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ABSTRACT 

Dietary bioactive compounds benefit health while some might induce pathological processes.  

Parkinson’s disease (PD) is the second most common neurodegenerative disease.  Braak and Hawkes 

hypothesized that the gastrointestinal tract may be a potential site of neuronal invasion by an “unknown 

pathogen” leading to some Parkinsonism.  Neurotoxin botulinum or ricin can trans-synaptically transport 

in nervous system.  Our hypothesis 1: dietary plant lectins might be responsible for the “unknown 

pathogen” causing PD.  Pomegranate juice (PJ) have antioxidant and anti-obesity effects.  Our hypothesis 

2: PJ increases lifespan in C. elegans and reduces fat storage.  

 Study 1: Post-feeding rhodamine or TRITC tagged dietary lectins was tracked from gut to 

dopaminergic (DAergic) neurons in C. elegans BZ555 (egIs1[Pdat-1::GFP]) that has Green Fluorescent 

Protein (GFP) gene fused to a dopamine transport protein gene labeling DAergic neurons.  Although this 

observation was tested with specific inhibiting sugars (SIS), supplemented with Escherichia coli, the high 

concentrations of monosaccharides necessary may have their own side effects.  Results showed that 

Amaranthus caudatus agglutinin, Euonymus europaeus agglutinin and Arachis hypogaea agglutinin co-

localized with DAergic neurons.  Lectins affected the number, size or intensity of DAergic neurons, 

reduced the mobility and affected the lifespan of C. elegans to different extents, with the SIS either 

augmenting or mitigating the effects.  Our observations are a tantalizing possible explanation for why 

dietary plants have been linked to a risk of developing PD. 

Study 2: Lifespan of C. elegans was increased by PJ treatment in wild type (N2, 56%) and daf-16 

mutant (daf-16(mgDf50)I) (GR1307, 18%), by POMx in N2 (28%) and in GR1307 (10%), or by EA (11%).  

PJ reduced intestinal fat deposition (IFD) in N2 (-68%) or in GR1307 (-33%).  The IFD was increased by 

POMx in N2 (137%) and in GR1307 (26%), by EA in N2 (66%) and in GR1307 (74%), or by UA in N2 

(57%) and in GR1307 (43%).  Both lectins and PJ are bioactive compounds, playing important roles in 
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life.  These studies may provide useful information for an alternative etiology of PD and offer solutions 

of using PJ to delay aging and prevent obesity in humans.  



  

 

 

1 

CHAPTER I.  INTRODUCTION 

1.1 General introduction 

Dietary bioactive compounds such as phytochemicals, vitamins, minerals and fibers contained in 

fruits and vegetables benefit humans and animals [1, 2].  Chemical compounds in fruits and vegetables 

can alter gene expression; have neuroprotective and antiaging effects, and effects in preventing or treating 

chronic diseases including cancer [3, 4].  Plant lectins were discovered over a century ago [5].  

Consumption of lectins contained in seeds or tuber have caused diseases in human beings mainly due to 

damage on intestinal mucosa [6].  Patients suffered vomiting and diarrhea after consuming a diet high in 

red kidney beans containing the lectin phytohemagglutinin in a hospital in 1988 [7].  Lectins are also 

related to disease symptoms in some patients with dysfunction of the immune system [8].  Recent studies 

report that lectins play important roles in plant defense [9] and legume-rhizobial interactions [10].  

Pomegranates (Punica granatum L.) have a high content of polyphenols (1.5%), including ellagic acid 

(EA), gallic acid, anthocynidins, flavan-3-ols, straight chain fatty acids, citric acid, and malic acid.  

Pomegranates consist of about 80% juice and 20% seeds with water (85%), and 10% sugars consisting 

primarily of fructose (2.5 g to 17.6 g/100ml) [11, 12].  Dietary polyphenol antioxidants play important 

roles in health [13-17].  PJ has been shown to extend lifespan in mice [18, 19] and Drosophila 

melanogaster [20].   

The increasing age of people in modernized countries creates a greater burden of chronic diseases 

including cancer, cardiovascular disease, diabetes, and neurodegenerative disorders including PD and 

Alzheimer's disease [21-25], leading to a high cost of health care and a great financial burden to the public 

health system and families [26, 27].  The study of dietary bioactive compounds like lectins and PJ and its 

derivatives in C. elegans organism may provide some useful information for an alternative possible 

etiology of PD and offer some solutions to delay aging and prevent obesity in humans. 
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1.2 Dietary proteins may be trans-synaptically transported in the nervous system 

Protein toxins are able to survive the harsh environment of cooking process, low pH of stomach, 

and protease digestion of the GI track.  Many of them can penetrate intestine epithelial cells and pass into 

blood or lymphoid circulation [28-30].  Toxins are target specific.  Botulinum neurotoxins (BoNTs) or 

ricin can be trans-synaptically transported in the nervous system causing severe, even lethal damages on 

humans and other mammals [31, 32].  Cholera toxin exerts toxicities only on the epithelial cells of intestine 

and causes symptoms like watery diarrhea [33-35]; tetanus toxin (TeNT) affects neuromuscular junctions 

after being taken up into blood or lymphoid circulation [36]. 

Glycoproteins and glycolipids are major components of eukaryotic cell membranes along with 

phospholipids, and are the main binding receptors for toxins, playing a crucial role in the process of 

binding and internalization [29, 37-39].  Glycoproteins and glycolipids are also essential compounds for 

intercellular communications and reactions to alterations of the cell environment [40].  Both ricin and 

some neurotoxins share similar A-B chain structure; in which chain A is responsible for recognizing 

binding receptors and internalization, and chain B exerts toxicities.  Understanding the underlying 

mechanisms of neurotoxins may help better understand the effects of lectins on neurons. 

1.3 Dietary plant lectins as an “unknown pathogen” in Parkinson’s disease 

Higher prevalence of PD occurs in vegetarians compared to omnivores [41, 42], though 

controversial.  Plant lectins have been used for tracing neurons along nerve fibers in animal studies.  

Dietary toxin proteins can overcome the barriers of digestion systems and cause severe, even lethal 

damage on mammals including humans [31, 32].  We hypothesize that dietary plant proteins traverse the 

GI wall, enter the nerve endings, undergo vesicular transport along nerve fibers, and damage DAergic 

neurons as one etiology of PD.  A recent Danish study showed that patients who had vagal nerves removed 

20 years ago had a 40% lower incidence of PD [43], which supported our hypothesis of dietary plant 

lectins. 
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PD is the second most common degenerative disorder of the central nervous system that impairs 

motor skills and cognitive function, the main symptoms of PD are motion disorders, like muscle rigidity, 

bradykinesia, and tremors [44].  Clinically, PD is characterized by the development of Lewy bodies due 

to aggregation of a-synuclein (α-SYN) in the brain tissue and the partial loss of DAergic neurons in the 

substantia nigra [45].  α-SYN also aggregates in microglia and further leads to PD although the detailed 

mechanism remains unclear [46, 47], while astrocytes convert the PD-causing neurotoxin 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP) to its active metabolite cation 1-methyl-4-phenylpyridinium 

(MPP+) [48].  However, the mechanism of the formation of Lewy bodies is not clear [49].  The etiology 

of PD is unknown but complex environmental factors play important roles for neurodevelopmental and 

neurodegenerative disorders including PD [50, 51].  Results of large-scale epidemiological studies using 

meta-analysis showed that a statistically positive association exists between PD and pesticide or herbicide 

exposure  [52].  Most of these pesticides share common features, such as the ability to induce oxidative 

stress, mitochondrial dysfunction, α-SYN fibrillization and neuronal cell loss [53].  Insulin dysfunction 

might be associated as a cause of PD though the detailed mechanism is still unclear [54].  Evidence 

indicates that in Caenorhabditis elegans (C. elegans) high glucose concentration (14 mM) increases 

aggregation of α-SYN while restricted glucose concentration reduces it [55].  Exposure to other 

environmental factors such as solvents, metals and other pollutants are also associated with the risk of PD 

in animal models [56, 57].  Despite the long-accepted viewpoint that environment and genetic factors 

might be most related to the etiology of PD, a recent review in 2015 reported that dietary factors like 

vitamins, flavonoids, calorie intake, caffeine, alcohol, and metals may also play a role [53, 58]. 

Plants contain glycoprotein-lectins (“non-immune sugar-binding proteins”) in seeds, fruits, and 

nuts [59], that recognize and reversibly bind specific carbohydrates [60].  They are involved in plant 

defense [9] and legume-rhizobia [10].  They resist gut enzymes maintaining function under adverse 

conditions [61, 62].  They can penetrate the GI tract wall by endocytosis [63], probably by first binding a 
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carbohydrate lectin receptor [64] followed by endocytosis, and, astonishingly, can transfer trans-

synaptically in an antegrade and/or retrograde fashion along nerve fibers [60, 65].  Their medical 

importance is increasingly being recognized by being conjugated with drugs for better drug absorption 

from the GI tract [64, 66-68].  Particularly relevant to the current studies, lectins have been utilized 

extensively for neuronal tracing studies [65, 69].  Ricin (Ricinus communis) as an extremely cytotoxic 

lectin has been studied extensively for its function in retrograde transport.  It is reportedly via a B-chain 

mediated endocytosis, following a translocation of the enzymatically catalyzed A-chain, from the 

endosomes to the Golgi apparatus [70, 71].  This property has been utilized for treatment of malignancies 

at low doses [72, 73].  Lectins have also been conjugated with DNA for enhanced nervous system gene 

delivery [74].  Most dietary plant lectins resist gut enzymes and maintain function under usually adverse 

conditions for proteins [61, 62].   

Most lectins are resistant to mild heat and protease [75], lectin concanavalin A (Con A) from 

Canavalia seeds can survive high cooking temperatures such as 96 °C for up to three hours [76].  These 

characteristics, theoretically, allow lectins to be ‘biologically active’ when reaching their “targets” in vivo.  

Controversial reports suggest that a higher prevalence of PD occurs in vegetarians compared to omnivores 

[41, 77].  The “Vegetarianism in America” study in 2015, published by Vegetarian Times 

(vegetariantimes.com), shows that 3.2 percent of U.S. adults, or 7.3 million people, follow a vegetarian-

based diet and 96.8 percent of U.S. adults or 220.8 million people are omnivores.  A 2195 American 

participants study reported that on average 1/3 of total vegetables people consumed were not cooked, and 

people who consumed more raw vegetables also preferred raw fruits and grains [78].  Taken together, a 

subgroup of dietary plant lectins may act as one of the long-term ‘pathogens’ that slowly cause cellular 

inclusions of α-SYN. 

The Amyotrophic Lateral Sclerosis / Parkinsonism dementia complex (ALS-PDS) in populations from 

Guam, for example, has been linked to a diet rich in cycad seeds (Cycas micronesica) [79, 80].  The cycad 
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seeds contain ß−methylamino-L-alanine (BMAA) which has excitotoxic properties.  Studies on human 

brain tissue of ALS/PDC, ALS, Alzheimer’s disease, PD, Huntington's disease and neurological controls 

indicated that BMAA is present in non-genetic progressive neurodegenerative disease but not in controls 

or genetic-based Huntington's disease [81-84].  Animals fed with purified BMAA, however, do not show 

ALS-PDS traits [85] suggesting that other mechanisms deliver toxin(s) to the target neurons.  A newly 

proposed medical hypothesis suggests that structurally similar glucosides of helicobacter pylori might be 

accountable as neurotoxins [86] though currently unproven.  Several lines of evidence suggest a possible 

role of lectins in neuronal injury.  First, lectins have been detected in Cycas revoluta, which is in the same 

family (Cycadaceae), and genus (Cycas) as Cycas micronesica of Guam [87, 88].  Second, horses 

consuming yellow star thistles (Centaurea solstitialis) show liquid necrosis in the substantia nigra and 

develop nigropallidal encephalomalacia (NPE) symptoms, which are similar to human Parkinsonism.  The 

toxins responsible for NPE have not yet been identified [89].  These studies suggest that lectins might be 

toxic or chaperone carriers of toxins in PD-like diseases.  

1.4 Bioactive compounds of pomegranate juice and extracts improve lifespan in C. elegans 

Dietary polyphenol antioxidants play important roles in health [13-17].  PJ has been shown to extend 

lifespan in mice [18, 19] and Drosophila melanogaster [20].  PJ extract (POMx) potentiates lifespan 

extension with dietary restriction, a finding attributed by polyphenols [18, 19].  POMx and PJ can also act 

as prebiotics, having demonstrated antibacterial properties in vitro, and can block DNA repair and inhibit 

proliferation of breast cancer cells (MCF-7) in vitro, as well as modulate the IGF-IGFBP axis [90-94].  

POMx and PJ also down-regulate androgen-synthesizing genes to induce apoptosis of human prostate 

cells (kappaB-dependent) in vitro and in mice in vivo [95-98].  POMx and PJ decrease prostate specific 

antigen in humans after surgery or radiation [99, 100], inhibit tumor-associated angiogenesis in vitro and 

in vivo [99], suppress inflammatory cell signaling in colon cancer cells [101] (50 mg/L PJ, in vitro), 

improve memory [102] and improve fecundity in humans [20, 103-105].   
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As the main bioactive component, EA is a measure of the quality of PJ extract products [104, 106, 

107].  EA in humans reaches a maximum plasma level in 1 hour (31.9 ng/ml), is eliminated within 4 hours 

[108] and exerts an antioxidant effect [109].   Urolithin acid (UA) is the main active metabolite of EA and 

is formed by colonic microflora.  UA lasts longer in the human body than EA or other EA metabolites [91, 

110], and has better bioavailability [111].  UA also suppresses colorectal, hepatic, and prostate cancers 

synergistically with EA in vitro and in mice in vivo [112-116].  
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CHAPTER II.  DIETARY PLANT LECTINS MAY BE AN ‘UNKNOWN ETIOLOGY’ IN 

PARKINSON’S DISEASE 

PART A.  DIETARY PROTEINS AND TRANS-SYNAPTICAL TRANSPORTATION 

1.1 Introduction 

Study of mechanisms of protein toxins and lectins has been conducted for decades, aimed at 

elucidating the interesting phenomenon that a trace amount of botulinum neurotoxins (BoNTs) or ricin 

could overcome the barriers of digestion systems and cause severe, even lethal damage to mammals 

including humans [1, 2].  The targets of these toxins in humans vary.  For instance, cholera toxin exerts 

toxicities only on epithelial cells of intestine and causes symptoms like watery diarrhea [3-5]; but tetanus 

toxin (TeNT) can cause further damages in neuromuscular junctions after being taken up into blood or 

lymphoid circulation [6].  Several studies have investigated how these protein toxins or ricin survive the 

harsh environment in the stomach and intestine including low pH and protease, and how the toxin 

penetrate intestine epithelial cells into blood or lymphoid circulations [7-9].  Though some mechanisms 

were revealed, the detailed mechanism of this process, especially the process of penetration into the 

neuronal membrane is still under extensive research [10, 11].  Binding strength to neuronal membranes is 

a prerequisite of the following translocations and other toxicities [12, 13]. 

Both ricin and some neurotoxins share similar A-B chain structure; in which chain A is responsible 

for recognizing binding receptors and internalization, and chain B exerts toxicities.  Other lectins can 

recognize special binding sites on neuron membranes and then build communicating connections with 

neurons.  In this chapter, the travel of neurotoxins from intestine to central nervous system was covered 

and the stress was placed on how neurotoxins were retrograde transported from axon to central nerve.  

This part focused on protein toxins because of severe threat to human beings and have been more studied.  

Understanding the underlying mechanisms would help design new drugs and better understand the effects 

of lectins on neurons. 
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1.2 Protein toxins 

1.2.1 Botulinum neurotoxins and tetanus neurotoxin 

1.2.1.1 Structure components 

BoNTs and TeNT have been studied together in most cases because they share similar A-B chain 

structures, employ similar pathways to exert toxicities; and attack neurons only [6, 14, 15].  BoNTs have 

seven serotypes, including type A-G.  The analysis of protein sequences of seven serotypes of BoNTs and 

TeNT indicates sequence homology [16, 17].  In addition, BoNTs and TeNT cause similar symptoms of 

paralyses because they both inhibit the release of neurotransmitter via zinc-dependent cleavage of protein 

components [15].  The main difference between them is that BoNTs target neuromuscular conjunctions 

while TeNT plays roles at neuron-neuron junctions. 

Properties are determined by structures.  In the wild with adequate moisture like in the soil, BoNTs 

exist in the form of binding to a small complex called non-toxic neurotoxin-associated proteins (NAPs, 

Figure 1), which is composed of Hemagglutinin (HA) and non-toxic non-HA (NTNHA) [18, 19]. 

 

Figure 1. Composition of BoNTs complex. 
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The structure of NTNHA protein and BoNTs shows mirror symmetry so that they could bind tightly 

with each other via multivalent bonds.  This strong binding shield BoNTs from harsh environments like 

low pH and proteases [20].  After surviving the harsh environment in GI tract and penetrating the GI wall, 

BoNTs arrive at a moderate environment like blood or lymphoid circulation, where BoNTs are released 

from the complex and at this time they can travel freely in vivo [21]. 

1.2.1.2 Neurotoxins absorbed from GI tract to circulation and up-taken to nerve endings 

After surviving harsh intestinal environments, BoNTs need to overcome the intestinal barrier 

before entering vascular circulation.  Fujinaga et al. in 2013 reported that three steps were involved in 

penetration through the intestinal epithelial barrier, including transcytosis, barrier disruption and 

absorption from damaged barrier (Figure 2) [19].  In detail, two different pathways are involved in the 

first step transcytosis.  The first pathway is associated with the binding domain of the heavy chain, which 

facilitates the binding and transcytosis of the whole toxin.  BoNT/A mainly takes advantage of this 

pathway; however, the detailed mechanisms underlying this pathway are still unknown.  Couesnon et al. 

proposed that Caco-2 and m-ICc 12 cells can absorb the binding domain of the heavy chain by a Cdc-42-

dependent and clathrin-independent pathway.  Recently, Couesnon et al. further proposed that 

neuroendocrine intestinal crypt cells play an important role in transcytosis [22, 23].  The second pathway 

is associated with HA, which could promote the binding of BoNTs with intestinal barrier due to its 

carbohydrate-binding properties and the ability to transit the barrier.  Fujinaga et al. reported that HA 

plays an important role in facilitating the binding of BoNTs complex to the epithelial lining [24].  HA is 

also involved in internalization of BoNT/C and BoNT/D complex into the intestinal epithelial barrier [25].  

The third step is disruption of the epithelial barrier after BoNTs are transferred to the basolateral surface, 

facilitated by HA.  BoNT/A and BoNT/B would not cause some cytotoxic effects in epithelial cells during 

the disruption [26], however, BoNT/C might do so [27].  The last step is release of BoNTs from the 

damaged barrier into circulation. 
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Figure 2. Three steps involved in the process of penetration into the intestinal epithelial barrier, including 

transcytosis, barrier disruption and absorption from damaged barrier. 

 

1.2.1.3 Internalization into neurons 

After entering the blood or lymphatic stream, neurotoxins are transported to neuromuscular 

junctions.  Four steps are required for BoNTs and TeNT to enter neurons and exert toxicities (Figure 3).  

After entering into neuron terminals, BoNTs’ effects are mainly restricted to the neuromuscular 

conjunction, which prevents release of synaptic vesicles from cell membranes through three different 

pathways as mentioned above; however, TeNT is retrograde transported to neuron soma in the spinal cord 

and trans-synaptically transported to the axon of the next neuron [28]. 



19 

 

The first step is membrane binding, early research reported that BoNTs and TeNT bound to 

gangliosides or glycosphingolipids which were found particularly in the outer leaflet of neuronal cell 

membranes [29, 30].  Later studies suggested that BoNTs and TeNT bind to more than a single receptor, 

and a dual-receptor theory was then proposed.  Strong evidence for this dual-receptor theory is that the 

binding of TeNT to rat brain membrane was greatly decreased but not abolished after protease 

pretreatment, implying that other kinds of protein receptors are involved in binding.  In detail, the dual-

receptor theory proposed that BoNTs and TeNT bound to complex polysialogangliosides first, including 

GD1b, GT1b and GQ1b, which are abundantly present on the outer leaflet of neuronal membranes; 

thereafter, they further bind to more sparsely distributed protein receptor(s).  Toxins accumulate first on 

the membrane surfaces, and then further interact with protein receptors to complete the second step of 

binding.  Rummel described the detailed pathway of the first step in 2013 [31].   

The second step is known as internalization, after toxins bind to the surface receptors, acid 

compartments are formed with the endocytic process of toxins, where temperature and available energy 

could affect this process [16].  

The third step is translocation.  After BoNTs and TeNT are transported to acidic compartments, 

the compartments depart the internal cell surface and enter the cytosol.  BoNTs and TeNT utilize different 

pathways for translocation from compartments into cytosol.  Due to the low pH in the compartments, the 

L chain of the BoNTs would be rearranged; leading to higher hydrophobicity, which makes it easier to 

traverse the lipid bilayer [16, 32].  By this step, the light chains of BoNTs are freely available in the cytosol 

of the neuron cells. 

The fourth step is intracellular action, which mainly inhibits the release of neurotransmitters from 

neurons into neuromuscular junction.  As shown in Figure 3, the L chain of the toxin cleaves essential 

proteins necessary for the release of neurotransmitters. 
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Figure 3. Four steps involved in the internalization and toxic effects. 

1.2.2 Shiga toxin 

Shiga toxin inhibits protein synthesis in target cells [33].  Globotriaosylceramide (Gb3), the special 

glycolipid receptor recognized by shiga toxin, was first isolated from both HeLa cells and rabbit jejunal 

mucosa [34].  Shiga toxin has two sub-types; Stx1 and Stx2, both of which feature A-B5 structure, where 

one A-subunit is the active component and five B-subunits are responsible for binding [35].  Stx2 causes 

more severe damage than Stx1 which only causes some infections [36-38].  
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Gb3 was first found in the rat sensory neurons and in rabbit brain capillaries by 

immunohistochemistry [39].  Takahashi, K. first reported that Stx2 might damage neuron cells indirectly 

using a rabbit model [40].  Other studies reported that Stx2 induced a glial lamellipodia-like process 

between presynapse and motoneuronal soma, and proposed that neurons were the primary target of Stx2, 

which could lead to paralysis [35].  Stx2 was further reported to induce expression of Gb3 in neurons and 

cause dendritic abnormalities in rat brains [41], and to exert direct cytotoxic effect in the thalamus in rats 

[42]. 

Shiga toxin employs a clathrin dependent mechanism to enter the cell, binding to glycolipid ligand 

and endocytosed from coated pits [43, 44].  Binding sites are randomly located on cell membranes, but if 

the temperature reaches 37 ℃, the binding site Gb3 will concentrate in coated pits.  Binding of the subunit 

B to Gb3 causes induction of narrow tubular membrane invaginations, which drives formation of inward 

directed membrane tubules for bacterial uptake into the cell.  These tubules are essential for the uptake of 

shiga toxin into host cells [45]. 

To sum up, neurotoxicity of shiga toxin is mainly due to the subtype Stx2.  Gb3 is the primary 

receptor on neuron cell membranes that bound to Stx2, however, the detailed mechanism of binding and 

the following internalization is still not clear. 

1.3 Lectins 

1.3.1 Ricinus communis agglutinin (RCA) 

Ricin, synthesized and stored in the endosperm cells of maturing Ricinus communis seeds (castor 

beans) is a heterodimeric plant protein that has emerged as the first well-known lectin due to its extremely 

high toxicity of trace doses and its special A-B chain structure [46, 47].  Similar to BoNTs and TeNT, 

ricin utilizes the A-B mechanism to penetrate cell membrane.  Chain B of ricin attaches to the cell surface 

first and then the protein undergoes endocytosis into cells.  Ricin inhibits the synthesis of protein 

enzymatically after its chain A enters cytosol and removes a specific adenine residue from the 28S 
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ribosomal RNA (28SrRNA) of the large subunit of eukaryotic ribosomes [48], other toxins share the 

similar mechanisms include diphtheria toxin, Shiga toxin, Pseudomonas exotoxin A, abrin and modeccin 

[49].   

