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Abstract

This thesis deals obtaining global a priori estimates for quasilinear elliptic equations and

sharp existence results for Quasilinear equations with gradient nonlinearity on the right.

The main results are contained in Chapters 3, 4, 5 and 6. In Chapters 3 and 4, we obtain

global unweighted a priori estimates for very weak solutions below the natural exponent and

weighted estimates at the natural exponent. The weights we consider are the well studied

Muckenhoupt weights. Using the results obtained in Chapter 4, we obtain sharp existence

result for quasilinear operators with gradient type nonlinearity on the right. We characterize

the function space which yields such sharp existence results. Finally in Chapter 6, we prove

existence of very weak solutions to quasilinear equations below the natural exponent with

measure data on the right.

v



Chapter 1
Introduction

This thesis deals with the regularity properties of solutions to nonlinear elliptic equations of

the type

− divA(x,∇u) = − div |f |p−2f

in a bounded domain Ω. The quasilinear operator A(x,∇u) (see Chapter 2 for the precise

structure) is modeled after the familiar p-Laplace equation given by

−∆pu := − div
(
|∇u|p−2∇u

)
:= −

n∑
i=1

∂

∂xi

[ n∑
j=1

(
∂u

∂xj

)2
] p−2

2
∂u

∂xi

 .
(1.1)

The kind of operators we consider and the results we prove can be considered as natural

analogue of the well developed Calderon Zygmund theory for the linear elliptic equations

modeled after the linear Laplace operator:

−∆u := −
n∑
i=1

∂2u

∂x2
i

.

We shall make precise all the definition and notations in Chapter 2. Before that, let us

collect some history of the problem in order to motivate the results in later chapters.

1.1 Motivation - The linear problem

We shall consider the simplest linear equation: the Poisson equation given by

−∆u = − div(f) in Rn (1.2)

for any f ∈ C∞c (Rn). We say u ∈ W 1,1(Rn) is a distributional solution to (1.2) if

ˆ
Rn
〈∇u,∇φ〉 dx =

ˆ
Rn
〈f ,∇φ〉 dx

1



for all φ ∈ C∞c (Rn). A classical result going back to the work of Calderon and Zygmund

asserts that

f ∈ Ls(Rn) =⇒ ∇u ∈ Ls(Rn) for any 1 < s <∞.

The above implication comes with the quantitative estimate

ˆ
Rn
|∇u|s dx ≤ C(n, s)

ˆ
Rn
|f |s dx. (1.3)

It is well known that (1.3) fails when s = 1 and s =∞.

The classical proof of (1.3) uses Fourier analysis and singular integral techniques and

proceeds as follows: looking at (1.2) in the Fourier space, we get

4π2|ζ|2û(ζ) = 2πi〈ζ, f̂(ζ)〉

where û(ζ) :=

ˆ
Rn
e−2πi〈ζ,x〉u(x) dx and 〈ζ, f̂(ζ)〉 := ζ1f̂1(ζ) + ζ2f̂2(ζ) + · · · + ζnf̂n(ζ). Using

the simple observation that ∂iu(x) = [−2πiζiû(ζ)]∨, we can write

∇u = (R⊗R)f (1.4)

where R⊗R is a matrix with the ijth entry Rij = Ri ◦Rj. Here Ri is the ith Riesz transform

defined by Ri(g)(x) =

(
− iζi
|ζ|
ĝ(ζ)

)∨
(x). In (1.4), (R⊗R)f is to be understood as the matrix

(R⊗R) acting on the vector field (f) by the usual matrix multiplication.

From the theory of Singular Integral operators, we know that

‖Ri‖Ls(Rn)→Ls(Rn) ≤ C(s) for any 1 < s <∞.

Note here that the constant depends only on s and is independent of n (see [4]). This

boundedness result applied to (1.4) easily implies the estimate (1.3).

The above boundedness result relied very heavily on the fact that the operator considered

in (1.2) was linear and we were studying the problem on the whole space Rn which enabled

the use of Fourier analysis techniques. From these observations, the following questions can

now be asked:

2



• What happens if the consider the problem − divA(x)∇u = − div f in Ω

u = 0 on ∂Ω

where Ω is a bounded domain in Rn. What regularity do we need to assume on the

coefficient matrix A(x) and the domain Ω?

• If we consider the p-Laplace equation − div |∇u|p−2∇u = − div |f |p−2f in Ω

u = 0 on ∂Ω

can one expect estimates of the form (1.3) to hold? What estimates hold true for

more general Quasilinear operators of the form A(x,∇u) modelled after the p-laplace

equation?

These questions will be looked at in detail in the rest of this thesis.

Before we proceed, we would like to state two examples that highlight some of the hidden

difficulties:

1.1.1 Bad Coefficients example

This example is appeared in [45]. In R2, the function u(x) =
x1√
|x|

solves the equation

−div(A(x)∇u) = 0, where

A(x) =
1

4|x|2

4x2
1 + x2

2 3x1x2

3x1x2 x2
1 + 4x2

2

 , x = (x1, x2).

It is easy to see that ∇u ∈ Lqloc for q < 4 but ∇u /∈ Lq(B1) for q ≥ 4. We see that A(x)

is bounded but highly oscillatory near the origin! Hence for obtaining estimates of the form

(1.3), we need assume certain regularity on the coefficients of the operator considered.

1.1.2 Bad Domain example

This example appeared in [29]. For π/2 < θ0 < π, consider the non convex domain in

R2 defined in polar coordinates by Ω = {(r, θ) : 0 ≤ r ≤ 1, −θ0 ≤ θ ≤ θ0}. Then for

3



λ =
π

2θ0

< 1, let u(r, θ) = rλ cos(λθ) and

v(r, θ) = u(r, θ)(1− r2),

Then it is easy to see that

∆v = div f in Ω (where f := ∇[−r2u(r, θ)]).

Near the origin, it is easy to observe that |∇v| ≈ |∇u| = λrλ−1.

Thus for any q > 4 we can find a θ0 such that |∇v| /∈ Lq(Ωθ0)

This shows that we need to assume some regularity on the boundary of the domain consid-

ered. For example, we cannot expect the estimate of the form (1.3) to hold on all Lipschitz

domains.

1.2 Iwaniec Conjectures

T. Iwaniec made the following far reaching conjectures regarding the p-Laplace operator.

These conjectures form the main motivation for much of our work in Chapters 3 and 4.

Consider the equation − div |∇u|p−2∇u = − div |f |p−2f in Ω

u = 0 on ∂Ω
(1.5)

4



for any f ∈ Ls(Ω) with s > max{1, p − 1}. We say that u ∈ W 1,s
0 (Ω) is a weak solution to

(1.5) if ˆ
Ω

|∇u|p−2〈∇u,∇φ〉 dx =

ˆ
Ω

|f |p−2〈f ,∇φ〉 dx

for all φ ∈ C∞c (Ω). In the case s ∈ (p− 1, p), we call such solutions as very weak solutions.

The following fundamental result is due to T.Iwaniec who established the foundations of

the non-linear Calderon Zygmund theory:

Theorem 1.1 ([26]). Let u ∈ W 1,p(Rn) be a weak solution to (1.5) in Rn. Then

f ∈ Ls(Rn,Rn) =⇒ ∇u ∈ Ls(Rn,Rn) for every s ≥ p.

The local version of this result is:

Theorem 1.2. Let u ∈ W 1,p(Ω) be a weak solution to (1.5) in bounded domain Ω. Then

f ∈ Lsloc(Ω,Rn) =⇒ ∇u ∈ Lsloc(Ω,Rn) for every s ≥ p.

Moreover, there exists a constant c = c(n, p, s) such that for every ball BR b Ω, there holds(
BR/2

|∇u|s dx

) 1
s

≤ c

(
BR

|∇u|p dx
) 1

p

+

(
BR

|f |s dx
) 1

s

See also [34, 35] for a slightly different form of the local gradient estimate above the natural

exponent.

Based on the above two theorems, T.Iwaniec made the following conjecture:

Conjecture 1.3 (T.Iwaniec). The results of Theorem 1.1 and 1.2 should hold for the full

range of the exponents s > max{p− 1, 1}.

The only progress for the case max{p−1, 1} < s < p came independently due to T.Iwaniec

and C.Sbordonne in [28] and J.Lewis in [37].

Theorem 1.4 ([28]). Let Ω be a ’regular’ domain. Then there exists an ε = ε(n,p) > 0 such

that for any s ∈ (p− ε, p+ ε) with p− ε > 1, and u ∈ W 1,s
0 (Ω) solving (1.5) with f ∈ Ls(Ω),

5



there holds: ˆ
Ω

|∇u|s dx ≤ C(n,p)

ˆ
Ω

|f |s dx.

See Chapter 3 for the definition of ’regular domain’. The result in [28] is global. The local

version was proved using very different techniques by J.Lewis in [37].

In the same spirit as the Conjecture 1.3, the following conjecture was also made by

T.Iwaniec:

Conjecture 1.5 (T. Iwaniec [28]). Every weak p-harmonic mapping u ∈ W 1,s
loc (Ω,Rn) with

max{p− 1, 1} < s < p solving

−∆pu = 0 in Ω

belongs to W 1,p
loc (Ω,R).

The only known progress in this direction is due to T. Iwaniec and C. Sbordonne in [28]

and independently by John Lewis [37] and the result states:

Theorem 1.6 ([28]). There exists an ε = ε(n,p) > 0 such that for any weakly p-harmonic

mapping u ∈ W 1,s
loc (Ω,R) with s ∈ (p− ε, p) with p− ε > 1 belongs to W 1,p

loc (Ω,R).

In this thesis, we study Conjecture 1.3 from the view of weighted estimates in which

we consider weights in the Muckenhoupt class Ap. One of the hallmarks of weighted norm

inequalities is the theory of extrapolation developed by Garcia-Cuerva and Rubio de Francia

(see [11, 19]).

We show the following scaled version of the extrapolation theorem of Garcia-Cuerva and

Rubio de Francia in Chapter 4:

Theorem 1.7. For a fixed p > 1, let f ∈ Lp(Ω) be any given vector field and let u ∈ W 1,p
0 (Ω)

be the unique solution to (1.5). Suppose we have

ˆ
Ω

|∇u|p v(x)dx ≤ C([v] p
p−1

)

ˆ
Ω

|f |pv(x) dx

6



holds for all weights v ∈ A p
p−1

, then for any max{p− 1, 1} < q <∞, there holds:
ˆ

Ω

|∇u|q w(x)dx ≤ C([w] q
p−1

)

ˆ
Ω

|f |qw(x) dx

for all weights w ∈ A q
p−1

.

The really nice thing about the above extrapolation theory is that it reduces the problem

of obtaining Lq bounds below the natural exponent p to that of obtaining weighted estimates

at the natural exponent. While this may appear to provide a simpler approach to Conjec-

ture 1.3, we must emphasis that the difficulty essentially remains the same. In view of the

extrapolation theorem, we make the following generalization of Conjecture 1.3 as follows:

Conjecture 1.8. For p > 1, let f ∈ Lp(Ω) be a given vector field and denote u ∈ W 1,p
0 (Ω) be

the unique solution solving (1.5). Then the following estimate holds for all weights v ∈ A p
p−1

:
ˆ

Ω

|∇u|p v(x)dx ≤ C([v] p
p−1

)

ˆ
Ω

|f |pv(x) dx

In Chapter 4, we are able to show the estimate
ˆ

Ω

|∇u|p v(x)dx ≤ C([v]1)

ˆ
Ω

|f |pv(x) dx (1.6)

holds for all v ∈ A1. Even though this result is far from being optimal, it nonetheless

constitutes an end point estimate to the results proved in [42, 43, 44].

Once we have estimate (1.6), in Chapter 5 we use that to study existence of solutions to

problems of the form:  −∆pu = |∇u|p + σ in Ω

u = 0 on ∂Ω
(1.7)

where σ is a distribution. This problem has been very well studied over the past several

decades (see [12, 42, 43] and the references therein).

In Chapter 3, we prove global estimates similar to those obtained in Theorem 1.4 and

1.6, but with quantifiable conditions on the regularity of the domain and for more general

Quasilinear operators satisfying certain natural growth conditions. In Chapter 4, we obtained

7



global weighted estimates analogous to those obtained in Chapter 3. In Chapter 5, we use

the results of the preceding chapters to prove some sharp existence results for quasilinear

equations of the form (1.7). In Chapter 6, we will show existence of very weak solutions to

(1.5) under some mild restrictions on the datum f .

8



Chapter 2
Preliminaries

We shall now state all the definitions and results that will be used in subsequent chapters.

A bounded open connected set Ω b Rn is called a domain and we denote the boundary of

the domain by ∂Ω.

For any function u : Ω 7→ R, we write

∇u :=

(
∂u

∂x1

,
∂u

∂x2

, . . .
∂u

∂xn

)
and |∇u| :=

[
n∑
i=1

(
∂u

∂xi

)2
]1/2

We shall use the standard notation 〈x, y〉 =
n∑
i=1

xiyi for any x, y ∈ Rn. We shall use the

symbol b to denote compactly contained.

We will write Br(x) to denote the Euclidean ball in Rn centered at x with radius r > 0,

and Br(x) to be its topological closure under the Euclidean norm.

Definition 2.1. Given any bounded domain Ω, we define the following compact sequence

of domains:

Ωl :=

{
x ∈ Ω, d(x, ∂Ω) >

1

l

}
for any l > 0

where d(x, ∂Ω) := inf
y∈∂Ω

d(x, y) for any x ∈ Ω.

Notation. Let E ⊂ Rn be any set and given any τ > 0, we denote

E + τ := {y ∈ Rn : y = x+ z withx ∈ E and z ∈ Bτ (0)} .

2.1 Assumptions

In this section, we shall collect some definitions and assumptions which will be used in later

Chapters.

2.1.1 Assumptions on the operator

The operator that will be considered is denoted by A(x, ζ) where x ∈ Ω and ζ ∈ Rn. This is

modelled after the familiar p-Laplace equation (1.1) and satisfies the following properties.
9



The non-linearityA : Rn×Rn → Rn is a Carathédory vector valued function, i.e.,A(x, ξ) is

measurable in x for every ξ and continuous in ξ for a.e. x. We always assume that A(x, 0) = 0

for a.e. x ∈ Rn. We also require that A satisfy the following monotonicity and Hölder type

conditions: for some 1 < p <∞ and γ ∈ (0, 1] there holds

〈A(x, ξ)−A(x, ζ), ξ − ζ〉 ≥ Λ0(|ξ|2 + |ζ|2)
p−2

2 |ξ − ζ|2 (2.1)

|A(x, ξ)−A(x, ζ)| ≤ Λ1|ξ − ζ|γ(|ξ|2 + |ζ|2)
p−1−γ

2 (2.2)

for every (ξ, ζ) ∈ Rn ×Rn \ {(0, 0)} and a.e. x ∈ Rn. Here Λ0 and Λ1 are positive constants.

Note that (2.2) and the assumption A(x, 0) = 0 for a.e. x ∈ Rn implies the following bound

|A(x, ξ)| ≤ Λ1|ξ|p−1. (2.3)

We shall introduce the following object which will be used to measure the oscillations of

the operator: for any ball B b Rn, we denote

AB(ξ) :=
B

A(x, ξ) dx =
1

|B|

ˆ
B

A(x, ξ) dx,

and define the following function that measures the oscillation of A(·, ξ) over B by

Υ(A, B)(x) := sup
ξ∈Rn\{0}

|A(x, ξ)−AB(ξ)|
|ξ|p−1

.

To prove the results in Chapter 4 and 5, we need to make further assumptions on the

operator as given below:

Definition 2.2. Given two positive numbers γ0 and R0, we say that A(x, ξ) satisfies a

(γ0, R0)-BMO condition with exponent τ > 0 if

[A]R0

τ := sup
y∈Rn, 0<r≤R0

( 
Br(y)

Υ(A, Br(y)))(x)τ dx

) 1
τ

≤ γ0.

In the linear case (i.e p = 2), where A(x, ξ) = A(x)ξ for an elliptic matrix A, it is easy to

see that

Υ(A, B)(x) ≤ |A(x)− AB|
10



holds for a.e. x ∈ Rn, and thus Definition 2.2 can be viewed as a natural extension of the

standard small BMO condition to the nonlinear setting. For general nonlinearities A(x, ξ)

of utmost linear growth, i.e., p = 2, the above (γ0, R0)-BMO condition was introduced in

[8], whereas such a condition for general p > 1 appears first in [49]. We remark that the

(γ0, R0)-BMO condition allows the nonlinearity A(x, ξ) to have certain discontinuity in x,

and it can be used as an appropriate substitute for the Sarason VMO condition (vanishing

mean oscillation [53, 7, 8, 20, 27, 47, 54, 59]).

2.1.2 Assumptions on the Domain

We state several assumptions on the Domains that will be needed in later chapters.

Definition 2.3. Given γ2 ∈ (0, 1) and R0 > 0, we say that Ω is a (γ2, R0)-Reifenberg flat

domain if for every x0 ∈ ∂Ω and every r ∈ (0, R0], there exists a system of coordinates

{y1, y2, . . . , yn}, which may depend on r and x0, so that in this coordinate system x0 = 0

and

Br(0) ∩ {yn > γ2r} ⊂ Br(0) ∩ Ω ⊂ Br(0) ∩ {yn > −γ2r}.

For more on Reifenberg flat domains and their many applications, we refer to the papers

[22, 30, 31, 32, 52, 58]. We mention here that Reifenberg flat domains can be very rough.

They include Lipschitz domains with sufficiently small Lipschitz constants (see [58]) and

even some domains with fractal boundaries. In particular, all C1 domains are included in

this condition.

Remark 2.4. If Ω is a (γ2, R0)-Reifenberg flat domain with γ2 < 1, then for any point x ∈

∂Ω and 0 < ρ < R0(1− γ2), there exists a coordinate system {z1, z2, · · · , zn} with the origin

0 at some point in the interior of Ω such that in this coordinate system x = (0, . . . , 0,−γ′2ρ)

and

B+
ρ (0) ⊂ Ω ∩Bρ(0) ⊂ Bρ(0) ∩ {(z1, z2, . . . , zn) : zn > −2ργ′2},

11



where γ′2 = γ2/(1− γ2) and B+
ρ (0) := Bρ(0) ∩ {(z1, . . . , zn) : zn > 0}. Thus, if γ2 < 1/2 then

B+
ρ (0) ⊂ Ω ∩Bρ(0) ⊂ Bρ(0) ∩ {(z1, z2, . . . , zn) : zn > −4ργ2}.

Another type of domain that we need in Chapter 3 are bounded domains Ω whose com-

plement Ωc := Rn \ Ω is uniformly thick with respect to the p-capacity. For details about

capacity, see Section 2.4.

Definition 2.5 (Uniform p-thickness). Let Ω b Rn be a bounded domain. We say that the

complement Ωc := Rn \ Ω is uniformly p-thick for some 1 < p ≤ n with constants r0, b > 0,

if the inequality

capp(Br(x) ∩ Ωc, B2r(x)) ≥ b capp(Br(x), B2r(x))

holds for any x ∈ ∂Ω and r ∈ (0, r0].

It is well-known that the class of domains with uniform p-thick complements is very large.

They include all domains with Lipschitz boundaries and even those that satisfy Definition

2.3.

2.2 Function Spaces

We shall collect several function spaces that will be used in this thesis.

Definition 2.6. For any domain Ω, by C∞c (Ω), we mean all infinitely smooth functions

φ : Ω → R such that the set {x ∈ Ω : φ(x) 6= 0} is compactly contained inside Ω. The

overline denotes the topological closure of the set.

Definition 2.7 (Lebesgue Space). For any domain Ω and any 1 ≤ q <∞, we denote Lq(Ω)

to be the set of all measurable functions u : Ω→ R such that

‖u‖q,Ω :=

(ˆ
Ω

|u(x)|q dx
)1/q

<∞.

By Lqloc(Ω), we mean ‖u‖q,Ω′ <∞ for all Ω′ b Ω compactly contained.

In the case q =∞, we have

L∞(Ω) :=

{
u : Ω→ R : ‖u‖∞,Ω := ess sup

x∈Ω
|u(x)| <∞

}
.

12



Henceforth, for f ∈ L1(B) we write

fB =
B

f(x)dx =
1

|B|

ˆ
B

f(x)dx.

Definition 2.8. We say u ∈ C0,α(Ω) for any real 0 < α ≤ 1 if

sup
x,y∈Ω, x6=y

|u(x)− u(y)|
|x− y|α

<∞.

We denote Ck.α(Ω) for any integer k ≥ 0 to be the function space where all the derivatives

upto order k exist and are continuous and Dk(u) ∈ C0,α(Ω). Here Dk(u) denotes derivatives

of order k.

Even though we never explicitly make use of C0,α(Ω) spaces in this thesis, several important

estimates implicitly make use of C0,α(Ω) regularity (see [5, 38]).

We now recall the definition of Lorentz space which is an interpolation space that lies

inbetween the Lebesgue spaces.

Definition 2.9. The Lorentz space L(s, t)(Ω), with 0 < s <∞ and 0 < t <∞ is the set of

measurable functions g on Ω such that

‖g‖L(s,t)(Ω) :=

[
s

ˆ ∞
0

αt|{x ∈ Ω : |g(x)| > α}|
t
s
dα

α

] 1
t

< +∞

For t =∞, the space L(s,∞)(Ω) is set to be the Marcinkiewicz space with quasinorm

‖g‖L(s,∞)(Ω) := sup
α>0

α|{x ∈ Ω : |g(x)| > α}|
1
s .

It is easy to see that when t = s the Lorentz space L(s, s)(Ω) is nothing but the Lebesgue

space Ls(Ω). See [19] for more about Lorentz Spaces.

Let us now define the Lorentz-Morrey spaces which are not interpolation spaces.

Definition 2.10. A function g ∈ L(s, t)(Ω), 0 < s <∞, 0 < t ≤ ∞ is said to belong to the

Lorentz-Morrey function space Lθ(s, t)(Ω) for some 0 < θ ≤ n, if

‖g‖Lθ(s,t)(Ω) := sup
0<r≤diam(Ω),

z∈Ω

r
θ−n
s ‖g‖L(s,t)(Br(z)∩Ω) < +∞.
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When θ = n, we have Lθ(s, t)(Ω) = L(s, t)(Ω). Moreover, when s = t the space Lθ(s, t)(Ω)

becomes the usual Morrey space based on Ls space.

Remark 2.11. A basic use of Lorentz spaces is to improve the classical Sobolev Embedding

Theorem. For example, if f ∈ W 1,q for some q ∈ (1, n) then

f ∈ L(nq/(n− q), q)

(see, e.g., [62]), which is better than the classical result

f ∈ Lnq/(n−q) = L(nq/(n− q), nq/(n− q))

since L(s, t1) ⊂ L(s, t2) whenever t1 ≤ t2. Another use of Lorentz spaces is to capture

logarithmic singularities. For example, for any β > 0 we have

1

|x|n/s(− log |x|)β
∈ L(s, t)(B1(0)) if and only if t >

1

β
.

Lorentz spaces have also been used successfully in improving regularity criteria for the full

3D Navier-Stokes system of equations (see, e.g., [55]).

On the other hand, Lorentz-Morrey spaces are neither rearrangement invariant spaces, nor

interpolation spaces.

We shall now collect some basic properties of Sobolev spaces.

Definition 2.12 (Weak Derivative). Let α be a multi-index, i.e α = (α1, . . . , αn) ∈ Zn and

suppose that u, v ∈ L1
loc(Ω) satisfying

ˆ
Ω

u(x)∂αφ(x) dx = (−1)|α|
ˆ

Ω

v(x)φ(x) dx ∀φ ∈ C∞c (Ω),

then we say that v is the weak (distributional) derivative of u and denote ∂αu to be the

function v. Here we have set |α| := α1 + . . .+ αn.

Using this, we can now define Sobolev Spaces as follows:
14



Definition 2.13. A function u is said to belong to the Sobolev Space W 1,p(Ω) for any

1 ≤ p ≤ ∞ if u ∈ Lp(Ω) and the weak derivative of u denoted by ∇u exists and also belongs

to Lp(Ω). On this space, we put the norm:

‖u‖W 1,p(Ω) := ‖u‖p,Ω + ‖∇u‖p,Ω.

With this norm, the space W 1,p(Ω) becomes a Banach Space.

Remark 2.14. We denote W 1,p
0 (Ω) ⊂ W 1,p(Ω) to be the closure of C∞c (Ω) under the norm

‖·‖W 1,p(Ω). If the boundary ∂Ω of the domain satisfies some very mild regularity condition (see

[13]), then one can actually show that there is a bounded linear operator T : W 1,p(Ω, Hn)→

Lp(∂Ω, Hn−1) and W 1,p
0 (Ω) can be identified as the set given by T−1(0). Here Hn is the n-

dimensional measure and Hn−1 is the n− 1 dimensional surface measure and 0 denotes the

zero function in Lp(∂Ω, Hn−1).

Definition 2.15. Let f ∈ (Ls(Ω))n be a given vector field for some 1 < s < ∞. We say

µ = div(f) is a Radon measure if it satisfies

ˆ
Ω

ϕ(x) dµ(x) = −
ˆ

Ω

〈f ,∇ϕ〉 dx for all ϕ ∈ C∞c (Ω).

It follows from standard measure theory that for any open set O ⊆ Ω, we have

|µ|(O) = sup
ϕ

{ˆ
Ω

〈f ,∇ϕ〉 dx : ϕ ∈ C1
c (O), |ϕ| ≤ 1

}
,

and for any compact set K b Ω, we have

|µ|(K) = inf
O
{|µ|(O) : O open andO c K} .

Let us define a new function space as follows: (See Section 2.4 for more about Capacities)

Definition 2.16. Define the following seminorm

‖µ‖pM1,p := sup
KbRn

|µ|(K ∩ Ω)

cap1,p(K ∩ Ω)

15



and now we define the function space

M1,p(Ω) = {µ : |µ|(Ω) < +∞ and ‖µ‖M1,p < +∞}

where

cap1,p(K) = inf{‖∇φ‖p : φ ≥ 1 on K, , 0 ≤ φ ≤ 1, φ ∈ C∞c (Rn)}.

