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Notation

In this work we will use the following notation:

q - a power of an odd prime number

F - the finite field with q elements

Z - the polynomial ring F[x]

Q - the field of fractions of Z

K - an imaginary, quadratic extension of Q of the form Q(
√
−n)

OK - the integral closure of Z in K

p∞ - the prime at infinity in Q, that is, a localization of Z at x−1

p∞ - the unique prime in K lying above p∞

ordp∞(·) - the valuation associated with p∞

ordp∞(·) - the valuation associated with p∞

| · |∞ - the multiplicative valuation of Q defined by |a|∞ = q−ordp∞ (a)

R - the completion of Q with respect to ordp∞(·)

C - the completion of an algebraic closure of R with respect to | · |∞

H - the Hilbert class field of K

iv



Abstract

Let n be a square-free polynomial over Fq, where q is an odd prime power. In this

work, we determine which irreducible polynomials p in Fq[x] can be represented

in the form X2 + nY 2 with X, Y ∈ Fq[x]. We restrict ourselves to the case where

X2 + nY 2 is anisotropic at infinity. As in the classical case over Z discussed in [2],

the representability of p by the quadratic form X2 + nY 2 is governed by condi-

tions coming from class field theory. A necessary and almost sufficient condition

is that the ideal generated by p splits completely in the Hilbert class field H of

K = Fq(x,
√
−n) for the appropriate notion of Hilbert class field in this context.

In order to get explicit conditions for p to be of the form X2 + nY 2, we use the

theory of sgn-normalized rank-one Drinfeld modules. We present an algorithm to

construct a generating polynomial for H/K. This algorithm generalizes to all situ-

ations an algorithm of D.S. Dummit and D.Hayes for the case where −n is monic

of odd degree.

v



Introduction

This dissertation is inspired by the classical problem of Fermat about the sum of

two squares and its generalizations discussed in [2]. The unfolding work considers

an analogous problem in the function fields context.

Let Z = Fq[x], where q is a power of an odd prime, and let n ∈ Z be a square-

free polynomial of degree d with the leading coefficient nd. We require that d is

odd or −nd is not a square in Fq, which means that the infinite place of Q = Fq(x)

has a unique extension p∞ in the quadratic field K = Q(
√
−n). Equivalently, the

norm form X2 + nY 2 is anisotropic over R = Fq((x−1)), the completion of Q at

infinity. In this exposition, we determine which irreducible polynomials p in Z can

be represented by the form X2 + nY 2.

Let OK denote the algebraic closure of Z in K. Since the form X2 +nY 2, viewed

as a function on OK, is multiplicative, the ideal theory of this ring is a useful

tool in the investigation of this problem. More specifically, if a prime p - n can

be represented by X2 + nY 2, then pOK = pp, p 6= p, and p is principal in OK.

Unfortunately, the converse is not quite true. If p = (a+
√
−nb)OK and pOK = pp,

then pOK = (a2 + nb2)OK from which it follows that a2 + nb2 = up for some

u ∈ Z∗. Since the ring Z has q − 1 units, we are led to consider a notion of weak

representability. We say that p can be weakly represented by the form X2 + nY 2

if there is u ∈ F∗q such that up can be represented by this form. Observe that if p

can be represented by the form X2 + nY 2 over Z, then up also can be represented

by this form for every square u in Fq. In other words, if p is a monic prime that

can be weakly represented, then the set of all elements u ∈ F∗q such that up can

be represented is either the whole group F∗q or a coset of the subgroup (F∗q)2 in F∗q.
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The former holds if and only if n is a constant, which makes weak representability

a non-trivial concept. Note that the described issue does not occur in the classical

case since the ring of integers Z has only two units 1 and −1 and the form X2+nY 2

can represent only positive elements of Z provided that n > 0. Using the notion

of weak representability, we can now obtain the following equivalence. The prime

p - n can be weakly represented by the form X2 + nY 2 over Z if and only if

pOK = pp, p 6= p, and p is principal in OK. This rather simple fact is the first

stepping stone towards solving the (weak) representation problem.

Thus, the question becomes: when does a prime p split in OK into a product of

two principal ideals? Since the factorization of p in OK is governed by factorization

of X2 + n over Z/pZ, the answer is immediate if OK is a principal ideal domain.

In this case it happens precisely when (−n
p

) = 1. However, OK typically is not

a principal ideal domain. As a matter of fact, as a consequence of the Riemann

Hypothesis, there are only two polynomials n of degree greater than 1 for which

OK = Z[
√
−n] is a principal ideal domain. Just like in the classical theory of

number fields, this obstacle can be bypassed by the virtue of Hilbert class field

theory. One needs to keep in mind that the usual definition of the Hilbert class

field is not really suitable in this context. If K is a function field over a finite field

F, then the maximal abelian extension of K is not finite over K. However, if we

define the Hilbert class field H of K as in [9], to be the maximal unramified abelian

extension of K in which p∞ splits completely, then H is a finite Galois extension of

K and Cl(OK) ' Gal(H/K) via the Artin map. Consequently, if p is a prime ideal

in K, then p is principal if and only if it splits completely H. Using the fact that

H is also Galois over Q, we conclude a prime p - n can weakly represented by the

form X2 +nY 2 if and only if p splits completely in H. This fact seems to solve the

(weak) representability problem. However, it is not a constructive solution. Given

2



a concrete polynomial n, we are still lacking an effective criterion to verify which

polynomials p can be written in the form X2 + nY 2. Since splitting of a prime

ideal in a field extension depends on the factorization of a minimal polynomial of

a generator of the extension modulo the prime ideal, the next and final step is to

find a polynomial which generates H over K.

This final task is the least trivial part of the whole procedure. In the classical

case, this is achieved via analytic methods. More specifically, if K = Q(
√
−n),

then the object of interest, the ring class field of the order Z[
√
−n] is generated

by the j-invariant of this order. The definition of the j-invariant and computation

of its minimal polynomial rely on the theory of elliptic and modular functions. In

the function field context, this goal will be also achieved using analytic methods

but the used technique is not a straightforward generalization of the classical case.

The field of complex numbers C, being a finitely dimensional extension of the real

numbers, is complete. The situation is more complicated over function fields. The

algebraic closure of R is incomplete and hence we define C to be the completion of

R. The field C is known to be algebraically closed. A similar construction can be

repeated for the field K and the prime p∞. The resulting field is both isomorphic

and isometric to C. Consequently, these two fields can be identified and regarded as

the analog of the field of complex numbers. An OK-lattice in C a discrete, finitely

generated, OK-submodule of C. If Λ ⊂ C is a lattice, then the rank of Λ is the

dimension of Kp∞Λ over Kp∞ . In particular, up to homothety the set of OK-lattice

of rank 1 in C consists precisely of fractional ideals of OK. For every lattice OK-

lattice Γ of rank r, we define the exponential function associated to Γ by

eΓ(x) = x
∏

γ∈Γ\{ 0 }

(
1− x

γ

)
.

3



The function eΓ(x) is the unique entire function with simple zeros on the elements

of Γ and with leading term x. It is also known to be F-linear. Next, if Γ ⊂ Γ′ and

Γ′ is also a lattice of rank r, then Γ′/Γ is finite and

P (x; Γ′/Γ) = x
∏

µ∈Γ′/Γ

(
1− x

eΓ(µ)

)

is F-linear polynomial with the initial term x. If τ = xq is the Frobenius endomor-

phism of C and C〈τ〉 and is the subring of EndF(C) generated by τ , then P (x; Γ′/Γ)

can be regarded as an element of C〈τ〉. Consequently, aP (x; a−1Γ/Γ) ∈ C〈τ〉 for

each a ∈ OK \ { 0 }. If we set

ρΓ
a(x) = aP (x; a−1Γ/Γ),

then ρΓ : OK → C〈τ〉 is an F-algebra homomorphism such that the constant term

of ρΓ
a equals a and degτ ρa = −r ordp∞(a)d∞, where d∞ is the degree of p∞. Any

such a homomorphism is called a Drinfeld OK-module over C of rank r. Moreover,

the map Γ → ρΓ is rank preserving bijection between the lattices and Drinfeld

modules. Further, if Γ and Λ are homothetic, then ρΓ and ρΛ are isomorphic,

meaning that there exists a constant c ∈ C∗ such that cρΓ = ρΛc. In particular,

if the correspondence Γ → ρΓ is restricted to the set of rank 1 lattices, we obtain

a bijection between the class group Cl(OK) and the set of isomorphism classes of

rank 1 Drinfeld OK-modules.

Due to this correspondence, rank one OK-Drinfeld modules can be considered

to be analogues of elliptic curves with complex multiplication. In particular, they

can be used to define the j-invariant of a fractional ideals of OK. If ρ is a rank one

OK-Drinfeld module associated with the fractional ideal a, then ρx = a0+a1τ+a2τ
2

and we define j(a) = aq+1
2 /a1. It turns out that the j = j(OK) is a generator of H

over K. In [3], D. Hayes and D.S. Dummit present an algorithm to compute the

4



minimal polynomial of j in the case when −n is a square-free monic polynomial

of odd degree. In this dissertation, we extend this algorithm to deal with the

cases when −n is not monic or of even degree (with the assumption that −nd

is not a square in F). If f(X) denotes the minimal polynomial of j and g(X)

denotes the output of the modified algorithm, then g(X) equals either f(X) or

f(X)f(−X). This is however sufficient for our purpose. As we shall see the splitting

of p in H depends on solvability of the congruence f(X) ≡ 0 (mod p). Clearly, this

congruence is solvable if and only if g(X) ≡ 0 (mod p) is solvable. The algorithm

presented by us is illustrated with some explicit computations performed using

Magma Computational Algebra System [1].

The final question posed and answered in this dissertation is: ‘Assuming that p

can be weakly represented by the form X2 + nY 2, when can p itself be represented

by this form?’ In order to answer this question, we first define what it means for

a polynomial p to be positive. If π is a uniformizer at p∞, that is, an element of

the completion Kp∞ such that ordp∞π = 1, then every element α of Kp∞ can be

expressed uniquely as a Laurent series

∞∑
k=k0

ckπ
k,

where ck ∈ Fqd∞ and ck0 6= 0. A sign function associated with the uniformizer

π is given by sgn(α) = ck0 . An element α is called positive if sgn(α) = 1. If g

is the genus of K and y2 = −n, then π = xg

y
is a uniformizer at p∞. Using the

sign function associated with this uniformizer, we can easily find that a prime

polynomial p that can be weakly represented by the form X2 + nY 2 is positive if

and only if its leading coefficient is equal (−nd)deg∗p, where deg∗p = deg p
d∞

. If ρ is a

sign normalized, rank one OK-Drinfeld module and ρx = a0 + a1τ + a2τ
2, then the

field H+ = K(a1, a2) is a Kummer extension of H of degree qd∞−1

q−1
. For a positive

5



prime p that can be weakly represented by the form X2 + nY 2, we shall prove the

following two results results.

Theorem. Suppose that deg∗p is even or 4 | q − 1. Then p can be represented by

the form X2 + nY 2 if and only if it splits completely in H+.

Theorem. Let P+ be a prime in H+ above p. Suppose that deg∗p is odd and

4 - q − 1. Then p can be represented by the form X2+nY 2 if and only if f(P+| p) = 4.

6



Chapter 1
Function Fields

In this chapter we will review elementary facts about function fields. Majority

of the results presented here are well-known and discussed with details in [8].

Consequently, we shall omit most proofs.

1.1 Basic Properties of Z
The basic object of number theory in function fields is the ring of polynomials

F[x] over a finite field with q elements. In this work we will always assume that q

is a power of an odd prime number. The polynomial ring F[x] is known to share

many arithmetic properties with the ring of integers Z. The following section shows

several instances of this fact. In order to emphasize similarities between these rings,

we shall use the symbol Z to denote the ring F[x].

Proposition 1.1.1. Z is a principal ideal domain. The group of units of Z consists

only of nonzero elements of the field F.

Definition 1.1.2. Let m ∈ Z. We define the norm of m, denoted by |m|, to be

qdegm if m 6= 0. The norm of the zero polynomial is zero.

Proposition 1.1.3. Let m ∈ Z. If m 6= 0, then Z/mZ is a finite ring with |m|

elements. Additionally, Z/mZ is a field if and only if m is irreducible. In such a

case (Z/mZ)∗ is a cyclic group with |m| − 1 elements.

Corollary 1.1.4. (Fermat’s Little Theorem) Let p ∈ Z be irreducible. If a ∈ Z

is not divisible by p, then

a|p |−1 ≡ 1 (mod p).
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Corollary 1.1.5. Let p ∈ Z be irreducible. If a ∈ Z is not divisible by p, then

a
|p |−1

2 ≡ 1 (mod p) or a
|p |−1

2 ≡ −1 (mod p).

Proposition 1.1.6. Let p ∈ Z be irreducible and a ∈ Z be not divisible by p. The

congruence X2 ≡ a (mod p) is solvable if and only if

a
|p |−1

2 ≡ 1 (mod p).

Definition 1.1.7. Let p ∈ Z be irreducible and a ∈ Z be not divisible by p. We

define the Legendre symbol (a
p
) to be the unique unit of Z such that

a
|p |−1

2 ≡
(
a

p

)
(mod p).

