Specimen collection: An essential tool

L. A. Rocha  
*California Academy of Sciences*

A. Aleixo  
*Museu Paraense Emilio Goeldi*

G. Allen  
*Western Australian Museum*

F. Almeda  
*California Academy of Sciences*

C. C. Baldwin  
*Smithsonian Institution*

*See next page for additional authors*

Follow this and additional works at: [https://repository.lsu.edu/biosci_pubs](https://repository.lsu.edu/biosci_pubs)

**Recommended Citation**

Authors

This letter to the editor is available at LSU Scholarly Repository: https://repository.lsu.edu/biosci_pubs/793
biodiversity is hidden deep in its habitat (see image)]. Moreover, identification is often not the most important reason to collect voucher specimens. Studies of morphological diversity and its evolution are impossible without whole specimens. Preserved specimens also provide verifiable data points for monitoring species health, distribution, and phenotypes through time. Both historical and new collections played a key role in understanding the spread of the chytrid fungus infection, one of the greatest current threats to amphibians (5). The decision to ban dichlorodiphenyltrichloroethane (DDT) and other environmental pollutants was the result of the discovery of thinning of bird eggshells collected over an extended period (6). One of the negative effects of climate change, declining body size in animals, was only discovered with morphological data from museum specimens (7). Furthermore, IUCN Red List criteria require specific and detailed information about life history and biology (such as longevity and growth rate), especially for widely distributed species; therefore, without specimens, the extinction risk of many species cannot be properly assessed (8). Most specimens were not collected with these objectives in mind, and this is a hallmark of biological collections: They are often used in ways that the original collector never imagined. With new technologies continuing to emerge (such as stable isotope analyses, massive parallel sequencing, and CT-scan tomography), scientific collections are becoming even more important for studies of ecology, evolution, and conservation (9).

The arguments of Minteer et al. erroneously portray the critical importance of scientific collecting in a negative light and inventories, and the identification of areas of endemism are just some of the basic information that can be obtained from specimens and collections-based research. Such knowledge, with its rich temporal and spatial dimensions, has proven fundamental in designing conservation areas and in making environmental impact assessments (11). These issues are particularly relevant in many developing nations, which ideally must seek a balance between the conservation of their natural (biological) resources and development. One example comes from the Bird’s Head Peninsula of New Guinea, Indonesia, where the discovery and description of small endemic species—undetectable without specimen collection—directly resulted in the creation of several new protected areas and increased support for marine parks (12).

With our ever-increasing footprint, humans now affect even the most remote corners of Earth. Because an estimated 86% of species on the planet remain unknown (13), our goal should be to document biodiversity as rigorously as possible through carefully planned collections so that it can be effectively preserved.
and understood. Specimens from such collections and their associated data are essential for making informed decisions about management and conservation now and in the future. As a community, we advocate the utmost responsibility and care while making scientific collections and in the future. As a community, we believe that responsibly collecting voucher specimens and associated data and openly sharing this knowledge (for example, through GBIF, iDigBio, and VertNet) are more necessary today than ever before.


REFERENCES

specimen collection: Plan for the future

WE WISH THAT B. A. Minteer et al.’s claim that field biologists routinely collect voucher specimens were true [“Avoiding (re)extinction,” Perspectives, 18 April, p. 260]. Any museum curator will tell you that it is a constant struggle to convince them to do so, despite countless publications rendered unreliable because it is impossible to verify species’ identities. The necessity of voucher specimens varies by taxon and region, but in general, it is good practice to deposit them and as much data as possible, including DNA and photos in life.

We certainly do not wish to see any species driven to extinction by overcollecting, but submit that this is rare and more associated with commercial or ardent, recreational overcollecting than sensible scientific vouchers (1, 2). If the kill of a single individual increases the extinction risk of a species, then it is well below viable population size and already among the “walking dead.”

Dawkins’ description of evolution as improbability on a colossal scale is nowhere more evident than in morphology. Whether or not a species survives, museum specimens represent a window on many of its most remarkable novelties. Molecular data, although helpful in identifications, is neither a panacea nor surrogate for museum specimens, especially when it comes to newly discovered species. Describing a new species without depositing a holotype when a specimen can be preserved borders on taxonomic malpractice. Even given good photographs and a tissue sample, there are reasons to collect one or more complete specimens. We do not know what morphological characters will prove important in future studies of species status, phylogenetic

