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Abstract
Hydraulic fracturing has persisted through the use of simple numerical models to de-

scribe fracture geometry and propagation. Field tests provide evidence of interaction and

merging of multiple fractures, complex fracture geometry and propagation paths. These

complicated behaviors suggest that the simple models are incapable of serving as predictive

tools for treatment designs. In addition, other commonly used models are designed without

considering poroelastic effects even though a propagating hydraulic fracture induces defor-

mation of the surrounding porous media. A rigorous hydraulic fracturing model capable of

reproducing realistic fracture behaviors should couple rock deformation, fracture propagation

and fluid flow in both the fracture and reservoir.

In this dissertation, a fully coupled hydraulic fracturing simulator is developed by cou-

pling reservoir-fracture flow models with a mechanical model for reservoir deformation. The

reservoir-fracture deformation is modeled using the variational fracture model which provides

a unified framework for simultaneous description of fracture deformation and propagation,

and reservoir deformation. Its numerical implementation is based on a phase-field regular-

ized model. The phase field technique avoids the need for explicit knowledge of fracture

location and permits the use of a single computational domain for fracture and reservoir

representation. The first part of this work involves verification of the variational fracture

model by solving the classical problem of fracture propagation in impermeable reservoirs

due to injection of an inviscid fluid. Thereafter, the developed reservoir-fracture model is

coupled to the mechanical model. Iterative solution of the variational fracture model and

the coupled flow model provides a simplified framework for simultaneous modeling of rock

deformation and fluid flow during hydraulic fracturing. Since the phase field technique for

fracture representation removes the limitation of knowing a priori, fracture direction, the

numerical solutions provide a means of evaluating the role of reservoir and fluid properties

on fracture geometry and propagation paths. The developed coupled hydraulic fracturing

model is first validated for scenarios for which closed form solutions exist in the literature.

xii



Further simulations highlight the role of fluid viscosity and reservoir properties on fracture

length, fracture width and fluid pressure. Numerical results show stress shadowing effect

on the propagation of multiple hydraulic fractures. Finally, the effect of in situ stress on

fracture propagation direction is reproduced while the role of varying reservoir mechanical

properties on fracture height growth is investigated.

xiii



Chapter 1
Introduction

1.1 Introduction To Hydraulic Fracturing

Hydraulic fracturing is traced to the 1860s when liquid nitroglycerin (NG) was used

to simulate shallow, hard rock formations in Pennsylvania, New York, Kentucky and West

Virginia (Montgomery and Smith 2010). Not until 1949 was it introduced to the petroleum

industry and since then over 2.5 million fracture treatments have been performed worldwide

and about 60% of all wells drilled today are fractured (Montgomery and Smith 2010). These

numbers underscore the increasing value of hydraulic fracturing to the petroleum industry

and continued interest has galvanized its evolution from a simple low volume technique using

gasoline gelled with napalm to a highly complex engineering procedure that uses improved

fluids like delayed cross-linkers, improved mathematical models and imaging methods for

post fracture analysis. Fundamentally, hydraulic fracturing is the process of fracture ini-

tiation and propagation in the subsurface, driven by hydraulic loading or fluid pressure of

viscous fluids acting on the surfaces of the fracture (Barter et al. 2000; Sarris and Papanas-

tasiou 2012). It is the primary technique used in the oil industry to increase recovery in

production declining wells and to enable production in low permeable and tight formations

of unconventional resources, like shale gas. The high permeable paths created by fractures

extend the reach of wellbores beyond damaged areas around the bottomhole and improve

productivity by changing reservoir fluid flow patterns from radial to linear. Apart from pro-

ductivity increase, it finds utility in other areas including measurement of fracture gradient

and in situ stresses necessary for wellbore stability analysis, and for increasing heat transfer

areas through fully engineered geothermal reservoirs for heat extraction from hot dry rocks

(Smith 1979; Zyvoloski 1985; Fomin et al. 2003; Albright and Pearson 1982). Its use for

stress measurements is particularly attractive since knowledge of the elastic properties of the

earth region is not required.

1



Hydraulic fracturing procedure involves first pumping a pad, which in most cases is a

clean fluid like water, at pressures and rates high enough to initiate and extend fractures.

Although fracture initiation pressure is hugely influenced by the least principal in-situ stress,

it also depends on the mechanical properties and tensile strength of the formation. During

fluid injection, fractures are kept open by the increasing pressure of the injected fluid. Once

injection stops, pressure depletion occurs and the fractures start to close as fracturing fluid

is lost either due to fluid leak-off into the formation or fluid flow back into the wellbore.

To keep the fractures open and permeable for formation fluid flow to the wellbore, a slurry,

which is fluid mixed with proppant, is injected following the pad.

Engineering design of a fracture treatment involves estimates of fluid volume, injection

rate, volume and concentration of proppants, surface and bottomhole injection pressures

and hydraulic horsepower requirement at the surface for a proposed fracture geometry. The

major post treatment task is prediction of the dimensions of the created fracture. According

to Hubbert and Willis (1957) and supported by numerous field evidence, most subsurface

fractures are vertical, they propagate perpendicular to the least principal stress direction and

their geometries are quantified by height, half length/radius and width. Fracture half length

is the distance from wellbore to one of the fracture tips, fracture width is the separation

between the two faces of the fracture while fracture height is the distance between the

top and bottom of the fracture, for vertical fractures. These parameters are crucial in

estimating how much production gains are derivable from the fracturing process. The major

task for engineers is how to infer these geometric quantities for any given hydraulic fracturing

treatment and reservoir mechanical properties. This is where hydraulic fracturing modeling

and simulation comes into play.

1.1.1 Importance of Hydraulic Fracturing

Even though hydraulic fracturing has been in existence for over a century, the reason

for the present renewed interest in the method is to enable production in unconventional

reservoirs. This interest is facilitated by advances in drilling and completion technologies and
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advanced production strategies that have allowed hydraulic fractures to be used in horizontal

wells to create large drainage areas in unconventional reservoirs. Unconventionals have been

identified as very viable alternatives to conventional oil and gas reservoirs because of their

abundance around the world. For example, the US has significant shale resources which the

Energy Information Administration (EIA) (Kuuskraa, Stevens, and Moodhe 2013) estimates

to be about 58 billion barrels of technically recoverable shale oil and 665 trillion cubic feet

of technically recoverable shale gas. These resources are contained in several discovered

shale plays scattered around the United States, including important ones like the Marcellus,

Haynesville, Fayetteville, Barnett, Eagle Ford and Bakken as shown in Figure 1.1. The shale

boom is a global phenomena, with resources existing in about 41 other countries. Those with

significant resources includes Russia, China, Argentina, Algeria, Canada and Mexico. China

with 1115 trillion cubic feet of recoverable shale gas tops the list of countries with shale

gas resources while Russia tops shale oil countries with 75 billion barrels of recoverable oil.

Despite the relative abundance of shale oil and gas resources, a common feature of all shale

plays around the world is low formation permeability which makes economic production of

their resources almost impossible. The key, therefore, to unlocking and tapping the enormous

resources contained in shale is hydraulic fracturing.