If a is divisible by p, we set (a
p
) = 0.

Proposition 1.1.8. The Legendre symbol has the following properties:

• If a ≡ b (mod p), then (a
p
) = ( b

p
).

• (ab
p

) = (a
p
)( b
p
).

• (a
p
) = 1 if and only if the congruence X2 ≡ a (mod p) is solvable.

In other words, the Legendre symbol can be regarded as a group epimorphism from

(Z/pZ)∗ to { 1,−1 } whose kernel consists of squares of (Z/pZ)∗.

Theorem 1.1.9. (The Quadratic Reciprocity Law) Let p, r ∈ Z be monic

and irreducible polynomials of degrees k and l respectively. Then(
r

p

)
= (−1)

q−1
2
kl
(p
r

)
.

Theorem (1.1.9) can be easily generalized. If p and r are not necessarily monic,

we have:

8



Corollary 1.1.10. Let p, r ∈ Z be irreducible polynomials of degrees k and l

respectively. Let pk and rl be the leading coefficients of p and q respectively. Then(
r

p

)
= (−1)

q−1
2
klr

q−1
2
k

l p
− q−1

2
l

k

(p
r

)
.

1.2 Arithmetic of Function Fields

The field of rational functions F(x) is naturally the field of fractions of the ring Z.

For that reason, it will be denoted by Q. Analogously to number fields, one can

define a function field to be a finite extension of Q. More generally, we have the

following definition.

Definition 1.2.1. A function field over F is a field extension K/F containing an

element x such that x is transcendental over F and the extension K/F(x) is finite.

If F is algebraically closed in K, we say that F is the constant field of K.

Proposition 1.2.2. Let K be a function field over F and E be the algebraic closure

of F in K. Then E is a finite extension of F, K is a function field over E and E

is the constant field of K.

From now on we will assume that if K is a function field over F, then F is the

constant field of K.

Definition 1.2.3. Let K be a function field over F. A prime in K is a discrete

valuation ring o containing F such that K is the quotient field of o.

Lemma 1.2.4. Let p be the maximal ideal of o. The dimension of o/p over F is

finite.

By abuse of language, the maximal ideal p is often referred to as a prime in

K. The quotient field o/p will be denoted by κ(p). Its dimension over F is called

the degree of p and is denoted by deg p. Similarly, the valuation associated with

p is denoted by ordp. Each valuation ordp induces the normalized multiplicative

9



valuation | · |p, which is given by

|α|p = q−ordp(α) deg p.

Example 1.2.5. Let p ∈ Z be monic and irreducible or p = 1
x
. Then the localiza-

tion Zp of Z at p is a prime in Q and every prime in Q is of this form. If p ∈ Z,

the degree of Zp equals the degree of the polynomial p. The degree of Z 1
x

equals 1.

The prime Z 1
x

is called the prime at infinity and is denoted by p∞. The valuation

associated with p∞ is given by

ordp∞

(
f

g

)
= deg g − deg f

for all f ∈ Z, g ∈ Z∗.

Definition 1.2.6. Let K be a function field over F. The free abelian group gen-

erated by the primes of K is called the group of divisors of K and is denoted by

DK . The elements of DK are called the divisors of K.

Thus, a divisor D of K is simply a formal Z-linear combination of primes

D =
∑

p

a(p)p.

The degree of D is defined to be

deg(D) =
∑

p

a(p) deg(p).

Hence the degree function defined initially for primes becomes a group homomor-

phism from DK to Z. The kernel of this map consisting of all divisors of degree 0

is denoted by D0
K .

Lemma 1.2.7. If a ∈ K∗, then ordp(a) 6= 0 for only finitely many primes p of K.

10



Definition 1.2.8. Let a ∈ K∗. We define the divisor of a to be

(a) =
∑

p

ordp(a)p.

For a fixed prime p set n = ordp(a). If n > 0, we say that p is a zero of a of order

n. If n < 0, we say that p is a pole of a of order −n.

It is easy to see that the map P : K∗ → DK defined by P(a) = (a) is a group

homomorphism. Its image is called the group of principal divisors and is denoted

by PK . The quotient DK/PK is called the group of divisor classes and is denoted

by Cl(K). Thus, two divisors D1, D2 are in the same class if they differ by a

principal divisor:

D1 −D2 = (a)

for some a ∈ K∗. In such a case, we also say that D1, D2 are linearly equivalent.

Proposition 1.2.9. Let a ∈ K∗. The divisor of a equals 0 if and only if a ∈ F∗.

Moreover, deg(a) = 0. In other words, kerP = F∗ and degPK = { 0 }.

Corollary 1.2.10. The degree function deg : DK → Z induces a well-defined

homomorphism from Cl(K) to Z.

Definition 1.2.11. The kernel of the induced homomorphism deg : Cl(K)→ Z is

called the group of divisors of degree zero and is denoted by Cl0(K). The cardinality

of this group is called the class number of K and is denoted by hK .

In order to state the Riemann-Roch theorem, we need the following definition

Definition 1.2.12. Let D =
∑

p a(p) p be a divisor of K and L(D) = {x ∈

K∗ | ordp(x) + a(p) ≥ 0 } ∪ { 0 }. The dimension of D, denoted by l(D), is the

dimension of L(D) over F.

Theorem 1.2.13. (Riemann-Roch Theorem) There is a unique nonnegative

integer g and a unique divisor class C such that for all divisors A and all C ∈ C

11



we have

l(A) = deg(A)− g + 1 + l(C − A).

The integer g is called the genus of the function field K. The class C is called the

canonical class.

Corollary 1.2.14. If deg(A) > 2g − 2, then l(A) = deg(A)− g + 1.

Example 1.2.15. The genus of Q is 0.

1.3 The Zeta Function of a Function Field

The zeta function ζ(s) in the context of function fields is even a more powerful tool

than in the classical situation. Firstly, it can be effectively written as a rational

function of q−s. Additionally, an analog of the Riemann hypothesis holds true.

Definition 1.3.1. Let D =
∑

p a(p) p be a divisor of K. The divisor D is said to

be effective if a(p) ≥ 0 for all primes p. In such a case, we write D ≥ 0.

Lemma 1.3.2. Let n ≥ 0 be an integer. There are only finitely many effective

divisors of degree n.

The number of effective divisors of degree n will be denoted by en.

Definition 1.3.3. Let D ∈ DK . The norm of the divisor D is defined to be the

number

N(D) = qdeg(D).

Note that N(D1 +D2) = N(D1)N(D2) for any two divisors and that N(D) is a

positive integer if D is an effective divisor.

Definition 1.3.4. The zeta function of K, denoted by ζK(s), is defined to be the

infinite series

ζK(s) =
∑
D≥0

N(D)−s.
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If deg(D) = n, then N(D)−s = q−ns. Since there are en effective divisors with

deg(D) = n, the series defining the zeta function can be rewritten as

ζK(s) =
∞∑
n=0

en
qns

.

If we further set u = q−s, we see that the zeta function is simply a power series in

u. We will denote this power series by ZK(u). Thus,

ζK(s) = ZK(u) =
∞∑
n=0

enu
n.

Theorem 1.3.5. The radius of convergence of ZK(u) is q−1. Equivalently, ζK(s)

converges absolutely for all s with <(s) > 1. Moreover, there is a polynomial

LK(u) ∈ Z[u] of degree 2g, where g is the genus of K, such that for all |u| < 1

ZK(u) =
LK(u)

(1− u)(1− qu)
.

Additionally, LK(0) = 1 and LK(1) = hK. The rational function on the right-hand

side defines an analytic continuation of ζK(s) to all s ∈ C. ζK(s) has simple poles

at s = 0 and s = 1.

Theorem 1.3.6. (The Riemann Hypothesis for Function Fields) All roots

of ζK(s) lie on the line <(s) = 1
2
.

Corollary 1.3.7. Let g be the genus of K. Then (
√
q − 1)2g ≤ hK ≤ (

√
q + 1)2g.

1.4 Extensions of Function Fields

Let K be a function field over F and L be a finite field extension of K. Let E

be an algebraic closure of F in L. It is easy to see that L is a function field over

E. Indeed, if x ∈ K is transcendental over F and K/F(x) is a finite extension,

then x is transcendental over E since E is algebraic over F and [L : E(x)] ≤ [L :

F(x)] = [L : K] · [K : F(x)] < ∞. Finally, E is algebraically closed in L being the

13



algebraic closure of F. The most interesting case from our point of view is when F

is algebraically closed in L, that is, when E = F. Then L is a function field over F.

In such a case, we say that L is a geometric extension of K.

Definition 1.4.1. Let K be a function field over F and L/K be a finite extension.

Let O be a prime of L with the maximal ideal P and o be a prime of K with the

maximal ideal p. We say that O lies above o if o = K ∩O and p = K ∩P. In such

a case, we will write O|o. As before, by abuse of language, we will also say that P

lies above p and we will write P|p.

If P lies above p, then O/P is a vector space over o/p. The dimension of this

space is called the relative degree and is denoted by f = f(P/p). Further, pO is an

ideal in O and hence pO = Pe for some e ≥ 1. The number e = e(P/p) is called

the ramification index. The ramification index has the following property: for all

a ∈ K. ordP(a) = e(P|p)ordp(a), which follows easily from the definition. Another

immediate consequence of the definitions is the identity deg P = f(P|p) deg p.

Let K be a function field over F and L/K be a finite, separable extension. Let o

be a prime of K and p be its maximal ideal. All primes of L lying above p can be

constructed as follows. Let O be an integral closure of o in L. Since o is a principal

ideal domain, it follows that O is a Dedekind domain. Hence pO admits the prime

factorization

pO = Pe11 Pe22 . . .Penk .

Now, for each 1 ≤ i ≤ k define Oi to be the localization of O at Pi. Then Oi is a

prime of L. Its maximal ideal Pi = PiOi lies above p and every prime above p is of

this form. Moreover, using basic facts about localization, we see that the notions

of the ramification index and the relative degree defined above and the ones that

are typically defined for extensions of Dedekind domains coincide. Thanks to that,
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we have the following well-known identity

k∑
i=1

eifi = [L : K].

1.5 Quadratic Extensions of Q.

Let n ∈ Z be a square-free polynomial of degree d with the leading coefficient nd. In

this section we will study the quadratic extensions of Q of the form K = Q(
√
−n).

Imaginary extensions (defined below) will be of special interest for us.

Lemma 1.5.1. If n ∈ Z is a polynomial of positive degree, then K/Q is a geometric

extension, that is, F is the exact field of constants of K.

Proof. Suppose that α ∈ K is algebraic over F. We can write α = a + b
√
−n for

some a, b ∈ Q. Then a = α+α
2

, −b2n = (α−α
2

)2 are also algebraic over F. Since F is

algebraically closed in Q, it follows that a ∈ F and −b2n ∈ F. Since n is square-free

polynomial of positive degree, it follows that b = 0. Thus, α = a ∈ F.

Proposition 1.5.2. Z[
√
−n] is the integral closure of Z in K.

Proof. Let OK be the integral closure of Z in K. Since
√
−n ∈ OK and Z ⊂ OK,

it follows that Z[
√
−n] ⊂ OK. On the other hand, if a + b

√
−n ∈ OK , then

m(X) = X2− 2aX + (a2 + nb2) ∈ Z[X], which follows that a ∈ Z and nb2 ∈ Z. If

b = u
v
, where u, v ∈ Z are relatively prime, then v2|n. Since n is either invertible

or square-free, it follows that v ∈ F and b ∈ Z.

The field of real numbers R is a completion of Q with respect to the standard

absolute value. Then we can say that an imaginary extension of Q is simply Q(α),

where α /∈ R. If n is square-free and α =
√
−n, then an imaginary extension can

be equivalently characterized by saying that n is positive or that the norm form

X2 + nY 2 is anisotropic over R. It turns out that each of these conditions has a
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quite natural analogue in a rational function field Q. The analogue of the field

of real numbers is a completion of Q with respect to | · |p∞ , the multiplicative

valuation of Q defined by |a|p∞ = q−ordp∞ (a). Such a completion will be further

denoted by R. Theorem (1.5.4) presents a series of equivalent conditions which we

can be used to define an imaginary extension of Q.

Lemma 1.5.3. Let a ∈ Z be a polynomial of degree m ≥ 0 with the leading

coefficient am. Then
√
a ∈ R if and only if m is even and am is a square in F.

Proof. Assume that
√
a ∈ R. Then a = limk→∞ x

2
k for some sequence (xk) ∈ QN.

Consequently, limk→∞ |xk|2∞ = |a|∞, which implies that m = limk→∞ deg(x2
k) =

2 limk→∞ deg xk. Since (deg xk)k∈N is a sequence of integers, there is a number k0

such that m = deg x2
k = 2 deg xk for all k ≥ k0. Thus, m is even. Moreover, if

k ≥ k0, then x2
k = q2

k + rk, where q2
k is a polynomial of degree m and rk is a proper

rational function. Since

lim
k→∞

logq |x2
k − a|∞ = lim

k→∞
deg(x2

k − a) = −∞,

it follows that for some l ≥ k0 the leading coefficient of a equals the leading

coefficient of q2
l which clearly is a square in F. Now assume that m is even and

am = b2 for some b ∈ F. Clearly,
√
a ∈ R if and only if f(X) = X2 − a has a root

in R. By Hensel’s Lemma, this is the case if

|f(α)|∞ < |f ′(α)|2∞

for some α ∈ Z∩R. Set α = bx
m
2 . Then |f(α)|∞ = qm−1 and |f ′(α)|2∞ = qm. Thus,

√
a ∈ R.