1California Academy of Sciences, San Francisco, CA 94118, USA. 2Museum Paraense Emilio Goeldi, Belém, PA, 66040-100, Brazil. 3Western Australian Museum, Perth, WA, 6956, Australia. 4Smithsonian Institution, Washington, DC 20560, USA. 5Natural History Museum, London, SW7 5BD, UK. 6Field Museum of Natural History, Chicago, IL 60605, USA. 7Villanova University, Villanova, PA 19085, USA. 8University of Milano-Bicocca, Milan, 20126, Italy. 9University of Utah, Salt Lake City, UT 84101, USA. 10King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia. 11University of Costa Rica, San José, 11501-2060, Costa Rica. 12University of California, Berkeley, CA 94720–3161, USA. 13University of Kansas, Lawrence, KS 66045, USA. 14University of los Andes, Bogotá, 11136, Colombia. 15Old Dominion University, Norfolk, VA 23529, USA. 16Museu Nacional de História Natural e da Ciência, Lisboa, 7005-638, Portugal. 17Louisiana State University, Baton Rouge, LA 70803, USA. 18James Cook University, Townsville, 4811, Australia. 19University of Auckland, Auckland, 1142, New Zealand. 20NOAA Systematics Laboratory, Washington, DC 20013, USA. 21University of Chicago, Chicago, IL 60637, USA. 22American Museum of Natural History, New York, NY 10024, USA. 23Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil. 24Universidade Federal do Rio de Janeiro, Macaé, RJ, 27965-045, Brazil. 25University of California, Davis, CA 95616, USA. 26Conservation International, Dengpasar, Bali, 80235, Indonesia. 27University of Nevada, Reno, NV 89557–0314, USA. 28Natural History Museum of Denmark, Copenhagen, DK–2100, Denmark. 29Museu Nacional d’Histoire Naturelle, Paris, 75005, France. 30Addis Ababa University, Addis Ababa, Ethiopia. 31University of Sydney, Sydney, NSW, 2006, Australia. 32Museum Victoria, Melbourne, 3001, VIC, Australia. 33University of Colorado, Boulder, CO 80309–0334, USA. 34Harvard University, Cambridge, MA 02138, USA. 35National Museum of Marine Biology & Aquarium, Pingtung, 944, Taiwan. 36Institut Teknologi Bandung, Bandung, 41032, Indonesia. 37National University of Singapore, 117543, Singapore. 38Museum and Art Gallery of the Northern Territory, Darwin, 0800, NT, Australia. 39CSIRO Marine & Atmospheric Research, Hobart, TAS, 7000, Australia. 40Museum Victoria, Sydney, NSW, 2010, Australia. 41Smithsonian Tropical Research Institute, Balboa, 0483-0392, Panama. 42Cornell University, Ithaca, NY 14853, USA. 43Université Marien Ngouabi, Brazzaville, B.P. 69, Congo. 44National Museum of Nature and Science, Tsukuba, 305-0005, Japan. 45University of Wisconsin-Parkside, Kenosha, WI 53141–2000, USA. 46Cincinnati Museum Center, Cincinnati, OH 45203, USA. 47The Manitoba Museum, Winnipeg, MB, R3B 0N2, Canada. 48Australian National University, Canberra, ACT, 0200, Australia. 49University of Michigan, Ann Arbor, MI 48109–1079, USA. 50California State University, Fullerton, CA 92831, USA. 51The Ornithological Council, Chevy Chase, MD 20815, USA. 52University of Florida, Gainesville, FL 32611, USA. 53Universidad Central de Venezuela, Caracas, 1041, Venezuela. 54Pontificia Universidad Católica de Chile, Santiago 6513677, Chile. 55University of New Mexico, Albuquerque, NM 87131–0001, USA. 56Bermice P. Bishop Museum, Honolulu, HI 96817 USA. 57Museum of the Ryukyus, Nishihara, 903-0213, Japan. 58Museum für Naturkunde, Berlin, 10115, Germany. 59Naturschichtes Museum der Berggemeinde Bern, Bern, CH-3005, Switzerland. 60Long Island University, Brooklyn, NY 11201–8423, USA. 61Auckland Museum, Auckland, 1142, New Zealand. 62Centro de Ornitología y Biodiversidad, Lima, 33, Peru. 63Royal Belgian Institute of Natural Sciences, Brussels, 1000, Belgium. 64McGill University, Montreal, QC, H3X 3V9, Canada. 65University of Alaska Museum, Fairbanks, AK 99775, USA. 66Royal Ontario Museum, Toronto, ON, M5S 2C6, Canada.

*Corresponding author. E-mail: L.Rocha@calacademy.org

Published by AAAS

23 MAY 2014 • VOL 344 ISSUE 6186 815
relationships, or genetic or epigenetic variation. As taxonomists and ecologists, we do not want to know only that a species exists but to understand what makes it unique compared to related species. Given the importance of the phenotype-environment interface in natural selection, we potentially sacrifice the most important things to know about a species when we forego more than superficial evidence of anatomical details.