Chain B has special binding sites for galactose [50]; galactose exists in many cell membranes 

because it is widely present in glycoproteins and glycolipids, which are the major components of cell 

membranes [51], thus ricin is bound to the cell surfaces.  Other cell surface receptors include N-

acetylgalactosamine, glycoproteins, glycolipids or mannose receptors [52].  After chain B successfully 

binds to cell surfaces, ricin utilizes both clathrin-dependent and clathrin-independent pathways including 

caveolae and macropinocytosis to enter cells [53-56].  Ricin mainly utilizes clathrin-coated pits to be 

internalized, but if this pathway is blocked, ricin could still be endocytosed by clathrin-independent 

pathways [57].  Catherin-dependent mechanisms are well studied, which is a receptor-mediated uptake of 

proteins.  Special protein motifs like tyrosine residue in the cytosolic tail of the receptors is necessary for 

the uptake in this mechanism [57, 58].  In detail, chain B of ricin is binding to the galactosyl-residues in 

cell surface and then internalized [59].  Clathrin-independent mechanism was proposed based on the 

finding that clathrin-dependent endocytosis was inhibited by transfection of Cos-7 cells with a mutant of 

the 100~kDa GTPase dynamin, whereas fluid-phase uptake still happened [57, 60], this suggests that 

clathrin-dependent pathway is not the only pathway that ricin employed.  The endocytosis of ricin is 

reduced to about 50% when the clathrin-dependent pathway is inhibited [61].   

Ricin’s toxicity largely depends on the exposure route, ingestion mainly caused mass fluid loss by 

producing mucosal injuries, but injection would cause severe damage by inhibiting the synthesis of 

proteins in cells [62].  Ricin is able to be transported from peripheral nerves to neurons retrograde,  called 

‘suicide transport’ [63].  Rat studies showed that 0.2 microgram of ricin caused heavy fiber degeneration 

in the sciatic nerve proximal to the injection site, but not in a nearby tributary nerve [64], which suggested 

that ricin can produce a selective and severe lesion by retrograde "suicide transport".  Injection of ricin 
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bilaterally in the sciatic nerve in rats induces the loss of motor neurons, leading to lower limb paralysis 

and the deficits that occurs in diseases like amyotrophic lateral sclerosis (ALS) and infantile progressive 

spinal muscular atrophy (SMA) [65, 66].  Ricin also affects the glial cells in addition to the degeneration 

of motor neurons in rats.  Injection of ricin into rat facial nerve causes the degeneration of facial motor 

neurons, local microglial cells respond to nerve crush by rapid proliferation and phagocytosis of neuronal 

debris.  After nerve crush, the expression of glial fibrillary acidic protein by fibrous astrocytes is enhanced 

[67].  Intact ricin is resistant to heat, freezing and proteolysis [68].  These findings suggested a possible 

route for lectins to transport from peripheral nerves to the central nervous system, which supports the 

hypothesis that dietary plant lectins might affect DAergic neurons and be one potential cause of PD.  

1.3.2 Wheat germ agglutinin (WGA) 

WGA is a plant lectin that has been employed as an anterograde tracer research tool for years.  WGA 

has a unique binding affinity for N-Acetylneuraminic acid, a key component of neuronal membranes 

found in the brain, such as gangliosides which have diverse roles such as cell-to-cell contact, ion 

conductance, as receptors.  WGA also attaches to the protective coating on the nerves known as the myelin 

sheath [69].  The presence of N-acetylglucosamine inhibits interactions between WGA and cell surface, 

implying that WGA could bind to N-acetylglucosamine on cell surfaces [70].  

WGA is endocytosed by nonfenestrated endothelia throughout the central nervous system, WGA 

passes through the blood brain barrier (BBB) through a process called “adsorptive endocytosis”, this 

adsorptive endocytosis was proposed to associate with inclusion of Golgi complex [71, 72].  WGA is 

uptake via adrenergic nerve terminal and then transported retrograde to the superior cervical ganglion [73], 

however, the detailed mechanism is not clear and it is suggested that WGA has a single population of 

binding sites. 

Most recently, Damak, et al. reported that WGA was transported to the geniculate and petrosal 

ganglia, and proposed this uptake and transportation was via across synapses in vesicles [12].  This 
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suggested that WGA bind to N-acetylglucosamine or N-Acetylneuraminic acid on cell surfaces first to 

build some connections, and then by an unknown pathway, WGA is able to form a small channel on the 

cell membrane, followed by formation of vesicles. 

1.3.3 Phaseolus vulgarwas leucoagglutinin (PHA-L) 

PHA-L has been used as an anterograde tracer of pathways of the central nervous system for a long 

time, even though it also shows some extent of retrograde transport [74-78].  In mammals, PHA-L is 

mainly anterograde transported through the nerve system, but some studies reported that PHA-L 

demonstrated almost the same degree of anterograde and retrograde transport in frogs, which might be 

due to different distribution of binding sites on cell membranes between frog and mammals [79]. 

1.3.4 Concanavalin A (Con A) 

Another interesting lectin is Con A, which can bind to neuronal and synaptic membranes extensively 

[80], but the uptake of this lectin is very limited [73].  Similar to WGA, Con A has also been widely 

employed as a tool to study retrograde transport for its special property [81-83].  Con A is taken up by 

adrenergic nerve terminals and transported retrograde to the superior cervical ganglion [73].  The binding 

pattern of Con A suggests that the ability of binding to the cell membranes cannot guarantee following 

internalization; the effective action is a very complicated process requiring several parts to cooperate.  The 

binding site of Con A was confirmed by pre-incubation of Con A with mannose which could greatly 

decrease Con A activity [84]. 

In addition to these lectins, other lectins also have shown the ability of recognizing or binding to 

neurons and their accessories.  In recent years, the unique properties of binding to carbohydrate receptors 

have made lectins powerful research tools for characterizing the distribution of binding sites on cell 

surfaces. 

In 1985, Fabian, R. H. reported the axonal and transneuronal transport of lectins including WGA, 

Pisum Sativum Agglutinin (PSA), Lens Culinaris Agglutinin (LCA), Soybean Agglutinin (SBA), and Con 
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A, and proposed that axonal and transneuronal transport of the lectins likely depended upon their 

respective carbohydrate affinities [83]. 

Silverman reported utilization of plant lectins to study carbohydrates on sensory ganglion cell 

surfaces [85].  In rats, the alpha-D-galactose-specific Griffonia Simplicifolia I-B4 [86] lectin was used to 

characterize galactose-terminal glyco-conjugates on a large subpopulation of small neurons, peripheral 

autonomic, gustatory and visceral sensory, enteric neurons, and the accessory olfactory bulb.  L-fucose-

binding Ulex europaeus-I (UEA) lectin was used to label the substantia gelatinosa in the human spinal 

cord.  In rabbit, a small sensory ganglion cell subset and the spinal cord substantial gelatinosa was co-

labelled by both the GSA and UEA lectins [85].  Other research reported use of eight lectins including 

Con A, Arachis hypogaea agglutinin (PNA), Soybean Agglutinin (SBA), Dolichos Biflorus Agglutinin 

(DBA), Phytolacca americana (PWA), WGA, UEA and PHA from six groups to study the lectin binding 

sites of olfactory receptor neurons, and all of them demonstrated their special binding properties [84].  The 

reveal of sugar-binding site of Con A has facilitated the mechanism research [87]. 

1.4 Discussion 

The structure of neurotoxins and lectins play a key role in the binding and interactions with neurons.  

Special structural characteristics have determined their inherent properties of recognition, binding and all 

other effects.  A-B structure is the most common structure in neurotoxins, in which subunit B is 

responsible for binding while subunit A for toxic effects.  The receptor on cell membranes is another 

important factor that affects the interactions.  For lectins, special receptors on cell membranes determine 

which lectins they can bind to and the intensity of the interactions, but the detailed mechanism is not all 

known.  Other factors may also affect this binding and internalization, for example, cytofluorometric 

quantification study demonstrated that regenerated nerve greatly increased the uptake of Con A and WGA 

in mice [63].  
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However, due to the potent toxic effects and great value of research, it is of high necessity to 

illuminate the mechanism as well as the pathways of these neurotoxins and lectins.  Many researchers 

have been working on the mechanisms and applications of these neurotoxins and lectins, but more efforts 

will be needed.  For example, the mechanisms of the action of Shiga toxin and some lectins are still very 

vague.  Research on lectins has focused on the characterization or monitoring the sugar receptors on cell 

membranes including cancer cells, some studies have started to investigate physiological effects of lectins 

[88, 89].  In a rat study, after oral administration of ricin, the ricin was absorbed from GI tract into blood 

and lymphatic circulation and detected in the liver and spleen [90].  This finding together with ricin’s 

ability of ‘suicide transport’ might suggest that ricin have the ability of traversing the GI tract to enter the 

central nervous system, which supports our hypothesis that dietary plant lectins may have some effects on 

neurons.  The etiology of PD is still not well defined, but the information presented here provides an 

alternative possibility of inducing PD. 
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PART B. DIETARY PLANT LECTINS APPEAR TO BE TRANSPORTED FROM THE GUT 

TO GAIN ACCESS TO AND ALTER DOPAMINERGIC NEURONS OF C. ELEGANS1 

1.1 Introduction 

Could dietary plant proteins, such as lectins, traverse the gut intact, with vesicular transfer to neurons 

and be transported intact along axons to affect DAergic neurons as one etiology of PD?  A recent Danish 

study showed that patients who had vagal nerves removed 20 years ago had a 40% lower incidence of PD 

[1].  Some reports claim that vegetarians have higher rates of PD [2, 3].  This research uses C. elegans as 

a model to investigate dietary lectins transport to DAergic neurons.  

PD is the second most common degenerative disorder of the central nervous system that impairs 

motor skills and cognitive function, the main symptoms of PD are motion disorders, like muscle rigidity, 

bradykinesia, and tremors [4].  A human study with 490 PD patients and 176 health volunteers showed 

that the age is a key factor to the severity of the disease on a motor scale, but shows no difference in non-

motor symptoms, and in men, the phenotype is characterized by upper-body disease while in women by 

postural dysfunction [5].  A survey of 210 PD subjects reported that in general men suffer more than 

women from PD symptoms according to the index of quality of life [6].  Other survey studies reported 

that men are at higher risk of getting PD than women [7-11].  A study of 1,741 subjects compared motor 

and non-motor symptoms between male and female subjects according to their age of symptom onset and 

diagnose, no difference was found between male and female except that women do better than men in 

non-motor symptoms [12].  The incidence of PD in Italian was estimated at 380/100,100 in year 2011 by 
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analyzing drug prescriptions, tax-exemptions as well as hospital discharge records [13].  Longer lifespan 

has resulted in heavy societal financial burden and emotional burden all over the world [14].   

Clinically, PD is characterized by the development of Lewy bodies due to aggregation of a-

synuclein (α-SYN) in the brain tissue and the partial loss of DAergic neurons in the substantia nigra [15].  

α-SYN also aggregates in microglia and further leads to PD though the detailed mechanism remains 

unclear [16, 17].  Astrocytes convert neurotoxin MPTP to its active metabolite MPP+ [18].  However, the 

mechanism of the formation of Lewy bodies is not clear so far [19].  To date, PD cannot be cured though 

some treatments may alleviate the symptoms.  The etiology of PD is unknown but complex environmental 

factors play important roles for neurodevelopmental and neurodegenerative disorders including PD [20, 

21].  Results of large-scale epidemiological studies using meta-analysis showed that a statistically positive 

association exists between PD and pesticide or herbicide exposure  [22], most of these pesticides share 

common features, such as the ability to induce oxidative stress, mitochondrial dysfunction, α-SYN 

fibrillization and neuronal cell loss [23].  Insulin dysfunction might be associated with the cause of PD 

though the detailed mechanism is still unclear [24].  Evidence indicates that in C. elegans high glucose 

concentration (14 mM) increases the aggregation of α-SYN while restricted glucose concentration reduces 

it [25].  Exposure to other environmental factors such as solvents, metals and other pollutants are also 

associated with the risk of PD in animal models [26, 27].  Despite the long-accepted viewpoint that 

environment and genetic factors might be most related to the etiology of PD, a recent review in 2015 

reported that dietary factors like vitamins, flavonoids, calorie intake, caffeine, alcohol, and metals also 

play an important part in the rise and development of PD [23]. 

Plant lectins were discovered over a century ago (see review [28]).  Toxicity of lectins was first 

recognized, independently, by Bruylants and Vennemann [29], Warden and Waddell [30] (described by 

Carl Oppenheimer [31]), and Dixson [32].  Lectin’s hemagglutination property was found by Stillmark in 

1888 [33], and a general antigenicity of lectins was revealed by Paul Ehrlich in 1890  [34] who won a 
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“Nobel Prize in Physiology or Medicine 1908” “in recognition of their work on immunity” 

(http://www.nobelprize.org/nobel_prizes/medicine/laureates/1908/).  Thereafter, lectins’ “immunity” 

(mainly hemagglutination of red cells for antigen typing) was used for immunological research (see 

Textbook of Military Medicine [35]).  In 1919, Sumner crystallized (Canavalia ensiformis, Concanavalin 

A) [36].  A half century later, investigators began to determine ABO-blood subtypes due to their sugar-

binding properties, and the word “lectins” was formally coined [37, 38].  Recent studies report that lectins 

play important roles in plant defense (see review by [39] and legume-rhizobial interactions [40].   

Plants contain glycoprotein-lectins (“non-immune sugar-binding proteins”) in seeds, fruits, and 

nuts [41], and recognize and reversibly bind specific carbohydrates [42].  They are involved in plant 

defense [39] and legume-rhizobia [40].  They resist gut enzymes maintaining function under adverse 

conditions [43, 44].  They can penetrate the GI tract wall by endocytosis [45], probably by first binding a 

carbohydrate lectin receptor [46] followed by endocytosis, and, astonishingly, can transfer trans-

synaptically in an antegrade and/or retrograde fashion along nerve fibers [42, 47].  Their medical 

importance is increasingly being recognized by being conjugated with drugs for better drug absorption 

from the GI tract [46, 48-50].  Particularly relevant to the current studies, lectins have been utilized 

extensively for neuronal tracing studies [47, 51].   

Most dietary plant lectins resist gut enzymes and maintain function under usually adverse 

conditions for proteins [43, 44].  Lectins have effects in both pathological and normal processes in living 

organisms due to their carbohydrate-binding properties [52].  Non-toxic lectins, such as tomato lectin and 

wheat germ agglutinin, are suggested to show growth factor activity in the GI tract [43].  Bacteria or 

parasitic protozoa, through their own lectins, attach to carbohydrate receptors on epithelial cells to 

colonize the GI and urinary tracts.  Some lectins are synergistically toxic both locally and systemically to 

experimental animals [43].  Kidney bean lectin (PHA), for example, damages intestinal epithelial cells, 

causes bacterial overgrowth, and induces nutritional disorders, effects which are preventable by specific 

http://www.nobelprize.org/nobel_prizes/medicine/laureates/1908/
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inhibiting sugars that have competitive binding capacities to lectins by sharing similar terminal structures 

[43, 53].  Likewise, dietary saccharides or glyco-conjugates, such as probiotic agents and milk 

oligosaccharides, may act as receptor analogs or decoys to selectively and competitively reduce lectin 

binding [43, 54, 55].  Soybean lectin has shown potential anticarcinogenic effects [56]. 

Lectins are widely available in seeds, fruits or nuts of fruits and vegetables.  A 2195 American 

participants study reported that on average 1/3 of total vegetables people consumed were not cooked, and 

people who consumed more raw vegetables preferred raw fruits and grains [57].  People in different 

regions of the world have their own preference in consuming certain raw or cooked vegetables, some 

vegetables like tomatoes, sprout soybeans and carrots are more consumed raw, but other vegetables like 

peas are more consumed cooked [57].  Many studies have investigated anticarcinogenic effects of fruits 

and vegetables.  For example, high consumption of fruits and vegetables is negatively related to the 

incidence of cancer in the GI tract [58, 59].  Leafy vegetables have beneficial effects in preventing the 

development of breast cancer [60].  However, consumption of citrus fruits does not have beneficial effects 

on stomach cancer [61].  Human cell membranes have different glycoproteins and carbohydrates due to 

membrane differentiation [62], which may make some people more vulnerable than others.  Elder people 

cannot tolerate raw vegetables as well as cooked vegetables; main symptoms of intolerance include 

diarrhea and vomiting [63].  Interesting, the prevalence of PD is higher in elder people than in young [64].  

Taken together, all this information suggest that people are exposed to lectins daily as they consume 

varieties of fruits and vegetables, raw or cooked. 

Consumption of fruits or vegetables has been reported to cause diseases in human beings mainly 

due to the damage of lectins on intestinal mucosa [65].  Patients suffered vomiting and diarrhea after 

consuming a diet high in red kidney beans containing lectin PHA in a hospital in 1988 [66].  Lectins are 

related to the disease symptoms in some patients with dysfunction of autoimmune system [67].  Overall 

lectins can be found in about 30% of all the food [67].  The content of lectins in dietary plants vary among 
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different plants (Table 1).  The content of lectin Con A is as high as 15 mg/gram of seeds, the content of 

lectin UEA I is 0.045 mg/gram.  The food content of lectin LcH, EEA, CSA and DBA is not available.   

Table 1. Summary of lectins contents from literature search 

Lectins Amount (mg/g) Comments 

UEA I 0.045 [68] seeds 

PSA 0.28 – 0.65 [69] seeds 

PHA 1.07 [70] seeds 

PNA 2 [71] seeds 

GNA 2.5 [72] bulb tissue 

AIA 7.2 [73] seeds 

STA 8 [74] tuber 

ACA 1.7 [75] seeds 

WGA 0.16 [76] wheat germ 

SBA 0.2 [77] seeds 

GSL I 0.4 [78] seeds 

Con A 15 [79] seeds 

CPA 0.5 [80] Seeds 

 

Direct evidence of neuronal damage caused by daily exposure to dietary plant lectins is not 

available so far.  Consumption of vegetable products, however, is a common factor in the epidemiology 

of PD-like diseases.  The Amyotrophic Lateral Sclerosis / Parkinsonism dementia complex (ALS-PDS) 

in populations from Guam, for example, has been linked to a diet rich in cycad seeds (Cycas micronesica) 

[81, 82].  The cycad seeds contain ß−methylamino-L-alanine (BMAA) which has excitotoxic properties.  

Studies on human brain tissue of ALS/PDC, ALS, and Alzheimer’s disease, PD, Huntington's disease and 

neurological controls indicated that BMAA is present in non-genetic progressive neurodegenerative 

disease but not in controls or genetic-based Huntington's disease [83-86].  Animals fed with purified 

BMAA, however, do not show ALS-PDS traits [87] suggesting that other mechanisms deliver the toxin(s) 

to target neurons.   

In equine Parkinsonism, consuming yellow star thistles (Centaurea solstitialis) or Russian 

knapweed (Acroptilon repens) causes liquid necrosis in the substantia nigra pars reticulata and the globus 

pallidus by destroying DAergic neurons, developing NPE, and creating histopathological features which 



 

38 

 

resemble human idiopathic PD [88].  These observations suggest transport of toxic substances to neurons.  

To date, however, epidemiology has not proven dietary lectins to have a significant impact on neuronal 

degenerative diseases in humans.   

Signature pathologies of PD, e.g., Lewey bodies and aggregated α-SYN occur in neurons of the 

enteric nervous system of the GI wall, in addition to the neurons of the central nervous system (CNS) [89].  

The findings reported here support Braak and Hawkes’ hypothesis that the GI tract may be a potential site 

of neuronal invasion by an “unknown etiologic agent”, potentially responsible for causing some 

percentage of PD [89-93].  Braak and Hawkes’ hypothesis was based on the finding that α-SYN 

immunoreactive inclusions were found in neurons of the submucosal Meissner plexus, whose axons 

project into the gastric mucosa and terminate in direct proximity to fundic glands.  These elements 

provided the first link in an uninterrupted series of susceptible neurons that extend from the enteric to the 

central nervous system.  The existence of such an unbroken neuronal chain lent support to the hypothesis 

that a putative environmental pathogen capable of passing the gastric epithelial lining might induce α-

SYN misfolding and aggregation in specific cell types of the submucosal plexus and reach the brain via a 

consecutive series of projection neurons.  It is suggested herein that one possible etiologic agent could be 

lectins.  

Several animal models have been developed to investigate the etiology and the underlying 

molecular mechanisms of PD.  Neurotoxic models have been most studied and adopted, which are mainly 

using 6-hydroxydopamine (6-OHDA), MPTP/MPP+ or rotenone to induce PD-like motor symptoms in 

animals.  Neurotoxic models share similar mechanisms of inhibiting the level of complex I of the 

respiratory chain, which further leads to the apoptosis of DAergic neurons [94].  Genetic models 

specifically modify certain genes that are related to the etiology of PD.  The main limitation of genetic 

models is that the detailed mechanisms for the effects of genes are still at large though some models have 

shown effects.   
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 C. elegans as an animal model to study PD was first reported in 2001 [95], and has been widely 

used [96-101].  C. elegans has a high conservation (>65%) of human disease-associated genes [102, 103].  

A total of eight DAergic neurons in the hermaphrodite C. elegans [104-106], respond to signals from 

environmental mechano-sensory stimuli, e.g. exhausted food supply, which has offered molecular, genetic, 

and behavioral tools to aid human disease studies [107-111].   

C. elegans modulates locomotion behavior by using dopamine and serotonin to mediate motor 

circuits in chemical synapses, gap junctions, and neuromuscular junctions [112-114].  Intestinal muscle 

cells are innervated by pharyngeal motor neurons and DAergic neurons via the preanal ganglia.  Structures, 

sensory-motor synapses, gap junction contacts, and activities all resemble those in the mammalian GI 

tract [115, 116].  A typical phenotype of PD in C. elegans caused by the degeneration of DAergic neurons 

is the slowness of the mobility.  In liquid culture, 0.5 mM of MPP+ induces significant degeneration of 

DAergic neurons and reduces the mobility of C. elegans [97, 99].  Due to the automated devices and 

advanced software, tracking and analyzing the mobility of large number of C. elegans at the same time is 

possible today.  

In this study, features of the GFP-dopamine transporter fusion protein C. elegans (egIs1[Pdat-

1::GFP]) were evaluated by the numbers, fluorescent intensity, and sizes of GFP-DAergic neurons.  

Meanwhile, TRITC/rhodamine labeled lectins were also followed post-feeding, to establish the ability of 

lectins to bind or penetrate the GI wall or nerve cells.  The question was whether dietary plant lectins can 

impair or alter apparently lectin-targeted DAergic neurons.  Differences in inherited sugar structures of 

gut and neuronal cell surface may make some individuals more susceptible in this conceptual disease 

model.  The effects of lectins on the mean lifespan and the movement distance and velocity in liquid 

culture in C. elegans were also evaluated.  Our results support Braak and Hawkes’ hypothesis suggesting 

one alternate potential etiology of PD. 
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1.2 Materials and methods 

C. elegans egIs1[Pdat-1::GFP] that express GFP in the 8 DAergic neurons [117, 118] and the 

standard food Escherichia coli (E. coli) were obtained from C. elegans Genetics Center (CGC, MN).  The 

C. elegans model does not require regulation of the Institutional Animal Care and Use Committee 

(IACUC). 