Theorem 1.5.4. The following conditions are equivalent:

(i) d is odd or −nd is not a square in F.
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(ii)
√
−n /∈ R.

(iii) The norm form X2 + nY 2 is anisotropic over R.

(iv) There is a unique prime p∞ of K that lies over p∞.

Proof. Clearly, (ii) ⇔ (iii). The equivalence (i) ⇔ (iv) is a part of Proposition

14.6 in [8]. (i)⇔ (ii) follows directly from (1.5.3).

Definition 1.5.5. We say that the extension K/Q is imaginary if the degree of

n is positive and one of the equivalent conditions of Theorem (1.5.4) is satisfied.

The degree of the unique prime p∞ above p∞ will be denoted by d∞.

Note that d∞ = f(p∞| p∞) deg p∞ = f(p∞| p∞). Hence in order to determine the

degree of p∞, we need to find out when p∞ is ramified in K. The answer turns out

to be quite simple. We have the following result.

Proposition 1.5.6. Let n ∈ Z be a square-free polynomial of positive degree d

such that K = Q(
√
−n) is an imaginary quadratic extension of Q. If d is odd, then

p∞ is ramified in K. If d is even, then p∞ is inert.

Proof. See Proposition (14.6) in [8].

Corollary 1.5.7. If d is odd, then d∞ = 1. If d is even, then d∞ = 2. In any case,

d∞ · e(p∞| p∞) = 2.

Proof. By Theorem (1.5.4), p∞ is the only prime above p∞ and hence we have

e(p∞| p∞) · f(p∞| p∞) = [K : Q] = 2. The result follows.

Lemma 1.5.8. If a, b ∈ Z and
√
−n /∈ R, then deg(a2+nb2) = max{ 2 deg a, 2 deg b+

deg n }.
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Proof. Let a = akx
k + · · · + a1x + a0, b = blx

l + · · · + b1x + b0, and n = ndx
d +

· · · + n1x + n0. If deg(a2) 6= deg(nb2), the result follows. Otherwise, 2k = d + 2l

and a2 + nb2 = (a2
k + ndb

2
l )x

2k + · · ·+ (a2
0 + n0b

2
0). The coefficient a2

k + ndb
2
l is not

zero because −nd is not a square in F.

Proposition 1.5.9. If deg n ≥ 1, then O∗K = F∗. Otherwise, O∗K = F(
√
−n)∗.

Proof. Suppose that deg n ≥ 1. Clearly, F∗ ⊂ O∗K. If a + b
√
−n ∈ O∗K, then

N(a + b
√
−n) = a2 + nb2 ∈ F∗. It follows from Lemma (1.5.8) that a ∈ F and

b = 0. The second equality can be proven in a very similar way.

Proposition 1.5.10. Let K = Q(
√
−n) be an imaginary quadratic extension of

Q and let g be the genus of K.Then

g =

⌊
d− 1

2

⌋
=
d− d∞

2

Proof. Let g be the genus of K. Let k > 2g − 2. Then, by the Riemann-Roch

theorem

l(kp∞) = deg(kp∞)− g + 1 = kf(p∞| p∞)− g + 1. (1.5.1)

Observe that L(kp∞) ⊂ OK and a+ b
√
−n ∈ L(kp∞) if and only if

deg(a2 + nb2) ≤ 2k

e(p∞| p∞)
= k · f(p∞| p∞). (1.5.2)

In order to prove the inequality (1.5.2), note that for all α ∈ K

ordp∞(α) = ordp∞(α)
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since p∞ is the unique prime above p∞ and hence it is fixed under conjugation.

Consequently,

ordp∞(a+
√
−nb) =

1

2
ordp∞(a2 + nb2)

=
1

2
e(p∞| p∞)ordp∞(a2 + nb2)

= −1

2
e(p∞| p∞) deg(a2 + nb2).

Thus, ordp∞(a + b
√
−n) ≥ −k if and only if the inequality (1.5.2) holds. By

Lemma (1.5.8), the inequality (1.5.2) is equivalent to the following inequalities

deg a ≤ f(p∞| p∞)k

2

and

deg b ≤ f(p∞| p∞)k − d
2

.

Thus, if k ≥ d, then

l(kp∞) =

⌊
f(p∞| p∞)k

2

⌋
+

⌊
f(p∞| p∞)k − d

2

⌋
+ 2.

If k is even, we have

l(kp∞) = f(p∞| p∞)k + 2 +

⌊
−d
2

⌋
. (1.5.3)

Combining equalities (1.5.1) and (1.5.3), we get g = 1−
⌊−d

2

⌋
=
⌊
d−1

2

⌋
. If d is odd,

then
⌊
d−1

2

⌋
= d−1

2
. Otherwise,

⌊
d−1

2

⌋
= d−2

2
. The result follows immediately from

Corollary (1.5.7).

Proposition 1.5.11. OK is a principal ideal domain if and only if d ≤ 1 or

n = x3 + 2x+ 2 ∈ F3[x] or n = 2x3 + x+ 2 ∈ F3[x].

Proof. Suppose first that d = 0. Then by Proposition (1.5.2),

OK = Z[
√
−n] = F[x][

√
−n] = F[

√
−n][x] = F(

√
−n)[x].
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Thus, OK is a polynomial ring over the field F(
√
−n). The result follows.

Now, suppose that d is positive. Let hOK be the class number of OK and hK

be the class number of K. By Proposition 14.7 in [8], hOK = hK if d is odd and

hOK = 2hK otherwise. Thus, OK is a principal ideal domain if and only if d is odd

and hK = 1. By Corollary (1.3.7), we have

(
√
q − 1)2g ≤ hK ≤ (

√
q + 1)2g,

which follows that

(a) hK = 1 whenever g = 0 and q ≥ 3,

(b) If g = 1, then hK = 1 only if q = 3,

(c) hK > 1 for all g > 1 and all q ≥ 3.

Given that d must be odd, it follows from Proposition (1.5.10) that the genus of

K is 0 if and only if d = 1 and the genus of K is 1 if and only if d = 3. For every

square-free polynomial of degree 3 in F3[x], the zeta function ZK(u) of K can be

computed and then, by the virtue of Theorem (1.3.5), hK can be found using the

formula

hK = lim
u→1

2(u− 1)ZK(u).

In this way one can derive the presented list of polynomials.
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Chapter 2
Drinfeld Modules

In this dissertation, the theory of Drinfeld Modules will play a role analogue to

the complex multiplication theory in the classical case. In this chapter we collect

various results concerning Drinfeld Modules.

2.1 Construction of Drinfeld Modules

Definition 2.1.1. Let K be a function field over F and S be a non-empty finite

set of primes of K. The ring of S-integers in K is

OS = {α ∈ K | ordP (α) ≥ 0 for all P /∈ S }.

Proposition 2.1.2. Let K be a function field over F and S be a non-empty finite

set of primes of K. There exists x ∈ K such that S is the set of poles of x. For

any x with this property OS is the integral closure of F[x].

Proof. See Theorem 14.5 in [8].

Let L be a field containing F. Recall that the Frobenius endomorphism of L is

the map τ : L→ L defined by τ(α) = αq.

Definition 2.1.3. Let L be a field containing F and EndF(L) the ring of endo-

morphism of L which fix F. The subring of EndF(L) generated by the Frobenius

endomorphism τ is called the ring of skewed polynomials over L and is denoted by

L〈τ〉.

Note that every element of L〈τ〉 can be indeed written as polynomial in τ with

coefficients in L. The only thing that distinguishes this ring from the regular poly-

nomial ring L[X] is that multiplication of ”variable” τ by elements of L is not
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commutative and subject to the relation:

τa = aqτ

for all a ∈ L. Since L〈τ〉 is not commutative, it cannot be Euclidean in a usual

sense. However, mimicking the proof for the commutative polynomial rings, one

can easily show that L〈τ〉 is right Euclidean, that is, if f , g ∈ L〈τ〉 and g 6= 0,

then there exist s, r ∈ L〈τ〉 such that f = sg + r with deg r < deg g. A simple

consequence of this fact is that every left ideal in L〈τ〉 is principal.

Definition 2.1.4. Let K be a function field over F and S = {∞}, where ∞ is a

fixed prime of K of degree d∞. Let L be a field containing F and A be the ring of

S-integers. A Drinfeld A-module over L consists of an F-algebra homomorphism

δ : A → L, together with an F-algebra homomorphism ρ : A → L〈τ〉 such that

the constant term of ρa equals δ(a) for all a ∈ A and degτ ρa ≥ 1 for at least one

a ∈ A.

For a fixed map δ : A → L, the symbol DrinA(L) will denote the set of all

A-Drinfeld modules over L.

Proposition 2.1.5. Let ρ ∈ DrinA(L). There exists a positive integer r such that

degτ ρa = −r ord∞(a)d∞ for all a ∈ A.

Proof. See Proposition 13.7 and Theorem 13.1 in [8].

Definition 2.1.6. Let ρ ∈ DrinA(L). The positive integer r such that degτ ρa =

−r ord∞(a)d∞ for all a ∈ A is called the rank of the Drinfeld module ρ.

Definition 2.1.7. Let ρ, ρ′ ∈ DrinA(L). We say that ρ, ρ′ are isomorphic if and

only if there is a non-zero element c ∈ L such that cρa = ρ′ac for all a ∈ A. The set

of isomorphism classes of Drinfeld modules will be denoted by DrinoA(L).
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Even though it is not easy to give non-trivial examples of Drinfeld modules

using the definition, there exist infinitely many Drinfeld modules of all ranks and

they all can be constructed using analytic methods. In classical number theory,

analytic methods typically rely on the theory of meromorphic functions defined

on the field of complex number. The field C can be defined as algebraic closure of

the real numbers. Since C is finitely dimensional over R, it follows it is complete.

The situation is more complicated over function fields. The valuation | · |∞ extends

uniquely to the algebraic closure of R in a standard way. If α ∈ R and S = R(α),

we set

|α|∞ = |NS/R(α)|[S:R]−1

∞ .

However, R is not complete with respect to this valuation and hence we define C

to be the completion of R. The field C is known to be algebraically closed and it

is regarded as the analog of the field of complex numbers.

If K is a function field over F and P is a fixed prime of K, one can repeat

the described construction with K as the base field as follows. The field K is not

complete with respect to the multiplicative valuation | · |P so one can form the

completion KP and extend | · |P uniquely to KP . As before this valuation can be

further extended to the algebraic closure of KP in the standard way. Finally, one

defines C to be the completion of KP .

The symbol C is ambiguous because the field resulting from the described proce-

dure depends both on the base field and the choice of the prime P . This ambiguity

typically does not lead to any confusion as the base field and the prime P are

fixed. However, we will consider simultaneously the rational function field Q with

the prime at infinity p∞ and an imaginary, quadratic field K = Q(
√
−n) with the
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prime p∞ which lies above p∞. Fortunately, as it will follow from the next lemma,

essentially there is no confusion in this case.

Lemma 2.1.8. Let K = Q(
√
−n) be an imaginary, quadratic field and p∞ be the

unique prime above p∞. If | · |∞ is extended to K via

|α|∞ = |NK/Q(α)|[K:Q]−1

∞

and | · |p∞ is the normalized valuation associated with p∞, then

|α|p∞ = |α|2∞

for all α ∈ K. Moreover, there is an isomorphism i : R(
√
−n)→ Kp∞ such that

|i(α)|p∞ = |α|2∞ (2.1.1)

for all α ∈ R(
√
−n)

Proof. Let d∞ be the degree of p∞. Since ordp∞(·) = e(p∞|p∞) · ordp∞(·) and

e(p∞|p∞) · d∞ = 2, we have

ordp∞(NK/Q(α)) =
d∞
2

ordp∞(NK/Q(α))

=
d∞
2

(ordp∞(α) + ordp∞(α))

= d∞ordp∞(α)

Thus,

|α|2∞ = |NK/Q(α)|∞ = q−ordp∞ (NK/Q(α)) = q−d∞ordp∞ (α) = |α|p∞ .

Since Q ⊂ Kp∞ and the valuations | · |∞ and | · |p∞ are equivalent, it follows that

is isomorphic to the closure of Q in Kp∞ . Given that
√
−n ∈ Kp∞ , there is an

embedding i : R(
√
−n)→ Kp∞ which fixes K. It is easy to see that i is surjective.
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Finally, if β ∈ Kp∞ and β = i(α) for some α ∈ R(
√
−n), then α = limk→∞ αk,

where αk ∈ K. Since i fixes K, we also have i(α) = limk→∞ αk. Consequently,

|α|p∞ = lim
k→∞
|αk|p∞ = lim

k→∞
|αk|2∞ = |α|2∞.

Using basic properties of algebraic closures, we see that the map i can be ex-

tended to algebraic closures of Kp∞ and R. Since [R(
√
−n) : R] = 2 and the norm

function behaves transitively in towers of fields, an extension of i can chosen so

that the equality (2.1.1) holds for all α ∈ R. Thus, i being both an isomorphism

and homeomorphism can be further extended to an isomorphism between the com-

pletion of Kp∞ with respect to | · |p∞ and C in such a way that the equality (2.1.1)

holds for all α ∈ C.

