0.0121) and HFRS+AB (p<0.0076), was greater than the positive control 

group (LFRS+NAB). The negative control group was different from the other three groups 

(HFRS+AB, p<0.0001; LFRS+AB, p<0.0001; LFRS+NAB, p<0.0152). 
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Figure 3.4. GLP-1 active for Study 1.2. Groups include: LFRS+AB = low fat, purified high 

amylose maize resistant starch (HAMRS) corn starch diet, and antibiotic treatment (Ampicillin 

1g/L and Neomycin 0.5g/L added in their drinking water); HFRS+AB = high fat, HAMRS corn 

starch diet, and antibiotic treatment; LFNRS+NAB = low fat, amylopectin control corn starch with 

no resistant starch., and no antibiotic treatment; and LFRS+NAB = low fat, HAMRS corn starch 

diet, and no antibiotic treatment. Data are presented in their original form and expressed as means 

± standard error. Different letters above columns indicate a statistically significant difference. 

Resistant starch assay results 

Results shown in Figure 3.5 demonstrated that antibiotic treatment completely eliminated 

the ability to ferment resistant starch in the cecum. Groups given antibiotic treatment, LFRS+AB 

(p<0.0001) and HFRS+AB (p<0.0001), had greater resistant starch in cecal contents than the 

positive control group (LFRS+NAB), which was about double the amount. This demonstrated that 

at the mechanistic, proof-of-concept dietary levels of resistant starch used in this study and 

previous studies about half of the resistant starch is not fermented. Resistant starch in cecal 

contents for groups given antibiotic treatment, LFRS+AB and HFRS+AB, were not significantly 

different from one another (p<0.6897). These results demonstrated that antibiotic treatment 

eliminated the ability to ferment resistant starch in the cecum of rats in both low and high fat diets. 
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Figure 3.5. Resistant starch (g/100g) for Study 1.2. Groups include: LFRS+AB = low fat, purified 

high amylose maize resistant starch (HAMRS) corn starch diet, and antibiotic treatment 

(Ampicillin 1g/L and Neomycin 0.5g/L added in their drinking water); HFRS+AB = high fat, 

HAMRS corn starch diet, and antibiotic treatment; LFNRS+NAB = low fat, amylopectin control 

corn starch with no resistant starch., and no antibiotic treatment; and LFRS+NAB = low fat, 

HAMRS corn starch diet, and no antibiotic treatment. Data are presented in their original form and 

expressed as means ± standard error. Different letters above columns indicate a statistically 

significant difference. 

Histology 

In phase 1 of study 1.1 the ECW were not different, so one rat from each group was used 

in study 1.2 for histological examination of the cecal wall (Fig 3.6 and Table 3.10.). The cecal 

walls of the positive control (LFRS+NAB) and the two groups treated with antibiotics (HFRS+AB 

and LFRS+AB) were numerically greater than the cecal wall of the negative control 

(LFNRS+NAB). This gives some indication of why rats treated with antibiotics have increased 

weights for empty cecum weights.  
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Figure 3.6. Histology of cecum wall at magnification 20X. Layers: mucosal (M), submucosal 

(SM), and muscularis (Mus). A. LFRS+AB = low fat, purified high amylose maize resistant starch 

(HAMRS) corn starch diet, and antibiotic treatment (Ampicillin 1g/L and Neomycin 0.5g/L added 

in their drinking water). B. HFRS+AB = high fat, HAMRS corn starch diet, and antibiotic 

treatment. C. LFNRS+NAB = low fat, amylopectin control corn starch with no resistant starch and 

no antibiotic treatment. D. LFRS+NAB = low fat, HAMRS corn starch diet, and no antibiotic 

treatment. 
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Table 3.10. Cecal wall measurements of mucosa, submucosa and muscularis layers for study 1.2. 

Groups LFRS+AB1 HFRS+AB LFNRS+NAB2 LFRS+NAB3 

Mucosa (µm) 171.741 192.381 180.430 180.630 

Submucosa (µm) 20.031 42.808 26.015 63.491 

Muscularis (µm) 95.283 91.668 58.593 76.069 

Total (µm) 287.055 326.857 265.038 320.191 
1Groups include: LFRS+AB = low fat, purified high amylose maize resistant starch (HAMRS) 

corn starch diet, and antibiotic treatment (Ampicillin 1g/L and Neomycin 0.5g/L diluted in their 

drinking water); HFRS+AB = high fat, HAMRS corn starch diet, and antibiotic treatment; 

LFNRS+NAB = low fat, amylopectin control corn starch with no resistant starch., and no 

antibiotic treatment; and LFRS+NAB = low fat, HAMRS corn starch diet, and no antibiotic 

treatment. 
2LFNRS+NAB: Negative control group 
3LFRS+NAB: Positive control group 

3.4. Discussion 

The results observed in this research demonstrated that antibiotic treatment with low 

potency antibiotics added to drinking water prior to resistant starch feeding was able to reduce 

bacteria, but not able to prevent subsequent fermentation of resistant starch. However, antibiotic 

treatment given during resistant starch feeding was able to completely reduce 100% of the 

fermentation of resistant starch as demonstrated by the resistant starch assay for groups given the 

antibiotic treatment (LFRS+AB and HFRS+AB). Previously we estimated, based on the 

metabolizable energy value for the HAMRS product, that the mechanistic, proof-of-concept 

amount of resistant starch used in our studies was 50% fermented. This was confirmed in study 

1.2 as the antibiotic treatment resulted in ~two times the amount of cecal contents resistant starch. 

The reduction of fermentation was also reflected by cecal contents pH as groups treated with 

antibiotics had greater pH values than the positive control group and similar to the negative control 

group. The SCFA acetate is produced in much greater amounts compared to propionate and 

butyrate and appears to be the major reason for the lower cecal contents pH for the positive control 

group. 



36 

 

Antibiotic treatment resulted in a reduction of Lactobacillus spp. and Bifidobacterium spp. 

However, the combination of resistant starch and antibiotic treatment in study 1.2 with either low 

or high fat diets maintained similar amounts of Bacteroides spp. as the positive control group, 

LFRS+NAB . Additionally, use of primers predominantly for Clostridium cluster XIVa and b 

bacteria were not knocked down for groups treated by low potency antibiotics. Interestingly, the 

antibiotic treatment with the low fat diet was not different from the positive control group 

regarding total bacteria reflecting Bacteroides spp. (with Prevotella spp. and Poryphromonas spp.) 

and likely other bacteria not measured. Similarities in Bacteroides spp. were also reflected in 

similar production of propionate as Bacteroides spp. are major producers of propionate.  Thus, the 

low potency antibiotics used in the current studies appear to cause a shift in bacterial populations, 

rather than a reduction of bacteria in general. 

The results observed in study 1.2 for the targeted bacteria match the results observed for 

SCFAs production. Bifidobacterium spp and Lactobacillus spp. bacteria fermentation products are 

acetate and lactate. With low potency antibiotic treatment acetate production for both groups given 

antibiotics (LFRS+AB and HFRS+AB) was diminished compared to the positive control group 

(LFRS+NAB). Lactate was not measured in this study.  In addition, Clostridium cluster XIVa and 

b use acetate and lactate to produce butyrate. In this case Clostridium cluster XIVa and b bacteria 

were not reduced by the low potency antibiotic treatment, but groups given antibiotics might not 

have adequate acetate and lactate to produce levels of butyrate with feeding of resistant starch. 