The benefits of hydraulic fracturing of shale resources is already reaping dividends in the

US as shale gas contributes significantly to meeting the growing demand for gas. As a result,

the US economy is experiencing rapid growth in domestic natural gas supplies and significant

decreases in prices. In fact, the EIA projects that natural gas from shale formations will

be the primary driver of growth in domestic natural gas production through 2035, growing

from 16% of supply in 2009 to 49% in 2035 as shown in Figure 1.2, and more than offsetting

declining production from other sources (EIA 2014). Given these statistics, it is obvious that

hydraulic fracturing has a huge role to play in bringing these projections to fruition. Thus,

improvements in hydraulic fracturing technology through continuous research is necessary to

provide the industry with better knowledge on how to make the process even more efficient.

3



Figure 1.1: Over 58 billion barrels and 665 trillion cubic feet of recoverable shale oil and gas
reserves in the Lower 48 shale formations

Figure 1.2: Shale gas production to drastically increase beyond the contribution of other
sources, becoming the dominant source of dry gas in the US and eventually resulting in
lower natural gas prices.
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1.2 Motivation and Objective

Realistic hydraulic fracture behaviors are characterized by interaction and merging of

multiple fractures, complicated fracture geometries from non-planar propagation and com-

plex propagation paths due to insitu stresses and heterogeneity in reservoir properties. Mod-

eling and computational challenges have hindered the development of robust numerical mod-

els capable of reproducing this complicated fracture behaviors. To simplify modeling of the

hydraulic fracturing process, many previous works have made numerous assumptions in-

cluding simplifying fracture geometries, constraining fracture propagation paths to known

directions and assuming propagation of single planar fractures. In addition, fracture fluid

loss is normally assumed unidirectional while the coupled effect of fluid loss and reservoir

compaction on fracture propagation is rarely considered. The computational challenges stem

from the fact that fracture propagation is a moving boundary problem in which fractures are

considered as surfaces. For hydraulic fracturing applications, the issues are unique since it is

not a trivial task developing efficient ways to numerically represent fractures and reservoir

domains in the same computational framework while still ensuring hydraulic and mechan-

ical coupling between both subdomains. Where attempt has been made to represent both

fracture and reservoir, the computational cost is expensive and the numerics cumbersome,

characterized by continuous remeshing to provide grids that explicitly match the evolving

fracture surface (Gupta and Duarte 2014). Some of these challenges can be overcome by

using a phase field representation for fractures.

The primary objective of this dissertation is to develop a hydraulic fracture simulation

model using the variational approach to fracture as the mechanical model. The variational

fracture model is a phase field based approach to fracture simulation. It was proposed

by Francfort and Marigo (1998) and further developed by Bourdin, Francfort, and Marigo

(2000). Fracture representation in the model is implemented using a smooth scalar field,

often called the v-field. The v-field allows for a single computational domain to be used for

both fracture and reservoir representation and removes the necessity for explicit identification
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of fracture and propagation directions. Other advantages of the model are summarized as

follows.

1. It uses a fixed computational grids to represent fractured domain and to discretize

model equations. Computational domains may be composed of simple elements like

triangles, rectangles and cuboids.

2. It can handle propagation of multiple fractures since explicit fracture representation is

not required.

3. Heterogeneity in material properties are easily handled by the model.

4. It is easy to incorporate thermal and hydraulic energy contributions to fracturing,

leading to applications in thermal and hydraulic fracturing.

5. The numerical algorithm is parallelizable. Therefore, can be run on high performance

computing resources to speed up fracture simulations.

6. No additional modeling cost for fracture propagation in two or three dimensional do-

mains.

Although the variational fracture model is relatively new, it has found application in

thermal fracturing (Bourdin et al. 2014) and thin film fracturing (Mesgarnejad 2014). Ap-

plication in hydraulic fracturing (Bourdin, Chukwudozie, and Yoshioka 2012; Chukwudozie,

Bourdin, and Yoshioka 2013; Wick, Singh, and Wheeler 2014; Mikelic, Wheeler, and Wick

2013) is at an early stage and this work aims to push the frontier in this area even further.

This dissertation solves the hydraulic fracturing problem by coupling the variational fracture

model to a coupled model for fluid flow in both fracture and reservoir. The fracturing fluid

pressure, hydraulic fracture geometry and propagation paths are solutions of the coupled

flow and mechanical models. A three dimensional numerical solution of the coupled model

is implemented and can be applied to two dimensional cases under plain stress/strain condi-

tions. To improve numerical stability of the solution algorithm, dimensionless forms of the
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variational fracture and coupled flow models are solved. Dimensional analysis of both the

flow and mechanical models yield scaling parameters that can be used to convert the di-

mensionless numerical solutions and parameters to their respective dimensional values. The

specific objectives of this dissertation are therefore:

1. To develop and implement a parallel hydraulic fracturing simulation that couples reser-

voir and fracture fluid flow to the variational fracture model that describes reservoir

and fracture deformation. The variational fracture model used in this dissertation is a

finite element implementation. The coupled flow model will be solved using the stan-

dard finite element method on structured grids and implemented within the PETSc

(Portable, Extensible Toolkit for Scientific Computation) (Balay et al. 2011) frame-

work. PETSc also provides the framework for parallel implementation.

2. To derive fracture width equation using the mechanical variables and develop numerical

algorithm for its computation. The fracture width is an important component of the

fracture flow model since it defines fracture permeability and volume.

3. To analyze fluid pressure and fracture geometric properties like length, radius, width,

volume and propagation paths for different reservoir and fluid properties.

4. To highlight effect of insitu stresses on hydraulic fracture propagation, understand

interaction between multiple propagating fractures and investigate the role of reservoir

layers on fracture height growth.

1.3 Fundamentals of Hydraulic Fracturing Modeling

Given that hydraulic fractures do not exist in isolation but propagate in deformable

porous media, hydraulic fracturing is the result of several complex processes occurring simul-

taneously in the subsurface. A comprehensive mathematical model for hydraulic fracturing

requires incorporation of all of the following five mechanisms (Yuan 1997; Ghassemi 1996;

Boone and Ingraffea 1989); fracture fluid flow, fluid flow in reservoir, fracture mechanics,

solid deformation and poroelasticity.

7



1.3.1 Fracture Fluid Flow Modeling

An appropriate flow model is required to predict the fluid pressure that drives fracture

propagation for given fluid rheological properties with the possibility of fluid loss. Fractures

are considered to be planar objects since their widths are much less than their lengths i.e

w << L. This assumption implies that fluid flow is only in the plane of the fracture with no

component across the fracture face. In addition, laminar flow is commonly assumed so that

with the planar geometry assumption, fluid flow follows the cubic law of Poiseuille’s equation

and is also governed by Reynolds equation from lubrication theory (Batchelor 1967). For a

two dimensional fracture in the x−y plane, the cubic law and Reynold’s equation are shown

below.

qfx = − w2

12µ

∂pf
∂x

qfy = − w2

12µ

∂pf
∂y

(1.1)

∂w

∂t
+
∂(wqfx)

∂x
+
∂(wqfy)

∂y
− q` = qfs (1.2)

qfx , qfy are the x and y components of fluid flux, qfs and q` are injection flow rate and leak-off

rate respectively while w is fracture aperture.