1.2.1 Culture Escherichia coli (E. coli, OP50) 

OP50 were cultured by the standard method described elsewhere [119].  Briefly, approximately 10 

µL of stock E. coli solution was added to media and incubated at 37°C for 24h.  The OP50 were then 

plated in PetrifilmTM (3M Corporate, St. Paul, MN) at 37°C for 24h until densities of 5×108 to 5×1011 

colony forming units (cfu/ml) were reached and then were fed to the C. elegans ad libitum [119, 120].  The 

OP50 stock feeding solution was enriched to 2×109cfu/ml by centrifuging at 2,200 g for 10 minutes and 

washed with S-complete buffer twice. 

1.2.2 C. elegans culture 

Mature gravid transgenic C. elegans egIs1[Pdat-1::GFP] were treated with NaOH (1M) and sodium 

hypochlorite solution (5.25%, 5:2 ratio) to dissolve the body and release viable eggs [119].  The eggs were 

hatched overnight fed ad libitum with LB broth (200 µL/well) containing OP50 5x108 – 5x1011 cfu/ml 

[121], after washing with S-complete solution 3 times.  The age-synchronized C. elegans were diluted to 

100 animals/ml, plated in liquid culture in a 96 well plate (120 μL/well, 10-15 animals) [122].   The plate 

was tape sealed, bagged, and covered with aluminum foil to avoid contamination.  All animals were kept 

in a 20C low temperature incubator (Revco Tech., Nashville, NC, USA) throughout the experiments.  

Thirty microliters of 5-Fluoro-2′-deoxyuridine (FUDR, 0.6 mM) solution was added to each well at larvae 

4 stage.  

All treatments were applied at day 3 after hatching.  Four dose responses of twenty lectins were 

obtained for each culture condition in a dark room.  Control animals were fed with OP50.  Experimental 
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groups were fed rhodamine/TRITC-conjugated lectins.  The lectins were incorporated into feeding 

medium with OP50.  Concentrated OP50 were added to each well every other week throughout the 

experiment.  Each group of nematodes was collected and fixed after the first week for the liquid culture 

as described elsewhere [123].  Briefly, after being collected from wells, animals were washed with S-

Basal twice, fixed with paraformaldehyde (4%) over 2h at 4°C and washed with PBS for 5min x 3.  Ten 

microliters of Fluoromount-G (Southern Biotechnology Associates, Birmingham, AL) was applied to a 

glass slide followed by 10 µL of the medium containing C. elegans.  At last, a cover glass was mounted 

on the glass slide. 

1.2.3 Select lectins 

Commercially available plant lectins conjugated with TRITC or rhodamine were purchased from 

EY labs (San Mateo, USA), Vector Labs (Burlingame, USA), or Sigma-Aldrich (St. Louis, USA).  All 

tested lectins were selected from dietary plants or vegetables.  The doses of lectins were determined based 

on previous studies, literature search or recommendations from product specifications. 

1.2.4 Average probability of survival (APS) assay 

All average probability of survival (APS) assays were conducted in liquid culture (96-well plate). 

The animals were synchronized and seeded into each well of a plate (n=10-15) and OP50 was added to 

each well.  Thirty microliters (0.6mM) fluorodeoxyuridine (FUDR) was added to each well and then the 

plate was shaken evenly to sterilize the animals.  Four different treatments (50 µL/treatment, n=6 row) 

including control or serial of lectins were added.  The plate was then covered with aluminum foil. The 

whole procedure was performed in a dark room to prevent bleaching of fluorophores.  After the plate was 

shaken for 3 minutes, the survival animals were counted every other day until all were dead under an 

inverted microscope (Nikon, Eclipse Ti –S, Japan) at 4x or 10x magnification.  Animals were exposed to 

strong lights to stimulate the movements [124] and the movement of pharynx was checked to confirm 

whether the animals were dead when they were not moving. 
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1.2.5 Mobility analysis 

Mobility analysis was conducted in a 96-well plate.  Animals of larvae 1 stage were seeded into the 

plate with about 20 animals per well.  Each well was treated with MPP+ (0.5 mM) [97] or different lectins.   

All the tested lectins were listed in Table 2.  The plate was kept in a low temperature incubator (20°C) and 

analyzed 48 hours later.  After about 2 minutes of agitation, the plate was placed on the stage of the 

microscope (Nikon, Eclipse Ti –S, Japan).  Using a digital camera, a video of the C. elegans (n=20-25) 

with 20 frames (1 frame/second) was acquired from each well and images stored for offline analysis.  The 

video clips were analyzed by tracking the movement of animals using NIS-Elements Advanced Research 

(version 3.22.11).  The distance and the velocity of the movement were used as a function to characterize 

the effects of lectins on the mobility of C. elegans.  Quantitative indicators were used to compare the 

mobility indicators between treatments and the control. 

Table 2. List of lectins tested in mobility assay 

Lectin 
Dose 

(µM) 
Lectin 

Dose 

(µM) 
Lectin 

Dose 

(µM) 
Lectin 

Dose 

(µM) 

ACA 0.032 EEA 0.048 PNA 0.018 PHA-E 0.017 

PSA 0.043 UEA I 0.033 WGA 0.046 LcH 0.05 

S-WGA 0.046 AIA 0.031 CSA 0.065 DBA 0.018 

GNA 0.077 GSL I 0.018 HHA 0.04 PHA-L 0.017 

SBA 0.017 Con A 0.019 CPA 0.047 STA 0.02 

 

1.2.6 Fluorescent microscopy 

The GFP-DAergic neurons were identified by FTIC filter (480Ex/520Em) and the number of GFP-

DAergic neurons counted.  Fluorescent intensity of GFP-DAergic neurons and their average sizes (µm2) 

were determined by NIS-Elements Advanced Research (version 3.22.11) and compared between the 

control and lectins group.  Briefly, a picture was taken for each animal under the FITC filter, in which the 

GFP-DAergic neurons were visible.  A circle was first drawn around each GFP-DAergic neuron and then 

the software measured the area and fluorescent intensity automatically.  Fluorescent intensity of 
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rhodamine-lectins was determined by a TRITC filter (580Ex/620Em) to assess co-localization.  The 

magnitude of the effect(s) of the lectin on the DAergic neurons, the number, fluorescent intensity (arbitrary 

unit), and sizes (µm2) of GFP-DAergic neurons were determined and compared among each group.  Co-

localization was initially identified with an inverted microscopy (Nikon, Eclipse Ti –S, Japan) and then 

confirmed at a Z-axle with laser scanning microscopy (Leica, TCS SP5, Germany). 

1.2.7 Solutions and chemicals 

Standard NGM agar plates (g): NaCl 3.0g, Bacto-agar (Becton, MD) 20g, Bacto-peptone 2.5g 

(Becton, MN), Cholesterol solution 0.1% (0.005/ml 95% ethanol), and dH2O 975ml were mixed.  

Additions to the autoclaved solution (M): CaCl2 1.0 1ml, MgSO4 1.0 1ml, KPO4 pH6 1.0 25ml.  LB Broth: 

25.0g, dH2O 1L (autoclave).  S-basal solution (M): NaCl 0.1, KPO4 pH6 0.05, Cholesterol 0.1%, was 

autoclaved.  PBS (mM): 115 NaCl, 75 Na2HPO4•7H2O, and 7.5 KH2PO4, pH 7.4. 

1.2.8 Statistical analyses 

All results are presented as mean ± S.E.M.  Analyses were carried out using SAS/STAT® software, 

Version 9.4 of the SAS System for Windows (Cary, NC, USA).  Survival curves were displayed by 

binomial probabilities obtained from logistic regression models as surrogates for survival probabilities 

and mean lifespan was estimated via Kaplan-Meier (log-rank).  ANOVA models were used to analyze 

neuron data.  For each group, 10-15 animals were analyzed for liquid culture.  Motion activity analysis 

was performed by Systat software (version 12.5, SigmaPlot for Windows, San Jose, CA, USA).  The 

normality of the data was evaluated before further analysis, nonparametric analysis Kruskal–Wallis with 

Dunn’s method was used to compare between treatments and the control group if the assumption of 

normality was not met.  An alpha level of 0.5 was considered statistically significant. 

1.3 Results 

Diets supplemented with varying concentrations of TRITC-conjugated lectins ACA, EEA and PNA 

in liquid culture were fed to C. elegans, and subsequently detected by fluorescence microscopy to be 
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associated with GFP-DAergic neurons (Table 3).  The only explanation for this observation is that these 

TRITC-labeled lectins traveled in some manner from the gut to the GFP-DAergic neurons.  We observed 

that some lectins had the following effects:  a) altering the number of DAergic neurons, b) decreasing 

fluorescent intensity of GFP-expressing neurons (less GFP-dopamine transporter), or c) altering neuron 

size.  Other seventeen lectins (Table 4) were not observed to be transported to GFP-DAergic neurons, but 

most of them affected the size, area or intensity of DAergic neurons to different extents, possibly 

indicating that undetectable amounts of these lectins caused the effects, or that some unexplained 

secondary effect of the lectins caused those “pathological effects”.  In addition, the effects of tested lectins 

on the mean lifespan of C. elegans in liquid culture were evaluated.  Lectins affected the mean lifespan of 

C. elegans in different manners.  PHA-E, PSA, UEA I and WGA increased the mean lifespan (P<0.05).  

ACA, EEA, PNA, AIA, CSA, DBA, GNA, GSL I, HHA, PHA-L and SBA reduced the mean lifespan 

(P<0.05).  LcH and S-WGA reduced the mean lifespan at low dose but increased it at high does (P<0.05).  

Con A, CPA and STA did not affect the mean lifespan significantly (P>0.05).  In mobility assay, larvae 1 

stage of C. elegans were fed with different lectins.  The results of mobility assay demonstrated that all 

tested lectins reduced both movement distance and velocity of C. elegans in liquid culture compared with 

the blank control group (OP50 only, P<0.05). 

1.3.1 Lectins co-localized with the GFP-DAergic neurons 

There lectins ACA, EEA and PNA were observed to co-localize with GFP-DAergic neurons in C. 

elegans, affect the size, number or fluorescent intensity of GFP-expressing neurons, and affect the mean 

lifespan (Table 3). 

Amaranthus caudatus agglutinin (ACA)-TRITC co-localized with DAergic neurons at the highest 

dose group (0.32 µM).  As shown in the graph, when the green color from GFP fused DAergic neurons 

(Figure 4a) and the red color from TRITC conjugated ACA (Figure 4b) was overlapped, the co-localized 

area showed bright yellow color (Figure 4c), which demonstrated that ACA was successfully transported 
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from gut to DAergic neurons in C. elegans organism.  ACA did not the affect the number of DAergic 

neurons (Figure 4d).  ACA did not affect the intensity of DAergic neurons (Figure 4e).  Area of DAergic 

neurons was decreased by higher doses of ACA (0.096 µM & 0.32 µM, P<0.05, Figure 4f).  APS was 

decreased dose-dependently (Figure 4g).  The mean lifespan was reduced by all doses (0.032 µM, 0.096 

µM & 0.32 µM) from 18 days to 14, 10 and 7 days dose-dependently (-22%, -44% & -60%, P<0.05, 

Figure 4h). 

Table 3. Lectins detected in the neurons by co-localization 

Lectins Dose (µM) GFP # GFP intensity GFP size Lifespan 

ACA 

0.032     

0.096     

0.32     

PNA 

0.018     

0.054     

0.18     

EEA 

0.048     

0.136     

0.48     

 

 Indicates decreasing trend, P<0.05  

 Indicates increasing trend, P<0.05 

 Indicates no significant alternation, P>0.05  

Arachis hypogaea agglutinin (PNA)-TRITC co-localized with GFP-GAergic neurons after one 

week of treatment (0.018 µM, 0.054 µM & 0.18 µM, Figure 5).  Number of GFP-DAergic neurons was 

increased at the lowest dose (0.018 µM, P<0.05, Figure 5d).  The size and intensity of GFP-GAergic 

neurons was not altered (Figure 5e & Figure 5f).  APS was dose-dependently reduced at all doses (Figure 

5g).  The mean lifespan was reduced by higher doses (0.054 µM and 0.18 µM) from 19 days to 15 days 

and 14 days (-24% and -27%, P<0.05, Figure 5h). 

Euonymus europaeus agglutinin (EEA)-TRITC co-localized with DAergic neurons at the lowest 

dose groups (0.048 µM, Figure 6).  As shown in the graph, when the green color from GFP fused DAergic 

neurons (Figure 6a) and the red color from TRITC conjugated ACA (Figure 6b) overlapped, the co- 
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localized area showed bright yellow color (Figure 6c), which demonstrated that EEA was successfully 

transported from gut to DAergic neurons in C. elegans organism.  

 
 

Figure 4. ACA co-localized with GFP-DAergic neurons in C. elegans at the highest dose (0.32 µM).  A) 

GFP-DAergic neurons (green), B) PNA-TRITC in the neuron (red),  C) Co-localization of the GFP-

DAergic neurons in merged A and B (yellow).  D) The number of DAergic neurons was not altered.  E) 

The intensity of DAergic neurons was not altered.  F) The area of DAergic neurons was reduced by two 

higher doses (0.096 µM & 0.32 µM, P<0.05).  G) APS was reduced dose-dependently.   H) The mean 

lifespan was reduced by all doses (0.032 µM, 0.096 µM & 0.32 µM) from 18 days to 14, 10 and 7 days (-

22%, -44% & -60%, P<0.05).  * indicates statistical significance. 
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Figure 5. PNA co-localized with GFP-DAergic neurons in C. elegans at all doses (0.018 µM, 0.054 µM 

& 0.18 µM).  A) GFP-DAergic neurons (green), B) PNA-TRITC in the neuron (red),  C) Co-localization 

of the GFP-DAergic neurons in merged A and B (yellow).  D) Number of GFP-DAergic neurons was 

increased at the lowest dose (0.018 µM, P<0.05).  E) The intensity of GFP-DAergic neurons was not 

altered.  F) The size of GFP-DAergic neurons was not altered.  G) APS was dose-dependently reduced at 

all doses.  H) The mean lifespan was reduced by higher doses (0.054 µM and 0.18 µM) from 19 days to 

15 days and 14 days (-24% and -27%, P<0.05).  * indicates statistical significance 

 

The number of DAergic neurons was reduced by the highest dose of EEA (0.48 µM, P<0.05, 

Figure 6d).  The intensity of DAergic neurons was reduced by the highest dose of EEA (0.48 µM, P<0.05, 

Figure 6e).  Area of DAergic neurons was increased by highest dose of EEA (0.48 µM, P<0.05, Figure 
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6f).  APS was decreased dose-dependently (Figure 6g).  The mean lifespan was reduced dose-dependently 

by all doses (0.048 µM, 0.136 µM & 0.48 µM) from 19 days to 14, 9 and 7 days (-27%, -53% & -62%, 

P<0.05, Figure 6h). 

 

Figure 6. EEA co-localized with GFP-DAergic neurons in C. elegans at the lowest dose (0.048 µM).  A) 

GFP-DAergic neurons (green), B) EEA-TRITC in the neuron (red),  C) Co-localization of the GFP-

DAergic neurons in merged A and B (yellow). D) The number of DAergic neurons was reduced by the 

highest dose (0.48 µM, P<0.05).  E) The intensity of DAergic neurons was reduced by the highest dose of 

EEA (0.48 µM, P<0.05).  F) Area of DAergic neurons was increased by highest dose of EEA (0.48 µM, 

P<0.05).  G) APS was decreased dose-dependently.  H) The mean lifespan was reduced dose-dependently 

by all doses (0.048 µM, 0.136 µM & 0.48 µM) from 19 days to 14, 9 and 7 days (-27%, -53% & -62%, 

P<0.05).  * indicates statistical significance. 
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1.3.2 Lectins altered the GFP-DAergic neurons without co-localization 

Seventeen lectins PHA-E, PSA, UEA I, WGA, LcH, S-WGA, AIA, CSA, DBA, GNA, GSL I, HHA, 

PHA-L, SBA, Con A or CPA were not observed to co-localize with GFP-DAergic neurons, but most of 

them affected the number, intensity or size of DAergic neurons or the mean lifespan (Table 4). 

Table 4. Lectins which alter number, GFP-intensity, or size of DAergic neurons without observed co-

localization 

 

Lectins Dose (µM) GFP # GFP intensity GFP size Lifespan 

 0.017     

PHA-E 0.054     

 0.17     

 0.043     

PSA 0.129     

 0.43     

 0.033     

UEA I 0.099     

 0.33     

 0.046     

WGA 0.138     

 0.46     

 0.05     

LcH 0.15     

 0.5     

 0.046     

S-WGA 0.138     

 0.46     

 0.031     

AIA 0.093     

 0.31     

 0.065     

CSA 0.195     

 0.65     

 0.018     

DBA 0.054     

 0.18     

 

 Indicates decreasing trend, P<0.05 

 Indicates increasing trend, P<0.05 

 Indicates no significant alternation, P>0.05 
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Table 4 continued. Lectins which alter number, GFP-intensity, or size of DAergic neurons without 

observed co-localization 

 

Lectins Dose (µM) GFP # GFP intensity GFP size Lifespan 

 0.077     

GNA 0.231     

 0.77     

 0.018     

GSL I 0.054     

 0.18     

 0.04     
HHA 0.12     

 0.4     

 0.017     
PHA-L 0.051     

 0.17     

 0.017     
SBA 0.051     

 0.17     

 0.019     
Con A 0.057     

 0.19     

 0.047     
CPA 0.141     

 0.47     

 0.02     
STA 0.06     

 0.2     

 

 Indicates decreasing trend, P<0.05 

 Indicates increasing trend, P<0.05 

 Indicates no significant alternation, P>0.05 

Phaseolus vulgaris (PHA-E)-rhodamine did not show co-localization with but affected DAergic 

neurons.  The number of GFP-DAergic neurons was not altered (Figure 7a).  The fluorescence intensity 

of GFP-DAergic neurons was increased dose-dependently at all doses (0.017 µM, 0.054 µM & 0.17 µM, 

P<0.05, Figure 7b).  The average size of GFP-DAergic neurons was also reduced at the highest dose (0.17 

µM, P<0.05, Figure 7c).  The APS was increased dose-dependently at lower doses (Figure 7d).  The mean 

lifespan was increased at a medium dose (0.054 µM) from 17 days to 23 days (39%, P<0.05, Figure 7e). 
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Figure 7. PHA-E-rhodamine did not show co-localization with DAergic neurons in liquid culture but 

affected the DAergic neurons.  A) Number of DAergic neurons was not altered.  B) The fluorescence 

intensity of GFP-DAergic neurons was increased dose-dependently at all doses (0.017 µM, 0.054 µM & 

0.17 µM, P<0.05).  C) The average size of GFP-DAergic neurons was also reduced at the highest dose 

(0.17 µM, P<0.05).  D) The APS was increased dose-dependently at lower doses.  E) The mean lifespan 

was increased at a medium dose (0.054 µM) from 17 days to 23 days (39%, P<0.05).  * indicates statistical 

significance. 

 

Pisum Sativum agglutinin (PSA)-rhodamine did not show co-localization with GFP-DAergic 

neurons but affected the DAergic neurons.  The number of DAergic neurons was not altered (Figure 8a).   

The intensity was diminished at the highest dose (0.43 µM, P<0.05, Figure 8b).  The size was reduced at 

the lowest dose (0.043 µM, P<0.05, Figure 8c).  The APS was increased at all doses (Figure 8d).  The 

mean lifespan was increased at doses (0.043 µM & 0.43 µM) from 22 days to 27 days (22% and 23%, 

P<0.05, Figure 8e).  
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Figure 8. PSA-rhodamine did not show co-localization with GFP-DAergic neurons but affected the GFP-

DAergic neurons in C. elegans.  A) The number of DAergic neurons was not altered.  B) The intensity 

was diminished at the highest dose (0.43 µM, P<0.05).  C) The size was reduced at the lowest dose (0.043 

µM, P<0.05).  D) The APS was increased at all doses.  E) The mean lifespan was increased at doses (0.043 

µM & 0.43 µM) from 22 days to 27 days (22% & 23%, P<0.05).  * indicates statistical significance. 

 

Ulex Europaeus I (UEA I)-TRITC did not show co-localization with GFP-DAergic neurons in C. 

elegans but affected the DAergic neurons.  The number of DAergic neurons was not altered (Figure 9a).  

The intensity was diminished at all doses (0.033, 0.099 & 0.33 µM, P<0.05, Figure 9b).  The size was 

reduced at all doses (0.033, 0.099 & 0.33 µM, P<0.05, Figure 9c).  The APS was increased at the low dose 

(Figure 9d).  The mean lifespan was increased by low dose (0.033 µM) from 22 days to 25 days (13%, 

P<0.05, Figure 9e). 

Triticum vulgaris agglutinin (WGA)-rhodamine was not detected as transported to but affected 

DAergic neurons.  The number of DAergic neurons was not altered (Figure 10a).  The intensity of the 

GFP-DAergic neurons was increased at the highest dose (0.46 µM, P<0.05, Figure 10b).  The area of the 

DAergic neurons was reduced at all doses (P<0.05, Figure 10c).  The APS was increased at all doses 



 

53 

 

(Figure 10d).  The mean lifespan was increased at the highest dose (0.46 µM) from 20 days to 24 days 

(22%, P<0.05, Figure 10e). 

 
 

Figure 9. UEA I-TRITC did not show co-localization with GFP-DAergic neurons but affected the DAergic 

neurons.  A) The number of DAergic neurons was not altered.  B) The intensity was diminished at all 

doses (0.033, 0.099 & 0.33 µM, P<0.05).  C) The size was reduced at all doses (0.033, 0.099 & 0.33 µM, 

P<0.05).  D) The APS was increased at the low dose.  E) The mean lifespan was increased by low dose 

(0.033 µM) from 22 days to 25 days (13%, P<0.05).  * indicates statistical significance. 

 

Lens culinaris (LcH)-TRITC was not detected as transported to but affected DAergic neurons.  

The number of DAergic neurons was increased at low and high doses (0.05 µM & 0.5 µM, P<0.05, Figure 

11a).  The intensity of the GFP-DAergic neurons was increased at the lowest dose (0.05 µM, P<0.05, 

Figure 11b).  The area of the DAergic neurons was not altered (Figure 11c).   The APS was increased at 

the lowest dose and reduced at the highest dose (Figure 10d).  The mean lifespan was increased at the 

lowest dose (0.05 µM) from 18 days to 23 days (27%, P<0.05), and decreased at the highest dose (0.5 µM) 

to 12 days (37%, P<0.05, Figure 11e). 
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Figure 10. WGA-rhodamine affected the intensity and area of DAergic neurons.  A) The number of 

DAergic neurons was not altered.  B) The intensity of the GFP-DAergic neurons was increased at the 

highest dose (0.46 µM, P<0.05).  C) The area of the DAergic neurons was reduced at all doses (P<0.05).  

D) The APS was increased at all doses.  E) The mean lifespan was increased at the highest dose (0.46 µM) 

from 20 days to 24 days (22%, P<0.05).  * indicates statistical significance. 

 

Lens culinaris (LcH)-TRITC was not detected as transported to but affected DAergic neurons.  

The number of DAergic neurons was increased at low and high doses (0.05 µM & 0.5 µM, P<0.05, Figure 

11a).  The intensity of the GFP-DAergic neurons was increased at the lowest dose (0.05 µM, P<0.05, 

Figure 11b).  The area of the DAergic neurons was not altered (Figure 11c).   The APS was increased at 

the lowest dose and reduced at the highest dose (Figure 10d).  The mean lifespan was increased at the 

lowest dose (0.05 µM) from 18 days to 23 days (27%, P<0.05), and decreased at the highest dose (0.5 µM) 

to 12 days (37%, P<0.05, Figure 11e). 