Now we will describe briefly how to construct Drinfeld modules of any rank

which will also lead to very important correspondence between Drinfeld modules

and lattices. The construction and the correspondence are somehow similar to the

correspondence between elliptic curves and lattices of rank 2 in C. Since we will be

interested in both Z- and OK-Drinfeld modules, let us go back to a more general

set up. Namely, we let K be a function field over F and C be the completion of

KP , where P is a fixed prime of K. Further, let A be the ring of P -integers.

Definition 2.1.9. An A-lattice in C is defined to be a discrete, finitely generated,

A-submodule of C. If Λ ⊂ C is a lattice, then the rank of Λ is the dimension of

KPΛ over KP . The set of all A-lattices in C will be denoted by LatA(C).

The standard fact about A-lattices in C is the following.

Lemma 2.1.10. Every A-lattice of rank r in C is of the form

a1c1 + a2c2 + · · ·+ arcr,
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where a1, a2, . . . , ar are fractional ideals of A, and c1, c2, . . . , cr are elements of C

which are linearly independent KP . Conversely, any set of this form is an A-lattice

of rank r in C.

Theorem 2.1.11. There exists a rank preserving bijection between LatA(C) and

DrinA(C).

Sketch of a proof. Let Γ be an A-lattice in C of rank r. We define the exponential

function associated to Γ by

eΓ(x) = x
∏

γ∈Γ\{ 0 }

(
1− x

γ

)
.

eΓ(x) is the unique entire function with simple zeros on the elements of Γ and with

leading term x. eΓ(x) is also known to be F-linear. Next, if Γ ⊂ Γ′ and Γ′ is also a

lattice of rank r, then Γ′/Γ is finite and

P (x; Γ′/Γ) = x
∏

µ∈Γ′/Γ

(
1− x

eΓ(µ)

)
is F-linear polynomial with the initial term x. Consequently, it can be written as

polynomial in τ . Thus, aP (x; a−1Γ/Γ) ∈ C〈τ〉 for each a ∈ A \ { 0 }. If we set

ρΓ
a(x) = aP (x; a−1Γ/Γ),

then ρΓ is a A-Drinfeld module of rank r. Moreover, the map Γ → ρΓ is rank

preserving bijection between LatA(C) and DrinA(C). For more details see Theorems

(13.23) and (13.24) in [8].

2.2 Rank-One OK-Drinfeld Modules

Clearly, every fractional ideal of K is an OK-lattice of rank 1. Due to Theo-

rem (2.1.11) rank-one OK-Drinfeld modules become very important objects to

study.
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Let S = { p∞ }, where p∞ is the unique prime above p∞ in an imaginary quadratic,

field K = Q(
√
−n). Then, by Proposition (2.1.2), OK = Z[

√
−n] is the ring of S-

integers in K. We will discuss rank-one OK-Drinfeld modules over C in this section.

The structure map δ : OK → C is assumed to the inclusion. In order to simplify

the notation, we will fix a square root of −n in K and denote it by y.

Lemma 2.2.1. Let ρ be a rank-one OK-Drinfeld module in C. Then for every

a ∈ Z

degτ ρa = 2 deg a.

Proof. First, recall that d∞ = f(p∞| p∞) and ordp∞(·) = e(p∞| p∞) · ordp∞(·) on

Q. By the definition of the rank of a Drinfeld module, we have

degτ ρa = −d∞ordp∞(a)

= −f(p∞| p∞) · e(p∞| p∞) · ordp∞(a)

= f(p∞| p∞) · e(p∞| p∞) · deg a

= 2 deg a.

The last equality follows from the fact that p∞ is the unique prime above p∞.

Corollary 2.2.2. degτ ρx = 2 and degτ ρy = d.

Proof. The first equality follows immediately from the lemma. The second one

follows from

2 degτ ρy = degτ ρ
2
y = degτ ρy2 = degτ ρ−n = 2 deg(−n) = 2d.

Since x, y generate OK as an F-algebra, a rank-one OK-Drinfeld module ρ in

C is determined uniquely by two polynomials ρx, ρy. By Corollary (2.2.2), these
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polynomials are of degree 2 and d respectively and since ρ is an F-algebra homo-

morphism, they commute. As observed in [7], these two conditions are sufficient

to define a rank-one OK-Drinfeld module. More specifically, we have the following

result.

Lemma 2.2.3. Let f , g ∈ C〈τ〉 be twisted polynomials such that degτ f = 2 and

degτ g = d. If x, y are constant terms of f , g respectively and fg = gf , then there

exists a unique rank-one OK-Drinfeld module ρ such that ρx = f , ρy = g.

Proof (due to M. Rosen). Let ρ : F[X, Y ] → C〈τ〉 be a unique F-algebra homo-

morphism such that ρX = f and ρY = g and let π : F[X, Y ]→ OK be the canonical

projection. Note that for every H(X, Y ) ∈ F[X, Y ] the constant term of H(f, g) is

H(x, y). Thus, if H(x, y) = 0, then the lowest degree term of H(f, g) is ckτ
k for

some ck ∈ C and k ≥ 1. Since f , g commute, we have

fH(f, g) = H(f, g)f.

Comparing coefficients of the lowest degree terms, we get

xck = ckx
qk ,

which follows that ck = 0. Consequently, H(f, g) = 0, which shows that kerπ ⊂

ker ρ. Thus, there is a unique F-algebra homomorphism ρ : OK → C〈τ〉 such that

ρ = ρ ◦ π. It is easy to see that the for every a ∈ OK constant term of ρa is a.

Finally, degτ ρx = 2 proves that ρ is in fact a rank-one OK-Drinfeld module in

C.

2.3 j-invariant

Let φ be a Z-Drinfeld module of rank 2. The structural map is assumed to be the

inclusion i : Z → C. Since Z is a free F-algebra generated by T , the module Drinfeld
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φ is determined by its value at x. Since the degree of p∞ is 1 and ordp∞(a) = − deg a

for all a ∈ Z, it follows from Definition (2.1.6) that degτ φa = 2 deg a for all a ∈ Z.

In particular,

φx(τ) = T + f1τ + f2τ
2

for some f1 ∈ C and f2 ∈ C∗. We will write φ = (f1, f2) in such a case.

If φ = (f1, f2) and ψ = (g1, g2) are isomorphic modules, then c · φx = ψx · c for

some c ∈ C∗. But

(c · φx)(τ) = cx+ f1c
qτ + f2c

q2τ 2

and

(ψx · c)(τ) = cx+ cf1τ + cf2τ
2,

so f1 = cq−1g1 and f2 = cq
2−1g2, which in turns implies

f q+1
1

f2

=
cq

2−1gq+1
1

cq2−1g2

=
gq+1

1

g2

This leads to the following definition.

Definition 2.3.1. The j-invariant of a Drinfeld module φ = (f1, f2) is defined by

j(φ) =
f q+1

1

f2

.

Let ρ be a rank-one OK-Drinfeld module over C. As before the structure map

δ : OK → C is assumed to be inclusion. Then the restriction ρ|Z : Z → C〈τ〉

is an F-algebra homomorphism and δ|Z : Z → C remains to be the inclusion.

Clearly, the constant term of (ρ|Z)a equals a for all a ∈ Z and by Lemma (2.2.1),

degτ (ρ|Z)x = 2. Thus, ρ|Z is a Z-Drinfeld module. Since the degree of p∞ is 1 and

ordp∞(x) = −1, the equality degτ (ρ|Z)x = 2 implies also that ρ|Z is of rank 2.

Observe also that if ρ and ρ′ are isomorphic, then their restrictions ρ|Z and ρ′|Z are

also isomorphic. This motivates the following definition.
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Definition 2.3.2. Let ρ be a rank-one OK-Drinfeld module over C. The j-invariant

of ρ is defined to be the j-invariant of the restriction ρ|Z .

Since rank-one OK-Drinfeld modules correspond to fractional ideals of OK, we

may also define the j-invariant of a fractional ideal.

Definition 2.3.3. Let a be a fractional ideal of OK. The j-invariant of a, denoted

by j(a), is defined to be the j-invariant of the corresponding rank-one Drinfeld

module ρa.

Just like in the classical case, we have the following result.

Theorem 2.3.4. Let φ be a Drinfeld module associated with an ideal of OK. Then

j(φ) is integral over Z.

Proof. See theorem (4.3) in [4].
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Chapter 3
Sign Normalization and Class Field
Theory of K.

3.1 The Artin Map

Let K = Q(
√
−n) be an imaginary extension of K and Ksep be a separable closure

of K. Let L ⊂ Ksep be a finite, unramified Galois extension of K and let p ∈ DK

be a prime of K. If P ∈ DL lies above p, then e(P|p) = 1 and κ(P) = OP/P is a

Galois extension of κ(p) = Op/p of degree f(P|p). Since κ(p) is a finite field with

N(p) = qdeg(p) elements, it follows that Gal(κ(P)/κ(p)) is a cyclic group of order

f(P|p) and the map

x 7→ xN(p) (3.1.1)

is its generator. The Galois group Gal(L/K) acts transitively on the set of primes

of L that lie above p. Let DP be the stabilizer of P. Then we have a map DP −→

Gal(κ(P)/κ(p)) given by

σ 7→ σ, where σ(x+ P) = σ(x) + P. (3.1.2)

This map is onto and since e(P|p) = 1, it is also injective. This important iso-

morphism will be used to define the Artin map. The first step is the following

lemma.

Lemma 3.1.1. There is a unique element (P,L/K) ∈ Gal(L/K) such that

(P,L/K)(x) ≡ xN(p) (mod P)

for all x ∈ OP.
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Proof. Let (P,L/K) be the inverse image of the generator (3.1.1) under the map (3.1.2).

In order to prove uniqueness, observe that any σ in Gal(L/K) that satisfies the

above congruence condition is necessarily in the stabilizer of P.

Corollary 3.1.2. Let σ ∈ Gal(L/K). Then

(a) (σ(P),L/K) = σ(P,L/K)σ−1.

(b) The order of (P,L/K) if f(P|p).

(c) p splits completely in L if and only if (P,L/K) = 1.

Proof. Let y ∈ Oσ(P). Then y = σ(x) for some x ∈ OP and σ(P,L/K)σ−1(y)

= σ(P,L/K)(x). Since (P,L/K)(x) ≡ xN(p) (mod P), it follows that σ(P,L/K)(x) ≡

yN(p) (mod σ(P)). But (σ(P),L/K) is the unique element of Gal(L/K) having this

property so we must have

(σ(P),L/K) = σ(P,L/K)σ−1.

Part (b) follows directly from the definition of (P,L/K). Finally, p splits completely

in L if and only if e(P|p) = f(P|p) = 1 since Gal(L/K) acts transitively on the set

of primes lie above p. We have e(P|p) = 1 since L/K is unramified and f(P|p) = 1

if and only if (P,L/K) = 1 by part (b).

If L/K is an Abelian extension, then by part (a) of the corollary the automor-

phism (P,L/K) does not depend on the choice of P above p. In such a case, it

will be denoted by (p,L/K) and called the Artin symbol. Since DK is a free group

generated by primes, we may define the Artin symbol for any divisor D ∈ DK. If

D =
∑

p a(p)p, we set

(D,L/K) =
∏

p

(p,L/K)a(p).
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Thus, we get a group homomorphism ( ,L/K) : DK → Gal(L/K), called the

Artin map.

In previous chapters we have seen that many concepts and techniques of the

classical theory of number fields have rather natural analogues in the function field

context. Unfortunately, the notion of the Hilbert class field cannot be generalized

that easily. If K is a function field, then the maximal abelian unramified extension

of K is not finite.

If S is a finite, non-empty set of primes of a function field K and A is the ring

of S-integers of K, then following Michael Rosen [9], we define the Hilbert class

field as follows.

Definition 3.1.3. The Hilbert class field of K with respect to A, denoted by KA,

is the maximal unramified abelian extension of K in Ksep in which every prime

P ∈ S splits completely.

Recall that the ring that the ring of integers OK in an imaginary extension K/Q

can be viewed as a ring of S-integers for S = { p∞ }. Thus, the Hilbert class field

of K with respect to OK is the maximal abelian unramified extension of K in

Ksep in which p∞ splits completely. Since this is the only Hilbert class field we are

interested in, we will call it simply the Hilbert class field of K and denote it by H.

We have the following fundamental result about H.

Theorem 3.1.4. The Artin symbol ( ,H/K) induces isomorphism between Cl(OK)

and Gal(H/K). Consequently, H/K is a finite extension of degree hOK.

Sketch of a proof. It is known from the class field theory that the Artin map is

surjective and every principal divisor is mapped into identity. Consequently, the
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map ∑
p

a(p)[p] 7−→
∏

p

(p,H/K)a(p) (3.1.3)

is a well-defined epimorphism between Cl(K) and Gal(H/K). Since p∞ splits com-

pletely in H, we have (p∞,H/K) = 1 by part (c) of Lemma (3.1.2). In fact, one

can show that N = [p∞]Z is precisely the kernel of (3.1.3). Thus,

Cl(K)/N ' Gal(H/K).