This resulted in low butyrate production for groups given antibiotics with levels even lower than 

the negative control group. However propionate production for the group fed resistant starch in a 

low fat diet and given antibiotics had the greatest numerical amounts that were statistically similar 

to those for the positive control group. The positive control group had propionate levels that fell 
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between the two groups treated with antibiotics and statistically similar with both groups. This 

reflects the results for Bacteroides spp. and means that the low potency antibiotics treatment allows 

these species to feed on the resistant starch granule as they normally do without antibiotics.  

In phase 1 from study 1.1, we expected a greater ECW for RS+NAB group than NRS+AB 

group due to previous data from our lab demonstrating increased ECW for rats fed resistant starch 

[31, 66]. But ECW for the groups were not significantly different, even though one group was fed 

resistant starch. Also, in study 1.2 it was observed again that groups given antibiotic treatment had 

greater ECW than the negative control group (LFNRS+NAB) and similar to the positive control 

group (LFRS+NAB). These results are likely the consequence of antibiotic treatment as another 

study reported cecal dilation and increased osmotic activity of the cecal contents in rodents treated 

with antibiotics [73]. This was partially confirmed by histology examination with numerically 

greater cecal cell wall size for a rat from each of the two antibiotic treatment groups and a rat from 

the positive control group compared to the negative control group. 

Previous research done in our lab demonstrated that high fat in the diet partially attenuates 

the ability to ferment resistant starch [66]. In study 1.2, we demonstrated that resistant starch in 

low or high fat diets was not fermented in the cecum of the large intestine in the presence of low 

potency antibiotics. For study 1.2 we had two alternative hypotheses. The first was that the 

antibiotics should reduce fermentation. The second was that these low potency antibiotics may 

actually improve the fermentation of resistant starch. Cani et al. demonstrated a decrease in gram 

negative bacteria and decreased inflammatory endotoxemia with these antibiotics [51]. However, 

in our study, fermentation was knocked out regardless of the level of fat in the diet. 
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Low potency antibiotics also stimulated increased production of GLP-1 in our study. 

Similarly, other studies had reported that antibiotics stimulate over-secretion of GLP-1 active from 

intestinal cells [74, 75]. In like manner, other researchers had reported that vancomycin and 

bacitracin improved insulin resistance because of augmentation of GLP-1 secretion even in rodents 

that had diet-induced obesity [76]. 

Limited histological examination in study 1.2 revealed some explanation for why antibiotic 

treatment might increase the ECW in rats. The muscularis layer may be increased with antibiotics 

and the submucosa layer decreased, but the overall height of the cecal wall appears to be somewhat 

greater than the negative control and less than the positive control. Other factors such as amount 

of water in the cecal wall, not measured in this study, may be responsible for the lack of difference 

for ECW between groups treated with antibiotics and the positive control group. Other studies 

have demonstrated similar results of antibiotics on cecum weight [73]. This effect of antibiotics 

on ECW means that this measure of fermentation cannot be used to document fermentation when 

antibiotics are used, but researchers can still rely on cecal contents pH and production of acetate 

and butyrate. 

Finally, low potency antibiotics such as neomycin and ampicillin were able to reduce 

fermentation of resistant starch when they are given at the same time as the feeding of the resistant 

starch. This means that stronger potency antibiotics that come with possible greater risks of side 

effects are not necessary to reduce fermentation of resistant starch when they are given at the same 

time. It is also encouraging that feeding resistant starch without probiotic treatments appears to 

promote almost full recovery of the targeted bacteria after treatment with antibiotics as 

demonstrated by improvements in fermentation markers. However, treatment with more potent 

antibiotics may cause more damage to the microbiota and require probiotic treatment. Future 
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studies are warranted for expanding our knowledge on recovery of the microbiota after antibiotic 

treatments. One of our main objectives was to determine if we could reduce fermentation of 

resistant to be able to demonstrate effects of feeding resistant starch beyond the effects of 

fermentation. However, increased empty cecum weights and increased GLP-1 active are a concern 

for the future use of antibiotics for reduction of fermentation. Other methods such as 

bacteriophages with lytic peptides that kill specific bacteria may be more targeted and not have 

such broad effects as the use of antibiotics [77].  



40 

 

CHAPTER 4: GENE EXPRESSION FOR INTESTINAL GLUCONEOGENESIS 

ENZYMES IN THE FED AND FASTED STATE AFTER RESISTANT STARCH 

FEEDING 

4.1. Introduction 

Resistant starch is a fermentable fiber that lowers the glycemic index of the diet because it 

resists digestion in the small intestine [78]. It is fermented in the large intestine by bacteria that 

produce short chain fatty acids (SCFAs) mainly as acetate, propionate, and butyrate [16]. 

Previously, we showed that resistant starch can decrease body fat accumulation, increase fat 

oxidation, increase glucagon-like peptide 1 (GLP-1) cecal gene expression and plasma levels, up-

regulate peptide YY (PYY) gene expression and plasma levels, and affect expression of other 

genes [29, 30, 79]. GLP-1 is an incretin that increases metabolic activity and improves insulin 

sensitivity [80]. Robertson et al. showed improved insulin sensitivity in humans with [81] and 

without increased GLP-1 compared to control subjects [18]. Some people do not produce as much 

GLP-1 as others due to a defective transcription factor [82]. Therefore, it is important to study how 

insulin sensitivity can be improved without increased GLP-1. 

Animal studies consistently have shown increases of GLP-1 active and proglucagon gene 

expression in response to resistant starch feeding [29, 31, 83]. On the other hand, the majority of 

human studies have not shown greater concentrations of endogenous GLP-1 in response to 

resistant starch feeding [34, 52, 84]. These outcomes in human studies might be due to the resistant 

starch feeding time lasting only a few hours; which is different from animal studies where the 

consumption of resistant starch lasts for weeks. However, beneficial effects of feeding resistant 

starch have been observed in humans that include improvement in insulin sensitivity [34, 52], 

increased insulin secretion [85], and increased satiety [86]. Additionally, resistant starch has shown 

improved insulin sensitivity in the periphery (adipose and muscle) but not reduced hepatic glucose 

production in subjects at risk of developing type 2 diabetes [33]. 
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Previously, the intestine has been described as a gluconeogenic organ due to its endogenous 

glucose production capacity [87]. Therefore, intestinal gluconeogenesis (IGN) might have the 

ability to decrease hunger and food intake [88]. It is proposed that certain diets such as protein-

enriched [88-90], fiber-enriched [54], or certain procedures such as gastric bypass surgery [91] can 

trigger IGN. De Vadder et al. demonstrated IGN increased as a result of fermentation of fructo-

oligosaccharide (FOS) to butyrate, and propionate. IGN (presence of glucose in the portal blood) 

leads to signaling from the gut to the brain to reduce hepatic gluconeogenesis for better glycemic 

control and insulin sensitivity [54]. Our objective was to determine if feeding resistant starch 

would result in increased IGN gene expression. To accomplish this objective we conducted two 

studies and tested gene expression for proglucagon (GCG), pyruvate carboxylase (PCase), and 

glucose-6-phosphatase (G6Pase). Proglucagon was used as a positive control by contrasting its 

gene expression with plasma levels of GLP-1 active found in both studies. PCase is a mitochondrial 

non-regulatory enzyme involved in gluconeogenesis that catalyzes the carboxylation of pyruvate 

to form oxaloacetate the first step of IGN in the mitochondria [92]. G6Pase is a key regulatory 

enzyme catalyzing the last step of gluconeogenesis to hydrolyze glucose-6-phosphate into glucose 

and Pi in the cytoplasm [93]. Much more is known about gluconeogenesis in the small intestine 

[93]. However, De Vadder et al. have reported increased gluconeogenesis in the large intestine in 

mice fed FOS. Our goal was to determine if there was increased gluconeogenesis in response to 

feeding resistant starch as either a pure starch or in whole grain flour. In GK rats we investigated 

the fasted state (saline injection) and modeled the fed state with injection of insulin. In study 2.1, 

fermentation indicators of resistant starch such as cecal contents pH and SCFAs production are 

reported in Goto-Kakizaki (GK) rats. In study 2.2, Sprague Dawley rats fed either moderate or 

high fat diets, as part of a larger study that will be reported later, were used in the fed state to 
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determine if there was increased gene expression for IGN. In both studies GCG, PCase and G6Pase 

gene expression were assessed. 