Remark 2.17. We have the following characterization of the space M1,p(Ω). The function

space M1,p(Ω) is the set of all φ ∈ W 1,p
0 (Ω) for which there exists a constant C > 0 (inde-

pendent of φ) such that the following holds:
ˆ
K∩Ω

|∇φ|p dx ≤ C cap1,p(K ∩ Ω).

We now recall an elementary characterization for functions in Lorentz spaces, which can

easily be proved using methods in standard measure theory.

Lemma 2.18. Assume that g ≥ 0 is a measurable function in a bounded subset Ω ⊂ Rn. Let

θ > 0, Λ > 1 be constants. Then for 0 < s, t <∞, we have

g ∈ L(s, t)(Ω)⇐⇒ S :=
∑
k≥1

Λtk|{x ∈ Ω : g(x) > θΛk}|
t
s < +∞

and moreover the estimate

C−1 S ≤ ‖g‖tL(s,t)(Ω) ≤ C (|Ω|
t
s + S),

holds where C > 0 is a constant depending only on θ, Λ, and t. Analogously, for 0 < s <∞

and t =∞ we have

C−1T ≤ ‖g‖L(s,∞)(Ω) ≤ C (|Ω|
1
s + T ),

where T is the quantity

T := sup
k≥1

Λk|{x ∈ Ω : |g(x)| > θΛk}|
1
s .

Analogous to the unweighted case, we have the following more general weighted analogue

of Lemma 2.18 whose proof follows in essentially the same way.
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Lemma 2.19. Assume that g ≥ 0 is a measurable function in a bounded subset Ω ⊂ Rn. Let

θ > 0, Λ > 1 be constants, and let w be a weight in Rn, i.e. w ≥ 0 and w ∈ L1
loc(Rn). Then

for 0 < q, t <∞, we have

g ∈ Lw(q, t)(Ω)⇐⇒ S :=
∑
k≥1

Λtkw({x ∈ Ω : g(x) > θΛk})
t
q < +∞.

Moreover, there exists a positive constant C = C(θ,Λ,t) > 0 such that

C−1 S ≤ ‖g‖tLw(q, t)(Ω) ≤ C (w(Ω)
t
q + S).

Analogously, for 0 < q <∞ and t =∞ we have

C−1T ≤ ‖g‖Lw(q,∞)(Ω) ≤ C (w(Ω)
1
q + T ),

where T is the quantity

T := sup
k≥1

Λkw({x ∈ Ω : |g(x)| > θΛk})
1
q .

2.3 Muckenhoupt Weights

Now we shall collect some properties of weights. In this thesis, we shall only be concerned

with Muckenhoupt weights.

Definition 2.20 (Muckenhoupt Weight). By an As weight with 1 < s < ∞, we mean a

nonnegative function w ∈ L1
loc(Rn) such that the quantity

[w]s := sup
B

(
B

w(x) dx

)(
B

w(x)
−1
s−1 dx

)s−1

< +∞,

where the supremum is taken over all balls B ⊂ Rn.

For s = 1, we say that w is an A1 weight if

[w]1 := sup
B

(
B

w(x) dx

)∥∥w−1
∥∥
L∞(B)

< +∞.

The quantity [w]s for 1 ≤ s < ∞, will be referred to as the As constant of w. The As

classes are increasing, i.e., As1 ⊂ As2 whenever 1 ≤ s1 < s2 <∞. A broader class of weights
17



is the A∞ weights which, by definition, is given by

A∞ =
⋃

1≤s<∞

As.

The following well known characterization of A∞ weights will be needed later (see for example

[19, Theorem 9.3.3]).

Lemma 2.21. A weight w ∈ A∞ if and only if there are constants Ξ0,Ξ1 > 0 such that for

every ball B ⊂ Rn and every measurable subsets E of B, there holds

w(E) ≤ Ξ0

(
|E|
|B|

)Ξ1

w(B). (2.4)

Moreover, if w is an As weight with [w]s ≤ ω then the constants Ξ0 and Ξ1 above can be

chosen so that max{Ξ0, 1/Ξ1} ≤ c(ω, n).

In (2.4), the notation w(E) stands for the integral
ˆ
E

w(x) dx, and likewise for w(B).

Henceforth, we will refer to (Ξ0,Ξ1) as a pair of A∞ constants of w provided they satisfy

(2.4).

Definition 2.22. Let f be locally measurable function and we define Maximal function as:

M(f)(x) = sup
B3x

1

|B|

ˆ
B

|f | dx.

An important characterization of Muckenhoupt weights is given by the following theorem:

Theorem 2.23. Let w ∈ As(Rn) for some 1 < s <∞. Then there is a constant C(n,s) such

that

‖M‖Ls(w)→Ls(w) ≤ C(n,s)[w]
1
s−1

As
.

The Muckenhoupt weights also satisfy a very important Reverse Hölder type inequality

given in the following Lemma:

Lemma 2.24. Let w ∈ As for some 1 ≤ s < ∞. Then there exists constants C and γ̃ > 0

that depend only on n, s, [w]As such that for every cube Q, we have(
1

|Q|

ˆ
Q

w(t)1+γ̃ dt

) 1
1+γ̃

≤ C

|Q|

ˆ
Q

w(t) dt
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An important consequence of the Reverse Hölder property is the following Corollary:

Corollary 2.25. For any 1 < s < ∞ and every w ∈ As, there is an ε > 0 depending only

on [w]As , s, n such that w ∈ A s
1+ε

.

This corollary will be important for us in Chapter 4.

2.4 Capacity

We shall use the following definition for Capacity:

Definition 2.26. Let E b Rn be compactly contained set, then the p-capacity of E relative

to an open set O is given by:

capp(E,O) := inf

{ˆ
O
|∇φ|p dx : φ ∈ C∞c (O), φ ≥ χE, 0 ≤ φ ≤ 1

}
.

The set O is called the Reference Domain.

The following are some properties of the p-capacity:

Theorem 2.27 (see [1] Theorem 2.3). Let O be a reference domain, 1 < p ≤ n. Then the

following holds:

• If E ⊂ O, then capp(E) = inf{capp(U) : U ⊂ O open and E ⊂ U}.

• If E1 ⊃ E2 ⊃ · · · are compact subsets on O, then

capp

(
∞⋂
j=1

Ej

)
= lim

j→∞
capp(Ej).

• If E b O compact, then

capp(E) = inf

{ˆ
O
|∇φ|p dx : φ ∈ C∞c (O), u ≥ χE

}

• If E1 ⊂ E2 ⊂ · · · ⊂ O are arbitrary sets, then

capp

(
∞⋃
j=1

Ej

)
= lim

j→∞
capp(Ej).
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• We have subadditive property capp

(
∞⋃
j=1

Ej

)
≤

∞∑
j=1

capp(Ej) whenever E1, E2, · · · are

arbitrary subsets of O.

We have the following comparison result relating p-capacity and the Lebesgue measure:

Remark 2.28 ([1]). The following properties of the p-capacity holds:

• If 1 < p < n, then capp(Br(x)) = nω(n)

(
n− p
p− 1

)p−1

rn−p where ω(n) is the Lebesgue

measure of the unit ball in Rn.

• capn(Br(x), B1(x)) = nω(n) log1−n(1/r) if r < 1.

The role played by quasicontinuity in the theory of Sobolev spaces is analogous to that

played by Lusin’s theorem in real analysis. We shall now state the definition of quasiconti-

nuity:

Definition 2.29. A function u is called p-quasicontinuouson E if for each ε > 0, there exists

an open set V with capp(V ) < ε such that u restricted to E\V is finite and continuous.

We say that a property holds p-quasi everywhere if it holds on all sets having nonzero

p-capacity.

We have the following important theorem due to Mazya-Verbitsky:

Theorem 2.30 ([41]). If γ ∈ M+(Rn) (positive measure) with 1 < p < n/p, then the

following are equivalent

• for all compact sets E, we have

γ(E) ≤ Q cap1,p(E,Rn).

•
ˆ
E

(I1γ)p
′
(x) dx ≤ R cap1,p(E,Rn).

Here I1(γ) :=

ˆ
Rn

dγ(y)

|x− y|n−1
for any x ∈ Rn. An important fact that we will also use is

the following proposition which states:
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Proposition 2.31 (Proposition 11.3.1 [40]). For 1 < p < n, we have that Q ≈ R where Q

and R are as in Theorem 2.30. The proportionality constant is independent of γ ∈M+(Rn).

We also have the following important theorem:

Theorem 2.32 (Trace Inequality). Any measure µ ∈ M1,p(Ω) satisfies the following trace

inequality: ˆ
Ω

|φ|p dµ ≤ Ctr(‖µ‖M1,p )

ˆ
Ω

|∇φ|p dx ∀ φ ∈ C∞c (Ω).

The converse implication is true if we either consider the whole space Rn or if we assume µ

is compactly supported inside Ω.

Combining Proposition 2.31 and Theorem 2.32, we get the following important remark:

Remark 2.33. The constant in Theorem 2.32, Ctr(‖µ‖M1,p ) satisfies the property that given

any ε > 0, we can find a corresponding δ > 0 such that if

‖µ‖M1,p < δ, then Ctr(‖µ‖M1,p ) < ε.

The following very important Lemma gives the connection between weighted estimates

and spaces defined in Definition 2.16 (i.e satisfying Theorem 2.32).

Lemma 2.34 ([41]). Let 1 < p <∞ and suppose that a function f̃ ∈ Lp
′

loc(Ω) satisfies

ˆ
K

|f̃ |p′ dx ≤ S0 cap1,p(K) (2.5)

and for all weights w ∈ A1, also satisfies

ˆ
Rn
|g|pw dx ≤ K̃(n, p, [w]1)

ˆ
Rn
|f̃ |p′w dx, (2.6)

then we must have that ˆ
K

|g|p dx ≤ C(p, n, K̃)S0 cap1,p(K)

for all compact sets K b Ω. Note here that S0 = ‖|f |q‖M1,p .

21



2.5 Krylov Sofanov Decomposition

The following technical lemma is a version of the Calderón- Zygmund-Krylov-Safonov de-

composition that has been used in [10, 48]. It allows one to work with balls instead of cubes.

A proof of this lemma, which uses Lebesgue Differentiation Theorem and the standard Vitali

covering lemma, can be found in [7] with obvious modifications to fit the setting here.

The following Calderón-Zygmund decomposition type lemma will be very useful in the

later chapters. In the unweighted case various versions of this lemma have been obtained

(see, e.g., [10, 60, 7]).

Lemma 2.35. Assume that E ⊂ Rn is a measurable set for which there exist c1, r1 > 0 such

that

|Bt(x) ∩ E| ≥ c1 |Bt(x)|

holds for all x ∈ E and 0 < t ≤ r1. Fix 0 < r ≤ r1 and let C ⊂ D ⊂ E be measurable sets

for which there exists 0 < ε < 1 such that

• |C| < ε rn|B1|

• for all x ∈ E and ρ ∈ (0, r], if |C ∩Bρ(x)| ≥ ε |Bρ(x)|, then Bρ(x) ∩ E ⊂ D.

Then we have the estimate

|C| ≤ (c1)−1ε |D|.

Analogous weighted version is stated as follows (see [42] for the proof):

Lemma 2.36. Let Ω be a (γ, R0)-Reifenberg flat domain with γ < 1/8, and let w be an A∞

weight. Suppose that the sequence of balls {Br(yi)}Li=1 with centers yi ∈ Ω and a common

radius r ≤ R0/4 covers Ω. Let C ⊂ D ⊂ Ω be measurable sets for which there exists 0 < ε < 1

such that

1. w(C) < εw(Br(yi)) for all i = 1, . . . , L, and
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2. for all x ∈ Ω and ρ ∈ (0, 2r],

w(C ∩Bρ(x)) ≥ ε w(Bρ(x)) =⇒ Bρ(x) ∩ Ω ⊂ D.

Then we have the estimate

w(C) ≤ B εw(D)

for a constant B depending only on n and the A∞ constants of w.

2.6 Some Convergence Results

In this section, we shall collect a few convergence results which will be useful in the rest of

this thesis.

Lemma 2.37 (Stability). Let {fn} ∈ Ls(Ω) be a sequence of functions for some 1 < s <∞

such that

fn → g a.e. in Ω and fn ⇀ h weakly in Ls(Ω)

then we have g = h a.e in Ω.

Theorem 2.38 (Vitali). Assume µ(X) < ∞ and |hn|s is uniformly integrable, i.e for any

ε > 0, there is a corresponding δ > 0 such that

sup
n

ˆ
E

|hn|s dµ < ε, whenever µ(E) < δ;

and hn → h µ-a.e in X and
ˆ
X

|hn|s < +∞ uniformly, then we must necessarily have that

h ∈ Ls(X) and hn → h strongly in Ls(X).

The following elementary result will be repeatedly used:

Proposition 2.39. Suppose that hn ⇀ h weakly in Lp and also suppose that
ˆ

Ω

|hn|p dx <

+∞ uniformly independent of n. Given any sequence gn → g strongly in Lp
′
, then we have

that

lim
n→∞

ˆ
Ω

hngn dx =

ˆ
Ω

hg dx.

23



The following theorem was proved in [6] and this plays a very important role in Chapter

5 to prove existence of solutions.

Theorem 2.40 ([6]). Let A(x,∇u) be a nonlinearity which satisfies (2.1) and (2.2) with

γ = 1 and consider the equation − divA(x,∇wk) = hk +mk in Ω

w = 0 on ∂Ω

in D′(Ω) and suppose

• wk ∈ W 1,p
0 (Ω) and wk ⇀ u weakly in W 1,p

0 (Ω),

• hk ∈ W−1,p′(Ω) and hk → h in W−1,p′(Ω),

• mk ∈ W−1,p′(Ω) and ‖mk‖W−1,p′ (Ω) ≤ C uniformly bounded independent of k,

• |
ˆ
K

mkφ dx| ≤ CK‖φ‖L∞(Ω) for all φ ∈ D(Ω) with spt(φ) ⊂ K.

• mk ⇀ m weakly in L1(Ω).

Then the following conclusions hold:

• ∇wk → ∇w in Lq(Ω) for any q < p,

• ∇wk′ → ∇w a.e upto a subsequence and

• w solves  − divA(x,∇w) = h+m in Ω

w = 0 on ∂Ω

in the distributional sense.

The above theorem shows strong convergence of weak solutions for all q < p. If we had

strong convergence of the gradients for q = p, the existence theory would be vastly simplified.

All the hard work needed to show existence in Chapters 5 and 6 is to show strong convergence

of gradients at q = p.
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Chapter 3
Global Lorentz and Lorentz-Morrey estimates
below the natural exponent

In this Chapter, we are mainly interested in studying the following equation: divA(x,∇u) = div |f |p−2f in Ω,

u = 0 on ∂Ω
(3.1)

For a fixed max{1, p − 1} < s < ∞, we say u ∈ W 1,s
0 (Ω) is a solution of (3.1), if the

following holds: ˆ
Ω

〈A(x,∇u),∇φ〉 dx =

ˆ
Ω

〈f ,∇φ〉 dx

for all φ ∈ W
1, s
s−p+1

0 . When s < p, such solutions are called very weak solutions.

We shall now state all the assumptions that we need for this chapter:

Hypothesis 3.1 (Assumption on A(x, ζ)). We will assume the nonlinearity A(x, ζ) satisfies

(2.1) and (2.2) for some γ ∈ (0, 1].

Hypothesis 3.2 (Assumption on Ω). We will assume that Ω is a bounded domain such

that its complement denoted by Ωc is uniformly p-thick in the sense of Definition 2.5 with

constants r0, b > 0..

We are now ready to state the main results that will proved in this chapter.

3.1 Main Results

Theorem 3.3. Let A satisfy all the conditions in Hypothesis 3.1 , and let Ω satisfy all the

conditions in Hypothesis 3.2. Then there exists a small δ = δ(n,p,Λ0,Λ1,γ,b) > 0 such that for

any very weak solution u ∈ W 1,p−2δ
0 (Ω) to the boundary value problem (3.1), the following

This chapter previously appeared in [2]. It is reprinted by permission of Springer (see Page 108 )
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estimate holds:

‖∇u‖Lθ(q, t)(Ω) ≤ C(n,p,t,Λ0,Λ1,γ,b,diam(Ω)/r0) ‖f‖Lθ(q, t)(Ω) (3.2)

for all q ∈ [p− δ, p+ δ], 0 < t ≤ ∞, and θ ∈ [p− 2δ, n].

In the simplest case where θ = n and t = q, Theorem 3.3 yields the following basic

Calderón-Zygmund type estimate for solutions of (3.1):

‖∇u‖Lq(Ω) ≤ C ‖f‖Lq(Ω) (3.3)

for all q ∈ [p− δ, p+ δ], provided Ω satisfies Hypothesis 3.2. We observe that inequality (3.3)

has been obtained in [28] under stronger conditions on A and Ω. Namely, on the one hand,

a Lipschitz type condition, i.e., γ = 1 in (2.2), was assumed in [28]. On the other hand, the

domain Ω considered [28] was assumed to be regular in the sense that the Calderón-Zygmund

type bound

‖∇v‖Lr(Ω) ≤ C ‖f‖Lr(Ω) (3.4)

holds for all r ∈ (1,∞) and all solutions to the linear equation −∆v = −div f in Ω,

v = 0 on ∂Ω.
(3.5)

As demonstrated by a counterexample in Subsection 1.1.2 (see also [42] ), estimate (3.4),

say for large r, generally fails for solutions of (3.5) even for (non-convex) Lipschitz domains.

Thus the result of [28] concerning the bound (3.3) does not cover all Lipschitz domains. In

this respect, the bound (3.3) is new even for linear equations, where the principal operator

is replaced by just the standard Laplacian .

Another new aspect is the following boundary higher integrability result for very weak

solutions to the associated homogeneous equations.

Theorem 3.4. Let A satisfy Hypothesis 3.1, and let Ω satisfy all the conditions in Hypothesis

3.2. Then there exists a positive number δ = δ(n,p,Λ0,Λ1,b) such that the following holds: for
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any x0 ∈ ∂Ω and R ∈ (0, r0/2), if w ∈ W 1,p−δ(Ω ∩ B2R(x0)) is a very weak solution to the

Dirichlet problem  divA(x,∇w) = 0 in Ω ∩B2R(x0),

w = 0 on ∂Ω ∩B2R(x0),
(3.6)

then we have w ∈ W 1,p+δ(Ω ∩BR(x0)).

A quantitative statement of Theorem 3.4 can be found in Theorem 3.21 below. We notice

that, whereas interior higher integrability of very weak solutions to the equation divA(x,∇w) =

0 is well-known (see [28, 37]), the boundary higher integrability result has been obtained

only for finite energy solutions, i.e. solutions which are a priori assumed to be in w ∈

W 1,p(Ω∩B2R(x0)) in the paper [33, 46]. The fact that |∇w| is allowed to be in Lp−δ to begin

with plays a crucial role in our proof of Theorem 3.3.

Remark 3.5. The Hölder type condition (2.2) with γ ∈ (0, 1] is not needed in Theorem 3.4,

while this condition is assumed in Theorem 3.3. As a matter of fact, the proof of Theorem

3.3 requires (2.2) only through the use of Corollaries 3.10 and 3.18. Thus by Remark 3.19

below, making use of only (2.1), (2.3) and the p-thickness condition as in Theorem 3.3, we

still obtain inequality (3.2) with a constant C = C(n,p,q,t,Λ0,Λ1,b,diam(Ω)/r0) for any finite energy

solution u ∈ W 1,p
0 (Ω) provided q ∈ (p, p+ δ].

3.2 Local interior estimates

In this section, we obtain certain local interior estimates for very weak solutions of (3.1).

These include the important comparison estimates below the natural exponent p. We shall

make use of the nonlinear Hodge decomposition of [28].

Theorem 3.6 (Nonlinear Hodge Decomposition [28]). Let s > 1, ε ∈ (−1, s − 1), and

w ∈ W 1,s
0 (B) where B ⊂ Rn is a ball. Then there exist φ ∈ W 1, s

1+ε

0 (B) and a divergence free

vector field H ∈ L
s

1+ε (B,Rn) such that

|∇w|ε∇w = ∇φ+H.
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Moreover, the following estimate holds:

‖H‖
L

s
1+ε (B)

≤ C(s,n) |ε| ‖∇w‖1+ε
Ls(B).

Using the above Hodge decomposition, the authors of [28] obtained gradient Lq regularity

below the natural exponent for very weak solutions to certain quasilinear elliptic equations.

Theorem 3.7 ([28]). Suppose that A satisfies Hypothesis 3.1. Then there exists a constant

δ̃1 = δ̃1(n,p,Λ0,Λ1,γ) with 0 < δ̃1 < min{1, p− 1} sufficiently small such that the following holds

for any δ ∈ (0, δ̃1). Let B be a ball and let the vector fields h̃, f̃ ∈ Lp−δ(B,Rn): Then for any

very weak solution w ∈ W 1,p−δ
0 (B) to the equation

divA(x, h̃ +∇w) = div |f̃ |p−2f̃ in B,

there holds
ˆ
B

|∇w(x)|p−δ dx ≤ C(n,p,Λ0,Λ1,γ)

ˆ
B

(
|h̃(x)|p−δ + |f̃(x)|p−δ

)
dx. (3.7)

It is worth mentioning that inequality (3.7) was obtained in [28, Theorem 5.1] under a

Lipschitz type condition on A(x, ·), i.e., (2.2) was assumed to hold with γ = 1. We observe

that the proof of [28, Theorem 5.1] can easily be modified to obtain (3.7) under the weaker

Hölder type condition (2.2) with any γ ∈ (0, 1)( see also the proof of Theorem 3.17 below.)

We next state a well-known interior higher integrability result that was originally obtained

in [28] and [37] (see also [46]).

Theorem 3.8 ([28, 37]). Suppose that A satisfies Hypothesis 3.1, then there exists a constant

δ̃2 = δ̃2(n,p,Λ0,Λ1) ∈ (0, 1/2) such that for any very weak solution w ∈ W 1,p−δ̃2
loc (Ω̃) to the

equation

divA(x,∇w) = 0 in an open set Ω̃

belongs to W 1,p+δ̃2
loc (Ω̃). Moreover, the inequality(
Br/2(x)

|∇w(x)|p+δ̃2 dx

) 1
p+δ̃2

≤ C(n,p,Λ0,Λ1)

(
Br(x)

|∇w(x)|p−δ̃2 dx
) 1

p−δ̃2
(3.8)
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holds for any ball Br(x) ⊂ Ω̃.

Remark 3.9. We notice that Theorem 3.8 was obtained in [28] under a homogeneity condi-

tion on A(x, ·), i.e., A(x, λξ) = |λ|p−2λA(x, ξ) for all x, ξ ∈ Rn and λ ∈ R. This condition

has been removed in [16]. Moreover, the proof of Theorem 3.8 in [28] uses inequality (3.7)

and thus requires the Hölder type condition (2.2). As a matter of fact, following the method

of [37], one can prove interior higher integrability under only conditions (2.1) and (2.3). For

details see, e.g., [46, Theorem 9.4].

A consequence of Theorems 3.7 and 3.8 is the following important existence result.

Corollary 3.10 ([28]). Under Hypothesis 3.1, let δ̃1 and δ̃2 are as in Theorems 3.7 and

3.8, respectively and let B ⊂ Rn be a ball. For any function w0 ∈ W 1,p−δ(B), with δ ∈

(0,min{δ̃1, δ̃2}), there exists a very weak solution w ∈ w0 + W 1,p−δ(B) to the equation

divA(x,∇w) = 0 such that
ˆ
B

|∇w(x)|p−δ dx ≤ C(n,p,Λ0,Λ1,γ)

ˆ
B

|∇w0(x)|p−δ dx.

We shall need to prove versions of Theorems 3.7 and Corollary 3.10 for domains satisfying

Hypothesis 3.2. These new results will be obtained later in Theorem 3.17 and Corollary 3.18.

A version of Theorem 3.8 upto the boundary of a domain whose complement is uniformly

p-thick will also be obtained in Theorem 3.21 below.

Next, for each ball B2R = B2R(x0) b Ω and for any δ ∈ (0,min{δ̃1, δ̃2}) with δ̃1 and δ̃2 as

in Theorems 3.7 and 3.8, respectively, we define w ∈ u+W 1,p−δ
0 (B2R) as a very weak solution

to the Dirichlet problem  div A(x,∇w) = 0 in B2R,

w = u on ∂B2R.
(3.9)

The existence of w is ensured by Corollary 3.10. We mention that the uniqueness of w is still

unknown. Moreover, by Theorem 3.8 we have that w ∈ W 1,p
loc (B2R). Thus it follows from the

standard interior Hölder continuity of solutions that we have the following decay estimates.
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Lemma 3.11 (Theorem 7.7 in [18]). Let w be as in (3.9). Then there exists a constant

β0 = β0(n,p,Λ0,Λ1) ∈ (0, 1/2] such that(
Bρ(z)

|w − wBρ(z)|p dx

) 1
p

≤ C
(ρ
r

)β0
(

Br(z)

|w − wBr(z)|p dx
) 1

p

for any z ∈ B2R(x0) with Bρ(z) ⊂ Br(z) b B2R(x0). Moreover, there holds(
Bρ(z)

|∇w|p dx

) 1
p

≤ C
(ρ
r

)β0−1
(

Br(z)

|∇w|p dx
) 1

p

(3.10)

for any z ∈ B2R(x0) such that Bρ(z) ⊂ Br(z) b B2R(x0).

Using the higher integrability result of Theorem 3.8, inequality (3.10) can be further ame-

liorated as in the following lemma. We notice that this kind of result can be proved by means

of a covering/interpolation argument as demonstrated in [18, Remark 6.12].

Lemma 3.12. Let w be as in (3.9). There exists a β0 = β0(n,p,Λ0,Λ1) ∈ (0, 1/2] such that for

any t ∈ (0, p] there holds(
Bρ(z)

|∇w|t dx

) 1
t

≤ C(n,p,Λ0,Λ1,t)

(ρ
r

)β0−1
(

Br(z)

|∇w|t dx
) 1

t

for any z ∈ B2R(x0) such that Bρ(z) ⊂ Br(z) b B2R(x0).

We shall now prove the following comparison estimate with exponents below the natural

exponent.