With millions of species threatened by extinction, it would be tragic were we left with no more than a few photographs and sequences as evidence they were once here. Given well-preserved specimens, we can continue to marvel at adaptations, discover models for biomimicry, refine theories of character transformations, and verify the state of internal or external structures discovered in related species. As the last generation with the opportunity to explore, discover, and document millions of species evolved over billions of years, we should not be so arrogant as to assume what science of the future may want or need.

**Frank T. Krell** and **Quentin D. Wheeler**

*Department of Zoology, Denver Museum of Nature & Science, Denver, CO 80205, USA.*  \(^*\)College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA.

*Corresponding author. E-mail: frank.krell@dmns.org

**REFERENCES**


**Response**

THE PURPOSE OF OUR Perspective was to raise awareness about an issue that will increase in prevalence as the global biodiversity crisis unfolds: Absent a reliable estimate of population size, it is prudent and ethical to collect a newly observed individual of a species so rare it was thought extinct [e.g., (1)]? We support the work of natural history museums, and nowhere in our discussion did we argue that responsible collecting should be halted. Specimen collections provide invaluable contributions to many disciplines beyond taxonomy [e.g., (2, 3)]; moreover, we continue to collect ourselves (J.P.C. and R.P.). We repeatedly emphasized that we were targeting the specific context of small and vulnerable populations only.

We would like to believe that we live in Rocha et al.’s world in which the responsible collector follows every regulation and ethical code (where these exist). Our own experience and research, however, paint a more complicated picture. A culture of responsible scientific practice is harder to establish than just following regulatory prescriptions and ethical injunctions (4). Rocha et al. also introduce a red herring by raising the distinction between individual- and population- or species-level concern in conservation, which we understand and have discussed elsewhere (5). It is obvious that our Perspective concerns survival of populations and species; the individual specimen becomes important in our argument because of the small size of populations, especially when (as in the case of rediscovered amphibian populations) such individuals are found coexisting with the lethal pathogen that likely greatly reduced their numbers (6).

Nowhere do we claim that scientific collection is a leading driver of extinction. We are aware of the major threats posed by habitat loss and fragmentation, commercial use, exotic species, toxins, infectious diseases, and climate change (7). Collectors may have taken the last Auks, but the species was pushed to the brink of extinction by centuries of human overexploitation.

Still, the point remains that without a reliable estimate of population size, collecting individuals from a small, isolated population can pose an extinction risk. We believe that it is important to highlight this risk, and to suggest how to mitigate the threat.

We are troubled by Krell and Wheeler’s argument, which seems to suggest that collecting in vulnerable populations is justified as a way to preserve the present for a future in which many species will be extinct. Even small populations seem eligible for collecting based on their claim that such species are already among the “walking dead.” If collecting a specimen increases extinction risk, however, then it is a threat to biodiversity and should be avoided. Krell and Wheeler object to the “arrogance” of assuming “what science of the future may want or need,” but we find more hubris in their suggestion that taxonomists and ecologists should be unconcerned about driving the final nail in a species’ coffin.

Cultural change in science can be difficult. Long-established techniques are questioned as alternatives arise. Specimen collection is no exception, especially in light of growing concerns about our entering a sixth mass extinction event (8), and we encourage more research into new ways to document Earth’s biodiversity.

A precautionary approach to scientific collection will help ensure that we do not put additional pressure on already vulnerable populations as we seek to identify organisms new to science, or to confirm a species’ welcome return from the dead.

*Ben A. Minter,* \(^*\)James P. Collins, \(^2\) Robert Puschendorf

---

**ERRATA**

**Editor’s note:** We are simplifying our procedure for making corrections to articles published in *Science*, while maintaining transparency for our readers. The full text and PDF files will be corrected online as soon as possible, with an explanation at the end of the full text and, for corrections involving data or metadata, in an accompanying online Erratum. A notification that an Erratum has been published online will appear in a subsequent print issue in this space.

**Erratum for the Research Article:** “Total Synthesis of a Functional Designer Eukaryotic Chromosome” by N. Annaluru et al., *Science* 344, 1254596 (2014). Published online 18 April; 10.1126/science.1254596

**Erratum for the Report:** “Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance” by L. A. Garibaldi et al., *Science* 344, 1255213 (2014). Published online 2 May; 10.1126/science.1255213

**Erratum for the News & Analysis:** “Designer Microbes Expand Life’s Genetic Alphabet” by R. F. Service, *Science* 344, 1255780 (2014). Published online 16 May; 10.1126/science.1255780


**Erratum for the Report:** “Mapping the Cellular Response to Small Molecules Using Chemogenomic Fitness Signatures” by A. Y. Lee et al., *Science* 344, 1255771 (2014). Published online 23 May; 10.1126/science.1255771
Specimen collection: An essential tool


Science, 344 (6186), • DOI: 10.1126/science.344.6186.814

View the article online
https://www.science.org/doi/10.1126/science.344.6186.814
Permissions
https://www.science.org/help/reprints-and-permissions