4.2. Research Design and Methods  

Animals and diets 

For both studies, male rats were purchased at 6 weeks old and maintained in quarantine for 

1 week. For the studies, rats were individually housed in wire bottom cages in a climate-controlled 

environment (21-22°C, 55% humidity) with a 12:12 hour light-dark cycle. Rats were fed ad libitum 

and had free access to water. Body weight, food intake and food spillage were measured twice a 

week. 

Study 2.1. Protocol was approved by the Pennington Biomedical Research Center 

Institutional Animal Care and Use Committee. Forty eight (n=48), GK rats were purchased from 

Charles River Laboratories International Inc. (Wilmington, MA). After quarantine, the GK rats 

were fasted the night before blood draw for ~ 12 hours after allowing access to food for three hours 

in the dark cycle (7-10 pm). Blood samples were obtained through retro-orbital bleeding, using 

inhalation of 5% isoflurane as anesthesia, for measuring glucose and insulin values using 

AlphaTRAK glucometer (Abbott Laboratories Inc., IL) and insulin kit (Millipore, MA), 

respectively. Homeostatic model assessment of insulin resistance (HOMA-IR) was calculated with 

the measurements obtained by the following formula: 

𝐻𝑂𝑀𝐴 − 𝐼𝑅 =  
𝑓𝑎𝑠𝑡𝑖𝑛𝑔 𝑝𝑙𝑎𝑠𝑚𝑎 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 (

𝑚𝑔
𝑑𝑙 ) × 𝑝𝑙𝑎𝑠𝑚𝑎 𝑖𝑛𝑠𝑢𝑙𝑖𝑛 (

µ𝑈
𝑚𝑙)

2430
 

Then 12 rats each were designated to one of the four isocaloric diets (3.23 kcal/g) based on 

their weight and HOMA-IR. The study lasted 12 weeks and the diets were designated by their 
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major ingredient: (1) Amylopectin control corn starch with no whole grain or resistant starch 

(CON), (2) isolated high amylose maize resistant starch (HAMRS) corn starch (RS), (3) whole 

grain waxy corn flour with low resistant starch (WG), and (4) whole grain HAMRS corn flour 

(WG+RS). The composition of the four diets used is listed in Table 4.1. Purified non-fermentable 

cellulose (Dyets, PA) was used to dilute the energy density of the control diets, non-whole grain 

and whole grain, to produce isocaloric control diets as high resistant starch diet ingredients have a 

lower metabolizable energy than amylopectin starch in isolated starch and waxy whole grain corn 

flour [17]. Before diets were formulated, the starch and whole grain ingredients were analyzed by 

proximate analysis and modified Englyst [94] assay to determine macronutrient and resistant 

starch content, respectively. Casein was reduced from AIN-93M amount (140 g/kg) based on the 

protein content in the major ingredient of each diet as analyzed by proximate analysis by Medallion 

Labs for Ingredion Incorporated. Also, corn oil was 10% higher than AIN-93M amount (40 g/kg) 

based on the fat content in whole grain HAMRS corn flour. 

Table 4.1. Diets composition for Study 2.1. 

Ingredients  
CON1   RS   WG   WG+RS 

Grams    Grams    Grams    Grams  

Waxy corn starch2 536.80   97.66   85.98   164.50 

High-amylose corn starch3 0.00   576.00   0.00   0.00 

Whole grain high-amylose corn flour4 0.00   0.00   0.00   572.00 

Waxy whole grain flour5  0.00   0.00   550.00   0.00 

Sucrose 100.00   100.00   100.00   100.00 

Casein6 136.00   132.27   95.42   74.80 

Cellulose  135.00   7.00   97.20   40.50 

Corn Oil7 44.00   38.87   23.20   0.00 

Mineral mix 35.00   35.00   35.00   35.00 

Vitamin mix 10.00   10.00   10.00   10.00 

Choline chloride 1.40   1.40   1.40   1.40 

L-Cystine 1.80   1.80   1.80   1.80 



44 

 

(Table 4.1. Con’d)        

Ingredients  
CON1   RS   WG   WG+RS 

Grams    Grams    Grams    Grams  

Total 1000.00   1000.00   1000.00   1000.00 

Total energy (kcal) 3.24   3.24   3.24   3.24 

% RS8 1.00   26.47   6.10   26.79 
1Groups include: CON= Amylopectin control corn starch with no whole grain or resistant starch, 

RS= isolated high amylose maize resistant starch (HAMRS) corn starch, WG= whole grain waxy 

corn flour with low resistant starch, and WG+RS = whole grain HAMRS corn flour. 
2AMIOCA® corn starch  
3HI-MAIZE® resistant corn starch 
4HI-MAIZE® whole grain corn flour 
5Waxy corn starch, high-amylose corn starch, whole grain high-amylose corn flour and waxy 

whole grain were all gifts from Ingredion Incorporated (Bridgewater, NJ). 
6Casein was reduced from AIN-93M amount (140 g/kg) based on the protein in the AMIOCA® 

corn starch, HI-MAIZE® resistant corn starch, HI-MAIZE® whole grain corn flour, and waxy 

whole grain as analyzed by proximate analysis by Medallion Labs for Ingredion Incorporated.  
7Corn oil was increased from AIN-93M amount (40 g/kg) to 44 g/kg based on the fat in the HI-

MAIZE® whole grain corn flour, and waxy whole grain flour as analyzed by proximate analysis 

by Medallion Labs for Ingredion Incorporated.  And corn oil was adjusted based on fat in the 

main ingredients. 
8Resistant starch content of the four experimental starch ingredients determined by Ingredion 

Incorporated using the modified Englyst assay [94]. 

 

Study 2.2. Protocol was approved by the Louisiana State University Institutional Animal 

Care and Use Committee. Sprague Dawley rats (n=96) were purchased from Harlan Laboratories 

Inc. (Indianapolis, IN). After quarantine twelve rats were assigned into one of the four isocaloric 

diets for high fat content (4.18±0.02 kcal/g, 42.48%±0.17 of total energy) or into one of the four 

isocaloric diets for moderate fat content (3.76±0.002 kcal/g, 30.10%±0.04 of total energy) based 

on their body weight. The diets, within high fat or moderate fat content, were designated by the 

major ingredient the same as in study 2.1 as: (1) CON, (2) RS, (3) WG, and (4) WG+RS. The 

composition of the eight diets used is listed in Table 4.2. 
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Table 4.2. Diets composition for Study 2.2.  