 

55 

 

 

Figure 11. LcH-TRITC was not detected as transported to but affected DAergic neurons.  A) The number 

of DAergic neurons was increased at low and high doses (0.05 µM & 0.5 µM, P<0.05).  B) The intensity 

of the GFP-DAergic neurons was increased at the lowest dose (0.05 µM, P<0.05).  C) The area of the 

DAergic neurons was not altered.  D) The APS was increased at the lowest dose and reduced at the highest 

dose.  E) The mean lifespan was increased at the lowest dose (0.05 µM) from 18 days to 23 days (27%, 

P<0.05), and decreased at the highest dose (0.5 µM) to 12 days (37%, P<0.05).  * indicates statistical 

significance. 

 

Triticum vulgaris (Succinylated) S-WGA-rhodamine did not show co-localization but affected 

DAergic neurons in C. elegans.  The number of the GFP-DAergic neurons was decreased at lower doses 

(0.046 µM & 0.138 µM, P<0.05, Figure 12a).  The fluorescent intensity of GFP-DAergic neurons was 

increased at all doses (0.046 µM, 0.138 µM & 0.46 µM, P<0.05, Figure 12b).  The size of GFP-DAergic 

neurons was decreased at all doses (0.046 µM, 0.138 µM & 0.46 µM, P<0.05, Figure 12c).  The APS 

was increased at a lower dose, and decreased at a higher dose (Figure 12d).  The mean lifespan was 

increased at the lowest dose (0.138 µM) from 21 days to 23 days (9%, P<0.05), and decreased at the 

highest dose (0.46 µM) to 12 days (-43%, P<0.05, Figure 12e). 
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Figure 12. S-WGA-rhodamine affected GFP-DAergic neurons in C. elegans.  A) The number of the GFP-

DAergic neurons was decreased at lower doses (0.046 µM & 0.138 µM, P<0.05).  B) The fluorescent 

intensity of GFP-DAergic neurons was increased at all doses (0.046 µM, 0.138 µM & 0.46 µM, P<0.05).  

C) The size of GFP-DAergic neurons was decreased at all doses (0.046 µM, 0.138 µM & 0.46 µM, P<0.05).  

D) The APS was increased at a low dose, and decreased does-dependently at higher doses.  E) The mean 

lifespan was increased at the lowest dose (0.138 µM) from 21 days to 23 days (9%, P<0.05), and decreased 

at the highest dose (0.46 µM) to 12 days (-43%, P<0.05).  * indicates statistical significance. 

 

Artocarpus integrifolia agglutinin (AIA)-TRITC did not show co-localization and did not affect 

DAergic neurons in C. elegans.  The number of the GFP-DAergic neurons was not altered (Figure 13a).  

The fluorescent intensity of GFP-DAergic neurons was not altered by AIA (Figure 13b).  The size of GFP-

DAergic neurons was not altered by AIA (Figure 13c).  The APS was decreased at all doses (Figure 13d).  

The mean lifespan was decreased at all doses (0.046 µM, 0.138 µM & 0.46 µM) from 24 days to 15 days, 

13 days and 11 days (-36%, -47% & -56%, P<0.05, Figure 13e). 
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Figure 13. AIA-TRITC did not show co-localization and did not affect DAergic neurons in C. elegans.  

A) The number of the GFP-DAergic neurons was not altered.  B) The fluorescent intensity of GFP-

DAergic neurons was not altered.  C) The size of GFP-DAergic neurons was not altered.  D) The APS 

was decreased at all doses.  E) The mean lifespan was decreased at all doses (0.046 µM, 0.138 µM & 0.46 

µM) from 24 days to 15 days, 13 days and 11 days (-36%, -47% & -56%, P<0.05).  * indicates statistical 

significance. 

 

Cytisus scoparius agglutinin (CSA)-TRITC did not show co-localization but affected DAergic 

neurons in C. elegans.  The number of the GFP-DAergic neurons was reduced at the highest dose (0.65 

µM, P<0.05, Figure 14a).  The fluorescent intensity of GFP-DAergic neurons was not altered at all doses 

(Figure 14b).  The size of GFP-DAergic neurons was increased at all doses (0.065 µM, 0.195 µM & 0.65 

µM, P<0.05, Figure 14c).  The APS was decreased at the highest dose (Figure 14d).  The mean lifespan 

was reduced at the highest dose only (0.65 µM) from 18 days to 14 days (-22%, P<0.05, Figure 14e). 
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Figure 14. CSA-TRITC did not show co-localization but affected DAergic neurons in C. elegans.  A) The 

number of the GFP-DAergic neurons was reduced at the highest dose (0.65 µM, P<0.05).  B) The 

fluorescent intensity of GFP-DAergic neurons was not altered at all doses.  C) The size of GFP-DAergic 

neurons was increased at all doses (0.065 µM, 0.195 µM & 0.65 µM, P<0.05).  D) The APS was decreased 

at the highest dose.  E) The mean lifespan was reduced at the highest dose (0.65 µM) from 18 days to 14 

days (-22%, P<0.05).  * indicates statistical significance. 

 

Dolichos biflorus agglutinin (DBA)-rhodamine did not show co-localization with GFP-DAergic 

neurons but affected the size and fluorescent intensity of DAergic neurons in C. elegans.  As shown in the 

graph, the number of DAergic neurons was not altered (Figure 15a).  The fluorescent intensity of GFP-

DAergic neurons was increased at the lowest dose (0.018 µM, P<0.05, Figure 15b).  The size of GFP-

DAergic neurons was increased in a dose-dependent trend at all doses (0.018 µM, 0.054 µM & 0.18 µM, 

P<0.05, Figure 15c).  The APS was increased at a lower dose but decreased at higher doses (Figure 15d).  

The mean lifespan was reduced at the highest dose only (0.18 µM) from 19 days to 11 days (-43%, P<0.05, 

Figure 15e). 



 

59 

 

 

Figure 15. DBA-TRITC did show co-localization but affected the DAergic neurons in C. elegans. A) The 

number of DAergic neurons was not altered.  B) The fluorescence intensity of GFP-DAergic neurons was 

increased at the lowest dose (0.018 µM, P<0.05).  C) The size of GFP-DAergic neurons was increased in 

a dose-dependent trend at all doses (0.018 µM, 0.054 µM & 0.18 µM, P<0.05).  D) The APS was increased 

at lower dose, and decreased at higher doses.  E) The mean lifespan was reduced at the highest dose (0.18 

µM) from 19 days to 11 days (-43%, P<0.05).  * indicates statistical significance. 

 

Galanthus nivalis agglutinin (GNA)-rhodamine did not show co-localization with GFP-DAergic 

neurons or affect the DAergic neurons.  The number of DAergic neurons was not altered (Figure 16a).  

The fluorescence intensity of GFP-DAergic neurons was not altered (Figure 16b).  The size of GFP-

DAergic neurons was not altered (Figure 16c).  The APS was reduced at all doses (Figure 16d).  The 

mean lifespan was reduced at higher doses dose-dependently (0.077 µM & 0.231 µM) from 24 days to 

20 days and 19 days (-16% & -23%, P<0.05, Figure 16e).  
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Figure 16. Galanthus nivalis agglutinin (GNA)-rhodamine did not show co-localization with GFP-

DAergic neurons or affect the DAergic neurons.  A) The number of DAergic neurons was not altered.  B) 

The fluorescence intensity of GFP-DAergic neurons was not altered.  C) The size of GFP-DAergic neurons 

was not altered.  D) The APS was reduced at all doses.  E) The mean lifespan was reduced at higher doses 

(0.077 µM & 0.231 µM) from 24 days to 20 days and 19 days (-16% & -23%, P<0.05).  * indicates 

statistical significance. 

 

Griffonia Simplicifolia (GSL I)-TRITC did show co-localization but affected the DAergic neurons 

in C. elegans.  The number of the GFP-DAergic neurons was not altered in any tested doses (Figure 17a).  

The fluorescence intensity of GFP-dopamine transporter protein in DAergic neurons was dose-

dependently increased at all doses (0.018 µM, 0.054 µM & 0.18 µM, P<0.05, Figure 17b).  The size of 

GFP-DAergic neurons was not altered (Figure 17c).  The APS was dose-dependently decreased at all 

doses (Figure 17d).  The mean lifespan was decreased at the highest dose (0.18 µM) from 17 days to 10 

days (-37%, P<0.05, Figure 17e). 
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Figure 17. GSL I-TRITC did show co-localization but affected the DAergic neurons in C. elegans. A) The 

number of the GFP-DAergic neurons was not altered.  B) The fluorescence intensity of GFP-dopamine 

transporter protein in DAergic neurons was dose-dependently increased at all doses (0.018 µM, 0.054 µM 

& 0.18 µM, P<0.05).  C) The size of GFP-DAergic neurons was not altered.  D) The APS was dose-

dependently decreased at all doses.  E) The mean lifespan was decreased at the highest dose (0.18 µM) 

from 17 days to 10 days (-37%, P<0.05).  * indicates statistical significance. 

 

Hippeastrum hybrid agglutinin (HHA)-TRITC did show co-localization but affected the DAergic 

neurons in C. elegans.  The number of the GFP-DAergic neurons was not altered (Figure 18a).  The 

fluorescence intensity of GFP-dopamine transporter protein in DAergic neurons was increased at all doses 

(0.04 µM, 0.12 µM & 0.4 µM, P<0.05, Figure 18b).  The size of GFP-DAergic neurons was increased at 

the lowest dose (0.04 µM, P<0.05, Figure 18c).  The APS was dose-dependently decreased at all doses 

(Figure 18d).  The mean lifespan was decreased at higher doses (0.12 µM & 0.4 µM) from 21 days to 15 

days and 11 days (-29% & -47%, P<0.05, Figure 18e). 
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Figure 18. HHA-TRITC did show co-localization but affected the DAergic neurons in C. elegans.  A) The 

number of the GFP-DAergic neurons was not altered.  B) The fluorescence intensity of GFP-dopamine 

transporter protein in DAergic neurons was increased at all doses (0.04 µM, 0.12 µM & 0.4 µM, P<0.05).  

C) The size of GFP-DAergic neurons was increased at the lowest dose (0.04 µM, P<0.05).  D) The APS 

was dose-dependently decreased at all doses.  E) The mean lifespan was decreased at higher doses (0.12 

µM& 0.4 µM) from 21 days to 15 days and 11 days (-29% & -47%, P<0.05).  * indicates statistical 

significance. 

 

Phaseolus vulgaris agglutinin-L (PHA-L)-TRITC did show co-localization but affected the 

DAergic neurons in C. elegans.  The number of the GFP-DAergic neurons was not altered (Figure 19a).  

The fluorescence intensity of GFP-dopamine transporter protein in DAergic neurons was reduced at lower 

doses (0.017 µM & 0.051 µM, P<0.05, Figure 19b).  The size of GFP-DAergic neurons was increased at 

all doses (0.017 µM, 0.051 µM & 0.17 µM, P<0.05, Figure 19c).  The APS was increased at a low dose 

and reduced at higher doses (Figure 19d).  The mean lifespan was reduced at the highest dose (0.17 µM) 

from 20 days to 13 days (-34%, P<0.05, Figure 19e). 
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Figure 19. PHA-L-TRITC did show co-localization but affected the DAergic neurons in C. elegans.  A) 

The number of the GFP-DAergic neurons was not altered.  B) The fluorescence intensity of GFP-

dopamine transporter protein in DAergic neurons was reduced at lower doses (0.017 µM & 0.051 µM, 

P<0.05).  C) The size of GFP-DAergic neurons was increased at all doses (0.017 µM, 0.051 µM & 0.17 

µM, P<0.05).  D) The APS was increased at a low dose and reduced at higher doses.  E) The mean lifespan 

was reduced at the highest dose (0.17 µM) from 20 days to 13 days (-34%, P<0.05).  * indicates statistical 

significance. 

 

Soybean agglutinin (SBA)-TRITC did show co-localization but affected the DAergic neurons in 

C. elegans.  The number of the GFP-DAergic neurons was decreased at the lowest dose (0.017 µM, P<0.05, 

Figure 20a).  The fluorescence intensity of GFP-dopamine transporter protein in DAergic neurons was not 

altered (Figure 20b).  The size of GFP-DAergic neurons was reduced at the lowest dose (0.017 µM, P<0.05, 

Figure 20c).  The APS was increased at low doses and reduced at a higher dose (Figure 20d).  The mean 

lifespan was reduced at the highest dose (0.17 µM) from 20 days to 14 days (-31%, P<0.05, Figure 20e).  
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Figure 20. Soybean agglutinin (SBA)-TRITC did show co-localization but affected the DAergic neurons 

in C. elegans.  A) The number of the GFP-DAergic neurons was decreased at the lowest dose (0.017 µM, 

P<0.05).  B) The fluorescence intensity of GFP-dopamine transporter protein in DAergic neurons was not 

altered.  C) The size of GFP-DAergic neurons was reduced at the lowest dose (0.017 µM, P<0.05).  D) 

The APS was slightly increased at low doses and reduced at a higher dose.  E) The mean lifespan was 

reduced at the highest dose (0.17 µM) from 20 days to 14 days (-31%, P<0.05).  * indicates statistical 

significance. 

 

Concanavalin A (Con A)-TRITC did not show co-localization with but affected GFP-DAergic 

neurons in C. elegans.  The number of DAergic neurons was not altered (Figure 21a).  The fluorescence 

intensity of GFP-dopamine transporter protein image in DAergic neurons was increased at the highest 

dose (0.19 µM, P<0.05, Figure 21b).  The size was reduced at medium dose (0.057 µM, P<0.05, Figure 

21c).  The APS was increased at all doses (Figure 21d).  The mean lifespan was not altered by Con A 

(Figure 21e). 



 

65 

 

 

Figure 21. Con A-rhodamine affected the GFP-DAergic neurons in C. elegans.  A) The number of 

DAergic neurons was not altered.  B) The fluorescence intensity of GFP-dopamine transporter protein 

image in DAergic neurons was increased at the highest dose (0.19 µM, P<0.05).  C) The size was reduced 

at medium dose (0.057 µM, P<0.05).  D) The APS was increased at all doses.  E) The mean lifespan was 

not altered.  * indicates statistical significance. 

 

Cicer arietinum agglutinin (CPA)-TRITC did not show co-localization with but affected GFP-

DAergic neurons in C. elegans.  The number of DAergic neurons was not altered (Figure 21a).  The 

fluorescence intensity of GFP-dopamine transporter protein image in DAergic neurons was reduced at the 

lowest and the highest doses (0.047 µM & 0.47 µM, P<0.05, Figure 22b).  The size of GFP-DAergic 

neurons was reduced at the doses (0.047 µM & 0.47 µM, P<0.05, Figure 22c).  The APS was increased 

at all doses (Figure 21d).  The mean lifespan was not altered by any tested doses significantly (P>0.05, 

Figure 22e). 
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Figure 22. CPA-TRITC did not show co-localization with but affected GFP-DAergic neurons in C. 

elegans.  A) The number of DAergic neurons was not altered.  B) The fluorescence intensity of GFP-

dopamine transporter protein image in DAergic neurons was reduced at the doses (0.047 µM & 0.47 µM, 

P<0.05).  C) The size was reduced at the doses (0.047 µM & 0.47 µM, P<0.05).  D) The APS was increased 

at all doses.  E) The mean lifespan was not altered.  * indicates statistical significance. 

 

Solanum tuberosum agglutinin (STA)-TRITC did not show co-localization with but affected GFP-

DAergic neurons in C. elegans.  The number of DAergic neurons was not altered in all tested doses (Figure 

23a).  The fluorescence intensity of GFP-dopamine transporter protein image in DAergic neurons was not 

altered (Figure 23).  The size was reduced at all doses (0.02 µM, 0.06 µM & 0.2 µM, P<0.05, Figure 23c).  

The APS was slightly increased at all doses (Figure 23d).  The mean lifespan was not altered in all tested 

doses significantly (P<0.05, Figure 23e). 
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Figure 23. STA-TRITC did not show co-localization with but affected GFP-DAergic neurons in C. elegans.  

A) The number of DAergic neurons was not altered.  B) The fluorescence intensity of GFP-dopamine 

transporter protein image in DAergic neurons was not altered.  C) The size was reduced at all doses (0.02 

µM, 0.06 µM & 0.2 µM, P<0.05).  D) The APS was slightly increased.  E) The mean lifespan was not 

altered.  * indicates statistical significance. 

 

1.3.3 Lectins affect mobility of C. elegans 

Larvae 1 stage of C.elegans were treated with lectins or MPP+ (0.5 mM) as a positive control.  The 

blank control was supplemented with OP50 only.  Travel distance and velocity were evaluated by 

measuring the moving pixels of C. elegans that were displayed in the 20 frames of a video clip.  All 

evaluated twenty lectins significantly reduced the travel distance and velocity of C. elegans showing 

similar effects as the positive control MPP+ compared with the blank control OP50 only (Figure 24, Figure 

25).   
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Figure 24. Lectins and MPP+ decreased the travel distance of C.elegans compared with the blank control 

group. * indicates statistical significance compared with the blank control.  

 

 
 

Figure 25. Lectins and MPP+ decreased the travel velocity of C.elegans compared with the blank control 

group. * indicates statistical significance compared with the blank control.  
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1.4 Discussion 

Twenty examined dietary plant lectins conjugated to TRITC or rhodamine were tested in the in 

vivo C. elegans (egIs1[Pdat-1::GFP]) model.  An elevated GFP-dopamine transporter that is expressed 

under control of the dopamine transporter (DAT) gene promoter shows enhanced DAT expression and 

trafficking by the promoter, transcription factor, and nuclear receptor [125].  All three lectins ACA, EEA 

and PNA that co-localized with DAergic neurons decreased the mean lifespan significantly in a dose-

dependent manner. 

Carbohydrate-binding protein toxins are known to survive and traverse the gut intact, as an acutely 

toxic substance and can induce serious life-threatening illness in humans and animals.  Distance 

pathogenicity of botulinum toxin, as well as cholera toxin, impairs the central nervous system [126].  The 

present study was aimed at a new, surprising property of lectins based upon the hypothesis that lectins 

may be transported directly by gut absorption to local neurons and transported axonally to distal neurons 

where they have an anatomical and potentially a physiological pathophysiological effect.  Fluorescent 

intensity and co-localization of lectins was observed to suggest transport to GFP-DAergic neurons.  

Number and area changes of GFP-dopamine receptor fluorescence in DAergic neurons were observed to 

be an effect of the lectins.  Involvement of other pathways like indirect effects by interaction of lectins 

with glial cells that affected DAergic neurons may be possible, as it was reported that in patients with PD 

or Parkinsonism had α-SYN deposited not only in DAergic neurons but also in different kinds of glial 

cells [127-129].  Lectins have been used for histochemistry and neuronal tracing only, but were not 

previously associated with neuronal toxicity [51, 130, 131].  

1.4.1 The occurrence and intensity of individual fluorescently labeled lectins in GFP-DAergic 

neurons detected by co-localization 

Three lectins (ACA, EEA or PNA) appeared to co-localize with a subgroup of GFP-DAergic 

neurons while other lectins had effects on GFP-DAergic neurons where co-localization was not observed.  
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Because some effects were seen in neurons where lectins were not detected, this may be due to 

undetectable amount of transported lectin, or some unexplained indirect effect.  Thus, the number and 

GFP-dopamine transporter image of neurons were also evaluated, even when the fed lectin was not 

detected.  The lack of observation of fluorescence in the neurons using other fed lectins (which, however, 

seemed to affect these neurons) may be due to a variety of characteristics.  For instance, a critical window 

for the lectin to be detectable may have been missed, the lectin may have been partially degraded, losing 

the fluorophore, but still retaining neuron-effective activity, or, more likely, undetectable levels of the 

lectin have activities in the cytoplasm or nucleus.  Future studies with ELISA, other immunocytochemical 

studies or radiolabeling may confirm the transport of small amounts of these specific lectins where an 

effect is observed without fluorescence co-localization being observed.  In addition to the DAergic 

neurons, lectins were found mainly contained in the intestine of C. elegans.  Few amount of lectins were 

also found scattered in the whole body of the animals under the fluorescent microscopy.  Observation of 

lectins in the whole body may suggest that lectins have access to other organs in C. elegans.  ACA was 

first isolated from the seeds of Amaranthus caudatus in 1989 [132], and it has been mainly used to describe 

the recognition and migration of cell surface receptors of cancer cells [133] [134].  EEA was mainly 

known to bind to blood group-related carbohydrates (mainly B and H determinants) and as a new category 

of lectins [135].  Structural analysis of EEA indicated that EEA had a β-trefoil fold similar to ricin B-like 

(R-type) lectins [136], which is known for its neurotoxicity.  PNA was reported to facilitate to isolate 

PNA-binding glycoprotein in central nervous system in humans [137], which implied that further 

interactions between PNA and these proteins was possible.  

1.4.2 Lectin-caused differences in the number of GFP-DAergic neurons 

Four lectins (CSA, EEA, SBA and S-WGA) reduced the number of DAergic neurons, it seemed 

that these effects were related to the dose used.  For CSA and EEA, only the highest dose reduced the 

number of DAergic neurons.  For SBA and S-WGA, only low doses reduced the number.  In contrast to 
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EEA, low doses of S-WGA reduced the number of DAergic neurons while the highest dose did not.  CSA 

and SBA reduced the number of DAergic neurons.  The reduction of neuron numbers indicated the toxicity 

of these lectins, which was consistent with lifespan results, that both EEA and S-WGA reduced the mean 

lifespan significantly.  The lectin LcH increased the number of DAergic neurons at both the lowest dose 

and the highest dose. 

1.4.3 Lectin feeding effects on the fluorescent intensity of GFP-DAergic neurons 

Four lectins (CPA, EEA, PHA-L, PSA or UEA I) reduced GFP-dopamine transporter fluorescence 

in D-Aergic neurons suggesting damage to DAT, while Con A, CSA, DBA, GSL I, HHA, LcH, PHA-E, 

S-WGA or WGA induced an increase indicating a promotion of DAT in the DAergic neurons.  PSA, in 

some studies, has been shown to be essentially nontoxic in mice both in vivo and in vitro [138].  However, 

toxicity measurements in these studies may not include more subtle long term effects of neuronal damage.  

Although WGA did not affect the number of GFP-DAergic neurons in the present study, and in other 

laboratories, in the in vivo rat gut lumen, reduced expression of heat shock proteins resulting in lowered 

protection and greater permeability of epithelial cells.  WGA also increases thrombin in human platelets, 

and escalates adipogenesis in mesenchymal cells of the mouse limb bud in vitro [50, 139-141], by 

unknown mechanisms.  

1.4.4 Sizes of GFP-DAergic neurons 

ACA, CPA, Con A, PHA-E, PSA, SBA, S-WGA, STA UEA I or WGA significantly reduced the 

size of GFP-DAergic neurons.  Whether these effects are due to damage to the neurons is not known.  

Increased neuron size of a subgroup of GFP-DAergic neurons, however, was also observed with DBA, 

EEA, HHA or PHA-L which may have promoted DAT expression, however, whether decrease or increase 

in the apparent size of neurons has a physiological effect, or indicates lectin-mediated damage is not yet 

known.  Toxicity of some lectins and newly discovered side effects of ingestion of PHA and WGA lectins 

in human and animals have been observed, mitigated by sucrose feeding [141-143].  In addition, the size 
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of the GFP-DAergic neurons was significantly reduced suggesting a possible toxic effect of cytoplasmic 

PHA-E.  This observation is in agreement with other studies showing that PHA can damage intestinal 

epithelial cells [53, 142], which was prevented or reversed by a PHA-E SIS sucrose [142].  Interestingly, 

PHA-E did not show significant change in the number and size of GFP-neurons in C. elegans but 

demonstrated enhanced expression of GFP-dopamine transporter fluorescence intensity.  Con A 

strengthens extracellular matrixes by promoting production of proteoglycan in mouse chondrocytes in 

vitro [140].  In our study, Con A altered GFP-DAergic neurons by reducing the area of GFP-dopamine 

transporter fluorescence.   