Lemma 3.13. Under Hypothesis 3.1, let δ ∈ (0,min{δ̃1, δ̃2}), where δ̃1 and δ̃2 are as in

Theorems 3.7 and 3.8, respectively. With f ∈ Lp−δ(Ω), for any u ∈ W 1,p−δ
0 (Ω) solving (3.1)

and any w ∈ u+W 1,p−δ
0 (B2R) solving (3.9), we have the following:

B2R

|∇u−∇w|p−δ dx > δ
p−δ
p−1

B2R

|∇u|p−δ dx+
B2R

|f |p−δ dx

if p ≥ 2 and

B2R

|∇u−∇w|p−δ dx > δp−δ

B2R

|∇u|p−δ dx +

(
B2R

|f |p−δ dx
)p−1(

B2R

|∇u|p−δ dx
)2−p

if 1 < p < 2. Here we assume B2R b Ω.
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Proof. Let δ be as in the hypothesis. Applying Theorem 3.6 with s = p− δ and ε = −δ, we

have

|∇u−∇w|−δ(∇w −∇u) = ∇φ+H

in B2R. Here φ ∈ W
1, p−δ

1−δ
0 (B2R) and H is a divergence free vector field with

‖H‖
L
p−δ
1−δ (B2R)

> δ ‖∇u−∇w‖1−δ
Lp−δ(B2R) . (3.11)

Using φ as a test function in (3.1) and (3.9), we have

I :=
B2R

〈A(x,∇u)−A(x,∇w),∇w −∇u〉|∇w −∇u|−δ dx,

= I1 + I2 + I3,

(3.12)

where we have set

I1 :=
B2R

〈A(x,∇u)−A(x,∇w),H〉 dx,

I2 :=
B2R

|f |p−2〈f ,∇w −∇u〉|∇w −∇u|−δ dx,

I3 := −
B2R

|f |p−2〈f ,H〉 dx.

Applying the monotonicity condition (2.1), we have

I ?
B2R

(|∇u|2 + |∇w|2)
p−2

2 |∇u−∇w|2−δ dx.

Thus when p ≥ 2 we can bound I from below using the triangle inequality

I ?
B2R

|∇u−∇w|p−δ dx. (3.13)

For 1 < p < 2, we have by Hölder’s inequality with exponents
2− δ
p− δ

and
2− δ
2− p

, and

Corollary 3.10 that

B2R

|∇u−∇w|p−δ dx =
B2R

(|∇u|2 + |∇w|2)
(p−δ)(p−2)

(2−δ)2 +
(δ−p)(p−2)

(2−δ)2 |∇u−∇w|p−δ dx,

>
(

B2R

(|∇u|2 + |∇w|2)
p−2

2 |∇u−∇w|2−δ dx
) p−δ

2−δ

×

×
(

B2R

|∇u|p−δ dx
) 2−p

2−δ

.
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This gives, when 1 < p < 2, that

B2R

|∇u−∇w|p−δ dx > I
p−δ
2−δ

(
B2R

|∇u|p−δ dx
) 2−p

2−δ

. (3.14)

We shall estimate I1 from above by making use of Hölder’s inequality along with (2.3), (3.11),

and Corollary 3.10 to obtain

|I1| ≤ Λ1
B2R

(|∇u|p−1 + |∇w|p−1)|H| dx,

> δ

(
B2R

|∇u−∇w|p−δ dx
) 1−δ

p−δ
(

B2R

|∇u|p−δ dx
) p−1

p−δ

.

(3.15)

We estimate I2 from above by using Hölder’s inequality to obtain

|I2| ≤
(

B2R

|f |p−δ dx
) p−1

p−δ
(

B2R

|∇u−∇w|p−δ dx
) 1−δ

p−δ

. (3.16)

Finally, for I3, we combine Hölder’s inequality with (3.11) and obtain

|I3| ≤
B2R

|f |p−1|H| dx,

> δ

(
B2R

|∇u−∇w|p−δ dx
) 1−δ

p−δ
(

B2R

|f |p−δ dx
) p−1

p−δ

.

(3.17)

At this point, combining estimates (3.15), (3.16), (3.17) with (3.12) and (3.13) we get the

desired estimate when p ≥ 2:

B2R

|∇u−∇w|p−δ dx > δ
p−δ
p−1

B2R

|∇u|p−δ dx+
B2R

|f |p−δ dx.

Likewise, for 1 < p < 2, combining the estimates (3.15), (3.16), (3.17) with (3.12) and (3.14),

we have

B2R

|∇u−∇w|p−δ dx >

{
δ

(
B2R

|∇u−∇w|p−δ dx
) 1−δ

p−δ
(

B2R

|∇u|p−δ dx
) p−1

p−δ

+

(
B2R

|f |p−δ dx
) p−1

p−δ
(

B2R

|∇u−∇w|p−δ dx
) 1−δ

p−δ

+ δ

(
B2R

|∇u−∇w|p−δ dx
) 1−δ

p−δ
(

B2R

|f |p−δ dx
) p−1

p−δ
} p−δ

2−δ

×

×
(

B2R

|∇u|p−δ dx
) 2−p

2−δ

.
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Simplifying the above inequality, we get the desired estimate for the case 1 < p < 2:

B2R

|∇u−∇w|p−δ dx > δp−δ

B2R

|∇u|p−δ dx+

(
B2R

|f |p−δ dx
)p−1(

B2R

|∇u|p−δ dx
)2−p

.

This completes the proof of Lemma 3.13.

3.3 Local boundary estimates

We now extend the results of the previous section upto the boundary of a domain satisfying

Hypothesis 3.2. While the approach of [28] via nonlinear Hodge decomposition could be used

upto the boundary of the domain, it requires that the boundary be “sufficiently regular”. This

regularity assumption is unfortunately not easy to quantify. To overcome the roughness of

the domain boundary, we shall employ the Lipschitz truncation method introduced in [37].

Here some of the ideas of [61] and the pointwise Hardy inequality obtained in [21] will be

useful for our purpose. On the other hand, it should be noted that the approach of this

section could be modified to obtain, e.g., the local interior comparison estimate (Lemma

3.13) that was previously derived by means of the nonlinear Hodge decomposition.

Beside the standard boundedness property of the Maximal function M on Ls spaces,

we also use the following property. Given a non-zero function f ∈ L1
loc(Rn) and a number

β ∈ (0, 1), there holdsM(f)β ∈ A1 with [M(f)β]A1 ≤ C(n, β). Moreover, if β is away from

1, say β ≤ 0.9, then [M(f)β]A1 ≤ C(n) independent of β (see, e.g., [57] p. 229).

Lemma 3.14. Let Ω̃ is a bounded domain whose complement is uniformly p-thick with

constants r0 and b > 0. There exists a δ0 = δ0(n,p,b) ∈ (0, 1/2) such that the following holds

for any δ ∈ (0, δ0/2). Let v ∈ W 1,p−δ
0 (Ω̃), v 6≡ 0, and extend v by zero outside Ω̃. Define

g(x) = max

{
M(|∇v|q)1/q(x),

|v(x)|
d(x, ∂Ω̃)

}
,

where q ∈ (p − δ0, p − 2δ] and d(x, ∂Ω̃) is the distance of x from ∂Ω̃. Then we have g '

M(|∇v|q)1/q a.e. in Rn and

ˆ
Ω̃

gp−δ dx >
ˆ

Ω̃

|∇v|p−δ dx. (3.18)
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Moreover, the function g−δ ∈ Ap/q with [g−δ]Ap/q ≤ C(n,p,b).

Proof. As Ω̃c is uniformly p-thick, it is also uniformly p0-thick for some 1 < p0 < p with

p0 = p0(n,p,b) (see [36]). Moreover, there exists a constant δ0 = δ0(n,p,b) ∈ (0, 1/2) with

p − δ0 ≥ p0 such that for q ∈ (p − δ0, p − 2δ], where δ ∈ (0, δ0/2), the pointwise Hardy

inequality
|v(x)|
d(x, ∂Ω̃)

>M(|∇v|q)1/q(x)

holds for a.e. x ∈ Ω̃ (see [21]). It follows that g(x) 'M(|∇v|q)1/q(x) for a.e. x ∈ Rn. Thus by

the boundedness of the Hardy-Littlewood maximal functionM we obtain inequality (3.18).

Moreover, for any ball B ⊂ Rn we have

B

g−δ dx

(
B

g
δq
p−q dx

) p−q
q

>
B

M(|∇v|q)−δ/q dx
(

B

M(|∇v|q)
δ
p−q dx

) p−q
q

>
{

inf
y∈B
M(|∇v|q)(y)

}−δ/q {
inf
y∈B
M(|∇v|q)(y)

}δ/q
≤ C.

Here we used that the functionM(|∇v|q)
δ
p−q is an A1 weight since

δ

p− q
≤ 1/2 < 1 (see [57]

p. 229).

We now present an extension lemma which can be found in [61].

Lemma 3.15. Let v ∈ W 1,s
0 (Ω̃), s ≥ 1, where Ω̃ is a bounded domain and let λ > 0. Extend

v by zero outside Ω̃ and set

Fλ(v, Ω̃) =
{
x ∈ Ω̃ :M(|∇v|s)1/s(x) ≤ λ, |v(x)| ≤ λd(x, ∂Ω̃)

}
, (3.19)

where d(x, ∂Ω̃) is the distance of x from ∂Ω̃. Then there exists a cλ-Lipschitz function vλ

defined on Rn with c = c(n) ≥ 1 and the following properties:

• vλ(x) = v(x) and ∇vλ(x) = ∇v(x) for a.e. x ∈ Fλ;
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• vλ(x) = 0 for every x ∈ Ω̃c; and

• |∇vλ(x)| ≤ c(n)λ for a.e. x ∈ Rn.

Proof. Given the hypothesis of the lemma, there exists a set N ⊂ Rn with |N | = 0 such that

|v(x)− v(y)| ≤ c |x− y|[M(|∇v|s)1/s(x) +M(|∇v|s)1/s(y)] (3.20)

holds for every x, y ∈ Rn \N . The proof of inequality (3.20) is due to L. I. Hedberg which

can be found in [24]. It is then easy to show that v|(Fλ\N)∪Ω̃c
is a cλ-Lipschitz continuous

function for some c(n) ≥ 1. Indeed, in the case when x, y ∈ Fλ \N , then by using (3.19) in

(3.20), we see that

|v(x)− v(y)| ≤ c |x− y|[M(|∇v|q)1/q(x) +M(|∇v|q)1/q(y)]

≤ 2c λ|x− y|.

On the other hand, if x ∈ Fλ \N but y ∈ Ω̃c, by making use of (3.19), we observe that

|v(x)− v(y)| = |v(x)| ≤ λd(x, ∂Ω̃) ≤ λ|x− y|.

We can now extend v|Fλ\N)∪Ω̃c
to a Lipschitz continuous function vλ on the whole Rn with

the same Lipschitz constant by the classical Kirszbraun-McShane extension theorem (see,

e.g., [14, p. 80]). This extension satisfies all the properties highlighted in this lemma.

We next state a generalized Sobolev-Poincaré’s inequality which was originally obtained

by V. Maz’ya [39, Sec. 10.1.2]. See also [33, Sec. 3.1] and [1, Corollary 8.2.7].

Theorem 3.16. Let B be a ball and φ ∈ W 1,s(B) be s-quasicontinuous (see Definition 2.29)

with s > 1 and let κ = n/(n − s) if 1 < s < n and κ = 2 if s = n. Then there exists a

constant c(n,s) > 0 such that(
B

|φ|κs dx
) 1

κs

≤ c(n,s)

(
1

caps(N(φ), 2B)

ˆ
B

|∇φ|s dx
) 1

s

,

where N(φ) = {x ∈ B : φ(x) = 0}.
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The following estimate with exponents below the natural one has been known only for

regular domains (see [28]). Here, for the first time, it is obtained for domains with p-thick

complements. We state the below theorem in a slightly more general form.

Theorem 3.17. Suppose that A satisfies Hypothesis 3.1 and Ω̃ satisfy Hypothesis 3.2, then

there exists a constant δ1 = δ1(n,p,b,Λ0,Λ1,γ) ∈ (0, δ0/2], with δ0 as in Lemma 3.14, such that

the following holds for any δ ∈ (0, δ1): Given any vector fields h, f ∈ Lp−δ(Ω̃) and any very

weak solution w ∈ W 1,p−δ
0 (Ω̃) to equation

divA(x,h +∇w) = div |f |p−2f , (3.21)

there holds ˆ
Ω̃

|∇w|p−δ dx ≤ C(n,p,b,Λ0,Λ1,γ)

ˆ
Ω̃

(
|h(x)|p−δ + |f(x)|p−δ

)
dx. (3.22)

Proof. As Ω̃c is uniformly p-thick, it is also uniformly p0-thick for some 1 < p0 < p. Let

δ0 ∈ (0, 1/2), with p − δ0 ≥ p0, be as in Lemma 3.14. Let δ ∈ (0, δ0/2) and q be such that

p− δ0 < q ≤ p− 2δ < p− δ. Defining

g(x) := max

{
M(|∇w|q)1/q(x),

|w(x)|
d(x, ∂Ω̃)

}
,

then it follows from Lemma 3.14 that
ˆ

Ω̃

g(x)p−δ dx >
ˆ

Ω̃

|∇w|p−δ dx. (3.23)

We now apply Lemma 3.15 with s = q and v = w, to get a global cλ-Lipschitz function vλ

such that vλ ∈ W
1, p−δ

1−δ
0 (Ω̃). Using vλ as a test function in (3.21) together with (2.3) we have

ˆ
Ω̃∩Fλ
〈A(x,∇w),∇vλ〉 dx−

ˆ
Ω̃∩Fλ

|f |p−2〈f ,∇vλ〉 dx

−
ˆ

Ω̃∩Fλ
〈A(x,∇w)−A(x,h +∇w),∇vλ〉 dx

= −
ˆ

Ω̃∩F cλ

〈A(x,h +∇w),∇vλ〉 dx+

ˆ
Ω̃∩F cλ

|f |p−2〈f ,∇vλ〉 dx

> λ

ˆ
Ω̃∩F cλ

|h +∇w|p−1 dx+ λ

ˆ
Ω̃∩F cλ

|f |p−1 dx,

(3.24)
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where Fλ := Fλ(w, Ω̃) = {x ∈ Ω̃ : g(x) ≤ λ}. Multiplying equation (3.24) by λ−(1+δ) and

integrating from 0 to ∞ with respect to λ, we get

I1 − I2 − I3 :=

ˆ ∞
0

λ−(1+δ)

ˆ
Ω̃∩Fλ
〈A(x,∇w),∇vλ〉 dx dλ

−
ˆ ∞

0

λ−(1+δ)

ˆ
Ω̃∩Fλ

|f |p−2〈f ,∇vλ〉 dx dλ

−
ˆ ∞

0

λ−(1+δ)

ˆ
Ω̃∩Fλ
〈A(x,∇w)−A(x,h +∇w),∇vλ〉 dx dλ

>
ˆ ∞

0

λ−δ
ˆ

Ω̃∩F cλ

(
|h +∇w|p−1 + |f |p−1

)
dx dλ =: I4.

We now continue with the following estimates for Ij, j = 1, 2, 3, 4.

Estimate for I1 from below: Note that we have ∇vλ = ∇w a.e. on Fλ. Thus by changing the

order of integration and using (2.1), we get

I1 =

ˆ
Ω̃

ˆ ∞
g(x)

λ−(1+δ)〈A(x,∇w),∇w〉 dλ dx

=
1

δ

ˆ
Ω̃

g(x)−δ〈A(x,∇w),∇w〉 dx

?
1

δ

ˆ
Ω̃

g(x)−δ|∇w|p dx.

(3.25)

By Hölder’s inequality, we have

ˆ
Ω2ρ

|∇w|p−δ dx >

(ˆ
Ω2ρ

|∇w|pg(x)−δ dx

) p−δ
p
(ˆ

Ω2ρ

g(x)p−δ dx

) δ
p

,

and then by making use of (3.23), we obtain the estimate

ˆ
Ω2ρ

|∇w|p−δ dx >
ˆ

Ω2ρ

|∇w|pg(x)−δ dx. (3.26)

Now we combine (3.25) with (3.26) and get

I1 ?
1

δ

ˆ
Ω̃

|∇w|p−δ dx. (3.27)
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Estimate for I2 from above: Again by changing the order of integration and making use of

Young’s inequality, we get

I2 =

ˆ
Ω̃

ˆ ∞
g(x)

λ−(1+δ)|f |p−2〈f ,∇w〉 dλ dx

=
1

δ

ˆ
Ω̃

g(x)−δ|f |p−2〈f ,∇w〉 dx

≤ 1

δ

ˆ
Ω̃

|f |p−1 |∇w|1−δ dx

≤
c(ε)

δ

ˆ
Ω̃

|f |p−δ dx+
ε

δ

ˆ
Ω̃

|∇w|p−δ dx

for any ε > 0. Here we used that g−δ ≤ |∇w|−δ a.e. in Ω̃ in the first inequality.

Estimate for I3 from above: Likewise, changing the order of integration and making use of

Young’s inequality along with the Hölder type condition (2.2), we get

I3 =

ˆ
Ω̃

ˆ ∞
g(x)

λ−(1+δ)〈A(x,∇w)−A(x,h +∇w),∇w〉 dλ dx

>
1

δ

ˆ
Ω̃

g(x)−δ|h|γ (|h|p−1−γ + |∇w|p−1−γ) |∇w| dx

>
c(ε)

δ

ˆ
Ω̃

|h|p−δ dx+
ε

δ

ˆ
Ω̃

|∇w|p−δ dx

for any ε > 0.

Estimate for I4 from above: Changing the order of integration and applying Young’s inequal-

ity along with estimate (3.23), we get

I4 =

ˆ
Ω̃

ˆ g(x)

0

λ−δ(|h +∇w|p−1 + |f |p−1) dλ dx

=
1

1− δ

ˆ
Ω̃

g(x)1−δ(|h +∇w|p−1 + |f |p−1) dx

>
ˆ

Ω̃

|∇w|p−δ dx+

ˆ
Ω̃

(|h|p−δ + |f |p−δ) dx.

(3.28)

Combining estimates (3.27)-(3.28) and recalling that I1 − I2 − I3 > I4, we have
ˆ

Ω̃

|∇w|p−δdx ≤ c1(c(ε) + δ)

ˆ
Ω̃

|f |p−δdx+ c1(2ε+ δ)

ˆ
Ω̃

|∇w|p−δ dx+

+ c1(c(ε) + δ)

ˆ
Ω̃

|h|p−δ dx

for a constant c1 independent of ε and δ.
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We now choose ε = 1/(4c1) and δ1 = min{1/(4c1), δ0/2} in the last inequality to obtain

estimate (3.22) for any δ ∈ (0, δ1).

Once we have the a priori estimate (3.22) and the interior higher integrability result from

Theorem 3.8, the following existence result follows by using techniques employed in the proof

of [28, Theorem 2].

Corollary 3.18. Suppose that A satisfies Hypothesis 3.1 and let Ω̃ satisfy Hypothesis 3.2

and δ ∈ (0,min{δ1, δ̃2}), with δ1 as in Theorem 3.17 and δ̃2 as in Theorem 3.8. Then given

any w0 ∈ W 1,p−δ(Ω̃), there exists a very weak solution w ∈ w0 + W 1,p−δ
0 (Ω̃) to the equation

divA(x,∇w) = 0 such that
ˆ

Ω̃

|∇w|p−δdx ≤ C(n,p,b,Λ0,Λ1,γ)

ˆ
Ω̃

|∇w0|p−δdx.

Remark 3.19. It is well-known that in the case δ = 0, Corollary 3.18 and Corollary 3.10

hold as long as A satisfies (2.1) and (2.3), i.e., the condition (2.2) holding with γ ∈ (0, 1) is

not needed. Moreover, the so-obtained solution w is unique in this case, whereas uniqueness

remains unknown in the case δ > 0. We also notice that Corollary 3.18 has been known

earlier but only for more regular domains (see [28]).

In what follows, we shall only consider Ω to be a bounded domain satisfying Hypothesis 3.2.

Fix x0 ∈ ∂Ω and choose R > 0 such that 2R ≤ r0 and denote Ω2R = Ω2R(x0) = Ω∩B2R(x0).

With some δ ∈ (0,min{1, p− 1}), we consider the following Dirichlet problem: divA(x,∇w) = 0 in Ω2R,

w = 0 on ∂Ω ∩B2R(x0).

Definition 3.20. A function w ∈ W 1, p−δ(Ω2R) is called a very weak solution to (3.6) if

its zero extension from Ω2R(x0) to B2R(x0) belongs to W 1, p−δ(B2R(x0)) and for all ϕ ∈

W
1, p−δ

1−δ
0 (Ω2R), we have ˆ

Ω2R

A(x,∇w) · ∇ϕdx = 0.
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In the following theorem we obtain a higher integrability result for equation (3.6), which

gives a boundary analogue of Theorem 3.8, and hence Theorem 3.4. We shall follow the

Lipschitz truncation method of [37] that was used to treat the interior case; see also [46,

Theorem 9.4]. Here to deal with the boundary case we use an idea from [61].

Theorem 3.21. Suppose that A satisfies Hypothesis 3.1 and Ω satisfy Hypothesis 3.2, then

there exists a constant δ2 = δ2(n,p,b,Λ0,Λ1) > 0 sufficiently small such that if w ∈ W 1,p−δ2(Ω2R)

is a very weak solution to equation (3.6), then w ∈ W 1,p+δ2(ΩR). Moreover, if we extend w

by zero from Ω2R to B2R, then the estimate(
1
2
B

|∇w|p+δ2 dx
) 1

p+δ2

≤ C(n,p,b,Λ0,Λ1)

(
7B

|∇w|p−δ2 dx
) 1

p−δ2

holds for all balls B such that 7B ⊂ B2R.

Proof. Let z ∈ ∂Ω ∩ B2R(x0) be a boundary point and let ρ > 0 be such that B2ρ(z) ⊂

B2R(x0). We now set Ω2ρ = Ω2ρ(z) = Ω ∩B2ρ(z) and observe that Ω2ρ ⊂ Ω2R(x0).

As Ωc is uniformly p-thick, it is also uniformly p0-thick for some 1 < p0 < p. The same is

also true for Ωc
2ρ. Let δ0 ∈ (0, 1/2), with p− δ0 ≥ p0, be as in Lemma 3.14 with Ω̃ = Ω2ρ. Let

δ ∈ (0, δ0/2) and q be such that p− δ0 < q ≤ p− 2δ < p− δ.

Suppose now that w ∈ W 1,p−δ(Ω2R(x0)) is a solution of (3.6). Extending w to B2ρ = B2ρ(z)

by zero we have w ∈ W 1,p−δ(B2ρ). Let φ ∈ C∞c (B2ρ) with 0 ≤ φ ≤ 1, φ ≡ 1 on Bρ and

|∇φ| ≤ 4/ρ. Define w̄ = φw and g to be the function

g(x) = max

{
M(|∇w̄|q)1/q(x),

|w̄(x)|
d(x, ∂Ω2ρ)

}
.

Then it follows from Lemma 3.14 that

ˆ
Ω2ρ

gp−δ dx >
ˆ

Ω2ρ

|∇w̄|p−δ dx. (3.29)

We now apply Lemma 3.15 with s = q, Ω̃ = Ω2ρ and v = w̄, to get a global cλ-Lipschitz

function vλ such that vλ ∈ W
1, p−δ

1−δ
0 (Ω2ρ). Using vλ as a test function in (3.6) together with
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(2.3) we have ˆ
Ω2ρ∩Fλ

〈A(x,∇w),∇vλ〉 dx = −
ˆ

Ω2ρ∩F cλ

〈A(x,∇w),∇vλ〉 dx

> λ

ˆ
Ω2ρ∩F cλ

|∇w|p−1 dx,

(3.30)

where Fλ := Fλ(w̄,Ω2ρ) = {x ∈ Ω2ρ : g(x) ≤ λ} . Multiply equation (3.30) by λ−(1+δ) and

integrate from 0 to ∞ with respect to λ, we then get

I1 : =

ˆ ∞
0

λ−(1+δ)

ˆ
Ω2ρ∩Fλ

〈A(x,∇w),∇vλ〉 dx dλ

>
ˆ ∞

0

λ−δ
ˆ

Ω2ρ∩F cλ

|∇w|p−1 dx dλ

=

ˆ
Ω2ρ

ˆ g(x)

0

λ−δdλ |∇w|p−1 dλ dx

=
1

1− δ

ˆ
Ω2ρ

g(x)1−δ|∇w|p−1 dx

where the first equality follows by Fubini’s Theorem. Thus after applying Young’s inequality

and using (3.29), we obtain

I1 >
ˆ

Ω2ρ

|∇w|p−δ dx+

ˆ
Ω2ρ

|∇w̄|p−δ dx

>
ˆ

Ω2ρ

(|∇w|p−δ + |w/ρ|p−δ) dx

>
ˆ
B2ρ

|∇w|p−δ dx.

(3.31)

Here the last inequality follows from Theorem 3.16 since w = 0 on Ωc ∩B2ρ.

Our next goal is to estimate I1 from below. To this end, changing the order of integration

and noting that ∇vλ = ∇w̄ a.e. on Fλ, we can write

I1 =

ˆ
Ω2ρ

ˆ ∞
g(x)

λ−(1+δ)dλ 〈A(x,∇w),∇w̄〉 dx

=
1

δ

ˆ
Ω2ρ

g(x)−δ〈A(x,∇w),∇w̄〉 dx.

To continue we set

D1 =
{
x ∈ Ω2ρ \ Ωρ :M(|∇w̄|q)1/q ≤ δM(|∇w|qχΩ2ρ)

1/q
}
,

D2 = Ω2ρ \ (Ωρ ∪D1),
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and note that w = w̄ on Ωρ. Thus it follows from (2.1) and (2.3) that

δ I1 ≥ Λ0

ˆ
Ωρ

g−δ|∇w|p dx+

ˆ
D1

g(x)−δ〈A(x,∇w),∇w̄〉 dx

+

ˆ
D2

g(x)−δ〈A(x,∇w),∇φ〉w dx

≥ Λ0

ˆ
Ωρ

g−δ|∇w|p dx− Λ1

ˆ
D1

g−δ|∇w|p−1|∇w̄| dx

− 4Λ1

ρ

ˆ
D2

g−δ|∇w|p−1|w| dx

=: I2 − I3 − I4.