  MODERATE FAT 

Ingredients CON1   RS   WG   WG+RS 

  Grams    Grams    Grams    Grams  

Waxy corn starch2 473.30   72.31   63.83   137.74 

High-amylose corn starch3 0.00   524.00   0.00   0.00 

Whole grain high-amylose corn flour4 0.00   0.00   0.00   520.00 

Waxy whole grain flour5  0.00   0.00   500.00   0.00 

Sucrose 100.00   100.00   100.00   100.00 

Casein6 136.00   133.12   99.42   80.56 

Cellulose  115.00   0.00   81.00   27.00 

Corn Oil7 85.00   79.87   65.05   44.00 

Lard 42.50   42.50   42.50   42.50 

Mineral mix 35.00   35.00   35.00   35.00 

Vitamin mix 10.00   10.00   10.00   10.00 

Choline cloride 1.40   1.40   1.40   1.40 

L-Cystine 1.80   1.80   1.80   1.80 

Total 1000.00   1000.00   1000.00   1000.00 

Total energy (kcal) 3.76   3.75   3.76   3.76 

% RS8 0.42   23.37   4.93   23.45 

  HIGH FAT 

Ingredients CON1   RS   WG   WG+RS 

  Grams    Grams    Grams    Grams  

Waxy corn starch2 405.80   0.00   0.00   77.85 

High-amylose corn starch3 0.00   524.66   0.00   0.00 

Whole grain high-amylose corn flour4 0.00   0.00   0.00   525.00 

Waxy whole grain flour5  0.00   0.00   517.00   0.00 

Sucrose 100.00   100.00   100.00   100.00 

Casein6 136.75   133.70   98.74   80.58 

Cellulose  110.00   0.00   56.91   10.00 

Corn Oil7 99.25   93.44   79.15   58.37 

Lard 100.00   100.00   100.00   100.00 

Mineral mix 35.00   35.00   35.00   35.00 

Vitamin mix 10.00   10.00   10.00   10.00 

Choline cloride 1.40   1.40   1.40   1.40 

L-Cystine 1.80   1.80   1.80   1.80 

Total 1000.00   1000.00   1000.00   1000.00 

Total energy (kcal) 4.16   4.14   4.23   4.21 
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(Table 4.2. Con’d)        

  HIGH FAT 

Ingredients CON1   RS   WG   WG+RS 

  Grams    Grams    Grams    Grams  

% RS8 0.36   23.32   5.04   23.41 
1Groups include: CON= Amylopectin control corn starch with no whole grain or resistant starch, 

RS= isolated high amylose maize resistant starch (HAMRS) corn starch, WG= whole grain waxy 

corn flour with low resistant starch, and WG+RS= whole grain HAMRS corn flour. 
2AMIOCA® corn starch  
3HI-MAIZE® resistant corn starch 
4HI-MAIZE® whole grain corn flour 
5Waxy corn starch, high-amylose corn starch, whole grain high-amylose corn flour and waxy 

whole grain flour were all gifts from Ingredion Incorporated (Bridgewater, NJ). 
6Casein was reduced from AIN-93M amount (140 g/kg) based on the protein in the AMIOCA® 

corn starch, HI-MAIZE® resistant corn starch, HI-MAIZE® whole grain corn flour, and waxy 

whole grain as analyzed by proximate analysis by Medallion Labs for Ingredion Incorporated.  

7 In moderate fat (30% of energy) diets, one-third of the fat was lard and two-thirds was corn 

oil. For high fat (42.48% of energy) diets one-half of the fat was lard and the other half was corn 

oil.  Based on the proximate analysis of AMIOCA® corn starch, HI-MAIZE® resistant corn 

starch, HI-MAIZE® whole grain corn flour, and waxy whole grain flour as analyzed by 

proximate analysis by Medallion Labs for Ingredion Incorporated, the corn oil was reduced. 

8Resistant starch content of the four experimental starch ingredients determined by Ingredion 

Incorporated using the modified Englyst assay [94]. 

 

Procedures 

Study 2.1. During week 8, fed state blood samples were collected by retro-orbital bleeding 

to measure GLP-1 active with ELISA kit (ALPCO, NH). At week 10 another fasted blood 

collection was performed in order to repeat calculations for HOMA-IR. After 12-weeks GK rats 

were fasted again for euthanasia. Fifteen minutes prior to euthanasia the next day, 6 rats per 

treatment were given an intraperitoneal (IP) injection of saline solution (fasted state) and the other 

6 rats were injected with 1.00 unit/kg of insulin to model the fed state. 
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In studies 2.1 and 2.2, rats were euthanized by cardiac puncture using inhalation of 

isoflurane soaked cotton balls as anesthesia in a bell jar. Fat pads (peritoneal, retroperitoneal, and 

epididymal) were removed and weighed for total abdominal fat percentage (ABF %) calculation. 

The gastro-intestinal (GI) tract was removed from esophagus to anus and weighed after removal 

of mesenteric fat. Emboweled weight for ABF% was obtained after subtraction of GI contents 

from body weight. Cecal contents and cecal epithelial cells, collected by scraping, were frozen in 

liquid nitrogen to analyze later. For studies 2.1 and 2.2, gene expression for GCG, G6Pase and 

PCase enzymes for IGN were measured, but that is the only data reported here for study 2.2. 

Cecal contents pH and short-chain fatty acid analysis 

For study 2.1, cecal contents were thawed and homogenized in distilled water (0.5 g wet 

sample to 5 ml of water), for pH measurements. Next, each sample was acidified with 1 ml of a 

25% (w/w) solution of metaphosphoric acid containing 2 g/L 2-ethyl-butyric acid as an internal 

standard for SCFA contents. Solids were separated by centrifugation and filtration. The 

supernatant was transferred to a GC auto-sampler vial. Concentrations of SCFA were 

quantitatively determined by gas chromatography by a method described in a previous publication 

from our laboratory [66]. 

Measurement of mRNA expression 

Approximately, 20 to 30 mg of cecal epithelial cells were cut using a super-cold (dry ice) 

blade for each rat’s sample and placed into an ice cold 2 ml Lysing Matrix D tube (MP 

Biomedicals, OH) with 1.4 mm ceramic spheres and 600 µl RLT lysis buffer from RNeasy Mini 

Kit (Qiagen, Germany). Immediately, the tubes with the epithelial cells, lysis buffer and ceramic 

spheres were homogenized using a FastPrep®-24 Instrument (MP Biomedicals, OH) for 30 
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seconds at speed setting 6.0 m/s. The lysate was centrifuged for 3 minutes at 14,000 rpm, and total 

RNA was extracted from the supernatant by following the RNeasy Mini Kit protocol. RNA was 

quantified using a NanoDrop® ND-1000 spectrophotometer (Wilmington, DE) and diluted to 40 

ng/ µl. The gene transcription for GCG as positive control, PCase, and G6Pase for both studies, 

were determined using real-time reverse transcriptase polymerase chain reaction (real-time RT-

PCR) using ABI PRISM 7900 Sequence Detection System, and SDS 2.4 software (Life 

Technologies, NY). Standard curves were produced for each mRNA by pooling aliquots of 

samples for cycles to threshold versus RNA amount. The results were expressed as a ratio to the 

expression of cyclophilin (CYC). The sequences of TaqMan probes and primers for cyclophilin 

(GenBank accession no. M15933) were: (5’-3’) forward primer, CCCACCGTGTTCTTCGACAT; 

reverse primer, TGCAAACAGCTCGAAGCAGA; and probe, CAAGGGCTCGCCATCAGCCG. 