Some specific beneficial activities of a variety of lectins have been reported [140, 144].  In our 

studies, DBA was observed in the GFP-DAergic neurons which had the effect of increasing the observed 

area of the GFP-labelled DA transporter.  This increase may suggest enhanced DAT expression and 

trafficking, where GFP is expressed under the dopamine transporter (DAT) promoter [125, 145].  A major 

adverse effect of DBA lectin has not been reported elsewhere.  In fact, DBA significantly facilitates 

cartilagenesis and osteogenesis in mouse limb bud mesenchymal cells in vitro [140]. 

1.4.5 Elevated fluorescent intensity and size of DAergic neurons 

These alterations may reflect a relationship with the insulin receptor and DAT. Glucose provides 

a vital energy source for brain and clearly modulates neuronal function [146, 147].  In C. elegans, 

hyperglycemia reduces APS, related to human diabetes.  These relationships in our study, however, may 

represent some signaling interaction of glycemia/insulinemia and DAT.  As with other catecholamine 

neurotransmitters, inhibitory neurotransmitters are inversely proportional to glycemia, and DA kinetics is 

sensitive to hypoglycemia in a complex manner [148].  In rodents, insulin receptors and DAT are densely 

present in substantia nigra, insulin may increase DAT mRNA expression, and glycemic index is inversely 

associated with the risk of PD [149, 150].  
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1.4.6 Lectins affect the lifespan of C. elegans 

 Lectins can be categorized into four groups based on their effects on the mean lifespan of C. 

elegans.  1) Lectins PHA-E, PSA, UEA I or WGA increased the mean lifespan.  2) Lectins ACA, AIA, 

CSA, DBA, EEA, GNA, GSL I, HHA, PHA-L, PNA or SBA reduced the mean lifespan.  3) Lectins LcH 

or S-WGA showed dual effects in affecting the mean lifespan, with low dose increasing and high dose 

decreasing it.  4) Lectins Con A, CPA or STA did not alter the mean lifespan significantly. 

1.4.7 Lectins affect the mobility of C. elegans 

PD includes four cardinal features, tremor, rigidity, bradykinesia (slowness of movement) and 

postural instability, with bradykinesia as the most characteristic and easily recognizable symptom [151]. 

In addition, among the four symptoms, bradykinesia correlates best with the degree of dopamine 

deficiency, rigidity and postural instability correlates less and tremor does not show any correlation [152].  

In this study, two important surrogate markers of movement, distance and velocity were evaluated in C. 

elegans.  C. elegans is a practical and affordable animal model to study symptoms of neurodegenerative 

diseases, as they respond to a wide range of stimuli and exhibit characteristic movement patterns [153].   

MPP+ has been widely used in various animal models to induce symptom of PD, which can be 

selectively taken up by DAergic neurons via DAT[99].  MPP+ (0.5 mM) has been used to induce motor 

symptoms that mimic PD’s in C. elegans, which cause apparent mobility reduction after 48 hours of 

treatment [96, 97, 154].  Present study showed that all twenty lectins evaluated reduced travel distance 

and velocity (P<0.05), mimicking bradykinesia in humans, as the positive control MPP+ (0.5 mM) in C. 

elegans organism.  The decrease of the distance and velocity of animals implies that motor neurons were 

affected, which might be due to neurodegeneration caused by lectins.  This observed reduction in the travel 

distance and velocity was consistent with the reduction of the number, area or intensity of DAergic 

neurons for most tested lectins.  Some lectins like PNA, LcH, AIA, DBA, GNA, GSL I or HAA, were not 

observed to have any detrimental effects on DAergic neurons in C. elegans in this study, but still caused 
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PD like symptoms of slow movement in C. elegans.  This phenomenon might indicate that lectins might 

have other mechanisms in inducing the PD besides affecting DAergic neurons.  α-SYN deposit in both 

DAergic neurons and glial cells, lectins might also affect the glial cells in addition to directly or indirectly 

participate in the development of the PD [128].  The detailed mechanism of bradykinesia remains 

unknown, but a disruption in normal motor cortex activity caused by reduced DAergic function might be 

the main cause of bradykinesia [151].  Functional imaging studies suggest that bradykinesia correlates 

with impairment in the recruitment of cortical and subcortical systems that regulate kinematic parameters 

of movement like velocity [155].  Anatomically, bradykinesia and tremor scores significantly correlate 

with cerebral metabolic rate of glucose inversely in bilateral putamen, the metabolic rate of glucose is 

higher when the bradykinesia is worse [156], which leads to reduction in the muscle force produced at the 

initiation of movement [151].  In a human study, patients with PD were asked to make ballistic elbow 

flexion movements, electromyographic signals were recorded and showed that patients with bradykinesia 

are unable to energize the appropriate muscles to perform long time movements compared with the control 

[157].  Taken together, the results of current study might lend some support to the hypothesis of reduced 

DAergic function caused bradykinesia, and the reduced DAergic neuron number, area or intensity caused 

by lectins correlate with the reduced mobility in C. elegans to some extent. 

Neurotoxins like botulinum toxin or ricin bind to specific receptors on cell membrane, to be 

internalized, and exert toxic effects [158, 159].  Similarly, lectins bind to carbohydrate ligands of targeted 

cells to be functional, producing effects.  Specific sugars may competitively bind and inhibit lectins uptake 

[160].  Structurally similar lectins might share similar binding receptors and compete for each other’s 

binding sites.  The complex GI environment including nutrients and cellular environment might alter the 

absorption of certain lectins and their potential biological consequences [161].  

In a recent Danish report, patients who had vagal nerves removed 20 years earlier had 40% lower 

incidence of PD than control populations.  If dietary proteins were one potential etiology for PD, by 
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transport to neurons from the gut, as hypothesized here, removal of the vagal nerve would have prevented 

or reduced this etiology pathway.  Symptoms of motor impairment are typical in PD patients, and 

dysfunction of aspects of the autonomic nervous system are often underrated, such as GI motility [162], 

rapid eye movement [163], etc.  The current study indicates potential transport of some dietary plant 

lectins from the GI tract to the DAergic neurons in C. elegans, with direct or indirect effects on these 

neurons and diverse effects on APS.  This observation may be related to the Braak and Hawkes’ 

hypothesized unknown etiologic agent for PD or related, for example, to damaged DAergic neurons those 

have been found in PD [89, 93].  If related, the process may be gradual, may be additive, related to the 

frequency of consumption of certain lectins, and may be determined by the association of lectins with 

other factors.  Certainly, there is potential for inputs from individual genetic susceptibility, varying sugar 

structures profiles in different cell membranes, the receptivity to endocytosis, a disorder or leakage of the 

GI lining, and dietary content.  Our observations are a tantalizing possible explanation for why dietary 

plants have been linked to a risk of developing PD. 
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CHAPTER III. SPECIFIC INHIBITING SUGARS AFFECT THE EFFECTS OF LECTINS ON 

LIFESPAN AND DOPAMINERGIC NEURONS IN C. ELEGANS 

 

1.1 Disclaimer 

There were anticipated problems with feeding high amounts of sugars to C. elegans as inhibitors of 

lectin binding.  For example, D-galactosamine perfusion in the liver of rats led to D-galactosamine 

accumulate as sugar nucleotides, and reduced the level of uridine diphosphate (UDP), which was needed 

for RNA synthesis [1].  Other problems can arise, for example, feeding xylose to rats and mice cause 

cataracts due to protein cross linking by "non enzymatic glycosylation" [2, 3].  Sucrose has effects on the 

levels of dopamine and opioid mRNA in rat brain similar to the effects of opiate [4].  Other sugars may 

cause similar side effects because they spend considerably more time in the open chain aldehyde or ketone 

form than glucose, which is the evolutionarily chosen circulating sugar in animals for that reason.  

However, we conducted some experiments with simple sugars as inhibitors, which experiments and results 

are described here. 

1.2 Materials and methods 

C. elegans egIs1[Pdat-1::GFP] that express GFP in the 8 DAergic neurons [5, 6] and the standard 

food Escherichia coli (E. coli) were obtained from C. elegans Genetics Center (CGC, MN).  The C. 

elegans model does not require regulation of the Institutional Animal Care and Use Committee. 

1.2.1 Culture Escherichia coli (E. coli, OP50) 

OP50 were cultured by the standard method described elsewhere [7].  Briefly, approximately 10 µL 

of stock E. coli solution was added to media and incubated at 37°C for 24h.  The OP50 were then plated 

in PetrifilmTM (3M Corporate, St. Paul, MN) at 37°C for 24h until densities of 5×108 to 5×1011 colony 

forming units (cfu/ml) were reached and then were fed to the C. elegans ad libitum [7, 8].  The OP50 stock 

feeding solution was enriched to 2×109cfu/ml by centrifuging at 2,200 g for 10 minutes and washed with 

S-complete buffer twice. 
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1.2.2 C. elegans culture 

Mature gravid transgenic C. elegans egIs1[Pdat-1::GFP] were treated with NaOH (1M) and sodium 

hypochlorite solution (5.25%, 5:2 ratio) to dissolve the body and release viable eggs [7].  The eggs were 

hatched overnight fed ad libitum with LB broth (200 µL/well) containing OP50 5x108 – 5x1011 cfu/ml [9], 

after washing with S-complete solution 3 times.  The age-synchronized C. elegans were diluted to 100 

animals/ml, plated in liquid culture in a 96 well plate (120μl/well, 10-15 animals) [10].   The plate was 

tape sealed, bagged, and covered with aluminum foil.  All animals were kept in a 20C low temperature 

incubator (Revco Tech., Nashville, NC, USA) throughout the experiments.  Thirty microliters of 5-Fluoro-

2′-deoxyuridine (FUDR, 0.6 mM) stock solution was added to each well at larvae 4 stage.   

All treatments were applied at day 3 after hatching.  Four dose responses of twenty lectins were 

obtained for each culture condition in a dark room.  Control animals were fed with OP50.  Experimental 

groups were fed rhodamine/TRITC-conjugated lectins with or without additional SIS(s).  The SIS, or 

lectin plus SIS were incorporated into feeding medium with OP50.  Each group of nematodes were 

collected and fixed after the first week for the liquid culture as described elsewhere [11].  Briefly, after 

being collected from wells, animals were washed with S-Basal twice, fixed with paraformaldehyde (4%) 

over 2h at 4°C and washed with PBS for 5min x 3.  Ten microliters of Fluoromount-G (Southern 

Biotechnology Associates, Birmingham, AL) was applied to a glass slide followed by 10 µL of the 

medium containing C. elegans.  At last, a cover glass was mounted on the glass slide. 

1.2.3 Select lectins and specific inhibiting sugars (SIS) 

Commercially available plant lectins conjugated with TRITC or rhodamine were purchased from 

EY labs (San Mateo, USA), Vector Labs (Burlingame, USA), or Sigma-Aldrich (St. Louis, USA).  Each 

lectin-SIS-inhibition experiment had a SIS-only control group.  The dose of SIS for each fluorescence-

conjugated lectin was determined by searching histology literature or product manuals.  Doses of lectins 

and their SISs were used comparable to published work in histochemistry or neuronal tracing [12-14]. 
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1.2.4 Average probability of survival (APS) assay 

All average probability of survival (APS) assays were conducted in liquid culture (96-well plate). 

The animals were synchronized and seeded into each well of a plate (n=10-15) and OP50 was added to 

each well.  Thirty microliters (0.6mM) of fluorodeoxyuridine (FUDR) was added to each well to sterilize 

the animals.  Four different treatments (50 µL/treatment, n=6 row) including control, SIS only, or lectin 

plus SIS were added.  The plate was then covered with aluminum foil. The whole procedure was 

performed in a dark room to prevent bleaching of fluorophores.  After the plate was shaken for 3 minutes, 

the survival animals were counted every other day until all were dead under an inverted microscope (Nikon, 

Eclipse Ti –S, Japan) at 4x or 10x magnification.  Animals were exposed to strong lights to stimulate the 

movements [15] and the movement of pharynx was checked to confirm whether the animals were dead 

when they were not moving. 

1.2.5 Fluorescent microscopy 

The GFP-DAergic neurons were identified by FTIC filter (480Ex/520Em) and the number of GFP-

DAergic neurons counted.  Fluorescent intensity of GFP-DAergic neurons and their average sizes (µm2) 

were determined by NIS-Elements Advanced Research (version 3.22.11) and compared among the 

following groups: control, SISs, and lectins plus SIS.  Fluorescent intensity of rhodamine-lectins was 

determined by a TRITC filter (580Ex/620Em) to assess co-localization.  The magnitude of the effect(s) of 

the lectin on the DAergic neurons, the number, fluorescent intensity (arbitrary unit), and sizes (µm2) of 

GFP-DAergic neurons were determined and compared among each group.  Co-localization was initially 

identified with an inverted microscopy (Nikon, Eclipse Ti –S, Japan) and then confirmed at a Z-axle with 

laser scanning microscopy (Leica, TCS SP5, Germany). 

1.2.6 Solutions and chemicals 

Standard NGM agar plates (g): NaCl 3.0g, Bacto-agar (Becton, MD) 20g, Bacto-peptone 2.5g 

(Becton, MN), Cholesterol solution 0.1% (0.005/ml 95% ethanol), and dH2O 975ml were mixed.  
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Additions to the autoclaved solution (M): CaCl2 1.0 1ml, MgSO4 1.0 1ml, KPO4 pH6 1.0 25ml.  LB Broth: 

25.0g, dH2O 1L (autoclave).  S-basal solution (M): NaCl 0.1, KPO4 pH6 0.05, Cholesterol 0.1%, was 

autoclaved.  PBS (mM): 115 NaCl, 75 Na2HPO4•7H2O, and 7.5 KH2PO4, pH 7.4. 

1.2.7 Statistical analyses 

All results are presented as mean ± S.E.M.  Analyses were carried out using SAS/STAT® software, 

Version 9.4 of the SAS System for Windows (Cary, NC, USA).  Survival curves were displayed by 

binomial probabilities obtained from logistic regression models as surrogates for survival probabilities 

and mean lifespan was estimated via Kaplan-Meier (log-rank).  ANOVA models were used to analyze 

neuron data.  For each group, 10-15 animals were analyzed for liquid culture.  An alpha level of 0.5 was 

considered statistically significant. 

1.3 Results 

Diets supplemented with varying concentrations of TRITC-conjugated lectins and their SIS in liquid 

culture were fed to C. elegans (Error! Reference source not found.).  We observed that some SIS had 

the following effects:  a) enhancing the effects of lectins on the DAergic neurons or mean lifespan, b) 

mitigating the effects of lectins on the DAergic neurons or mean lifespan, or c) reversing the effects of 

lectins on the DAergic neurons or mean lifespan. 

Amaranthus caudatus agglutinin (ACA)-TRITC co-localized with DAergic neurons at the highest 

dose (0.32 µM), with or without the SIS GalNAc.  As shown in the graph, when the green color from GFP 

fused DAergic neurons (Figure 26a) and the red color from TRITC conjugated ACA (Figure 26b) was 

overlapped, the co-localized area showed bright yellow color (Figure 26c), which demonstrated that ACA 

was successfully transported from gut to DAergic neurons in C. elegans organism.  ACA did not the affect 

the number of DAergic neurons (Figure 26d), the intensity of DAergic neurons was reduced by the highest 

dose of ACA with the presence of the SIS (0.32 µM, P<0.05, Figure 26e).  
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Table 5. Effects of lectins combined with specific inhibiting sugars on lifespan and DAergic neurons in 

C. elegans 

 

Lectins Dose (µM) GFP # GFP intensity GFP size Lifespan 

ACA 

0.032     

0.096     

0.32     

EEA 

0.048     

0.136     

0.48     

PNA 

0.018     

0.054     

0.18     

 0.017     

PHA-E 0.054     

 0.17     

 0.043     

PSA 0.129     

 0.43     

 0.033     

UEA I 0.099     

 0.33     

 0.046     

WGA 0.138     

 0.46     

 0.05     

LcH 0.15     

 0.5     

 0.046     

S-WGA 0.138     

 0.46     

 0.031     

AIA 0.093     

 0.31     

 0.065     

CSA 0.195     

 0.65     

 

 Indicates decreasing trend, P<0.05  

 Indicates increasing trend, P<0.05  

 Indicates no significant alternation, P>0.05 
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Table 5 continued. Effects of lectins combined with specific inhibiting sugars on lifespan and DAergic 

neurons in C. elegans 

 

Lectins Dose (µM) GFP # GFP intensity GFP size Lifespan 

 0.018     

DBA 0.054     

 0.18     

 0.077     

GNA 0.231     

 0.77     

 0.018     

GSL I 0.054     

 0.18     

 0.04     

HHA 0.12     

 0.4     

 0.017     

PHA-L 0.051     

 0.17     

 0.017     

SBA 0.051     

 0.17     

 0.019     

Con A 0.057     

 0.19     

 0.047     

CPA 0.141     

 0.47     

 0.02     

STA 0.06     

 0.2     

 

 Indicates decreasing trend, P<0.05  

 Indicates increasing trend, P<0.05 

 Indicates no significant alternation, P>0.05 
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Figure 26. ACA co-localized with GFP-DAergic neurons in C. elegans at the highest dose (0.32 µM).  A) 

GFP-DAergic neurons (green), B) PNA-TRITC in the neuron (red),  C) Co-localization of the GFP-

DAergic neurons in merged A and B (yellow).  D) The number of DAergic neurons was not altered. E) 

The intensity of DAergic neurons was decreased by the highest dose (0.32 µM) plus the presence of the 

SIS (GalNAc 1.58 mM). F) The area of DAergic neurons was reduced by two higher doses (0.096 µM & 

0.32 µM, P<0.05) and the highest dose (0.32 µM, P<0.05) when the SIS was present. G) The APS was 

reduced with or without the SIS.  H) The mean lifespan was reduced by all doses (0.032 µM, 0.096 µM 

& 0.32 µM) from 18 days to 14, 10 and 7 days (-22%, -44% & -60%, P<0.05), or by the SIS only from 

18 days to 12 days (-30%, P<0.05).  With the presence of the SIS, the mean lifespan was reduced by higher 

doses (0.096 µM & 0.32 µM) from 12 days to 8 days and 7 days (-32% & -43%, P<0.05).  * indicates 

statistical significance, # indicates SIS plus OP50 vs. OP50 only. 
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Area of DAergic neurons was decreased by higher doses of ACA (0.096 µM & 0.32 µM, P<0.05), 

and decreased by the highest dose of ACA plus GalNAc (0.32 µM, P<0.05, Figure 26f).  APS was 

decreased dose-dependently with or without the presence of the SIS (Figure 26g).  The mean lifespan was 

reduced by all doses (0.032 µM, 0.096 µM & 0.32 µM) from 18 days to 14, 10 and 7 days (-22%, -44% 

& -60%, P<0.05), or by the SIS only from 18 days to 12 days (-30%, P<0.05).  With the presence of the 

SIS, the mean lifespan was reduced by higher doses (0.096 µM & 0.32 µM) from 12 days to 8 days and 7 

days (-32% & -43%, P<0.05, Figure 26h). 

Euonymus europaeus agglutinin (EEA)-TRITC co-localized with DAergic neurons at the lowest 

dose (0.048 µM), with or without the SIS lactose.  As shown in the graph, when the green color from GFP 

fused DAergic neurons (Figure 27a) and the red color from TRITC conjugated EEA (Figure 27b) was 

overlapped, the co-localized area showed bright yellow color (Figure 27c), which demonstrated that EEA 

was successfully transported from gut to DAergic neurons in C. elegans organism.  The number of 

DAergic neurons was reduced by the highest dose (0.48 µM, P<0.05), which was blocked by the SIS 

lactose (10 mM, Figure 27d).  The intensity of DAergic neurons was reduced by the highest dose of EEA 

(0.48 µM, P<0.05) which was reversed by the SIS at the lowest dose (0.048 µM, P<0.05).  The SIS did 

not block the effect of the highest dose of EEA in reducing the intensity of DAergic neurons (Figure 27e).  

Area of DAergic neurons was increased by highest dose (0.48 µM, P<0.05), the presence of the SIS 

reduced the magnitude of this effect. Medium dose of EEA plus the SIS reduced the size of DAergic 

neurons (0.136 µM, P<0.05, Figure 27f).  APS was decreased dose-dependently with or without the SIS 

(Figure 27g).  The mean lifespan was reduced dose-dependently by all doses (0.048 µM, 0.136 µM & 

0.48 µM) from 19 days to 14, 9 and 7 days (-27%, -53% & -62%, P<0.05), or by the SIS only from 19 

days to 11 days (-43%, P<0.05).  With the presence of the SIS, the mean lifespan was reduced by higher 

doses (0.136 µM & 0.48 µM) from 11 days to 7 days and 7 days (-32% & -35%, P<0.05, Figure 27h).  
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Figure 27. EEA co-localized with GFP-DAergic neurons in C. elegans at the lowest dose (0.048 µM).  A) 

GFP-DAergic neurons (green), B) PNA-TRITC in the neuron (red), C) Co-localization of the GFP-

DAergic neurons in merged A and B (yellow). D) The number of DAergic neurons was reduced by the 

highest dose (0.48 µM, P<0.05), which was blocked by the SIS lactose 10 mM. E) The intensity of 

DAergic neurons was reduced by the highest dose of EEA (0.48 µM, P<0.05) which was reversed by the 

SIS at the lowest dose (0.048 µM, P<0.05).  F) Area of DAergic neurons was increased by highest dose 

of EEA (0.48 µM, P<0.05), the presence of the SIS reduced the magnitude of this effect. Middle dose of 

EEA plus the SIS reduced the size of DAergic neurons (0.136 µM, P<0.05).  G) APS was decreased dose-

dependently with or without the presence of the SIS. H) The mean lifespan was reduced dose-dependently 

by all doses (0.048 µM, 0.136 µM & 0.48 µM) from 19 days to 14, 9 and 7 days (-27%, -53% & -62%, 

P<0.05), or by the SIS only from 19 days to 11 days (-43%, P<0.05).  With the presence of the SIS, the 

mean lifespan was reduced by higher doses (0.136 µM & 0.48 µM) from 11 days to 7 days and 7 days (-

32% & -35%, P<0.05).  * indicates statistical significance, # indicates SIS plus OP50 vs. OP50 only. 



 

97 

 

Arachis hypogaea agglutinin (PNA)-TRITC co-localized with GFP-GAergic neurons after one 

week of treatment (0.018 µM, 0.054 µM & 0.18 µM).  As shown in the graph, when the green color from 

GFP fused DAergic neurons (Figure 28a) and the red color from TRITC conjugated EEA (Figure 28b) 

was overlapped, the co-localized area showed bright yellow color (Figure 28c), which demonstrated that 

PNA was successfully transported from gut to DAergic neurons in C. elegans organism.  Number of GFP-

DAergic neurons was increased at the lowest dose (0.018 µM, P<0.05), which was blocked by the SIS 

galactose 200 mM (Figure 28d).  The size and intensity of GFP-GAergic neurons was not altered (Figure 

28e & Figure 28f).  SIS galactose (200 mM) treatment decreased the size of GFP-DAergic neurons (0.054 

µM & 0.18 µM, P<0.05) without altering the number and intensity.  APS was dose-dependently reduced 

at all doses, reversed by SIS, and was reduced by SIS galactose (200 mM) only (Figure 28g).  The mean 

lifespan was reduced by higher doses (0.054 µM and 0.18 µM) from 19 days to 15 days and 14 days (-

24% and -27%, P<0.05), which was reversed in presence of SIS galactose with an increase at the highest 

dose (0.18 µM) from 12 days to 16 days (33%, P<0.05).  The mean lifespan was reduced by SIS only from 

19 days to 12 days (-36%, P<0.05, Figure 28h). 