Equation 1.1 is similar to Poiseuille equation for fluid flow between parallel plates. There-

fore, fracture permeability is kf = w2

12
. Equation 1.2 is the continuity equation describing

local mass conservation in the fracture. Considering that a fracture can have different ori-

entations along different points on its surface, surface gradient and surface divergence are

necessary to project the classical gradient and divergence in Rd onto the plane of the fracture

in Rd−1. This will eliminate the contribution of the normal component of these operators

that are perpendicular to the fracture faces. Thus, using these operators, the fracture flow

equations can be represented in a general form for any fracture surface orientation as given
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below (see Serres et al. (2002), Martin, Jaffré, and Roberts (2005)).

~qf = − w2

12µ
∇Γpf (1.3)

∂w

∂t
+∇Γ · (w~qf ) + ql = qfs (1.4)

∇Γpf and ∇Γ · w~qf are surface pressure gradient and surface divergence of fluid flux.

Leak-off is a complex process (Fakoya and Shah 2013; Fakoya and Shah 2014) and math-

ematical description of its behavior is not a trivial task. The widely used Carters’ model

assumes leak-off is one-dimensional and perpendicular to the fracture face. According to

Adachi, Siebrits, and Desroches (2007), this approximation is reasonable provided fracture is

propagating sufficiently rapidly that non-orthogonal leak-off is negligible. Although Carter’s

model works well in low-permeability formations, van de Hoek (2000) notes that in high

permeability formations, leak-off rates may be high compared to fracture propagation rates.

Under this conditions, the 1D leak-off model will be insufficient to capture the full dimen-

sional fluid loss pattern.

1.3.2 Reservoir Fluid Flow, Reservoir Deformation and Poroelasticity

Fluid loss from fracture to reservoir has significant consequences on hydraulic fractur-

ing beyond reducing fluid efficiency. As fluid source term to the surrounding medium, it

induces what is called poroelastic effects. Poroelastic effects reflect the interaction between

deformation of the porous solid matrix and diffusion of pore fluid and their mutual effects

on hydraulic fracturing. The major implication of poroelastic effects on fracturing is an

increase in wellbore pressure than is obtained when poroelasticity is not considered (Smith

1985; Vandamme and Detournay 1989; Kovalyshen 2010). This is due to the fact that fluid

loss to the region adjacent to fractures cause dilation of the poroelastic media which then

generates compressive stress that acts against the fracture. The result is an increase in fluid

pressure for a given injected fluid volume. In hydraulic fracturing literature, this gener-

ated compressive stress is called back stress. According to Aghighi (2007), the back stress
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also decelerates fracture growth and the resulting higher treatment pressure leads to more

fluid loss. Other effects of poroelasticity on hydraulic fracturing include, increase in rock

breakdown pressure (Kovalyshen 2010), fracture pressure higher than minimum in situ stress

(Smith 1985; Kovalyshen 2010; Ghassemi 1996) and a reduction in fracture aperture which

is a direct consequence of the back stresses acting on the fractures. It is important to note

that poroelastic effects are less significant when fracturing is carried out with high viscous

fluids and in deforming media with low permeability since fluid loss is minimized under these

conditions.

The mutual interaction between fluid diffusion and reservoir deformation is handled by

linear poroelasticity theory developed by Biot (1941). The theory consists of a set of two

equations: the equilibrium equation with constitutive relations for solid deformation and the

continuity equation with Darcy’s law for fluid diffusion in the reservoir. The equations can

be written as an elastic Navier equation with a coupling term for pore pressure and as a

diffusion equation for pore pressure with a coupling term for the dilation.

G∇2ui +
G

1− 2ν
uk,ki = αpr,i − Fi (1.5)

∂pr
∂t
− kM∇2pr = −αM ∂εvol

∂t
+Mqrs (1.6)

G, ν, Fi, α and ~u are shear modulus, Poisson ratio, body force, Biot’s coefficient and displace-

ment respectively while k, M , εvol, qrs and pr are permeability, Biot’s modulus, volumetric

strain, fluid source term and reservoir pressure respectively. Equations 1.5 and 1.6 are in-

corporated into hydraulic fracturing modeling to account for the effect of poroelasticity on

hydraulic fracturing.

Solution Methods for Coupled Flow and Deformation in Poroelastic Media

Coupled numerical solution of Equations 1.5 and 1.6 is necessary to obtain accurate

solutions of pressure and displacement in a poroelastic domain. Based on the level of coupling

in the numerical technique, the approaches can be broadly classified into fully coupled,
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explicit coupling, loose coupling and sequential coupling (Kim 2010; Kim, Tchelepi, and

Juanes 2009; Kim, Tchelepi, and Juanes 2011; Jha and Juanes 2006; Wan 2002; Hameyer

et al. 1999). Sequential approaches are further divided into iterative, explicit and loose

coupling.

Fully Coupling Approach

In the fully coupled approach, ~u and pr are solved for simultaneously by generating

a single matrix that contains coefficients of Equations 1.5, 1.6 and their coupling terms.

It is common practice to use a single numerical technique to discretize the poroelasticity

equations and generate the single matrix. Lewis (1998) has described a consistent way

of doing this using the finite element method and numerical implementation of the finite

element discretization has been carried out by several authors (Jha and Juanes 2006; Zheng,

Burridge, and Burns 2003). Different numerical methods can also be used to discretize the

equations. For example, Wan (2002) used stabilized the finite element method for the force

balance equation and the finite difference method for the flow equation. The fully coupled

approach is unconditional stable but requires sophisticated mathematical techniques and

development of robust geomechanical simulators for all problems even if the contribution

of one of the phenomena (deformation or flow) is not important in describing the overall

behavior of the reservoir system.

Partial Coupling Approach

In this method, Equations 1.5 and 1.6 are decoupled to allow them to be solved sepa-

rately. The coupling terms are passed between the two solvers. Depending on the degree

of numerical coupling, these techniques are further classified as sequential/iterative, explicit

and loose coupling.

Sequential/Iterative Coupling

This techniques involve successive solution of Equations 1.5 and 1.6 during which ~u and

pr are exchanged to update the coupling terms in each model. Both equations are solved
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iteratively at each time step until the solution converges. Since each equation is solved

separately, sequential methods allow for the possibility of different numerical techniques

for discretizing the equations. In addition, different grids over the computational domain

can be used for the different equations but with a platform for mapping from one grid

to another, variables/quantities that are shared between the models. As a result of this

flexibility, numerical implementation of each model can be developed as standalone packages.

If the numerical solution of each model is reliable and the coupling algorithm properly

implemented, sequential solutions converge to the fully coupled solution.

