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ABSTRACT

This paper is a study of commutative rings R with identity, 

such that each quotient ring Rp with respect to a proper 

prime P of R is a general ZPI ring, i.e., a ring in which 

each ideal is a product of finitely many prime ideals. The 

first section concerns such rings which are also integral 

domains and gives several characterizations of such domains. 

It is shown that a domain J has the above property if and 

only if each ideal of J which has prime radical, is a prime 

power. Such a domain J is shown to have no non-maximal 

proper prime ideals and to be strongly integrally closed.

The second section concerns rings with the aforesaid 

property which are not domains. In such rings, it is shown 

that the condition that ideals with prime radical be prime 

powers is necessary and sufficient for each Rp to be a 

general ZPI ring.

The third section is a discussion of the properties of a 

commutative ring R with the property that the ideal system 

of each quotient ring Rp of R, with respect to a proper 

prime P of R, is linearly ordered. It is shown that 1) 

such a ring is integrally closed in its total quotient

iv



ring, 2) each proper residue class ring modulo a proper 

prime of R is a Priifer domain, and 3) any two primes of R, 

neither of which contains the other are relatively prime.
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NOTATION

In this paper "ring" will mean a commutative ring with 

identity element. "Domain" will mean a ring in which the 

zero ideal is prime. "ZPI ring" will mean, [5;117]^, a 

ring in which each ideal is a product of finitely many 

prime ideals. "Priifer domain" will mean a domain in which 

each finitely generated non-zero ideal is invertible. 

"Discrete valuation ring" will mean a Dedekind domain with 

at most one proper prime ideal, [11;278], where "proper 

ideal" means an ideal different from (0) and (1). A domain 

J, (ring R), will be called "integrally closed" if any 

element of its quotient field, (total quotient ring), which 

satisfies a monic polynomial with coefficients in J, (R), is 

already in J, (R). A domain J, (ring R), will be called 

"strongly integrally closed" if any element x of its 

quotient field, (total quotient ring), such that the 

polynomial ring J[x], (R[x]), is contained in a finite J-,

(R—), module, is already in J, (R). The symbol "Rp" will 

indicate the quotient ring, [11;221], of R with respect to

^In the symbol [A;B], A refers to the number of 
the bibliographical reference, B the page number in A.
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the prime P. Rp will be called "proper" if P is proper; 

^(n ) will indicate the n-th symbolic power of A, [11;232], 

(the overring with respect to which A ^  is formed will be 

clear from the context); rad (A) will indicate the radical 

of the ideal A, [11; 147]. The symbol " 0 . 11 will allow 

equality while " ^ " will indicate proper containment. For 

two sets A and B, A - B will denote the relative complement 

of B in A. Throughout this paper, J will be a domain with 

quotient field K, and R will be a ring with total quotient 

ring T.



ALMOST DEDEKIND DOMAINS

Definition 1.1

A domain in which each proper quotient ring is a discrete 

valuation ring will be called an "almost-Dedekind domain," 

(AD - domain).

Lemma 1.1

If, in J, each ideal with prime radical is a power of its 

radical, non-zero proper primes of J are maximal.

Proof: It clearly suffices to show that a minimal prime of

a non-zero principal ideal is maximal. Let (a) be a non­

zero principal ideal of J and P a minimal prime of (a).

Since P is minimal for (a), rad (ajp) j = PJp P\ J —  P. 

Therefore aJp O  J =  Pn for some positive integer n. But 

then ajp =  (aJp r\ J)Jp “  PnJp =  (PJp )n and hence PJp is 
invertible since its n-th power is principal. This implies 

PJp ^  (PJp)2 which implies P^fcp2. Now P2 C. P p so that

rad(p*2*)“  P and either P*2L p or P *2*= P2. If P*2*:= P,
2 f2) 2 2P*JP =: PJP which cannot happen. Therefore, P' P and P

is primary. Now let p be an element of P - P , and m an
2 2 element of J - P. Since P is primary, pm is not in P and

2 2 hence P -f- (pm) =  P. Then let p s q -V rpm where q is in P ,
2 2 r in J. We have p (1 - rm) is in P and p is not in P ,
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primary, which implies 1 - rm is in P. But this implies 1 

is in P (m) and since m was arbitrary outside P, P is 

maximal.