Phaseolus vulgaris (PHA-E)-rhodamine did not show co-localization with DAergic neurons in 

liquid culture but affected the DAergic neurons.  The number of GFP-DAergic neurons was not altered, 

but reduced at the highest dose with the SIS present (0.17 µM, P<0.05, Figure 29a).  The fluorescence 

intensity of GFP-DAergic neurons was increased dose-dependently at all doses (0.017 µM, 0.054 µM & 

0.17 µM, P<0.05), which was blocked by the SIS at the highest dose (0.17 µM, Figure 29b).  The average 

size of GFP-DAergic neurons was also reduced at the highest dose (0.17 µM, P<0.05), which was 

augmented by the presence of the SIS (Figure 29c).  The APS was increased dose-dependently at lower 

doses, which was blocked by SIS GalNAc (1.58 mM), and was reduced by GalNAc only (Figure 29d), 

possibly due to Uridine diphosphate (UDP) depletion [1].   
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Figure 28. PNA co-localized with GFP-DAergic neurons in C. elegans at all doses (0.018 µM, 0.054 µM 

& 0.18 µM).  A) GFP-DAergic neurons (green), B) PNA-TRITC in the neuron (red),  C) Co-localization 

of the GFP-DAergic neurons in merged A and B (yellow).  D) Number of GFP-DAergic neurons was 

increased at the lowest dose (0.018 µM, P<0.05), which was blocked by the SIS galactose 200 mM.  E) 

The intensity of GFP-DAergic neurons was not altered.  F) The size of GFP-DAergic neurons was not 

altered, but was reduced with the presence of the SIS at higher doses (0.054 µM & 0.18 µM, P<0.05).  G) 

APS was dose-dependently reduced at all doses, reversed by SIS, and was reduced by SIS galactose (200 

mM) only.  H) The mean lifespan was reduced by higher doses (0.054 µM and 0.18 µM) from 19 days to 

15 days and 14 days (-24% and -27%, P<0.05), which was reversed in presence of SIS galactose with an 

increase at the highest dose (0.18 µM) from 12 days to 16 days (33%, P<0.05).  The mean lifespan was 

reduced by SIS galactose (200 mM) only from 19 days to 12 days (-36%, P<0.05).  * indicates statistical 

significance, # indicates SIS plus OP50 vs. OP50 only. 
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The mean lifespan was increased at a middle dose of PHA-E (0.054 µM) from 17 days to 23 

days (39%, P<0.05), which was blocked by GalNAc, and was reduced at a higher dose (0.17 µM) from 

11 days to 8 days (-28%, P<0.05) in presence of SIS.  GalNAc (1.58 mM) only reduced the mean 

lifespan from 17 days to 11 days (-34%, P<0.05, Figure 29e).  

 
 

Figure 29. PHA-E-rhodamine did not show co-localization with DAergic neurons in liquid culture but 

affected the DAergic neurons.  A) Number of DAergic neurons was reduced at the highest dose (0.17 

µM) with the SIS present.  B) The fluorescence intensity of GFP-DAergic neurons was increased dose-

dependently at all doses (0.017 µM, 0.054 µM & 0.17 µM, P<0.05), which was blocked by the SIS at 

the highest dose (0.17 µM).  C) The average size of GFP-DAergic neurons was also reduced at the 

highest dose (0.17 µM, P<0.05), which was augmented by the presence of the SIS.  D) The APS was 

increased dose-dependently at lower doses, which was blocked by SIS GalNAc (1.58 mM), and was 

reduced by GalNAc only.  E) The mean lifespan was increased at a middle dose (0.054 µM) from 17 

days to 23 days (39%, P<0.05), which was blocked by GalNAc, and was reduced at a higher dose (0.17 

µM) from 11 days to 8 days (-28%, P<0.05) in presence of SIS.  GalNAc (1.58 mM) only reduced the 

mean lifespan from 17 days to 11 days (-34%, P<0.05).  * indicates statistical significance, # indicates 

SIS plus OP50 vs. OP50 only. 
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Pisum Sativum agglutinin (PSA)-rhodamine did not show co-localization with GFP-DAergic 

neurons but affected the DAergic neurons. The number of DAergic neurons was not altered, but was 

reduced at the highest dose (0.43 µM, P<0.05) in presence of the SIS α-methylmannoside (200 mM) plus 

α-methylglucoside (200 mM, Figure 30a).  The intensity was diminished at the highest dose of PSA (0.43 

µM, P<0.05), which was eliminated in presence of the SIS (Figure 30b). 

 
 

Figure 30. PSA-rhodamine did not show co-localization with GFP-DAergic neurons but affected the GFP-

DAergic neurons in C. elegans.  A) The number of DAergic neurons was not altered, but was reduced at 

the highest dose (0.43 µM, P<0.05) in presence of the SIS α-methylmannoside (200 mM) plus α-

methylglucoside (200 mM).  B) The intensity was diminished at the highest dose (0.43 µM, P<0.05), 

which was eliminated in presence of the SIS.  C) The size was reduced at the lowest dose (0.043 µM, 

P<0.05), which was blocked by the SIS, and was increased it at middle dose (0.129 µM, P<0.05) with the 

SIS.  D) The APS was increased at all doses, which was blocked at the highest dose in presence of the SIS.  

E) The mean lifespan was increased by lower doses (0.043 µM & 0.43 µM) from 22 days to 27 days (22% 

& 23%, P<0.05), which was blocked by SIS at the highest dose (0.43 µM), and was increased at a lower 

dose (0.043 µM) from 23 days to 28 days in presence of the SIS (21%, P<0.05).  * indicates statistical 

significance. 
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The size was reduced at the lowest dose (0.043 µM, P<0.05), which was blocked by the SIS, and 

was increased it at medium dose (0.129 µM, P<0.05) with the SIS (Figure 30c).  The APS was increased 

at all doses of PSA, which was blocked at the highest dose in presence of the SIS (Figure 30d).  The mean 

lifespan was increased by lower doses (0.043 µM & 0.43 µM) from 22 days to 27 days (22% and 23%, 

P<0.05), which was blocked by SIS at the highest dose (0.43 µM), and was increased at a lower dose 

(0.043 µM) from 23 days to 28 days in presence of the SIS (21%, P<0.05, Figure 30e). 

Ulex Europaeus I (UEA I)-TRITC did not show co-localization with GFP-DAergic neurons but 

affected the DAergic neurons.  The number of DAergic neurons was not altered, but was increased at the 

highest dose (0.33 µM, P<0.05) in presence of the SIS L-fucose (50 mM, Figure 31a).  The intensity was 

diminished at all doses (0.033, 0.099 & 0.33 µM, P<0.05), which was eliminated in presence of the SIS 

(Figure 31b).  The size was reduced at all doses (0.033, 0.099 & 0.33 µM, P<0.05), which was blocked 

by the SIS, and was increased at the highest dose (0.33 µM, P<0.05) in presence of the SIS (Figure 31c).  

The APS was increased at the lowest dose, which was blocked by the SIS (Figure 31d).  The mean lifespan 

was increased by the lowest dose (0.033 µM) from 22 days to 25 days (13%, P<0.05), which was blocked 

by SIS, and was reduced at the highest dose (0.99 µM) from 21 days to 16 days in presence of the SIS 

(26%, P<0.05, Figure 31e). 

Triticum vulgaris agglutinin (WGA)-rhodamine was not detected as being transported to the 

DAergic neurons but affected the DAergic neurons.  The number of DAergic neurons was not altered 

(Figure 32a).  The intensity of the GFP-DAergic neurons was increased at the highest dose (0.46 µM, 

P<0.05), which was augmented in presence of the SIS (Figure 32b).  The area of the DAergic neurons was 

reduced at all doses (P<0.05), which was blocked by the SIS (Figure 32c).  The APS was increased at all 

doses, which was blocked by SIS (Figure 32d).  The mean lifespan was increased at the highest dose (0.46 

µM) from 20 days to 24 days (22%, P<0.05), which was blocked by the SIS (Figure 32e). 
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Figure 31. UEA I-TRITC did not show co-localization with GFP-DAergic neurons but affected the 

DAergic neurons.  A) The number of DAergic neurons was not altered, but was increased at the highest 

dose (0.33 µM, P<0.05) in presence of the SIS L-fucose (50 mM).  B) The intensity was diminished at all 

doses (0.033, 0.099 & 0.33 µM, P<0.05), which was eliminated in presence of the SIS.  C) The size was 

reduced at all doses (0.033, 0.099 & 0.33 µM, P<0.05), which was blocked by the SIS, and was increased 

at the highest dose (0.33 µM, P<0.05) in presence of the SIS.  D) The APS was increased at the low dose, 

which was blocked in presence of the SIS.  E) The mean lifespan was increased by low dose (0.033 µM) 

from 22 days to 25 days (13%, P<0.05), which was blocked by SIS, and was reduced at the highest dose 

(0.99 µM) from 21 days to 16 days in presence of the SIS (26%, P<0.05).  * indicates statistical 

significance.  

 

Lens culinaris (LcH)-TRITC was not detected as transported to but affected DAergic neurons.  

The number of DAergic neurons was increased at low and high doses (0.05 µM & 0.5 µM, P<0.05), which 

was blocked at low dose and reversed at high does (0.5 µM, P<0.05, Figure 33a).  The intensity of the 

GFP-DAergic neurons was increased at the lowest dose (0.05 µM, P<0.05), which was reversed in the 

presence of the SIS.  Besides, the intensity was reduced at higher doses (0.05 µM & 0.15 µM, P<0.05) in 

presence of the SIS (Figure 33b).  The area of the DAergic neurons was not altered (P>0.05), which was 
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reduced by the highest dose (0.5 µM, P<0.05) in presence of the SIS (Figure 33c).   The APS was increased 

at the lowest dose and reduced at the highest dose, which was enhanced by the SIS (Figure 33d).  The 

mean lifespan was increased at the lowest dose (0.05 µM) from 18 days to 23 days (27%, P<0.05) which 

was blocked by the SIS, and decreased at the highest dose (0.5 µM) to 12 days (-37%, P<0.05) which was 

enhanced in presence of the SIS.  The mean lifespan was increased by the SIS only from 18 days to 27 

days (45%, P<0.05, Figure 33e). 

 
 

Figure 32. WGA-rhodamine affected the intensity and area of DAergic neurons.  A) The number of 

DAergic neurons was not altered by WGA with or without the SIS chitin hydrolysate (2.5%).  B) The 

intensity of the GFP-DAergic neurons was increased at the highest dose (0.46 µM, P<0.05), which was 

augmented in the presence of the SIS.  C) The area of the DAergic neurons was reduced at all doses 

(P<0.05), which was blocked by the SIS.  D) The APS was increased at all doses, which was blocked by 

the SIS.  E) The mean lifespan was increased at the highest dose (0.46 µM) from 20 days to 24 days (22%, 

P<0.05), which was blocked by the SIS.  * indicates statistical significance. 
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Figure 33. LcH-TRITC was not detected as transported to but affected DAergic neurons.  A) The number 

of DAergic neurons was increased at low and high doses (0.05 µM & 0.5 µM, P<0.05), which was blocked 

at low dose and reversed at high does (0.5 µM, P<0.05).  B) The intensity of the GFP-DAergic neurons 

was increased at the lowest dose (0.05 µM, P<0.05), which was reversed in the presence of the SIS.  

Besides, the intensity was reduced at higher doses (0.05 µM & 0.15 µM, P<0.05) in presence of the SIS.  

C) The area of the DAergic neurons was not altered (P>0.05), which was reduced by the highest dose (0.5 

µM, P<0.05) in presence of the SIS.  D) The APS was increased at the lowest dose and reduced at the 

highest dose, which was enhanced by the SIS.  E) The mean lifespan was increased at the lowest dose 

(0.05 µM) from 18 days to 23 days (27%, P<0.05) which was blocked by the SIS, and decreased at the 

highest dose (0.5 µM) to 12 days (37%, P<0.05) which was enhanced in presence of the SIS.  The mean 

lifespan was increased by the SIS only from 18 days to 27 days (45%, P<0.05).  * indicates statistical 

significance, # indicates SIS plus OP50 vs. OP50 only. 

 

Triticum vulgaris (Succinylated) S-WGA-rhodamine did not show co-localization but affected 

DAergic neurons in C. elegans.  The number of the GFP-DAergic neurons was decreased at lower doses 

(0.046 µM & 0.138 µM, P<0.05), which was blocked by the SIS chitin hydrolysate (2.5%, Figure 34a).  

The fluorescent intensity of GFP-DAergic neurons was increased at all doses (0.046 µM, 0.138 µM & 

0.46 µM, P<0.05), which was blocked by the SIS at medium dose (0.138 µM, P>0.05) and reversed by 
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the highest dose (0.46 µM, P<0.05, Figure 34b).  The size of GFP-DAergic neurons was decreased at all 

doses (0.046 µM, 0.138 µM & 0.46 µM, P<0.05), which was blocked by the SIS (Figure 34c).   

 
 

Figure 34. S-WGA-rhodamine affected GFP-DAergic neurons in C. elegans.  A) The number of the GFP-

DAergic neurons was decreased at lower doses (0.046 µM & 0.138 µM, P<0.05), which was blocked by 

the SIS chitin hydrolysate (2.5%).  B) The fluorescent intensity of GFP-DAergic neurons was increased 

at all doses (0.046 µM, 0.138 µM & 0.46 µM, P<0.05), which was blocked by the SIS at medium dose 

(0.138 µM, P>0.05) and reversed by the highest dose (0.46 µM, P<0.05).  C) The size of GFP-DAergic 

neurons was decreased at all doses (0.046 µM, 0.138 µM & 0.46 µM, P<0.05), which was blocked by the 

SIS.  D) The APS was increased at a low dose, and decreased does-dependently at higher doses, which 

was blocked by SIS.  E) The mean lifespan was increased at the lowest dose (0.138 µM) from 21 days to 

23 days (9%, P<0.05), and decreased at the highest dose (0.46 µM) to 12 days (-43%, P<0.05), which was 

blocked by the SIS at all doses.  The mean lifespan was reduced by the SIS only from 21 days to 14 days 

(-33%, P<0.05).  * indicates statistical significance, # indicates SIS plus OP50 vs. OP50 only. 

 

The APS was increased at a low dose, and decreased at higher doses, which was blocked by SIS 

(Figure 34d).  The mean lifespan was increased at the lowest dose (0.138 µM) from 21 days to 23 days 

(9%, P<0.05), and decreased at the highest dose (0.46 µM) to 12 days (-43%, P<0.05), which was blocked 
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by the SIS at all doses.  The mean lifespan was reduced by the SIS only from 21 days to 14 days (-33%, 

P<0.05, Figure 34e). 

Artocarpus integrifolia agglutinin (AIA)-TRITC did not show co-localization and did not affect 

DAergic neurons in C. elegans.  The number of the GFP-DAergic neurons was not altered by AIA, with 

or without the SIS galactose (32 mM, P>0.05, Figure 35a).   

 

Figure 35. AIA-TRITC did not show co-localization and did not affect DAergic neurons in C. elegans.  

A) The number of the GFP-DAergic neurons was not altered by AIA, with or without the SIS galactose 

(32 mM, P>0.05).  B) The fluorescent intensity of GFP-DAergic neurons was not altered by AIA (P>0.05).  

C) The size of GFP-DAergic neurons was not altered by AIA (P>0.05).  D) The APS was decreased at all 

doses, which was enhanced by the SIS.  E) The mean lifespan was increased at all doses (0.046 µM, 0.138 

µM & 0.46 µM) from 24 days to 15 days, 13 days and 11 days (-36%, -47% & -56%, P<0.05), which was 

blocked at the lowest dose (0.046 µM) in presence of the SIS.  The mean lifespan was reduced by the SIS 

only from 24 days to 15 days (-37%, P<0.05).  * indicates statistical significance, # indicates SIS plus 

OP50 vs. OP50 only. 

 

The fluorescent intensity of GFP-DAergic neurons was not altered by AIA (P>0.05, Figure 35b).  

The size of GFP-DAergic neurons was not altered by AIA (P>0.05, Figure 35c).  The APS was decreased 
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at all doses, which was enhanced by the SIS (Figure 35d).  The mean lifespan was increased at all doses 

(0.046 µM, 0.138 µM & 0.46 µM) from 24 days to 15 days, 13 days and 11 days (-36%, -47% & -56%, 

P<0.05), which was blocked at the lowest dose (0.046 µM) in presence of the SIS.  The mean lifespan 

was reduced by the SIS only from 24 days to 15 days (-37%, P<0.05, Figure 35e). 

Cytisus scoparius agglutinin (CSA)-TRITC did not show co-localization but affected DAergic 

neurons in C. elegans.  The number of the GFP-DAergic neurons was reduced at the highest dose (0.65 

µM, P<0.05), which was blocked by the SIS GalNAc 20 mM (Figure 36a).   

 

Figure 36. CSA-TRITC did not show co-localization but affected DAergic neurons in C. elegans.  A) The 

number of the GFP-DAergic neurons was reduced at the highest dose (0.65 µM, P<0.05), which was 

blocked by the SIS GalNAc 20 mM.  B) The fluorescent intensity of GFP-DAergic neurons was not altered 

at all doses (P>0.05), which was reduced at high doses (0.195 µM & 0.65 µM, P<0.05) in presence of the 

SIS.  C) The size of GFP-DAergic neurons was increased at all doses (0.065 µM, 0.195 µM & 0.65 µM, 

P<0.05), which was blocked in presence of the SIS.  D) The APS was decreased at the highest dose, which 

was blocked by the SIS.  E) The mean lifespan was reduced at the highest dose (0.65 µM) from 18 days 

to 14 days (-22%, P<0.05), which was blocked in presence of the SIS.  The mean lifespan was reduced by 

the SIS only from 18 days to 14 days (-24%, P<0.05).  * indicates statistical significance, # indicates SIS 

plus OP50 vs. OP50 only. 
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The fluorescent intensity of GFP-DAergic neurons was not altered at all doses (P>0.05), which 

was reduced at high doses (0.195 µM & 0.65 µM, P<0.05) in presence of the SIS (Figure 36b).  The size 

of GFP-DAergic neurons was increased at all doses (0.065 µM, 0.195 µM & 0.65 µM, P<0.05), which 

was blocked in presence of the SIS (Figure 36c).  The APS was decreased at the highest dose, which was 

blocked by the SIS (Figure 36d).  The mean lifespan was reduced at the highest dose (0.65 µM) from 18 

days to 14 days (-22%, P<0.05), which was blocked in presence of the SIS.  The mean lifespan was reduced 

by the SIS only from 18 days to 14 days (-24%, P<0.05, Figure 36e). 

Dolichos biflorus agglutinin (DBA)-rhodamine did not show co-localization with GFP-DAergic 

neurons but affected the DAergic neurons.  The number of DAergic neurons was not altered, but was 

increased at the highest dose (0.18 µM, P<0.05) in presence of the SIS GalNAc (50 mM, Figure 37a).  

The fluorescence intensity of GFP-DAergic neurons was increased at the lowest dose (0.018 µM, P<0.05), 

which was reversed by the SIS, and was increased at higher doses (0.054 µM & 0.18 µM, P<0.05) in 

presence of the SIS (Figure 37b).  The size of GFP-DAergic neurons was increased in a dose-dependent 

trend at all doses (0.018 µM, 0.054 µM & 0.18 µM, P<0.05), which was blocked by the SIS (Figure 37c).  

The APS was increased by lower doses of DBA, and decreased by higher doses (Figure 37d).  The mean 

lifespan was reduced at the highest dose (0.18 µM) from 19 days to 11 days (-43%, P<0.05).  The animals 

did not survive in presence of GalNAc (50 mM) within two days, possibly because of UDP depletion 

(Figure 37e). 

Galanthus nivalis agglutinin (GNA)-rhodamine did not show co-localization with GFP-DAergic 

neurons or affect the DAergic neurons.  The number of DAergic neurons was not altered with or without 

the SIS mannose (34 mM, Figure 38a).  The fluorescence intensity of GFP-DAergic neurons was not 

altered at all doses, which was reduced at the medium dose (0.231 µM, P<0.05) in presence of the SIS 

(Figure 38b).   
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Figure 37. DBA-TRITC did show co-localization but affected the DAergic neurons in C. elegans. A) The 

number of DAergic neurons was not altered, but was increased at the highest dose (0.18 µM, P<0.05) in 

presence of the SIS GalNAc (50 mM).  B) The fluorescence intensity of GFP-DAergic neurons was 

increased at the lowest dose (0.018 µM, P<0.05), which was reversed by the SIS, and was increased at 

higher doses (0.054 µM & 0.18 µM, P<0.05) in presence of the SIS.  C) The size of GFP-DAergic neurons 

was increased in a dose-dependent trend at all doses (0.018 µM, 0.054 µM & 0.18 µM, P<0.05), which 

was blocked by the SIS.  D) The APS was increased at lower dose, and decreased at higher doses.  E) The 

mean lifespan was reduced at the highest dose (0.18 µM) from 19 days to 11 days (-43%, P<0.05).  The 

animals did not survive in presence of GalNAc (50 mM) within two days.  * indicates statistical 

significance, # indicates SIS plus OP50 vs. OP50 only. 

 

The size of GFP-DAergic neurons was increased at all doses (0.077 µM, 0.231 µM & 0.77 µM, 

P<0.05), which was blocked by the SIS (Figure 38c).  The APS was reduced at all doses, which was 

enhanced by the SIS (Figure 38d).  The mean lifespan was reduced at higher doses (0.077 µM & 0.231 

µM) from 24 days to 20 days and 19 days (-16% & -23%, P<0.05), which was enhanced in presence of 

the SIS (Figure 38e).   
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Figure 38. Galanthus nivalis agglutinin (GNA)-rhodamine did not show co-localization with GFP-

DAergic neurons or affect the DAergic neurons.  A) The number of DAergic neurons was not altered with 

or without the SIS mannose (34 Mm).  B) The fluorescence intensity of GFP-DAergic neurons was not 

altered at all doses, which was reduced at the medium dose (0.231 µM, P<0.05) in presence of the SIS.  

C) The size of GFP-DAergic neurons was increased at all doses (0.077 µM, 0.231 µM & 0.77 µM, P<0.05), 

which was blocked by the SIS.  D) The APS was reduced at all doses, which was enhanced by the SIS.  E) 

The mean lifespan was reduced at higher doses (0.077 µM & 0.231 µM) from 24 days to 20 days and 19 

days (-16% & -23%, P<0.05), which was enhanced in presence of the SIS.  * indicates statistical 

significance.  * indicates statistical significance. 

 

Griffonia Simplicifolia (GSL I)-TRITC did show co-localization but affected the DAergic neurons 

in C. elegans.  The number of the GFP-DAergic neurons was not altered (Figure 39a).  The fluorescence 

intensity of GFP-dopamine transporter protein in DAergic neurons was dose-dependently increased at all 

doses (0.018 µM, 0.054 µM & 0.18 µM, P<0.05), which was augmented at lower doses (0.018 µM & 

0.054 µM, P<0.05) and mitigated at the highest dose (0.18 µM, P<0.05, Figure 39b) by the SIS galactose 

(40 mM).  The size of GFP-DAergic neurons was not altered, but was dose-dependently increased at all 

doses (0.018 µM, 0.054 µM & 0.18 µM, P<0.05) in presence of the SIS (Figure 39c).  The APS was dose-
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dependently decreased at all doses, which was reversed by SIS (Figure 39d).  The mean lifespan was 

decreased at the highest dose (0.18 µM) from 17 days to 10 days (-37%, P<0.05), which was blocked by 

the SIS (Figure 39e). 