Sequential solution methods for poroelasticity are further categorized into drained split,

undrained split, fixed strain and fixed stress methods depending on whether Equation 1.5 is

solved before Equation 1.6 during the iteration, or vice versa (Kim 2010; Kim, Tchelepi, and

Juanes 2009). In drained and undrained split coupling methods, Equation 1.5 is first solved

and then ~u is transferred to Equation 1.6 to update the volumetric strain rate contribution

to flow. As the names suggest, during the solution of Equation 1.5, changes in pr over

the computational domain is frozen in the drained split while no change in fluid content is

imposed in the undrained split method. Conversely, the flow model is first solved in the fixed

stress and fixed strain techniques to obtain the reservoir pressure which is then transferred

to the mechanics equation. Changes in volumetric strain rate and mean stress are frozen in

the fixed strain and fixed stress methods respectively.

Stability analysis carried out by Kim (2010) show fixed strain and drained split methods

are conditionally stable while fixed stress and undrained split are unconditionally stable.

Loose coupling

In this method, either a fixed number of iterations is carried out at each time step or

the coupled problem is not solved at every time step but only after a specified time in the

computation (Minkoff et al. 1999; Settari and Walters 2001; Minkoff et al. 2003).
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Explicitly coupling

This is a non iterative approach as only a single solution of the flow and deformation

equations are carried out at each time step (Dean et al. 2006). The solutions from this

method are obviously not accurate but can offer computational savings if the contribution

of flow to deformation or vice versa is not strong.

1.3.3 Solid Deformation and Fracture Mechanics

Fracture mechanics aspect deals with fracture propagation by predicting when (initia-

tion), where (direction) and how (stable or unstable) fractures propagate. The widely used

theory in this regard is linear elastic fracture mechanics (LEFM) which is based on the work

of Griffith (1921). According to this theory, the elastic energy of a material that contains a

fracture dissipates during fracture creation. An energy release rate, G, is defined which quan-

tifies the rate of change of the elastic energy (E) with length/area for fracture propagating

along a pre-existing path.

G = −dE
d`

(1.7)

Fracture will propagate in a stable manner when the energy release rate reaches a critical

value, Gc, called the fracture toughness. i.e.

G = Gc (1.8)

For mixed mode deformation

G = GI +GII +GIII (1.9)
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Fracture toughness is a material property and measures the resistance of the material to

grow fractures.

GI =
K2
I

E ′

GII =
K2
II

E ′

GIII =
(1 + ν)K2

III

E

(1.10)

Considering that fracture toughness is related to the stress intensity factor by Irwin’s formula

(Irwin 1957) of Equation 1.10, the propagation criteria can also be expressed in terms of stress

intensity factor i.e.

K = Kc (1.11)

where Kc is the critical stress intensity factor. Again, superposition of all modes leads to

K = KI +KII +KIII (1.12)

KI , KII , KIII are mode-I, II and III stress intensity factors. E ′ = E for plane stress and

E ′ = E
(1−ν2)

for plane strain problems. Formulas for stress intensity factors for different

fracture configurations and loading conditions have been derived in the literature (Tada,

Paris, and Irwin 2000). By using Equation 1.10, the corresponding fracture toughness can

be obtained.

Another approach for predicting fracture propagation is based on the cohesive zone model

(Barenblatt 1962; Dugdale 1960). This model does not use the parameters (stress intensity

factor) employed by LEFM since it avoids stress singularity at fracture tip by adding a zone

of vanishing thickness, called the cohesive zone, ahead of the crack tip. The zone which also

acts as a transition region between the open fracture and the intact material ahead of the

fracture tip as shown in Figure 1.3, consists of upper and lower surfaces held by a cohesive

traction. According to the general model, as fractures are subjected to external loading, the

separation between the cohesive surfaces increases until it reaches a critical value at which
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Figure 1.3: cohesive element

point the fracture grows. A cohesive law describes the behavior of the cohesive fracture by

defining the relationship between cohesive traction and separation of the cohesive surfaces

in terms of their respective critical values. The material properties in these laws are the

critical stress/traction, critical separation and cohesive energy. Only two of these properties

are necessary to completely define a cohesive law.

Solving the mathematical models of each of the phenomena described above is not a triv-

ial task by any means. This invariably means that hydraulic fracturing based on the coupling

of all the mechanisms described above will even be more daunting. The complexity is in-

creased by the non-linear relationship between fracture permeability and fracture aperture.

More often than not, one or more of the mechanisms are left out during hydraulic fracturing

modeling. On the basis of the complexity of the interaction between diffusion of fracturing

fluid into the reservoir and rock deformation modeled by poroelasticity, Vandamme and De-

tournay (1989) has classified hydraulic fracturing into uncoupled, partial coupling and fully

coupled.

In the uncoupled approach (Perkins and Kern 1961; Kristianovic and Zheltov 1955; Nord-

gren 1972; Adachi, Siebrits, and Desroches 2007; Geertsma and de Klerk 1969; Detournay

and Garagash 2003), poroelasticity is not incorporated as the rock is considered to be elastic

and experiences no fluid diffusion and the associated deformation. Fracture opening as a

function of fracturing fluid pressure and insitu stress is modeled using the elasticity equation

15



while fracture fluid flow is modeled using Reynold’s equation and the cubic law. However,

models in this category acknowledge that some fluid is lost during hydraulic fracturing. The

fluid loss is assumed to be unidirectional and modeled using law. The non consideration of

poroelasticity in this type of approach means that fluid loss only accounts for volume balance

and has no role in activating the influence of rock dilation on hydraulic fracturing.

Partial coupling has some of the features of the uncoupled approach, including the as-

sumption of linear elasticity for the rock and Reynolds equation for fracture flow modeling.

However, leak-off is modeled more rigorously by assuming linear diffusion from fracture to

reservoir. Although these methods (Tran, Settari, and Nghiem 2013; Settari and Price 1984;

Kovalyshen 2010) consider interaction between fluid flow and solid deformation initiated by

the fluid loss, poroelasticity is not rigorously modeled using Biot’s theorem. Rather, the

additional stress generated due to rock dilation is calculated and applied to the elasticity

equation in the form of the back stress.

Fully coupled approach accounts for solid deformation and fluid interaction using Biot’s

poroelasticity theory. The models in this category (Mohammadnejad and Khoei 2013; Boone

and Ingraffea 1990; Carrier and Granet 2012) make no assumption about the dimensionality

of the fluid loss. Instead, fluid loss is a consequence of the coupling between fracture and

reservoir flow and is modeled according to linear diffusion. The flow coupling introduces

a time scale in the fracturing problem and allows the effects of reservoir properties like

permeability and Biot’s coefficient on hydraulic fracturing to be investigated.