Theorem 1.1

J is an AD - domain if and only if each ideal of J, with 

prime radical, is a prime power.

Proof: If each proper Jp is a discrete valuation ring,

proper primes of J are clearly maximal. Thus rad(A) =. P, 

a proper prime of J, implies A is primary, [11;153], so 

that A J p O  J *  A, [11; 223], but since Jp is a discrete 

valuation ring, AJp —  (PJp)n for some positive integer n.

Now since A is primary and contained in P, A =  AJp C\ J, and 

hence A = P n . On the other hand, if each ideal with prime 

radical is a prime power, then according to lemma 1.1, each 

proper prime P of J is maximal so that Jp has exactly one 

proper prime ideal. Then since, (by the proof of lemma 1.1), 

PJp is invertible, Jp is a Dedekind domain, [8;234], thus a 

discrete valuation ring.

Remark 1.1

An AD - domain is strongly integrally closed in its 

quotient field.
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Proof: It is easy to show that any domain J is the

intersection of its quotient rings Jp for proper primes P 

of J. But each Jp of an AD - domain is strongly integrally 

closed.

Remark 1.2

In an AD - domain J, the powers of any proper ideal 

intersect in (0).

Proof: If A is a proper ideal of J, A is contained in P

for some proper prime P of J. Thus A C  AJp C  PJp an<*
«o «o
r > A n C. ( \ (pJp)n =  (0) since Jp is a Dedekind domain. 

Remark 1.3

A Noetherian AD - domain is a Dedekind domain.

Proof: We have already shown that an AD - domain is

integrally closed and has no non-maximal proper prime 

ideals, [10;85,86].

We state here without proof a theorem of Krull, [3;554]. 

Theorem 1.2

In J, these are equivalent:

(a) J is a Priifer domain,

(b) for each proper prime P of J, Jp is a Priifer 

domain,
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(c) for each proper prime P of J, Jp is a valuation 

ring.

Part (b) of theorem 1.2 is not in the statement of Krull's

theoremj but is implied in the proof.

Corollary 1.1

An AD - domain is a Priifer domain.

Since every Priifer domain is integrally closed, [9; 14], we 

have another proof of

Corollary 1.2

An AD - domain is integrally closed.

Corollary 1.3

J is a Priifer domain if and only if, given a, b non-zero 

elements of J and P a proper prime of J, there exist

elements c and d of J such that a/b —  c/d and (c,d) is not

contained in P.

Proof: If (a,b) is contained in P, then (a,b)Jp C  PJp in Jp

which is a valuation ring so that either aJp C. bJp or 

bJp CL ajp, saY aJpC-bJp. Then a =  b (c/m) for some c in J, 

m in J - P, and a/b =  c/m, (c,m) not contained in P.
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Theorem 1.3

If J is a Priifer domain and R is a ring such that J C  R C  K, 
then R is a Priifer domain.

Proof: Let Q be a proper prime of R. Then P =  Q C\ J is a
proper prime of J and Jp is a valuation ring. But any ring 

between a valuation ring and its quotient field is a 

valuation ring and J p d  Rq  C  K so that Rq is a valuation 
ring. Therefore R is a Priifer domain by theorem 1.3(c).

Theorem 1.4

If, in theorem 1.3, J has no proper non-maximal primes, R 

has no proper non-maximal primes.

Proof: Notice that in a Priifer domain J, proper primes are

maximal if and only if each proper Jp is a rank 1 valuation 

ring. We will show that if, (using the notation of 

theorem 1.3), Jp has rank 1, Rq has rank 1. Suppose Q' is 
a proper prime of Rq , then QRq contains Q' and since Jp has 

rank 1, Q 1 O  Jp —  QRq H  Jp. Let m be an element of QRq .