 
 

Figure 39. GSL I-TRITC did show co-localization but affected the DAergic neurons in C. elegans. A) The 

number of the GFP-DAergic neurons was not altered.  B) The fluorescence intensity of GFP-dopamine 

transporter protein in DAergic neurons was dose-dependently increased at all doses (0.018 µM, 0.054 µM 

& 0.18 µM, P<0.05), which was augmented at lower doses (0.018 µM & 0.054 µM, P<0.05) and mitigated 

at the highest dose (0.18 µM, P<0.05) by the SIS galactose (40 mM).  C) The size of GFP-DAergic neurons 

was not altered, but was dose-dependently increased at all doses (0.018 µM, 0.054 µM & 0.18 µM, P<0.05) 

in presence of the SIS.  D) The APS was dose-dependently decreased at all doses, which was blocked by 

SIS.  E) The mean lifespan was decreased at the highest dose (0.18 µM) from 17 days to 10 days (-37%, 

P<0.05), which was blocked by the SIS.  *indicates statistical significance. 

 

Hippeastrum hybrid agglutinin (HHA)-TRITC did show co-localization but affected the DAergic 

neurons in C. elegans.  The number of the GFP-DAergic neurons was not altered with or without the SIS 

mannose (10 mM, Figure 40a).  The fluorescence intensity of GFP-dopamine transporter protein in 

DAergic neurons was increased at all doses (0.04 µM, 0.12 µM & 0.4 µM, P<0.05), which was blocked 
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at lower doses (0.04 µM & 0.12 µM, P>0.05) and reversed at the highest dose (0.2 µM, P<0.05) in 

presence of the SIS (Figure 40b).   

 
 

Figure 40. HHA-TRITC did show co-localization but affected the DAergic neurons in C. elegans.  A) The 

number of the GFP-DAergic neurons was not altered with or without the SIS mannose (10 mM).  B) The 

fluorescence intensity of GFP-dopamine transporter protein in DAergic neurons was increased at all doses 

(0.04 µM, 0.12 µM & 0.4 µM, P<0.05), which was blocked at lower doses (0.04 µM & 0.12 µM, P>0.05) 

and reversed at the highest dose (0.2 µM, P<0.05) in presence of the SIS.  C) The size of GFP-DAergic 

neurons was increased at the lowest dose (0.04 µM, P<0.05), which was reversed in presence of the SIS 

and reduced at the highest dose (0.4 µM, P<0.05) in presence of the SIS.  D) The APS was dose-

dependently decreased at all doses.  E) The mean lifespan was decreased at higher doses (0.12 µM& 0.4 

µM) from 21 days to 15 days and 11 days (-29% & -47%, P<0.05), which was blocked at the medium 

dose (0.12 µM) in presence of the SIS.  * indicates statistical significance. 

 

The size of GFP-DAergic neurons was increased at the lowest dose of HHA (0.04 µM, P<0.05), 

which was reversed in presence of the SIS and reduced at the highest dose (0.4 µM, P<0.05) in presence 

of the SIS (Figure 40c).  The APS was dose-dependently decreased at all doses (Figure 40d).  The mean 

lifespan was decreased at higher doses (0.12 µM& 0.4 µM) from 21 days to 15 days and 11 days (-29% 
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& -47%, P<0.05), which was blocked at the medium dose (0.12 µM) in presence of the SIS (Figure 40e). 

Phaseolus vulgaris agglutinin-L (PHA-L)-TRITC did show co-localization but affected the 

DAergic neurons in C. elegans.  The number of the GFP-DAergic neurons was not altered with or without 

the SIS GalNAc (1.58 mM, Figure 40a).  The fluorescence intensity of GFP-dopamine transporter protein 

in DAergic neurons was reduced at lower doses (0.017 µM & 0.051 µM, P<0.05), which was reduced at 

the highest dose (0.17 µM, P<0.05) in presence of the SIS (Figure 40b). 

 
 

Figure 41. PHA-L-TRITC did show co-localization but affected the DAergic neurons in C. elegans.  A) 

The number of the GFP-DAergic neurons was not altered with or without the SIS GalNAc (1.58 mM).  B) 

The fluorescence intensity of GFP-dopamine transporter protein in DAergic neurons was reduced at lower 

doses (0.017 µM & 0.051 µM, P<0.05), which was reduced at the highest dose (0.17 µM, P<0.05) in 

presence of the SIS.  C) The size of GFP-DAergic neurons was increased at all doses (0.017 µM, 0.051 

µM & 0.17 µM, P<0.05), which was blocked at the highest dose (0.17 µM) in presence of the SIS.  D) 

The APS was increased at low dose and reduced at higher doses.  E) The mean lifespan was reduced at 

the highest dose (0.17 µM) from 20 days to 13 days (-34%, P<0.05), which was increased at the lowest 

dose (0.017 µM) in presence of the SIS.  * indicates statistical significance. 

The size of GFP-DAergic neurons was increased at all doses (0.017 µM, 0.051 µM & 0.17 µM, 
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P<0.05), which was blocked at the highest dose (0.17 µM) in presence of the SIS (Figure 40c).  The APS 

was increased at low dose and reduced at higher doses (Figure 40d).  The mean lifespan was reduced at 

the highest dose (0.17 µM) from 20 days to 13 days (-34%, P<0.05), which was increased at the lowest 

dose (0.017 µM) in presence of the SIS (Figure 40e). 

Soybean agglutinin (SBA)-TRITC did show co-localization but affected the DAergic neurons in 

C. elegans (Figure 42).   

 

Figure 42. Soybean agglutinin (SBA)-TRITC did show co-localization but affected the DAergic neurons 

in C. elegans.  A) The number of the GFP-DAergic neurons was decreased at the lowest dose (0.017 µM, 

P<0.05), which was blocked by the SIS GalNAc (12.5 mM).  B) The intensity of DAergic neurons was 

not altered at all doses (P>0.05), which was increased at the lowest dose (0.017 µM, P<0.05) and reduced 

at the highest dose (0.17 µM, P<0.05) in presence of the SIS.  C) The size of GFP-DAergic neurons was 

reduced at the lowest dose (0.017 µM, P<0.05), which was blocked in the presence of the SIS.  D) The 

APS was slightly increased at low doses and reduced at higher dose.  E) The mean lifespan was reduced 

at the highest dose (0.17 µM) from 20 days to 14 days (-31%, P<0.05), which was blocked by the SIS.  

The mean lifespan was reduced by the SIS only from 20 days to 11 days (-48%, P<0.05).  * indicates 

statistical significance, # indicates SIS plus OP50 vs. OP50 only. 
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The number of the GFP-DAergic neurons was decreased at the lowest dose (0.017 µM, P<0.05), 

which was blocked by the SIS GalNAc (12.5 mM, Figure 42a).  The fluorescence intensity of GFP-

dopamine transporter protein in DAergic neurons was not altered at all doses (P>0.05), which was 

increased at the lowest dose (0.017 µM, P<0.05) and reduced at the highest dose (0.17 µM, P<0.05) in 

presence of the SIS (Figure 42b).  The size of GFP-DAergic neurons was reduced at the lowest dose (0.017 

µM, P<0.05), which was blocked in the presence of the SIS (Figure 42c).  The APS was slightly increased 

at low doses and reduced at higher dose (Figure 42d).  The mean lifespan was reduced at the highest dose 

(0.17 µM) from 20 days to 14 days (-31%, P<0.05), which was blocked by the SIS.  The mean lifespan 

was reduced by the SIS only from 20 days to 11 days (-48%, P<0.05, Figure 42e).  

Concanavalin A (Con A)-TRITC did not show co-localization with but affected GFP-DAergic 

neurons in C. elegans.  The number of DAergic neurons was not altered with or without the SIS α-

methylmannoside (200 mM) plus α-methylglucoside (200 Mm, Figure 43a).  The fluorescence intensity 

of GFP-dopamine transporter protein image in DAergic neurons was increased at the highest dose (0.19 

µM, P<0.05) and reversed by the SIS (P<0.05, Figure 43b).  The size was reduced at middle dose (0.057 

µM, P<0.05), which was blocked by the SIS (Figure 43c).  The APS was increased at all doses, which 

was blocked by the SIS (Figure 43d).  The mean lifespan was not altered with or without SIS (Figure 43e). 

Cicer arietinum agglutinin (CPA)-TRITC did not show co-localization with but affected GFP-

DAergic neurons in C. elegans.  The number of DAergic neurons was not altered with or without the SIS 

bovine fetuin (0.77 µM, Figure 44a).  The fluorescence intensity of GFP-dopamine transporter protein 

image in DAergic neurons was reduced at the doses (0.047 µM & 0.47 µM, P<0.05), which was blocked 

at the lowest dose (0.047 µM) by the SIS (Figure 44b).  The size was reduced at middle at the doses (0.047 

µM & 0.47 µM, P<0.05), which was blocked by the SIS (Figure 44c).  The APS was increased at all doses, 

which was reversed by the SIS (Figure 44d).  The mean lifespan was not altered by CPA, which was 

decreased by CPA from 29 days to 22 days and 11 days (-25% & -64%, P<0.05) in presence of the SIS.  
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The mean lifespan was increased by the SIS only from 23 days to 29 days (28%, P<0.05, Figure 44e). 

 

Figure 43. Con A-rhodamine affected the GFP-DAergic neurons in C. elegans.  A) The number of 

DAergic neurons was not altered with or without the SIS α-methylmannoside (200 mM) plus α-

methylglucoside (200 Mm).  B) The fluorescence intensity of GFP-dopamine transporter protein image 

in DAergic neurons was increased at the highest dose (0.19 µM, P<0.05) and reversed by the SIS (P<0.05).  

C) The size was reduced at middle dose (0.057 µM, P<0.05), which was blocked by the SIS.  D) The APS 

was increased at all doses, which was blocked by the SIS.  E) The mean lifespan was not altered with or 

without SIS.  * indicates statistical significance. 

 

Solanum tuberosum agglutinin (STA)-TRITC did not show co-localization with but affected GFP-

DAergic neurons in C. elegans.  The number of DAergic neurons was not altered with or without the SIS 

chitin hydrolystate (2.5%, Figure 45a).  The fluorescence intensity of GFP-dopamine transporter protein 

image in DAergic neurons was not altered (Figure 45b).   

The size was reduced at all doses of STA (0.02 µM, 0.06 µM & 0.2 µM, P<0.05), which was 

blocked by the SIS (Figure 45c).  The APS was slightly increased without the SIS (Figure 45d).  The mean 
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lifespan was not altered by STA.  The animals died within one week of adding treatments.  The mean 

lifespan was decreased by the SIS only from 22 days to 10 days (-54%, P<0.05, Figure 45e). 

 

Figure 44. CPA-TRITC did not show co-localization with but affected GFP-DAergic neurons in C. 

elegans.  A) The number of DAergic neurons was not altered with or without the SIS bovine fetuin (0.77 

µM).  B) The fluorescence intensity of GFP-dopamine transporter protein image in DAergic neurons was 

reduced at the doses (0.047 µM & 0.47 µM, P<0.05), which was blocked at the lowest dose (0.047 µM) 

by the SIS.  C) The size was reduced at middle at the doses (0.047 µM & 0.47 µM, P<0.05), which was 

blocked by the SIS.  D) The APS was increased at all doses, which was reversed by the SIS.  E) The mean 

lifespan was not altered by CPA, which was decreased by CPA from 29 days to 22 days and 11 days (-

25% & -64%, P<0.05) in presence of the SIS.  The mean lifespan was increased by the SIS only from 23 

days to 29 days (28%, P<0.05).  * indicates statistical significance, # indicates SIS plus OP50 vs. OP50 

only. 
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Figure 45. STA-TRITC did not show co-localization with but affected GFP-DAergic neurons in C. elegans.  

A) The number of DAergic neurons was not altered with or without the SIS chitin hydrolystate (2.5%).  

B) The fluorescence intensity of GFP-dopamine transporter protein image in DAergic neurons was not 

altered.  C) The size was reduced at all doses (0.02 µM, 0.06 µM & 0.2 µM, P<0.05), which was blocked 

by the SIS.  D) The APS was slightly increased without the SIS.  E) The mean lifespan was not altered by 

STA.  The animals died within one week of adding treatments.  The mean lifespan was decreased by the 

SIS only from 22 days to 10 days (-54%, P<0.05).  * indicates statistical significance, # indicates SIS plus 

OP50 vs. OP50 only. 

 

1.4 Discussion 

The purpose of the specific inhibiting sugar was to bind with, and then block the corresponding 

lectins.  As stated in the beginning of this chapter, using high concentration of sugars would cause various 

other effects other than binding with lectins in the C. elegans organism, like UDP depletion causing the 

ceasing of RNA synthesis.  In the current study, SIS was observed to have various effects when 

supplemented with lectins in liquid culture.  

 



 

119 

 

The interaction between lectins and specific sugars is complicated, depending on properties of the 

sugar-binding sites in lectins and the moieties in the sugars.  Lectins have several sugar-binding sites 

available due to the repeat of sequences, some lectins like EEA and PNA bind to monosaccharide, other 

lectins like ACA and CSA bind to polysaccharides.  The sequence of amino acids in the sugar-binding 

sites of the lectins has an important role in selecting the specific sugars [16].  The binding between lectins 

and simple sugars is not as strong as between lectins and polysaccharides, but the multiple binding sites 

in simple sugars produce multivalent bindings with lectins [17], which increases the affinity of simple 

sugars and lectins to some extent.  The dissociation constant of lectin Con A from glycoprotein asialofetuin 

increases as the concentration of inhibiting sugars increases [18], which suggest that the binding between 

the sugars and lectins is reversible; the existence of the third compound may compete with sugars for the 

binding with lectins. 

1.4.1 SIS inhibited the effects of lectins on GFP-DAergic neurons or mean lifespan 

SIS were observed to block the effects caused by lectins on the GFP-DAergic neurons or mean 

lifespan.  The possible explanation is that the sugar binding sites of lectins were covered by the SIS first, 

which prevented the binding of lectins with other receptors on cell surface in C. elegans organism.  The 

effect of ACA (0.096 µM) on reducing the size of GFP-DAergic neurons was blocked by the SIS GalNAc, 

which might be due to the binding of SIS with ACA.  The observation that the SIS GalNAc did not block 

the effects of the highest dose of ACA (0.32 µM) might suggest the concentration of the SIS was not high 

enough to bind to all sugar binding sites of ACA.  Similarly, the SIS GalNAc only blocked the effects of 

lowest dose of ACA (0.032 µM) on reducing the mean lifespan but not on higher doses. 

1.4.2 SIS mitigated the effects of lectins on GFP-DAergic neurons or mean lifespan 

Some SIS were observed to alleviate the effects of lectins in C. elegans.  The reason that the SIS did 

not block the effect but only mitigated the effects might be due to the partial binding of the SIS with sugar 

binding sites of lectins.  The highest dose of EEA (0.48 µM) increased the size of GFP-DAergic neurons; 
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the adding of the SIS lactose did not block these effects but only reduced the magnitude.  The effect of 

medium dose of EEA (0.136 µM) on reducing the mean lifespan was mitigated by the SIS. 

1.4.3 SIS affected the effects of lectins on GFP-DAergic neurons or mean lifespan 

SIS were also observed to enhance or the effects of SIS on lectins in C. elegans.  Lower doses of 

GSL I (0.018 & 0.054 µM) increased the fluorescence intensity of GFP-dopamine transporter protein 

image in DAergic neurons, with the SIS galactose present, these effects of increasing was strengthened.  

In addition, the SIS reversed the effect of the highest dose of Con A on increasing the fluorescence 

intensity of GFP-dopamine transporter protein image in DAergic neurons.  These findings were not caused 

by the effects of lectins only; the possible explanation might be due to some unknown effects caused by 

the SIS or the interactions between the SIS and lectins.  

The fact that only certain doses reduced the number of DAergic neurons but other doses did not 

suggests that this effect is dose-related.  The presence of lactose (10 mM) blocked this effect probably 

because lactose bound with the binding sites of EEA, thus reduced the activity of EEA.  In contrast to 

EEA, low doses of S-WGA reduced the number of DAergic neurons while the highest dose did not.  

Similarly, this effect was blocked by the presence of the SIS chitin hydrolysate (2.5%), probably due to 

the same mechanism as EEA.  The effects of CSA and SBA on reducing the number of DAergic neurons 

were also blocked by their SISs.  The reduction of neuron numbers indicated the toxicity of these lectins, 

which was consistent with the lifespan results, that both EEA and S-WGA reduced the mean lifespan 

significantly.  The lectin LcH increased the number of DAergic neurons at both the lowest dose and the 

highest dose.  These effects were either blocked at low dose or reversed at high dose by the SIS, which 

implied that high dose of the SIS had detrimental effects. 

The toxic effects of high concentration of sugars in C. elegans were expected, and lower 

concentration of sugars would not be enough to counteract the effects of lectins.  The present study showed 
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that the SIS blocked the effects caused by lectins on GFP-DAergic neurons or mean lifespan, whereas, 

other effects might be due to the toxic effects of the SIS. 
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CHAPTER IV.  DIETARY BIOACTIVE COMPOUNDS MAY AFFECT LIFESPAN AND 

FAT STORAGE ASPECTS IN C. ELEGANS 

 

1.1 Introduction 

Health determines human lifespan as well as optimal quality of life [1, 2].  Aging at the cellular level 

involves complex interacting mechanisms that lead to functional declines which become manifest 

following birth and proceed through life.  A U.S. population based study demonstrated that mortality risk 

was directly correlated with body mass index (BMI).  Thus, above 25 kg/m2, BMI inversely correlated 

with lifespan [3].  The increasing age of western societies creates a greater burden of chronic diseases 

including cancer, cardiovascular disease, diabetes, and neurodegenerative disorders including PD and 

Alzheimer's disease [4-8], leading to a high cost of health care and a great financial burden to the public 

health system and families [9, 10].  Among complex factors, both obesity and aging decrease insulin 

sensitivity, impair the immune response, increase inflammation, impair the gut-bloodstream barrier, and 

decrease physical mobility [11].  Many dietary interventions provide noninvasive approaches to reinforce 

optimal nutrition, fight metabolic dysfunction, enhance physiological function, and promote a healthy 

lifespan [12-14]. 

Dietary polyphenol antioxidants play important roles in health [15-19].  Pomegranates (Punica 

granatum L.) have a high content of polyphenols (1.5%), including ellagic acid (EA), gallic acid, 

anthocynidins, flavan-3-ols, straight chain fatty acids, citric acid, and malic acid.  Pomegranates consist 

of about 80% of juice and 20% of seeds with water (85%), and 10% sugars consisting primarily of fructose 

(2.5 g to 17.6 g/100ml) [20, 21] (Table 6).  PJ has been shown to extend lifespan in mice [22, 23] and 

Drosophila melanogaster [24].  PJ extract (POMx) potentiates lifespan extension with dietary restriction, 

a finding attributed by polyphenols [22, 23].  POMx and PJ can also act as prebiotics, having demonstrated 

antibacterial properties in vitro, and can block DNA repair and inhibit proliferation of breast cancer cells 

(MCF-7) in vitro, as well as modulate the IGF-IGFBP axis [25-29].  POMx and PJ also down-regulate 
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androgen-synthesizing genes to induce apoptosis of human prostate cells (kappaB-dependent) in vitro and 

in mice in vivo [30-33].  POMx and PJ decrease prostate specific antigen in humans after surgery or 

radiation [34, 35], inhibit tumor-associated angiogenesis in vitro and in vivo [34], suppress inflammatory 

cell signaling in colon cancer cells [36] (50 mg/L PJ, in vitro), improve memory [37] and improve 

fecundity in humans [24, 38-40].   

As the main bioactive component, EA is a measure of the quality of PJ extract products [39, 41, 42].  

EA in humans reaches a maximum plasma level in 1 hour (31.9 ng/ml), is eliminated within 4 hours [43] 

and exerts an antioxidant effect [44].   Urolithin acid (UA) is the main active metabolite of EA and is 

formed by the colonic microflora.  UA lasts longer in the human body than EA or other EA metabolites 

[26, 45], and has better bioavailability [46].  UA also suppresses colorectal, hepatic, and prostate cancers 

synergistically with EA in vitro and in mice in vivo [47-51].  

Table 6. Nutrition facts of pomegranate juice 

Serving size 8 fl. oz. (236 mL)  

Amounts per serving  

Calories 150 

Calories from Fat 0 

% Daily Value 

Total Fat 0 g 0% 

  Saturated Fat 0 g 0% 

  Trans Fat 0 g  

Cholesterol l0 mg  

Sodium 0 mg 0% 

Potassium 600 mg 17% 

Total Carbohydrate 36 g 12% 

  Fiber 0 g 0% 

  Sugars 31 g  

Protein 1 g  

Vitamin A <2% 

Vitamin C <2% 

Calcium <2% 

Iron 0% 

Percent Daily Values are based on a 2,000 calorie diet 
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C. elegans model organism is the first animal model to have its genome completely sequenced.  C. 

elegans conserves 65% of the genes associated with human diseases, and has been increasingly used for 

functional biomedical research with more than 300 transgenic and mutant strains available [52-62].  The 

C. elegans daf-16 gene, a homologue of the human gene FOXO, regulates C. elegans lifespan and 

mediates both lipid metabolism and insulin signaling pathways [63, 64].   

We hypothesized that pomegranate would increase lifespan while reducing intestinal fat deposition 

(IFD).  We evaluated four PJ products using the C. elegans wild type (N2) to assess their effect on lifespan 

and IFD, and to predict their potential effect on aging and obesity in humans.  In addition, we also used a 

daf-16 deficient mutant to assess the role of the FOXO signaling pathway in mediating the effects of 

botanicals evaluated. 

1.2 Materials and methods 

C. elegans strains wild type (N2) and daf-16 mutant (daf-16(mgDf50)I) GR1307, and their standard 

lab food, Escherichia coli (E. coli, OP50, Uracil auxotroph), were obtained from the Caenorhabditis 

Genetics Center (University of Minnesota, Minneapolis, MN).  PJ (POM Wonderful® LLC, Los Angeles, 

CA, USA) was purchased from a local grocery store.  POMx (extract of pomegranate) was a gift from 

POM Wonderful® LLC (Los Angeles, CA, USA).  EA was purchased from Sigma (St. Louis, MO, USA).  

UA was synthesized by Dr. David Heber’s laboratory [65]. 

1.2.1 Culture of C. elegans 

Mature gravid wild type C. elegans (N2, Bristol) and daf-16 deficient mutant [daf-16(mgDf50)I] 

were treated with NaOH (1M) and sodium hypochlorite solution (5.25%, 5:2 ratio) to dissolve the body 

and release viable eggs [61].  The eggs were hatched overnight after washing with S-complete solution 

three times.  The age-synchronized C. elegans were diluted to 100 animals/ml, plated in liquid culture in 

a 96-well plate (120 μl/well, 10-15 animals) [66] with OP50 (109 cfu/ml), and incubated in 20C (N2) or 
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15C (daf-16 mutant) low temperature incubators (Revco Tech., Nashville, NC, USA).  Thirty microliters 

of 5-Fluoro-2′-deoxyuridine (FUDR, 0.6mM) stock solution was added to each well at Larvae 4 stage. 