(3.32)

Combining (3.31) and (3.32), we obtain

I2 > I3 + I4 + δ

ˆ
B2ρ

|∇w|p−δ dx. (3.33)

We now consider the following estimates for I2, I3, and I4.

Estimate for I2 from below: Recall that by Lemma 3.14, g−δ ∈ Ap/q. Thus by the boundedness

ofM we have

I2 = Λ0

ˆ
Ωρ

g(x)−δ|∇w|p dx ?
ˆ
Bρ

g(x)−δM(|∇w|qχΩρ)
p/q dx. (3.34)

On the other hand, for x ∈ Bρ/2, there holds

M(|∇w̄|q)1/q(x) ≤ sup
x∈B′
B′⊂Bρ

(
B′
|∇w̄|qdy

)1/q

+ sup
x∈B′

B′∩Bcρ 6=∅

(
B′
|∇w̄|qdy

)1/q

≤M(|∇w|qχΩρ)
1/q(x) + c

(
B2ρ

|∇w̄|qdy

)1/q

,

where we have used that w̄ = w on Bρ and w = 0 on Ωc ∩ Bρ. Also, recall that w̄ is zero

outside B2ρ. By Theorem 3.16 we find

B2ρ

|∇w̄|qdy ≤
B2ρ

|∇w|qdy +
c

ρq B2ρ

|w|qdy ≤ c
B2ρ

|∇w|qdy,

which gives

g(x) ≤ cM(|∇w̄|q)1/q(x)

≤ c1M(|∇w|qχΩρ)
1/q(x) + c2

(
B2ρ

|∇w|qdy

)1/q
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for all x ∈ Bρ/2. Here recall from Lemma 3.14 that g 'M(|∇w̄|q)1/q a.e. in Rn.

Letting now

G =
{
x ∈ Bρ/2 : c1M(|∇w|qχΩρ)

1/q(x) ≥ c2

(
B2ρ

|∇w|qdy
)1/q}

,

then for every x ∈ G we have

g(x) ≤ 2c1M(|∇w|qχΩρ)
1/q(x). (3.35)

Combining (3.34) and (3.35) we can estimate I2 from below by

I2 ≥ c

ˆ
G

M(|∇w|qχΩρ)
−δ/qM(|∇w|qχΩρ)

p/q dx

≥ c

ˆ
Bρ/2

|∇w|p−δ dx− c0ρ
n

(
B2ρ

|∇w|q dx

) p−δ
q

.

(3.36)

Estimate for I3 from above: By the definition of D1 and the boundedness of the maximal

functionM, we have

I3 = Λ1

ˆ
D1

g−δ|∇w|p−1|∇w̄| dx

>
ˆ
D1

M(|∇w̄|q)
1−δ
q |∇w|p−1 dx

> δ1−δ
ˆ

Ω2ρ

M(|∇w|qχΩ2ρ)
1−δ
q |∇w|p−1 dx

> δ1−δ
ˆ

Ω2ρ

|∇w|p−δ dx.

Estimate for I4 from above: By the definition of D2 we have

I4 =
4β

ρ

ˆ
D2

g−δ|∇w|p−1|w| dx

>
1

ρ

ˆ
D2

M(|∇w̄|q)−δ/q|∇w|p−1|w| dx

>
δ−δ

ρ

ˆ
D2

M(|∇w|qχΩρ)
(p−1−δ)/q |w| dx.

With this and making use of Young’s inequality, we find, for any ε > 0,

I4 > ε

ˆ
Ω2ρ

M(|∇w|qχΩ2ρ)
p−δ
q dx+

c(ε)

ρp−δ

ˆ
B2ρ

|w|p−δ dx

> ε

ˆ
Ω2ρ

|∇w|p−δ dx+ c(ε)ρ
n

(
B2ρ

|∇w|q dx

) p−δ
q

.

(3.37)
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Here the last inequality follows from the boundedness ofM and Theorem 3.16 provided δ0

is sufficiently small so that nq/(n− q) ≥ p.

Collecting all of the estimates in (3.33), (3.36)-(3.37) we obtain
ˆ
Bρ/2

|∇w|p−δ dx > (1 + c(ε))ρ
n

(
B2ρ

|∇w|q dx
) p−δ

q

+ (δ + δ1−δ + ε)

ˆ
B2ρ

|∇w|p−δ dx.
(3.38)

Recall that the balls in (3.38) are centered at z ∈ ∂Ω∩B2R(x0) and we have B2ρ = B2ρ(z) ⊂

B2R(x0). Let x1 ∈ B2R(x0) and ρ > 0 be such that we have B7ρ(x1) ⊂ B2R(x0) and assume

for now that Bρ(x1)∩ ∂Ω 6= ∅. Choosing any z ∈ ∂Ω∩Bρ(x1) such that |x1− z| = d(x1, ∂Ω),

we have |x1 − z0| ≤ ρ and thus

Bρ/2(x1) ⊂ B3ρ/2(z) ⊂ B6ρ(z) ⊂ B7ρ(x1).

With this, applying (3.38) we have
ˆ
Bρ/2(x1)

|∇w|p−δ dx > (1 + c(ε))ρ
n

(
B7ρ(x1)

|∇w|q dx
) p−δ

q

+ (δ + δ1−δ + ε)

ˆ
B7ρ(x1)

|∇w|p−δ dx.
(3.39)

At this point, choosing δ and ε small enough in (3.39) we arrive at

Bρ/2(x1)

|∇w|p−δ dx ≤ c

(
B7ρ(x1)

|∇w|q dx
) p−δ

q

+
1

2 B7ρ(x1)

|∇w|p−δ dx.

On the other hand, from the interior higher integrability bound (3.8) in Theorem 3.8

it follows that the last inequality also holds with any ball B7ρ(x1) ⊂ B2R(x0) such that

Bρ(x1) ⊂ Ω, as long as we further restrict δ0 ∈ (0, δ̃2) so that q > p − δ̃2. Here δ̃2 is as in

Theorem 3.8.

Now using the well-known Gehring’s lemma (see [17, p. 122]; see also [15, 46]) and a simple

covering argument, we get the desired higher integrability upto the boundary.

We now set

δ3 = min{δ1, δ̃2, δ2}
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with δ1, δ̃2, and δ2 as in Theorems 3.17, 3.8, and 3.21, respectively. For δ ∈ (0, δ3) and

u ∈ W 1,p−δ
0 (Ω), we let w ∈ W 1, p−δ(Ω2R(x0)) be a very weak solution to the Dirichlet problem div A(x,∇w) = 0 in Ω2R(x0),

w ∈ u+W 1, p−δ
0 (Ω2R(x0)).

(3.40)

The existence of such a w is now ensured by Corollary 3.18. Moreover, since we have higher

integrability upto the boundary from Theorem 3.21, we can now obtain the boundary versions

of Lemmas 3.11 and 3.12 (see Lemmas 3.7 and 3.8 in [51]).

Lemma 3.22 ([51]). Let u ∈ W 1,p−δ
0 (Ω), with δ ∈ (0, δ3), and let w be a very weak solution

of (3.40). Then there exists β0 = β0(n,p,b,Λ0,Λ1) ∈ (0, 1/2] such that(
Bρ(z)

|w|p dx

) 1
p

≤ C(n,p,b,Λ0,Λ1)

(ρ
r

)β0
(

Br(z)

|w|p dx
) 1

p

for any z ∈ ∂Ω with Bρ(z) ⊂ Br(z) b B2R(x0). Moreover, there holds(
Bρ(z)

|∇w|p dx

) 1
p

≤ C(n,p,b,Λ0,Λ1)

(ρ
r

)β0−1
(

Br(z)

|∇w|p dx
) 1

p

for any z ∈ B2R(x0) such that Bρ(z) ⊂ Br(z) b B2R(x0).

Lemma 3.23 ([51]). Let u ∈ W 1,p−δ
0 (Ω), with δ ∈ (0, δ3), and let w be a very weak solution

of (3.40). Then there exists a β0 = β0(n,p,b,Λ0,Λ1) ∈ (0, 1/2] such that for any t ∈ (0, p] there

holds (
Bρ(z)

|∇w|t dx

) 1
t

≤ C(n,p,b,t,Λ0,Λ1)

(ρ
r

)β0−1
(

Br(z)

|∇w|t dx
) 1

t

for any z ∈ B2R(x0) such that Bρ(z) ⊂ Br(z) b B2R(x0).

We now prove the boundary analogue of Lemma 3.13.

Lemma 3.24. Under Hypothesis 3.1 and Hypothesis 3.2, let u ∈ W 1,p−δ
0 (Ω) where δ ∈

(0,min{δ1, δ̃2}) with δ1 and δ̃2 as in Theorems 3.17 and 3.8, respectively, be a very weak

solution to (3.1) with f ∈ Lp−δ(Ω). Let w ∈ u + W 1,p−δ
0 (Ω2R) where Ω2ρ = Ω2R(x0) with
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x0 ∈ ∂Ω and 2R ≤ r0, be a very weak solution to (3.40). Then after extending f and u by

zero outside Ω and w by u outside Ω2R, we have

B2R

|∇u−∇w|p−δ dx > δ
p−δ
p−1

B2R

|∇u|p−δ dx+
B2R

|f |p−δ dx

if p ≥ 2 and

B2R

|∇u−∇w|p−δ dx > δp−δ

B2R

|∇u|p−δ dx+

(
B2R

|f |p−δ dx
)p−1(

B2R

|∇u|p−δ dx
)2−p

if 1 < p < 2.

Proof. Let δ ∈ (0,min{δ1, δ̃2}). Then δ ∈ (0, δ0/2) with δ0 as in Lemma 3.14. Let q ∈

(p− δ0, p− 2δ] and define g to be the function

g(x) = max

{
M(|∇u−∇w|q)1/q(x),

|u(x)− w(x)|
d(x, ∂Ω2R)

}
.

Then it follows from Lemma 3.14 with Ω̃ = Ω2R that

ˆ
Ω2R

gp−δ dx >
ˆ

Ω2R

|∇u−∇w|p−δ dx. (3.41)

Also, by Theorem 3.17 we have

ˆ
Ω2R

|∇w|p−δ dx >
ˆ

Ω2R

|∇u|p−δ dx. (3.42)

We now apply Lemma 3.15 with s = q, Ω̃ = Ω2R and v = u−w, to get a global cλ-Lipschitz

function vλ ∈ W
1, p−δ

1−δ
0 (Ω2R). Using vλ as a test function in (3.1) and (3.40) along with (2.3),

we obtain
ˆ

Ω2R∩Fλ
〈A(x,∇u)−A(x,∇w),∇vλ〉 dx−

ˆ
Ω2R∩Fλ

|f |p−2〈f ,∇vλ〉 dx

=

ˆ
Ω2R∩F cλ

〈A(x,∇w)−A(x,∇u),∇vλ〉 dx+

ˆ
Ω2R∩F cλ

|f |p−2〈f ,∇vλ〉 dx

> λ

ˆ
Ω2R∩F cλ

(
|f |p−1 + |∇u|p−1 + |∇w|p−1

)
dx,
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where Fλ := Fλ(u− w,Ω2R) = {x ∈ Ω2R : g(x) ≤ λ} . Multiplying the above equation by

λ−(1+δ) and integrating from 0 to ∞ with respect to λ, we then get

I1 − I2 :=

ˆ ∞
0

ˆ
Ω2R∩Fλ

λ−(1+δ)〈A(x,∇u)−A(x,∇w),∇u−∇w〉 dx dλ

−
ˆ ∞

0

ˆ
Ω2R∩Fλ

λ−(1+δ)|f |p−2〈f ,∇u−∇w〉 dx dλ

>
ˆ ∞

0

ˆ
Ω2R∩F cλ

λ−δ
(
|f |p−1 + |∇u|p−1 + |∇w|p−1

)
dx dλ =: I3.

We now proceed with the following estimates for I1, I2, and I3.

Estimate for I1 from below: By changing the order of integration and making use of (2.1),

we get

I1 =

ˆ
Ω2R

ˆ ∞
g(x)

λ−(1+δ)〈A(x,∇u)−A(x,∇w),∇u−∇w〉 dλ dx

=
1

δ

ˆ
Ω2R

g(x)−δ〈A(x,∇u)−A(x,∇w),∇u−∇w〉 dx

?
1

δ

ˆ
Ω2R

g(x)−δ
(
|∇u|2 + |∇w|2

) p−2
2 |∇u−∇w|2 dx.

(3.43)

We now consider separately the case p ≥ 2 and 1 < p < 2.

Case i: For p ≥ 2, by using (3.41) along with Hölder’s inequality, we obtain

ˆ
Ω2R

|∇u−∇w|p−δ dx ≤
(ˆ

Ω2R

g−δ|∇u−∇w|p dx
) p−δ

p
(ˆ

Ω2R

gp−δ dx

) δ
p

≤
(ˆ

Ω2R

g−δ|∇u−∇w|2(|∇u|2 + |∇w|2)
p−2

2 dx

) p−δ
p

×

×
( ˆ

Ω2R

|∇u−∇w|p−δ dx
) δ

p

.

Simplifying the above expression and substituting into (3.43), we get

I1 ?
1

δ

ˆ
Ω2R

|∇u−∇w|p−δ dx. (3.44)

Case ii: For 1 < p < 2, we use the following equality

|∇u−∇w|p−δ =
[
(|∇u|2 + |∇w|2)

p−2
2 |∇u−∇w|2g−δ

] p−δ
2 ×

×
(
|∇u|2 + |∇w|2

) (p−δ)(2−p)
4 g

p−δ
2
δ.

(3.45)
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Integrating (3.45) over Ω2R and making use of Hölder’s inequality with exponents
2

p− δ
,

2

2− p
and

2

δ
, we get

ˆ
Ω2R

|∇u−∇w|p−δ dx ≤
(ˆ

Ω2R

(|∇u|2 + |∇w|2)
p−δ

2 dx

) 2−p
2
(ˆ

Ω2R

g(x)p−δ dx

) δ
2

×

×
(ˆ

Ω2R

(|∇u|2 + |∇w|2)
p−2

2 |∇u−∇w|2g(x)−δ dx

) p−δ
2

.

(3.46)

Combining (3.41) and (3.42) into (3.46) and then simplifying we get(ˆ
Ω2R

|∇u−∇w|p−δ dx
)1− δ

2

>
(ˆ

Ω2R

|∇u|p−δ dx
) 2−p

2

×

×
(ˆ

Ω2R

(|∇u|2 + |∇w|2)
p−2

2 |∇u−∇w|2g(x)−δ dx

) p−δ
2

.

Using this in (3.43), we arrive at

I1 ?
1

δ

(ˆ
Ω2R

|∇u−∇w|p−δ dx
) 2−δ

p−δ
(ˆ

Ω2R

|∇u|p−δ dx
) p−2

p−δ

. (3.47)

Estimate for I2 from above: By changing the order of integration, we get

I2 =

ˆ
Ω2R

ˆ ∞
g(x)

λ−(1+δ)|f |p−2〈f ,∇u−∇w〉 dλ dx

=
1

δ

ˆ
Ω2R

g(x)−δ|f |p−2〈f ,∇u−∇w〉 dx

≤ 1

δ

ˆ
Ω2R

g(x)−δ|f |p−1|∇u−∇w| dx.

(3.48)

Since |∇u(x)−∇w(x)| ≤ g(x) for a.e. x, by using Hölder’s inequality in (3.48), we have

I2 ≤
1

δ

ˆ
Ω2R

|∇u−∇w|−δ|f |p−1|∇u−∇w| dx

≤ 1

δ

(ˆ
Ω2R

|f |p−δ dx
) p−1

p−δ
(ˆ

Ω2R

|∇u−∇w|p−δ dx
) 1−δ

p−δ

.

(3.49)

Estimate for I3 from above: By changing the order of integration, we get

I3 =

ˆ
Ω2R

ˆ g(x)

0

λ−δ
(
|f |p−1 + |∇u|p−1 + |∇w|p−1

)
dλ dx

=
1

1− δ

ˆ
Ω2R

g(x)1−δ (|f |p−1 + |∇u|p−1 + |∇w|p−1
)
dx.
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Thus Hölder’s inequality along with (3.41) and Theorem 3.17 then yield

I3 >
(ˆ

Ω2R

|∇u−∇w|p−δ dx
) 1−δ

p−δ
(ˆ

Ω2R

|f |p−δ + |∇u|p−δ dx
) p−1

p−δ

. (3.50)

As I1 − I2 > I3, we can now combine estimates (3.49) and (3.50), along with (3.44) in the

case p ≥ 2 or (3.47) in the case 1 < p < 2 to obtain the desired bounds.

Remark 3.25. Henceforth, unless otherwise stated, we shall always assume that 0 < δ <

min{δ̃1, δ̃2, δ1, δ2}, where δ̃1, δ̃2, δ1, and δ2 are as in Theorems 3.7, 3.8, 3.17, and 3.21, respec-

tively.

Proposition 3.26. There exists A = A(n,p,b,Λ0,Λ1,γ) > 1 sufficiently large so that the following

holds for any T > 1 and any λ > 0: fix a ball B0 = BR0 and assume that for some ball Bρ(y)

with ρ ≤ min{r0, 2R0}/26, we have

Bρ(y) ∩B0 ∩ {x ∈ Rn :M(χ4B0|∇u|p−δ)
1
p−δ (x) ≤ λ} ∩ {M(χ4B0|f |p−δ)

1
p−δ ≤ ε(T )λ} 6= ∅,

with ε(T ) = T
−2δ
p−δ max{1, 1

p−1}; then there holds

|{x ∈ Rn :M(χ4B0|∇u|p−δ)
1
p−δ (x) > ATλ} ∩Bρ(y)| < H |Bρ(y)|, (3.51)

where

H = H(T ) = T−(p+δ) + δ(p−δ) min{1, 1
p−1}.

Proof. By hypothesis, there exists x0 ∈ Bρ(y) ∩B0 such that for any r > 0, we have

Br(x0)

χ4B0|∇u|p−δ dx ≤ λp−δ (3.52)

and

Br(x0)

χ4B0|f |p−δ dx ≤ [ε(T )λ]p−δ. (3.53)

Since 8ρ ≤ R0, we have B23ρ(y) ⊂ B24ρ(x0) ⊂ 4B0. We now claim that for x ∈ Bρ(y),

there holds

M(χ4B0|∇u|p−δ)(x) ≤ max
{
M(χB2ρ(y)|∇u|p−δ)(x), 3nλp−δ

}
. (3.54)
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Indeed, for r ≤ ρ we have Br(x) ∩ 4B0 ⊂ B2ρ(y) ∩ 4B0 = B2ρ(y) and thus

Br(x)

χ4B0|∇u|p−δ dz =
Br(x)

χB2ρ(y)|∇u|p−δ dz,

whereas for r > ρ we have Br(x) ⊂ B3r(x0) from which, by making use of (3.52), yields

Br(x)

χ4B0|∇u|p−δ dz ≤ 3n

B3r(x0)

χ4B0|∇u|p−δ dz ≤ 3nλp−δ.

We now restrict A to the range A ≥ 3
n
p−δ . Then in view of (3.54) we see that in order to

obtain (3.51), it is enough to show that

|{M(χB2ρ(y)|∇u|p−δ)
1
p−δ > ATλ} ∩Bρ(y)| < H |Bρ(y)|. (3.55)

Moreover, since |∇u| = 0 outside Ω, the later inequality trivially holds provided B4ρ(y) ⊂

Rn\Ω, thus it is enough to consider (3.55) for the case B4ρ(y) ⊂ Ω and the case B4ρ(y)∩∂Ω 6=

∅.

Let us first consider the interior case: B4ρ(y) ⊂ Ω. Let w = u + W 1,p−δ
0 (B4ρ)(y) be a

solution, obtained from Corollary 3.10, to the problem div A(x,∇w) = 0 in B4ρ(y),

w = u on ∂B4ρ(y).

By the weak type (1, 1) estimate for the maximal function, we have

|{M(χB2ρ(y)|∇u|p−δ)
1
p−δ > ATλ} ∩Bρ(y)|

≤ |{M(χB2ρ(y)|∇w|p−δ)
1
p−δ > ATλ/2} ∩Bρ(y)|

+ |{M(χB2ρ(y)|∇u−∇w|p−δ)
1
p−δ > ATλ/2} ∩Bρ(y)|

> (ATλ)−(p+δ)

ˆ
B2ρ(y)

|∇w|p+δ dx+ (ATλ)−(p−δ)
ˆ
B2ρ(y)

|∇u−∇w|p−δ dx.

(3.56)

On the other hand, applying Theorem 3.8, we get

B2ρ(y)

|∇w|p+δ dx >

(
B4ρ(y)

|∇u|p−δ dx

) p+δ
p−δ

+

(
B4ρ(y)

|∇u−∇w|p−δ dx

) p+δ
p−δ

,
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whereas by (3.52)-(3.53) and Lemma 3.13 there holds

B4ρ(y)

|∇u|p−δ dx >
B5ρ(x0)

|∇u|p−δ dx > λp−δ,

and

B4ρ(y)

|∇u−∇w|p−δ dx > δ(p−δ) min{1, 1
p−1}λp−δ + [ε(T )min{1,p−1}λ]p−δ

> λp−δ
[
δ(p−δ) min{1, 1

p−1} + T−2δ
]
,

(3.57)

where we used B4ρ(y) ⊂ B5ρ(x0) and the definition of ε(T ).

Combining (3.56)-(3.57) we now obtain

|{M(χB2ρ(y)|∇u|p−δ)
1
p−δ > ATλ} ∩Bρ(y)|

> |Bρ(y)|(AT )−(p+δ)
[
1 + δ(p+δ) min{1, 1

p−1} + T−2δ p+δ
p−δ

]
+ |Bρ(y)|(AT )−(p−δ)

[
δ(p−δ) min{1, 1

p−1} + T−2δ
]

> |Bρ(y)|A−(p−δ)T−(p+δ) + |Bρ(y)|A−(p−δ)δ(p−δ) min{1, 1
p−1}

since A, T > 1 and δ ∈ (0, 1).

At this point, we can take A sufficiently large to get the desired estimates in the interior

case B4ρ(y) ⊂ Ω.

We now look at the boundary case when B4ρ(y)∩∂Ω 6= ∅. Let us recall that u ∈ W 1,p−δ
0 (Ω)

and let y0 ∈ ∂Ω be a boundary point such that |y − y0| = dist(y, ∂Ω). Define w ∈ u +

W 1,p−δ
0 (Ω32ρ(y0)) as a solution to the problem div A(x,∇w) = 0 in Ω32ρ(y0),

w = u on ∂Ω32ρ(y0).

Here we first extend u to be zero on Rn \Ω and we then extend w to be u on Rn \Ω16ρ(y0).

Since

B28ρ(y) ⊂ B32ρ(y0) ⊂ B36ρ(y) ⊂ B37ρ(x0) ⊂ 4B0,

we then obtain by making use of Theorem 3.21,
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(
B2ρ(y)

|∇w|p+δ dx
) p−δ
p+δ

>
B28ρ(y)

|∇w|p−δdx

>
 
B37ρ(x0)

|∇u|p−δ dx+

 
B32ρ(y0)

|∇u−∇w|p−δ dx.

Now using (3.52)-(3.53) and Lemma 3.24 in (3.56), we obtain the desired estimate in the

boundary case.

The above proposition can be restated in the following way.

Proposition 3.27. There exists a constant A = A(n,p,b,Λ0,Λ1,γ) > 1 such that the following

holds for any T > 1 and any λ > 0: Let u ∈ W 1,p−δ
0 (Ω) be a solution of (3.1) with A

satisfying Hypothesis 3.1. Fix a ball B0 = BR0, and suppose that for some ball Bρ(y) with

ρ ≤ min{r0, 2R0}/26 we have

|{x ∈ Rn :M(χ4B0|∇u|p−δ)
1
p−δ (x) > ATλ} ∩Bρ(y)| ≥ H |Bρ(y)|,

then there holds

Bρ(y) ∩B0 ⊂ {M(χ4B0|∇u|p−δ)
1
p−δ > λ} ∪ {M(χ4B0|f |p−δ)

1
p−δ > ε(T )λ}.

Here ε(T ) and H = H(T ) are as defined in Proposition 3.26.

We can now apply Lemma 2.35 and the previous proposition to get the following result.

Lemma 3.28. There exists a constant A = A(n,p,b,Λ0,Λ1,γ) > 1 such that the following holds

for any T > 2. Let u be a solution of (3.1) and let B0 be a ball of radius R0. Fix a real

number 0 < r ≤ min{r0, 2R0}/26 and suppose that there exists N > 0 such that

|{x ∈ Rn :M(χ4B0|∇u|p−δ)
1
p−δ (x) > N}| < H rn|B1|. (3.58)

Then for any integer k ≥ 0 there holds

|{x ∈ B0 :M(χ4B0|∇u|p−δ)
1
p−δ (x) > N(AT )k+1}|

≤ c(n)H |{x ∈ B0 :M(χ4B0|∇u|p−δ)
1
p−δ (x) > N(AT )k}|

+ c(n) |{x ∈ B0 :M(χ4B0|f |p−δ)
1
p−δ (x) > ε(T )N(AT )k}|.
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Here ε(T ) and H = H(T ) are as defined in Proposition 3.26.

Proof. Let A be as in Proposition 3.27 and set

C = {x ∈ B0 :M(χ4B0|∇u|p−δ)
1
p−δ (x) > N(AT )k+1}, D = D1 ∩B0,

where D1 is the union

D1 = {M(χ4B0|∇u|p−δ)
1
p−δ (x) > N(AT )k} ∪ {M(χ4B0|f |p−δ)

1
p−δ (x) > ε(T )N(AT )k},

with ε(T ) and H being as defined in Proposition 3.26.

Since AT > 1 the assumption (3.58) implies that |C| < H rn|B1|. Moreover, if x ∈ B0 and

ρ ∈ (0, r] such that |C ∩ Bρ(x)| ≥ H |Bρ(x)|, then using Proposition 3.27 with λ = N(AT )k

we have

Bρ(x) ∩B0 ⊂ D.