1.4 Review of Hydraulic Fracture Modeling

The difficulty of hydraulic fracturing modeling posed by the need to incorporate several

processes simultaneously and the need to extract properties for an unknown geometry has

been highlighted. To keep the problem tractable, engineers simplified fracture geometry

to 2D, pseudo-3D (P3D) and 3D and considered hydraulic fracturing as the propagation

of these geometries in a permeable or impermeable media. Consequently, fracture design

is based on analytically calculating geometric parameters of these simple models for given
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treatment parameters and fluid/rock properties. Although these models are approximate

solutions for certain fracture problems (Savitski and Detournay 2002), recently, they have

had limited success in field treatment designs due to their inability to reproduce realistic

behaviors that are prevalent in the widely fractured unconventional reservoirs. A number of

such approximated geometries have been in existence since the onset of hydraulic fracture

study and the history of fracture development will be incomplete without alluding to the

works of the pioneers (Perkins and Kern 1961; Kristianovic and Zheltov 1955; Nordgren

1972; Geertsma and de Klerk 1969). In proposing their fracture model, Perkins and Kern

(1961) considered that some conditions such as zones with horizontal stress higher than in

the pay zone are sometimes found above and below the pay zone cause vertical fractures

to be limited in growth in the vertical direction. Given these conditions, fracture will grow

until it reaches the boundary zones and then will be restricted in vertical growth. Although

fracture continues to extend laterally away from the wellbore, the high stresses at the top

and bottom layers tend to close the fracture in those locations. The result is a fracture

geometry with length far greater than height, as shown in Figure 1.4a. The fracture width

in this model has an elliptical cross-section on a horizontal plane. For Newtonian fluid flow

under laminar flow conditions, the width of this model on a horizontal plane through its

center has been calculated using the crack opening equation by Sneddon and Elliott (1946)

and is shown in Equation 1.13. No estimate of the fracture length was proposed.

w(x) =
2(1− ν2)Hp

E
(1.13)

w(x) is fracture width profile through the middle of the fracture. ν, E, p are Poisson’s ratio,

Young’s modulus and fluid pressure respectively while xf is the fracture half length and x

is location along the fracture length. Nordgren (1972) extended the work of Perkins and

Kern (1961) to include the effects of fluid loss through a continuity equation to calculate

fracture length. For all their significant contributions, the model is today called the PKN

(Perkins-Kern-Nordgren) model.
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A complementary two dimensional hydraulic fracture geometry is the KGD (Kristinovic-

Geertsma-de Klerk) model shown in Figure 1.4b. Again, it assumes a constant fracture

height equal to the height of the oil bearing formation it propagates in. It was proposed by

(Kristianovic and Zheltov 1955; Geertsma and de Klerk 1969) with a closed form solution of

the fracture width given by

w(x) =
4(1− ν2)Lp

E
(1.14)

The constant height of both KDG and PKN models, constrained by thickness of the

fracturing layer, limits their ability to predict vertical propagation of hydraulic fractures.

In addition, rigorous fracture mechanics is not captured in the formulations since fracture

geometry is predetermined, independent of fluid flow and variations in reservoir properties.

On the positive side, however, they have been used to verify new hydraulic fracture sim-

ulators because of the simplicity of their geometries and analytical solutions. Pseudo-3D

models (P3D), the evolutionary step after 2D modeling were introduced (Settari and Cleary

1986; Advani, Lee, and Lee 1990; Morales 1989) to remove the constant and uniform height

assumptions of the 2D models. By extending these 2D models, particularly the PKN geom-

etry, to include in-situ stress variation in the top and bottom bounding layers, variation in

fracture height during hydraulic fracturing were modeled.

General three dimensional fracture modeling considers fractures as planar objects that

are oriented orthogonal to the minimum in situ stress. These models place no restriction

on fracture length and height growth. In addition, they allow fluid flow along the fracture

length and height directions. Given the two dimensional nature of fluid flow, modeling

requires coupling between equations for fluid flow and linear elasticity. Three dimensional

fracture modeling can be grouped into two categories. The first category involves analytical

and numerical solution to a coupled model that includes integral equations for fracture

width as a function of fluid pressure and the fracture fluid flow model (Clifton and Abou-

Sayed 1981; Barree 1983; Savitski and Detournay 2002; Detournay and Garagash 2003;

Bunger, Detournay, and Garagash 2005; Adachi, Siebrits, and Desroches 2007; Ribeiro and
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(a) Perkin-Kern-Nordgren (PKN) frac-
ture model geometry for xf >> hf

(b) Kristianovic-Geertsma-de Klerk (KGD) fracture model
geometry for xf << hf

Figure 1.4: 2D PKN and KGD hydraulic fracture geometry

Sharma 2012; Kovalyshen 2010; Yuan 1997; Bui 1977; Ghassemi 1996). Equation 1.15 is

the commonly used elasticity integral for fracture width computation, where R(t) is the

domain of the fracture, σc is the local minimum in situ stress while C contains all the elastic

properties of the layered rock. As evident in Equation 1.15, these methods only solve for

fracture opening displacement and height along planes perpendicular to the propagation

direction without describing deformation in the poroelastic media outside the fracture.

∫
R(t)

C(x, y, ξ, η)w(η, t) dξdη = p(x, y, t)− σc(x, y) (1.15)

In the second group, fracture width is not explicitly calculated from some integral equa-

tions like in the previous group, but is inferred from displacement solution of the hydrome-

chanical models. Solution of coupled flow and mechanical problem requires specialized com-

putational grids which not only permits solution of the fracture flow model at discrete points

along the fracture but also allows application of this fracture fluid pressure on the boundary

of the reservoir at the fracture/reservoir interface. Early attempts simply treated the frac-
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(a) Initial penny shaped fracture (b) Geometry of propagated fracture in the lay-
ered reservoir with uniform properties. The frac-
ture shape remains unchanged throughout propa-
gation

Figure 4.24: Penny shaped fracture in a three dimensional reservoir with 3 layers. Fracture
shape is taken as the contour at v = 0.1. The layers are identified by different colors. Top
and bottom layers have the same properties, hence the same color representation

in the vertical direction than in the horizontal direction.

Figure 4.26 shows the propagated hydraulic fracture geometry in the layered reservoir for

different Young’s modulus. Higher Young’s modulus in the surrounding layers impedes frac-

ture growth out of the middle layer while lower modulus in the surrounding layers encourages

fracture growth out of the middle layer.

Lastly, the effect of varying reservoir permeability in the layered reservoir on the fracture

geometry is shown in Figure 4.27. The large fluid losses associated with high reservoir

permeability delays the onset of fracture propagation since pressure build up towards the

critical value is delayed. For higher permeability in the middle layer, the fluid pressure in the

region of the fracture in that layer builds up slower due to high leak-off while the fracture

region closest to the adjoining layers experience higher fluid pressure. Given that fracture

toughness is the same in all layers, the fracture propagates more in the vertical direction than

in the horizontal direction. On the other hand, lower permeability in the middle encourages
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(a)
Gc,ext

Gc,mid
≈ 0.7 (b)

Gc,ext

Gc,mid
≈ 0.9

(c)
Gc,ext

Gc,mid
≈ 1.2 (d)

Gc,ext

Gc,mid
= 10

Figure 4.25: Propagated hydraulic fracture in the three layered reservoir with different frac-
ture toughness
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(a) Eext

Emid
= 0.1 (b) Eext

Emid
= 0.2

(c) Eext

Emid
= 2 (d) Eext

Emid
= 5

Figure 4.26: Propagated hydraulic fracture in the three layered reservoir with different
Young’s modulus
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(a) kext = 2.8×10−25 m2, kmid = 2.83×10−27 m2 (b) kext = 2.3 × 10−25 m2, kmid = 2.83 × 10−27

m2

(c) kext = 2.8× 10−27 m2, kmid = 1.7× 10−25 m2 (d) kext = 2.83 × 10−27 m2, kmid = 2.83 × 10−25

m2

Figure 4.27: Propagated hydraulic fracture in the three layered reservoir with different per-
meabilities
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more propagation in that layer with less extension in the vertical direction. As a result, the

fracture has a higher length compared to its height.