1.2.2 Culture of Escherichia coli (E. coli, OP50) 

OP50 were cultured by the standard method described elsewhere [61].  Briefly, approximately 10 

µL of stock E. coli solution was added to media and incubated at 37°C for 24h.  The OP50 were then 

plated in PetrifilmTM (3M Corporate, St. Paul, MN) at 37°C for 24 h until densities of 5×108 to 5×1011 

colony forming units (cfu/ml) were reached and then were fed to the C. elegans ad libitum [61, 67].  The 

OP50 stock feeding solution was enriched to 2×109 cfu/ml by centrifuging at 2,200 g for 10 minutes and 

washed with S-complete buffer twice.     

1.2.3 Lifespan assays 

Fifty microliters of the treatments was added to each well three days after egg-synchronization.  The 

control group received OP50 only.  The experimental groups received additional PJ (0.01%, 0.1%, 1%, 

3%, 5%, 10% or 25%, v/v), POMx (5, 10, 20, 40, 80, 160, and 320 µg/ml), EA (1, 2, 5, 10, 25, and 50 µM 

in dimethyl sulfoxide (DMSO 0.05%), or UA (1, 2, 5, 10, 25, and 50 µM in DMSO) (n=10-15/well/6well).  

A second control (DMSO, 0.05%) was used in the EA and UA groups.  Additional OP50 was added to 

each well every other week until all animals were dead.  The numbers of live animals were manually 

recorded every other day under a microscope (Nikon, Eclipse Ti –S, Japan).  

1.2.4 Fluorescence microscopy 

Same treatments as in lifespan assay were added to each well at larvae 1 stage of animals.  Lipophilic 

dye, Nile red, was used to stain for IFD, and fluorescent intensity was evaluated [61].  C. elegans in each 

group were collected after 3 days of treatments, washed with S-Basal twice, fixed with paraformaldehyde 

(4%) over 2h at 4°C and washed with PBS for 5 min x 3.  Nile red (50 µL) was applied to the specimens 

for 10 min.  Ten microliters of Fluoromount-G (Southern Biotechnology Associates, Birmingham, AL) 

was applied to a glass slide followed by 20 µL of the medium containing Nile red stained C. elegans.  A 
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cover glass was mounted on the glass slide, and the slides were viewed with an epifluorescence 

microscope (Nikon Eclipse, Ti) equipped with a Texas Red filter.  Fluorescent micrographs were taken 

with a digital camera (Andor, DU-885k) and analyzed using Nikon-Elements (version 3.22.11).  Optical 

densities (arbitrary units) of Nile red stained IFD were determined for C. elegans (larvae 4). 

1.2.5 Statistical Analysis 

Analyses were carried out using SAS/STAT® software, Version 9.4 of the SAS System for 

Windows (Cary, NC, USA).  All results were expressed as mean±S.E.M.  Survival curves were displayed 

by binomial probabilities obtained from logistic regression models as surrogates for survival probabilities 

and mean lifespan was estimated via Kaplan-Meier (log-rank).  ANOVA models with post hoc Tukey 

adjustment were used to analyze fluorescence intensity data.  Statistical significance was defined as 

P<0.05. 

1.3 Results 

PJ treatment dose-dependently extended the mean lifespan of N2 up to 56% or daf-16 mutant up to 

30% in an A-shape curve, the magnitude of the lifespan extension was decreased at higher doses.  A 

similar trend with half the magnitude was observed in POMx treated animals in N2 (28%).  EA or UA did 

not significantly affect lifespan overall, however, lifespan extension was observed in several days of the 

experiment in each treatment (Supplement Table 8c & d).  The fluorescent intensity of IFD in C. elegans 

was reduced by PJ treatment in N2 (-68%) or in daf-16 (-33%).  In contrast, IFD was increased in N2 

more than in the daf-16 mutant by POMx (137% at 320 µg/ml vs. 26% at 20 µg/ml), or UA (57% at 10 

µM vs. 43% at 50 µM). IFD was increased by EA in N2 (66% at 5 µM) and in daf-16 mutant (74% at 25 

µM). 
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1.3.1 PJ dose-dependently extended then reduced lifespan in N2 and the daf-16 mutant  

In a dose-dependent manner, PJ added to the cultures significantly increased mean lifespan in N2 

up to the 1% dose but produced reduced lifespans at higher doses, an A-shape curve relationship (Figure 

46a & b).   

 

Figure 46. In an A-shape, PJ dose-dependently increased lifespan in both N2 (a & b) and daf-16 mutant 

(c & b) at lower doses, and dose-dependently reduced it at higher doses.  PJ dose-dependently reduced the 

fluorescent intensity of IFD (arbitrary unit) in N2 and daf-16 mutant (d). *P<0.05 

 

The average probability of survival across the lifespan was increased by lower doses of PJ (0.01%, 

0.1%, & 1%, P<0.05), while lifespan was decreased at higher doses (10% & 25%, P<0.05, Figure 46a).  

The mean lifespan was increased at lower doses (0.1% - 1%) from 21 to 33 days (42% - 56%, P<0.05) 

while it was decreased at higher doses (10% & 25%) from 33 to 4 days (-67% & -81%, P<0.05) (Figure 

46b).  Similarly, in the daf-16 mutant, PJ also significantly increased mean lifespan in a dose-dependent 
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manner up to 5 % after which survival was significantly reduced.  The dose-response curve shifted to the 

right.  The APS across the lifespan of the daf-16 mutant was increased at lower doses (1%, 3%, & 5%, 

P<0.05) and reduced at higher doses (10% & 25%, P<0.05, Figure 46c).  The mean lifespan of the daf-16 

mutant was increased from 27 to 32 days at a dose (5%) that reduced lifespan in N2 (18%, P<0.05) and 

decreased at the higher doses (-61% at 10% & -49% at 25%, P<0.05, Figure 46b).  Additionally, specific 

days during the experiment at which significant differences in survival probabilities were observed are 

provided (Supplement Table 8a).   

PJ dose-dependently reduced the fluorescent intensity of IFD in N2 and the daf-16 mutant (L4).  In 

N2, the IFD was reduced from 6971607 to 2372245 (-30% at 1%, -44% at 3%, -66% at 5%, -68% at 

10% & -55% at 25%, n=10, P<0.05).  The IFD was increased at lower doses in the daf-16 mutant from 

4677136 to 7222240 (54% at 0.01%, 28% at 0.1%, n=10, P<0.05), followed by reduction at higher 

doses to 3134252 (-24% at 1%, -21% at 5% & -33% at 25%, n=10, P<0.05) (Figure 46d). 

1.3.2 POMx dose-dependently increased lifespan in N2 and in the daf-16 mutant 

A dose-response curve for lifespan extension was also present in the N2 group treated with POMx, 

but was absent in the daf-16 mutant.  In N2, the APS across the lifespan was increased at all doses (5, 10, 

20, 40, 80, 160, & 320 µg/ml, P<0.05, Figure 47a). The mean lifespan was elevated from 18 to 22 days 

(18% at 10 μg/ml & 28% at 20 μg/ml, P<0.05, Figure 47b).  The APS across the lifespan of the daf-16 

mutant was increased at lower doses (5, 10, & 40 g/ml, P<0.05) and reduced at the highest dose (320 

g/ml, P<0.05, Figure 47c).  The mean lifespan of the daf-16 mutant was not altered (Figure 47b).  

Additionally, specific days during the experiment at which significant differences in survival probabilities 

were observed are provided (Supplement Table 8b).   

In N2, lower doses of POMx slightly reduced the IFD (P>0.05) followed by an increase from 

3323±63 to 7515±125 at the highest dose (137% at 320 µg/ml, n=10, P<0.05).  Similarly in the daf-16 
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mutant, POMx increased the IFD from 5012±1032 to 6327±716 at mid-dose (26% at 20 µg/ml, n=10, 

P<0.05) followed by a reduction to 3815±736 at a higher dose (23.9% at 80 µg/ml, n=10, P<0.05) (Figure 

47d). 

 

Figure 47. An A-shape dose-responses of lifespan extension was present in POMx treated group in both 

N2 (a & b) and the daf-16 mutant (c & b), however, POMx was less potent than PJ.  In N2, had an initial 

elevation of life span in the presence of lower doses of POMx which also reduced the IFD (d).  IFD was 

increase at the highest dose.  In the daf-16 mutant, POMx increased IFD at mid-dose followed by a 

reduction at a higher dose. *P<0.05 

 

1.3.3 EA did not alter lifespan in N2 or in the daf-16 mutant 

Unlike PJ and POMx that increased lifespan dose-dependently, EA did not alter lifespan in N2 or 

the daf-16 mutant.  There was a mild increase of lifespan in N2 at lower doses and a mild decrease at 

higher doses (P>0.05, Figure 48a) with the mean lifespan also being unchanged (P>0.05, Figure 48b).   
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Figure 48. EA did not alter lifespan in N2 (a & b) but increased the lifespan in the daf-16 mutant (c & b) 

at the highest dose.  The IFD (d) was dose-dependently elevated by EA in both N2 and daf-16 mutant, and 

the responses were in parallel with a greater elevation (by 2-fold) in the daf-16 mutant. *P<0.05 

 

The APS of the daf-16 mutant was elevated at the highest dose (50M, P<0.05, Figure 48c), but the 

increase in mean lifespan was not significant (P>0.05, Figure 48b).  The specific days during the 

experiment at which significant differences in survival probabilities were observed are provided 

(Supplement Table 8c).  The IFD elevation by EA was dose-dependent, similar in both N2 and the daf-16 

mutant, and in parallel with a 2-fold elevation in the daf-16 mutant.  In N2, EA increased IFD from 

5190±158 to 8608±323 at higher doses (66% at 5 µM, 59% at 10 µM, 58% at 25 µM, & 47% at 50 µM, 

n=10, P<0.05).  Similarly in the daf-16 mutant, EA increased IFD at the higher doses from 8237±227 to 

14324±113 (60% at 10 µM, 74% at 25 µM, & 49% at 50 µM, n=10, P<0.05) (Figure 48d). 
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1.3.4 UA did not alter lifespan in N2 or in the daf-16 mutant 

As with EA, UA did not alter the lifespan in N2 or the daf-16 mutant.  In N2, the APS across the 

lifespan was increased at the highest dose (50 M, P<0.05, Figure 49a). 

 

Figure 49. The mean lifespan was increased in N2 (a & b) but decreased in daf-16 mutant (c & b) in UA 

treated group.  Animals treated with UA had an increased IFD (d) in both N2 and the daf-16 mutant with 

a parallel pattern of response with N2 showing a greater increase than the daf-16 mutant. *P<0.05 

 

The mean lifespan was not changed (P>0.05, Figure 49b).  The APS across the lifespan of the daf-

16 mutant was reduced at doses (1, 25, & 50 M, P<0.05, Figure 49c), while the mean lifespan was not 

changed (P>0.05, Figure 49b).  Additionally, specific days during the experiment at which significant 

differences in survival probabilities were observed are provided (Supplement Table 8d).  The IFD was 

increased in N2, from 1362±61 to 6278±991 in the DMSO-control group (361% at 0.05% DMSO, n=10, 

P<0.05) and greater elevation to 9860±216 was observed at higher doses (57% at 10 µM, 47% at 25 µM, 
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& 46% at 50 µM, n=10, P<0.05).  The IFD in the daf-16 mutant was increased from 3021±127 to 

4324±177 dose-dependently (34% at 10 µM & 43% at 50 µM, n=10, P<0.05) (Figure 49d).  

1.4 Discussion 

Our findings reveal that the lifespan extension has the same trend, either on a larger or on a smaller 

scale, in N2 and the daf-16 mutant by treatment with PJ or POMx, and with minimal effects on lifespan 

in cultures treated with EA or UA.  These results indicated that the daf-16 pathway was partially required 

for lifespan extension in the present study.  The survival curves displayed are approximated by estimated 

probabilities of survival across the lifespan (Binomial).  Although some treatment groups show 

statistically significant differences, comparisons based on these probabilities cannot be used to draw 

conclusions regarding lifespan.   

As energy sources, appropriate amount of sugar should have beneficial effects on lifespan 

extension.  However, high sugar (>2%) in the diet is detrimental to the C. elegans and reduces lifespan 

[62, 68-70].  The dose-response curves with an A-shape were seen in PJ and POMx treated animals.  We 

were puzzled by the fact that the lower doses of PJ increased lifespan, while the higher doses decreased 

the lifespan.  We wondered if this might be related to PJ’s high sugar content.  We found that the reversal 

of the lifespan extension by PJ was at a dose that contained 0.4% sugar (Table 7).  PJ has a high content 

of sugars in which the fructose is 1.25-fold greater than that of glucose which, in turn, is 4.7-fold higher 

than that of mannitol [71].  In agar dish culture, extra glucose (>0.001% or 2%) reduces lifespan mainly 

due to reducing signals of the DAF-16/FOXO and heat shock transcription factor (HSF-1) gene signaling 

[72-76].  The effect of fructose, however, is controversial.  Supplemental fructose reduces the plasma 

glucose level, glycohemoglobin, serum cholesterol, triglycerides, lactate, and body weight in type 2 

diabetes [75, 77].  Many epidemiological studies link the consumption of high dietary fructose usage to 

an increased prevalence of obesity, which has been reported with lack of sufficient evidence.  Since 

associations do not show cause and effect, clinical trials are needed to support this hypothesized cause for 
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obesity [78-80].  The A-shape dose-response relationship with the lifespan in the present studies appears 

to be related to the increasing sugar content.  On the other hand, the level of sugar tolerance may be specie-

dependent, since a diet supplemented with PJ (10%) increase lifespan of flies [24].  The data also implies 

involvement of the daf-16 pathway, since the reduced lifespan was observed only at the highest dose in 

the daf-16 mutant group.  The A-shape curve of PJ showed the longest lifespan to be at a sugar content of 

0.13% in N2 and 0.66% in the daf-16 mutant.  The fact that PJ increased lifespan of the daf-16 mutant in 

our study may indicate alternative mechanism.  The lifespan curve shifting rightward might indicate an 

“independent or compensatory effect of the daf-16 pathway”.  

Table 7. Sugar content of the PJ feeding media 

Doses [%] 0 0.01 0.1 1 3 5 10 25 

Sugar [%] 0 0.001 0.013 0.13 0.39 0.66 1.31 3.28 

 

Fat storage is one of the outcomes of energy consumption and energy expenditure in living 

organisms.  In C. elegans, the fluorescent intensity of IFD in the PJ group was reduced in both N2 and the 

daf-16 mutant.  This inverse relationship of lifespan and fat content (PJ 1%) is in agreement with studies 

that PJ is effective in reducing cardiovascular risk factors in overweight humans [81].   

POMx, extracted from PJ, which is characterized by rich polyphenols extracted from pomegranate, 

extended the lifespan in a similar manner as PJ with an A-shape curve in N2.  POMx in the daf-16 mutant 

extended lifespan by several days (Supplement Table 8b).  Unlike PJ, POMx did not reduce lifespan at 

higher doses.  These results may be attributed to either an absent or reduced sugar content and/or other 

unknown factors.  The effect of POMx on lifespan extension was only half the magnitude of the lifespan 

extension induced by PJ, which suggests that multiple factors in the PJ products extend lifespan as was 

suggested by the Heber’s studies [82].  Also unlike PJ, a V-shape dose-response curve was detected for 

the IFD in POMx treated animals at the doses that were used in this study, and only a minimal reduction 

of IFD was observed (P>0.05).  The reversal of the pattern of increase in lifespan extension and decrease 
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in IFD occurred at 80 g/ml, which seems to relate to the sugar content as it did in PJ treated group.  

Elevating IFD in the daf-16 mutant suggests the involvement of this pathway controlling body fat 

accumulation.    

Unlike either PJ or POMx, EA did not alter lifespan in N2 or in the daf-16 mutant at the doses that 

was used.  Lifespan extension was observed on several days of the experiment, which is similar with a 

study in N2 in agar culture that the EA (50 µM at 0.3% DMSO) prolonged mean lifespan [83].   

DMSO is a solvent that extends lifespan dose-dependently in N2 with an “A-shape ” curve, in agar 

culture (24% at 0.05% to 5%, v/v) [84] and in a liquid culture (20% at 0.9%, v/v) [85].  In the present 

study, DMSO doses were limited to the minimum.  The lower DMSO dose (0.05%) extended lifespan up 

to 12.7%, while the higher amount (0.1%) decreased the lifespan which is different from the observations 

of the Wang group [84], which observed a 30% reduction in lifespan in the daf-16 mutant (9.4%).  The 

effect of EA on extending lifespan suggested complex mechanisms involving daf-16 that is known as the 

gene for lifespan in C. elegans.  EA also dose-dependently increased IFD at higher doses in N2 with 

parallel findings in the daf-16 mutant.  The enhanced IFD in the daf-16 mutant uncovered the important 

role of the daf-16 on lipid/energy metabolism, which was not seen in the PJ treated groups. 

Like all polyphenols, EA’s large molecular weight and hydrophilic properties could have limited 

the absorption in the intestine as well as the bioavailability to the hosts.  Since the main metabolites of EA 

have many beneficial effects, the effects of UA which is a metabolite of the colonic microbiota that has a 

higher absorption index has attracted extensive research in recent years [86].  UA has anti-inflammatory, 

anti-carcinogenic, anti-glycative, anti-oxidant, and anti-microbial effects [86-88].  In our study, some of 

the treatment groups showed a statistically significant increase in mean survival probabilities in the 

presence of UA.  Although one cannot draw conclusions from these observations, it is possible that higher 

doses of UA may alter lifespan, and the daf-16 mutant pathway is predicted to mediate the effect of UA 

on lifespan.  UA also dose-dependently increased IFD at higher doses in both N2 and in the daf-16 mutant, 
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in parallel, with the latter having half the increase in IFD. 

The antioxidant potency of PJ is higher (by at least 20%) compared to other polyphenol-rich 

products including red wine, Concord grape juice, blueberry juice, black cherry juice, cranberry juice, 

orange juice, iced tea beverages, and apple juice in vitro [89].  Thus, PJ has superior antioxidant bioactivity 

compared to its purified polyphenols, EA, punicalagin, or total pomegranate tannin.  These conclusions 

are consistent with Seeram et al. who cited multifactorial effects and chemical synergy of the action of 

multiple compounds in PJ compared to single purified active ingredients [82].   

EA content varies by variety of the fruit, and many commercial pomegranate extracts were found 

not to contain the same amount of EA [42].  We used a commercially available PJ product [90-93], 

described in a full analysis of 477 commercial PJ in the market across North America and Asia [94].  

Although studies in humans the pharmacokinetics of EA and UA that are equivalent [65], our study 

showed, as previously reported, that PJ was the most potent in extending lifespan and reducing IFD with 

POMx being only half as potent.  The total phenolic content, by organic phenolic acid gallic acid 

equivalent (GAE), are 4.7-fold higher in PJ (2,825 µg/ml GAE) than in that of POMx (606 µg/mg GAE) 

[25].  In the present study, the estimated GAE (g/ml) by calculation was also directly related to the 

lifespan extension at lower doses by PJ or POMx, which was reduced by higher doses (supplement 

Table 9, Table 10 & Figure 50).  Thus, the fact that PJ was more potent than POMx may be beyond 

different amount of polyphenols but the synergy of various components rather than, for example, EA 

only [95].  The lower or lack of effect of other tested substances compared to PJ suggest that some 

effective compounds may be reduced or absent, and multifactorial effects were present.   

Our data from the C. elegans model indicate that the extension of lifespan by pomegranate is 

partially dependent on the daf-16 pathway, but mechanisms other than those involving polyphenols such 

as EA and its metabolites including UA may play a role as well.  The unique effects of PJ in reducing IFD 

suggest that the effects are not simply attributed to one component.  The results of the C. elegans studies 
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provide useful information and suggest that, at the proper dilution, PJ may have optimal health benefits 

including control of fat storage, prevent obesity and offer a solution to delay aging in humans. 

 

Figure 50. The estimated GAE (g/ml) by calculation was also directly related to the lifespan extension 

at lower doses by PJ (black) or POMx (red) (a).  The correlation of estimated GAE with lower doses of 

PJ (black) and POMx (red) (b).  The correlation with higher doses of PJ that reduced lifespan and POMx 

that did not (b). 
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1.5 Supplementary materials 

Table 8. Additional statistics for lifespan (P<0.05) 

a. PJ treated group 

 

Days/Dose (%) 0.01 0.1 1 3 5 10 25 

N2 

   16 16   

   30    

44   44 44   

daf-16 

20 20   20 20 20 

  36 36 36 36 36 

  52 52 52 52 52 

  67 67 67 67 67 

 

b. POMx treated group 

Days/Dose (µg/ml) 5 10 20 40 80 160 320 

N2 

  15     

27 27 27 27 27 27 27 

38 38 38 38 38 38 38 

 49 49 49 49 49 49 

daf-16 

25 25  25   25 

37 37  37   37 

46 46  46   46 

  

c. EA treated group 

Days/Dose (µM) DMSO 1 2 5 10 25 50 

N2        

daf-16 
 11      

      21 

  

 

d. UA treated group 

Days/Dose (µM) DMSO 1 2 5 10 25 50 

N2 
     15 15 

 26  26    

daf-16 

   13  13  

 22    22  

 31      

 39      
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Table 9. Calculated GAE content in the doses of the PJ and POMx used in this study 

 

PJ [%] Calculated GAE [µg/ml]*  POMx [µg/ml] Calculated GAE [µg/ml]* 

0.01 0.2825  5 3.03 

0.1 2.825**  10 6.06** 

1 28.25**  20 12.12** 

3 84.75  40 24.24 

5 141.25  80 48.48 

10 282.5***  160 96.96 

25 706.25***  320 193.92 
 

*Calculation was based on [25] 
**Increased lifespan (P<0.05) 
***Reduce lifespan (P<0.05) 

 

Table 10. Correlation of estimated GAE with the dose-responses (A-shape) 

 Low doses High doses 

PJ y = 0.1388ln(x) - 0.0502 R² = 0.9999 y = 0.1452ln(x) - 0.1856 R² = 0.9995 

POMx y = -0.267ln(x) + 0.8962 R² = 0.9485 y = -0.069ln(x) + 0.4027 R² = 0.7102 
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CHAPTER V. CONCLUSIONS 

In a recent Danish report, patients who had vagal nerves removed 20 years earlier had 40% lower 

incidence of PD than control populations.  If dietary proteins were one potential etiology for PD, by 

transport to neurons from the gut, as hypothesized here, removal of the vagal nerve would have prevented 

or reduced this etiology pathway.  Symptoms of motor impairment are typical in PD patients, and 

dysfunction of aspects of the autonomic nervous system are often underrated, such as GI motility, rapid 

eye movement, etc.  The current study indicates potential transport of some dietary plant lectins from the 

GI tract to the DAergic neurons in C. elegans, with direct or indirect effects on these neurons and diverse 

effects on APS.  This observation may be related to the Braak and Hawkes’ hypothesized unknown 

etiologic agent for PD or related, for example, to damaged DAergic neurons those have been found in PD.  

If related, the process may be gradual, may be additive, related to the frequency of consumption of certain 

lectins, and may be determined by the association of lectins with other factors.  Certainly, there is potential 

for inputs from individual genetic susceptibility, varying sugar structures profiles in different cell 

membranes, the receptivity to endocytosis, a disorder or leakage of the GI lining, and dietary content.  Our 

observations are a tantalizing possible explanation for why dietary plants have been linked to a risk of 

developing PD. 

Our data from the C. elegans model indicate that the extension of lifespan by pomegranate is 

partially dependent on the daf-16 pathway, but mechanisms other than those involving polyphenols such 

as EA and its metabolites including UA may play a role as well.  The unique effects of PJ in reducing IFD 

suggest that the effects are not simply attributed to one component.  The results of the C. elegans studies 

provide useful information and suggest that, at the proper dilution, PJ may have optimal health benefits 

including control of fat storage, preventing obesity and offering solutions to delay aging in humans.
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