Then m »  a/b with a, b in Jp, b not in Q, hence mb a a is 

an element of Q R q O  Jp—  Q 1 Pi Jp so that mb is in Q'.
Since b is not in A 1, m is in A* and QRq =  Q' so that R^ is 
of rank 1.
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Theorem 1.5

If J is an AD - domain and J  ^  R C  K> then R is an 
AD - domain.

Proof: Since J p C  Rq  G  K an^ Jp i® a Dedekind domain, Rq
is a Dedekind domain, [2;31].

Theorem 1.6

J is an AD - domain if and only if each proper primary 

ideal of J is a power of a maximal ideal.

Proof: It has already been shown that in an AD - domain,
proper primes are maximal and each primary ideal is a power

of its radical. On the other hand, each proper prime of J

is a proper primary, hence is maximal. Thus each ideal with 

prime radical has maximal radical and is primary so that, by 

hypothesis, it is a maximal, (in particular prime), power.

So J is an AD - domain by theorem 1.1.

Theorem 1.7
J is an AD - domain if and only if whenever A is an ideal of 

J with prime product radical, A is a prime power product.

Proof: "If" is clear from theorem 1.1. Then suppose J is

an AD - domain and A an ideal of J with rad (A) pi***pn* 
with P^,...,Pn different primes of J. Then since proper
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primes of J are maximal, A is the intersection of its 

isolated primary components, [4;22]. But since each Jp is 

a discrete valuation ring, the isolated primary components 

of A are powers of the proper primes containing A, namely 

Pj_, ...,Pn * Then since each P^ is maximal, the isolated 

primary components of A are relatively prime and A is their 

product.

For completeness we state here without proof a result 

communicated by Robert Gilmer:

Theorem 1.8

J is an AD - domain if and only if for A, B, C non-zero 

ideals of J such that AB =  AC, B C.

Theorem 1.9

J is an AD - domain if and only if

(a) J is a Priifer domain,

(b) proper primes of J are maximal, and

(c) J contains no proper idempotent prime.

Proof: We have already shown that an AD - domain has

properties (a), (b) and (c). On the other hand, if J is a

Priifer domain, each Jp is a valuation ring. If J has no 

non-maximal proper primes, Jp has rank 1; but if J contains
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no non-zero proper idempotent prime, neither does Jp, since 

the prime powers of J are primary. Now a rank 1 valuation 

ring is a Dedekind domain if and only if its maximal ideal 

is not idempotent, [12;41].

Since only rank 1 valuation rings are strongly integrally 

closed, [11;255:12;45], we have

Corollary 1.4

J is an AD - domain if and only if (a), (c) of theorem 1.9

and

(b1) Each proper Jp is strongly integrally closed. 

Corollary 1.5

The union of a tower of AD - domains is an AD - domain if 

and only if it has no proper idempotent primes.

Proof: It is easily shown that the union of a tower of

AD - domains is a Priifer domain and each proper Jp is 

strongly integrally closed.

Theorem 1.10
If J is an AD - domain, F a finite algebraic extension of 

K and J~ the integral closure of J in F, then J~ is an 

AD ~ domain.
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Proof: Let Q be a proper prime of J~. Then P s  q O  J is a

proper prime of J, hence Jp is a discrete valuation ring.

Now we know that the integral closure L of Jp in F is a 

Dedekind domain, [11;281]. It can be easily shown that 

L C  J~Q C  F and that F is the quotient field of L. Hence 

J ~ q  is a Dedekind domain, (between a Dedekind domain and its 

quotient field, [2;31]).

Corollary 1.6

The ring of integral elements of an algebraic number field 

forms an AD - domain if and only if this ring has no proper 

idempotent primes.