One may have observed the non-symmetric propagation in the combination of reservoir

properties that otherwise would have favored uniform and equal propagation into the external

layers, as in Figures 4.25a, 4.25b, 4.26a, 4.26b, 4.27c and 4.27d. In these figures, the fracture

extends more into the bottom layer than into the top layer. The evolution of these fractures

is such that propagation is symmetric prior to reaching the boundary interfaces. However,

due to floating point errors, the bottom part of the fracture reaches the lower interface before

the top part reaches the top layer interface. Subsequent fluid injection favors fracture growth

into the bottom layer. Although this geometry could have been reversed to favor growth into

the top layer, the result show that it may be difficult to control hydraulic fracture growth in

conditions where fractures propagate into layers with lower resistance to fluid flow and rock

deformation.
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Chapter 5
Conclusions and Recommendations

5.1 Conclusions

In this dissertation, a coupled model for simulating hydraulic fracturing in poroelastic

media is developed and numerically implemented. The developed numerical model was used

to study the effect of reservoir and flow properties on fracturing fluid pressure, fracture

geometries (length, height, width, radius) and fracture propagation paths. The model is

based on a phase field representation of fractures and the corresponding reformulation of the

flow and mechanical models in terms on the phase field variable. This chapter summarizes

and concludes all the work presented in this dissertation.

1. The dissertation started by highlighting the importance of incorporating poroelasticity

in the flow and mechanical models used for simulating hydraulic fracturing. The varia-

tional fracture model was introduced as the mechanical model used in this dissertation.

In the variational fracture approach, the deformed state of poroelastic media contain-

ing fractures is the solution of an optimization problem which involves minimizing the

sum of the surface energy, elastic energy and work of pressure forces in the poroelastic

media. Linear poroelasticity and linear elastic fracture mechanics are incorporated

through the poroelastic energy and surface energy terms respectively.

2. Numerical implementation of fracture models used a smooth scalar phase field (v-field)

that varies between 0 and 1, to represent fractures in the reservoir computational do-

main. The total energy functional was regularized in terms of the phase field variable.

The regularized energy provided a single framework for modeling reservoir deformation

and interaction and propagation of multiple hydraulic fractures. As a result, fracture

propagation part does not need to be known a priori or restricted to any set of direc-

tions.
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3. The variational fracture model was verified by simulating hydraulic fracturing propa-

gation in impermeable poroelastic reservoirs. The analytical solutions for this problem

were derived for pressure driven and volume driven hydraulic fracturing propagation.

The analytical solution for pressure driven hydraulic fracture propagation showed that

it is impossible to propagate fractures in a stable manner by arbitrarily increasing fluid

pressure. The numerical simulation results verified the instability of this operation.

Two and three dimensional volume driven hydraulic fracture propagation simulations

were carried out and the numerical results were in good agreement with the analytical

solutions. Numerical results produced of complex fracture patterns due to the presence

of in-situ stresses and due to simultaneous propagation of multiple fractures.

4. The flow model component of the hydraulic fracturing model was developed by coupling

Reynold’s equation for flow in the fracture and the single phase continuity equation

from poroelasticity theory. Given that fractures are considered as lower dimensional

surfaces in the reservoir, the Reynold’s equation was equipped with surface gradient and

surface divergence operators to allow for fluid flow only within the plane of the fractures.

Numerical analysis of the individual flow models provided a single coupled model to

solve for fluid pressure in fracture and reservoir. The developed flow model was also

regularized using the phase field variable. Fracture width and volumetric strain were

the coupling terms between the flow and mechanical models. An algorithm to compute

fracture width using the phase field and displacement variables was developed. The

algorithm in its basic form introduces errors to the computed fracture width, especially

around fracture tips. The tip errors which arises due to the fact that the phase field

gradient makes no distinction between fracture tip and fracture surface, were removed

by computing indicator functions that isolate fracture tips from the fracture surface.

Numerical solution of the coupled flow and mechanical model used a modified fixed

stress splitting scheme to improve the numerical stability. Mandel’s and Terzaghi’s

consolidation problems were numerically solved to verify the coupled reservoir fluid
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flow and deformation capabilities of the model.

5. Dimensional analysis of both the flow and mechanical models were carried out to derive

their respectively dimensionless forms. All the numerical implementations were for the

solution of the dimensionless models. The scaled model allows the use of arbitrary

dimensionless reservoir and fluid parameters that improve the condition number of the

numerical scheme. In addition, the numerical results can be scaled to solution values

for realistic reservoir parameters using the derived scaling functions.

6. KGD hydraulic fracturing propagation in two dimensional poroelastic medium was

solved to verify the coupled model. On studying the effects of reservoir permeability

on the hydraulic fracturing process, high reservoir permeabilities resulted in high fluid

losses, reducing fracture geometry and delaying the onset of fracture propagation. In

the presence of anisotropic reservoir permeabilities, hydraulic fractures propagated in

the direction with the least flow resistance. The use of high fluid viscosities for hy-

draulic fracturing resulted in higher injection pressures and shorter fractures compared

to when low viscosity fluids were used. In addition, fracture width created from high

fluid viscosities were larger than those from low viscosities. The stress shadow effect

was captured by simulating the propagation of multiple fractures. In the simulation

of two, three and four multiple fracture propagation, the stress shadow effect resulted

in fracture tips of neighboring fractures propagating away from each other. The stress

shadow effect of hydraulic fracturing interaction was found to decrease with increas-

ing spacing between fractures and for decreasing permeability of the reservoir. The

presence of in-situ stress produced fractures that propagated orthogonal to minimum

stresses. The effect of reservoir laying was investigated by simulating penny-shaped

hydraulic fracture propagation in layered reservoirs. For a penny-shaped fracture in

the centre of a three-layered reservoir, layering was created by varying the mechanical

and flow properties between three vertical sections of the reservoir. The external layers

were considered to be the same, with equal reservoir properties. For some combination
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of reservoir properties, the hydraulic fracture grew only within the bounded layer, with

limited height growth which was controlled by the thickness of the middle layer. Other

combinations of reservoir properties favored hydraulic fracture growth away from the

middle layer into he bounding, external layers.