Thus the hypotheses of Lemma 2.35 are satisfied with E = B0 and ε = H ∈ (0, 1). This

yields

|C| ≤ c(n)H |D|

≤ c(n)H |{x ∈ B0 :M(χ4B0|∇u|p−δ)
1
p−δ (x) > N(AT )k}|

+ c(n) |{x ∈ B0 :M(χ4B0|f |p−δ)
1
p−δ (x) > ε(T )N(AT )k}|

as desired.

Using Lemma 3.28, we can now obtain a gradient estimate in Lorentz spaces over every

ball centered in the domain.

Theorem 3.29. Let all the Hypothesis in 3.1 and 3.2 be satisfied, then, with δ as in Remark

3.25, for any p − δ/2 ≤ q ≤ p + δ/2, 0 < t ≤ ∞ and for any very weak solution solution

u ∈ W 1,p−δ
0 (Ω) to (3.1), there holds

‖∇u‖L(q,t)(B0) ≤ C|B0|
1
q ‖∇u‖Lp−δ(4B0) [min{r0, 2R0}]

−n
p−δ + C‖f‖L(q,t)(4B0).

Here the constant C = C(n,p,t,γ,Λ0,Λ1,b) and B0 = BR0(z0) is any ball with z0 ∈ Ω and R0 > 0.
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Proof. Let B0 be a ball of radius R0 > 0 and set r = min{r0, 2R0}/26. As usual we set u

and f to be zero in Rn \ Ω. In what follows we consider only the case t 6= ∞ as for t = ∞

the proof is similar. Moreover, to prove the theorem, we may assume that

‖∇u‖Lp−δ(B0) 6= 0.

For T > 2 to be determined, we claim that there exists N > 0 such that

|{x ∈ Rn :M(χ4B0|∇u|p−δ)
1
p−δ (x) > N}| < H rn|B1|.

with H = H(T ) being as in Proposition 3.26. To see this, we first use the weak type (1, 1)

estimate for the maximal function to get

|{x ∈ Rn :M(χ4B0|∇u|p−δ)
1
p−δ (x) > N}| <

C(n)

Np−δ

ˆ
4B0

|∇u|p−δ dx.

Then we choose N > 0 so that

C(n)

Np−δ

ˆ
4B0

|∇u|p−δ dx = H rn |B1|. (3.59)

Let A and ε(T ) be as in Proposition 3.26. For 0 < t <∞, we now consider the sum

S =
∞∑
k=1

(AT )tk|{x ∈ B0 :M(χ4B0 |∇u/N |p−δ)
1
p−δ (x) > (AT )k}|

t
q .

By Lemma 2.18, we have

C−1 S ≤
∥∥∥M(χ4B0|∇u/N |p−δ)

1
p−δ

∥∥∥t
L(q, t)(B0)

≤ C (|B0|
t
q + S).

We next evaluate S by making use of Lemma 3.28 as follows:

S ≤ c

∞∑
k=1

(AT )tk
{
H |{x ∈ B0 :M(χ4B0|∇u/N |p−δ)

1
p−δ (x) > (AT )k−1}|

+ |{x ∈ B0 :M(χ4B0|f/N |p−δ)
1
p−δ (x) > ε(T )(AT )k−1}|

} t
q

≤ c (AT )tH
t
q (S + |B0|

t
q ) + c ‖M(χ4B0|f/N |p−δ)

1
p−δ ‖tL(q, t)(B0).

At this point we choose T large enough and δ small so that

c (AT )tH
t
q = c (AT )t

(
T−(p+δ) + δ(p−δ) min{1, 1

p−1}
) t
q ≤ 1/2.
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This is possible as q ≤ p + δ/2, and moreover, T can be chosen to be independent of q. We

then obtain

S > |B0|
t
q + ‖M(χ4B0|f/N |p−δ)

1
p−δ ‖tL(q, t)(B0).

Now applying the boundedness property of the maximal functionM and recalling N from

(3.59), we finally get

‖∇u‖L(q,t)(B0) > |B0|
1
qN + ‖f‖L(q,t)(4B0)

> |B0|
1
q ‖∇u‖Lp−δ(4B0)r

−n
p−δ + ‖f‖L(q,t)(4B0).

3.4 Proof of Main Theorem

We are now ready to prove the main result of this chapter.

Proof of Theorem 3.3. Let δ > 0 be as in Remark 3.25, and let B0 = BR0(z0), where z0 ∈ Ω

and 0 < R0 ≤ diam(Ω). We shall prove the theorem with δ/2 in place of δ. Hence, we assume

that p− δ/2 ≤ q ≤ p+ δ/2, θ ∈ [p− δ, n], and u ∈ W 1,p−δ
0 (Ω). By Theorem 3.29, we have

‖∇u‖L(q,t)(B0) > |B0|
1
q ‖∇u‖Lp−δ(4B0) [min{r0, 2R0}]−n/(p−δ) + ‖f‖L(q,t)(4B0)

> |B0|
1
q ‖∇u‖Lp−δ(4B0) [min{r0, 2R0}]−n/(p−δ) +R

n−θ
q

0 ‖f‖Lθ(q,t)(Ω),

(3.60)

where the second inequality follows from just the definition of Morrey spaces.

To continue we consider the following two cases.

Case (i).
r0

8
< R0 ≤ diam(Ω): By using (3.60) and the inequality

ˆ
4B0

|∇u|p−δ dx ≤ C

ˆ
Ω

|f |p−δ dx

≤ C diam(Ω)n−
n(p−δ)

q ‖f‖p−δL(q,t)(Ω)

≤ C diam(Ω)n−
θ(p−δ)
q ‖f‖p−δLθ(q,t)(Ω)

,
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which follows from Theorem 3.17 and Hölder’s inequality, we get

‖∇u‖L(q,t)(B0) > R
n/q
0 ‖∇u‖Lp−δ(4B0)r

−n/(p−δ)
0 +R

n−θ
q

0 ‖f‖Lθ(q,t)(Ω)

> R
n/q
0 diam(Ω)−θ/q[diam(Ω)/r0]

n
(p−δ)‖f‖Lθ(q,t)(Ω) +R

n−θ
q

0 ‖f‖Lθ(q,t)(Ω)

> R
n−θ
q

0 ‖f‖Lθ(q,t)(Ω)

{
[diam(Ω)/r0]

n
(p−δ) + 1

}
.

(3.61)

Case (ii). 0 < R0 ≤ min
{r0

8
, diam(Ω)

}
: From (3.60), we have

‖∇u‖L(q,t)(B0) > R
n/q
0 ‖∇u‖Lp−δ(4B0)R

−n/(p−δ)
0 + ‖f‖L(q,t)(B0). (3.62)

We next aim to estimate the first term on the right-hand side of (3.62). To that end, let

r ∈ (0, r0]. If Br/4(z0) ⊂ Ω we let w ∈ u+W 1, p−δ
0 (Br/5(z0)) solve div A(x,∇w) = 0 in Br/5(z0),

w = u on ∂Br/5(z0).

Otherwise, i.e., Br/4(z0) ∩ ∂Ω 6= ∅, we let w ∈ u+W 1, p−δ
0 (Ωr0/2(x0)) be a solution to div A(x,∇w) = 0 in Ωr/2(x0),

w = u on ∂Ωr/2(x0).

Here x0 ∈ ∂Ω ∩ Br/4(z0) is chosen so that |z0 − x0| = dist(z0, ∂Ω), and thus it follows that

Br0/5(z0) b Br/2(x0) ⊂ B3r/4(z0). The existence of w follows from Corollary 3.10 or Corollary

3.18. In any case, by Lemmas 3.12 and 3.23 for any 0 < ρ ≤ r/5 we have
ˆ
Bρ(z0)

|∇w|p−δ dx > (ρ/r)n+(p−δ)(β0−1)

ˆ
Br/5(z0)

|∇w|p−δ dx,

where β0 = β0(n,p,b,Λ0,Λ1) ∈ (0, 1/2] is the smallest of those found in Lemmas 3.12 and 3.23.

Hence, when p ≥ 2, we get from Lemmas 3.13 and 3.24 thatˆ
Bρ(z0)

|∇u|p−δ >
ˆ
Bρ(z0)

|∇w|p−δ dx+

ˆ
Bρ(z0)

|∇u−∇w|p−δ dx

>
(ρ
r

)n+(p−δ)(β0−1)
ˆ
Br/5(z0)

|∇w|p−δ dx+

ˆ
Br/5(z0)

|∇u−∇w|p−δ dx

>
(ρ
r

)n+(p−δ)(β0−1)
ˆ
Br/5(z0)

|∇w|p−δ dx+

+ δ
p−δ
p−1

ˆ
B3r/4(z0)

|∇u|p−δ dx+

ˆ
B3r/4(z0)

|f |p−δ dx.
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Similarly, in the case 1 < p < 2, using Lemmas 3.13 and 3.24 and Young’s inequality we

find, for any ε > 0,
ˆ
Bρ(z0)

|∇u|p−δ >
(ρ
r

)n+(p−δ)(β0−1)
ˆ
Br/5(z0)

|∇w|p−δ dx+

+ (δp−δ + ε)

ˆ
B3r/4(z0)

|∇u|p−δ dx+ C(ε)

ˆ
B3r/4(z0)

|f |p−δ dx.

Therefore, if we denote by

φ(ρ) =

ˆ
Bρ(z0)

|∇u|p−δ dx,

then we have

φ(ρ) >
[(ρ

r

)n+(p−δ)(β0−1)

+ δ(p−δ) min{1, 1
p−1} + ε

]
φ(

3r

4
) + C(ε)

ˆ
B3r/4(z0)

|f |p−δ dx, (3.63)

which holds for all ε > 0 and ρ ∈ (0, r/5]. By enlarging the constant if necessary, we see that

(3.63) actually holds for all ρ ∈ (0, 3r/4].

On the other hand, by Hölder’s inequality there holds

ˆ
B3r/4(z0)

|f |p−δ dx > rn−
n(p−δ)

q ‖f‖p−δL(q,t)(B3r/4(z0)) > rn−
θ(p−δ)
q ‖f‖p−δLθ(q,t)(Ω)

,

and thus (3.63) yields

φ(ρ) >
[(ρ

r

)n+(p−δ)(β0−1)

+ δ(p−δ) min{1, 1
p−1} + ε

]
φ(3r/4) + C(ε) r

n− θ(p−δ)
q ‖f‖p−δLθ(q,t)(Ω)

(3.64)

for all ρ ∈ (0, 3r/4]. Since θ ∈ [p− δ, n] and q ∈ [p− δ/2, p+ δ/2], we have

0 ≤ n− θ(p− δ)
q

< n+ (p− δ)(β0 − 1), (3.65)

as long as we restrict δ < 2pβ0/(1+β0). Note that the constant hidden in > in (3.64) depends

only on n, p,Λ0,Λ1, γ, and b. Thus using (3.64) and (3.65), we can now apply Lemma 3.4

from [23] to obtain a δ = δ(n,p,Λ0,Λ1,γ,b) > 0 such that

φ(ρ) >
(ρ
r

)n− θ(p−δ)
q

φ(3r/4) + ρn−
θ(p−δ)
q ‖f‖p−δLθ(q,t)(Ω)
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provided we further restrict δ < δ. Since this estimate holds for all

0 < ρ ≤ 3r/4 ≤ 3r0/4,

we can choose ρ = 4R0 ≤
r0

2
and r = r0 to arrive at

φ(4R0) >
(
R0

r0

)n− θ(p−δ)
q

φ(3r0/4) +R
n− θ(p−δ)

q

0 ‖f‖p−δLθ(q,t)(Ω)
. (3.66)

Substituting (3.66) into (3.62), we find

‖∇u‖L(q,t)(B0) > R
n−θ
q

0 r
θ
q
− n
p−δ

0 ‖∇u‖Lp−δ(Ω) +R
n−θ
q

0 ‖f‖Lθ(q,t)(Ω)

> R
n−θ
q

0 r
θ
q
− n
p−δ

0 ‖f‖Lp−δ(Ω) +R
n−θ
q

0 ‖f‖Lθ(q,t)(Ω),

(3.67)

where we used Theorem 3.17 in the last inequality. Thus using Hölder’s inequality in (3.67)

we get

‖∇u‖L(q,t)(B0) > R
n−θ
q

0 ‖f‖Lθ(q,t)(Ω)

{(
diam(Ω)/r0

) n
p−δ−

θ
q + 1

}
. (3.68)

Finally, combining the decay estimates (3.61) and (3.68) for ‖∇u‖L(q,t)(B0) in both cases

we arrive at the desired Morrey space estimate.
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Chapter 4
Global Weighted estimates in Lorentz Spaces

One of the main goals of this Chapter is to obtain global gradient weighted estimates of

the form ˆ
Ω

|∇u|pwdx ≤ C

ˆ
Ω

|f |pwdx (4.1)

for weights w in the Muckenhoupt class A1 and for solutions u to the nonhomogeneous

nonlinear boundary value problem divA(x,∇u) = div |f |p−2f in Ω,

u = 0 on ∂Ω.
(4.2)

We shall state all the assumptions that we need for this chapter:

Hypothesis 4.1 (Assumption on A(x, ζ)). We will assume the nonlinearity A(x, ζ) satisfies

(2.1) and (2.2). Along with this, we will also assume that A satisfies (γ, R0)-BMO (see

Definition 2.2) condition as quantified in Theorem 4.3.

Hypothesis 4.2 (Assumption on Ω). We assume that Ω is a (γ,R0)-Reifenberg flat domain

(see Definition 2.3) for some (γ,R0) as quantified in Theorem 4.3.

4.1 Main Theorems

We are now ready to state the main results proved in this chapter.

Theorem 4.3. Suppose that A satisfies Hypothesis 4.1 . Let t ∈ (0,∞], q ≥ p, and let w be

an Aq/p weight. There exist constants τ = τ(n,p,Λ0,Λ1) > 1 and γ = γ(n,p,Λ0,Λ1,q,[w]∞) > 0 such

that the following holds. If u ∈ W 1,p
0 (Ω) is a solution of (4.2) in a (γ, R0)-Reifenberg flat

This chapter previously appeared in [3]. It is reprinted by permission of Springer (see Page 109 )
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domain Ω with [A]R0
τ ≤ γ, then one has the estimate

‖∇u‖Lw(q,t)(Ω) ≤ C(n,p,Λ0,Λ1,q,t,[w]q/p,diam(Ω)/R0)‖f‖Lw(q,t)(Ω).

Remark 4.4. By Remark 4.18 below and Lemma 2.21, it follows that if ω is an upper bound

for [w]q/p, i.e., [w]q/p ≤ ω, then the constants C and γ above can be chosen to depend on ω

instead of [w]q/p or [w]∞.

Theorem 4.3 follows from Theorem 4.16 below (applied withM = q) and the boundedness

property of the Hardy-Littlewood maximal function on weighted spaces. Its main contribu-

tion is the end-point case q = p, which yields inequality (4.1) for all A1 weights w as proposed

earlier. The case q > p has been obtained in [43, 44] but the proofs in those papers can only

yield a weak-type bound at the end-point q = p.

Theorem 4.16 also yields the following gradient estimate below the natural exponent for

very weak solutions.

Theorem 4.5. Suppose that A satisfies Hypothesis 4.1 and let θ0 ∈ (0, n] be a fixed number.

Then there exist τ = τ(n,p,Λ0,Λ1) > 1, δ = δ(n,p,θ0,Λ0,Λ1) > 1, and γ = γ(n,p,θ0,Λ0,Λ1) > 0 such that

the following holds: If u ∈ W 1,p−δ
0 (Ω) is a very weak solution of (3.1) in a (γ, R0)-Reifenberg

flat domain Ω with [A]R0
τ ≤ γ and f ∈ Lθ(q, t)(Ω,Rn), then there holds:

‖∇u‖Lθ(q,t)(Ω) ≤ C(n,p,q,t,θ0,Λ0,Λ1,diam(Ω)/R0)‖f‖Lθ(q,t)(Ω) (4.3)

for all q ∈ (p− δ, p], 0 < t ≤ ∞ and θ0 ≤ θ ≤ n.

The proof of Theorem 4.5 follows by first applying Theorem 4.16 (withM = p in Theorem

4.16) and the weight functions

w(x) = min{|x− z|−n+θ−ρ, r−n+θ−ρ},

for any z ∈ Ω and r ∈ (0, diam(Ω)] and a fixed ρ ∈ (0, θ). Note that w is an A1 weight with

its A1 constant [w]1 being bounded from above by a constant independent of z and r. See
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also Remark 4.18. The rest of the proof then follows verbatim as in that of [43, Theorem

2.3].

Remark 4.6. We mention that the sub-natural bound (4.3) was obtained in Theorem 3.3 (see

also [2]) but with the restriction θ ∈ [p−2δ, n], and in [28] with θ = n, i.e., for pure Lebesgue

spaces only. Note also that the super-natural case q > p has been obtained in [43, 44].

4.2 Interior estimates

Let u ∈ W 1,p−δ
0 (Ω) for some δ ∈ (0,min{1, p− 1}) be a very weak solution to the equation

divA(x,∇u) = div |f |p−2f

in a domain Ω. For each ball B2R = B2R(x0) b Ω, we let w ∈ u + W 1,p−δ
0 (B2R) be a very

weak solution to the problem divA(x,∇w) = 0 in B2R

w = u on ∂B2R.
(4.4)

For sufficiently small δ, the existence of such w follows from the result of [28, Theorem 2].

Lemma 3.13 tells more on the integrability property of w and its relation to u by means of

a comparison estimate.

Now with u as in (3.1) and w as in (4.4), we further define another function v ∈ w +

W 1, p
0 (BR) as the unique solution to the Dirichlet problem divABR(∇v) = 0 in BR,

v = w on ∂BR,
(4.5)

where BR = BR(x0). This equation makes sense since we have good regularity for w as a

consequence of Theorem 3.8. We shall now prove another useful interior difference estimate.

Lemma 4.7. Under Hypothesis 4.1, let δ ∈ (0, δ̃2), where δ̃2 is as in Theorem 3.8 and let w

and v be as in (4.4) and (4.5). For τ =
p

δ0

(p+ δ0)

(p− 1)
, there exists a constant C = C(n,p,Λ0,Λ1)

such that

BR

|∇v −∇w|p−δ dx ≤ C
(

BR

Υ(A, BR)(x)τ dx
)min{p−δ, p−δ

p−1
}/τ(

B2R

|∇w|p−δ dx
)
.
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Proof. Using (2.1) and the fact that both v and w are solutions, we have

BR

(|∇v|2 + |∇w|2)
p−2

2 |∇w −∇v|2 dx >
BR

〈ABR(∇w)−ABR(∇v),∇w −∇v〉 dx

= C
BR

〈ABR(∇w)−A(x,∇w),∇w −∇v〉 dx

>
BR

Υ(A, BR)(x)|∇w|p−1|∇w −∇v| dx.

Using Hölder’s inequality with exponents p,
p+ δ0

p− 1
, and τ we get

BR

(|∇v|2+|∇w|2)
p−2

2 |∇w −∇v|2 dx

>
(

BR

Υ(A, BR)(x)τ dx

) 1
τ
(

BR

|∇w|p+δ0 dx
) p−1

p+δ0

(
BR

|∇w −∇v|p dx
) 1

p

>
(

BR

Υ(A, BR)(x)τ dx

) 1
τ
(

B2R

|∇w|p−δ dx
) p−1

p−δ
(

BR

|∇w −∇v|p dx
) 1

p

,

(4.6)

where the last inequality follows from (3.8) of Theorem 3.8.

Thus for p ≥ 2, using pointwise estimate

|∇w −∇v|p ≤ (|∇v|2 + |∇w|2)
p−2

2 |∇w −∇v|2,

we find

(
BR

|∇w −∇v|p dx
) p−1

p

>
(

BR

Υ(A, BR)τ dx

) 1
τ
(

B2R

|∇w|p−δ dx
) p−1

p−δ

.

By Hölder’s inequality this yields the desired estimate in the case p ≥ 2.

For 1 < p < 2 we write

|∇v −∇w|p = (|∇v|2 + |∇w|2)
(p−2)p

4 |∇w −∇v|p(|∇v|2 + |∇w|2)
(2−p)p

4 ,
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and apply Hölder’s inequality with exponents
2

p
and

2

2− p
to obtain

BR

|∇w −∇v|p dx ≤
(

BR

(|∇v|2 + |∇w|2)
p−2

2 |∇w −∇v|2 dx
) p

2

×

×
(

BR

(|∇v|2 + |∇w|2)
p
2 dx

) 2−p
2

>
(

BR

Υ(A, BR)τ dx

) p
2τ
(

B2R

|∇w|p−δ dx
) (p−1)p

(p−δ)2

×

×
(

BR

|∇w −∇v|p dx
) 1

2
(

BR

|∇w|p dx
) 2−p

2

.

Here we used (4.6) and the easy energy bound
ˆ
BR

|∇v|pdx ≤ c

ˆ
BR

|∇w|pdx

in the last inequality. Using (3.8) of Theorem 3.8 yields

BR

|∇w −∇v|p dx >
(

BR

Υ(A, BR)τ dx

) p
τ
(

B2R

|∇w|p−δ dx
) p

p−δ

.

Now an application of Hölder’s inequality gives the desired estimate.

Corollary 4.8. Under Hypothesis 4.1, let τ =
p

δ̃2

(p+ δ̃2)

(p− 1)
and δ ∈ (0, δ̃2), where δ̃2 is as in

Theorem 3.8. Then for any ε > 0, there exists γ = γ(ε) > 0 such that if u ∈ W 1, p−δ
0 (Ω) is a

very weak solution of (3.1) satisfying

B2R

|∇u|p−δ dx ≤ 1,
B2R

|f |p−δ dx ≤ γp−δ and
BR

Υ(A, BR)τdx ≤ γτ ,

for a ball B2R b Ω, then there exists v ∈ W 1, p(BR) ∩W 1,∞(BR/2) such that

BR

|∇u−∇v|p−δdx ≤ εp−δ, and ‖∇v‖L∞(BR/2) ≤ C0 = C0(n, p,Λ0,Λ1).

Proof. Let w and v solve (4.4) and (4.5) respectively. Since we have v ∈ W 1,p(BR), standard

regularity theory gives (see, e.g., [56])

‖∇v‖pL∞(BR/2) >
BR

|∇v|pdx >
BR

|∇w|pdx

>
(

B2R

|∇w|p−δdx
) p

p−δ

>
(

B2R

|∇u|p−δdx
) p

p−δ

≤ C0.
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Here we have applied Theorem 3.8. The proof of the corollary now follows from the compar-

ison estimate in Lemma 3.13 and Lemma 4.7.

4.3 Boundary estimates

We now consider the corresponding local estimates near the boundary. Suppose that the

domain Ω is (γ, R0)-Reifenberg flat with γ < 1/2. Let x0 ∈ ∂Ω and R ∈ (0, R0/20) and

let u ∈ W 1,p−δ
0 (Ω) be a very weak solution to (3.1) for some δ ∈ (0,min{1, p − 1}). On

Ω20R = Ω20R(x0) = B20R(x0) ∩ Ω, we let w(x) be a very weak solution to the problem: divA(x,∇w) = 0 in Ω20R,

w ∈ u+W 1,p−δ
0 (Ω20R(x0)).

(4.7)

We now extend u by zero to Rn \ Ω and then extend w by u to Rn \ Ω20R(x0).

Remark 4.9. Analogous to Lemma 3.13, we have the boundary counterpart given in Lemma

3.24. This will imply the boundary analogue of Lemma 4.7 as given in Lemma 4.10.

With x0 ∈ ∂Ω and 0 < R < R0/20 as above, we now set ρ = R(1− γ). Here γ is from the

definition of (γ,R)-Reifenberg flat condition that we have assumed on Ω.

With this ρ and thanks to the existence and regularity of w in Theorem 3.21, we define

another function v ∈ w +W 1, p
0 (Ωρ(0)) as the unique solution to the Dirichlet problem div ABρ(∇v) = 0 in Ωρ(0),

v = w on ∂Ωρ(0).
(4.8)

We then set v to be equal to w in Rn \ Ωρ(0). The following boundary difference estimate

can be proved in a way just similar to the proof of Lemma 4.7.

Lemma 4.10. Under Hypothesis 4.1, let δ ∈ (0, δ2), where δ2 is in Theorem 3.21 and let w

and v be as in (4.7) and (4.8). For τ =
p

δ2

(p+ δ2)

(p− 1)
, there exists a constant C = C(n,p,Λ0,Λ1)

such that

Bρ(0)

|∇v −∇w|p−δ dx ≤ C

(
Bρ(0)

Υ(A, Bρ(0))(x)τ dx

)min{p−δ, p−δ
p−1
}/τ (

B14ρ(0)

|∇w|p−δ dx

)
.
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As the boundary of Ω can be very irregular, the L∞-norm of ∇v up to the boundary of Ω

could be unbounded. Therefore, we consider another equation: div ABρ(∇V ) = 0 in B+
ρ (0),

V = 0 on Tρ,
(4.9)

where Tρ is the flat portion of ∂B+
ρ (0). A function V ∈ W 1,p(B+

ρ (0)) is a weak solution of

(4.9) if its zero extension to Bρ(0) belongs to W 1,p(Bρ(0)) and if
ˆ
B+
ρ (0)

ABρ(∇V ) · ∇φ dx = 0

for all φ ∈ W 1,p
0 (B+

ρ (0)).

We shall now need the following key perturbation result obtained earlier in [50, Theorem

2.12].

Theorem 4.11 ([50]). Suppose that A satisfies Hypothesis 4.1. For any ε > 0, there exists

a small γ = γ(n,p,Λ0,Λ1,ε) > 0 such that if v ∈ W 1,p(Ωρ(0)) is a solutions of (4.8) under the

geometric setting in Remark 2.4, then there exists a weak solution V ∈ W 1,p(B+
ρ (0)) of (4.9)

whose zero extension to Bρ(0) satisfies

‖∇V ‖pL∞(Bρ/4(0)) ≤ C(n,p,Λ0,Λ1)
Bρ(0)

|∇v|p dx,

and

Bρ/8(0)

|∇v −∇V |p dx ≤ εp

Bρ(0)

|∇v|p dx.

We now have the boundary analogue of Corollary 4.8. The proof of the following corollary

follows with obvious modification as in [44, Corollary 2.10].