The probe and primers for proglucagon, G6Pase, and PCase were from Life Technologies (Foster 

City, CA). Each sample was tested in triplicate. The real-time RT-PCR conditions for all genes 

were 48°C for 30 min, 95°C for 15 s and 60°C for 1 min for 40 cycles.  

Statistical Analysis 

Data for both studies were analyzed using Statistical Analysis Software SAS® version 9.3. 

Equal variance, normal distribution, and possible outliers were tested by an UNIVARIATE 

procedure used in the MIXED procedure. Food intake, HOMA-IR at week 10, and GLP-1 data 

sets from study 2.1 were analyzed and statistical differences among groups were determined by a 

2 x 2 factorial followed by F-protected LSD post-hoc mean comparison tests using the MIXED 

procedure. A p< 0.05 was considered statistically significant. The two factors were resistant starch 

(R, low or high), and whole grain (W, + or -). These data were collected before insulin injection. 

Only HOMA-IR was log 10 transformed from original data for statistical analyses due to non-
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normal distribution (w<0.05) according to Shapiro-Wilk test. Data variables from study 2.1 

collected at euthanasia were analyzed as 2 x 2 x 2 factorials. The three factors were resistant starch 

(R, low or high), whole grain (W, + or -), and injection (I, insulin or saline). Outliers were detected 

and removed for GLP-1 active (CON: 1.51, 1.97; RS: 2.52; WG: 1.49; WG+RS: 0.31), pH 

(WG+RS: 7.31), acetate (RS: 0.89; WG: 0.21), propionate (RS: 0.15; WG: 0.03), GCG:CYC 

(CON: 3.99), G6Pase:CYC (CON: 19.21, 6.93; RS: 3.50; WG: 0.06; WG+RS: 7.97). Acetate, 

propionate, butyrate, GCG:CYC, PCase:CYC, and G6Pase:CYC dependent variables were log 10 

transformed from original data for statistical analyses due to non-normal distribution (w<0.05) 

according to Shapiro-Wilk test. GLP-1 active, ABF%, cecal contents pH, and empty cecum weight 

(ECW) data sets were not log 10 transformed. Data for analysis of IGN for study 2.2 reported here 

were a 2 x 2 x 2 factorial and the variables were R (low or high), W (+ or -), and Fat (F, moderate 

or high). GCG:CYC, PCase:CYC, and G6Pase:CYC dependent variables were log 10 transformed 

for statistical analyses because they were not normally distributed (w<0.05) according to Shapiro-

Wilk test from original data. All factorial data were followed by F-protected LSD post-hoc mean 

comparison tests. Data are presented in their original form and expressed as means ± standard 

error. Correlations were performed using the CORR procedure. 

4.3. Results  

Study 2.1.  

Food intake, HOMA-IR, and GLP-1 Active  

Food intake (Fig 4.1.) over the study was increased by presence of dietary whole grain 

(p<0.0348) in the diet. WG and WG+RS groups registered the highest consumptions and they were 

not significantly different (p=0.7576) from one another. No significant effect for dietary resistant 

starch (p=0.2886) or interaction effect of dietary whole grain*dietary resistant starch (p=0.1374) 
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were documented. CON group consumed less food compared to WG (p<0.0123) and WG+RS 

(p<0.0263) groups. Additionally, the RS group approached a significant increase in food intake 

from CON group (p=0.0741).  The RS group was not significantly different from WG (p=0.4391), 

and WG+RS (p=0.6405) groups. 

 

Figure 4.1. Food Intake for Study 2.1. Groups include: CON = Amylopectin control corn starch 

with no whole grain or resistant starch, RS = isolated HAMRS corn starch, WG = whole waxy 

corn flour with low RS, and WG+RS = whole grain HAMRS corn flour. Data are presented in 

their original form and expressed as means ± standard error. Different letters above columns 

indicate a statistically significant difference p<0.05 for a 2 x 2 factorial. A main effect of W 

(p<0.0348) was observed.  

There was a main effect of feeding high resistant starch (p<0.0001) as dietary high resistant 

starch resulted in lower HOMA-IR (greater insulin sensitivity in fasted state) for RS and WG+RS 

groups compared to the control groups (CON, WG). However, WG+RS had a greater value than 

RS (p<0.0014) as a result there was a whole grain effect (p<0.0057) dominated by high resistant 

starch in whole grain diet and resistant starch effect (p<0.0001). This resulted in an interaction for 
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wholegrain*resistant starch (p=0.0628) approaching significance. CON and WG groups had the 

highest HOMA-IR and were not significantly different (p=0.4839) from each other (Fig. 4.2). 

 

Figure 4.2. HOMA-IR for Study 2.1. Groups include: CON = Amylopectin control corn starch 

with no whole grain or resistant starch, RS = isolated HAMRS corn starch, WG = whole waxy 

corn flour with low RS, and WG+RS = whole grain HAMRS corn flour. Data are presented in 

their original form and expressed as means ± standard error. Different letters above columns 

indicate a statistically significant difference p<0.05. Data are shown on two factors, resistant starch 

(R, low or high) and whole grain (W, + or -) from 2 x 2 factorial. Main effects for W (p<0.0057) 

and R (p<0.0001), but no interaction for W*R (p=0.0628) were documented. 

GLP-1 active (Fig 4.3.) measured in the fed state demonstrated a resistant starch effect 

(p<0.0001) as the RS and WG+RS groups fed high resistant starch were greater compared to CON 

and WG groups. There was no effect of whole grain (p=0.5929) as WG+RS was no different than 

RS (p=0.4876) and the control groups CON and WG were the lowest and not significantly different 

(p=0.5873) from one another. This also resulted in no interaction of whole grain*resistant starch 

(p=0.4179). GLP-1 active was negatively correlated with HOMA-IR (p=0.0361). 
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Figure 4.3. GLP-1 active for Study 2.1. Groups include: CON = Amylopectin control corn starch 

with no whole grain or resistant starch, RS = isolated HAMRS corn starch, WG = whole waxy 

corn flour with low RS, and WG+RS = whole grain HAMRS corn flour. Data are presented in 

their original form and expressed as means ± standard error. Different letters above columns 

indicate a statistically significant difference 0.05. Data are shown on two factors, resistant starch 

(R, low or high) and whole grain (W, + or -) from 2 x 2 factorial. Main effect for R (p<0.0001) 

was observed.  

Abdominal fat percent (ABF %), cecal contents pH, SCFAs 

For ABF % there was a main effect of dietary resistant starch (p<0.0001), and interaction 

effects for dietary whole grain*dietary resistant starch (p<0.0119) and dietary whole 

grain*injection (p<0.0327). The significant effect for resistant starch is the result of the RS group 

having the lowest value of all groups with saline injection, and RS group having a numerically 

lower value than WG and WG+RS and significantly lower than CON with insulin injection. The 

whole grain*resistant starch interaction was the result of the WG+RS group having a higher value 

than RS group with saline injection. The significant whole grain*injection interaction was the 

result of the WG+RS and WG groups having numerically lower values with the insulin injection 

compared with saline injection (Fig. 4.4.). 
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Figure 4.4. Abdominal fat percent (ABF %) for Study 2.1. Groups include: CON = Amylopectin 

control corn starch with no whole grain or resistant starch, RS = isolated HAMRS corn starch, WG 

= whole grain waxy corn flour with low resistant starch, and WG+RS = whole grain HAMRS corn 

flour. Data are presented in their original form and expressed as means ± standard error. Different 

letters above columns indicate a statistically significant difference at p<0.05. Data are shown on 

three factors, resistant starch (R, low or high), whole grain (W, + or -), and Injection (I, insulin or 

saline) for a 2 x 2 x 2 factorial. A main effect for R (p<0.0001), and interactions for W*R 

(p<0.0119) and W*I (p<0.0327) were documented. 