5.2 Recommendations for Future Work

Phase field based methods for hydraulic fracturing modeling is relatively new and this

dissertation ranks amongst the early works in this area. The method will continue to attract

research attention and see significant growth in the future. Based on the experiences gained

during the course of this project, the recommendations for continued research on using the

variational fracture method for modeling hydraulic fracturing are summarized as follows:

1. Given that fracture width is the primary coupling between the flow and mechanical

models, the width computation can be improved through the development of a more

robust algorithm that minimizes the tip errors. Although our width computation

algorithm is programmed in parallel, its non-local structure increases the overall im-

plementation time of the coupled model. The efficiency of the implementation can be

improved. It is important to point that this is a computer science task.

2. Most of the numerical examples in this dissertation are two dimensional with some

qualitative three dimensional computations in the last section of Chapter 4. The

inability to perform quantitative simulations for three dimensional problems was due to

the large computation cost involved. If the width computation algorithm is improved,

more three dimensional computations should be carried out since they are a more

realistic reflection of hydraulic fracturing in the subsurface.

3. Heat transfer, proppant transport and non-Newtonian fluids should be coupled to the

developed model to study the effects of these additional phenomena on the hydraulic

fracturing process.

146



References
Abousleiman, Y., A.H.-D. Cheng, L. Cui, E. Detournay, and J.-C. Roegiers. 1996. “Man-

del’s problem revisited.” Géotechnique 46:187–195.
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Appendix A
Scaling and Derivation of The
Dimensionless Form of The
Variational Fracture Model

Fε(~u, v) =
1

2

∫
Ω

A
(
vε(~u)− α

3κ
Ip
)
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(
vε(~u)− α

3κ
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ε
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∫
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p ~u · ∇vdV
(A.1)

where κ = E
3(1−2ν)

The relevant parameters are Gc, E, ~u, A, p, κ, α, ~f , ~τ and V and are
scaled as follows.

E = EoẼ

Gc = GcoG̃c

~u = uo~̃u

p = pop̃

κ = Eoκ̃

α = αoα̃

A = EoÃ

~f = fo
~̃f

~τ = po~̃τ

V = xNo Ṽ

(A.2)

In addition, the variational fracture model parameters, ε and ∇v are represented as

ε = xoε̃

∇v =
1

xo
∇̃v

(A.3)

Substituting Equations A.2 and A.3 into Equation A.1, one obtains
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To obtain a dimensionless form of the variational fracture model, all the products of the
coefficient terms are set to 1. Therefore
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(A.6)

Therefore, the variational fracture model in terms of the dimensionless variables and
solved on the computational domain is

Fε(~̃u, v) =
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(A.7)

Where Fε(~̃u, v) = 1

Gcox
N−1
o

Fε(~u, v)

The tilde also represents numerical simulation inputs or solutions. From these dimen-
sionless model inputs and solution variables, the realistic reservoir parameters and solutions
are obtained by scaling according to Equation A.2. The typical range of Young’s modulus
and Poisson’s ratio for different reservoir rocks have been reported to be 2-100GPa and 0.01-
0.46 respectively (Santi, Holschen, and Stephenson 2000; Johnson and DeGraff 1988) while
the fracture toughness is less than 200 Pa m (Gidley 1989).
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Appendix B
Scaling and Derivation of The
Dimensionless Form of The Coupled
Flow Model

Reservoir Flow Model

1
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Fracture Flow Model
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Integrating over Γ:∫
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Coupled Reservoir and Fracture Flow Model

The coupled model is obtained by adding Equations 3.5 and B.4. Due to pressure
continuity, we set pr = pf = p∫

Ω\Γ

1

M

∂p
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Where, Q = Qfs +Qrs.
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The relevant parameters are w, p, M , µ, K, Q, t and are scaled as follows.

w = uow̃
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M = moM̃

µ = µoµ̃

K = koK̃

Q = QoQ̃
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(B.6)

Substituting the scalings of Equation B.6 into Equation B.5, one obtains
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dṼ−

u2
otopo
µox2

o

∫
Γ̃

[
(~nΓ × ∇̃) · w̃

3

12µ̃
(~nΓ × ∇̃Γp̃)

]
dΓ̃− kopoto

uoµoxo

∫
∂N Ω̃

K̃

µ̃
∇̃p̃ · ~n ds̃

=
Qoto
uoxN−1

o

Q̃ (B.8)

Again, setting all the coefficients are set to 1, the scaling parameters are
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The corresponding dimensionless coupled flow model is therefore,∫
Γ̃
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Hydraulic fracturing is a common operation in unconventional reservoirs with permeabilities
less than 0.1 mD.
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Appendix C
Derivation of The Solution for
Volume Driven Fracture Propagation

The volume of the line fracture in a 2D domain is

Vf = πbl (C.1)

where

b =
2∆pl

E ′
(C.2)

and

E ′ =
E

(1− ν2)
(C.3)

Thus, Eqn. C.1 becomess

Vf =
2π∆pl2

E ′
(C.4)

Consider an existing line fracture with an initial length of lo. Prior to fracture propagation,
the fracture length does not change so that l = lo. Since fracture length at the onset of
propagation is lo, critical fluid pressure (Sneddon and Elliott 1946) is

∆pc = pc − σmin =

√
GcE ′

πlo
(C.5)

Critical fracture volume at critical fluid pressure is obtained by substituting Eqn. C.5 into
Eqn. C.4

Vfc =
2 π
√

GcE′

πlo
l2o

E ′
=

√
4πl3oGc

E ′
(C.6)

Since Eqn. C.4 is fracture volume at all pressures and fracture lengths, prior to fracture
propagation, l = lo and the fluid pressure in this regime becomes

p =
VfE

′

2πl2o
+ σmin (C.7)

During quasi-static propagation of the fracture, the fracture is always in a critical state
during each quasi-static step so that Eqn. C.5 applies in all of this regime at l ≥ lo. The
fluid pressure and fracture length in this regime are

∆p =

√
GcE ′

πl
(C.8)
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l =
GcE

′

π∆p2
(C.9)

To obtain the fluid pressure as the fracture propagates, substitute Eqn. C.9 into Eqn. C.4,
we have
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(C.10)

The fracture length during the propagation regime is obtained by substituting Eqn. C.15
into Eqn. C.4

Vf =
2π
√

GcE′

πl
l2

E ′

=

√
4π2GcE ′ l4

πlE ′2

=

√
4π Gc l3

E ′

4π Gc l
3 = E ′ V 2

f

l =
3

√
E ′ V 2

f

4π Gc

(C.11)

Derivation of Sneddon Based Solution For Volume Driven Penny-Shaped Frac-

ture in 3D

Penny-shaped fracture volume is

Vf =
4

3
πR2w0 (C.12)

where

w0 =
4∆pR

π E ′
(C.13)
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Volume becomes

Vf =
16∆pR3

3E ′
(C.14)

Thus, prior to propagation, R = Ro and the fluid pressure is

p =
3VfE

′

16R3
o

+ σmin (C.15)