Proof: This ring can be written as a union of a tower of

rings each of which is the integral closure of the rational 

integers in a finite algebraic extension of the rational 

numbers. Hence corollary 1.6 follows from theorem 1.10 and 

corollary 1.5.

Example

Nakano, [7;426], gives the following example of an algebraic 

number field K, the integral elements of which form an 

AD - domain which is not a Dedekind domain. Let K be the 

field obtained by the adjunction of the p-th roots of unity 

for every rational prime p. Let J be the integral elements
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of K. Nakano showed that J has no idempotent proper primes, 

so that J is an AD - domain by corollary 1.6. He also 

showed that J has no finitely generated proper primes, so 

that J is not a Dedekind domain.

Theorem 1.11

The integral closure J is an AD - domain in an algebraic 

extension of its quotient field is an AD - domain if and 

only if J has no proper idempotent ideals.

Proof: Let J* be the union of a maximal tower of

AD - domains in J, (such a tower exists by the Hausdorff 

maximality principle and the existence of one AD - domain 

in J). By corollary 1.5, J* is an AD - domain if and only 

if it has no idempotent proper primes. Now suppose J has 

no idempotent proper ideals. Then if P* is any proper prime 

of J*, P*J is a proper ideal of J so that P* is not 

idempotent since P*J is not. So J* is an AD - domain and 

if J* ̂  J, there exists an element x in J - j* and x is 

integral over J*. Then the domain J** which is the 

integral closure of J* in K* (x), (K* the quotient field of

J*), is an AD - domain by theorem 1.10, contradicting the 

maximality of the tower which formed J*. Therefore j * =  j 

and the theorem is proved.



ALMOST ZPI RINGS

Definition 2.1

For a prime ideal P of R, let M(P) be R - P and N(P) be the 

set of elements x of R such that 0 is an element of xM(P) .

We will use the notation of Zariski and Samuel, [11;221], 

and let Rp be (R/N (P))p/N ; Ae and Ac represent the 

extension and contraction of an ideal A of R and Rp 

respectively, [11;218]. Discrete valuation ring and 

special primary ring, (primSrer zerlegbarer Ring, [4;84]), 

will be denoted by dvr and spr respectively.

Definition 2.2

R will be called an "almost ZPI ring, (AZPI-ring)," if for 

each proper prime P of R, Rp is a ZPI ring, [5;117], i.e., 

each ideal of Rp is factorable into a product of prime 

powers.

It has been shown by Asano, [1;83], that a ZPI ring with a 

unique maximal ideal is either a dvr or an spr. Therefore, 

R is an AZPI-ring if and only if each proper Rp is either 

a dvr or an spr.

For the proofs in this section it will be convenient to 

state here a theorem from Zariski and Samuel, [11;228],

13
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namely,

Theorem 2.1

Let P be a prime ideal of R. The mapping A Ae

establishes a 1-1 correspondence between the set of prime 

(primary) ideals of R contained in P, and the set of all 

prime (primary) ideals of Rp.

Lemma 2.1

If R is an AZPI-ring and P a proper prime of R such that 

N (P) is not prime, then rad (N (P))—  P .

Proof: Since N(P) is not prime, Rp is not a domain and

hence Rp is an spr. Therefore, there exists a positive 

integer n such that (Pe)n (0) and thus for p in P,

((p)e)n =  (0), i.e., pn is in N (P). This implies P is 

contained in rad(N(P)), but the other containment always 

holds, so that rad (N (P)) —  P.

Theorem 2.2

If R is an AZPI-ring, P a proper prime of R and N (P) is not 

prime, then P is minimal and maximal, Rp is an spr and 

rad (A) “  P implies A is a power of P.