For cecal contents pH (Fig. 4.5) there were significant main effects for dietary whole grain 

(p<0.0001), dietary resistant starch (p<0.0001), and injection (p<0.0089), as well as interaction 

effects of dietary whole grain*dietary resistant starch (p<0.0001), dietary whole grain*injection 

(p<0.0027) and dietary whole grain*dietary resistant starch*injection (p<0.0048). The resistant 

starch effect occurred because the lowest cecal contents pH was for the RS group with both saline 

and insulin injections. The whole grain main effect and interaction effects are the result of the 

WG+RS group having lower cecal contents pH than the two control groups (CON, WG), but not 

the RS group with the insulin injection. Additionally, the WG control group had lower pH than the 

isolated starch group CON with both types of injections (insulin p<0.0363, saline p<0.0095). 
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Figure 4.5. Cecal contents pH, and SCFA propionate for Study 2.1. Groups include: CON = 

Amylopectin control corn starch with no whole grain or resistant starch, RS = isolated HAMRS 

corn starch, WG = whole grain waxy corn flour with low resistant starch, and WG+RS = whole 

grain HAMRS corn flour. Data are presented in their original form and expressed as means ± 

standard error. Different letters above columns indicate a statistically significant difference at 

p<0.05. Data are shown on three factors, resistant starch (R, low or high), whole grain (W, + or -

), and Injection (I, insulin or saline) for a 2 x 2 x 2 factorial. Main effects for W (p<0.0001), R (p 

<0.0001) and I (p<0.0089); and interactions for W*R (p<0.0001), W*I (p<0.0027) and W*R*I 

(p<0.0048) were observed.  

There were significant main effects for dietary whole grain (p<0.0248), dietary resistant 

starch (p<0.0001) and injection (p<0.0477) and significant interactions for dietary whole 

grain*dietary resistant starch (p<0.0001) for production of the SCFA propionate in cecal contents 

(Fig 4.6.). The reasons for the significant main effects and interaction effect are: propionate was 

produced to a much greater extent in cecal contents of the RS group regardless of the type of 

injection compared to the other groups, but the amount was reduced with insulin injection 

compared to saline injection; and the WG+RS (saline or insulin p<0.0001) and WG (saline 

p<0.0312, insulin p<0.0075) groups had greater amounts than CON regardless of type of injection. 
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Figure 4.6. Millimoles of SCFA propionate in cecal contents Study 2.1. Groups include: CON = 

Amylopectin control corn starch with no whole grain or resistant starch, RS = isolated HAMRS 

corn starch, WG = whole grain waxy corn flour with low resistant starch, and WG+RS = whole 

grain HAMRS corn flour. Data are presented in their original form and expressed as means ± 

standard error. Different letters above columns indicate a statistically significant different at 

p<0.05 Data are shown on three factors, resistant starch (R, low or high), whole grain (W, + or -), 

and Injection (I, insulin or saline) for a 2 x 2 x 2 factorial. A main effect for I (p<0.0477) was 

reported, for that reason data were not collapsed.  There were main effects of W (p<0.0248) and 

R (p<0.0001), and an interaction effect for W*R (p<0.0001) observed. 

Statistical analysis for ECW and the SCFAs acetate and butyrate (Table 4.3.) were 

collapsed from eight to four groups, since no main effect or significant interaction was documented 

for injection. The ECW was increased in the presence of high resistant starch in the diet (p<0.0001) 

as RS and WG+RS groups had higher empty cecum weights compared to CON and WG groups. 

The RS group had a greater value than WG+RS group (p<0.0001) and there was also a dietary 

resistant starch*dietary whole grain effect (p<0.0001). This interaction was dominated by high 

resistant starch because its addition to a whole grain diet increased the ECW. The presence of high 

resistant starch (dietary resistant starch effect, acetate p<0.0001 and butyrate p<0.0001) in diets 

increased the production of acetate and butyrate for groups fed high resistant starch diets (RS, 
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WG+RS). There was also a resistant starch*whole grain effect (p<0.0001) because acetate and 

butyrate in cecal contents were greater when there was whole grain resistant starch in the diet. 

Additionally, the WG group had greater production than CON group (acetate p<0.0004, and 

butyrate p<0.0009). 

Table 4.3. ECW, Acetate, and Butyrate for Study 2.11.  

Variables 
Groups2   P value1, 3,4 

CON RS WG WG+RS   W R W*R 

ECW5 (g) 0.52c 1.64a 0.54c 1.15b   0.0001 <.0001 <.0001 

Acetate (mmol) 0.32d 4.22a 0.6c 1.92b   0.5924 <.0001 <.0001 

Butyrate (mmol) 0.04d 0.53a 0.11c 0.23b   0.8348 <.0001 <.0001 
1Data are shown collapsed on two factors, resistant starch (R, low or high) and whole grain (W, 

+ or -) for a 2 x 2 factorial because there were no significant effects of the third factor, Injection 

(I, insulin or saline). All markers of fermentation had a significant effect of R and some had 

significant effects of W. Acetate and butyrate data were log10 transformed for statistical 

analysis.   
2Groups include: CON = Amylopectin control corn starch with no whole grain or resistant starch, 

RS = isolated high amylose maize resistant starch (HAMRS) corn starch, WG = WG waxy corn 

flour with low RS, and WG+RS = WG HAMRS corn flour. Data are presented in their original 

form and expressed as means. 
3P value< 0.05 was considered statistically significant and it is represented with different letters 

horizontally.  
4 There were no interaction effects for: W*I, R*I and W*R*I (p>0.05). 
5ECW = Empty cecum weight. 

 

Transcript levels in cecal cells  

The statistical analyses for mRNA expression measurements were collapsed and listed for 

the independent variables dietary resistant starch and dietary whole grain because there were no 

main or interactive effects for injection. There was higher GCG:CYC gene expression for RS and 

WG+RS groups (Fig. 4.7A) compared to CON and WG groups for a resistant starch effect 

(p<0.0001). The RS group had greater (p<0.0075) GCG:CYC gene expression than WG+RS 

resulting in whole grain effect (p<0.0299), which was dominated by resistant starch effect and 

there was no interactive effect for whole grain*resistant starch (p=0.0999). Additionally, the 
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injection effect approached significance (p=0.0518) because it was dominated by resistant starch 

effect and whole grain effect. The PCase:CYC (Fig. 4.7B) and G6Pase:CYC (Fig. 4.7C) gene 

expression had no significant main or interactive effects; therefore no significant differences were 

found among the groups. However, for PCase:CYC the resistant starch effect approached 

significance (p=0.0984). 