On the other hand, by the virtue of Lemma 1.1 in [9]

Cl(K)/N ' Cl(OK)

via ∑
p 6=p∞

a(p)[p] 7−→
∏

p 6=p∞

[p]a(p).

Composition of these two maps gives an isomorphism between Cl(OK) and Gal(H/K)

such that

[p] 7−→ (p,H/K).

For more details see Theorem 1.3 in [9]

Just like in the classical case, the Hilbert class field is generated by the j-invariant.

More precisely,we have the following result.

Theorem 3.1.5. Let j = j(OK). Then H = K(j). Moreover, [H : K] = [Q(j) : Q].

Proof. See Corollary (4.5) in [4].

Corollary 3.1.6. If f(X) is the minimal polynomial of j over K, then f(X) ∈

Z[X]
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3.2 The Action of Cl(OK) on DrinoOK(C, 1)

In this section, we shall see that the ideals of OK act naturally on isomorphism

classes of OK-Drinfeld modules. This action, when restricted to rank one Drinfeld

modules, is faithful and transitive. This fact is the main link that joins the Hilbert

class field of K with the theory of rank one OK Drinfeld modules.

Definition 3.2.1. Let ρ, ρ′ ∈ DrinOK(C). An isogeny from ρ to ρ′ is an element

f ∈ C〈τ〉 such that fρa = ρ′af for all a ∈ OK.

Definition 3.2.2. Let a ⊂ OK be an ideal and Ia be the left ideal in C〈τ〉 generated

by { ρa | a ∈ a }. Define ρa to be the monic generator of Ia.

If a ∈ OK, then Iaρa ⊂ Ia and hence ρaρa = ρ′aρa for some ρ′a ∈ C〈τ〉. By Propo-

sition (13.13) in [8], the map a 7→ ρ′a is a Drinfeld OK-module. This module shall

be denoted by a ∗ ρ. Clearly, ρa is an isogeny from a to a ∗ ρ. Moreover, a ∗ ρ is

uniquely determined by this property.

Suppose that a = (α) is a principal ideal. Then Ia is generated by ρα. Clearly,

ρa = c−1ρα, where c is the leading coefficient of ρα. Moreover, a ∗ ρ and ρ are

isomorphic:

a ∗ ρ = c−1ρc. (3.2.1)

Indeed, for every a ∈ OK, we have ρaρa = (a ∗ ρ)aρa. Since ρaρα = ραρa and

ρa = c−1ρα, the result follows. It is also known (see Lemma (4.5) in [6]) that

a ∗ (b ∗ ρ) = ab ∗ ρ (3.2.2)

for non-zero ideals a, b ⊂ OK. The equalities (3.2.1) and (3.2.2) imply that the

operation ∗ induces an action of the class group Cl(OK) on the set DrinoOK(C).
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This action is especially useful when restricted to rank one Drinfeld modules as we

have the following result.

Theorem 3.2.3. The action of Cl(OK) on the set DrinoOK(C, 1) is faithful and

transitive.

Proof. See Theorem (13.27) in [8].

3.3 Sign Normalization

Let Fp∞ = Op∞/p∞, where Op∞ is the local ring of the completion Kp∞ . It is known

that [Fp∞ : F] = deg p∞ = f(p∞ | p∞). If deg n is odd, then p∞ is ramified in K

and hence Fp∞ = F. Otherwise, p∞ is inert in K, which follows that [Fp∞ : F] = 2.

Since
√
−nd /∈ F, we have Fp∞ = F(

√
−nd). In any case, if we choose a uniformizer

at p∞, that is, an element π such that ordp∞(π) = 1, then every non-zero element

α of Kp∞ can be uniquely represented as a Laurent series

α =
∞∑

k=k0

ckπ
k, (3.3.1)

where ck ∈ Fp∞ and ck0 6= 0. Using this representation, we define a sign function

as follows.

Definition 3.3.1. A sign function associated with the uniformizer π is given by

sgn(
∞∑

k=k0

ckπ
k) = ck0 .

Additionally, we set sgn(0) = 0.

Clearly, a sign function is multiplicative. Note also that if α is a unit of the local

ring Op∞ , then sgn(α) = 1 if and only if α ≡ 1 (mod p∞).

Definition 3.3.2. Let σ ∈ Gal(Fp∞/F). If sgn is a sign function on Kp∞ , then the

composition σ ◦ sgn is called a twisted sign function. In this context, the automor-

phism σ is referred to as a twist of the sign.

36



The next lemma provides a convenient choice of the uniformizer at p∞.

Lemma 3.3.3. Let g be the genus of K. Then ordp∞(x
g

y
) = 1.

Proof. Since ordp∞(·) = e(p∞| p∞) · ord∞(·) on Q, we have

2 ordp∞

(
xg

y

)
= ordp∞

(
x2g

−n(x)

)
= 2g ordp∞(x)−ordp∞n(x) = (d−2g)·e(p∞| p∞).

By Proposition (1.5.10), d− 2g = d∞ and by Corollary (1.5.7), d∞ · e(p∞| p∞) = 2.

The result follows.

Having defined a sign function, we will use it to normalize OK-Drinfeld modules.

This normalization will allow us to work with sgn-normalized modules instead of

isomorphism classes, which will simplify certain arguments. Let ρ be a rank-one

OK-Drinfeld module over C. For α ∈ OK, let µρ(α) be the leading coefficient

of ρα. Since ρ is of rank one, we have degτ (ρα) = −d∞ · ordp∞(α) and hence

qdegτ (ρα) = N(α). Thus,

µρ(αβ) = µρ(α) · µρ(β)N(α) (3.3.2)

for all α, β ∈ OK. As explained in [6, Section 6], µρ can be extended to Kp∞ in

such a way that the identity (3.3.2) still holds. The obtained will be denoted by

the same symbol µρ and referred to as the leading coefficient map of ρ.

Definition 3.3.4. Let ρ be a rank-one OK-Drinfeld module over C and let sgn be

a sign function on Kp∞ . We say that ρ is sgn-normalized if the leading coefficient

map µρ is a twisting of the sign function sgn.

Theorem 3.3.5. Let sgn be a sign function on Kp∞. Every rank-one OK-Drinfeld

module over C is isomorphic to a sgn-normalized Drinfeld module. Every iso-

morphism class in DrinoOK(C, 1) contains exactly χ = qd∞−1
q−1

sgn-normalized OK-

Drinfeld modules, and hence there are exactly χ · hOK rank-one, sgn-normalized

OK-Drinfeld modules.
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Proof. See Theorem (12.3) and Corollary (13.2) in [6].

By Lemma (2.2.3), a rank-one Drinfeld module ρ is determined uniquely by

ρx = x+ a1τ + a2τ
2,

ρy = y + b1τ + · · ·+ bdτ
d,

where d = deg n. If ρ is sign normalized, then a2, bd ∈ Fp∞ . More specifically,

a2, bd ∈ F if d is odd and a2, bd ∈ F(
√
−nd) otherwise. Even more can be said if

the normalization is with respect to the sign function associated to π = xg

y
.

Proposition 3.3.6. Let sgn be a sign function on Kp∞ associated to π = xg

y
, and

let ρ be a sgn-normalized rank-one Drinfeld OK-module. If a2, bd are the leading

coefficients of ρx and ρy respectively, then ad∞2 = −n−1
d and bd = ag2.

Proof. Let u = (−ndπ2xd∞)−1. Then

ordp∞(u) = −(ordp∞(−nd) + 2 · ordp∞π + d∞ordp∞x)

= −(0 + 2− d∞ · e(p∞|∞))

= −2 + d∞ · e(p∞|∞) = 0.

Thus, u is a unit in Op∞ . Now,

u− 1 = (−ndπ2xd∞)−1 − 1 =
−n(x)

−ndx2g+d∞
− 1 =

n(x)− ndxd

ndxd

=
nd−1

nd
· 1

x
+
nd−2

nd
· 1

x2
+ · · ·+ n0

nd
· 1

xd
,

which follows that u ≡ 1 (mod p∞). Consequently, sgn(u) = 1. Since sgn is multi-

plicative and sgn(π) = 1, we get

sgn(x)d∞ = sgn(−n−1
d ) = −n−1

d . (3.3.3)

and

sgn(y) = sgn(x)g.
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Now, if ρx = a2τ
2 + a1τ + x and ρy = bdτ

d + · · · + b1τ + y and µρ is the leading

coefficient function, then

a2 = µρ(x) = iρ(sgn(x)),

bd = µρ(y) = iρ(sgn(y)),

where iρ : Fp∞ → Fp∞ is a twist of sgn.

If d is odd, then Fp∞ = F and iρ is the identity function. Consequently,

a2 = −n−1
d , (3.3.4)

bd = −n−gd , (3.3.5)

If d is even, then Fp∞ = F(
√
−nd) and iρ is the identity on F. Since d∞ = 2, we

get

sgn(x)2 = −n−1
d

iρ(sgn(x)2) = iρ(−n−1
d )

iρ(sgn(x))2 = −n−1
d ,

a2
2 = −n−1

d . (3.3.6)

We also have

sgn(y) = sgn(x)g

iρ(sgn(y)) = iρ(sgn(x)g)

bd = iρ(sgn(x))g

bd = ag2. (3.3.7)
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3.4 Normalizing Field for Rank-one

OK-Drinfeld Modules

In the final section of this chapter, we present selected results concerning sgn-

normalized rank-one OK-Drinfeld modules. We follow closely the paper [6] of D.

Hayes where the proofs and more detailed discussion of these results can be found.

Definition 3.4.1. Let sgn be a sign function on Kp∞ . We say that α ∈ Kp∞ is

positive if sgn(α) = 1.

Definition 3.4.2. Let I(OK) be the set of fractional ideals of OK and P+(OK) be

the set of principal ideals which are generated by a positive element. The quotient

group Cl+(OK) = I(OK)/P+(OK) is called the narrow class group of OK relative

to sgn. The order of this group will be denoted by h+
OK .

LetX be the set of sgn-normalized rank-oneOK-Drinfeld modules. One can check

that if ρ ∈ X, then a ∗ ρ ∈ X for any ideal a ⊂ OK. Furthermore, a ∗ ρ = ρ if and

only if a = αOK with sgn(α) = 1. If a is a fractional ideal, then there is a positive

element α ∈ K such that αa ⊂ OK. In such a case, we define a ∗ ρ = (αa) ∗ ρ.

Thus, we obtain an action of I(OK) on X and now a = αOK if and only if

a ∈ P+. Consequently, the operation ∗ induces the action of the narrow class

group Cl+(OK) on X. By Theorem (3.3.5), |X| = χ · hOK , where χ = qd∞−1

q−1
. Since

sgn is multiplicative, h+
OK = χ · hOK . Thus, we have obtained the following result.

Theorem 3.4.3. The action of Cl+(OK) on X is faithful and transitive.

Let ρ be a sgn-normalized rank-one OK-Drinfeld module and let α ∈ OK \ F.

Set H+
α,ρ = K(c0, c1, . . . , ck), where ρα = c0 + c1τ + · · · + ckτ

k. As explained in [6,

Section 14], H+
α,ρ depends neither on ρ nor on α. Thus, we can simply write H+ to

denote this field.
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Definition 3.4.4. The field H+ is called the normalizing field for rank-one OK-

Drinfeld modules over the triple (K, p∞, sgn).

The importance of this field stems from the next three theorems.

Theorem 3.4.5. The normalizing field H+ is a Galois extension of K. The Galois

group Gal(H+/K) is isomorphic to the narrow class group Cl+(OK) via the Artin

map, and hence [H+ : K] = h+
OK = χ · hOK.

Proof. See Theorem (14.7) in [6].

Theorem 3.4.6. The extension H+/K is unramified at every prime p in OK.

Proof. See Proposition (14.4) in [6].

Theorem 3.4.7. H+/H is a Kummer extension of degree χ.

Proof. See Proposition 15.4 in [6].

Let sgn be a sign function associated to the uniformizer π = xg

y
and let ρ be

a rank-one sgn-normalized OK-Drinfeld module. Then ρx = x + a1τ + a2τ
2 for

some a1, a2. Thus, the normalizing field H+ can be written simply as K(a1, a2).

As explained in [6, Section 15], KFp∞ ⊂ H. Since a2 ∈ Fp∞ , it follows that a2 ∈

H. On the other hand, by Theorem (3.1.5), H = K(j). Thus, H+ = H(a1) and

irr(a1,H) = Xχ − aχ1 . In particular, if deg n is odd, then χ = 1 and H+ = H.

Otherwise, χ = q+ 1 and H+/H is a non-trivial Kummer extension of degree q+ 1

generated by a1.

41



Chapter 4
Representation Problem

4.1 Some Special Cases

Let n ∈ Z be a square-free polynomial of degree d with the leading coefficient nd

such that the form X2 + nY 2 is anisotropic over R. By Theorem (1.5.4), this is

equivalent with the condition that d is odd or −nd is not a square in F. The form

X2 + nY 2 is the norm of the field K = Q(
√
−n) over Q. In this final chapter, we

will discuss the following representation problem:

When can a prime element of Z be represented by the form X2 + nY 2?