Corollary 4.12 ([44]). For any ε > 0, there exists constants γ = γ(n,p,Λ0,Λ1,ε) > 0 and

δ̃1 = δ̃1(n,p,Λ0,Λ1,ε) ∈ (0, δ2), where δ2 is as in Theorem 3.21, such that the following holds with

τ =
p

δ2

(p+ δ2)

(p− 1)
. If Ω is (γ, R0)-Reifenberg flat and for any δ ∈ (0, δ̃1), let u ∈ W 1, p−δ

0 (Ω) be

a very weak solution of (4.2) with

B20R(x0)

|∇u|p−δχΩ dx ≤ 1,
B20R(x0)

|f |p−δχΩ dx ≤ γp−δ and [A]R0
τ ≤ γ,
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where x0 ∈ ∂Ω and R ∈ (0, R0/20), then there is a function

V ∈ W 1,∞(BR/10(x0))

such that

‖∇V ‖L∞(BR/10(x0)) ≤ C0 = C0(n,p,Λ0,Λ1),

and

BR/10(x0)

|∇u−∇V |p−δ dx ≤ εp−δ. (4.10)

Proof. With x0 ∈ ∂Ω and R ∈ (0, R0/20), we set ρ = R(1 − γ). Also, extend both u and f

by zero to Rn \ Ω. By Remark (2.4) and by translating and rotating if necessary, we may

assume that 0 ∈ Ω, x0 = (0, . . . , 0,−ργ/(1− γ)) and the geometric setting

B+
ρ (0) ⊂ Ωρ(0) ⊂ Bρ(0) ∩ {xn > −4γρ}. (4.11)

Moreover, we shall further restrict γ ∈ (0, 1/45) so that we have

BR/10(x0) ⊂ Bρ/8(0).

We now choose w and v as in (4.7) and (4.8) corresponding to these R and ρ. Then, since

B14ρ(0) ⊂ B20R(x0), there holds

Bρ(0)

|∇v|pdx ≤ C
Bρ(0)

|∇w|pdx ≤ C

(
B20R(x0)

|∇u|p−δdx
) p

p−δ

≤ C.

By Theorem 4.11 for any η > 0 we can find a γ = γ(n,p,Λ0,Λ1,η) ∈ (0, 1/45) such that, under

(4.11), there is a function V ∈ W 1, p(Bρ(0)) ∩W 1,∞(Bρ/4(0)) such that

‖∇V ‖pL∞(BR/10(x0)) ≤ C ‖∇V ‖pL∞(Bρ/4(0)) ≤ C
Bρ(0)

|∇v|pdx ≤ C,

and

Bρ/8(0)

|∇v −∇V |pdx ≤ ηp

Bρ(0)

|∇v|pdx ≤ Cηp.

By Hölder’s inequality, the last bound gives

Bρ/8(0)

|∇v −∇V |p−δdx ≤ Cηp−δ. (4.12)
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Now writing

BR/10(x0)

|∇u−∇V |p−δdx =
Bρ/8(0)

|∇(u− w) +∇(w − v) +∇(v − V )|p−δdx,

and using (4.12) along with Theorem 3.21 and Lemma 4.10, we obtain inequality (4.10) as

desired.

4.4 Weighted estimates

We now use Corollaries 4.8 and 4.12 to obtain the following technical result.

Proposition 4.13. Under Hypothesis 4.1, there are constants λ = λ(n,p,Λ0,Λ1) > 1 and

τ = τ(n,p,Λ0,Λ1) > 1 such that the following holds. For any ε > 0, there exist constants

γ = γ(n,p,Λ0,Λ1,ε) > 0 and δ = δ(n,p,Λ0,Λ1,ε) > 0 such that if u ∈ W 1,p−δ
0 (Ω) with δ ∈ (0, δ), is a

very weak solution to (4.2) with Ω being (γ,R0)-Reifenberg flat, [A]R0
τ ≤ γ, and if, for some

ball Bρ(y) with ρ < R0/1200,

Bρ(y) ∩ {x ∈ Rn :M(|∇u|p−δ)
1
p−δ (x) ≤ 1} ∩ {x ∈ Rn :M(|f |p−δχΩ)

1
p−δ (x) ≤ γ} 6= ∅,

(4.13)

then one has

|{x ∈ Rn :M(|∇u|p−δ)
1
p−δ (x) > λ} ∩Bρ(y)| < ε |Bρ(y)|. (4.14)

Proof. By (4.13), there exists an x0 ∈ Bρ(y) such that for any r > 0,

Br(x0)

|∇u|p−δ dx ≤ 1 and
Br(x0)

χΩ|f |p−δ dx ≤ γp−δ. (4.15)

By the first inequality in (4.15), for any x ∈ Bρ(y), there holds

M(|∇u|p−δ)
1
p−δ (x) ≤ max

{
M(χB2ρ(y)|∇u|p−δ)

1
p−δ (x), 3n

}
. (4.16)

To prove (4.14), it is enough to consider the case B4ρ(y) ⊂ Ω and the case B4ρ(y)∩∂Ω 6= ∅.

First we consider the latter. Let y0 ∈ B4ρ(y) ∩ ∂Ω, we then have

B2ρ(y) ⊂ B6ρ(y0) ⊂ B1200ρ(y0) ⊂ B1205ρ(x0).
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Thus by (4.15) we obtain

B1200ρ(y0)

|∇u|p−δ dx ≤ c and
B1200ρ(y0)

χΩ|f |p−δ dx ≤ c γp−δ,

where c = (1205/1200)n. Since 60ρ < R0/20, by Corollary 4.12 (with R = 60ρ), there exists

a τ = τ(n,p,Λ0,Λ1) > 1 such that the following holds. For any η ∈ (0, 1), there are constants

γ = γ(n,p,Λ0,Λ1,η) > 0 and δ = δ(n,p,Λ0,Λ1,η) > 0 such that if Ω is a (γ, R0)-Reifenberg flat

domain and [A]R0
τ ≤ γ, then one can find a function V ∈ W 1,∞(B6ρ(y0)) with

‖∇V ‖L∞(B2ρ(y)) ≤ ‖∇V ‖L∞(B6ρ(y0)) ≤ C0, (4.17)

and, for δ ∈ (0, δ),

B2ρ(y)

|∇u−∇V |p−δ dx ≤ C
B6ρ(y0)

|∇u−∇V |p−δ dx ≤ C ηp−δ. (4.18)

In view of (4.16) and (4.17), we see that for λ = max{3n, 2C0},

{x ∈ Rn :M(|∇u|p−δ)
1
p−δ (x) > λ} ∩Bρ(y) ⊂

⊂ {x ∈ Rn :M(χB2ρ(y)|∇u|p−δ)
1
p−δ (x) > λ} ∩Bρ(y)

⊂ {x ∈ Rn :M(χB2ρ(y)|∇u−∇V |p−δ)
1
p−δ (x) > λ/2} ∩Bρ(y).

Thus by the weak-type (1, 1) Maximal function inequality and (4.18), we find

|{x ∈ Rn :M(|∇u|p−δ)
1
p−δ (x) > λ} ∩Bρ(y)| ≤ C

λp−δ

ˆ
B2ρ(y)

|∇u−∇V |p−δ dx

≤ C

Cp−δ
0

|B2ρ(y)| ηp−δ.

This gives the estimate (4.14) in the case B4ρ(y) ∩ ∂Ω 6= ∅, provided η is appropriately

chosen. The interior case B4ρ(y) ⊂ Ω can be obtained in a similar was by using Corollary

4.8, instead of Corollary 4.12.

Proposition 4.13 can now be used to obtain the following result which involves A∞ weights.

Proposition 4.14. Under Hypothesis 4.1, there exists λ = λ(n,p,Λ0,Λ1) > 1 and τ = τ(n,p,Λ0,Λ1) >

1 such that the following holds: for any w ∈ A∞ and ε > 0, there exist γ = γ(n,p,Λ0,Λ1,ε,[w]∞) > 0
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and δ = δ(n,p,Λ0,Λ1,ε,[w]∞) > 0 such that if u ∈ W 1,p−δ
0 (Ω) with δ ∈ (0, δ), is a very weak so-

lution of (4.2) with Ω being (γ,R0)-Reifenberg flat, [A]R0
τ ≤ γ, and if, for some ball Bρ(y)

with ρ < R0/1200,

w({x ∈ Rn :M(|∇u|p−δ)
1
p−δ (x) > λ} ∩Bρ(y)) ≥ ε w(Bρ(y)),

then one has

Bρ(y) ⊂ {x ∈ Rn :M(|∇u|p−δ)
1
p−δ (x) > 1} ∪ {x ∈ Rn :M(|f |p−δχΩ)

1
p−δ (x) > γ}. (4.19)

Proof. Suppose that (Ξ0,Ξ1) is a pair of A∞ constants of w and let λ and τ be as in Proposi-

tion 4.13. Given ε > 0, we choose a γ = γ(Ξ0,Ξ1,ε) and δ = δ(Ξ0,Ξ1,ε) as in Proposition 4.13 with

[ε/(2Ξ0)]1/Ξ1 replacing ε. The proof then follows by a contradiction. To that end, suppose

that the inclusion in (4.19) fails for this γ, then we must have that

Bρ(y) ∩ {x ∈ Rn :M(|∇u|p−δ)
1
p−δ (x) ≤ 1} ∩ {x ∈ Rn :M(|f |p−δχΩ)

1
p−δ (x) ≤ γ} 6= ∅

for some δ ∈ (0, δ). Hence by Proposition 4.13, if Ω is a (γ, R0)-Reifenberg flat and [A]R0
τ ≤ γ,

there holds

|{x ∈ Rn : M(|∇u|p−δ)
1
p−δ (x) > λ ∩Bρ(y)| ≤

(
ε

2 Ξ0

)1/Ξ1

|Bρ(y)|.

Thus using the A∞ characterization of w (Lemma 2.21), we immediately get that

w({x ∈ Rn :M(|∇u|p−δ)
1
p−δ (x) > λ} ∩Bρ(y))

≤ Ξ0

[
|{x ∈ Rn :M(|∇u|p−δ)

1
p−δ (x) > λ} ∩Bρ(y)|

|Bρ(y)|

]Ξ1

w(Bρ(y))

≤ ε

2
w(Bρ(y)) < εw(Bρ(y)).

This yields a contradiction and thus the proof is complete.

The Calderón-Zygmund decomposition type lemma 2.36 will allow us to iterate the result

of Proposition 4.14 to obtain Theorem 4.15 below.
69



Theorem 4.15. Under Hypothesis 4.1, let λ and τ be as in Proposition 4.14, then for any

w ∈ A∞ and any ε > 0, there exist γ = γ(n,p,Λ0,Λ1,ε,[w]∞) > 0 and δ = δ(n,p,Λ0,Λ1,ε,[w]∞) > 0

such that the following holds: Suppose that for any solution u ∈ W 1, p−δ
0 (Ω) with δ ∈ (0, δ),

is a very weak solution of (3.1) in a (γ, R0)-Reifenberg flat domain Ω, with [A]R0
τ ≤ γ,

suppose also that {Br(yi)}Li=1 is a sequence of balls with centers yi ∈ Ω and a common radius

0 < r ≤ R0/4000 that covers Ω. If for all i = 1, . . . , L

w({x ∈ Ω :M(|∇u|p−δ)
1
p−δ (x) > λ}) < εw(Br(yi)), (4.20)

then for any s > 0 and any integer k ≥ 1 there holds

w({x ∈Ω :M(|∇u|p−δ)
1
p−δ (x) > λk})s ≤

≤
k∑
i=1

(Aε)siw({x ∈ Ω :M(|f |p−δχΩ)
1
p−δ (x) > γλ(k−i)})s+

+ (Aε)sk w({x ∈ Ω :M(|∇u|p−δ)
1
p−δ (x) > 1})s,

where the constant A = A(n,[w]∞).

Proof. The theorem will be proved by induction on k. Given w ∈ A∞ and ε > 0, we take

γ = γ(ε,[w]∞) and δ = δ(ε,[w]∞) as in Proposition 4.14. The case k = 1 follows from Proposition

4.14 and Lemma 2.36. Indeed, for δ ∈ (0, δ), let

C = {x ∈ Ω :M(|∇u|p−δ)
1
p−δ (x) > λ}

D = {x ∈ Ω :M(|∇u|p−δ)
1
p−δ (x) > 1} ∪ {x ∈ Ω :M(|f |p−δχΩ)

1
p−δ (x) > γ}.

Then from assumption (4.20), it follows w(C) < εw(Br(yi)) for all i = 1, . . . , L. Moreover,

if y ∈ Ω and ρ ∈ (0, 2r) such that w(C ∩ Bρ(y)) ≥ ε w(Bρ(y)), then 0 < ρ ≤ R0/1200 and

Bρ(y)∩Ω ⊂ D by Proposition 4.14. Thus all hypotheses of Lemma 2.36 are satisfied, which

yield, for a constant B = B(n, [w]∞),

w(C)s ≤ Bs εsw(D)s

≤ Bs 2sεsw({x ∈ Ω :M(|∇u|p−δ)
1
p−δ (x) > 1})s+

+Bs 2sεsw({x ∈ Ω :M(|f |p−δχΩ)
1
p−δ (x) > γ})s
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for any given s > 0. This proves the case k = 1 with A = 2B. Suppose now that the

conclusion of the lemma is true for some k > 1. Normalizing u to uλ = u/λ and fλ = f/λ,

we see that for every i = 1, . . . , L,

w({x ∈ Ω :M(|∇uλ|p−δ)
1
p−δ (x) > λ}) =

= w({x ∈ Ω :M(|∇u|p−δ)
1
p−δ (x) > λ2})

≤ w({x ∈ Ω :M(|∇u|p−δ)
1
p−δ > λ})

< εw(Br(yi)).

Here we have used the fact that λ > 1 in the first inequality. Note that uλ solves div Ã(x,∇uλ) = div |fλ|p−2fλ in Ω,

u = 0 on ∂Ω,

where Ã(x, ξ) = A(x, λξ)/λp−1 which obeys the same structural conditions in Hypothesis

4.1. Thus by inductive hypothesis, it follows that

w({x ∈ Ω :M(|∇uλ|p−δ)
1
p−δ (x) > λk})s ≤

≤
k∑
i=1

(Aε)siw({x ∈ Ω :M(|fλ|p−δχΩ)
1
p−δ (x) > γλ(k−i)})s+

+ (Aε)sk w({x ∈ Ω :M(|∇uλ|p−δ)
1
p−δ (x) > 1})s.

(4.21)

Finally, applying the case k = 1 to the last term in (4.21) we conclude that

w({x ∈Ω :M(|∇u|p−δ)
1
p−δ (x) > λk+1})s ≤

≤
k+1∑
i=1

(Aε)siw({x ∈ Ω :M(|f |p−δχΩ)
1
p−δ (x) > γλk+1−i})s

+ (Aε)s(k+1) w({x ∈ Ω :M(|∇u|p−δ)
1
p−δ (x) > 1})s.

This completes the proof of the theorem.

We are now ready to obtain the main result of this section.

Theorem 4.16. Suppose that A satisfies Hypothesis 4.1 and let M > 1 and w be an

A∞ weight. There exist constants τ = τ(n,p,Λ0,Λ1) > 1, δ = δ(n,p,Λ0,Λ1,M,[w]∞) > 0 and
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γ = γ(n,p,Λ0,Λ1,M,[w]∞) > 0 such that for any t ∈ (0,∞] and any q ∈ (0,M ], the following

holds: If u ∈ W 1,p−δ
0 (Ω) is a very weak solution of (3.1) in a (γ, R0)-Reifenberg flat domain

Ω with [A]R0
τ ≤ γ, then one has the estimate

‖∇u‖Lw(q,t)(Ω) ≤ C‖M(|f |p−δ)
1
p−δ ‖Lw(q,t)(Ω), (4.22)

where the constant C = C(n,p,Λ0,Λ1,t,q,M,[w]∞,diam(Ω)/R0).

Remark 4.17. The introduction of M in the above theorem is just for a technical reason.

It ensures that the constant δ is independent of q as the proof of the theorem reveals.

Remark 4.18. It follows also from the proof of Theorem 4.16 that if (Ξ0,Ξ1) is pair of A∞

constants of w such that max{Ξ0, 1/Ξ1} ≤ ω then the constants δ, γ and C above can be

chosen to depend just on the upper-bound ω instead of (Ξ0,Ξ1).

Proof. Let λ(n,p,Λ0,Λ1) and τ(n,p,Λ0,Λ1) be as in Theorem 4.15. Take ε = λ−MA−12−1 and

choose δ = δ(n,p,Λ0,Λ1,ε,[w]∞)/2, where A = A(n,[w]∞) and δ are as in Theorem 4.15; thus

δ = δ(n,p,Λ0,Λ1,M,[w]∞), which is independent of q. Using Theorem 4.15 we also get a constant

γ = γ(n,p,Λ0,Λ1,M,[w]∞) > 0 for this choice of ε.

We shall prove (4.22) only for t ∈ (0, ∞), as for t =∞ the proof is just similar. Choose a

finite number of points {yi}Li=1 ⊂ Ω and a ball B0 of radius 2 diam(Ω) such that

Ω ⊂
L⋃
i=1

Br(yi) ⊂ B0,

where r = min{R0/4000, diam(Ω)}. We claim that we can choose N large such that for

uN = u/N and for all i = 1, . . . , L,

w({x ∈ Ω :M(|∇uN |p−δ)
1
p−δ (x) > λ) < εw(Br(yi)). (4.23)

Indeed from the weak-type (1, 1) estimate for the maximal function, there exists a constant

C(n) > 0 such that

|{x ∈ Ω :M(|∇uN |p−δ)
1
p−δ (x) > λ}| <

C(n)

(λN)p−δ

ˆ
Ω

|∇u|p−δ dx.
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If (Ξ0,Ξ1) is a pair of A∞ constants of w, then using Lemma 2.21, we see that

w({x ∈ Ω :M(|∇uN |p−δ)
1
p−δ (x) > λ}) < Ξ0

(
C(n)

(λN)p−δ|B0|

ˆ
Ω

|∇u|p−δ dx.
)Ξ1

w(B0).

(4.24)

Also, there are C1 = C1(n,[w]∞) ≥ 1 and p1 = p1(n,[w]∞) ≥ 1 such that

w(B0) ≤ C1

(
|B0|
|Br(yi)|

)p1

w(Br(yi)) (4.25)

for every i = 1, 2, . . . , L. This follows from the so-called strong doubling property of A∞

weights (see, e.g., [19, Chapter 9]). In view of (4.24) and (4.25), we now choose N such that

C(n)

(λN)p−δ|B0|

ˆ
Ω

|∇u|p−δ dx =

(
|Br(yi)|
|B0|

)p1/Ξ1
(

ε

Ξ0C1

)1/Ξ1

.

This gives the desired estimate (4.23). Note that for this N we have

N ≤ C|B0|
−1
p−δ ‖∇u‖Lp−δ(Ω) ≤ C|B0|

−1
p−δ ‖fχΩ‖Lp−δ(B0)

≤ CM(|f |p−δχΩ)(x)
1
p−δ

(4.26)

for all x ∈ Ω. Here C = C(n,p,Λ0,Λ1,M,[w]∞,diam(Ω)/R0) and the second inequality follows from

Theorem 3.3.

With this N , we denote by

S =
∞∑
k=1

λtkw({x ∈ Ω :M(|∇uN |p−δ)
1
p−δ (x) > λk})

t
q

and for J ≥ 1 let

SJ =
J∑
k=1

λtkw({x ∈ Ω :M(|∇uN |p−δ)
1
p−δ (x) > λk})

t
q

be its partial sum. By Lemma 2.19, we see that

C−1S ≤ ‖M(|∇uN |p−δ)
1
p−δ ‖tLw(q,t)(Ω) ≤ C(w(Ω)

t
q + S). (4.27)

By (4.23) and Theorem 4.15, we find

SJ ≤
J∑
k=1

λtk

[
k∑
j=1

(Aε)
t
q
jw({x ∈ Ω :M(|fN |p−δχΩ)

1
p−δ (x) > γλ(k−j)})

t
q

]

+
J∑
k=1

λtk(Aε)
t
q
kw({x ∈ Ω :M(|∇uN |p−δ)

1
p−δ (x) > 1})

t
q .
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Here recall that ε = λ−MA−12−1 ans A = A(n,[w]∞). Now interchanging the order of summa-

tion, we get

SJ ≤
J∑
j=1

(Aελq)
t
q
j

[
J∑
k=j

λt(k−j)w(Ω ∩ {M(|fN |p−δχΩ)
1
p−δ > γλ(k−j)})

t
q

]

+
J∑
k=1

(Aελq)
t
q
kw({x ∈ Ω :M(|∇uN |p−δ)

1
p−δ (x) > 1})

t
q

≤ C
[
‖M(|fN |p−δ)

1
p−δ ‖tLw(q,t)(Ω) + w(Ω)

t
q

] ∞∑
j=1

2−
t
q
j

≤ C
[
‖M(|fN |p−δ)

1
p−δ ‖tLw(q,t)(Ω) + w(Ω)

t
q

]
for a constant C = C(n,p,Λ0,Λ1,q,t,M,[w]∞). Letting J →∞ and making use of (4.27), we arrive

at

‖M(|∇uN |p−δ)
1
p−δ ‖tLw(q,t)(Ω) ≤ C

[
‖M(|fN |p−δ)

1
p−δ ‖tLw(q,t)(Ω) + w(Ω)

t
q

]
.

This gives

‖∇u‖Lw(q,t)(Ω) ≤ C
[
‖M(|f |p−δχΩ)

1
p−δ ‖Lw(q,t)(Ω) +Nw(Ω)

1
q

]
,

which in view of (4.26) yields the desired estimate.

4.5 Theory of Extrapolation

Theorem 4.19. For p > 1, let f ∈ Lp(Ω,Rn) be a given vector field and denote u ∈ W 1,p
0 (Ω)

to be the unique weak solution to (4.2). Suppose we have that

ˆ
Ω

|∇u|p v(x) dx ≤ C([v] p
p−1

)

ˆ
Ω

|f |p v(x) dx (4.28)

holds for all weights v ∈ A p
p−1

. Then for any p− 1 < q <∞, there holds

ˆ
Ω

|∇u|qw(x) dx ≤ C([w] q
p−1

)

ˆ
Ω

|f(x)|qw(x) dx (4.29)

for all weights w ∈ A q
p−1

.

Remark 4.20. What we obtain in this thesis is the weighted bound (4.1) for all weights

w ∈ A1 which unfortunately is not enough for us to apply the above extrapolation theorem.
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However, it provides us with an alternative view on the conjecture of T. Iwaniec and gives us

a different sense of how far we are from completely resolving this conjecture. Of course, one

can also generalize this conjecture by proposing the bound (4.28) for all weights v ∈ A p
p−1

.

Proof. First we consider the sub-natural case p− 1 < q < p. To that end, let w ∈ A q
p−1

and

suppose that f ∈ Lp(Ω,Rn) ∩ Lqw(Ω,Rn) satisfying (4.28) for all v ∈ A p
p−1

. Extend both f

and u by zero to Rn \ Ω and define

R(f)(x) :=
∞∑
k=0

M(k)(|f |p−1)(x)

2k‖M‖k
L
q/(p−1)
w →Lq/(p−1)

w

.

HereM(k) =M◦M◦ · · · ◦M (k times) and note that (see, e.g., [19, Chapter 9])

‖M‖
L
q/(p−1)
w →Lq/(p−1)

w
≤ C(n,p,q,[w] q

p−1
). (4.30)

Now it is easy to observe from the definition of R(f) that

|f(x)|p−1 ≤ R(f)(x), and ‖R(f)‖
L
q/(p−1)
w

≤ 2‖f‖p−1
Lqw

. (4.31)

An important result which we shall need is the following estimate:

R(f)−
(p−q)
(p−1) w ∈ A p

p−1
with [R(f)−

(p−q)
(p−1) w] p

p−1
≤ C([w] q

p−1
). (4.32)

The proof of (4.32) is obtained as follows: it follows from (4.30) and the definition of R(f)

that

M(R(f)) ≤ C([w] q
p−1

)R(f),

and thus we get that

R(f)(x)−1 ≤ C([w] q
p−1

)

(
1

|B|

ˆ
B

R(f) dy

)−1

for any ball B ⊂ Rn containing x. Set now s =
(p− q)
(p− 1)

q

p
. Using the last inequality, we find

for any ball B ⊂ Rn,

B

R(f)−s
p
q w dx ≤ C([w] q

p−1
)

(
B

R(f) dy

)−s p
q
(

B

w(x) dx

)
. (4.33)
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On the other hand, by Hölder’s inequality there holds(
B

[R(f)−s
p
qw(x)]1−p dx

) 1
p−1

=

(
B

R(f)p−qw(x)1−p dx

) 1
p−1

≤
(

B

R(f) dx

) p−q
p−1
(

B

w(x)
1−p

1−p+q dx

) 1−p+q
p−1

.

(4.34)

Multiplying (4.33) by (4.34), we obtain the conclusion stated in (4.32).

We now obtain by Hölder’s inequalityˆ
Rn
|∇u|qw dx =

ˆ
Rn
|∇u|qR(f)−sR(f)sw dx

≤
(ˆ

Rn
|∇u|pR(f)−s.

p
qw dx

)q/p(ˆ
Rn
R(f)s.

q
p−qw dx

)(p−q)/p

.

(4.35)

By making use of the hypothesis of the theorem along with (4.31), we can then estimate

the right hand side of (4.35) as
ˆ
Rn
|∇u|qw dx ≤ C(

[R(f)
−s. pq w] p

p−1

)(ˆ
Rn
|f |pR(f)−s.

p
qw dx

)q/p(ˆ
Rn
R(f)s.

q
(p−q)w dx

)(p−q)/p

≤ C(
[R(f)

−s. pq w] p
p−1

)(ˆ
Rn
R(f)

q
p−1w dx

)
≤ C(

[R(f)
−s. pq w] p

p−1

)2
q
p−1‖f‖q

Lqw
.

Then applying (4.32), we obtain (4.29) in the case p− 1 < q < p.