                                                                        A.                                                                            

B. 
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Figure 4.7. Transcript levels in cecal cells for Study 2.1. Groups include: CON = Amylopectin 

control corn starch with no whole grain or resistant starch, RS = isolated HAMRS corn starch, WG 

= whole grain waxy corn flour with low RS, and WG+RS = whole grain HAMRS corn flour. Data 

are presented in their original form and expressed as means ± standard error. Different letters above 

columns indicate a statistically significant difference at p<0.05. Data are shown collapsed on two 

factors, resistant starch (R, low or high) and whole grain (W, + or -) for a 2 x 2 factorial because 

there was no significant effect of the third factor, Injection (I, insulin or saline). A. Glucagon 

(GCG):Cyclophilin (CYC) gene expression in cecal cells. Main effects for W (p<0.0299) and R 

(p<0.0001) were documented. B. Pyruvate Carboxylase (PCase):CYC gene expression in cecal 

cells. There were no main or interaction effects observed. Also, there were no significant 

differences among treatment groups. C. Glucose-6 Phosphatase (G6Pase):CYC gene expression 

in cecal cells. No main or interactions were observed. There were no significant differences among 

groups. 
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Study 2.2 

Transcript levels in cecal cells 

mRNA expression measurements for GCG and G6Pase were collapsed to resistant starch 

and whole grain independent variables, because the level of fat in the diets did not affect the GCG 

and G6Pase ratios to CYC for gene expression. Results from GCG:CYC ratio (Fig.4.8A.) 

demonstrated that the RS group had the highest proglucagon gene expression resulting in a main 

effect of resistant starch (p<0.0002). A main effect for whole grain (p<0.0367) and interactive 

effect for whole grain*resistant starch (p<0.0012) were also observed, however, CON, WG and 

WG+RS groups were not significantly different from one another. For G6Pase:CYC ratio there 

was a significant resistant starch (Fig. 4.8B) effect (p<0.0001) as RS and WG+RS groups were not 

significantly different (p=0.6952) from one another, but had greater ratios than control groups 

(CON and WG). CON and WG groups were not significantly different (p=0.5853) from one 

another, and these were reflected in no main effect for whole grain (p=0.5192) or interactive effect 

for whole grain*resistant starch (p=0.9836). A higher PCase:CYC ratio was obtained for RS and 

WG+RS groups (resistant starch effect, p<0.0001) compared to CON or WG with a moderate fat 

diet (Fig. 4.8C). The PCase:CYC ratio was reduced for the RS group (resistant starch*fat, 

p<0.0118), but not reduced significantly with WG+RS with the feeding of the high fat diet 

(resistant starch*whole grain, p=0.6620). Also, the WG+RS and RS groups were not significantly 

different (p=0.0847) from one another with high fat diet. There was a significant whole grain effect 

(p<0.0294) because the WG group was numerically greater than CON for both moderate and high 

fat diets and WG+RS group was numerically greater than RS with the high fat diet. 
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A.                                                                              B. 

 

                                                                                                                                                        C. 

Figure 4.8. Transcript levels in cecal cells for Study 2.2. Groups include: CON = Amylopectin 

control corn starch with no whole grain or resistant starch, RS = isolated HAMRS corn starch, WG 

= whole waxy corn flour with low RS, and WG+RS = whole grain HAMRS corn flour. Data are 

presented in their original form and expressed as means ± standard error. Different letters above 

columns indicate a statistically significant difference at 0.05. Glucagon (GCG):Cyclophilin (CYC) 

and Glucose-6 Phosphatase (G6Pase):CYC data are shown collapsed on two factors, resistant 

starch (R, low or high) and whole grain (W, + or -) for a 2 x 2 factorial because there was no 

significant effect of the third factor, Fat (F, moderate or high). A. GCG:CYC gene expression in 

cecal cells.  Main effects for W (p<0.0367) and R (p<0.0002) and interaction for W*R (p<0.0012) 

were documented. B. G6Pase:CYC gene expression in cecal cells. There was a main effect of R 

(p<0.0001) observed. C. Pyruvate Carboxylase (PCase):CYC gene expression in cecal cells. Main 

effects of W (p<0.0294) and R (p<0.0001) and an interaction of R*F (p<0.0118) were observed. 

4.4. Discussion 

As was stated in the introduction, humans fed resistant starch diets have exhibited the 

beneficial health effect of improvement of insulin sensitivity, whether or not there was increased 
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production of GLP-1 active [18, 81]. Therefore, other mechanisms such as IGN might be involved. 

Rodent studies have reported insulin sensitivity improvements and decreased hepatic 

gluconeogenesis with increased IGN [54]. In contrast, human studies have reported insulin 

sensitivity improvements, increased glucose uptake in skeletal muscle and adipose, but no 

reduction of hepatic gluconeogenesis [18, 33]. Decreased hepatic gluconeogenesis in rodents could 

be a response of increased AMPK phosphorylation and activity due to SCFAs [14], and this 

mechanism might not occur in humans. Additionally, there is no scientific research done in humans 

for increased IGN as a result of a resistant starch feeding. It is known that not all findings in rodent 

studies can be translated to humans, but there is strong evidence that production of SCFAs during 

fermentation of resistant starch and other fermentable fibers provide beneficial health effects for 

rodents and humans.29 Our results demonstrated that increased IGN gene expression occurred in 

the fed state of Sprague Dawley rats, therefore we propose IGN as a possible mechanism that 

improves insulin sensitivity in humans, but this needs to be confirmed in humans. 

In Study 2.1, we investigated the fermentation effects of high resistant starch (isolated or 

whole grain HAMRS forms), compared to highly digestible isolated starch and waxy whole grain 

low resistant starch, on improving insulin sensitivity and gluconeogenic gene expression in cecum 

for GK rats, a non-obese type 2 diabetic model [95]. This model has a reduced pancreatic mass 

[32]. Our results demonstrated that high resistant starch as either isolated or in whole grain form 

had similar effects with increased GLP-1 active, greater insulin sensitivity (lower HOMA-IR) and 

greater fermentation (greater empty cecum weights, lower cecal contents pH, and greater SCFAs) 

in GK rats. GLP-1 active secretion in plasma was stimulated by RS and WG+RS diets in 

comparison with WG and CON diets. The increase of GLP-1 active was significantly negatively 

correlated to HOMA-IR (p=0.0361). GLP-1 secretion is associated with improvements in glucose 
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metabolism by stimulating glucose-dependent insulin secretion[80] and inhibition of glucagon 

secretion [96]. We also previously demonstrated that isolated resistant starch feeding to GK rats 

significantly improved insulin sensitivity [32], but hypothesized that whole grain may have a 

greater effect. These results indicate that the beneficial effect on insulin sensitivity results from 

presence of high resistant starch and was not due to other components in the whole grain. Also, 

increased GLP-1 secretion is proposed to be the result of increased SCFAs (product from 

fermentation of resistant starch or other fermentable fibers in the large intestine) binding to G-

protein-coupled receptors on GLP-1-secreting L cells in the colon [97]. Human studies have also 

demonstrated that dietary resistant starch intake improves insulin sensitivity [98]. 

GK rats fed RS or WG+RS diet showed a decrease for ABF%. The reduced body fat 

percent for RS or WG+RS groups suggested increased fat oxidation as food intake was increased 

significantly for WG+RS and numerically for RS. Previous data from our lab demonstrated dietary 

resistant starch boosted fat oxidation in mice [29]. No scientific literature was found to support 

that insulin injection prior to euthanasia may affect ABF%, especially for whole grain diets and 

for that reason further research is suggested. However, the WG+RS rats that had the insulin 

injection had a lower cecal contents pH.  Thus, by chance, the rats given the insulin injection 

appear to have greater fermentation and this may be the reason for the lower ABF% with insulin 

injection.  Also, the presence of whole grain increased food intake in GK rats and presence of 

resistant starch approached significance so there may have possibly been increased fat oxidation 

and reduced abdominal fat pads [32] and reduced fat accretion in stores [98]. 