Since the form X2 +nY 2, viewed as a function on K, is multiplicative, it is natural

to expect that the ideal theory of the ring OK will be a useful tool in the inves-

tigation of this problem. More specifically, we will see in Proposition (4.1.5) that

if a prime p - n can be represented by X2 + nY 2, then pOK = pp, p 6= p, and p is

principal in OK. Unfortunately, the converse is not quite true. If p = (a+
√
−nb)OK

and pOK = pp, then pOK = (a2 + nb2)OK, which follows that a2 + nb2 = up for

some u ∈ Z∗. Since the ring Z has q − 1 units, we are led to consider a notion of

weak representability.

Definition 4.1.1. Let p be a prime element of Z. We say that p can be represented

by the form X2 + nY 2 over Z if there are a, b ∈ Z such that p = a2 + nb2. We

say that p can be weakly represented by the form X2 + nY 2 if there is u ∈ F∗ such

that up can be represented by this form.

Observe that if p can be represented by the form X2 +nY 2 over Z, then up also

can be represented for this form for every square in F. In other words, if p is a monic
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prime that can be weakly represented, then the set of all elements u ∈ F∗ such that

up can be represented is either the whole group F∗ or a coset of the subgroup (F∗)2

in F∗. We will see soon that the former holds if and only if n is a constant, which

makes weak representability a non-trivial concept. If d is odd, a representative of

this coset can be found easily as shown in Lemma (4.1.3). However, if d is even,

the problem is much more delicate. We will show in section 4.5 that both for an

even and odd d a representative of this coset depends on the decomposition of p

in the normalizing field H+.

Proposition 4.1.2. Suppose that deg n = 0. If p ∈ Z is a prime that can be weakly

represented by the form X2 + nY 2, then p can be represented by this form.

Proof. Let u ∈ F∗ be a constant such that up can be represented by X2+nY 2. Since

this form is multiplicative, it is enough to show that u−1 can be represented by it.

Let f1, f2 : F → F be functions defined by f1(X) = u−1 − X2 and f2(Y ) = nY 2.

Since |f1(F)| = |f2(F)| = q+1
2

, it follows that f1(F)∩f2(F) 6= ∅, which implies that

u−1 can be represented by X2 + nY 2.

Lemma 4.1.3. Assume that d is odd and p is a monic prime that can be weakly

represented by the form X2 + nY 2. If deg p is even, then p can be represented by

the form X2 + nY 2. Otherwise, nd p can be represented by the form X2 + nY 2.

Proof. Let u ∈ F∗ and suppose that up = a2 + nb2 for some a, b ∈ Z. Let ak,

bl denote the leading coefficients of a, b respectively. If the degree of p is even,

it follows from Lemma (1.5.8) that u = a2
k. Set A = a−1

k a and B = a−1
k b . Then

p = A2 +nB2. If the degree of p is odd, it follows that u = ndb
2
l . Set A = b−1

l a and

B = b−1
l b. Then ndp = A2 + nB2.
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Proposition 4.1.4. Let p be a prime element of Z that does not divide n. The

prime p can be weakly represented by the form X2 + nY 2 over Z if and only if

pOK = pp, p 6= p, and p is principal in OK.

Proof. If up = a2 + nb2, set p = (a + b
√
−n)OK. Then p = (a − b

√
−n)OK and

clearly pOK = pp. Since nZ is the discriminant of OK|Z and p does not divide n,

it follows that p is unramified in K. In particular, we must have p 6= p.

Now, suppose that pOK = pp, p 6= p, and p is principal in OK. Since OK =

Z[
√
−n], we have p = (a+b

√
−n)OK for some a, b ∈ Z. Thus, pOK = (a2+nb2)OK.

Intersecting both sides of this equality with Z, we get pZ = (a2 +nb2)Z and hence

up = a2 + nb2 for some u ∈ F∗.

The following corollary provides a very simple condition for weak representability

in the case when OK is a principal ideal domain. However, its applicability is

somehow restricted because as we have seen in Proposition (1.5.11) that it happens

if and only if d ≤ 1 or n = x3 + 2x+ 2 ∈ F3[x] or n = 2x3 + x+ 2 ∈ F3[x].

Corollary 4.1.5. If OK is a principal ideal domain and p does not divide n, then

p can be weakly represented by X2 + nY 2 if and only if (−n
p

) = 1.

Proof. By Proposition (4.1.4), p can be weakly represented if and only if pOK

splits. The ideal pOK splits if and only if the polynomial X2 +n splits over Z/pZ,

which in turn is equivalent with (−n
p

) = 1.

We will finish this section with several examples in which Corollary (4.1.5) can

be applied effectively.

Theorem 4.1.6. Suppose that deg n = 0 and p ∈ Z is irreducible.Then p can be

represented by X2 + nY 2 if and only if the degree of p is even.
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Proof. By Lemma (1.5.8), only polynomials of even degree can be represented by

X2 +nY 2. For a prime p of even degree, we have
(
−n
p

)
= 1, so by Corollary (4.1.5),

p can be weakly represented by this form. Proposition (4.1.2) implies that p itself

can be represented by X2 + nY 2.

Example 4.1.7. Let q = 3 and p ∈ Z be a prime different from x. Then p can be

represented by the form X2 + xY 2 if and only if p is monic and p(0) = 1.

Proof. Since the degree of x is odd, the form X2 + xY 2 is anisotropic. Set K =

Q(
√
−x). By Proposition (1.5.11), OK is a principal ideal domain. Consequently,

by Corollary (4.1.5), p can be weakly represented if and only if 1 =
(
−x
p

)
. Let pm

be the leading coefficient of p. Using the quadratic reciprocity, we get

1 =

(
−x
p

)
=

(
p

−x

)
p−1
m =

(
p(0)

−x

)
p−1
m =

p(0)

pm
.

The result follows from Lemma (4.1.3).

Example 4.1.8. Let q = 3 and p ∈ Z be a prime polynomial of degree m with

the leading coefficient pm. If p 6= 2x3 + x + 2, then p can be represented by the

form X2 + (2x3 + x + 2)Y 2 if and only if p is a square modulo 2x3 + x + 2 and

pm = (−1)m.

Proof. The degree of 2x3 + x + 2 is odd, so the form X2 + (2x3 + x + 2)Y 2 is

anisotropic. Set K = Q(
√
x3 + 2x+ 1). By Proposition (1.5.11), OK is a principal

ideal domain. Suppose that p is monic. By Corollary (4.1.5), p can be weakly

represented if and only if 1 =
(
x3+2x+1

p

)
. Using the quadratic reciprocity, we get

1 =

(
x3 + 2x+ 1

p

)
=

(
p

x3 + 2x+ 1

)
(−1)m.

Combining this condition with Lemma (4.1.3) and the fact that
(

2
x3+2x+1

)
= (−1)m,

we obtain the result.
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4.2 The General Case

In the previous section, we have obtained a complete solution of the representation

problem for n of degree zero. The simplicity of the presented solution and the

obtained criterium is a consequence of Proposition (1.5.11) and the fact that in

that case weak representability implies the actual representability. If the degree

of n is positive, the ring OK typically is not a principal ideal domain as shown in

Proposition (1.5.11). The following lemma shows that a prime which can be weakly

represented by the form X2 + nY 2 does not need necessarily to be representable

by this form.

Lemma 4.2.1. Suppose that p ∈ Z is irreducible and u ∈ F∗. If both p and u · p

can be represented by the form X2 + nY 2, then u is a square in F.

Proof. Suppose that p = N(α) and u · p = N(β) for some α, β ∈ OK. Then

pOK = αOK · αOK

and

pOK = (u · p)OK = βOK · βOK.

Clearly, none of the ideals on the left-hand side of these equalities equals OK. Since

there are at most two primes of OK lying above pZ, it follows that αOK, αOK,

βOK, βOK are prime and the uniqueness of the prime factorization implies that

αOK = βOK or αOK = βOK. Replacing β with β if needed, we may assume that

αOK = βOK, which follows that β = wα for some w ∈ O∗K. By Proposition (1.5.9),

O∗K = F∗, which gives

u · p = N(β) = N(wα) = w2N(α) = w2p.

Hence u is a square in F.
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By Proposition (4.1.4), a prime p - n can be weakly represented by the form

X2 + nY 2 if and only if pOK splits completely into a product of principal ideals.

Thus, the first step in solving the representation problem is find when it happens.

The answer is provided by the Hilbert class field theory presented in the previous

chapter.

Lemma 4.2.2. A prime ideal p of OK is principal if and only if p splits completely

in H.

Proof. An ideal p is principal if and only if [p] is the identity element in Cl(OK) '

Gal(H/K), which in turn, by part (c) of Corollary (3.1.2), happens precisely when

p splits completely in H.

Applying Galois theory to prime decomposition, we obtain the following criterion

for weak representability.

Proposition 4.2.3. Let p be an irreducible element of Z that does not divide n.

The prime p can be weakly represented by the form X2 + nY 2 over Z if and only

if p splits completely in H.

Proof. By Proposition (4.1.4), p can be weakly represented by the form X2 + nY 2

over Z if and only if it splits completely in K and the primes above it are principal.

By Lemma (4.2.2), a prime of OK is principal if and only if it splits completely in

H, so p can be represented by the form X2 +nY 2 if and only if it splits completely

in K and the primes above it split completely in H. By Lemma 2.3 in [9], H is

Galois over Q, so the last condition is equivalent to p splitting completely inH.

Let S be a set of monic primes in Z. Recall that the Dirichlet density of S,

denoted by δ(S) is defined to be

δ(S) = lim
s→1+

∑
p∈S |p|−s∑
p∈Z |p|−s
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if the limit exists.

Corollary 4.2.4. The Dirichlet density of the set of monic primes p that can be

weakly represented by the form X2 + nY 2 equals (2hOK)−1. In particular, there are

infinitely many primes that can be represented by the form X2 + nY 2.

Proof. Let Srep be the set of monic primes p that can be weakly represented by the

form X2 + nY 2. By Proposition (4.2.3), Srep ∪ { p∞ } is precisely the set of primes

that split completely in H. Since H/Q is a Galois extension of degree 2hOK , it

follows from Tchebotarev Density Theorem (see [8, Proposition 9.13]) that

δ(Srep) = δ(Srep ∪ { p∞ }) = [H : K]−1 = (2hOK)−1.

We have seen in Chapter 3 that the Hilbert class field H = K(j), where j is

the j-invariant of OK and that the minimal polynomial f of j over K has actually

coefficient in Z. Consequently, the condition of p splitting completely in H can

be expressed in terms of the factorization of f in the field Z/p. This leads to the

following theorem.

Theorem 4.2.5. There exists a monic polynomial f ∈ Z[X] such that for every

prime p ∈ Z that divides neither n nor the discriminant of f , p can be weakly

represented by the form X2 + nY 2 if and only if (−n
p

) = 1 and the congruence

f(X) ≡ 0 (mod p) has a solution in Z.

Proof. Let f be the minimal polynomial f of j = j(OK). Clearly, f is monic and by

Corollary (3.1.6), f ∈ Z[X]. Let p ∈ Z be a prime p ∈ Z that divides neither n nor

the discriminant of f . It follows that f is separable modulo p. As we have seen in

the proof of Proposition (4.2.3), p can be weakly represented by the form X2 +nY 2
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if and only if p splits completely in K and the primes above it are principal. The

ideal pOK splits if and only if the polynomial X2 + n splits over Z/pZ, which

in turn is equivalent with (−n
p

) = 1. Now, if p splits completely in K and p lies

above it, then f(p|p) = 1 and hence OK/p ' Z/p. Consequently, f is separable

modulo p, which implies that p splits completely in H if and only if the congruence

f(X) ≡ 0 (mod p) has a solution inOK, which in turns is equivalent with solvability

of f(X) ≡ 0 (mod p) in Z by the virtue of the isomorphism OK/p ' Z/p. The

result follows.

Theorem (4.2.5) seems to solve the problem of weak representation provided

that there exists a method to compute the polynomial f . In [3], D. Hayes and D.S.

Dummit present an algorithm to compute the minimal polynomial of j in the case

when −n is a square-free monic polynomial of odd degree. In the following section,

we extend this algorithm to deal with the cases when −n is not monic or of even

degree. If g(X) denotes the output of the modified algorithm, then g(X) equals

either f(X) or f(X)f(−X). This is however sufficient for our purpose since g(X)

has a root modulo p if and only if f(X) does.

4.3 The Algorithm

Let us recall several facts discussed in chapters 2 and 3. Every element of Kp∞ can

be represented uniquely as a Laurent series

x =
∞∑

k=k0

ckπ
k.

with coefficients in Fp∞ , where Fp∞ = Op∞/p∞ and π is a uniformizer at p∞. The

associated sign function is a multiplicative map defined by sgn(x) = ck0 , where

ck0 6= 0 is the leading coefficient of the Laurent series expansion. A twisted sign

function is a function of the form σ ◦ sgn, where σ is an Fq- automorphism of Fp∞ .
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If the leading coefficient function µρ of a module ρ happens to be a twisted sign

function, then ρ is said to be sgn-normalized. If ρ is a sgn-normalized Drinfeld

module and a ∈ OK, then the normalizing field H+ is the field generated over K

by the coefficients of ρa. It depends neither on the choice of the element a nor the

module ρ. Moreover, the narrow class group Cl+(OK) is isomorphic to the Galois

group G = Gal(H+/K). If n of odd degree, then H+ is simply the Hilbert class

field H and every isomorphism class of rank-one Drinfeld OK-modules contains

exactly one sgn-normalized representative. This corresponds to the case when p∞

is of degree 1. If the degree of n is even, then deg p∞ = 2 and H+ is an extension

of H of degree q + 1. Then every isomorphism class of rank-one Drinfeld OK-

modules contains q+1 sgn-normalized representatives. In any case, the significance

of the sgn-normalization lies in the fact G acts transitively on the set of all sgn-

normalized modules. Additionally, the sgn-function will useful in the discussion of

strong representability.