We now consider the case p < q < ∞ and in this regard, we fix a w ∈ A q
p−1

and let

f ∈ Lp(Ω,Rn) ∩ Lqw(Ω,Rn) be as in the theorem. For any h ∈ L(q/p)′

w (Rn), define

R′(h)(x) :=
∞∑
k=0

(M′)(k)(|h|
(q/p)′

(q/(p−1))′ )(x)

2k‖M′‖k
L

(q/(p−1))′
w →L(q/(p−1))′

w

,

whereM′(h) :=
M(hw)

w
and (q/p)′ =

q

q − p
, (q/(p− 1))′ =

q

q − p+ 1
denote the conjugate

Hölder exponents. Then it is easy to observe that

|h|
(q/p)′

(q/(p−1))′ (x) ≤ R′(h)(x), and ‖R′(h)‖
L

(q/(p−1))′
w

≤ 2‖h‖
(q/p)′

(q/(p−1))′

L
(q/p)′
w

. (4.36)

We now choose an h ∈ L(q/p)′

w (Rn) with ‖h‖
L

(q/p)′)
w

= 1 such that

ˆ
Rn
|∇u|q w(x) dx = ‖|∇u|p‖q/p

L
q/p
w

=

(ˆ
Rn
|∇u|ph(x)w(x) dx

)q/p
. (4.37)
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For this choice of h, define H := [R′(h)]
(q/(p−1))′

(q/p)′ . It is easy to see from (4.36) that 0 ≤ h ≤

H. We now prove the following important estimate:

(Hw) ∈ A p
p−1

with [Hw] p
p−1
≤ C([w] q

p−1
). (4.38)

Analogous to (4.30), we observe that M′(R′(h)) ≤ C([w] q
p−1

)R′(h). Thus for any ball B

containing x,

(Hw)(x)1−p ≤ C([w] q
p−1

)

(
B

H
(q/p)′

(q/(p−1))′w(y) dy

) (q/(p−1))′
(q/p)′ (1−p)

w(x)
1−p
q−p+1 ,

where we have used the fact that
(

(q/(p− 1))′

(q/p)′
− 1

)
(p − 1) =

1− p
q − p+ 1

. With this we

obtain the estimate

(
B

(Hw)1−p dx

) 1
p−1

≤ C([w] q
p−1

)

(
B

H
(q/p)′

(q/(p−1))′w dy

)− (q/(p−1))′
(q/p)′

(
B

w
1−p
q−p+1 dx

) 1
p−1

(4.39)

for all balls B ⊂ Rn.

On the other hand, by Hölder’s inequality, we obtain

Q

Hw dx ≤
(

Q

H
(q/p)′

(q/(p−1))′w dx

) (q/(p−1))′
(q/p)′

(
Q

w dx

)1− (q/(p−1))′
(q/p)′

. (4.40)

Multiplying (4.39) by (4.40) and observing that 1− (q/(p− 1))′

(q/p)′
=

1

q − p+ 1
, we get

[Hw] p
p−1
≤ C([w] q

p−1
)

(
Q

w
1−p
q−p+1 dx

) 1
p−1
(

Q

w dx

) 1
q−p+1

≤ C([w] q
p−1

),

which completes the proof of (4.38).

Using our hypothesis on f and Hölder’s inequality we now obtain
ˆ
Rn
|∇u|p hw dx ≤

ˆ
Rn
|∇u|pH w dx

≤ C(
[Hw] p

p−1

) ˆ
Rn
|f |pH w dx

≤ C(
[Hw] p

p−1

)(ˆ
Rn
|f |q w dx

)p/q (ˆ
Rn
|H|(q/p)′ w dx

)1/(q/p)′

.

(4.41)
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Concerning the last term on the right, we have
ˆ
Rn
|H|(q/p)′ w dx =

ˆ
Rn
R′(h)(q/(p−1))′ w dx

= ‖R′(h)‖(q/(p−1))′

L
(q/(p−1))′
w

≤ 2(q/(p−1))′‖h‖(q/p)′

L
(q/p)′
w

,

(4.42)

where the last inequality follows from (4.36).

Substituting (4.42) into (4.41) and recalling (4.37), we obtain the desired estimate when

p < q <∞.
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Chapter 5
Sharp Existence Result for Riccati type
Equation

In this Chapter, we will study existence of solutions to equations of the form: − divA(x,∇u) = |∇u|p + σ in Ω

u = 0 on ∂Ω
(5.1)

Hypothesis 5.1. We will assume the nonlinearity A(x, ζ) satisfies (2.1) and (2.2). Also we

shall assume that A(x, ζ) satisfies (γ0, R0)-BMO condition as quantified in Theorem 4.3. We

further assume that the domain Ω satisfies all the conditions of Theorem 4.3.

Remark 5.2. The Hypothesis 5.1 ensures that we have estimates of the form:

‖∇u‖Lpw(Ω) ≤ C(n,p,Λ0,Λ1,[w]1,diam(Ω)/R0)‖f‖Lpw(Ω)

holds for all weights w ∈ A1.

In what follows, we will only assume that Hypothesis 5.1 are satisfied unless explicitly

stated otherwise.

We shall recall the Schauder Fixed point theorem:

Theorem 5.3 (Schauder Fixed Point Theorem). Suppose K ⊂ X is a closed, convex set

and assume also that

A : K → K

is precompact. Then A has a fixed point in K.

Definition 5.4. Define the set

ET := {φ ∈ W 1,1
0 (Ω) ∩W 1,p

0 (Ω) : ‖φ‖M1,p ≤ T} (5.2)

where T is a fixed constant to be chosen later. We shall impose the subset topology from

W 1,1
0 (Ω) on E. Note here that the norm ‖ · ‖M1,p is defined in Definition 2.16.
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Lemma 5.5. The set ET is closed and convex for a fixed T .

Proof. Let vn be any sequence in ET with vn → v strongly inW 1,1
0 (Ω). Because vn ∈ W 1,p

0 (Ω)

are uniformly bounded in W 1,p
0 (Ω) norm, we have that vn ⇀ v weakly in W 1,p

0 (Ω). Since

W 1,p
0 (Ω) norms are weakly lower semicontinuous, we see that

‖v‖W 1,p
0 (K) ≤ lim inf

n→∞
‖vn‖W 1,p

0 (K) ≤ T cap1,p(W
1,p
0 (K))

which automatically implies v ∈ ET and this shows that ET is closed.

It is easy to see that ‖ · ‖M1,p is a seminorm and seminorms are subadditive. This easily

implies that ET is a convex set.

5.1 Main Theorem

Theorem 5.6. Let Ω be a bounded domain and assume that the nonlinearity A(x,∇u)

satisfies (2.3) for the proof of this theorem. Suppose there exists a solution u ∈ W 1,p
0 (Ω) to

(5.1) with |∇u|p ∈ M1,p(Ω), then there exists a vector field ζ such that σ = − div ζ and

satisfies the estimate

‖|ζ|p′‖M1,p . ‖|∇u|p‖M1,p + ‖|∇u|p‖p
′

M1,p

Remark 5.7. If we assume σ ≥ 0 and compactly supported in Ω, then any weak solution

u ∈ W 1,p
0 (Ω) solving (5.1) automatically satisfies |∇u|p ∈M1,p(Ω). To see this, consider any

function φ ∈ C∞c (Ω) with φ ≥ 0 and using φp as test function in (5.1), we get
ˆ

Ω

〈A(x,∇u), pφp−1∇φ〉 dx =

ˆ
Ω

|∇u|pφp dx+

ˆ
Ω

σφp dx

An application of Young’s inequality on the left gives
ˆ

Ω

|∇u|pφp dx+

ˆ
Ω

σφp dx ≤ 1

2

ˆ
Ω

|∇u|pφp dx+ C

ˆ
Ω

|∇φ|p dx.

In other words, we have that
ˆ

Ω

|∇u|pφp dx ≤ C

ˆ
Ω

|∇φ|p ds and
ˆ

Ω

σφp dx dx ≤ C

ˆ
Ω

|∇φ|p dx

for all φ ∈ C∞c (Ω) with φ ≥ 0. This is precisely the trace inequality and hence Theorem 2.32

implies that σ ∈M1,p(Ω) and |∇u|p ∈M1,p(Ω).
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Before we proceed with the proof of the theorem, we need the following Lemma:

Lemma 5.8. Given any function g ∈ Ls(Ω), there exists a vector field h ∈ Ls(Ω) such that

g = divh satisfying the estimate

|h(x)| ≤ I1(g)(x)

where I1(·)(x) denotes the Riesz potential of order 1.

Proof. First we extend g to be zero outside Ω. Now consider the Green’s function G(x, y)

associated to −∆ on the ball Ω ⊂ BR with radius R = diam(Ω), then consider at the

following problem:  −∆φ = g in BR

φ = 0 on ∂BR

We can then write φ = G ∗ g := G ∗ (−∆φ) and from this it is easy to see that

∆φ(x) =

ˆ
BR

∆xG(x, y)g(y) dy =

ˆ
BR

∆xG(x, y)(−∆φ(y)) dy.

Hence we can write g(x) = (− div∇G) ∗ g := − div(h). More specifically, we have

h(x) =

ˆ
BR

∇xG(x, y)g(y) dy.

Since the Green function G(x, y) we considered was on BR, we easily see that the Greens

function G(x, y) must satisfy the estimate

|∇xG(x, y)| ≤ C(R, n)
1

|x− y|n−1
.

Hence we obtain the pointwise estimate

|h(x)| ≤ I1(g)(x).

Proof of Theorem 5.6. Consider a ball BR ⊃ Ω and applying Lemma 5.8 with g = |∇u|p and

from (5.1), we see that σ = − divAx,∇u+ div(h) with h(x) =

ˆ
BR

∇xG(x, y)g(y) dy. That

is, if we set ζ(x) = A(x,∇u)− h(x), then we trivially have σ = − div ζ.
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From Lemma 5.8, it is easy to see that

|ζ(x)|p′ ≤ C(p)
[
|A(x,∇u)|p′ + |h(x)|p′

]
≤ C(p,β)

[
|∇u|p + I1(|∇u|p)p′(x)

]
.

Integrating over a compact setK b Rn with cap1,p (K ∩ Ω) > 0 and dividing by cap1,p (K,Ω),

we get ´
K∩Ω
|ζ|p′ dx

cap1,p (K ∩ Ω)
≤ C(p,β)

(´
K∩Ω
|∇u|p dx

cap1,p (K ∩ Ω)
+

´
K∩Ω

I1(|∇u|p)p′

cap1,p (K ∩ Ω)

)
≤ C(p,β)

(
‖|∇u|p‖M1,p + ‖I1(|∇u|p)p′‖M1,p

)
.

Taking supremum over all compact sets K b Rn, we get the estimate

‖|ζ|p′‖M1,p ≤ C(p,β)

(
‖|∇u|p‖M1,p + ‖I1(|∇u|p)p′‖M1,p

)
Note that since by assumption, we have |∇u|p ∈M1,p(Ω), using Theorem 2.30, we see that

‖|∇u|p‖M1,p < +∞ if and only if ‖I1(|∇u|p)p′‖M1,p < +∞. Using Proposition 2.31, we can

replace ‖I1(|∇u|p)p′‖M1,p by ‖|∇u|p‖p
′

M1,p and this completes the proof of the theorem.

5.2 Main Theorem - Converse

Theorem 5.9. Consider the equation divA(x,∇u) = |∇u|p + div(|f |p−2f) in Ω

u = 0 on ∂Ω
(5.3)

with the nonlinearity A(x, ζ) and domain Ω satisfying Hypothesis 5.1. Then there exists a

constant TS > 0 such that if

α := ‖|f |p′‖M1,p < TS,

then there exists a solution u ∈ W 1,p
0 (Ω) with |∇u|p ∈M1,p(Ω) solving (5.3).

The proof of Theorem 5.9 will be carried in several steps. First, we approximate (5.3) and

then obtain existence and regularity for the approximated equation. Eventually we will use

the regularity and an appropriate test function to pass through the limit.

We shall first approximate (5.3) as follows: Consider any v ∈ ET where ET is as defined in

(5.2). Note that we have not yet made any choice on T which will be made later on. Here fs is
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any approximating sequence which converges strongly in Lp
′
(Ω) to the given f , for example,

we take fs = Ts(f) and this suffices for our purposes where Ts(x) := min{|x|, s} sgn(x) for

any s > 0 which is the usual truncation operator. We now extend f to be 0 on Rn\Ω and

consider the equation: − divA(x,∇ũs) = Ts(|∇v|p) + div(fs) in Ω

u = 0 on ∂Ω
(5.4)

Now applying Lemma 5.8, we see that (5.4) can be written as − divA(x,∇ũs) = div(hs) + div(fs) in Ω

u = 0 on ∂Ω
(5.5)

where

hs(x) = −
ˆ
BR

∇xG(x, y)Ts(|∇v|p) dy = −
ˆ

Ω

∇xG(x, y)Ts(|∇v|p) dy

satisfies the estimate

|hs(x)| ≤ I1(|∇v|p)(x). (5.6)

We shall first show existence and regularity of a weak solution to (5.4) and then apply

Schauder Fixed Point Theorem 5.3 to show the existence and regularity of solution to (5.7): − divA(x,∇us) = Ts(|∇us|p) + div(fs) in Ω

us = 0 on ∂Ω
(5.7)

Once we have existence and regularity for the solution in (5.7), we will show strong conver-

gence in W 1,p
0 (Ω) of us to some function u ∈ W 1,p

0 (Ω) and this will help us pass through the

limit in (5.7) and show existence of solution to (5.3). Along the way, we need to put some

restrictions on the vector field f .

The first assumption we make on f and hence automatically also on fs is that

α := ‖|f |p′‖1/p′

M1,p < S1 and hence ‖|fs|p
′‖1/p′

M1,p < S1 .
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Here we need to make a suitable choice of T0 and this will be made in the following Lemma.

Note that the above assumption essentially implies that

ˆ
K

|f |p′ dx ≤ S1 cap1,p(K).

Lemma 5.10. There exists constants S1 > 0 and T0 > 0 such that for any v ∈ ET0 with

‖|fs|p
′‖M1,p ≤ S1, we have a unique solution ũs ∈ ET0 which solves (5.4).

Proof. Since hs+fs ∈ L∞(Ω), we have the existence of a unique weak solution in ũs ∈ W 1,p
0 (Ω)

to (5.5) from the standard theory of monotone operators. All that remains now to show is

ũs ∈ ET0 .

From Theorem 4.3, we have the estimate

ˆ
Ω

|∇ũs|pw dx ≤ C̃1(n, p, [w]1)

ˆ
Ω

|hs + fs|p
′
w dx.

By assumption, we have that |∇v|p ∈M1,p(Ω) and |fs|p
′ ∈M1,p(Ω), hence it easy to see from

using (5.6) and Theorem (2.30) that

‖|hs + fs|p
′‖M1,p ≤ S̃2.

Now making use of Lemma 2.34, we see that

‖|∇ũs|p‖M1,p ≤ C(n,p,C̃1)

[
‖|fs + hs|p

′‖1/p′

M1,p

]p′
.

By using Theorem 2.30 and Proposition 2.31, we get

‖|∇ũs|p‖M1,p ≤ C(n,p,C̃1)

[
‖|fs + hs|p

′‖1/p′

M1,p

]p′
≤ C(n,p,C̃1)

[
‖|fs|p

′‖1/p′

M1,p + ‖|∇v|p‖1/p

M1,p

]p′
.

(5.8)

Define g(t) := C(n,p,C̃1)(t+ α)p
′ − t := C̃2(t+ α)p

′ − t where α = ‖|fs|p
′‖1/p′

M1,p . Then g′(t) = 0

iff

t = t0 :=

[
1

C̃2(t+ α(p′ − 1)

] 1
p′−1

− α.
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We can see that g is a decreasing function and

g(t0) = C̃2(t+ α

(
1

C̃2(t+ α(p′ − 1)

) p′
p′−1

−
(

1

C̃2(t+ α(p′ − 1)

) 1
p′−1

+ α.

If we assume that

α ≤
(

1

C̃2(p′ − 1)

) 1
p′−1

− C̃2

(
1

C̃2(p′ − 1)

) p′
p′−1

:= S1,

then g(t0) ≤ 0 and hence there is exactly one root for g at some T0 ∈ (0, t0], i.e g(T0) = 0.

We fix this choice of T0 and henceforth work with ET0 .

For this t = T0, we have from (5.8), that

‖|∇ũs|p‖M1,p ≤ C̃2[α + T0]p
′
= T0.

This follows by the definition of T0 and from the assumption that v ∈ ET0 .

What we have just shown is that given any v ∈ ET0 with ‖|f |p
′‖M1,p ≤ S1, we have a unique

solution ũs ∈ ET0 solving (5.4) and this proves the lemma.

Theorem 5.11. Let S1 and T0 be defined as in Lemma 5.10. Assume the vector field fs

satisfies ‖|fs|p
′‖M1,p ≤ S1 , then we have a solution us ∈ ET0 solving (5.7).

Proof. We shall apply Schauder Fixed Point Theorem 5.3 to prove existence. From Lemma

5.5, we already know that ET0 is closed and convex. So all that remains to show before

applying Theorem 5.3 is that the operator B : ET0 → ET0 given by v 7→ ũs is precompact.

Here ũs is the unique solution solving (5.4) as obtained in Lemma 5.10. Again from Lemma

5.10 we see that the map B is well defined.

Consider any sequence vk ∈ ET0 with ‖vk‖M1,p ≤ T0, then the solutions ũks solving (5.4)

are in ET0 and hence we have that

• vk → v weakly in W 1,p
0 (Ω) since vk ∈ ET0 ,

• Ts(|∇vk|p) is uniformly bounded in W−1,p′(Ω) since vk ∈ ET0 ,
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• ũks → ũs weakly in W 1,p
0 (Ω) and

Thus all the hypothesis of Theorem 2.40 are satisfied and hence we get

• ũks → ũs strongly in W 1,q
0 (Ω) for any 1 ≤ q < p ,

• ũs solves  − divA(x,∇ũs) = Ts(|∇v|p) + div(fs) in Ω

u = 0 on ∂Ω

This shows that the operator B : ET0 → ET0 is precompact underW 1,1
0 (Ω) topology and we

can now apply Schauder Fixed Point Theorem to prove the existence of a solution us ∈ ET0

solving (5.7). This completes the proof of the Theorem.

Theorem 5.12. Let δ > max{ 1

Λ0

, 1} be any fixed constant where Λ0 is defined in (2.2) and

define µ :=
δ

p− 1
. Let us ∈ ET0 be any solution of (5.4) and define

ws =
eµ|us| − 1

µ
sgn(us).

Then there exists an S2 > 0 such that if ‖|fs|p
′‖M1,p ≤ S2, then the following regularity

estimate holds:

‖us‖W 1,p
0 (Ω) + ‖ws‖W 1,p

0 (Ω) ≤Mδ.

Here the constant Mδ depends only on S2, T0 and is independent of the solution.

Proof. Define v = eδ|us|ws as the test function. This is clearly an admissible test function

since v ∈ L∞(Ω) ∩W 1,p
0 (Ω), hence we see that

∇v = eδ|us|∇ws + δwse
δ|us|∇us sgn(us).

Using this as a test function in (5.7), we get

ˆ
Ω

〈A(x,∇us),∇ws〉eδ|us| dx+

ˆ
Ω

δ|ws|eδ|us|〈A(x,∇us),∇us〉 dx

=

ˆ
Ω

Ts(|∇us|p)eδ|us|ws dx+

ˆ
Ω

〈fs,∇(eδ|us|ws)〉 dx

I1 + I2 = I3 + I4
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Estimate for I1: Since ∇ws = eµ|us|∇us, using the condition (2.1), we see that

I1 =

ˆ
Ω

〈A(x,∇us),∇ws〉eδ|us| dx

=

ˆ
Ω

〈A(x,∇us),∇us〉e(µ+δ)|us| dx

≥ Λ0

ˆ
Ω

|∇ws|p dx

where we have used the fact µ+ δ = p− 1.

Estimate for I3 − I2:

I3 − I2 =

ˆ
Ω

Ts(|∇us|p)eδ|us|ws dx−
ˆ

Ω

δ|ws|eδ|us|〈A(x,∇us),∇us〉 dx

≤
ˆ

Ω

|∇us|peδ|us||ws| dx− δΛ0

ˆ
Ω

|ws|eδ|us||∇us|p dx

=

ˆ
Ω

(1− δΛ0)|∇us|peδ|us||ws| dx ≤ 0,

since we assume that δ ≥ 1

Λ0

. As a consequence, we can ignore these two terms.

Estimate for I4: We have after expanding,

δ

ˆ
Ω

|fs|eδ|us||∇us||ws| dx+

ˆ
Ω

|fs|eδ|us||∇ws| dx = δI1
4 + I2

4

Estimate for I1
4 : By Holders inequality, we have

ˆ
Ω

|fs|eδ|us||∇us||ws| dx ≤
(ˆ

Ω

|fs|p
′
epµ|us| dx

)1/p′ (ˆ
Ω

|∇us|p|ws|p dx
)1/p

=

(ˆ
Ω

|fs|p
′ (
eµ|us| − 1 + 1

)p
dx

)1/p′

×

×
(ˆ

Ω

|∇us|p|ws|p dx
)1/p

≤ C(p)

(
µp−1

(ˆ
Ω

|fs|p
′ |ws|p dx

)1/p′

+ ‖fs‖Lp′ (Ω)

)
×

×
(ˆ

Ω

|∇us|p|ws|p dx
)1/p

.

Since both |fs|p
′ ∈M1,p(Ω) and |∇us|p ∈M1,p(Ω), we see that from applying Theorem

2.32,

I1
4 ≤ µp−1C(p,‖|fs|p′‖M1,p ,T0)‖∇ws‖

p
Lp(Ω) + C(p,T0)‖fs‖Lp′ (Ω)‖∇ws‖Lp(Ω). (5.9)
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Here we have made use of the following Trace inequalities:(ˆ
Ω

|fs|p
′|ws| dx

)1/p′

≤ Ctr(‖|fs|p
′‖M1,p)1/p′

(ˆ
Ω

|∇ws|p dx
)1/p′

and (ˆ
Ω

|∇us|p|ws|p dx
)1/p

≤ Ctr(T0)1/p

(ˆ
Ω

|∇ws|p dx
)1/p

.

Estimate for I2
4 : By Holders inequality, we get

ˆ
Ω

|f |eδ|us|∇ws| dx ≤
(ˆ

Ω

|fs|p
′
epµ|us| dx

)1/p′ (ˆ
Ω

|∇ws|p dx
)1/p

Proceding as in Estimate for I1
4 , we get

I2
4 ≤ µp−1C(p,‖|fs|p′‖M1,p )‖∇ws‖

p
Lp(Ω) + C(p)‖fs‖Lp′ (Ω)‖∇ws‖Lp(Ω). (5.10)

Hence combining estimates (5.9) and (5.10), we get

I4 ≤ (1 + δ)µp−1C0(‖|fs|p′‖M1,p ,T0)‖∇ws‖
p
Lp(Ω) + C1(p,T0)‖fs‖Lp′ (Ω)‖∇ws‖Lp(Ω).

Since we have assumed that fs ∈ ET0 , we can replace ‖fs‖Lp′ (Ω) in the above equation

with a constant depending on T0.

From Remark 2.33, there is a constant which we denote by S2 such that if ‖|fs|p
′‖M1,p ≤

S2, we then obtain

(1 + δ)µp−1C0(‖|fs|p′‖M1,p ,T ) ≤
Λ0

2
.

This completes the proof of the theorem.

Remark 5.13. Henceforth, we shall assume that ‖|fs|p
′‖M1,p ≤ min{S1, S2} =: TS with S1

is as in Lemma 5.10 and S2 is as given in Theorem 5.12.

We have thus far shown existence and uniform regularity to solutions of (5.7) for a fixed

s > 0. If we can show strong convergence of the solutions us in W 1,p
0 (Ω) as lim

s→∞
, we can then

pass through the limit in (5.7) and conclude with existence of a solution to (5.1). This next

section will focus on proving this strong convergence.
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5.3 Strong convergence of approximate solutions

As a consequence of Theorem 5.12, we see that the sequence of approximate solutions {un}

to (5.11) is uniformly bounded in W 1,p
0 (Ω) and hence has a weakly convergent subsequence

which satisfies the following:

i. un → u weakly in W 1,p
0 (Ω),

ii. un → u a.e in Ω and

iii. un → u in measure on Ω

for some function u ∈ W 1,p
0 (Ω).

Henceforth, we fix this subsequence n→∞ and the weak limit u, from which we have the

following theorem:

Theorem 5.14. Let A(x,∇u) and Ω satisfy Hypothesis 5.1 and assume that ‖|fn|p
′‖M1,p ≤

TS as given in Remark 5.13 where fn = Tn(f). Let un be a solution to − divA(x,∇un) = Tn(|∇un|p) + div(fn) in Ω

un = 0 on ∂Ω.
(5.11)

as obtained in Theorem 5.11, then we have for any fixed k > 0, the strong convergence of

∇Tk(un)
n−→ ∇Tk(u) in Lp(Ω).