The critical fracture fluid pressure (Sneddon and Elliott 1946) is

∆pc = pc − σmin =

√
πGcE ′

4Ro

(C.16)

Critical fracture volume is obtained by substituting Eqn. C.16 into Eqn. C.14

Vfc =
16
√

πGcE′

4Ro
R3
o

3E ′
=

√
64πR5

oGc

9E ′
(C.17)

At the critical conditions during fracture propagation, fluid pressure and fracture radius are,

∆p =

√
πGcE ′

4R
(C.18)

R =
πGcE

′

4∆p2
(C.19)

To obtain fluid pressure during propagation, substitute Eqn. C.19 into Eqn. C.14

Vf =
16∆p (πGcE′

4∆p2 )3

3E ′

=
π3G3

cE
′3

12∆p5

12∆p5Vf = π3G3
cE
′3

p = 5

√
π3G3

cE
′3

12Vf
+ σmin

(C.20)

The evolution of fracture radius during propagation is obtained by substituting Eqn. C.16
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into Eqn. C.14

Vf =
16
√

πGcE′

4R
R3

3E ′

=

√
64πGcE ′R5

9E ′

64πGcE
′R5 = 9E ′

2

V 2
f

R =
5

√
9E ′V 2

f

64πGc

(C.21)
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Appendix D
Identities Used in Weak Form of
Fracture Flow Model

For scalar ψ, vectors ~F and ~G and surface Γ ⊂ R1 in Ω ⊂ R2, the following identities
have been used in this chapter.

Curl of product of scalar and vector

∇× (ψ ~F ) = ψ∇× ~F +∇ψ × ~F (D.1)

Triple scalar product

~u · (~v × ~w) = (~v × ~w) · ~u = (~w × ~u) · ~v = (~u× ~v) · ~w (D.2)

Triple cross product

~u× (~v × ~w) = (~u · ~w)~v − (~u · ~v)~w (D.3)

Surface divergence

∇Γ · ~F = ~n · ∇ × (~n× ~F ) = (~n×∇) · (~n× ~F ) (Eqn. D.2) (D.4)

Surface gradient

∇Γ ψ = [∇ψ − ~n (~n · ∇ψ)] =
(
I− ~n⊗ ~n

)
∇ψ

= −~n× (~n×∇ψ) (Eqn. D.3)
(D.5)

Stokes theorem ∫
Γ

(∇× ~G) · ~n dA =

∮
∂Γ

~G · ~t ds (D.6)

Alternate form. ∫
Γ

∇Γ · ~F dA =

∮
∂Γ

~F · ~mds (D.7)
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Proof of alternative form.∫
S

∇Γ · ~F dA =

∫
Γ

~n · ∇ × (~n× ~F ) dA =

∫
Γ

(~n×∇) · (~n× ~F ) dA

=

∫
Γ

~n · (∇× ~G)dA; where ~G = ~n× ~F

=

∫
Γ

(∇× ~G) · ~n dA =

∫
Γ

(∇× ~G) · d ~A

=

∮
∂Γ

~G · ~t ds

=

∮
∂Γ

~t · (~n× ~F ) ds =

∮
∂Γ

(~t× ~n) · ~F ds

=

∮
∂Γ

~F · ~mds

(D.8)

~n is unit normal vector to the Γ, ~t is unit vector tangent to the curve (boundary of Γ) while
~m is unit vector tangent to the Γ, perpendicular to the curve and pointing directly outside
Γ. Also, A is the area of Γ and s is the length of the boundary of Γ. Fracture has only one
boundary, ∂Γ, which is a point in two dimensions and an arc in three dimensions.
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Appendix E
Nomenclature

Roman Symbols

M Unit of mass
L Unit of length
T Unit of time
t Time, [T]
~u Displacement
v Phase field variable for fracture rep-

resentation
w Fracture width, [L]
p Fluid pressure, [ML−1T−2]
pr Reservoir pore pressure, [ML−1T−2]
pf Fracture fluid pore pressure,

[ML−1T−2]
pc Critical fracture pressure,

[ML−1T−2]
p̄ Average fracture pressure
~qf Fracture flow rate, [ML−1T−2]
~qr Reservoir flow rate, [ML−1T−2]
ql Leak-off term, [ML−1T−2]
E Young’s modulus, [ML−1T−2]
E ′ Plane strain Young’s modulus,

[ML−1T−2]
A Elasticity matrix, [ML−1T−2]
W (Poro)Elastic energy density func-

tion,
KT Bulk modulus of poroelastic media,

[ML−1T−2]
Ks Bulk modulus of solid grains,

[ML−1T−2]
Kf Bulk modulus of fluid, [ML−1T−2]
Kdr Drained bulk modulus, [ML−1T−2]
M Biot’s modulus [ML−1T−2]
K Reservoir permeability, [L−2]
kf Fracture permeability, [ML−1T−2]
µ Fluid viscosity [ML−1T−1]
~g Acceleration due to gravity, [MT−2]
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qrs Reservoir source term, [LT−1]
qfs Fracture source term, [LT−1]
qfsε Reservoir source term, [LT−1]
P Potential energy
F Total energy
E Elastic energy
Fε Regularized total energy
Gc Fracture toughness, [MT−2]
G Energy release rate, [MT−2]
GI Mode I energy release rate, [MT−2]
GII Mode II energy release rate, [MT−2]
GIII Mode III energy release rate,

[MT−2]
Kc Critical stress intensity factors

[ML−1/2T−2]
KI Mode I stress intensity factors

[ML−1/2T−2]
KII Mode II stress intensity factors

[ML−1/2T−2]
KIII Mode III stress intensity factors

[ML−1/2T−2]
l Line fracture length, [L]

l̇ Rate of change in fracture length,
[LT−1]

R Radius of penny-shaped fracture,
[L]

HN−1(Γ) Measure of fracture surface area L2

[[]] Jump/change in quantity
Vf Fracture volume, [L3]
Vfc Fracture volume, [L3]
Vinj Injected fluid volume, [L3]
n Normal vector
~nΓ Normal to fracture surface
h Finite element resolution
x, y, z Coordinates, L
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Greek Symbols

α Biot’s coefficient
ν Poisson’s ratio
µ Fluid viscosity, [ML−1T−1]
ρb Bulk density of reservoir, [ML−3]
ρs Density of solid grains, [ML−3]
ρf Fluid density, [ML−3]
φ Porosity
ε Phase field length parameter, [L]
ε Linear strain
εvol Volumetric strain
σ Stress, [ML−1T−2]
σc Critical stress, [ML−1T−2]
σ′ Stress, [ML−1T−2]
σvol Volumetric Stress, [ML−1T−2]
σmax Maximum in-situ stress, [ML−1T−2]
σmin Minimum in-situ stress, [ML−1T−2]
ψ Finite element test function
τ Traction on boundary, [ML−1T−2]
Ω Full dimensional computational do-

main
Γ Fracture domain
θ Time discretization weighting pa-

rameter
δ Dirac delta function
∆ Change in a quantity
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