In the following discussion, sgn-normalized refers to the sgn function is associated

to the uniformizer π = xg

y
, where g is the genus of K. Recall also that d∞ denotes

the degree of p∞. Every rank-one Drinfeld OK-module ρ over C is determined

completely by two polynomials

ρx = x+ a1τ + a2τ
2 (4.3.1)

ρy = y + b1τ + · · ·+ bdτ
d (4.3.2)

with coefficients in C such that

ρxρy = ρyρx. (4.3.3)

As shown in Lemma (2.2.3), this commutative condition is also sufficient for poly-

nomials ρx and ρy to define a rank-one Drinfeld OK-module ρ over C. The following

computation is based on this fact.

50



If we write a0 = x and b0 = y, then the equation (4.3.3) is equivalent with the

system of d+ 3 equations:

a0b0 = b0a0

a0b1 + a1b
q
0 = b0a1 + b1a

q
0

...

k∑
i=0

aib
qi

k−i =
k∑
i=0

bia
qi

k−i

...

a2b
q2

d = bda
qd

2

The first equation is satisfied trivially and so is the last one if ρ is sgn-normalized

since a2, bd ∈ Fp∞ in such a case. Thus, we have d+ 1 equations with variables a1,

a2, b1, . . . , bd. The first d − 1 equations define b1, b2, . . . , bd−1 recursively in terms

of x, y, a1, a2

bk =
k∑
i=1

(
aib

qi

k−i − a
qk−i

i bk−i

)
/(aq

k

0 − a0). (4.3.4)

By Proposition (3.3.6), bd = ag2, so substituting these expressions into the last two

equations, we obtain two polynomials P , Q with variables a1, a2 defined over the

field K. Now, if d is odd, then by (3.3.4), a2 = −n−1
d and hence P , Q are in fact

elements of K[a1]. In such a case, we define

ϕ = gcd(P,Q) ∈ K[a1]. (4.3.5)

If d is even, then by (3.3.6) a2 =
√
−n−1

d or a2 = −
√
−n−1

d . In such a case, we

define

P+ = e

(√
−n−1

d

)
(P )

Q+ = e

(√
−n−1

d

)
(Q)
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and

P− = e

(
−
√
−n−1

d

)
(P )

Q− = e

(
−
√
−n−1

d

)
(Q),

where e(α) is an evaluation homomorphism defined by

e(α)(S(a1, a2)) = S(a1, α).

Then just like in the odd case we define

ϕ+ = gcd(P+, Q+) ∈ K
(√
−n−1

d

)
[a1]

ϕ− = gcd(P−, Q−) ∈ K
(√
−n−1

d

)
[a1]

Now, if σ : K(
√
−nd) → K(

√
−nd) is the K-automorphism of K(

√
−nd) defined

by σ(
√
−nd) = −

√
−nd and σ∗ : K(

√
−nd)[a1] → K(

√
−nd)[a1] is the induced

automorphism of polynomial rings, then it is easy to see that

e

(
−
√
−n−1

d

)
= σ∗ ◦ e

(√
−n−1

d

)
.

Consequently, we have

σ∗(P+) = P−

σ∗(Q+) = Q−

σ∗(ϕ+) = ϕ−,

which in turns implies that

ϕ
def
= ϕ+ϕ− ∈ K[a1]. (4.3.6)

We see that if ρ is a sgn-normalized, rank-one, OK-Drinfeld module, then a1 is a

root of ϕ. The converse is also true.
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Proposition 4.3.1. Let α be a root of ϕ. Set a1 = α and bd = ag2, where

a2 =



−n−1
d if d is odd,√
−n−1

d if d is even and ϕ+(α) = 0,

−
√
−n−1

d if d is even and ϕ+(α) 6= 0.

If b1, b2, . . . , bd−1 are given via (4.3.4), then the rank-one OK-Drinfeld module ρ

defined by the equations (4.3.1) and (4.3.2) is sgn-normalized.

Proof. Suppose that the module ρ is not sgn-normalized. Then there is an isomor-

phic module vρv−1 which is sgn-normalized. Since the leading coefficient function

is determined uniquely by a2(vρv−1), d must be even and

a2(vρv−1) = −a2(ρ).

On the other hand,

a2(vρv−1) = v1−q2a2(ρ),

which gives

vq
2−1 = −1. (4.3.7)

We also have

v1−qdbd(ρ) = bd(vρv
−1) = a2(vρv−1)g = (v1−q2)ga2(ρ)g,

which gives

(vq
2−1)g = vq

d−1.

Combining this equality with (4.3.7), we get

(−1)g = (−1)
qd−1

q2−1 ,

which in turns implies

qd − 1

q2 − 1
≡ g (mod 2). (4.3.8)
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If d = 2k, then g = d
2
− 1 = k − 1 and

qd − 1

q2 − 1
=
q2k − 1

q2 − 1
=

k−1∑
i=0

q2i ≡ k (mod 2),

which contradicts (4.3.8).

Remark 4.3.2. Since degϕ+ = degϕ− > 0, the above argument proves also

that for an even d, there are sgn-normalized OK-Drinfeld modules both with a2 =√
−n−1

d and with a2 = −
√
−n−1

d .

Theorem 4.3.3. The polynomial ϕ defined by (4.3.5) or (4.3.6) is a power of the

minimal polynomial of a1 over K.

Proof. Let R = {α1, α2, . . . , αt } be the set of roots of ϕ and let m(X) = (X −

α1)(X − α2) . . . (X − αt). The Galois group G = Gal(H+/K) acts transitively

on the set of sgn-normalized OK-Drinfeld modules of rank-one and hence it also

acts transitively on the set R. Thus, if σ ∈ G, then σ(R) = R and hence σm =

m. Combining this with the fact that H+/K is a Galois extension, we conclude

that m(X) ∈ K[X], which in turns implies that irr(a1,K)|m. On the other hand,

transitivity of the action of G on R implies that αi is a root of irr(a1,K) for all i

and hence irr(a1,K) = m. Let

ϕ = (X − α1)e1(X − α2)e2 . . . (X − αt)et .

and choose σ ∈ G so that σ(α1) = αi. Since σϕ = ϕ and σ permutes the roots of

ϕ, it follows that e1 = ei. Consequently, ϕ = me1 .

Once ϕ is computed, it can be used to find a polynomial f with the required

property. First, we compute irr(aq+1
1 ,K) as follows. Let A = C(ϕ) be the companion

matrix of ϕ. Then ϕ is the characteristic polynomial of A and m is the minimal
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polynomial of A. Consequently,

K(a1) ' K(A) ↪→M(K),

which follows that irr(aq+1
1 , K) = irr(Aq+1, K). The minimal polynomial of Aq+1

is known to be the invariant factor of Aq+1 of the highest degree. The invariant

factors of Aq+1 are the non-constant diagonal entries of a Smith normal form of

XI−Aq+1 over K[X], which can be found using Gaussian elimination. Now, let r =

irr(aq+1
1 ,K), f = irr(j,K), and h = hOK . If d is odd, then j = −ndaq+1

1 and hence

we can set g(X) = f(X) = (−nd)hr( X
−nd

). If d is even, then j =
√
−ndaq+1

1 and h =

2hK. Additionally, it follows from [6, Section 15] that
√
−nd ∈ H. Consequently,

K(aq+1
1 ) is a subfield of H of degree at most 2. Define

g(X) = (
√
−nd)2h · r

(
(
√
−nd)−1X

)
· r
(
(−
√
−nd)−1X

)
.

Since g is invariant under the action of the conjugation σ : K(
√
−nd)→ K(

√
−nd),

it follows that g has coefficients in K. Moreover, both j and −j are the roots of g.

If [H : K(aq+1
1 )] = 2, then deg g = h and hence g = nhKd · f . If [H : K(aq+1

1 )] = 1

and j and −j are conjugates over K, then f(X) = irr(−j,K). On the other hand,

since h is even, it follows that f(−X) = irr(−j,K). Thus, f(X) = f(−X), which

in turns implies that f(X) consists only of even powers of X. Consequently, if

f̃(X) = (
√
−nd)−h · f(

√
−ndX), then f̃ is a monic polynomial of degree h with

coefficients in K such that f̃(aq+1
1 ) = 0. Thus, f̃ = r, which in turns implies that

f(X) = (
√
−nd)h · r

(
X√
−nd

)
.

Moreover, it follows that r also consists only of even powers of X. Consequently,

g(X) = (
√
−nd)2h · r

(
(
√
−nd)−1X

)
· r
(
(−
√
−nd)−1X

)
= f(X) · f(−X).
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If j and −j are not conjugates, then g(X) = irr(j,K) · irr(−j,K) = f(X) · f(−X)

since the polynomials on the right-hand side are distinct, monic, irreducible poly-

nomials dividing g and both sides are monic of the same degree.

Example 4.3.4. Let q = 3 and n = x2 + 2x. Computation of the polynomial ϕ

using Magma Computational Algebra System [1] resulted in

ϕ = X8 + (y9 + y7 − y5)X4 + y8.

By Proposition (1.5.10), the genus of K = Q(
√
−n) is 0. Consequently, hK = 1 by

the virtue of Corollary (1.3.7). Since H+ is a Kummer extension of H of degree 4,

it follows that [H+ : K] = 4 · [H : K] = 4 · hOK = 8, which in turns implies that

ϕ = irr(a1,K). Since a1 is a root of ϕ, it follows that a4
1 is a root of

χ = X2 + (y9 + y7 − y5)X + y8.

Note that χ must be irreducible over K otherwise we would have a4
1 = α for some

α ∈ K. But then we would get ϕ | X8 − α2 which is impossible. Consequently,

χ = irr(a4
1,K). Thus, the output of the algorithm g(X) equals

(
√
−1)2h · χ(

√
−1 ·X)χ(−

√
−1 ·X) = X4 + d1X

2 + d0,

where

d1 = 2x18 + 2x16 + 2x15 + x13 + 2x7 + 2x6 + x4

and

d0 = x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8.

The discriminant D of g equals

x26(x+ 1)4(x+ 2)26(x2 + 1)4(x2 + x+ 2)4(x4 + x3 + x2 + 1)4. (4.3.9)

Assuming that a prime polynomial p ∈ Z does not divide D, we obtain that p can

be weakly represented by the form X2 + (x2 + 2x)Y 2 if and only if 2x2 + x is a
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quadratic residue modulo p and the congruence X4 + d1X
2 + d0 ≡ 0 (mod p) has

a solution in Z.

Example 4.3.5. Let q = 3 and n = x3 + x2 + 1. Computation of the polynomial

ϕ using Magma Computational Algebra System [1] resulted in ϕ = X2 + c1X + c0,

where c1, c0 ∈ K are given by c0 = x6 +2x5 +x3 +2x2 and c1 = (x3 +x2)y. Since a1

is a root of ϕ, simple computation shows it is a root of (X4 + c2
0)2 − (c1 − 2c0)2X4

as well. We have

(X4 + c2
0)2 − (c1 − 2c0)2X4 = X8 + d1X

4 + d0,

where d1, d0 ∈ Z are given by

d0 = x24 + 2x23 + 2x18 + x17 + x15 + 2x14 + 2x9 + x8

and

d1 = 2x18 + x15 + x13 + x8 + 2x6 + x5 + x4.

Consequently, j = −n2a
4
1 = −a4

1 is a root of f = X2− d1X + d0. The discriminant

∆ = d2
1 − d0 of this polynomial equals x10 · δ, where

δ = x26+x23+x21+x20−x18−x16+x14+x13+x12−x10+x7+x6+2x5−x4−x3+x−1.