Proof: As in lemma 2.1, Rp is an spr and hence contains

only one proper prime ideal, Pe ; and by theorem 2.1, there 

are therefore no prime ideals of R properly contained in P,
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containing P. If Rp, is an spr, P' is minimal and P ss P 1 is 

maximal. On the other hand, if Rp, is a dvr, N(P') is prime 

in R. Again using theorem 2.1, P' and N (P') are the only 

primes of R contained in P 1 so that either P —  P' is 

maximal or P —  N (P') C  N(P) C  P which implies P =  N(P) and 
contradicts N (P) not being prime. Therefore P is maximal 

and rad (A)—  P implies A is primary. So by theorem 2,1, 

since Ae —  (Pe)n =■ (Pn)e, A =  Pn .

Theorem 2.3

If R is an AZPI-ring, P a proper prime of R and N (P) is

prime, then either (1) P =  N(P) or (2) P is maximal, N(P)

is the only prime of R properly contained in P, Rp is a dvr, 
oo

Pn =  N (P) and rad (A) —  P implies A ̂  Pn for some 

positive integer n.

Proof: If N (P), N(P)^ P. Since Rp is a domain, it is

a dvr and hence by theorem 2.1, N (P) and P are the only 

primes of R contained in P. Let P ’ be a maximal ideal of R 

containing P. If N(P') were not prime, P' would be minimal 

by theorem 2.2 so that P' would be P and N(P) would not be 

prime. Therefore N (P’) is prime and is the only prime 

properly contained in P', which implies either P ■= N (P') or 

P P ' . If P —  N (P 1) , P —  N (P) ; therefore P S P '  is maximal.
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Then each Pn, for a positive integer n, is primary and 

(Pn)e —  (Pe)n so that N (P) is contained in each Pn and
o o  DO

N (P) Cl Pn * But since Rp is a dvr, O  (Pe)n — (0) so

that Pn C  N (P), i.e., N (P) =  Pn . Now since P isv\«\
maximal, rad(A)=  P implies A is primary which implies by 

theorem 2.1 that A —  Pn for some positive integer n.

Lemma 2.2

If in R each ideal with prime radical is a prime power, this 

property also holds in each Rp .

Proof: Let A be an ideal of Rp and rad (A) =  P*, a prime.

Then, since rad(Ac) =  (rad(A))c and since (P*)c is prime, 

rad (Ac) =  (P*)c, prime so that Ac —  ((P*)c)n and 

A s  Ace s  (((P*)c)n)e ((P*)ce)n =>(p*)n and the lemma is

proved.

Theorem 2.4

If in R each ideal with prime radical is a prime power, 

then each proper Rp is a ZPI ring.

Proof: Let P be a proper prime of R, If P is minimal in

R, Pe is the only proper prime of Rp and by lemma 2.2, each 

proper ideal is a power of Pe . In this case, Rp is either a 

field, (if P =  n (P)), or an spr, ((0)e —  (Pe)n ) . If P is
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not minimal, let P' be a minimal prime contained in P. It

can be easily shown that the residue class ring of R modulo

P' is an AD - domain so that proper primes of R/P' are

maximal and P is maximal in R; and since P was any non-

minimal prime, there are no primes properly between P' and
w>

P in R. We will now show that in R, P* is the only

prime of R contained in P. Since in R/P' the intersection
oo

of the powers of P/P1 is (0), we see that Pn£  pl* Now

suppose there is a positive integer n such that P'O Pn and 
pn + 1. Then since rad (P' +  Pn + 1) = P, P ' P11̂ 1 * Pn

i.e., (P/P1)n + 1 *  (P/P')n which cannot happen since R/P' is 

an AD - domain. Therefore P' C. n  pn so that
oo ** \

P' —  Pn . But if P* is any minimal prime of RW»t fo
contained in P, the same argument shows that P* *  Pn

and P* is unique. Therefore, in Rp, Pe and (P')e are the 

only primes and every ideal has prime radical and is thus a 

prime power. This proves that Rp is a ZPI ring.

Summarizing theorems 2.2, 2.3 and 2.4 we see that

Theorem 2.5
R is an AZPI-ring if and only if each ideal of R with prime 

radical is a prime power.
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Definition 2.3

We will call a ring a "multiplication ring" if whenever A 

ard B are ideals of R with A O  B, there is an ideal C of R 

such that A s  BC, [6;2],

Lemma 2.3

A multiplication ring is an AZPI-ring.