Proof. We shall make use of the following test function in (5.11):

vn = eδ|Tj(un)|ψ(zn)

where zn = Tk(un)− Tk(u) for some j ≥ k and ψ is a smooth increasing function satisfying

ψ(0) = 0 and ψ′ − (
1 + Λ1δ

Λ0

)|ψ| ≥ 1.
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Clearly we see that vn ∈ L∞ ∩W 1,p
0 (Ω) and hence this is a valid test function. Using this,

we obtain

ˆ
Ω

〈A(x,∇u),∇zn〉eδ|Tj(un)|ψ′(zn) dx =

ˆ
Ω

Tn(|∇un|p)eδ|Tj(un)|ψ(zn) dx

−
ˆ

Ω

〈fn,∇Tj(un)〉δeδ|Tj(un)|ψ(zn) sgn(un) dx−
ˆ

Ω

〈fn,∇zn〉eδ|Tj(un)|ψ′(zn) dx

−
ˆ

Ω

δ〈A(x,∇un),∇Tj(un)〉eδ|Tj(un)|ψ(zn) sgn(un) dx

I1 = I2 + I3 + I4 + I5

We now estimate the first term I1 as follows:

I1 =

ˆ
Ω

〈A(x,∇un),∇Tk(un)−∇Tk(u)〉eδ|Tj(un)|ψ′(zn) dx

=

ˆ
{|un|≤k}

〈A(x,∇un)−A(x,∇Tk(u)),∇Tk(un)−∇Tk(u)〉eδ|Tj(un)|ψ′(zn) dx

+

ˆ
{|un|≤k}

〈A(x,∇Tk(u)),∇Tk(un)−∇Tk(u)〉eδ|Tj(un)|ψ′(zn) dx

+

ˆ
{|un|>k}

〈A(x,∇un),−∇Tk(u)〉eδ|Tj(un)|ψ′(zn) dx

= I1
1 + I2

1 + I3
1

We now split I2 + I5 as I ′2 +X ′2 where

I ′2 = −δ
ˆ
{|un|>k}

〈A(x,∇un),∇Tj(un)〉eδ|Tj(un)|ψ(zn) sgn(un) dx

+

ˆ
{|un|>k}

Tn(|∇un|p)eδ|Tj(un)|ψ(zn) dx,

X ′2 = −δ
ˆ
{|un|≤k}

〈A(x,∇un),∇Tj(un)〉eδ|Tj(un)|ψ(zn) sgn(un) dx

+

ˆ
{|un|≤k}

Tn(|∇un|p)eδ|Tj(un)|ψ(zn) dx.
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Since j ≥ k, we see that |∇Tj(un)|χ{|un|≤k} = |∇un|χ{|un|≤k} and hence we get,

|X ′2| ≤ δΛ1

ˆ
{|un|≤k}

|∇un|p eδ|Tj(un)| |ψ(zn)| dx+

ˆ
{|un|≤k}

|∇un|p eδ|Tj(un)| |ψ(zn)| dx

≤
[ˆ
{|un|≤k}

〈A(x,∇un)−A(x,∇Tk(u)),∇Tk(un)−∇Tk(u)〉eδ|Tj(un)| |ψ(zn)| dx

+

ˆ
{|un|≤k}

〈A(x,∇Tk(u)),∇Tk(un)−∇Tk(u)〉eδ|Tj(un)| |ψ(zn)| dx

+

ˆ
{|un|≤k}

〈A(x,∇Tk(un)),∇Tk(u)〉eδ|Tj(un)| |ψ(zn)| dx
](

1 + Λ1δ

Λ0

)
= X1

2 +X2
2 +X3

2 .

From our choice of ψ, we see that I1
1 −X1

2 ≥ I1
1 and hence we get

I1
1 ≤ −I2

1 − I3
1 + I3 + I4 +X2

2 +X3
2 + I ′2

We shall now estimate each of the terms as follows:

Estimate for −I2
1 : We know that un

n−→ u a.e, from which we see that

A(x,∇Tk(u))eδ|Tj(un)|ψ′(zn)
n−→ A(x,∇Tk(u))eδ|Tj(u)|ψ′(0) a.e.

From the pointwise estimate

A(x,∇Tk(u))eδ|Tj(un)|ψ′(zn) ≤ Λ1e
δj max
s∈[−2k,2k]

|ψ′(s)||∇Tk(u)|p−1

and noting that |∇Tk(u)|p−1 ∈ Lp′(Ω), we easily see from using Lemma 2.38 that

A(x,∇Tk(u))eδ|Tj(un)|ψ′(zn)
n−→ A(x,∇Tk(u))eδ|Tj(u)|ψ′(0) strongly in Lp

′
(Ω).

From the observation

χ{|un|≤k}(∇Tk(un)−∇Tk(u)) = ∇Tk(un)−∇Tk(u)χ{|un|≤k}.

and using the fact that ∇un
n−⇀ ∇u weakly in Lp and ‖∇Tk(un)‖Lp(Ω) being uniformly

bounded independent of n (since un ∈ ET0) , we get that

∇Tk(un)
n−⇀ ∇Tk(u) weakly in Lp.
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Since χ{|un|≤k}
n−→ χ{|u|≤k} a.e in Ω \ {|u| = k} while ∇Tk(u) = 0 a.e on {|u| = k}, we

must have that

χ{|un|≤k}(∇Tk(un)−∇Tk(u))
n−⇀ 0 weakly in Lp.

The above calculations along with using Proposition 2.39 implies that I2
1

n−→ 0 as n→

∞.

Estimate for −I3
1 : Similar to how we applied Theorem 2.38 to estimate I2

1 , we see that

χ{|un|>k}∇Tk(u)eδ|Tj(un)|ψ′(zn)
n−→ 0 strongly in Lp.

We also have that A(x,∇un) is uniformly bounded in Lp
′
(Ω) independent of n and

hence has a weakly convergent limit.

Combining both the facts and using Proposition 2.39, we see that I3
1

n−→ 0 and n→∞.

Estimate for I3: Since fn = Tn(f) and from the definition of zn, we see that

δfne
δ|Tj(un)|ψ(zn) sgn(un)

n−→ 0 a.e in Ω.

Also, fneδ|Tj(un)|ψ(zn) sgn(un) is uniformly integrable in Lp
′
independent of n and hence

we can apply Vitaly Theorem 2.38 to conclude that

δfne
δ|Tj(un)|ψ(zn) sgn(un)

n−→ 0 strongly in Lp
′
.

Since ∇Tj(un) is uniformly bounded, it has a weakly convergent limit.

Combining the above results and using Proposition 2.39, we see that I3
n−→ 0 as n→∞.

Estimate for I4:

I4 =

ˆ
{|un|≤k}

〈fn,∇zn〉eδ|Tj(un)|ψ′(zn) dx+

ˆ
{|un|>k}

〈fn,∇zn〉eδ|Tj(un)|ψ′(zn) dx

= I1
4 + I2

4

92



Estimate for I1
4 : Similar calculations in the spirit of estimate I2

1 shows that

fne
δ|Tj(un)|ψ′(zn)

n−→ feδ|Tj(u)|ψ′(0) strongly in Lp
′
.

Since

χ{|un|≤k}(∇Tk(un)−∇Tk(u)) = ∇Tk(un)−∇Tk(u)χ{|un|≤k}

and χ{|un|≤k}
n−→ χ{|u|≤k} a.e in Ω \ {|u| = k} while ∇Tk(u) = 0 a.e on {|u| = k},

we must have that

χ{|un|≤k}(∇Tk(un)−∇Tk(u))
n−⇀ 0 weakly in Lp(Ω).

Thus by using Proposition 2.39, we must have I1
4

n−→ 0 as n→∞.

Estimate I2
4 : Proceeding in similar way as we estimated I3

1 , we can easily show that

I2
4

n−→ 0 as n→∞.

Combining the estimate for I1
4 and I2

4 , we see that I4
n−→ 0 as n→∞.

Estimate for X2
2 : Similar calculations as in estimate I1

1 gives

χ{|un|≤k}A(x,∇Tk(u))eδ|Tj(un)||ψ(zn)| n−→ 0 strongly in Lp
′

and

χ{|un|≤k}(∇Tk(un)−∇Tk(u))
n−⇀ 0 weakly in Lp.

Combining all this, we see that X2
2

n−→ 0 as n→∞.

Estimate for X3
2 : Since A(x,∇Tk(un)) is uniformly bounded in Lp

′
independent of n, we

see that it is weakly compact. Combining this weak compactness with the observations

∇Tk(u)eδ|Tj(un)||ψ(zn)| n−→ 0 strongly in Lp,

we see that X3
2

n−→ 0 as n→∞.
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Estimate for I ′2: Since j ≥ k, we have χ{|un|>k}〈A(x,∇un),∇Tj(un)〉 ≥ Λ0|∇u|pχ{|un|>j}.

Also, it is easy to see that sgn(un)χ{|un|>k}ψ(zn) ≥ 0 a.e on Ω. From both these obser-

vations, we see thatˆ
{|un|>k}

[sgn(un)Tn(|∇un|p)− δ〈A(x,∇un),∇Tj(un)〉] sgn(un)eδ|Tj(un)|ψ(zn) dx

≤
ˆ
{|un|>k}

[
|∇un|p − δΛ0|∇un|pχ{|un|≤j}

]
sgn(un)eδ|Tj(un)|ψ(zn) dx

≤
ˆ
{|un|>j}

|∇un|p sgn(un)eδ|Tj(un)|ψ(zn) dx.

In the last inequality, we have used the assumption δ >
1

Λ0

along with the fact that

|∇un|χ{|un|≤j} = 0 on the set {|un| > j}. Hence we get

I ′2 ≤
ˆ
{|un|>j}

|∇un|p sgn(un)eδ|Tj(un)|ψ(zn) dx

≤ eδjψ(2k)

ˆ
{|un|>j}

|∇un|p dx.
(5.12)

If we define yn := e
δ
p−1
|un| − 1, then we getˆ

{|un|>j}
|∇un|p dx =

(
p− 1

δ

)p ˆ
{|un|>j}

e−
δp
p−1
|un||∇yn|p dx

≤
(
p− 1

δ

)p
e−

jδp
p−1

ˆ
{|un|>j}

|∇yn|p dx ≤
(
p− 1

δ

)p
e−

jδp
p−1Mδ.

(5.13)

In the last inequality, we have made use of the uniform estimate in Theorem 5.12

Combining estimates (5.12) and (5.13), we see that

I ′2 ≤
(
p− 1

δ

)p
e−

jδ
p−1Mδ

which implies lim sup
j→∞

lim sup
n→∞

I ′2 ≤ 0.

Using (2.2) and the fact that 〈A(x,∇Tk(un))−A(x,∇Tk(u)),∇Tk(un)−∇Tk(u)〉 ≥ 0, we

get

I1
1 ≥ Λ0

ˆ
{|un|≤k}

〈A(x,∇Tk(un))−A(x,∇Tk(u)),∇Tk(un)−∇Tk(u)〉 dx.

Note that eδ|Tj(un)| ≥ 1 uniformly and |ψ′| ≥ 1. Combining all the estimates, this shows that
ˆ
{|un|≤k}

〈A(x,∇Tk(un))−A(x,∇Tk(u)),∇Tk(un)−∇Tk(u)〉 n−→ 0 as n→∞. (5.14)
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By using Vitali’s theorem 2.38, we see that

χ{|un|>k}〈A(x,∇Tk(un))−A(x,∇Tk(u)),∇Tk(un)−∇Tk(u)〉 =

= χ{|un|>k}〈A(x,∇Tk(u)),∇Tk(u)〉 n−→ 0 strongly in L1(Ω).
(5.15)

Using (5.14) and (5.15) and applying (2.2), we see that
ˆ

Ω

(
|∇Tk(un)|2 + |∇Tk(u)|2

) p−2
2 |∇Tk(un)−∇Tk(u)|2 dx n−→ 0 as n→∞. (5.16)

We will split the proof into two cases:

p ≥ 2: In this situation, an application of triangle inequality trivially gives:

(
|∇Tk(un)|2 + |∇Tk(u)|2

) p−2
2 (|∇Tk(un)−∇Tk(u)|)2 ≥ |∇Tk(un)−∇Tk(u)|p (5.17)

1 < p < 2: Applying Hölder’s inequality, we get:
ˆ

Ω

|∇Tk(un)−∇Tk(u)|p dx ≤
(ˆ

Ω

(|∇Tk(un)|2 + |∇Tk(u)|2)
p−2

2 |∇Tk(un)−∇Tk(u)|2 dx
) p

2

×

×
(ˆ

Ω

(|∇Tk(un)|2 + |∇Tk(u)|2)
p
2 dx

) 2−p
2

≤ C(Mδ,T0)

(ˆ
Ω

(|∇Tk(un)|2 + |∇Tk(u)|2)
p−2

2 |∇Tk(un)−∇Tk(u)|2 dx
) p

2

.

(5.18)

In the last inequality, we used the fact that u ∈ ET0 and the uniform estimate from Theorem

5.12.

Using (5.16) and (5.17) in the case p ≥ 2 or (5.18) in the case 1 < p < 2, we see that
ˆ

Ω

|∇Tk(un)−∇Tk(u)|p dx n−→ 0 as n→∞.

This implies ∇Tk(un)
n−→ ∇Tk(u) strongly in Lp for a fixed k and this completes the proof of

the Theorem.

Theorem 5.15. Let un be as in Theorem 5.14, then we have

lim sup
n→∞

ˆ
Ω

|∇Gk(un)|p dx→ 0 as k →∞

where Gk(s) = s− Tk(s).
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Proof. Define yn = e
δ
p−1
|un| − 1 and hence we get

ˆ
{|un|>k}

|∇un|p dx =

(
p− 1

δ

)p ˆ
{|un|>k}

e−
δp
p−1
|un||∇yn|p dx

≤
(
p− 1

δ

)p
e−

δp
p−1

k

ˆ
{|un|>k}

|∇yn|p dx.

Using the a priori estimate from Theorem 5.12, we get

ˆ
Ω

|∇Gk(un)|p dx ≤
(
p− 1

δ

)p
e−

δp
p−1

kMp
δ

which proves the theorem.

Combining Theorem 5.14 and Theorem 5.15, we have the following Theorem:

Theorem 5.16. Let A and Ω satisfy Hypothesis 5.1 and assume that ‖|fn|p
′‖M1,p ≤ TS as

given in Remark 5.13 where fn := Tn(f). Let un be a solution to − divA(x,∇un) = Tn(|∇un|p) + div(fn) in Ω

un = 0 on ∂Ω.

as obtained in Theorem 5.11, then we have the strong convergence of ∇un
n−→ ∇u in Lp(Ω).

We now have all the estimates needed for the proof of Theorem 5.9.

Proof of Theorem 5.9. From Theorem 5.16, we can now easily pass through the limit in

(5.11) to show the existence of a solution to (5.1). This solution is inM1,p(Ω) since un ∈ ET0 .

Observing ET0 is closed, we must also have that u ∈ ET0 . This completes the proof.
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Chapter 6
Existence of Distributional solution

Consider the problem  divA(x,∇u) = div(|f |p−2f) inΩ

u = 0 on ∂Ω.
(6.1)

Our goal is to show existence of a distributional solution below the natural exponent under

some mild assumptions on f .

We assume that the domain Ω and the nonlinearity A(x,∇u) satisfy:

Hypothesis 6.1. We will assume the nonlinearity A(x, ζ) is a caratheodory function which

satisfies (2.1) and (2.2) for some γ ∈ (0, 1]. We will also assume that the nonlinearity

A(x,∇u) and the domain Ω are such that the following global a priori estimate holds:

‖∇u‖Lq(Ω) ≤ C‖f‖Lq(Ω). (6.2)

for all q ∈ (p− δ0, p] for some δ0 < 1.

Remark 6.2. From Theorem 3.3, we see that there exists a δ0 > 0 such that if Ωc satisfies

the p-thick condition, then the estimate

‖∇u‖Lq(Ω) ≤ C‖f‖Lq(Ω).

holds for all q ∈ (p− δ0, p+ δ0).

Lemma 6.3. Let f ∈ (Ls(Ω))n be a given vector field for some 1 < s < ∞. Also suppose

that div(f) = µ is a Radon measure in the sense of Definition 2.15 and |µ|(K) <∞ for all

K b Ω . Then there exists a sequence of smooth functions fε such that

i. fε → f in (Ls(Ω))n as ε→ 0,

ii. div(fε) = µε is a Radon measure in the sense of Definition 2.15 and
97



iii. for every K b Ω, there exists an εK such that

|µε|(K) <∞ for all ε < εK

with the bound being independent of ε.

Proof. First extend f to be zero outside Ω. Let φε be the standard mollifier and consider the

sequence

fε := φε ∗ f =

ˆ
Rn
φε(x− y)f(y) dy,

where (f 1
ε , f

2
ε , . . . , f

n
ε ) := (φε ∗ f 1, φε ∗ f 2, . . . , φε ∗ fn). By standard convolution theory, (i)

and (ii) are satisfied since f iε are smooth functions.

All that remains is to show (iii). In this regard, we observe that for any ψ ∈ C∞c (Ωl) for

a fixed l ∈ N (see Definition 2.1), the equality

|
ˆ

Ω

div(fε)ψ dx| = |
ˆ

Ω

φε ∗ ψ dµ|

holds for all ε < εΩl where εΩl is chosen such that spt(φεΩl ∗ ψ) ⊆ Ωl + εΩl b Ω. Note that
ˆ

Ω

φε ∗ ψ dµ := −
ˆ

Ω

〈f ,∇(φε ∗ ψ)〉 dx

which holds in the sense of Definition 2.15. This gives, for all ε < εK , that

|µε|(K) ≤ inf
O

KbO

sup
ψ

{ˆ
Ω

div(fε)ψ dx : ψ ∈ C1
c (O), |ψ| ≤ 1

}
≤ sup

ψ

{ˆ
Ω

div(fε)ψ dx : ψ ∈ C1
c (OK), |ψ| ≤ 1

}
for some fixed OK such that K b OK b Ω with εK chosen such that for all ε < εK , we have

spt(φεK ∗ ψ) b OK + εK b Ω holds .

Thus
|µε|(K) ≤ sup

ψ

{ˆ
Ω

div(fε)ψ dx : ψ ∈ C1
c (OK), |ψ| ≤ 1

}
= sup

ψ

{ˆ
Ω

φε ∗ ψ dµ : ψ ∈ C1
c (OK), |ψ| ≤ 1

}
≤ |µ|(OK + εK) <∞

for all ε < εK with the bound being independent of ε.
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Remark 6.4. Since by assumption A(x, ·) is continuous and satisfies (2.3), we have for any

sequence ∇uj → ∇u a.e in Ω with uj, u ∈ W 1,p−δ
0 (Ω), the following convergence holds:

lim
j→∞

ˆ
Ω

〈A(x,∇uj),∇ϕ〉 dx =

ˆ
Ω

〈A(x,∇u),∇ϕ〉 dx

for all ϕ ∈ C1
c (Ω). This follows since by estimate (6.2), we have that A(x,∇uj) is uniformly

bounded in (L
p−δ
p−1 (Ω))n and this gives us the desired weak convergence of A(x,∇uj).

6.1 Main Theorem

We are now ready to state our main theorem:

Theorem 6.5. Let f ∈ (Lp−δ(Ω))n be a given vector field with 0 < δ < δ0 chosen such

that Hypothesis 6.1 holds. Also assume that div(|f |p−2f) = µ, a Radon measure in the sense

of Definition 2.15 satisfying |µ|(K) < ∞ for all K b Ω. Then there exists a distributional

solution u ∈ W 1,p−δ
0 (Ω) to (6.1), i.e. the following holds for all ϕ ∈ W 1, p−δ

1−δ
0 (Ω),

ˆ
Ω

〈A(x,∇u),∇ϕ〉 dx =

ˆ
Ω

|f |p−2〈f ,∇ϕ〉 dx.

Proof. We apply Lemma 2.37 to f with s = p− δ and then consider the auxiliary problem divA(x,∇uε) = div(|fε|p−2fε) inΩ

uε = 0 on ∂Ω
. (6.3)

By estimate (6.2), we have

‖∇uε‖Lp−δ(Ω) ≤ C‖fε‖Lp−δ(Ω) ≤ C‖f‖Lp−δ(Ω) <∞.

Hence by Rellich’s theorem, we have upto a subsequence indexed by i such that

i. ui → u strongly in Lp−δ(Ω),

ii. ∇ui ⇀ ∇u weakly in (Lp−δ(Ω))n,

iii. ui → u a.e in Ω and

iv. ui → u in measure on Ω.
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for some function u ∈ W 1,p−δ
0 (Ω).

We shall fix this specific subsequence henceforth and show that this subsequence {ui} actu-

ally gives us the convergence needed to show that u is actually the desired weak distributional

solution to (6.1).

By Remark 6.4, it is enough to show that the sequence {∇ui} converges to ∇u in measure

on Ω. Fix a set Ωl and consider the test function Tk(uε)φ for some φ ∈ C∞c (Ωl+2). with

0 ≤ φ ≤ 1 and φ ≡ 1 on Ωl. Note that this is a valid text function that can be used in (6.3),

hence we see that

ˆ
Ω

〈A(x,∇ui),∇Tk(ui)〉φ dx = −
ˆ

Ω

〈A(x,∇ui),∇φ〉Tk(ui) dx+

ˆ
Ω

Tk(ui)φ dµi

≤ Ck

ˆ
Ω

|∇ui|p−1 dx+ k

∣∣∣∣ˆ
Ω

φ dµi

∣∣∣∣
≤ Ck

which holds for all i > iΩl+2
. By using (2.1), we get

ˆ
Ωl

|∇Tk(ui)|p dx ≤ Ck

for all i > iΩl+2
where ∇Tk(uε) := ∇uε · χ{|uε|<k} . Hence by using Lemma 2.37, we see that

the whole sequence converges in the following sense:

i. Tk(ui)→ Tk(u) strongly in Lp(Ωl) and

ii. ∇Tk(ui) ⇀ ∇Tk(u) weakly in (Lp(Ωl))
n.

Note that the limit is the same u as from before.

We now show that ∇ui → ∇u in measure. Consider the decomposition:

{x ∈ Ωl : |∇ui(x)−∇u(x)| > δ} ⊆ D1 ∪D2 ∪D3 ∪D4 ∪D5 ∪D6,
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where

D1 = {x ∈ Ωl : |ui(x)| > k},

D2 = {x ∈ Ωl : |u(x)| > k},

D3 = {x ∈ Ωl : |∇ui(x)| > k},

D4 = {x ∈ Ωl : |∇u(x)| > k},

D5 = {x ∈ Ωl : |ui(x)− u(x)| > η},

D6 = {x ∈ Ωl : |∇ui(x)−∇u(x)| ≥ δ, |u(x)| ≤ k, |ui(x)| ≤ k,

|∇ui(x)| ≤ k, |∇u(x)| ≤ k, |ui(x)− u(x)| ≤ η}.

Since u, ui and ∇u,∇ui are functions in Lp−δ(Ω) and (Lp−δ(Ω))n respectively, we have an

k0(σ) > 0 such that

meas

(
4⋃
i=1

Di

)
<
σ

3

for all k ≥ k0(σ).

Also since ui → u in measure, we have

meas(D5) <
σ

3

whenever i is chosen large enough.

If we are able to show that meas(D6) <
σ

3
, then the proof of the theorem is complete. In

order to show this, consider the following set

K = {(s, ζ, ζ ′) ∈ R× R2N : |s| ≤ k, |ζ| ≤ k, |ζ ′| ≤ k, |ζ − ζ ′| ≥ δ}

and let γ(x) := min
K
〈A(x, ζ) − A(x, ζ ′), ζ − ζ ′〉. This is achieved since K is a compact set

and A(x, ·) is a continuous function for almost every x ∈ Ω by assumption. Also by (2.1),

we have that γ(x) > 0 for almost every x ∈ Ω.

By the continuity of the Lebesgue integral, we have for any given σ > 0, there exists a

σ′(σ) > 0 such that; for any measurable E ⊆ Ω with
ˆ
E

γ dx ≤ 2σ′, then we must necessarily

have that meas(E) ≤ σ/3.
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Using this fact, in order to show meas(D6) < σ/3, it is enough to show that
ˆ
D6

γ(x) dx ≤ 2σ′. (6.4)

To show this, consider the test function w = Tη(uε − Tk(u))φ with φ as from before. We

see that

w =

 ηφ ifuε > k + η

−ηφ ifuε < −k − η
. (6.5)

Since ui, Tk(u) ∈ W 1,p(Ωl), we have ui − Tk(u) ∈ W 1,p(Ωl) and thus we see that Tη(ui −

Tk(u))φ ∈ W 1,p(Ωl) is a valid test function. Using this, we get
ˆ

Ω

〈A(x,∇ui),∇Tη(ui − Tk(u))〉φ dx = −
ˆ

Ω

〈A(x,∇ui),∇φ〉Tη(ui − Tk(u)) dx

+

ˆ
Ω

Tη(ui − Tk(u))φ dµi.

≤ Cη.

By choosing η small, we can get
ˆ

Ω

〈A(x,∇ui),∇Tη(ui − Tk(u))〉φ dx < σ′

2
.

We also see that ∇Tη(ui − Tk(u)) = 0 if |uε| > k + η and hence we get that

∇Tη(ui − Tk(u)) = ∇Tη(Tk+η(ui)− Tk(u)).

Since Tk+η(ui)− Tk(u) ⇀ Tk+η(u)− Tk(u) weakly in W 1,p(Ωl+2), we get

lim
i→∞

ˆ
Ω

〈A(x,∇Tk(u)),∇Tη(Tk+η(ui)− Tk(u))〉φ dx

=

ˆ
Ω

〈A(x,∇Tk(u)),∇Tη(Tk+η(u)− Tk(u))〉φ dx.
(6.6)

Finally since Tη(Tk+η(u) − Tk(u)) converges weakly to 0 in W 1,p(Ωl+2) as η → 0, there

exists an η0(Ωl+2) such that

|
ˆ

Ω

〈A(x,∇Tk(u)),∇Tη(Tk+η(u)− Tk(u))〉φ dx| ≤ σ′

4
(6.7)

holds for all η < η0(Ωl+2).
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Thus combining (6.6) and (6.7), we get for all η < η0(Ωl+2) and i sufficiently large, that

|
ˆ

Ω

〈A(x,∇Tk(u)),∇Tη(Tk+η(ui)− Tk(u))〉φ dx| ≤ σ′

2
.

We are now in a position to prove (6.4); by the definition of γ(x) and D6 and (2.1) and

the structure of φ, we have that
ˆ
D6

γ(x) dx ≤
ˆ
D6

〈A(x,∇ui)−A(x,∇u),∇ui −∇u〉φ dx

≤
ˆ
D6

〈A(x,∇ui)−A(x,∇u),∇Tη(Tk+η(ui)− Tk(u))〉φ dx

≤ σ′.

Here to get the second inequality, we choose an i sufficiently large.

What we have shown is; given an Ωl, then ∇ui → ∇u in measure on Ωl. Hence by standard

measure theory, there exists a subsequence ik such that ∇uik → ∇u a.e on Ωl. But because

we already have that ∇ui ⇀ ∇u weakly on W 1,p−δ
0 (Ω), the stability result from Lemma 2.37

gives that the whole sequence itself converges a.e to ∇u in Ω. This completes the proof of

the theorem.
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