Since the constant term of δ is not a square in F3, it follows that ∆ is not a square

in Z, which in turns implies that f = irr(j,Q). Assuming that a prime polynomial

p ∈ Z divides neither n nor ∆, we obtain that p can be weakly represented by the

form X2 +(x3 +x2 +1)Y 2 if and only if 2x3 +2x2 +2 is a quadratic residue modulo

p and the congruence X2 + d1X + d0 ≡ 0 (mod p) has solution in Z. Note that

this congruence is solvable over Z if and only if ( δ
p
) = 1. Thus, by the virtue of

the quadratic reciprocity law, the weak representability criterion can be expressed

using only linear congruences. Finally, by Lemma (4.1.3), only monic primes p can

be represented by the form X2 + nY 2.
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Example 4.3.6. Let q = 3 and n = x4 + x+ 1. Computation of the polynomial ϕ

using Magma Computational Algebra System [1] resulted in ϕ = X8 + c1X
4 + c0,

where c1, c0 ∈ K are given by

c1 = (2x25 + 2x22 + 2x21 + x19 + x17 + 2x15

+ x14 + x12 + 2x11 + x7 + x5 + 2x4) · y

and

c0 = x36 + 2x34 + 2x33 + x32 + x31 + x30

+ x28 + 2x26 + 2x23 + x22 + x21 + x20

+ x17 + 2x16 + 2x14 + 2x13 + x12

Since a1 is a root of ϕ, it follows that a4
1 is a root of χ = X2 + c1X + c0. The

discriminant c2
1 − c0 of χ is an element of Z with the leading coefficient 2, which

follows that χ is irreducible over K. Consequently, χ = irr(a4
1,K). Thus, the output

of the algorithm g(X) equals

(
√
−1)2h · χ(

√
−1 ·X)χ(−

√
−1 ·X) = X4 + d1X

2 + d0,

where d1, d0 ∈ Z are given by

d1 = 2x54 + 2x48 + 2x46 + 2x44 + x42 + 2x41 + x39 + x38 + x36 + x35 + 2x33

+ 2x32 + x31 + x30 + 2x27 + x26 + x25 + x24 + 2x23 + x22 + x21 + x20

+ 2x19 + x18 + 2x16 + 2x15 + 2x13 + x11 + x10 + x9 + 2x8
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and

d0 = x72 + x70 + x69 + x67 + x66 + 2x65 + 2x64 + 2x62 + 2x60 + 2x59 + 2x58 + 2x57

+ x56 + 2x53 + 2x52 + 2x50 + x48 + 2x47 + x46 + x44 + x43 + 2x42 + x38

+ 2x37 + x36 + 2x34 + x33 + x31 + x29 + 2x28 + 2x27 + 2x26 + x25 + x24.

Assuming that a prime polynomial p ∈ Z divides neither n nor the discriminant

of g, we obtain that p can be weakly represented by the form X2 + (x4 + x+ 1)Y 2

if and only if 2x4 + 2x + 2 is a quadratic residue modulo p and the congruence

X4 + d1X
2 + d0 ≡ 0 (mod p) has solution in Z.

4.4 Strong Representability

Theorem (4.2.5) along with the presented algorithm solves the problem of weak

representation. There is one question remaining. Assuming that p can be weakly

represented by the form X2 + nY 2, when can p itself be represented by this form?

In this section, we will answer this question.

Let p(X) ∈ Z be an irreducible polynomial of degree k that does not divide n

and can be weakly represented by the form X2 + nY 2. Note that k must be even

if d = deg n is even. Consequently, regardless on parity of d, the quotient k
d∞

is

an integer. In order to simplify some statements, we will use the symbol deg∗p to

denote this number. Now, observe that

p(x) = p0 + p1x+ · · ·+ pkx
k = pkx

kp̂(x−1),

where p̂ ∈ Z is a polynomial of degree k. By the virtue of the equation (3.3.3), we

get

sgn(p(x)) = pksgn(x)ksgn(p̂(x−1)) = pksgn(p̂(x−1))(−nd)− deg∗p
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Since ordp∞(p̂(x−1)) = 0 and ordp∞(p̂(x−1)−1) ≥ 0, it follows that p̂(x−1) is a unit

in Op∞ ⊂ Kp∞ and p̂(x−1) ≡ 1 (mod p∞), which in turns implies sgn(p̂(x−1)) = 1.

Consequently, p is positive if and only if

pk = (−nd)deg∗p. (4.4.1)

Lemma 4.4.1. Let a+ by ∈ K and n0 = ordp∞(a+ by). Then

sgn(a− by) = (−1)n0 · sgn(a+ by).

Proof. The conjugation of K is a continuous map with respect to | · |∞. Hence if

a+ by =
∞∑

n=n0

cnπ
n,

then

a− by =
∞∑

n=n0

cn(−1)nπn,

and the result follows.

Proposition 4.4.2. Let p - n be a positive prime that can be weakly represented by

the form X2 + nY 2 and let p = (α) be an ideal above p.Then p can be represented

by the form if and only if α can be chosen so that sgn(α)2 = (−1)deg∗p.

Proof. Suppose that p can be represented. Then p = αα for some generator α of

p. Then ordp∞(α) = − deg∗p and hence

1 = sgn(p) = sgn(α)sgn(α) = sgn(α)sgn(α)(−1)− deg∗p

and the result follows.
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Now, assume that α can be chosen so that sgn(α)2 = (−1)deg∗p. Since p can be

weakly represented, we have up = αα and hence

u = sgn(up) = sgn(α) sgn(α)

= sgn(α) sgn(α)(−1)− deg∗p

= (−1)deg∗p(−1)− deg∗p = 1.

Theorem 4.4.3. Let p - n be a positive prime that can be weakly represented by the

form X2 +nY 2. Suppose that deg∗p is even or 4 | q− 1. Then p can be represented

by the form X2 + nY 2 if and only if it splits completely in H+.

Proof. let p be a prime in OK above p. Suppose that deg∗p is even. Then, by

Proposition (4.4.2), p can be represented if and only if p has a generator α such

that sgn(α)2 = 1. Since for any generator α of p, −α is also a generator, the last

condition is equivalent with the existence of a positive generator α. Similarly, if

deg∗p is odd, then we conclude from Proposition (4.4.2) that p can be represented

if and only if p has a generator α such that sgn(α)2 = −1. Since 4 | q − 1, it

follows that there is an u ∈ F∗ such that u2 = −1. Since for any generator α of

p, both −uα and uα are generators as well, the last condition is also equivalent

with the existence of a positive generator α, which in turns is equivalent with the

equality [p] = 1 in Cl+(OK) ' Gal(H+/K). By Corollary (3.1.2), we have [p] = 1

in Cl+(OK) if and only if p splits completely in H+. Since p splits in K and H+/Q

is Galois, the result follows.

Theorem 4.4.4. Let p - n be a positive prime that can be weakly represented by the

form X2 +nY 2, and let m(X) = irr(a1,K). Suppose that deg∗p is even or 4 | q−1.
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Let

ωp(X) = gcd(X |p| −X,mp(X)) ∈ (Z/p)[X], (4.4.2)

where mp(X) is the reduction of m(X) modulo p. Assume also that p is relatively

prime to the discriminant of m(X). Then, p can be represented by the form X2 +

nY 2 if and only if degωp(X) ≥ 1.

Proof. Let p,P,P+ be primes in OK,OH, OH+ respectively such that p ⊂ p ⊂ P ⊂

P+. We have seen in the proof of Theorem (4.4.3) that p can be represented by the

form X2+nY 2 if and only if p splits completely inH+. Since p can be weakly repre-

sented, it follows that p splits completely inH. In particular, f(P| p) = e(P| p) = 1

and κ(P) = κ(p). By Theorem (3.4.6), H+ is unramified at all primes in OK.

Thus, p splits completely in H+ if and only if f(P+|P) = 1. Since p is relatively

prime to the discriminant of m(X), so is P. Consequently, H+ = H(a1) implies

κ(P+) = κ(P)(a1) = κ(p)(a1). On the other hand, [κ(P+) : κ(P)] = f(P+|P).

Thus, f(P+|P) = 1 if and only if a1 ∈ κ(p) = Z/p, which in turn is equivalent

with mp(X) having a root in Z/p. Since elements of Z/p are precisely the roots

of X |p| −X, the result follows.

Theorem 4.4.5. Let p - n be a positive prime that can be weakly represented by

the form X2 + nY 2 and let P+ be a prime in H+ above p. Suppose that deg∗p is

odd and 4 - q − 1. Then p can be represented by the form X2 + nY 2 if and only if

f(P+| p) = 4.

Proof. Let p be a prime in OK such that p ⊂ p ⊂ P+. Since 4 - q − 1, it follows

that −1 is not a square in F. Consequently, Proposition (4.4.2) implies that p can

be represented if and only if [p] is an element of order 4 in Cl+(OK) ' Gal(H+/K).

The image of [p] in Gal(H+/K) is the Artin symbol
(
H+/K

p

)
. By Corollary (3.1.2),

the order of this symbol is f(P+| p). The result follows.
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Theorem 4.4.6. Let p - n be a positive prime that can be weakly represented by

the form X2 + nY 2, and let m(X) = irr(a1,K). Suppose that deg∗p is odd and

4 - q − 1. Let

ωp(X) = gcd(X2|p| +X2,mp(X)) ∈ (Z/p)[X], (4.4.3)

where mp(X) is the reduction of m(X) modulo p. Assume also that p is relatively

prime to the discriminant of m(X). Then, p can be represented by the form X2 +

nY 2 if and only if degωp(X) ≥ 1.

Proof. Let p,P,P+ be primes in OK,OH,OH+ respectively such that p ⊂ p ⊂ P ⊂

P+. By Theorem (4.4.5), p can be represented if and only if f(P+| p) = 4. Since p

is weakly represented, it splits completely in H and hence f(P+| p) = f(P+|P).

Thus, p can be represented if and only if [κ(P+) : κ(P)] = 4. Since p is relatively

prime to the discriminant of m(X), so is P. Consequently, H+ = H(a1) implies

κ(P+) = κ(P)(a1) = κ(p)(a1) and hence [κ(P+) : κ(P)] = deg irr(a1, κ(p)). Note

that if deg n is odd, then H+ = H and hence [κ(P+) : κ(P)] = 1. On the other

hand, mp(X) splits completely over Z/p. It is easy to see that none of the elements

of Z/p is a root of X2|p| +X2 and hence ωp(X) = 1, which completes the proof in

this case. Thus, for the rest of the proof, we may assume that deg n is even.

Let w(X) = irr(a1, κ(p)). Suppose that degw(X) = 4. By Theorem (3.4.7),

H+/H is a Kummer extension of degree q+1 and hence w(X)|Xq+1−a1
q+1, which

it follows that w(X) = (X−a1)(X−a1ξ1)(X−a1ξ2)(X−a1ξ3), where ξi are roots

of unity of order q + 1. Consequently, a1
4ξ1ξ2ξ3 ∈ κ(p). Note that κ(p) contains

all roots of unity of order q + 1, and so a1
4 ∈ κ(p), which in turns implies that

w(X) = X4 − a1
4. Observe that a1

2 /∈ κ(p) due to irreducibility of w(X). Since

p splits completely in OK, we have κ(p) = Z/p and hence the cardinality of κ(p)
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equals the norm of p, which follows that a1 is a root of the polynomial

X4|p| −X4

X2|p| −X2
= X2|p| +X2.

Thus, a1 is a root of

ωp(X) = gcd
(
X2|p| +X2,mp(X)

)
. (4.4.4)

In particular, ωp(X) has a positive degree. Thus, if [κ(P+) : κ(p)] = 4, then

degωp(X) ≥ 1. It is easy to see that the converse is also true. Indeed, suppose that

degωp(X) ≥ 1 and let α be a root of ωp. Since mp(α) = 0, it follows that α = a1

for some root a1 of m(X). Consequently, κ(P+) = κ(P)(α) = κ(p)(α). We also

have α4|p| = α4 and α2|p| 6= α2, which shows that α4 ∈ κ(p) but α2 /∈ κ(p). Thus,

X4 − α4 is an irreducible polynomial of α over K and [κ(P+) : κ(p)] = 4.

Example 4.4.7. We have learned in Example (4.3.4) that a prime polynomial

p ∈ Z different from x, x, (x+ 1), (x+ 2), (x2 + 1), (x2 + x+ 2), (x4 + x3 + x2 + 1)

can be weakly represented by the form X2 + (x2 + 2x)Y 2 if and only if 2x2 + x is

a quadratic residue modulo p and the congruence X4 + d1X
2 + d0 ≡ 0 (mod p),

where

d1 = 2x18 + 2x16 + 2x15 + x13 + 2x7 + 2x6 + x4,

and

d0 = x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8,

has a solution in Z. Let p = 2x10 +2x7 +x4 +2x3 +2x+1. Then deg∗p = 5 and p is

positive. Set also u = x9 +2x8 +x6 +2x5 +x4 +2x3 +x+2, and v = x9 +x8 +x7 +x.

Then u2 ≡ 2x2+x (mod p) and v4+d1v
2+d0 ≡ 0 (mod p), which follows that p can

be weakly represented by the form X2+(x2+2x)Y 2. We will apply Theorem (4.4.6)

to decide whether p can be actually represented by the form X2 + (x2 + 2x)Y 2.
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Recall that irr(a1,K) = X8 + (y9 + y7 − y5)X4 + y8. Its discriminant equals

x28(x+ 1)8(x+ 2)28(x4 + x3 + x2 + 1)8,

which is relatively prime to p. Using the fact that u is a square root of −n modulo

p, we can compute the reduction of irr(a1,K) modulo p. We obtain

mp(X) = X8 + (2x8 + x7 + 2x5 + 2x4 + x3 + x2 + 2)X4 + (x8 + 2x7 + 2x5 + x4).

Since deg p = 10, it follows that |p| = 310 = 59049. Thus,

ωp(X) = gcd
(
X118098 +X2,mp(X)

)
.

Using the division algorithm, we see that mp(X)|X118098 + X2 in (Z/p)[X] and

hence degωp(X) ≥ 1. Thus, by Theorem (4.4.6), the polynomial p can be repre-

sented by the form X2 + (x2 + 2x)Y 2. Indeed, we have

p = (x5 + 2x4 + 2x3 + x2 + 2)2 + (x2 + 2x) · (x4 + 2x2 + x+ 1)2.
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