Proof: Mori, [6], has shown that in a multiplication ring,

primary ideals are prime powers and each ideal is the 

intersection of its isolated primary components.

Therefore, any ideal with prime radical is primary, since 

it has only one isolated primary component? so any ideal 

with prime radical is a prime power and the lemma follows 

from theorem 2.5.

Theorem 2.6

R is an AZPI-ring if and only if each proper Rp is a 

multiplication ring.

Proof: "Only if" follows from the fact that every ZPI ring

is a multiplication ring. Then if each Rp is a multiplica­

tion ring, each Rp is an AZPI-ring by lemma 2.3; but being 

its own quotient ring with respect to its maximal ideal,

Rp is a ZPI ring.
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Theorem 2.7

R is an AZPI-ring if and only if for each primary ideal Q 

of R there exists a maximal ideal H of R such that Q is 

either N (M) or a power of M.

Proof: "Only if" is clear from theorems 2.2 and 2.3. On

the other hand, if each primary of R is either N (M) or a 

power of M, then each proper Rp is either a field, (in case 

P ̂  N(M)), a dvr, (in case P is maximal but not minimal), 

or an spr, (in case P is maximal and minimal).

Lemma 2.4

Let R be a ring and A, B ideals of R. Then A =■ B if and 

only if Ae =  Be in every proper Rp.

Proof: It can be easily shown that any ideal A equals

r \  [Aec: with respect to each proper Rp]. Then if Ae=  Be,

Aec =: Bec and the lemma follows.

Theorem 2.8

If R is an AZPI-ring, then A, B and C are ideals of R with 

A regular and AB —  AC only if B =  C.

Proof: For each proper prime P of R, AeBe =  AeCe and Ae is

regular, and since Rp is a dvr or an spr, this implies 
Be —  ce. Thus the theorem follows from lemma 2.4.
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In concluding this section, we summarize from theorems 2,2, 

2.3 and 2.4 the classification of the proper primes of an 

AZPI-ring.

Theorem 2.9

In an AZPI-ring, a proper prime P is either

(1) maximal and minimal in which case N(P) »  Pn and 

Rp is an spr,

(2) maximal and not minimal in which case N(P) is the
oo

only prime below P, N(P) =  Pn, and Rp is a dvr, or

(3) minimal and not maximal in which case
oo

P —  N(P) « N (M) »  Mn for M the maximal ideal

containing P, P is the only P-primary ideal of R and Rp is 

a field, the quotient field of Rj,j.



GENERALIZED PRUFER DOMAINS

In this section we will discuss a generalization of the 

concept of "Prufer domain" to rings with zero divisors. In 

particular, we will discuss rings with the property (*) 

that each proper quotient ring has a linearly ordered ideal 

system. Since a domain whose ideal system is linearly 

ordered is a valuation ring, we see that a domain with 

property (*) is, by theorem 1.2, a Prufer domain. We will 

first prove some properties of the quotient rings of rings 

with property (*) in order to see the extent to which these 

quotient rings actually generalize the concept of "valuation 

ring."

Let R be a ring whose ideal system is linearly ordered.

Then the nilpotent elements of R form a prime ideal P* and 

the zero divisors of R form a prime ideal P~.

Remark 3.1

Each ideal of R has prime radical.

Remark 3.2

Each finitely generated ideal of R is principal.

Remark 3.3

An ideal of R is regular if and only if it properly
21
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contains P"“.

Lemma 3.1

If x and y are non-zero elements of R such that xy ss 0 and

x is not in P*, then x is in P~ and y is in P*.

Proof: x is in P~ because it is a zero divisor. Then xy

is in P*, prime and x is not in P*, so y must be in P*.

Lemma 3.2

P* is either idempotent or nilpotent.