Body weight (data not shown) was not significantly different between the rats designated 

for injection of saline or insulin, as there was no main effect for dietary whole grain (p=0.5655), 

dietary resistant starch (p=0.7885) or interactive effect for dietary whole grain*dietary resistant 
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starch (p=0.2485).  In another rodent study there was also no decrease in total body weight in 

response to resistant starch feeding [27]. These results might be a consequence of increased total 

bowel contents, thickness of the lumen, and mass of microbiome [27]. However, rodent studies 

have demonstrated reduction in total body fat percentage for resistant starch diets compared to a 

highly digestible starch diet [29, 83, 99]. 

The WG group exhibited less fermentation compared to the RS and WG+RS groups which 

demonstrated a greater or dominant effect of resistant starch compared to a whole grain effect on 

empty cecum weight, and SCFAs. The WG+RS group had a lower cecal contents pH compared to 

WG only with insulin injection. We hypothesized greater fermentation for whole grain because 

whole grain has more complex dietary fiber composed of oligosaccharides, resistant starch, and 

non-starch polysaccharides, and it has been shown to augment the production of SCFAs in the 

large intestine, especially butyrate [100]. However, this did not occur in the current study. This 

result did not occur in the present GK rat study likely because of the fasted state of the rats. It may 

be suggested that the WG+RS diet may have a shorter transit time than the RS diet so that more 

isolated resistant starch was present in the cecum at euthanasia. 

IGN is a regulator of glucose and energy homeostasis [88]. De Vadder et al. reported that 

the production of propionate and butyrate from fermentation of FOS activates IGN genes such as 

G6Pase in small intestine (jejunum) and large intestine (colon) [54]. Sun et al. demonstrated that 

duodenal-jejunal bypass upregulated G6Pase in small intestine in GK rats [101]. In studies 2.1 and 

2.2 we examined the gene expression of G6Pase and PCase in cecum as indicators of IGN in large 

intestine. The results of the studies demonstrated that resistant starch feeding results in increased 

IGN gene expression only in the fed state with dietary resistant starch. In addition GCG gene 

expression was measured as a positive control for real-time RT-PCR. In study 2.1, the increase of 
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GLP-1 active was significantly positively correlated to GCG:CYC. RS and WG+RS had higher 

gene expression of GCG compared to CON and WG as well as increased serum GLP-1 active. 

Increased GCG [31] and GLP-1 [29] active have also been reported in previous studies. 

Furthermore, in study 2.2 greater expressions of GCG gene and GLP-1 active in serum in Sprague 

Dawley rats fed the RS diet were observed independent of fat level. However, the WG+RS group 

did not have increased GCG gene expression, which suggests that this group was more efficient in 

translation as the rats in the RS group because both groups similarly increased serum GLP-1 active 

(data not shown). 

Study 2.1 was planned to determine if resistant starch feeding would increase IGN gene 

expression in the fasted and fed states, with injection of insulin as a model for the fed state. We 

hypothesized that since FOS increased IGN, another fermentable fiber, resistant starch, should also 

stimulate IGN. Then in study 2.2, we measured IGN gene expression in Sprague Dawley rats only 

in the fed state. There was increased, gene expression of PCase and G6Pase, independent of fat 

level, in cecal cells in rats fed the RS and WG+RS diets. Previous results demonstrated that high 

fat diet partly diminished the fermentation in Sprague Dawley rats fed resistant starch [66], but in 

study 2.2 there were similar increases in IGN gene expression regardless of level of dietary fat. 

These results indicate that high resistant starch increased IGN gene expression in the large intestine 

only in the fed state and that injection of insulin associated with the fasted state is not a good model 

for the fed state in regard to IGN gene expression. 

In summary, the present research study demonstrated that gene expression for two IGN 

enzymes are increased in the fed state in the large intestine of Sprague Dawley rats fed RS and 

WG+RS diets with either moderate or high fat. No increase in IGN enzyme gene expression was 

detected in the large intestine of fasted GK rats fed high resistant starch or whole grain in a low 
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fat diet, even though the insulin sensitivity was improved. IGN in the large intestine appears to 

occur in the fed state and not if the rats are fasted. It also appears that insulin injection does not 

model the fed state, in regards to IGN gene expression. However, the current data indicate that 

Americans consuming a moderate or high fat diet can include resistant starch as a fermentable 

fiber in their typical diet in order to increase IGN in the large intestine and benefit from better 

glycemic control and insulin sensitivity. Further research needs to be done for IGN in large 

intestine for Sprague Dawley rats to determine if increased IGN gene expression translates to 

increased enzyme levels; and to measure IGN gene expression in the fed state in GK rats in 

response to resistant starch consumption. Also, research is warranted to determine if IGN is 

increased in human subjects fed resistant starch and may account for increased insulin sensitivity 

when serum GLP-1 is not increased. 
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CHAPTER 5: CONCLUSIONS 

 The results obtained in study 1.2 demonstrated that the usage of very potent antibiotics can 

be avoided to reduce fermentation of resistant starch in the rat cecum for future mechanistic studies 

with dietary resistant starch. In phase 1 of study 1.1 we determined that fermentation of resistant 

starch was not knocked down if low potency antibiotics, neomycin and ampicillin, are given prior 

to feeding resistant starch. In study 1.2 it was demonstrated that low potency antibiotics were able 

to reduce total fermentation when they were given simultaneously with resistant starch feeding. In 

future studies low potency antibiotics can be used to study beneficial effects of resistant starch 

besides fermentation. Additionally, it was observed that neomycin and ampicillin stimulated the 

secretion of GLP-1. This side effect might improve insulin resistance, but this and other effects of 

antibiotics may not allow mechanistic studies with dietary resistant starch.  However, it was 

encouraging to us that effects of antibiotics were reversed by subsequent feeding of resistant starch 

in phase 2 of study 1.1. 

 In study 2.2, it was demonstrated that high amylose corn starch and whole grain high 

amylose corn flour in moderate and high fat diets promoted increased gene expression of enzymes 

PCase and G6Pase in the fed state in the cecum of Sprague Dawley rats. Further study is necessary 

to determine enzyme levels, but the current results are similar to results with feeding of fructo-

oligosaccharide. Also, insulin injection prior to euthanasia of GK rats was not able to model the 

fed state. Future studies are necessary to study if resistant starch in the diet promotes IGN also in 

humans. Due to these findings, it was demonstrated that resistant starch in isolated form or whole 

grain flour might promote a mechanism for better glycemic control and improvement of insulin 

sensitivity for human subjects that do not produce increased GLP-1 active secretion in response to 

the feeding of resistant starch. 
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 Nowadays, people’s life style is characterized by consumption of diets high in saturated fat 

and almost no physical activity. This has consequences such as obesity and inflammatory diseases. 

Therefore, it is important to add resistant starch as an ingredient in food products of daily 

consumption not only to decrease energy density, but also to promote a healthier microbiota and 

improve glucose control and insulin sensitivity. Also, the result of our research indicates another 

mechanism for beneficial effects of resistant starch besides increasing GLP-1 and offers a possible 

explanation for human subjects that have improved insulin sensitivity with the feeding of resistant 

starch without increased GLP-1 compared to control subjects.  
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