Proof: If (P*) ̂  is not P*, let p be in P* - (P*)^. Then
(p*)2 ̂  (p) since (p) is not in (P*)^; but p is nilpotent, 

hence P* is nilpotent.

Lemma 3.3

Each ideal of R is the union of a tower of principal ideals. 

Lemma 3.4

P* ~  P~ if and only if (0) is primary.

Proof: If P * —  P~, (0) is primary by lemma 3.1. Now

suppose (0) is primary. Let p be an element of P'". Then 

there is a non-zero element m of R such that pm =  0. But 

rad (0) —  P* and m^fc 0 implies p is in P*, i.e., P* —  P~.

We will now give an example of a ring whose ideal system is
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linearly ordered and in which P* ̂  P~.

Example:

Let K be the field of rational numbers and x, y, z 

indeterminants algebraically independent over K. Let I be 

the group of rational integers and define F:K [x,y, z ] - >

I £  I $  I by F(f) =  (r,s,t) where f =  ^  ^ a^ j^x^y^z^ 

and r x  min [isa^j^ ^  0]

s = min[j:a£jk +  0]

t =  min [ k : a ^ ^  0].

Then the extension of F to K(x,y,z) is a discrete rank 3

valuation. Let R be the valuation ring of F in K(x,y,z) 

and P ̂  P ' the two non-maximal proper primes of R. Then 

R/PP1 is the desired ring with P* =  P/PP1, P ~ s  P'/PP

Lemma 3.5

If t is in T - R, 1/t is in R.

Proof: Let t »  a/b with a, b in R. Then either (a) C. (b)

and t is in R or (b) CZ (a) an<  ̂ 1/t is in R. We need only 

note that in case (b) CZ (a)> a is regular since b is.

Lemma 3.6

R is integrally closed in its total quotient ring T.

Proof: Let t be in T and r,...,s in R such that
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tn +  rtn”^ . . . +■ s =  0 (I) . Let t a  a/b with a, b in R.

Then if t is not in R, 1/t =  b/a is in R and a is regular

by lemma 3.5. So we multiply the equation (I) by (l/t)n-  ̂

and we see that t is in R.

Now we will discuss the ring R with property (*).

Theorem 3.1

If R has property {*), then each R/P is a Prufer domain for 

P prime in R.

Proof: Since the operations of quotient ring and residue

class ring formation commute, [11;227], we see that any 

quotient ring of R/P, with respect to a proper prime, is a 

domain whose ideal system is linearly ordered; hence is a 

valuation ring. The theorem now follows from theorem 1.2.

Theorem 3.2

If R has property (*), R is integrally closed in its total 

quotient ring T.

Proof: Let t be an element of T, integral over R, t ̂  r/s,

with r, s in R. Let F be the natural map from R to Rp for 

a proper prime P of R. Then it is clear that F(s) is 

regular in Rp so that F(r)/F(s) is in the total quotient 

ring of Rp and is integral over Rp . Thus F(r)/F(s) is in
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Rp by lemma 3.6. Then there is an element m in R - P such 

that rm is in (s). Therefore the ideal (s) : (r), [11;147],

is in no proper prime of R, hence equals R and (r) is in 

(s), showing that t st r/s is in R.

Theorem 3.3

If R has property (*), any two primes of R are either 

relatively prime or one contains the other.

Proof: If two primes are not relatively prime, their sum

is contained in a maximal ideal of R, with respect to 

which the quotient ring of R has a linearly ordered ideal 

system. But the primes of R which are contained in this 

maximal ideal correspond to the primes of this quotient 

ring in a 1-1 order preserving fashion.

Theorem 3■4

If R has property (*) and A, B and C are ideals of R with A 

finitely generated and regular and AB *  AC, then B m  C .

Proof: With respect to any proper prime of R, we have Ae

is principal and regular, hence invertible, and AeBe=  AeCe 

so that Be —  Ce . Theorem 3.4 now follows from lemma 2.4.
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